1
|
Zhan C, Peng C, Wei H, Wei K, Ou Y, Zhang Z. Diverse Subsets of γδT Cells and Their Specific Functions Across Liver Diseases. Int J Mol Sci 2025; 26:2778. [PMID: 40141420 PMCID: PMC11943347 DOI: 10.3390/ijms26062778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/15/2025] [Accepted: 03/17/2025] [Indexed: 03/28/2025] Open
Abstract
γδT cells, a distinct group of T lymphocytes, serve as a link between innate and adaptive immune responses. They are pivotal in the pathogenesis of various liver disorders, such as viral hepatitis, nonalcoholic fatty liver disease (NAFLD), alcoholic liver disease (ALD), liver fibrosis, autoimmune liver diseases, and hepatocellular carcinoma (HCC). Despite their importance, the functional diversity and regulatory mechanisms of γδT cells remain incompletely understood. Recent advances in high-throughput single-cell sequencing and spatial transcriptomics have revealed significant heterogeneity among γδT cell subsets, particularly Vδ1+ and Vδ2+, which exhibit distinct immunological roles. Vδ1+ T cells are mainly tissue-resident and contribute to tumor immunity and chronic inflammation, while Vδ2+ T cells, predominantly found in peripheral blood, play roles in systemic immune surveillance but may undergo dysfunction in chronic liver diseases. Additionally, γδT17 cells exacerbate inflammation in NAFLD and ALD, whereas IFN-γ-secreting γδT cells contribute to antiviral and antifibrotic responses. These discoveries have laid the foundation for the creation of innovative solutions. γδT cell-based immunotherapeutic approaches, such as adoptive cell transfer, immune checkpoint inhibition, and strategies targeting metabolic pathways. Future research should focus on harnessing γδT cells' therapeutic potential through targeted interventions, offering promising prospects for precision immunotherapy in liver diseases.
Collapse
Affiliation(s)
- Chenjie Zhan
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Major New Drugs Innovation and Development, Guangxi Medical University, Nanning 530021, China; (C.Z.); (C.P.)
| | - Chunxiu Peng
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Major New Drugs Innovation and Development, Guangxi Medical University, Nanning 530021, China; (C.Z.); (C.P.)
| | - Huaxiu Wei
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Major New Drugs Innovation and Development, Guangxi Medical University, Nanning 530021, China; (C.Z.); (C.P.)
| | - Ke Wei
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Major New Drugs Innovation and Development, Guangxi Medical University, Nanning 530021, China; (C.Z.); (C.P.)
| | - Yangzhi Ou
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Major New Drugs Innovation and Development, Guangxi Medical University, Nanning 530021, China; (C.Z.); (C.P.)
| | - Zhiyong Zhang
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Major New Drugs Innovation and Development, Guangxi Medical University, Nanning 530021, China; (C.Z.); (C.P.)
- Department of Surgery, Robert-Wood-Johnson Medical School University Hospital, Rutgers University, New Brunswick, NJ 08901-8554, USA
| |
Collapse
|
2
|
Li F, Wang T, Tang F, Liang J. Fatal acute-on-chronic liver failure following camrelizumab for hepatocellular carcinoma with HBsAg seroclearance: a case report and literature review. Front Med (Lausanne) 2023; 10:1231597. [PMID: 37644988 PMCID: PMC10461443 DOI: 10.3389/fmed.2023.1231597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/24/2023] [Indexed: 08/31/2023] Open
Abstract
In the last few years, immune checkpoint inhibitors (ICIs) have become major therapeutic agents for the treatment of advanced hepatocellular carcinoma (HCC). However, immunotherapy can activate hepatitis B virus (HBV), and immune clearance may lead to liver failure and even life-threatening conditions. Here we report a case of HCC with HBV-related cirrhosis that caused severe liver injury and rapidly progressed to fatal acute-on-chronic liver failure (ACLF) after only once application of camrelizumab; the patient underwent serological conversion of hepatitis B surface antigen (HBsAg) with liver injury. The patient's condition progressed rapidly. We added corticosteroids and applied plasma dialysis, along with tenofovir alafenamide (TAF) to control HBV. However, the patient eventually died of liver failure. To our knowledge, there are few reports of HBsAg clearance due to ICIs accompanied by fatal acute-on-chronic liver failure shortly after ICIs initiation. These results suggest that ICIs can cause fatal liver injury in a short term; in patients with chronic HBV infection, ICIs use may promote serological conversion of HBsAg.
Collapse
Affiliation(s)
| | | | | | - Jing Liang
- Department of Gastroenterology and Hepatology, The Third Central Hospital of Tianjin, Tianjin Key Laboratory of Extra-corporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Institute of Hepatobiliary Disease, Tianjin, China
| |
Collapse
|
3
|
De Re V, Tornesello ML, Racanelli V, Prete M, Steffan A. Non-Classical HLA Class 1b and Hepatocellular Carcinoma. Biomedicines 2023; 11:1672. [PMID: 37371767 PMCID: PMC10296335 DOI: 10.3390/biomedicines11061672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
A number of studies are underway to gain a better understanding of the role of immunity in the pathogenesis of hepatocellular carcinoma and to identify subgroups of individuals who may benefit the most from systemic therapy according to the etiology of their tumor. Human leukocyte antigens play a key role in antigen presentation to T cells. This is fundamental to the host's defense against pathogens and tumor cells. In addition, HLA-specific interactions with innate lymphoid cell receptors, such those present on natural killer cells and innate lymphoid cell type 2, have been shown to be important activators of immune function in the context of several liver diseases. More recent studies have highlighted the key role of members of the non-classical HLA-Ib and the transcript adjacent to the HLA-F locus, FAT10, in hepatocarcinoma. The present review analyzes the major contribution of these molecules to hepatic viral infection and hepatocellular prognosis. Particular attention has been paid to the association of natural killer and Vδ2 T-cell activation, mediated by specific HLA class Ib molecules, with risk assessment and novel treatment strategies to improve immunotherapy in HCC.
Collapse
Affiliation(s)
- Valli De Re
- Immunopathology and Cancer Biomarkers Unit, Centro di Riferimento Oncologico di Aviano (CRO), Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), 33081 Aviano, Italy;
| | - Maria Lina Tornesello
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, 80131 Naples, Italy;
| | - Vito Racanelli
- Department of Interdisciplinary Medicine, School of Medicine, ‘Aldo Moro’ University of Bari, 70124 Bari, Italy; (V.R.); (M.P.)
| | - Marcella Prete
- Department of Interdisciplinary Medicine, School of Medicine, ‘Aldo Moro’ University of Bari, 70124 Bari, Italy; (V.R.); (M.P.)
| | - Agostino Steffan
- Immunopathology and Cancer Biomarkers Unit, Centro di Riferimento Oncologico di Aviano (CRO), Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), 33081 Aviano, Italy;
| |
Collapse
|
4
|
Yardeni D, Chang KM, Ghany MG. Current Best Practice in Hepatitis B Management and Understanding Long-term Prospects for Cure. Gastroenterology 2023; 164:42-60.e6. [PMID: 36243037 PMCID: PMC9772068 DOI: 10.1053/j.gastro.2022.10.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 09/25/2022] [Accepted: 10/04/2022] [Indexed: 02/03/2023]
Abstract
The hepatitis B virus (HBV) is a major cause of cirrhosis and hepatocellular carcinoma worldwide. Despite an effective vaccine, the prevalence of chronic infection remains high. Current therapy is effective at achieving on-treatment, but not off-treatment, viral suppression. Loss of hepatitis B surface antigen, the best surrogate marker of off-treatment viral suppression, is associated with improved clinical outcomes. Unfortunately, this end point is rarely achieved with current therapy because of their lack of effect on covalently closed circular DNA, the template of viral transcription and genome replication. Major advancements in our understanding of HBV virology along with better understanding of immunopathogenesis have led to the development of a multitude of novel therapeutic approaches with the prospect of achieving functional cure (hepatitis B surface antigen loss) and perhaps complete cure (clearance of covalently closed circular DNA and integrated HBV DNA). This review will cover current best practice for managing chronic HBV infection and emerging novel therapies for HBV infection and their prospect for cure.
Collapse
Affiliation(s)
- David Yardeni
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Kyong-Mi Chang
- Medical Research, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania; Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Marc G Ghany
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
5
|
Kramvis A, Chang KM, Dandri M, Farci P, Glebe D, Hu J, Janssen HLA, Lau DTY, Penicaud C, Pollicino T, Testoni B, Van Bömmel F, Andrisani O, Beumont-Mauviel M, Block TM, Chan HLY, Cloherty GA, Delaney WE, Geretti AM, Gehring A, Jackson K, Lenz O, Maini MK, Miller V, Protzer U, Yang JC, Yuen MF, Zoulim F, Revill PA. A roadmap for serum biomarkers for hepatitis B virus: current status and future outlook. Nat Rev Gastroenterol Hepatol 2022; 19:727-745. [PMID: 35859026 PMCID: PMC9298709 DOI: 10.1038/s41575-022-00649-z] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/16/2022] [Indexed: 12/13/2022]
Abstract
Globally, 296 million people are infected with hepatitis B virus (HBV), and approximately one million people die annually from HBV-related causes, including liver cancer. Although there is a preventative vaccine and antiviral therapies suppressing HBV replication, there is no cure. Intensive efforts are under way to develop curative HBV therapies. Currently, only a few biomarkers are available for monitoring or predicting HBV disease progression and treatment response. As new therapies become available, new biomarkers to monitor viral and host responses are urgently needed. In October 2020, the International Coalition to Eliminate Hepatitis B Virus (ICE-HBV) held a virtual and interactive workshop on HBV biomarkers endorsed by the International HBV Meeting. Various stakeholders from academia, clinical practice and the pharmaceutical industry, with complementary expertise, presented and participated in panel discussions. The clinical utility of both classic and emerging viral and immunological serum biomarkers with respect to the course of infection, disease progression, and response to current and emerging treatments was appraised. The latest advances were discussed, and knowledge gaps in understanding and interpretation of HBV biomarkers were identified. This Roadmap summarizes the strengths, weaknesses, opportunities and challenges of HBV biomarkers.
Collapse
Affiliation(s)
- Anna Kramvis
- Hepatitis Virus Diversity Research Unit, Department of Internal Medicine, School of Clinical Medicine, University of the Witwatersrand, Johannesburg, South Africa.
| | - Kyong-Mi Chang
- The Corporal Michael J. Crescenz Veterans Affairs Medical Center and University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Maura Dandri
- Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Centre for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems partner site, Hamburg, Germany
| | - Patrizia Farci
- Hepatic Pathogenesis Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Dieter Glebe
- National Reference Center for Hepatitis B Viruses and Hepatitis D Viruses, Institute of Medical Virology, Justus Liebig University Giessen, Giessen, Germany
- German Center for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, Giessen, Germany
| | - Jianming Hu
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Philadelphia, PA, USA
| | - Harry L A Janssen
- Toronto Centre for Liver Disease, University of Toronto, Toronto, Canada
| | - Daryl T Y Lau
- Division of Gastroenterology and Hepatology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Capucine Penicaud
- Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Teresa Pollicino
- Laboratory of Molecular Hepatology, Department of Human Pathology, University Hospital "G. Martino" of Messina, Messina, Italy
| | - Barbara Testoni
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), Lyon, France
- University of Lyon, Université Claude-Bernard (UCBL), Lyon, France
| | - Florian Van Bömmel
- Department of Hepatology, Leipzig University Medical Center, Leipzig, Germany
| | - Ourania Andrisani
- Basic Medical Sciences, Purdue University, West Lafayette, Indiana, USA
| | | | | | - Henry L Y Chan
- Chinese University of Hong Kong, Shatin, Hong Kong
- Union Hospital, Shatin, Hong Kong
| | | | | | - Anna Maria Geretti
- Roche Pharma Research & Early Development, Basel, Switzerland
- Department of Infectious Diseases, Fondazione PTV, Faculty of Medicine, University of Rome Tor Vergata, Rome, Italy
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Adam Gehring
- Toronto Centre for Liver Disease, University Health Network, Toronto, Canada
| | - Kathy Jackson
- Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | | | - Mala K Maini
- Division of Infection & Immunity, Institute of Immunity & Transplantation, University College London, London, UK
| | - Veronica Miller
- Forum for Collaborative Research, University of California Berkeley School of Public Health, Washington DC Campus, Washington, DC, USA
| | - Ulrike Protzer
- Institute of Virology, School of Medicine, Technical University of Munich, Helmholtz Zentrum München, Munich, Germany
| | | | - Man-Fung Yuen
- Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China
| | - Fabien Zoulim
- INSERM Unit 1052 - Cancer Research Center of Lyon, Hospices Civils de Lyon, Lyon University, Lyon, France
| | - Peter A Revill
- Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia.
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
6
|
Liao G, Liu Z, Xia M, Chen H, Wu H, Li B, Yu T, Cai S, Zhang X, Peng J. Soluble Programmed Cell Death-1 is a Novel Predictor of HBsAg Loss in Chronic Hepatitis B Patients When Long-Term Nucleos(t)ide Analog Treatment is Discontinued. Infect Drug Resist 2022; 15:2347-2357. [PMID: 35517900 PMCID: PMC9065130 DOI: 10.2147/idr.s360202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 04/23/2022] [Indexed: 11/23/2022] Open
Affiliation(s)
- Guichan Liao
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Ziying Liu
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Muye Xia
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Hongjie Chen
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Houji Wu
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Bing Li
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Tao Yu
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Shaohang Cai
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Xiaoyong Zhang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Jie Peng
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
- Correspondence: Jie Peng, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China, Tel +86 20 6278 7428, Fax +86 20 8771 9653, Email
| |
Collapse
|
7
|
Zarobkiewicz MK, Bojarska-Junak AA. The Mysterious Actor-γδ T Lymphocytes in Chronic Lymphocytic Leukaemia (CLL). Cells 2022; 11:661. [PMID: 35203309 PMCID: PMC8870520 DOI: 10.3390/cells11040661] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/06/2022] [Accepted: 02/08/2022] [Indexed: 02/07/2023] Open
Abstract
Chronic lymphocytic leukaemia (CLL) is the most common leukaemia among adults. It is the clonal expansion of B cells expressing CD19 and CD5. Despite significant progress in treatment, CLL is still incurable. γδ T cells comprise an important subset of the cytotoxic T cells. Although γδ T cells in CLL are dysfunctional, they still can possibly be used for immunotherapy. The current paper reviews our understanding of γδ T lymphocytes in CLL.
Collapse
|
8
|
Wang Y, Guan Y, Hu Y, Li Y, Lu N, Zhang C. Murine CXCR3+CXCR6+γδT Cells Reside in the Liver and Provide Protection Against HBV Infection. Front Immunol 2022; 12:757379. [PMID: 35126348 PMCID: PMC8814360 DOI: 10.3389/fimmu.2021.757379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 12/28/2021] [Indexed: 11/17/2022] Open
Abstract
Gamma delta (γδ) T cells play a key role in the innate immune response and serve as the first line of defense against infection and tumors. These cells are defined as tissue-resident lymphocytes in skin, lung, and intestinal mucosa. They are also relatively abundant in the liver; however, little is known about the residency of hepatic γδT cells. By comparing the phenotype of murine γδT cells in liver, spleen, thymus, and small intestine, a CXCR3+CXCR6+ γδT-cell subset with tissue-resident characteristics was found in liver tissue from embryos through adults. Liver sinusoidal endothelial cells mediated retention of CXCR3+CXCR6+ γδT cells through the interactions between CXCR3 and CXCR6 and their chemokines. During acute HBV infection, CXCR3+CXCR6+ γδT cells produced high levels of IFN-γ and adoptive transfer of CXCR3+CXCR6+ γδT cells into acute HBV-infected TCRδ−/− mice leading to lower HBsAg and HBeAg expression. It is suggested that liver resident CXCR3+CXCR6+ γδT cells play a protective role during acute HBV infection. Strategies aimed at expanding and activating liver resident CXCR3+CXCR6+ γδT cells both in vivo or in vitro have great prospects for use in immunotherapy that specifically targets acute HBV infection.
Collapse
MESH Headings
- Adoptive Transfer/methods
- Animals
- Chemokines/metabolism
- Hepatitis B/metabolism
- Hepatitis B virus/pathogenicity
- Hepatocytes/metabolism
- Hepatocytes/virology
- Intestine, Small/metabolism
- Intestine, Small/virology
- Liver/metabolism
- Liver/virology
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Nude
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Receptors, CXCR3/metabolism
- Receptors, CXCR6/metabolism
- Spleen/metabolism
- Spleen/virology
- T-Lymphocytes/metabolism
- T-Lymphocytes/virology
- Thymus Gland/metabolism
- Thymus Gland/virology
Collapse
Affiliation(s)
- Yanan Wang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yun Guan
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
- Jining No. 1 People’s Hospital, Jining, China
| | - Yuan Hu
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yan Li
- Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Nan Lu
- Institute of Diagnostics, School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
- *Correspondence: Cai Zhang, ; Nan Lu,
| | - Cai Zhang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
- *Correspondence: Cai Zhang, ; Nan Lu,
| |
Collapse
|
9
|
Martini F, Champagne E. The Contribution of Human Herpes Viruses to γδ T Cell Mobilisation in Co-Infections. Viruses 2021; 13:v13122372. [PMID: 34960641 PMCID: PMC8704314 DOI: 10.3390/v13122372] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 12/12/2022] Open
Abstract
γδ T cells are activated in viral, bacterial and parasitic infections. Among viruses that promote γδ T cell mobilisation in humans, herpes viruses (HHVs) occupy a particular place since they infect the majority of the human population and persist indefinitely in the organism in a latent state. Thus, other infections should, in most instances, be considered co-infections, and the reactivation of HHV is a serious confounding factor in attributing γδ T cell alterations to a particular pathogen in human diseases. We review here the literature data on γδ T cell mobilisation in HHV infections and co-infections, and discuss the possible contribution of HHVs to γδ alterations observed in various infectious settings. As multiple infections seemingly mobilise overlapping γδ subsets, we also address the concept of possible cross-protection.
Collapse
|
10
|
Abstract
Chronic hepatitis B virus (HBV) infection is the leading cause of liver cirrhosis and hepatocellular carcinoma, estimated to be globally responsible for ∼800,000 deaths annually. Although effective vaccines are available to prevent new HBV infection, treatment of existing chronic hepatitis B (CHB) is limited, as the current standard-of-care antiviral drugs can only suppress viral replication without achieving cure. In 2016, the World Health Organization called for the elimination of viral hepatitis as a global public health threat by 2030. The United States and other nations are working to meet this ambitious goal by developing strategies to cure CHB, as well as prevent HBV transmission. This review considers recent research progress in understanding HBV pathobiology and development of therapeutics for the cure of CHB, which is necessary for elimination of hepatitis B by 2030.
Collapse
Affiliation(s)
- Timothy M Block
- Baruch S. Blumberg Institute, Doylestown, Pennsylvania 18902, USA;
| | - Kyong-Mi Chang
- The Corporal Michael J. Crescenz VA Medical Center and University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Ju-Tao Guo
- Baruch S. Blumberg Institute, Doylestown, Pennsylvania 18902, USA;
| |
Collapse
|
11
|
Morrison AL, Sharpe S, White AD, Bodman-Smith M. Cheap and Commonplace: Making the Case for BCG and γδ T Cells in COVID-19. Front Immunol 2021; 12:743924. [PMID: 34567010 PMCID: PMC8455994 DOI: 10.3389/fimmu.2021.743924] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 08/19/2021] [Indexed: 12/26/2022] Open
Abstract
Antigen-specific vaccines developed for the COVID-19 pandemic demonstrate a remarkable achievement and are currently being used in high income countries with much success. However, new SARS-CoV-2 variants are threatening this success via mutations that lessen the efficacy of antigen-specific antibodies. One simple approach to assisting with this issue is focusing on strategies that build on the non-specific protection afforded by the innate immune response. The BCG vaccine has been shown to provide broad protection beyond tuberculosis disease, including against respiratory viruses, and ongoing studies are investigating its efficacy as a tool against SARS-CoV-2. Gamma delta (γδ) T cells, particularly the Vδ2 subtype, undergo rapid expansion after BCG vaccination due to MHC-independent mechanisms. Consequently, γδ T cells can produce diverse defenses against virally infected cells, including direct cytotoxicity, death receptor ligands, and pro-inflammatory cytokines. They can also assist in stimulating the adaptive immune system. BCG is affordable, commonplace and non-specific, and therefore could be a useful tool to initiate innate protection against new SARS-CoV-2 variants. However, considerations must also be made to BCG vaccine supply and the prioritization of countries where it is most needed to combat tuberculosis first and foremost.
Collapse
Affiliation(s)
| | - Sally Sharpe
- Public Health England, National Infection Service, Porton Down, United Kingdom
| | - Andrew D. White
- Public Health England, National Infection Service, Porton Down, United Kingdom
| | - Mark Bodman-Smith
- Infection and Immunity Research Institute, St George’s University of London, London, United Kingdom
| |
Collapse
|
12
|
Cho HJ, Cheong JY. Role of Immune Cells in Patients with Hepatitis B Virus-Related Hepatocellular Carcinoma. Int J Mol Sci 2021; 22:ijms22158011. [PMID: 34360777 PMCID: PMC8348470 DOI: 10.3390/ijms22158011] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/23/2021] [Accepted: 07/23/2021] [Indexed: 12/17/2022] Open
Abstract
Hepatocellular carcinoma (HCC) develops almost entirely in the presence of chronic inflammation. Chronic hepatitis B virus (HBV) infection with recurrent immune-mediated liver damage ultimately leads to cirrhosis and HCC. It is widely accepted that HBV infection induces the dysfunction of the innate and adaptive immune responses that engage various immune cells. Natural killer (NK) cells are associated with early antiviral and antitumor properties. On the other hand, inflammatory cells release various cytokines and chemokines that may promote HCC tumorigenesis. Moreover, immunosuppressive cells such as regulatory T cells (Treg) and myeloid-derived suppressive cells play a critical role in hepatocarcinogenesis. HBV-specific CD8+ T cells have been identified as pivotal players in antiviral responses, whilst extremely activated CD8+ T cells induce enormous inflammatory responses, and chronic inflammation can facilitate hepatocarcinogenesis. Controlling and maintaining the balance in the immune system is an important aspect in the management of HBV-related HCC. We conducted a review of the current knowledge on the immunopathogenesis of HBV-induced inflammation and the role of such immune activation in the tumorigenesis of HCC based on the recent studies on innate and adaptive immune cell dysfunction in HBV-related HCC.
Collapse
Affiliation(s)
| | - Jae-Youn Cheong
- Correspondence: ; Tel.: +82-31-219-6939; Fax: +82-31-219-5999
| |
Collapse
|
13
|
Yang J, Zhong M, Zhang E, Hong K, Yang Q, Zhou D, Xia J, Chen YQ, Sun M, Zhao B, Xiang J, Liu Y, Han Y, Xu M, Zhou X, Huang C, Shang Y, Yan H. Broad phenotypic alterations and potential dysfunction of lymphocytes in individuals clinically recovered from COVID-19. J Mol Cell Biol 2021; 13:197-209. [PMID: 33751111 PMCID: PMC7989217 DOI: 10.1093/jmcb/mjab014] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 01/05/2021] [Accepted: 01/13/2021] [Indexed: 01/08/2023] Open
Abstract
Although millions of patients have clinically recovered from COVID-19, little is known about the immune status of lymphocytes in these individuals. In this study, the peripheral blood mononuclear cells of a clinically recovered (CR) cohort were comparatively analyzed with those of an age- and sex-matched healthy donor cohort. We found that CD8+ T cells in the CR cohort had higher numbers of effector T cells and effector memory T cells but lower Tc1 (IFN-γ+), Tc2 (IL-4+), and Tc17 (IL-17A+) cell frequencies. The CD4+ T cells of the CR cohort were decreased in frequency, especially the central memory T cell subset. Moreover, CD4+ T cells in the CR cohort showed lower programmed cell death protein 1 (PD-1) expression and had lower frequencies of Th1 (IFN-γ+), Th2 (IL-4+), Th17 (IL-17A+), and circulating follicular helper T (CXCR5+PD-1+) cells. Accordingly, the proportion of isotype-switched memory B cells (IgM−CD20hi) among B cells in the CR cohort showed a significantly lower proportion, although the level of the activation marker CD71 was elevated. For CD3−HLA-DR− lymphocytes in the CR cohort, in addition to lower levels of IFN-γ, granzyme B and T-bet, the correlation between T-bet and IFN-γ was not observed. Additionally, by taking into account the number of days after discharge, all the phenotypes associated with reduced function did not show a tendency toward recovery within 4‒11 weeks. The remarkable phenotypic alterations in lymphocytes in the CR cohort suggest that severe acute respiratory syndrome coronavirus 2 infection profoundly affects lymphocytes and potentially results in dysfunction even after clinical recovery.
Collapse
Affiliation(s)
- Jingyi Yang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China.,Joint Laboratory of Infectious Diseases and Health, Wuhan Institute of Virology & Wuhan Jinyintan Hospital, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430023, China.,State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Maohua Zhong
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan 430065, China.,Joint Laboratory of Infectious Diseases and Health, Wuhan Institute of Virology & Wuhan Jinyintan Hospital, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430023, China.,State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Ejuan Zhang
- Joint Laboratory of Infectious Diseases and Health, Wuhan Institute of Virology & Wuhan Jinyintan Hospital, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430023, China.,State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Ke Hong
- Center for Translational Medicine, Jinyintan Hospital, Wuhan 430023, China.,Joint Laboratory of Infectious Diseases and Health, Wuhan Institute of Virology & Wuhan Jinyintan Hospital, Wuhan Jinyintan Hospital, Wuhan 430023, China
| | - Qingyu Yang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China.,Center for Translational Medicine, Jinyintan Hospital, Wuhan 430023, China.,Joint Laboratory of Infectious Diseases and Health, Wuhan Institute of Virology & Wuhan Jinyintan Hospital, Wuhan Jinyintan Hospital, Wuhan 430023, China
| | - Dihan Zhou
- Joint Laboratory of Infectious Diseases and Health, Wuhan Institute of Virology & Wuhan Jinyintan Hospital, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430023, China.,State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Jianbo Xia
- Department of Laboratory Medicine, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430070, China
| | - Yao-Qing Chen
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Mingbo Sun
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650018, China
| | - Bali Zhao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Xiang
- Center for Translational Medicine, Jinyintan Hospital, Wuhan 430023, China.,Joint Laboratory of Infectious Diseases and Health, Wuhan Institute of Virology & Wuhan Jinyintan Hospital, Wuhan Jinyintan Hospital, Wuhan 430023, China
| | - Ying Liu
- Joint Laboratory of Infectious Diseases and Health, Wuhan Institute of Virology & Wuhan Jinyintan Hospital, Wuhan Jinyintan Hospital, Wuhan 430023, China.,The Office of Drug Clinical Trial Institution, Jinyintan Hospital, Wuhan 430023, China
| | - Yang Han
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China.,Center for Translational Medicine, Jinyintan Hospital, Wuhan 430023, China.,Joint Laboratory of Infectious Diseases and Health, Wuhan Institute of Virology & Wuhan Jinyintan Hospital, Wuhan Jinyintan Hospital, Wuhan 430023, China
| | - Mengxin Xu
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Xi Zhou
- Joint Laboratory of Infectious Diseases and Health, Wuhan Institute of Virology & Wuhan Jinyintan Hospital, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430023, China.,State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China.,Center for Translational Medicine, Jinyintan Hospital, Wuhan 430023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chaolin Huang
- Center for Translational Medicine, Jinyintan Hospital, Wuhan 430023, China.,Joint Laboratory of Infectious Diseases and Health, Wuhan Institute of Virology & Wuhan Jinyintan Hospital, Wuhan Jinyintan Hospital, Wuhan 430023, China
| | - You Shang
- Center for Translational Medicine, Jinyintan Hospital, Wuhan 430023, China.,Joint Laboratory of Infectious Diseases and Health, Wuhan Institute of Virology & Wuhan Jinyintan Hospital, Wuhan Jinyintan Hospital, Wuhan 430023, China.,Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Huimin Yan
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China.,Joint Laboratory of Infectious Diseases and Health, Wuhan Institute of Virology & Wuhan Jinyintan Hospital, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430023, China.,State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China.,Center for Translational Medicine, Jinyintan Hospital, Wuhan 430023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
14
|
Gogoi D, Borkakoty B, Biswas D, Yadav K, Patel V. Characteristics of Circulatory γδ T cells in Patients with Symptomatic Chronic Hepatitis B Infection. Viral Immunol 2021; 34:483-490. [PMID: 34096794 DOI: 10.1089/vim.2020.0314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Hepatitis B is a viral infection that can cause serious liver disease. Chronic hepatitis B (CHB) infection places individuals at higher risk of developing cirrhosis of the liver and hepatocellular cancer. Immune dysfunction, including altered distribution and functional status of T cell immunity, is a contributor to hepatitis B virus (HBV) pathogenesis. In this study, we examined the distribution of circulating γδ T cell subpopulations and levels of cell surface expression of suppressive markers on γδ T cells in individuals with CHB infection and clinical liver disease. A significantly higher proportion of terminally differentiated (TEMRA) (CD27-CD45RA+) γδ T cells along with significantly lower percentages of central memory (CD27+CD45RA-) and effector memory (CD27-CD45RA-) γδ T cells were observed in peripheral blood of these individuals. The expression of exhaustion markers-Tim-3 and Lag-3 was elevated in γδ T cells from CHB-infected individuals compared with healthy controls (HC) and blockade of these exhaustion markers resulted in restoration of interferon gamma (IFN-γ) secretion by γδ T cells. In addition, γδ T cells from CHB patients expressed increased levels of CD69, another important regulator of immune responses. Together, these results suggest that CHB patients with clinical sign of liver disease have TEMRA γδ T cells with a potentially exhausted phenotype that may in turn impair their immunoregulatory role and facilitate pathogenesis of CHB disease.
Collapse
Affiliation(s)
- Dimpu Gogoi
- Department of Biochemistry and Virology, National Institute for Research in Reproductive Health, Indian Council of Medical Research, Mumbai, India.,Virology Section, Regional Medical Research Centre, Northeast Region, Indian Council of Medical Research, Dibrugarh, India
| | - Biswajyoti Borkakoty
- Virology Section, Regional Medical Research Centre, Northeast Region, Indian Council of Medical Research, Dibrugarh, India
| | - Dipankar Biswas
- Virology Section, Regional Medical Research Centre, Northeast Region, Indian Council of Medical Research, Dibrugarh, India
| | - Kaushal Yadav
- Virology Section, Regional Medical Research Centre, Northeast Region, Indian Council of Medical Research, Dibrugarh, India
| | - Vainav Patel
- Department of Biochemistry and Virology, National Institute for Research in Reproductive Health, Indian Council of Medical Research, Mumbai, India
| |
Collapse
|
15
|
Traum D, Wang YJ, Schwarz KB, Schug J, Wong DK, Janssen HLA, Terrault NA, Khalili M, Wahed AS, Murray KF, Rosenthal P, Ling SC, Rodriguez-Baez N, Sterling RK, Lau DT, Block TM, Feldman MD, Furth EE, Lee WM, Kleiner DE, Lok AS, Kaestner KH, Chang KM. Highly multiplexed 2-dimensional imaging mass cytometry analysis of HBV-infected liver. JCI Insight 2021; 6:146883. [PMID: 33621209 PMCID: PMC8119221 DOI: 10.1172/jci.insight.146883] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/18/2021] [Indexed: 02/06/2023] Open
Abstract
Studies of human hepatitis B virus (HBV) immune pathogenesis are hampered by limited access to liver tissues and technologies for detailed analyses. Here, utilizing imaging mass cytometry (IMC) to simultaneously detect 30 immune, viral, and structural markers in liver biopsies from patients with hepatitis B e antigen+ (HBeAg+) chronic hepatitis B, we provide potentially novel comprehensive visualization, quantitation, and phenotypic characterizations of hepatic adaptive and innate immune subsets that correlated with hepatocellular injury, histological fibrosis, and age. We further show marked correlations between adaptive and innate immune cell frequencies and phenotype, highlighting complex immune interactions within the hepatic microenvironment with relevance to HBV pathogenesis.
Collapse
Affiliation(s)
- Daniel Traum
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA.,Medical Research, The Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA
| | - Yue J Wang
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA.,Biomedical Sciences, College of Medicine, Florida State University, Tallahasee, Florida, USA
| | | | - Jonathan Schug
- Department of Genetics and Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - David Kh Wong
- Toronto Centre for Liver Disease, University of Toronto, Toronto, Ontario, Canada
| | - Harry LA Janssen
- Toronto Centre for Liver Disease, University of Toronto, Toronto, Ontario, Canada
| | - Norah A Terrault
- Department of Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Mandana Khalili
- Department of Medicine, UCSF, San Francisco, California, USA
| | - Abdus S Wahed
- University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania, USA
| | - Karen F Murray
- Cleveland Clinic Pediatric Institute, Cleveland, Ohio, USA
| | | | - Simon C Ling
- The Hospital for Sick Children and Department of Paediatrics and University of Toronto, Toronto, Canada
| | - Norberto Rodriguez-Baez
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Richard K Sterling
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Daryl Ty Lau
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | | | - Michael D Feldman
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Elizabeth E Furth
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - William M Lee
- Department of Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - David E Kleiner
- Laboratory of Pathology, National Cancer Institute, Bethesda, Maryland, USA
| | - Anna S Lok
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Klaus H Kaestner
- Department of Genetics and Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Kyong-Mi Chang
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA.,Medical Research, The Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA
| |
Collapse
|
16
|
Hou W, Wu X. Diverse Functions of γδ T Cells in the Progression of Hepatitis B Virus and Hepatitis C Virus Infection. Front Immunol 2021; 11:619872. [PMID: 33597951 PMCID: PMC7882476 DOI: 10.3389/fimmu.2020.619872] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/17/2020] [Indexed: 12/18/2022] Open
Abstract
Hepatitis B virus (HBV) and hepatitis C virus (HCV) infections are primary risk factors for a wide spectrum of liver diseases that severely affect human health. The liver is an immunological organ that has an abundance of immune cells. Thus, various innate or adaptive immune cells are involved in the progression of HBV or HCV infection. Among those cells, a unique kind of immune cell, the γδ T cell, contributes to promoting or inhibiting the progression of liver diseases. To reveal the diverse roles of γδ T cells in HBV or HCV infection, the properties and functions of these cells in human and mouse models are analyzed. Here, we briefly describe the characteristics and functions of γδ T cells subsets in liver diseases. Then, we fully discuss the diverse roles of γδ T cells in the progression of HBV or HCV infection, including stages of acute infection, chronic infection, liver cirrhosis, and hepatocellular carcinoma. Finally, the functions and existing problems of γδ T cells in HBV or HCV infection are summarized. A better understanding of the function of γδ T cells during the progression of HBV and HCV infection will be helpful for the treatment of virus infection.
Collapse
Affiliation(s)
- Wen Hou
- Key Laboratory for Critical Care Medicine of the Ministry of Health, Tianjin First Central Hospital, Tianjin, China.,State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Xiaoli Wu
- School of Life Sciences, Tianjin University, Tianjin, China
| |
Collapse
|
17
|
Uldrich AP, Rigau M, Godfrey DI. Immune recognition of phosphoantigen-butyrophilin molecular complexes by γδ T cells. Immunol Rev 2020; 298:74-83. [PMID: 33017054 DOI: 10.1111/imr.12923] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/22/2020] [Accepted: 09/02/2020] [Indexed: 12/13/2022]
Abstract
Gamma-delta (γδ) T cells are an important component of the immune system. They are often enriched in non-lymphoid tissues and exhibit diverse functional attributes including rapid activation, cytokine production, proliferation, and acquisition of cytotoxicity following both TCR-dependent and TCR-independent stimulation, but poor capacity for immunological memory. They can detect a broad range of antigens, although typically not peptide-MHC complexes in contrast to alpha-beta (αβ) T cells. In humans, a prominent population of γδ T cells, defined as Vγ9Vδ2+ cells, reacts to small phosphorylated non-peptide "phosphoantigens" (pAgs). The molecular mechanism underpinning this recognition is poorly defined, but is known to involve butyrophilin family members and appears to involve indirect pAg recognition via alterations to butyrophilin molecular complexes. In this review, we discuss recent advances in our understanding of pAg recognition by γδ T cells including the role of butyrophilins and in particular, a newly described role for butyrophilin 2A1.
Collapse
Affiliation(s)
- Adam P Uldrich
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Vic., Australia.,Australian Research Council Centre of Excellence for Advanced Molecular Imaging, University of Melbourne, Melbourne, Vic., Australia
| | - Marc Rigau
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Vic., Australia.,Institute of Experimental Immunology at the University Clinic of the Rheinische Friedrich-Wilhelms, University of Bonn, Bonn, Germany
| | - Dale I Godfrey
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Vic., Australia.,Australian Research Council Centre of Excellence for Advanced Molecular Imaging, University of Melbourne, Melbourne, Vic., Australia
| |
Collapse
|
18
|
Different T-cell subsets in glioblastoma multiforme and targeted immunotherapy. Cancer Lett 2020; 496:134-143. [PMID: 33022290 DOI: 10.1016/j.canlet.2020.09.028] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/29/2020] [Accepted: 09/30/2020] [Indexed: 12/21/2022]
Abstract
Glioblastoma multiforme (GBM) is a brain tumor with a high mortality rate. Surgical resection combined with radiotherapy and chemotherapy is the standard treatment for GBM patients, but the 5-year survival rate of patients despite this treatment is low. Immunotherapy has attracted increasing attention in recent years. As the pioneer and the main effector cells of immunotherapy, T cells play a key role in tumor immunotherapy. However, the T cells in GBM microenvironment are inhibited by the highly immunosuppressive environment of GBM, posing huge challenges to T cell-based GBM immunotherapy. This review summarizes the effects of the GBM microenvironment on the infiltration and function of different T-cell subsets and the possible strategies to overcome immunosuppression, and thus enhance the effectiveness of GBM immunotherapy.
Collapse
|
19
|
Zhang T, Warden AR, Li Y, Ding X. Progress and applications of mass cytometry in sketching immune landscapes. Clin Transl Med 2020; 10:e206. [PMID: 33135337 PMCID: PMC7556381 DOI: 10.1002/ctm2.206] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/28/2020] [Accepted: 09/28/2020] [Indexed: 12/16/2022] Open
Abstract
Recently emerged mass cytometry (cytometry by time-of-flight [CyTOF]) technology permits the identification and quantification of inherently diverse cellular systems, and the simultaneous measurement of functional attributes at the single-cell resolution. By virtue of its multiplex ability with limited need for compensation, CyTOF has led a critical role in immunological research fields. Here, we present an overview of CyTOF, including the introduction of CyTOF principle and advantages that make it a standalone tool in deciphering immune mysteries. We then discuss the functional assays, introduce the bioinformatics to interpret the data yield via CyTOF, and depict the emerging clinical and research applications of CyTOF technology in sketching immune landscape in a wide variety of diseases.
Collapse
Affiliation(s)
- Ting Zhang
- State Key laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghaiChina
| | - Antony R. Warden
- State Key laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghaiChina
| | - Yiyang Li
- State Key laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghaiChina
| | - Xianting Ding
- State Key laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
20
|
Yang J, Zhang E, Zhong M, Yang Q, Hong K, Shu T, Zhou D, Xiang J, Xia J, Zhou X, Zhang D, Huang C, Shang Y, Yan H. Longitudinal Characteristics of T Cell Responses in Asymptomatic SARS-CoV-2 Infection. Virol Sin 2020; 35:838-841. [PMID: 32822061 PMCID: PMC7441833 DOI: 10.1007/s12250-020-00277-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 07/24/2020] [Indexed: 11/24/2022] Open
Affiliation(s)
- Jingyi Yang
- Joint Laboratory of Infectious Diseases and Health, Wuhan Institute of Virology and Wuhan Jinyintan Hospital, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences (CAS), Wuhan, 430023, China.,State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, CAS, Wuhan, 430071, China
| | - Ejuan Zhang
- Joint Laboratory of Infectious Diseases and Health, Wuhan Institute of Virology and Wuhan Jinyintan Hospital, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences (CAS), Wuhan, 430023, China.,State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, CAS, Wuhan, 430071, China
| | - Maohua Zhong
- Joint Laboratory of Infectious Diseases and Health, Wuhan Institute of Virology and Wuhan Jinyintan Hospital, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences (CAS), Wuhan, 430023, China.,State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, CAS, Wuhan, 430071, China
| | - Qingyu Yang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, CAS, Wuhan, 430071, China.,Center for Translational Medicine, Jinyintan Hospital, Wuhan, 430023, China.,Joint Laboratory of Infectious Diseases and Health, Wuhan Institute of Virology and Wuhan Jinyintan Hospital, Wuhan Jinyintan Hospital, Wuhan, 430023, China
| | - Ke Hong
- Center for Translational Medicine, Jinyintan Hospital, Wuhan, 430023, China.,Joint Laboratory of Infectious Diseases and Health, Wuhan Institute of Virology and Wuhan Jinyintan Hospital, Wuhan Jinyintan Hospital, Wuhan, 430023, China
| | - Ting Shu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, CAS, Wuhan, 430071, China.,Center for Translational Medicine, Jinyintan Hospital, Wuhan, 430023, China.,Joint Laboratory of Infectious Diseases and Health, Wuhan Institute of Virology and Wuhan Jinyintan Hospital, Wuhan Jinyintan Hospital, Wuhan, 430023, China
| | - Dihan Zhou
- Joint Laboratory of Infectious Diseases and Health, Wuhan Institute of Virology and Wuhan Jinyintan Hospital, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences (CAS), Wuhan, 430023, China.,State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, CAS, Wuhan, 430071, China
| | - Jie Xiang
- Center for Translational Medicine, Jinyintan Hospital, Wuhan, 430023, China.,Joint Laboratory of Infectious Diseases and Health, Wuhan Institute of Virology and Wuhan Jinyintan Hospital, Wuhan Jinyintan Hospital, Wuhan, 430023, China
| | - Jianbo Xia
- Department of Laboratory Medicine, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430070, China
| | - Xi Zhou
- Joint Laboratory of Infectious Diseases and Health, Wuhan Institute of Virology and Wuhan Jinyintan Hospital, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences (CAS), Wuhan, 430023, China.,State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, CAS, Wuhan, 430071, China.,Center for Translational Medicine, Jinyintan Hospital, Wuhan, 430023, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dingyu Zhang
- Center for Translational Medicine, Jinyintan Hospital, Wuhan, 430023, China.,Joint Laboratory of Infectious Diseases and Health, Wuhan Institute of Virology and Wuhan Jinyintan Hospital, Wuhan Jinyintan Hospital, Wuhan, 430023, China
| | - Chaolin Huang
- Center for Translational Medicine, Jinyintan Hospital, Wuhan, 430023, China. .,Joint Laboratory of Infectious Diseases and Health, Wuhan Institute of Virology and Wuhan Jinyintan Hospital, Wuhan Jinyintan Hospital, Wuhan, 430023, China.
| | - You Shang
- Center for Translational Medicine, Jinyintan Hospital, Wuhan, 430023, China. .,Joint Laboratory of Infectious Diseases and Health, Wuhan Institute of Virology and Wuhan Jinyintan Hospital, Wuhan Jinyintan Hospital, Wuhan, 430023, China. .,Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Huimin Yan
- Joint Laboratory of Infectious Diseases and Health, Wuhan Institute of Virology and Wuhan Jinyintan Hospital, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences (CAS), Wuhan, 430023, China. .,State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, CAS, Wuhan, 430071, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
21
|
Zhang J, Huang J, Chen W, Hu Z, Wang X. miR-143-3p Targets lncRNA PSMG3-AS1 to Inhibit the Proliferation of Hepatocellular Carcinoma Cells. Cancer Manag Res 2020; 12:6303-6309. [PMID: 32801875 PMCID: PMC7394512 DOI: 10.2147/cmar.s242179] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 06/08/2020] [Indexed: 12/20/2022] Open
Abstract
Introduction The molecular pathogenesis of liver cancer remains unclear; some ncRNAs have been considered as potential drug targets for cancer treatment. LncRNA PSMG3‑AS1 has been reported to promote breast cancer, while its role in hepatocellular carcinoma (HCC) is unknown. Methods Bioinformatics analysis was conducted to investigate the relationship between miR-143-3p and PSMG3-AS1. RT-qPCR was used to detect the expression levels of miR-143-3p and PSMG3-AS1 and the correlation between them in HCC. The survival curve was used to analyze the effect of PSMG3-AS1 on the prognosis of liver cancer. RT-qPCR was used to detect the effect of different concentration gradients of miR-143-3p on PSMG3-AS1. CCK8 and clone formation experiments were used to examine the role of miR-143-3p and PSMG3-AS1 in regulating the proliferation of SNU-182 and SNU-398 cells. Results Our preliminary bioinformatics analysis showed that miR-143-3p can target PSMG3-AS1. We, therefore, analyzed the interaction between PSMG3-AS1 and miR-143-3p in HCC. We found that PSMG3-AS1 was upregulated, while miR-143-3p was downregulated in HCC. The expression levels of PSMG3‑AS1 and miR-143-3p were closely and inversely correlated with each other. High expression levels of PSMG3‑AS1 predicted poor survival. In HCC cells, overexpression of PSMG3-AS1 led to increased proliferation rates. Overexpression of miR-143-3p played an opposite role and reversed the effect of overexpression of PSMG3‑AS1. Discussions miR-143-3p may target PSMG3‑AS1 to inhibit the proliferation of HCC cells.
Collapse
Affiliation(s)
- Jianlin Zhang
- Department of Emergency Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province 230022, People's Republic of China
| | - Jin Huang
- Department of Pathology, Hefei Second People's Hospital, Anhui Medical University, Hefei City, Anhui Province, People's Republic of China
| | - Weidong Chen
- Department of Emergency Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province 230022, People's Republic of China
| | - Zhiwan Hu
- Department of Emergency Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province 230022, People's Republic of China
| | - Xingyu Wang
- Department of Emergency Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province 230022, People's Republic of China
| |
Collapse
|
22
|
Fisicaro P, Barili V, Rossi M, Montali I, Vecchi A, Acerbi G, Laccabue D, Zecca A, Penna A, Missale G, Ferrari C, Boni C. Pathogenetic Mechanisms of T Cell Dysfunction in Chronic HBV Infection and Related Therapeutic Approaches. Front Immunol 2020; 11:849. [PMID: 32477347 PMCID: PMC7235343 DOI: 10.3389/fimmu.2020.00849] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 04/14/2020] [Indexed: 12/12/2022] Open
Abstract
A great effort of research has been devoted in the last few years to developing new anti-HBV therapies of finite duration that also provide effective sustained control of virus replication and antigen production. Among the potential therapeutic strategies, immune-modulation represents a promising option to cure HBV infection and the adaptive immune response is a rational target for novel therapeutic interventions, in consideration of the key role played by T cells in the control of virus infections. HBV-specific T cells are severely dysfunctional in chronic HBV infection as a result of several inhibitory mechanisms which are simultaneously active within the chronically inflamed liver. Indeed, the liver is a tolerogenic organ harboring different non-parenchymal cell populations which can serve as antigen presenting cells (APC) but are poorly efficient in effector T cell priming, with propensity to induce T cell tolerance rather than T cell activation, because of a poor expression of co-stimulatory molecules, up-regulation of the co-inhibitory ligands PD-L1 and PD-L2 upon IFN stimulation, and production of immune regulatory cytokines, such as IL10 and TGF-β. They include resident dendritic cells (DCs), comprising myeloid and plasmacytoid DCs, liver sinusoidal endothelial cells (LSECs), Kupffer cells (KCs), hepatic stellate cells (HSCs) as well as the hepatocytes themselves. Additional regulatory mechanisms which contribute to T cell attrition in the chronically infected liver are the high levels of soluble mediators, such as arginase, indoleamine 2,3-dioxygenase (IDO) and suppressive cytokines, the up-regulation of inhibitory checkpoint receptor/ligand pairs, the expansion of regulatory cells, such as CD4+FOXp3+ Treg cells, myeloid-derived suppressor cells and NK cells. This review will deal with the interactions between immune cells and liver environment discussing the different mechanisms which contribute to T cell dysfunction in chronic hepatitis B, some of which are specifically activated in HBV infection and others which are instead common to chronic inflammatory liver diseases in general. Therapeutic interventions targeting dysregulated pathways and cellular functions will be also delineated.
Collapse
Affiliation(s)
- Paola Fisicaro
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy.,Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Valeria Barili
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy.,Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Marzia Rossi
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy.,Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Ilaria Montali
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Andrea Vecchi
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Greta Acerbi
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy.,Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Diletta Laccabue
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Alessandra Zecca
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Amalia Penna
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Gabriele Missale
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy.,Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Carlo Ferrari
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy.,Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Carolina Boni
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| |
Collapse
|
23
|
Ghany MG, Feld JJ, Chang KM, Chan HLY, Lok ASF, Visvanathan K, Janssen HLA. Serum alanine aminotransferase flares in chronic hepatitis B infection: the good and the bad. Lancet Gastroenterol Hepatol 2020; 5:406-417. [PMID: 32057301 DOI: 10.1016/s2468-1253(19)30344-9] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/08/2019] [Accepted: 08/12/2019] [Indexed: 02/06/2023]
Abstract
Chronic hepatitis B virus (HBV) infection follows a dynamic and variable course. At different stages in the disease, hepatitis flares might occur, which can be challenging to predict and manage. Flares are believed to be primarily immune-mediated and might mark transitions to inactive disease or clearance of infection, but in certain scenarios they might also lead to hepatic decompensation or death. As such, understanding of the clinical significance of flares in different patient populations and different scenarios is important for optimal management. In this Review, we summarise what is known about flares in different stages of chronic HBV infection; describe flares in the context of the natural history of chronic infection; summarise the immunological mechanisms underlying flares, and describe flares in different clinical scenarios. Each section reviews existing knowledge and highlights key unanswered questions that need to be addressed to improve the understanding of flares, hopefully providing insights into their pathogenesis that can be used to improve current clinical management and ideally to further develop new curative therapeutic approaches for HBV infection. We also propose a working definition of an ALT flare to facilitate future research.
Collapse
Affiliation(s)
- Marc G Ghany
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Jordan J Feld
- Toronto Centre for Liver Disease, Toronto General Hospital, University of Toronto, Toronto, ON, Canada
| | - Kyong-Mi Chang
- Medical Research, Corporal Michael J Crescenz VA Medical Center, Philadelphia, PA, USA; Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Henry L Y Chan
- Department of Medicine and Therapeutics and Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Anna S F Lok
- Division of Gastroenterology and Hepatology, University of Michigan, Ann Arbor, MI, USA
| | - Kumar Visvanathan
- Department of Infectious Disease, St Vincent's Hospital, Melbourne, Victoria, Australia; Department of Medicine, The University of Melbourne, Melbourne, Victoria, Australia
| | - Harry L A Janssen
- Toronto Centre for Liver Disease, Toronto General Hospital, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
24
|
Chen Y, Tian Z. HBV-Induced Immune Imbalance in the Development of HCC. Front Immunol 2019; 10:2048. [PMID: 31507621 PMCID: PMC6718466 DOI: 10.3389/fimmu.2019.02048] [Citation(s) in RCA: 178] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 08/13/2019] [Indexed: 12/12/2022] Open
Abstract
Chronic hepatitis B virus (HBV) infection is one of the high-risk factors for human HCC. Despite the integration of virus DNA and the oncoprotein HBx, chronic necroinflammation and hepatocellular regeneration account for hepatocarcinogenesis. As a non-cytopathic virus, HBV is extensively recognized to mediate chronic liver damage through abnormal immune attack. However, the mechanisms driving HBV infection to HCC are poorly understood. During chronic HBV infection in humans, the adaptive immunity changes from immune tolerance to progressive immune activation, inactivation, reactivation and exhaustion, all of which may be the immune pathogenic factors for the development of HCC. Recently, the immunopathogenic mechanisms were described in mouse HBV-induced HCC models, which is absolutely dependent on the presence of HBV-specific T cell response and NK cell-derived IFN-γ, findings which are consistent with the observations from CHB and HCC patients. In this review, we summarize recent research progression on the HBV-specific CD8+ T cells, and also CD4+ T cells, B cells and non-specific immune cells and molecules underlying chronic HBV infection and eventual HCC development to demonstrate the pathogenesis of HBV-induced immune imbalance. Based on the progression, we discussed the potential of immune-based therapies and their challenges in the treatment of HBV-related HCC, including the checkpoint inhibition, genetically modified T cell transfer, therapeutic vaccines and metabolic modulation.
Collapse
Affiliation(s)
- Yongyan Chen
- Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Molecular Medicine, School of Life Sciences, University of Science and Technology of China, Hefei, China.,Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Zhigang Tian
- Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Molecular Medicine, School of Life Sciences, University of Science and Technology of China, Hefei, China.,Institute of Immunology, University of Science and Technology of China, Hefei, China
| |
Collapse
|