1
|
Van Nederveen V, Johnson YS, Ortega E, Soc A, Smith MA, Melton-Celsa AR. Role of aggregative adherence fimbriae from enteroaggregative Escherichia coli isolates in biofilm and colonization. Microb Pathog 2025; 203:107444. [PMID: 40032001 DOI: 10.1016/j.micpath.2025.107444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 01/10/2025] [Accepted: 02/28/2025] [Indexed: 03/05/2025]
Abstract
Enteroaggregative Escherichia coli (EAEC) are a diverse group of bacteria that cause diarrhea worldwide. EAEC significantly affect travelers to endemic regions, including military personnel, and children in developing countries where EAEC infection is associated with childhood failure-to-thrive. EAEC creates thick biofilms on the intestinal mucosa, a process that is thought to contribute to the development of both diarrhea and childhood failure-to-thrive. Typical EAEC strains encode and produce just one aggregative adherence fimbriae (AAF) out of the five different AAF types. The AAF are required for aggregative adherence to epithelial cells in vitro, but the degree of importance of each of the AAF types in both biofilm formation and pathogenesis is unknown. In this study, we investigated the role of the fimbriae in EAEC biofilms by deleting the major fimbrial subunit gene for the AAF from each of the five AAF categories and observing the impact on biofilm staining from recent EAEC clinical isolates. We found that biofilm was significantly reduced in all strains when the AAF gene was deleted, and that the defect could be overcome by complementation. In this work we also describe a modified murine EAEC model appropriate for colonization studies. In an antibiotic-treated mouse colonization model, some AAF mutant strains were attenuated for colonization, including AAF/II, AAF/IV, and AAF/V isolates. We did not observe complementation of the attenuated colonization phenotype in the mouse model. However, since we found a colonization defect for several EAEC mutant strains of different AAF types, a link between the fimbriae and colonization in the mice is supported. Taken together, our results show that the AAF are required for biofilm formation, and that some AAF contribute to colonization in a mouse model.
Collapse
Affiliation(s)
- Viktoria Van Nederveen
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Yuliya Seldina Johnson
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Ennzo Ortega
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Anthony Soc
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | | | - Angela R Melton-Celsa
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, USA.
| |
Collapse
|
2
|
Kok CR, Thissen JB, Cerroni M, Tribble DR, Cancio A, Tran S, Schofield C, Colombo RE, Troth T, Joya C, Lalani T, Be NA. Field expedient stool collection methods for gut microbiome analysis in deployed military environments. mSphere 2025:e0081824. [PMID: 40372056 DOI: 10.1128/msphere.00818-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 04/09/2025] [Indexed: 05/16/2025] Open
Abstract
Field expedient devices and protocols for the collection, storage, and shipment of stool samples in deployed settings are needed for the advancement of microbiome research in military health. Relevant assessments include the evaluation of microbiome signatures associated with susceptibility to travelers' diarrhea and recovery of gut function following infection. However, inherent biases in microbial measurements due to preservatives and sampling methods are unclear and should be assessed for an accurate evaluation of the microbiome. We performed shotgun metagenomic sequencing and compared the microbiome composition in paired fecal samples collected using Flinters Technology Associates (FTA) cards and OMNIgene (OG) Gut tubes, prior to and during international travel, from 49 adult participants, 39 of whom remained asymptomatic and 10 experienced travelers' diarrhea. Higher concentrations of nucleic acid and sequencing libraries were observed in OG samples. A majority of genera (82.9%) were detected with both methods, and detections of genera limited to one collection method were not highly prevalent across samples and were present in extremely low relative abundances (<0.01%). Differences in beta diversity were largely explained by inter-individuality of microbiome composition, followed by the effect of collection method and timepoint-disease states. Differential abundance analysis indicated that Corynebacterium and Blautia were consistently higher in abundance across all groups with FTA and OG collection, respectively. The observed differences in microbiome composition between methods suggest the need for consistent and standardized protocols within a study. Overall, the data presented here could help guide the future design of fecal microbiome study protocols in field and military deployment settings.IMPORTANCEThe assessment of field-deployable methods for fecal sample collection and storage is required to reliably capture samples collected in remote and austere locations. This study describes a comparative metagenomics analysis between samples collected by two different commercially available methods in a military-deployed setting. The results presented here are foundational for the future design of fecal microbiome study protocols in an operational context.
Collapse
Affiliation(s)
- Car Reen Kok
- Lawrence Livermore National Laboratory, Livermore, California, USA
| | - James B Thissen
- Lawrence Livermore National Laboratory, Livermore, California, USA
| | - Michele Cerroni
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, , Bethesda, Maryland, USA
- Navy Medicine Readiness and Training Command, Portsmouth, Virginia, USA
- The Henry M Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
| | - David R Tribble
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, , Bethesda, Maryland, USA
| | | | - Sophia Tran
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, , Bethesda, Maryland, USA
- The Henry M Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
- Tripler Army Medical Center, Honolulu, Hawaii, USA
| | | | - Rhonda E Colombo
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, , Bethesda, Maryland, USA
- The Henry M Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
- Madigan Army Medical Center, Tacoma, Washington, USA
| | - Tom Troth
- United Kingdom Ministry of Defence, London, England, United Kingdom
- University of Birmingham, Birmingham, United Kingdom
| | - Christie Joya
- Navy Medicine Readiness and Training Command, Portsmouth, Virginia, USA
| | - Tahaniyat Lalani
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, , Bethesda, Maryland, USA
- Navy Medicine Readiness and Training Command, Portsmouth, Virginia, USA
- The Henry M Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
| | - Nicholas A Be
- Lawrence Livermore National Laboratory, Livermore, California, USA
| |
Collapse
|
3
|
Liechty Z, Baldwin A, Isidean S, Suvarnapunya A, Frenck R, Porter C, Goodson M. Dynamics of the gut microbiome in subjects challenged with Shigella sonnei 53G in a controlled human infection model. mSphere 2025; 10:e0090624. [PMID: 40152601 PMCID: PMC12039237 DOI: 10.1128/msphere.00906-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 02/26/2025] [Indexed: 03/29/2025] Open
Abstract
Shigella is a significant cause of diarrhea, predominantly affecting children in low- and middle-income countries, as well as international travelers. Not all individuals exposed to Shigella or other enteropathogens have symptomatic responses, and investigating the differences between symptomatic and asymptomatic individuals can further our understanding of enteropathogen proliferation and symptomatic responses. Here, we profiled the fecal microbiomes of 45 individuals infected with Shigella sonnei strain 53G through 16S rRNA sequencing in a controlled human infection model before and during infection, after antibiotic treatment, and after clinical recovery. This model allowed for a detailed exploration of microbiome temporal dynamics during infection, as well as a comparative analysis between those with shigellosis (defined as severe symptoms caused by Shigella infection, including severe diarrhea, fever, and/or abdominal pain) and those without shigellosis. Alpha diversity decreased to a greater degree in individuals with shigellosis. Perturbations in microbial composition during infection and antibiotic treatment were significantly larger in individuals diagnosed with shigellosis than in those who were not. Participants with shigellosis had persistent changes to their microbiomes after recovery, while those without shigellosis recovered to a composition resembling their pre-infection microbiomes. These persistent changes included taxa associated with gut inflammation, such as a decrease in Faecalibacterium and an increase in Ruminococcus gnavus. Furthermore, the initial microbiomes of participants who did not develop shigellosis had a greater abundance of taxa associated with short-chain fatty acid production than participants who did develop shigellosis, including Bifidobacterium, Roseburia, and Faecalibacterium. These data could help prevent Shigella infection or symptoms.IMPORTANCEDiarrheal disease is a major contributor to the global disease burden and can lead to an increased individual risk of chronic sequelae post-infection, such as irritable bowel syndrome, reactive arthritis, and altered gut permeability. Understanding the differential responses of individuals to enteropathogen exposure can elucidate factors that could lead to treatments or preventative measures to reduce the disease burden. Here, we use a controlled human infection model study to directly identify the effects of Shigella sonnei 53G infection on the microbiome. We identified taxa that were more or less abundant in participants who would develop shigellosis during the study, as well as persistent changes after recovery in the microbiomes of participants who developed severe symptoms. Understanding these changes could elucidate ways to prevent Shigella infection or recover altered microbiomes after recovery.CLINICAL TRIALSThis study is registered with ClinicalTrials.gov as NCT02816346.
Collapse
Affiliation(s)
- Zachary Liechty
- 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, Ohio, USA
- Health and Performance Technologies Division, Blue Halo, Inc., Dayton, Ohio, USA
| | - Arianna Baldwin
- 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, Ohio, USA
| | - Sandra Isidean
- Translational and Clinical Research Department, Naval Medical Research Command, Silver Spring, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
| | - Akamol Suvarnapunya
- Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Robert Frenck
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Chad Porter
- Translational and Clinical Research Department, Naval Medical Research Command, Silver Spring, Maryland, USA
| | - Michael Goodson
- 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, Ohio, USA
| |
Collapse
|
4
|
Jackson SJT, Andrews K, Droleskey RE, Banz WJ, Apgar GA, Rivenbark KJ, Wang M, Anderson RC, Harvey RB, Phillips TD. NutriClay Zn Binds Aflatoxin B1 and Suppresses Enterotoxigenic Salmonella and Escherichia coli. J Food Prot 2025; 88:100486. [PMID: 40113140 PMCID: PMC12044614 DOI: 10.1016/j.jfp.2025.100486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 03/12/2025] [Accepted: 03/13/2025] [Indexed: 03/22/2025]
Abstract
Salmonella Typhimurium and Escherichia coli represent foodborne pathogens that can trigger diarrhea and diminish weight gains in livestock, as well as cause gastroenteritis in humans. Although prophylactic antibiotics have been used historically on the farm to limit bacterial pathogens and promote animal growth, this practice may also foster antimicrobial resistant (AMR) strains of bacteria and deplete our arsenal of effective antibiotic therapies. Incorporation of free chemical zinc oxide (ZnO) into animal feed, at doses far above nutritional requirements, has largely replaced prophylactic antibiotics; however, environmental concerns are mounting around unabsorbed zinc (excreted in feces) impacting soil microbes and thereby contributing to the AMR threat. Here, NutriClayZn is introduced as an analog of montmorillonite (MMT) clay with potent efficacy against foodborne bacterial pathogens and slow release of low concentrations of zinc. Bacterial propagation was assessed in culture experiments using NutriClayZn dosages aligned with current dietary MMT clay practices for the control of aflatoxin in production animals. Zinc release was quantified by inductively coupled plasma mass spectrometry. Significant (p < 0.05) growth reduction of Salmonella Typhimurium was observed following NutriClayZn exposures releasing less zinc than that contained within free chemical ZnO positive controls. Moreover, NutriClayZn displayed dose-dependent efficacy against an AMR strain of Escherichia coli O157:H7, while also binding aflatoxin B1 with kinetics similar to its parent MMT clay. These findings suggest that NutriClayZn could serve as a dual-purpose dietary substance, binding aflatoxin B1 and suppressing enterotoxigenic bacteria that can compromise the food supply.
Collapse
Affiliation(s)
- Steven J T Jackson
- College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, United States
| | - Kathleen Andrews
- Food and Feed Safety Research Unit, USDA Agricultural Research Service, College Station, Texas, United States
| | - Robert E Droleskey
- Food and Feed Safety Research Unit, USDA Agricultural Research Service, College Station, Texas, United States
| | - William J Banz
- School of Agricultural Sciences, Southern Illinois University, Carbondale, Illinois, United States
| | - Gary A Apgar
- School of Agricultural Sciences, Southern Illinois University, Carbondale, Illinois, United States
| | - Kelly J Rivenbark
- College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, United States
| | - Meichen Wang
- Department of Environmental Health Sciences, University of Massachusetts, Amherst, Massachusetts, United States
| | - Robin C Anderson
- Food and Feed Safety Research Unit, USDA Agricultural Research Service, College Station, Texas, United States
| | - Roger B Harvey
- Food and Feed Safety Research Unit, USDA Agricultural Research Service, College Station, Texas, United States
| | - Timothy D Phillips
- College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, United States.
| |
Collapse
|
5
|
Navabi V, Wiemer DF, Halfter M, Müseler U, Dupke S, Petrov-Salzwedel A, Schotte U, Frickmann H. Spatial and temporal dynamics of the prevalence of resistance genes and gastrointestinal pathogens in stool samples of German deployment returnees. Eur J Microbiol Immunol (Bp) 2024; 14:309-332. [PMID: 39470748 PMCID: PMC11836650 DOI: 10.1556/1886.2024.00093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 10/06/2024] [Indexed: 11/01/2024] Open
Abstract
Background The exploratory study assessed trends in the abundance of CTX-M-type extended spectrum beta-lactamase (ESBL) and vancomycin-resistance genes vanA and vanB in the stool samples of German soldiers and police officers returning from predominantly tropical deployments next to the common diarrheagenic Escherichia (E.) coli pathovars enteropathogenic Escherichia coli (EPEC), enterotoxigenic E. coli (ETEC) and enteroaggregative E. coli (EAEC)) as well as rarely imported Vibrio spp. between 2006 and 2024. Methods Surveillance was performed applying real-time polymerase chain reaction and results were stratified by World Health Organization region of deployment as well as by deployment period. For the latter, the study interval was divided into three pre-COVID-19-pandemic periods, the COVID-19-pandemic period and the post-COVID-19-pandemic period. Averaged prevalences were used as references. Results In stool samples of 1817 deployed German soldiers and 117 police officers, averaged prevalences were 47.9% and 24.8% for the ESBL-type beta-lactamase blaCTX-M, 30.2% and 14.5% for vanB, 9.0% and 17.9% for EPEC, 3.4% and 12.8% for ETEC, 4.0% and 3.4% for EAEC as well as 2.0% and 3.4% for Vibrio spp., respectively. While resistance genes peaked during early deployments, maximum prevalences for enteropathogens were seen later. Conclusions The assessment suggested time- and region-dependence of the assessed parameters.
Collapse
Affiliation(s)
- Vanessa Navabi
- Department of Microbiology and Hospital Hygiene, Bundeswehr Hospital Hamburg, Hamburg, Germany
| | | | - Matthias Halfter
- Infectious Disease and Tropical Medicine Department, Bundeswehr Hospital Hamburg, Hamburg, Germany
| | - Ulrich Müseler
- Medical Service, German Federal Police, Potsdam, Germany
| | - Susann Dupke
- Centre for Biological Threats and Special Pathogens/Highly Pathogenic Microorganisms, Robert Koch Institute, Berlin, Germany
| | - Anja Petrov-Salzwedel
- Department A—Veterinary Medicine, Central Institute of the Bundeswehr Medical Service Kiel, Kronshagen, Germany
| | - Ulrich Schotte
- Department A—Veterinary Medicine, Central Institute of the Bundeswehr Medical Service Kiel, Kronshagen, Germany
| | - Hagen Frickmann
- Department of Microbiology and Hospital Hygiene, Bundeswehr Hospital Hamburg, Hamburg, Germany
- Institute for Medical Microbiology, Virology and Hygiene, University Medicine Rostock, 18057Rostock, Germany
| |
Collapse
|
6
|
Van Nederveen V, Melton-Celsa A. Extracellular components in enteroaggregative Escherichia coli biofilm and impact of treatment with proteinase K, DNase or sodium metaperiodate. Front Cell Infect Microbiol 2024; 14:1379206. [PMID: 38938878 PMCID: PMC11209426 DOI: 10.3389/fcimb.2024.1379206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/23/2024] [Indexed: 06/29/2024] Open
Abstract
Enteroaggregative E. coli (EAEC) is a major cause of diarrhea worldwide. EAEC are highly adherent to cultured epithelial cells and make biofilms. Both adherence and biofilm formation rely on the presence of aggregative adherence fimbriae (AAF). We compared biofilm formation from two EAEC strains of each of the five AAF types. We found that AAF type did not correlate with the level of biofilm produced. Because the composition of the EAEC biofilm has not been fully described, we stained EAEC biofilms to determine if they contained protein, carbohydrate glycoproteins, and/or eDNA and found that EAEC biofilms contained all three extracellular components. Next, we assessed the changes to the growing or mature EAEC biofilm mediated by treatment with proteinase K, DNase, or a carbohydrate cleavage agent to target the different components of the matrix. Growing biofilms treated with proteinase K had decreased biofilm staining for more than half of the strains tested. In contrast, although sodium metaperiodate only altered the biofilm in a quantitative way for two strains, images of biofilms treated with sodium metaperiodate showed that the EAEC were more spread out. Overall, we found variability in the response of the EAEC strains to the treatments, with no one treatment producing a biofilm change for all strains. Finally, once formed, mature EAEC biofilms were more resistant to treatment than biofilms grown in the presence of those same treatments.
Collapse
Affiliation(s)
- Viktoria Van Nederveen
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Angela Melton-Celsa
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, United States
| |
Collapse
|
7
|
Gandasegui J, Vergara A, Fleitas P, Rubio E, Fernandez-Pittol M, Aylagas C, Alvarez M, Zancada N, Camprubí-Ferrer D, Vila J, Muñoz J, Petrone P, Casals-Pascual C. Gut microbiota composition in travellers is associated with faecal lipocalin-2, a mediator of gut inflammation. Front Cell Infect Microbiol 2024; 14:1387126. [PMID: 38736752 PMCID: PMC11082338 DOI: 10.3389/fcimb.2024.1387126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/15/2024] [Indexed: 05/14/2024] Open
Abstract
Introduction We examined the gut microbiota of travellers returning from tropical areas with and without traveller's diarrhoea (TD) and its association with faecal lipocalin-2 (LCN2) levels. Methods Participants were recruited at the Hospital Clinic of Barcelona, Spain, and a single stool sample was collected from each individual to perform the diagnostic of the etiological agent causing gastrointestinal symptoms as well as to measure levels of faecal LCN2 as a biomarker of gut inflammation. We also characterised the composition of the gut microbiota by sequencing the region V3-V4 from the 16S rRNA gene, and assessed its relation with the clinical presentation of TD and LCN2 levels using a combination of conventional statistical tests and unsupervised machine learning approaches. Results Among 61 participants, 45 had TD, with 40% having identifiable etiological agents. Surprisingly, LCN2 levels were similar across groups, suggesting gut inflammation occurs without clinical TD symptoms. Differential abundance (DA) testing highlighted a microbial profile tied to high LCN2 levels, marked by increased Proteobacteria and Escherichia-Shigella, and decreased Firmicutes, notably Oscillospiraceae. UMAP analysis confirmed this profile's association, revealing distinct clusters based on LCN2 levels. The study underscores the discriminatory power of UMAP in capturing meaningful microbial patterns related to clinical variables. No relevant differences in the gut microbiota composition were found between travellers with or without TD. Discussion The findings suggest a correlation between gut microbiome and LCN2 levels during travel, emphasising the need for further research to discern the nature of this relationship.
Collapse
Affiliation(s)
| | - Andrea Vergara
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Department of Clinical Microbiology, Biomedical Diagnostic Center (CDB), Hospital Clínic of Barcelona, University of Barcelona, Barcelona, Spain
- CIBER Enfermedades Infecciosas (CIBERINFEC), Instituto Salud Carlos III, Madrid, Spain
| | - Pedro Fleitas
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
| | - Elisa Rubio
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Department of Clinical Microbiology, Biomedical Diagnostic Center (CDB), Hospital Clínic of Barcelona, University of Barcelona, Barcelona, Spain
| | - Mariana Fernandez-Pittol
- Department of Clinical Microbiology, Biomedical Diagnostic Center (CDB), Hospital Clínic of Barcelona, University of Barcelona, Barcelona, Spain
| | - Cristian Aylagas
- Department of Clinical Microbiology, Biomedical Diagnostic Center (CDB), Hospital Clínic of Barcelona, University of Barcelona, Barcelona, Spain
| | - Míriam Alvarez
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Department of Clinical Microbiology, Biomedical Diagnostic Center (CDB), Hospital Clínic of Barcelona, University of Barcelona, Barcelona, Spain
| | - Noelia Zancada
- Department of Clinical Microbiology, Biomedical Diagnostic Center (CDB), Hospital Clínic of Barcelona, University of Barcelona, Barcelona, Spain
| | - Daniel Camprubí-Ferrer
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Tropical Medicine and International Health Department, Hospital Clínic, Barcelona, Spain
| | - Jordi Vila
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Department of Clinical Microbiology, Biomedical Diagnostic Center (CDB), Hospital Clínic of Barcelona, University of Barcelona, Barcelona, Spain
- CIBER Enfermedades Infecciosas (CIBERINFEC), Instituto Salud Carlos III, Madrid, Spain
| | - José Muñoz
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- CIBER Enfermedades Infecciosas (CIBERINFEC), Instituto Salud Carlos III, Madrid, Spain
- Tropical Medicine and International Health Department, Hospital Clínic, Barcelona, Spain
| | - Paula Petrone
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
| | - Climent Casals-Pascual
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Department of Clinical Microbiology, Biomedical Diagnostic Center (CDB), Hospital Clínic of Barcelona, University of Barcelona, Barcelona, Spain
- CIBER Enfermedades Infecciosas (CIBERINFEC), Instituto Salud Carlos III, Madrid, Spain
| |
Collapse
|
8
|
Talaat KR, Porter CK, Chakraborty S, Feijoo BL, Brubaker J, Adjoodani BM, DeNearing B, Prouty MG, Poole ST, Bourgeois AL, Billingsley M, Sack DA, Eder-Lingelbach S, Taucher C. Validation of a Human Challenge Model Using an LT-Expressing Enterotoxigenic E. coli Strain (LSN03-016011) and Characterization of Potential Amelioration of Disease by an Investigational Oral Vaccine Candidate (VLA1701). Microorganisms 2024; 12:727. [PMID: 38674674 PMCID: PMC11051778 DOI: 10.3390/microorganisms12040727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/22/2024] [Accepted: 03/23/2024] [Indexed: 04/28/2024] Open
Abstract
Controlled human infection models are important tools for the evaluation of vaccines against diseases where an appropriate correlate of protection has not been identified. Enterotoxigenic Escherichia coli (ETEC) strain LSN03-016011/A (LSN03) is an LT enterotoxin and CS17-expressing ETEC strain useful for evaluating vaccine candidates targeting LT-expressing strains. We sought to confirm the ability of the LSN03 strain to induce moderate-to-severe diarrhea in a healthy American adult population, as well as the impact of immunization with an investigational cholera/ETEC vaccine (VLA-1701) on disease outcomes. A randomized, double-blinded pilot study was conducted in which participants received two doses of VLA1701 or placebo orally, one week apart; eight days after the second vaccination, 30 participants (15 vaccinees and 15 placebo recipients) were challenged with approximately 5 × 109 colony-forming units of LSN03. The vaccine was well tolerated, with no significant adverse events. The vaccine also induced serum IgA and IgG responses to LT. After challenge, 11 of the placebo recipients (73.3%; 95%CI: 48.0-89.1) and 7 of the VLA1701 recipients (46.7%; 95%CI: 24.8-68.8) had moderate-to-severe diarrhea (p = 0.26), while 14 placebo recipients (93%) and 8 vaccine recipients (53.3%) experienced diarrhea of any severity, resulting in a protective efficacy of 42.9% (p = 0.035). In addition, the vaccine also appeared to provide protection against more severe diarrhea (p = 0.054). Vaccinees also tended to shed lower levels of the LSN03 challenge strain compared to placebo recipients (p = 0.056). In addition, the disease severity score was lower for the vaccinees than for the placebo recipients (p = 0.046). In summary, the LSN03 ETEC challenge strain induced moderate-to-severe diarrhea in 73.3% of placebo recipients. VLA1701 vaccination ameliorated disease severity, as observed by several parameters, including the percentage of participants experiencing diarrhea, as well as stool frequency and ETEC severity scores. These data highlight the potential value of LSN03 as a suitable ETEC challenge strain to evaluate LT-based vaccine targets (NCT03576183).
Collapse
Affiliation(s)
- Kawsar R. Talaat
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (S.C.); (B.L.F.); (B.M.A.); (B.D.); (A.L.B.); (M.B.); (D.A.S.)
| | - Chad K. Porter
- Naval Medical Research Command, Silver Spring, MD 20910, USA; (C.K.P.); (M.G.P.); (S.T.P.)
| | - Subhra Chakraborty
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (S.C.); (B.L.F.); (B.M.A.); (B.D.); (A.L.B.); (M.B.); (D.A.S.)
| | - Brittany L. Feijoo
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (S.C.); (B.L.F.); (B.M.A.); (B.D.); (A.L.B.); (M.B.); (D.A.S.)
| | - Jessica Brubaker
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (S.C.); (B.L.F.); (B.M.A.); (B.D.); (A.L.B.); (M.B.); (D.A.S.)
| | - Brittany M. Adjoodani
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (S.C.); (B.L.F.); (B.M.A.); (B.D.); (A.L.B.); (M.B.); (D.A.S.)
| | - Barbara DeNearing
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (S.C.); (B.L.F.); (B.M.A.); (B.D.); (A.L.B.); (M.B.); (D.A.S.)
| | - Michael G. Prouty
- Naval Medical Research Command, Silver Spring, MD 20910, USA; (C.K.P.); (M.G.P.); (S.T.P.)
| | - Steven T. Poole
- Naval Medical Research Command, Silver Spring, MD 20910, USA; (C.K.P.); (M.G.P.); (S.T.P.)
| | - A. Louis Bourgeois
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (S.C.); (B.L.F.); (B.M.A.); (B.D.); (A.L.B.); (M.B.); (D.A.S.)
| | - Madison Billingsley
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (S.C.); (B.L.F.); (B.M.A.); (B.D.); (A.L.B.); (M.B.); (D.A.S.)
| | - David A. Sack
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (S.C.); (B.L.F.); (B.M.A.); (B.D.); (A.L.B.); (M.B.); (D.A.S.)
| | | | | |
Collapse
|
9
|
Anderson MS, Mahugu EW, Ashbaugh HR, Wellbrock AG, Nozadze M, Shrestha SK, Soto GM, Nada RA, Pandey P, Esona MD, Crouch DJ, Hartman-Lane M, Smith HJ. Etiology and Epidemiology of Travelers' Diarrhea among US Military and Adult Travelers, 2018-2023. Emerg Infect Dis 2024; 30:19-25. [PMID: 39530798 PMCID: PMC11559568 DOI: 10.3201/eid3014.240308] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
Travelers' diarrhea has a high incidence rate among deployed US military personnel and can hinder operational readiness. The Global Travelers' Diarrhea study is a US Department of Defense--funded multisite surveillance effort to investigate the etiology and epidemiology of travelers' diarrhea. During 2018-2023, we enrolled 512 participants at partner institutions in 6 countries: Djibouti, Georgia, Egypt, Honduras, Nepal, and Peru. Harmonized laboratory methods conducted at each partner institution identified >1 pathogens, including Escherichia coli (67%-82%), norovirus (4%-29%), and Campylobacter jejuni (2%-20%), in 403 (79%) cases. Among cases, 79.7% were single infections, 19.6% were double infections, and 0.7% were triple infections. The most common enterotoxigenic E. coli colonization factors identified were CS3 (25%) and CS21 (25%), followed by CS2 (18%) and CS6 (15%). These data can inform best treatment practices for travelers' diarrhea and support US military health readiness.
Collapse
|
10
|
Troth TD, McInnes RS, Dunn SJ, Mirza J, Whittaker AH, Goodchild SA, Loman NJ, Harding SV, van Schaik W. Differences in the gut microbiota between Gurkhas and soldiers of British origin. PLoS One 2023; 18:e0292645. [PMID: 38113233 PMCID: PMC10729956 DOI: 10.1371/journal.pone.0292645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/26/2023] [Indexed: 12/21/2023] Open
Abstract
Previous work indicated that the incidence of travellers' diarrhoea (TD) is higher in soldiers of British origin, when compared to soldiers of Nepalese descent (Gurkhas). We hypothesise that the composition of the gut microbiota may be a contributing factor in the risk of developing TD in soldiers of British origin. This study aimed to characterise the gut microbial composition of Gurkha and non-Gurkha soldiers of the British Army. Recruitment of 38 soldiers (n = 22 Gurkhas, n = 16 non-Gurkhas) and subsequent stool collection, enabled shotgun metagenomic sequencing-based analysis of the gut microbiota. The microbiota of Gurkhas had significantly (P < 0.05) lower diversity, for both Shannon and Simpson diversity indices, using species level markers than the gut microbiota of non-Gurkha soldiers. Non-metric Multidimensional Scaling (NMDS) of the Bray-Curtis distance matrix revealed a significant difference in the composition of the gut microbiota between Gurkhas and non-Gurkha soldiers, at both the species level (P = 0.0178) and the genus level (P = 0.0483). We found three genera and eight species that were significantly enriched in the non-Gurkha group and one genus (Haemophilus) and one species (Haemophilus parainfluenzae) which were enriched in the Gurkha group. The difference in the microbiota composition between Gurkha soldiers and soldiers of British origin may contribute to higher colonization resistance against diarrhoeal pathogens in the former group. Our findings may enable further studies into interventions that modulate the gut microbiota of soldiers to prevent TD during deployment.
Collapse
Affiliation(s)
- Thomas D. Troth
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Ross S. McInnes
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Steven J. Dunn
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Jeremy Mirza
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Annalise H. Whittaker
- CBR Division, Defence and Science Technology Laboratory, Salisbury, Wiltshire, United Kingdom
| | - Sarah A. Goodchild
- CBR Division, Defence and Science Technology Laboratory, Salisbury, Wiltshire, United Kingdom
| | - Nicholas J. Loman
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Sarah V. Harding
- CBR Division, Defence and Science Technology Laboratory, Salisbury, Wiltshire, United Kingdom
- School of Respiratory Sciences, University of Leicester, Leicester, United Kingdom
| | - Willem van Schaik
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
11
|
Gore R, Mohsenipour M, Wood JL, Balasuriya GK, Hill-Yardin EL, Franks AE. Hyperimmune bovine colostrum containing lipopolysaccharide antibodies (IMM124-E) has a nondetrimental effect on gut microbial communities in unchallenged mice. Infect Immun 2023; 91:e0009723. [PMID: 37830823 PMCID: PMC10652967 DOI: 10.1128/iai.00097-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 08/21/2023] [Indexed: 10/14/2023] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) is a leading cause of bacterial diarrhea with the potential to cause long-term gastrointestinal (GI) dysfunction. Preventative treatments for ETEC-induced diarrhea exist, yet the effects of these treatments on GI commensals in healthy individuals are unclear. Whether administration of a prophylactic preventative treatment for ETEC-induced diarrhea causes specific shifts in gut microbial populations in controlled environments is also unknown. Here, we studied the effects of a hyperimmune bovine colostrum (IMM-124E) used in the manufacture of Travelan (AUST L 106709) on GI bacteria in healthy C57BL/6 mice. Using next-generation sequencing, we aimed to test the onset and magnitude of potential changes to the mouse gut microbiome in response to the antidiarrheagenic hyperimmune bovine colostrum product, rich in immunoglobulins against select ETEC strains (Travelan, Immuron Ltd). We show that in mice administered colostrum containing lipopolysaccharide (LPS) antibodies, there was an increased abundance of potentially gut-beneficial bacteria, such as Akkermansia and Desulfovibrio, without disrupting the underlying ecology of the GI tract. Compared to controls, there was no difference in overall weight gain, body or cecal weights, or small intestine length following LPS antibody colostrum supplementation. Overall, dietary supplementation with colostrum containing LPS antibodies produced subtle alterations in the gut bacterial composition of mice. Primarily, Travelan LPS antibody treatment decreased the ratio of Firmicutes/Bacteroidetes in gut microbial populations in unchallenged healthy mice. Further studies are required to examine the effect of Travelan LPS antibody treatment to engineer the microbiome in a diseased state and during recovery.
Collapse
Affiliation(s)
- Rachele Gore
- Neurodevelopment in Health and Disease Research Program, School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Bundoora, Victoria, Australia
| | - Mitra Mohsenipour
- Neurodevelopment in Health and Disease Research Program, School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Jennifer L. Wood
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Bundoora, Victoria, Australia
| | - Gayathri K. Balasuriya
- Department of Physiology and Cell Biology, Kobe University School of Medicine, Kobe, Japan
| | - Elisa L. Hill-Yardin
- Neurodevelopment in Health and Disease Research Program, School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Ashley E. Franks
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Bundoora, Victoria, Australia
| |
Collapse
|
12
|
Leigh SJ, Uhlig F, Wilmes L, Sanchez-Diaz P, Gheorghe CE, Goodson MS, Kelley-Loughnane N, Hyland NP, Cryan JF, Clarke G. The impact of acute and chronic stress on gastrointestinal physiology and function: a microbiota-gut-brain axis perspective. J Physiol 2023; 601:4491-4538. [PMID: 37756251 DOI: 10.1113/jp281951] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
The physiological consequences of stress often manifest in the gastrointestinal tract. Traumatic or chronic stress is associated with widespread maladaptive changes throughout the gut, although comparatively little is known about the effects of acute stress. Furthermore, these stress-induced changes in the gut may increase susceptibility to gastrointestinal disorders and infection, and impact critical features of the neural and behavioural consequences of the stress response by impairing gut-brain axis communication. Understanding the mechanisms behind changes in enteric nervous system circuitry, visceral sensitivity, gut barrier function, permeability, and the gut microbiota following stress is an important research objective with pathophysiological implications in both neurogastroenterology and psychiatry. Moreover, the gut microbiota has emerged as a key aspect of physiology sensitive to the effects of stress. In this review, we focus on different aspects of the gastrointestinal tract including gut barrier function as well as the immune, humoral and neuronal elements involved in gut-brain communication. Furthermore, we discuss the evidence for a role of stress in gastrointestinal disorders. Existing gaps in the current literature are highlighted, and possible avenues for future research with an integrated physiological perspective have been suggested. A more complete understanding of the spatial and temporal dynamics of the integrated host and microbial response to different kinds of stressors in the gastrointestinal tract will enable full exploitation of the diagnostic and therapeutic potential in the fast-evolving field of host-microbiome interactions.
Collapse
Affiliation(s)
- Sarah-Jane Leigh
- APC Microbiome Ireland, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - Friederike Uhlig
- APC Microbiome Ireland, Cork, Ireland
- Department of Physiology, University College Cork, Cork, Ireland
| | - Lars Wilmes
- APC Microbiome Ireland, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Paula Sanchez-Diaz
- APC Microbiome Ireland, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - Cassandra E Gheorghe
- APC Microbiome Ireland, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - Michael S Goodson
- 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, Ohio, USA
| | - Nancy Kelley-Loughnane
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, Ohio, USA
| | - Niall P Hyland
- APC Microbiome Ireland, Cork, Ireland
- Department of Physiology, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| |
Collapse
|
13
|
Lopez-Santamarina A, Mondragon ADC, Cardelle-Cobas A, Santos EM, Porto-Arias JJ, Cepeda A, Miranda JM. Effects of Unconventional Work and Shift Work on the Human Gut Microbiota and the Potential of Probiotics to Restore Dysbiosis. Nutrients 2023; 15:3070. [PMID: 37447396 DOI: 10.3390/nu15133070] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/15/2023] Open
Abstract
The work environment is a factor that can significantly influence the composition and functionality of the gut microbiota of workers, in many cases leading to gut dysbiosis that will result in serious health problems. The aim of this paper was to provide a compilation of the different studies that have examined the influence of jobs with unconventional work schedules and environments on the gut microbiota of workers performing such work. As a possible solution, probiotic supplements, via modulation of the gut microbiota, can moderate the effects of sleep disturbance on the immune system, as well as restore the dysbiosis produced. Rotating shift work has been found to be associated with an increase in the risk of various metabolic diseases, such as obesity, metabolic syndrome, and type 2 diabetes. Sleep disturbance or lack of sleep due to night work is also associated with metabolic diseases. In addition, sleep disturbance induces a stress response, both physiologically and psychologically, and disrupts the healthy functioning of the gut microbiota, thus triggering an inflammatory state. Other workers, including military, healthcare, or metallurgy workers, as well as livestock farmers or long-travel seamen, work in environments and schedules that can significantly affect their gut microbiota.
Collapse
Affiliation(s)
- Aroa Lopez-Santamarina
- Laboratorio de Higiene Inspección y Control de Alimentos, Departamento de Química Analítica, Nutrición y Bromatología, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Alicia Del Carmen Mondragon
- Laboratorio de Higiene Inspección y Control de Alimentos, Departamento de Química Analítica, Nutrición y Bromatología, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Alejandra Cardelle-Cobas
- Laboratorio de Higiene Inspección y Control de Alimentos, Departamento de Química Analítica, Nutrición y Bromatología, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Eva Maria Santos
- Área Académica de Química, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo km. 4.5, Pachuca 42076, Hidalgo, Mexico
| | - Jose Julio Porto-Arias
- Laboratorio de Higiene Inspección y Control de Alimentos, Departamento de Química Analítica, Nutrición y Bromatología, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Alberto Cepeda
- Laboratorio de Higiene Inspección y Control de Alimentos, Departamento de Química Analítica, Nutrición y Bromatología, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Jose Manuel Miranda
- Laboratorio de Higiene Inspección y Control de Alimentos, Departamento de Química Analítica, Nutrición y Bromatología, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| |
Collapse
|
14
|
Axelrad JE, Chen Z, Devlin J, Ruggles KV, Cadwell K. Pathogen-Specific Alterations in the Gut Microbiota Predict Outcomes in Flare of Inflammatory Bowel Disease Complicated by Gastrointestinal Infection. Clin Transl Gastroenterol 2023; 14:e00550. [PMID: 36729813 PMCID: PMC9945377 DOI: 10.14309/ctg.0000000000000550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 11/07/2022] [Indexed: 02/03/2023] Open
Abstract
INTRODUCTION Enteric infection with Clostridioides difficile , Escherichia coli subtypes, and norovirus is commonly detected in flares of inflammatory bowel disease (IBD). We associated the gut microbiome during flare complicated by a gastrointestinal pathogen with outcomes of IBD. METHODS We performed a cross-sectional study of 260 patients (92 IBD and 168 non-IBD) with a gastrointestinal polymerase chain reaction panel positive for C. difficile, E. coli , or norovirus, or negative during an episode of diarrhea from 2018 to 2020, and 25 healthy controls. Clinical variables, IBD status, and 2-year outcomes were collected. Using 16S rRNA sequencing, we measured the effect size of the gut microbiome on IBD characteristics and outcomes. RESULTS There were major differences in the gut microbiome between patients with and without a pathogen and IBD. In IBD, a higher proportion of patients without a pathogen required hospitalization and IBD therapies at flare and within the 2 years after flare, driven by a milder disease course in flares complicated by an E. coli subtype or norovirus. Examining the contribution of clinical covariates, the presence of IBD, and C-reactive protein, C. difficile had a greater relative influence on the gut microbiome compared with the presence of an E. coli subtype or norovirus. In patients with C. difficile or no pathogen, lower microbiome diversity at flare was associated with adverse IBD outcomes over 2 years. DISCUSSION Distinctive pathogen-specific gut microbiomes were associated with subsequent IBD outcomes. These findings may have direct implications for the management of IBD flares complicated by enteric pathogens.
Collapse
Affiliation(s)
- Jordan E. Axelrad
- Division of Gastroenterology, Department of Medicine, NYU Grossman School of Medicine, New York, New York, USA
| | - Ze Chen
- Department of Microbiology, NYU Grossman School of Medicine, New York, New York, USA
- Division of Precision Medicine, Department of Medicine, NYU Grossman School of Medicine, New York, New York, USA
| | - Joseph Devlin
- Department of Microbiology, NYU Grossman School of Medicine, New York, New York, USA
- Division of Precision Medicine, Department of Medicine, NYU Grossman School of Medicine, New York, New York, USA
| | - Kelly V. Ruggles
- Division of Precision Medicine, Department of Medicine, NYU Grossman School of Medicine, New York, New York, USA
- Institute for Systems Genetics, NYU Grossman School of Medicine, New York, New York, USA
| | - Ken Cadwell
- Division of Gastroenterology, Department of Medicine, NYU Grossman School of Medicine, New York, New York, USA
- Department of Microbiology, NYU Grossman School of Medicine, New York, New York, USA
| |
Collapse
|
15
|
Kralicek SE, Sitaraman LM, Kuprys PV, Harrington AT, Ramakrishna B, Osman M, Hecht GA. Clinical Manifestations and Stool Load of Atypical Enteropathogenic Escherichia coli Infections in United States Children and Adults. Gastroenterology 2022; 163:1321-1333. [PMID: 35948108 PMCID: PMC9613550 DOI: 10.1053/j.gastro.2022.07.064] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 07/20/2022] [Accepted: 07/23/2022] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS There is debate whether atypical enteropathogenic Escherichia coli (aEPEC) causes disease in adults. aEPEC is commonly detected in symptomatic and asymptomatic individuals. aEPEC, in contrast to typical EPEC, lacks bundle-forming pili, altering its pathogenicity. Here, we define for the first time the clinical manifestations of sporadic aEPEC infection in United States children and adults and determine whether EPEC load correlates with disease. METHODS This is a retrospective case-control study of 380 inpatients/outpatients of all ages. EPEC load in stools was determined by quantitative polymerase chain reaction. RESULTS Diarrhea, vomiting, abdominal pain, and fever were more prevalent in EPEC-positive cases than in EPEC-negative controls. aEPEC infection caused mostly acute, mild diarrhea lasting for 6 to 13 days. However, some had severe diarrhea with 10 to 40 bowel movements per day or had persistent/chronic diarrhea. Fever, vomiting, and abnormal serum sodium levels were more common in children. Adults more often reported abdominal pain and longer duration of diarrhea. Symptomatic aEPEC infection was associated with leukocytosis in 24% of patients. EPEC load >0.1% was associated with symptomatic infection; however, loads varied greatly. Co-infecting pathogens did not alter diarrhea severity or EPEC load. Longitudinal data reveal that some are colonized for months to years or are repeatedly infected. CONCLUSIONS aEPEC is associated with a wide array of symptoms in adults, ranging from asymptomatic carriage to severe diarrhea. Higher EPEC loads are associated with presence of symptoms, but bacterial load does not predict disease or severity. Future studies are needed to understand bacterial and host factors that contribute to aEPEC pathogenicity to improve diagnostic tools and clinical care.
Collapse
Affiliation(s)
- Sarah E Kralicek
- Department of Biochemistry and Molecular Biology, Loyola University Chicago, Maywood, Illinois
| | - Lalitha M Sitaraman
- Division of Gastroenterology, Department of Medicine, Loyola University Medical Center, Maywood, Illinois
| | - Paulius V Kuprys
- Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois
| | - Amanda T Harrington
- Clinical Microbiology Laboratory, Loyola University Medical Center, Maywood, Illinois; Pathology and Laboratory Medicine, Loyola University Chicago, Maywood, Illinois
| | | | | | - Gail A Hecht
- Division of Gastroenterology, Department of Medicine, Loyola University Medical Center, Maywood, Illinois; Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois.
| |
Collapse
|
16
|
Sauvaitre T, Van Landuyt J, Durif C, Roussel C, Sivignon A, Chalancon S, Uriot O, Van Herreweghen F, Van de Wiele T, Etienne-Mesmin L, Blanquet-Diot S. Role of mucus-bacteria interactions in Enterotoxigenic Escherichia coli (ETEC) H10407 virulence and interplay with human microbiome. NPJ Biofilms Microbiomes 2022; 8:86. [PMID: 36266277 PMCID: PMC9584927 DOI: 10.1038/s41522-022-00344-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 10/04/2022] [Indexed: 11/09/2022] Open
Abstract
The intestinal mucus layer has a dual role in human health constituting a well-known microbial niche that supports gut microbiota maintenance but also acting as a physical barrier against enteric pathogens. Enterotoxigenic Escherichia coli (ETEC), the major agent responsible for traveler's diarrhea, is able to bind and degrade intestinal mucins, representing an important but understudied virulent trait of the pathogen. Using a set of complementary in vitro approaches simulating the human digestive environment, this study aimed to describe how the mucus microenvironment could shape different aspects of the human ETEC strain H10407 pathophysiology, namely its survival, adhesion, virulence gene expression, interleukin-8 induction and interactions with human fecal microbiota. Using the TNO gastrointestinal model (TIM-1) simulating the physicochemical conditions of the human upper gastrointestinal (GI) tract, we reported that mucus secretion and physical surface sustained ETEC survival, probably by helping it to face GI stresses. When integrating the host part in Caco2/HT29-MTX co-culture model, we demonstrated that mucus secreting-cells favored ETEC adhesion and virulence gene expression, but did not impede ETEC Interleukin-8 (IL-8) induction. Furthermore, we proved that mucosal surface did not favor ETEC colonization in a complex gut microbial background simulated in batch fecal experiments. However, the mucus-specific microbiota was widely modified upon the ETEC challenge suggesting its role in the pathogen infectious cycle. Using multi-targeted in vitro approaches, this study supports the major role played by mucus in ETEC pathophysiology, opening avenues in the design of new treatment strategies.
Collapse
Affiliation(s)
- Thomas Sauvaitre
- Université Clermont Auvergne, INRAE, UMR 454 MEDIS, Microbiologie Environnement Digestif et Santé (MEDIS), CRNH Auvergne, 63000, Clermont-Ferrand, France.,Ghent University, Faculty of Bioscience Engineering, Center for Microbial Ecology and Technology (CMET), Ghent, Belgium
| | - Josefien Van Landuyt
- Ghent University, Faculty of Bioscience Engineering, Center for Microbial Ecology and Technology (CMET), Ghent, Belgium
| | - Claude Durif
- Université Clermont Auvergne, INRAE, UMR 454 MEDIS, Microbiologie Environnement Digestif et Santé (MEDIS), CRNH Auvergne, 63000, Clermont-Ferrand, France
| | - Charlène Roussel
- Université Laval, Nutrition and Functional Foods Institute (INAF), 2440 Bd Hochelaga Suite 1710, Québec, QC, G1V 0A6, Canada
| | - Adeline Sivignon
- Université Clermont Auvergne, UMR 1071 Inserm, USC-INRAE 2018, Microbes, Intestin, Inflammation et Susceptibilité de l'Hôte (M2iSH), 63000, Clermont-Ferrand, France
| | - Sandrine Chalancon
- Université Clermont Auvergne, INRAE, UMR 454 MEDIS, Microbiologie Environnement Digestif et Santé (MEDIS), CRNH Auvergne, 63000, Clermont-Ferrand, France
| | - Ophélie Uriot
- Université Clermont Auvergne, INRAE, UMR 454 MEDIS, Microbiologie Environnement Digestif et Santé (MEDIS), CRNH Auvergne, 63000, Clermont-Ferrand, France
| | - Florence Van Herreweghen
- Ghent University, Faculty of Bioscience Engineering, Center for Microbial Ecology and Technology (CMET), Ghent, Belgium
| | - Tom Van de Wiele
- Ghent University, Faculty of Bioscience Engineering, Center for Microbial Ecology and Technology (CMET), Ghent, Belgium
| | - Lucie Etienne-Mesmin
- Université Clermont Auvergne, INRAE, UMR 454 MEDIS, Microbiologie Environnement Digestif et Santé (MEDIS), CRNH Auvergne, 63000, Clermont-Ferrand, France
| | - Stéphanie Blanquet-Diot
- Université Clermont Auvergne, INRAE, UMR 454 MEDIS, Microbiologie Environnement Digestif et Santé (MEDIS), CRNH Auvergne, 63000, Clermont-Ferrand, France.
| |
Collapse
|
17
|
Abdill RJ, Adamowicz EM, Blekhman R. Public human microbiome data are dominated by highly developed countries. PLoS Biol 2022; 20:e3001536. [PMID: 35167588 PMCID: PMC8846514 DOI: 10.1371/journal.pbio.3001536] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 01/11/2022] [Indexed: 02/07/2023] Open
Abstract
The importance of sampling from globally representative populations has been well established in human genomics. In human microbiome research, however, we lack a full understanding of the global distribution of sampling in research studies. This information is crucial to better understand global patterns of microbiome-associated diseases and to extend the health benefits of this research to all populations. Here, we analyze the country of origin of all 444,829 human microbiome samples that are available from the world's 3 largest genomic data repositories, including the Sequence Read Archive (SRA). The samples are from 2,592 studies of 19 body sites, including 220,017 samples of the gut microbiome. We show that more than 71% of samples with a known origin come from Europe, the United States, and Canada, including 46.8% from the US alone, despite the country representing only 4.3% of the global population. We also find that central and southern Asia is the most underrepresented region: Countries such as India, Pakistan, and Bangladesh account for more than a quarter of the world population but make up only 1.8% of human microbiome samples. These results demonstrate a critical need to ensure more global representation of participants in microbiome studies.
Collapse
Affiliation(s)
- Richard J. Abdill
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Elizabeth M. Adamowicz
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Ran Blekhman
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, Minnesota, United States of America
| |
Collapse
|
18
|
Mucci N, Tommasi E, Chiarelli A, Lulli LG, Traversini V, Galea RP, Arcangeli G. WORKbiota: A Systematic Review about the Effects of Occupational Exposure on Microbiota and Workers' Health. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:1043. [PMID: 35162072 PMCID: PMC8834335 DOI: 10.3390/ijerph19031043] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/14/2021] [Accepted: 01/13/2022] [Indexed: 12/12/2022]
Abstract
The characterization of human microbiota and the impact of its modifications on the health of individuals represent a current topic of great interest for the world scientific community. Scientific evidence is emerging regarding the role that microbiota has in the onset of important chronic illnesses. Since individuals spend most of their life at work, occupational exposures may have an impact on the organism's microbiota. The purpose of this review is to explore the influence that different occupational exposures have on human microbiota in order to set a new basis for workers' health protection and disease prevention. The literature search was performed in PubMed, Cochrane, and Scopus. A total of 5818 references emerged from the online search, and 31 articles were included in the systematic review (26 original articles and 5 reviews). Exposure to biological agents (in particular direct contact with animals) was the most occupational risk factor studied, and it was found involved in modifications of the microbiota of workers. Changes in microbiota were also found in workers exposed to chemical agents or subjected to work-related stress and altered dietary habits caused by specific microclimate characteristics or long trips. Two studies evaluated the role of microbiota changes on the development of occupational lung diseases. Occupational factors can interface with the biological rhythms of the bacteria of the microbiota and can contribute to its modifications and to the possible development of diseases. Future studies are needed to better understand the role of the microbiota and its connection with occupational exposure to promote projects for the prevention and protection of global health.
Collapse
Affiliation(s)
- Nicola Mucci
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy; (N.M.); (V.T.); (G.A.)
| | - Eleonora Tommasi
- Postgraduate Medical Training Programme in Cardiology, University of Perugia, 1 Piazza dell’Università, 06123 Perugia, Italy;
| | - Annarita Chiarelli
- Occupational Medicine Unit, Careggi University Hospital, 50134 Florence, Italy;
| | | | - Veronica Traversini
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy; (N.M.); (V.T.); (G.A.)
| | - Raymond Paul Galea
- Faculty of Medicine & Surgery, University of Malta, MSD 2090 Msida, Malta;
- The Malta Postgraduate Medical Training Programme, Mater Dei Hospital Msida, MSD 2090 Msida, Malta
| | - Giulio Arcangeli
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy; (N.M.); (V.T.); (G.A.)
| |
Collapse
|
19
|
Adler AV, Ciccotti HR, Trivitt SJH, Watson RCJ, Riddle MS. What's new in travellers' diarrhoea: updates on epidemiology, diagnostics, treatment and long-term consequences. J Travel Med 2022; 29:6316240. [PMID: 34230966 DOI: 10.1093/jtm/taab099] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 11/13/2022]
Abstract
BACKGROUND Travellers' diarrhoea (TD) is the most common clinical syndrome affecting travellers. This narrative review summarizes key discoveries reported in the last two years related to TD and suggests areas for future research. METHODS A PubMed literature search was conducted for novel data in TD research published between 12 January 2018 and 12 January 2020. Inclusion was based on contribution to epidemiology, aetiology, diagnostics, management and long-term consequences and relevance to public health, discovery and clinical practice. RESULTS The initial literature search yielded 118 articles. We retrieved 72 and reviewed 31 articles for inclusion. The findings support our understanding that TD incidence varies by traveller group and environment with students and military-travel remaining moderately high risk, and control of food and water in mass gathering events remain an important goal. The growth of culture-independent testing has led to a continued detection of previously known pathogens, but also an increased detection frequency of norovirus. Another consequence is the increase in multi-pathogen infections, which require consideration of clinical, epidemiological and diagnostic data. Fluoroquinolone resistant rates continue to rise. New data on non-absorbable antibiotics continue to emerge, offering a potential alternative to current recommendations (azithromycin and fluoroquinolones), but are not recommended for febrile diarrhoea or dysentery or regions/itineraries where invasive pathogens are likely to cause illness. Recent studies investigated the interaction of the microbiome in TD prevention and consequences, and while discriminating features were identified, much uncertainty remains. The prevalence of extended-spectrum beta-lactamase-producing Enterobacteriaceae (ESBL-PE) acquisition and carriage is increasing. Finally, continued research documents the post-infectious consequences, whereas mechanisms of reactive arthritis and post-infectious IBS necessitate further investigation. CONCLUSIONS Globally, TD remains an important travel health issue and advances in our understanding continue. More research is needed to mitigate risk factors where possible and develop risk-based management strategies to reduce antibiotic usage and its attendant consequences.
Collapse
|
20
|
Diarrheal disease and gut microbiome. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 192:149-177. [DOI: 10.1016/bs.pmbts.2022.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
21
|
Stamps BW, Kuroiwa J, Isidean SD, Schilling MA, Harro C, Talaat KR, Sack DA, Tribble DR, Maue AC, Rimmer JE, Laird RM, Porter CK, Goodson MS, Poly F. Exploring Changes in the Host Gut Microbiota During a Controlled Human Infection Model for Campylobacter jejuni. Front Cell Infect Microbiol 2021; 11:702047. [PMID: 34532299 PMCID: PMC8439579 DOI: 10.3389/fcimb.2021.702047] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/13/2021] [Indexed: 01/02/2023] Open
Abstract
Campylobacter jejuni infection is a leading cause of foodborne disease, common to children, adult travelers, and military populations in low- to middle-income countries. In the absence of a licensed vaccine, efforts to evaluate prophylactic agents are underway. The prophylactic efficacy of a twice-daily, 550 mg dose of the antibiotic rifaximin demonstrated no efficacy against campylobacteriosis in a controlled human infection model (CHIM); however, samples from the CHIM study were utilized to assess how the human gut microbiome responds to C. jejuni infection, and if a ‘protective’ microbiota exists in study participants not developing campylobacteriosis. Statistically significant, but minor, differences in study participant beta diversity were identified during the challenge period (p = 0.002, R2 = 0.042), but no significant differences were otherwise observed. Pre-challenge alpha diversity was elevated in study participants who did not develop campylobacteriosis compared to those who did (p < 0.001), but alpha diversity declined in all study participants from the pre-challenge period to post-discharge. Our work provides insight into gut microbiome shifts observed during a C. jejuni CHIM and following antibiotic treatment. This study utilized a high dose of 1.7 x 105 colony-forming units of C. jejuni; future work could include CHIM studies performed with inocula more closely mimicking natural exposure as well as field studies involving naturally-occurring enteric infections.
Collapse
Affiliation(s)
- Blake W Stamps
- 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, OH, United States.,Integrative Health and Performance Sciences Division, UES, Inc., Dayton, OH, United States
| | - Janelle Kuroiwa
- Enteric Diseases Department, Naval Medical Research Center, Silver Spring, MD, United States.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Sandra D Isidean
- Enteric Diseases Department, Naval Medical Research Center, Silver Spring, MD, United States.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Megan A Schilling
- Enteric Diseases Department, Naval Medical Research Center, Silver Spring, MD, United States
| | - Clayton Harro
- Center for Immunization Research, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Kawsar R Talaat
- Center for Immunization Research, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - David A Sack
- Center for Immunization Research, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - David R Tribble
- Infectious Disease Clinical Research Program, Preventive Medicine and Biostatistics Department, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Alexander C Maue
- Enteric Diseases Department, Naval Medical Research Center, Silver Spring, MD, United States.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Joanna E Rimmer
- Enteric Diseases Department, Naval Medical Research Center, Silver Spring, MD, United States.,Academic Department of Military Medicine, Royal Centre for Defence Medicine, Medical Directorate, Joint Medical Command, Information and Communications Technology Centre, Birmingham, United Kingdom
| | - Renee M Laird
- Enteric Diseases Department, Naval Medical Research Center, Silver Spring, MD, United States.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Chad K Porter
- Enteric Diseases Department, Naval Medical Research Center, Silver Spring, MD, United States
| | - Michael S Goodson
- 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, OH, United States
| | - Frédéric Poly
- Enteric Diseases Department, Naval Medical Research Center, Silver Spring, MD, United States
| |
Collapse
|
22
|
Goodson MS, Barbato RA, Karl JP, Indest K, Kelley-Loughnane N, Kokoska R, Mauzy C, Racicot K, Varaljay V, Soares J. Meeting report of the fourth annual Tri-Service Microbiome Consortium symposium. ENVIRONMENTAL MICROBIOME 2021; 16:16. [PMID: 34419149 PMCID: PMC8380359 DOI: 10.1186/s40793-021-00384-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/03/2021] [Indexed: 06/13/2023]
Abstract
The Tri-Service Microbiome Consortium (TSMC) was founded to enhance collaboration, coordination, and communication of microbiome research among U.S. Department of Defense (DoD) organizations. The annual TSMC symposium is designed to enable information sharing between DoD scientists and leaders in the field of microbiome science, thereby keeping DoD consortium members informed of the latest advances within the microbiome community and facilitating the development of new collaborative research opportunities. The 2020 annual symposium was held virtually on 24-25 September 2020. Presentations and discussions centered on microbiome-related topics within four broad thematic areas: (1) Enabling Technologies; (2) Microbiome for Health and Performance; (3) Environmental Microbiome; and (4) Microbiome Analysis and Discovery. This report summarizes the presentations and outcomes of the 4th annual TSMC symposium.
Collapse
Affiliation(s)
- Michael S Goodson
- 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson AFB, Dayton, OH, USA.
| | - Robyn A Barbato
- United States Army Engineer Research and Development Center - Cold Regions Research and Engineering Laboratory, Hanover, NH, USA
| | - J Philip Karl
- Military Nutrition Division, United States Army Research Institute of Environmental Medicine, Natick, MA, USA
| | - Karl Indest
- United States Army Engineer Research and Development Center, Vicksburg, MS, USA
| | - Nancy Kelley-Loughnane
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Dayton, OH, USA
| | - Robert Kokoska
- Physical Sciences Directorate, United States Army Research Laboratory - United States Army Research Office, Research Triangle Park, Durham, NC, USA
| | - Camilla Mauzy
- 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson AFB, Dayton, OH, USA
| | - Kenneth Racicot
- Soldier Effectiveness Directorate, United States Army Combat Capabilities Development Command Soldier Center, Natick, MA, USA
| | - Vanessa Varaljay
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Dayton, OH, USA
| | - Jason Soares
- Soldier Effectiveness Directorate, United States Army Combat Capabilities Development Command Soldier Center, Natick, MA, USA
| |
Collapse
|
23
|
Javelle E, Mayet A, Million M, Levasseur A, Allodji RS, Marimoutou C, Lavagna C, Desplans J, Fournier PE, Raoult D, Texier G. Gut Microbiota in Military International Travelers with Doxycycline Malaria Prophylaxis: Towards the Risk of a Simpson Paradox in the Human Microbiome Field. Pathogens 2021; 10:pathogens10081063. [PMID: 34451527 PMCID: PMC8400693 DOI: 10.3390/pathogens10081063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/13/2021] [Accepted: 08/19/2021] [Indexed: 11/16/2022] Open
Abstract
Dysbiosis, developed upon antibiotic administration, results in loss of diversity and shifts in the abundance of gut microbes. Doxycycline is a tetracycline antibiotic widely used for malaria prophylaxis in travelers. We prospectively studied changes in the fecal microbiota of 15 French soldiers after a 4-month mission to Mali with doxycycline malaria prophylaxis, compared to changes in the microbiota of 28 soldiers deployed to Iraq and Lebanon without doxycycline. Stool samples were collected with clinical data before and after missions, and 16S rRNA sequenced on MiSeq targeting the V3-V4 region. Doxycycline exposure resulted in increased alpha-biodiversity and no significant beta-dissimilarities. It led to expansion in Bacteroides, with a reduction in Bifidobacterium and Lactobacillus, as in the group deployed without doxycycline. Doxycycline did not alter the community structure and was specifically associated with a reduction in Escherichia and expression of Rothia. Differences in the microbiota existed at baseline between military units but not within the studied groups. This group-effect highlighted the risk of a Simpson paradox in microbiome studies.
Collapse
Affiliation(s)
- Emilie Javelle
- Laveran Military Teaching Hospital, Boulevard Alphonse Laveran, 13013 Marseille, France
- IRD, AP-HM, SSA, VITROME, Aix Marseille University, 13000 Marseille, France; (P.E.F.); (G.T.)
- IHU-Méditerranée Infection, 19–21 Boulevard Alphonse Laveran, 13013 Marseille, France; (M.M.); (A.L.); (D.R.)
- Correspondence: ; Tel.: +33-(0)6-32-41-99-03; Fax: +33-(0)4-13-73-24-02
| | - Aurélie Mayet
- Centre d’Epidémiologie et de Santé Publique des Armées (CESPA), 13014 Marseille, France; (A.M.); (C.M.); (C.L.); (J.D.)
- INSERM, IRD, SESSTIM, Sciences Economiques & Sociales de la Santé & Traitement de l’Information Médicale, Aix Marseille University, 13000 Marseille, France
| | - Matthieu Million
- IHU-Méditerranée Infection, 19–21 Boulevard Alphonse Laveran, 13013 Marseille, France; (M.M.); (A.L.); (D.R.)
- IRD, AP-HM, SSA, MEPHI, Aix Marseille University, 13000 Marseille, France
| | - Anthony Levasseur
- IHU-Méditerranée Infection, 19–21 Boulevard Alphonse Laveran, 13013 Marseille, France; (M.M.); (A.L.); (D.R.)
- Centre d’Epidémiologie et de Santé Publique des Armées (CESPA), 13014 Marseille, France; (A.M.); (C.M.); (C.L.); (J.D.)
- IRD, AP-HM, SSA, MEPHI, Aix Marseille University, 13000 Marseille, France
| | - Rodrigue S. Allodji
- Radiation Epidemiology Team, CESP, Inserm U1018, 94800 Villejuif, France;
- Université Paris-Saclay, UVSQ, Inserm, CESP, 94807 Villejuif, France
- Department of Research, Gustave Roussy, 94800 Villejuif, France
| | - Catherine Marimoutou
- Centre d’Epidémiologie et de Santé Publique des Armées (CESPA), 13014 Marseille, France; (A.M.); (C.M.); (C.L.); (J.D.)
- INSERM, IRD, SESSTIM, Sciences Economiques & Sociales de la Santé & Traitement de l’Information Médicale, Aix Marseille University, 13000 Marseille, France
- CIC Inserm 1410, CHU de La Réunion, 97400 La Réunion, France
| | - Chrystel Lavagna
- Centre d’Epidémiologie et de Santé Publique des Armées (CESPA), 13014 Marseille, France; (A.M.); (C.M.); (C.L.); (J.D.)
| | - Jérôme Desplans
- Centre d’Epidémiologie et de Santé Publique des Armées (CESPA), 13014 Marseille, France; (A.M.); (C.M.); (C.L.); (J.D.)
| | - Pierre Edouard Fournier
- IRD, AP-HM, SSA, VITROME, Aix Marseille University, 13000 Marseille, France; (P.E.F.); (G.T.)
- IHU-Méditerranée Infection, 19–21 Boulevard Alphonse Laveran, 13013 Marseille, France; (M.M.); (A.L.); (D.R.)
| | - Didier Raoult
- IHU-Méditerranée Infection, 19–21 Boulevard Alphonse Laveran, 13013 Marseille, France; (M.M.); (A.L.); (D.R.)
- IRD, AP-HM, SSA, MEPHI, Aix Marseille University, 13000 Marseille, France
| | - Gaëtan Texier
- IRD, AP-HM, SSA, VITROME, Aix Marseille University, 13000 Marseille, France; (P.E.F.); (G.T.)
- Centre d’Epidémiologie et de Santé Publique des Armées (CESPA), 13014 Marseille, France; (A.M.); (C.M.); (C.L.); (J.D.)
| |
Collapse
|
24
|
Khalil I, Walker R, Porter CK, Muhib F, Chilengi R, Cravioto A, Guerrant R, Svennerholm AM, Qadri F, Baqar S, Kosek M, Kang G, Lanata C, Armah G, Wierzba T, Hasso-Agopsowicz M, Giersing B, Louis Bourgeois A. Enterotoxigenic Escherichia coli (ETEC) vaccines: Priority activities to enable product development, licensure, and global access. Vaccine 2021; 39:4266-4277. [PMID: 33965254 PMCID: PMC8273896 DOI: 10.1016/j.vaccine.2021.04.018] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/06/2021] [Accepted: 04/09/2021] [Indexed: 02/08/2023]
Abstract
Diarrhoeal disease attributable to enterotoxigenic Escherichia coli (ETEC) causes substantial morbidity and mortality predominantly in paediatric populations in low- and middle-income countries. In addition to acute illness, there is an increasing appreciation of the long-term consequences of enteric infections, including ETEC, on childhood growth and development. Provision of potable water and sanitation and appropriate clinical care for acute illness are critical to reduce the ETEC burden. However, these interventions are not always practical and may not achieve equitable and sustainable coverage. Vaccination may be the most cost-effective and equitable means of primary prevention; however, additional data are needed to accelerate the investment and guide the decision-making process for ETEC vaccines. First, to understand and quantify the ETEC disease burden, additional data are needed on the association between ETEC infection and physical and cognitive stunting as well as delayed educational attainment. Furthermore, the role of inappropriate or inadequate antibiotic treatment of ETEC-attributable diarrhoea may contribute to the development of antimicrobial resistance (AMR) and needs further elucidation. An ETEC vaccine that mitigates acute diarrhoeal illness and minimizes the longer-term disease manifestations could have significant public health impact and be a cost-effective countermeasure. Herein we review the ETEC vaccine pipeline, led by candidates compatible with the general parameters of the Preferred Product Characteristics (PPC) recently developed by the World Health Organization. Additionally, we have developed an ETEC Vaccine Development Strategy to provide a framework to underpin priority activities for researchers, funders and vaccine manufacturers, with the goal of addressing globally unmet data needs in the areas of research, product development, and policy, as well as commercialization and delivery. The strategy also aims to guide prioritization and co-ordination of the priority activities needed to minimize the timeline to licensure and use of ETEC vaccines, especially in in low- and middle-income countries, where they are most urgently needed.
Collapse
Affiliation(s)
| | | | | | | | - Roma Chilengi
- Centre for Infectious Disease Research in Zambia, Zambia
| | | | | | | | | | - Shahida Baqar
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, USA
| | | | | | | | - George Armah
- Noguchi Memorial Institute for Medical Research, Ghana
| | | | | | | | | |
Collapse
|
25
|
Karl JP, Margolis LM, Fallowfield JL, Child RB, Martin NM, McClung JP. Military nutrition research: Contemporary issues, state of the science and future directions. Eur J Sport Sci 2021; 22:87-98. [PMID: 33980120 DOI: 10.1080/17461391.2021.1930192] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The importance of diet and nutrition to military readiness and performance has been recognized for centuries as dietary nutrients sustain health, protect against illness, and promote resilience, performance and recovery. Contemporary military nutrition research is increasingly inter-disciplinary with emphasis often placed on the broad topics of (1) determining operational nutrition requirements in all environments, (2) characterizing nutritional practices of military personnel relative to the required (role/environment) standards, and (3) developing strategies for improving nutrient delivery and individual choices. This review discusses contemporary issues shared internationally by military nutrition research programmes, and highlights emerging topics likely to influence future military nutrition research and policy. Contemporary issues include improving the diet quality of military personnel, optimizing operational rations, and increasing understanding of biological factors influencing nutrient requirements. Emerging areas include the burgeoning field of precision nutrition and its technological enablers.
Collapse
Affiliation(s)
- J Philip Karl
- Military Nutrition Division, United States Army Research Institute of Environmental Medicine, Natick, MA, USA
| | - Lee M Margolis
- Military Nutrition Division, United States Army Research Institute of Environmental Medicine, Natick, MA, USA
| | - Joanne L Fallowfield
- Environmental Medicine and Science Division, Institute of Naval Medicine, Alverstoke, Hampshire, UK
| | - Robert B Child
- School of Chemical Engineering, University of Birmingham, Birmingham, UK
| | - Nicola M Martin
- New Zealand Army, New Zealand Defence Force, Upper Hutt, New Zealand
| | - James P McClung
- Military Nutrition Division, United States Army Research Institute of Environmental Medicine, Natick, MA, USA
| |
Collapse
|
26
|
Turunen KA, Kantele A. Revisiting travellers' diarrhoea justifying antibiotic treatment: prospective study. J Travel Med 2021; 28:6054204. [PMID: 33372204 DOI: 10.1093/jtm/taaa237] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 11/03/2020] [Accepted: 11/25/2020] [Indexed: 11/14/2022]
Abstract
BACKGROUND As antimicrobials increase the risk of acquiring multidrug-resistant (MDR) bacteria, unnecessary antibiotics should be avoided for travellers' diarrhoea (TD). Antibiotics are recommended in TD accompanied by fever or incapacitation (TD justifying use of antibiotics, TDjuAB). Seeking tools for reducing antibiotic use, we explored factors predisposing to TDjuAB and scrutinized antibiotic treatment among those with TDjuAB [TDjuAB(+) subgroup] and those with diarrhoea not justifying antibiotics [TDjuAB(-) subgroup]. METHODS We conducted a study among 370 prospectively recruited visitors to the tropics. Stool samples and questionnaires were collected before and after travel. Enteric pathogens were analysed by qPCR for enteropathogenic (EPEC), enteroaggregative (EAEC), enterotoxigenic (ETEC), enterohaemorrhagic (EHEC) and enteroinvasive (EIEC) E. coli/Shigella, Campylobacter, Salmonella, Yersinia and Vibrio cholerae, and for ETEC's toxins LT (heat-labile), STh (human heat-stable) and STp (porcine heat-stable). TD was defined by the WHO criteria and TDjuAB as diarrhoea accompanied by fever, and/or disrupting or preventing daily activities. Multivariable analysis was applied-separately for travel-related factors and pathogens-to identify risk factors for TDjuAB(+). RESULTS Among the 370 travellers, TD was contracted by 253 (68%), categorized as TDjuAB(+) in 93/253 (37%) and TDjuAB(-) in 160/253 (63%) of the cases. Antibiotics were used for TD by 41% in TDjuAB(+) and by 7% in the TDjuAB(-) group. Relative risk ratios (RRR)s are presented for both the TDjuAB(+) and the TDjuAB(-) groups. TDjuAB(+) was associated with long travel duration and young age. Among the 298 subjects not having taken antibiotics, increased RRRs were found e.g. for findings of Campylobacter coli/jejuni and ETEC's STh toxin. CONCLUSIONS The first to analyse risk factors for TDjuAB, our study presents RRRs for demographic and behavioural factors and for various pathogens. Only less than half of those in the TDjuAB(+) group took antibiotics, which demonstrates that most cases meeting the current criteria recover without antimicrobial treatment.
Collapse
Affiliation(s)
- K A Turunen
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Haartmaninkatu 3, FI-00014 Helsinki, Finland
- Inflammation Center, Infectious Diseases, Helsinki University Hospital and University of Helsinki, Haartmaninkatu 3, FI-00029 HUS, Helsinki, Finland
| | - A Kantele
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Haartmaninkatu 3, FI-00014 Helsinki, Finland
- Inflammation Center, Infectious Diseases, Helsinki University Hospital and University of Helsinki, Haartmaninkatu 3, FI-00029 HUS, Helsinki, Finland
- Meilahti Vaccination Research Center, MeVac, Helsinki University Hospital and University of Helsinki, Haartmaninkatu 8, FI-00029 HUS, Helsinki, Finland
- Travel Clinic, Aava Medical Center, Annankatu 32, FI-00100 Helsinki, Finland
| |
Collapse
|
27
|
Stamps BW, Lyon WJ, Irvin AP, Kelley-Loughnane N, Goodson MS. A Pilot Study of the Effect of Deployment on the Gut Microbiome and Traveler's Diarrhea Susceptibility. Front Cell Infect Microbiol 2020; 10:589297. [PMID: 33384968 PMCID: PMC7770225 DOI: 10.3389/fcimb.2020.589297] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 11/17/2020] [Indexed: 01/01/2023] Open
Abstract
Traveler's diarrhea (TD) is a recurrent and significant issue for many travelers including the military. While many known enteric pathogens exist that are causative agents of diarrhea, our gut microbiome may also play a role in TD susceptibility. To this end, we conducted a pilot study of the microbiome of warfighters prior to- and after deployment overseas to identify marker taxa relevant to TD. This initial study utilized full-length 16S rRNA gene sequencing to provide additional taxonomic resolution toward identifying predictive taxa.16S rRNA analyses of pre- and post-deployment fecal samples identified multiple marker taxa as significantly differentially abundant in subjects that reported diarrhea, including Weissella, Butyrivibrio, Corynebacterium, uncultivated Erysipelotrichaceae, Jeotgallibaca, unclassified Ktedonobacteriaceae, Leptolinea, and uncultivated Ruminiococcaceae. The ability to identify TD risk prior to travel will inform prevention and mitigation strategies to influence diarrhea susceptibility while traveling.
Collapse
Affiliation(s)
- Blake W. Stamps
- 711th Human Performance Wing, Airman Systems Directorate, Air Force Research Laboratory, Wright-Patterson AFB, OH, United States
- Integrative Health and Performance Sciences Division, UES Inc., Dayton, OH, United States
| | - Wanda J. Lyon
- 711th Human Performance Wing, Airman Systems Directorate, Air Force Research Laboratory, Wright-Patterson AFB, OH, United States
| | - Adam P. Irvin
- 711th Human Performance Wing, Airman Systems Directorate, Air Force Research Laboratory, Wright-Patterson AFB, OH, United States
| | - Nancy Kelley-Loughnane
- 711th Human Performance Wing, Airman Systems Directorate, Air Force Research Laboratory, Wright-Patterson AFB, OH, United States
| | - Michael S. Goodson
- 711th Human Performance Wing, Airman Systems Directorate, Air Force Research Laboratory, Wright-Patterson AFB, OH, United States
| |
Collapse
|