3
|
Guo L, Zhang W, Xie Y, Chen X, Olmstead EE, Lian M, Zhang B, Zaytseva YY, Evers BM, Spielmann HP, Liu X, Watt DS, Liu C. Diaminobutoxy-substituted Isoflavonoid (DBI-1) Enhances the Therapeutic Efficacy of GLUT1 Inhibitor BAY-876 by Modulating Metabolic Pathways in Colon Cancer Cells. Mol Cancer Ther 2022; 21:740-750. [PMID: 35247917 PMCID: PMC9081236 DOI: 10.1158/1535-7163.mct-21-0925] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 01/18/2022] [Accepted: 02/15/2022] [Indexed: 01/28/2023]
Abstract
Cancer cells undergo significant "metabolic remodeling" to provide sufficient ATP to maintain cell survival and to promote rapid growth. In colorectal cancer cells, ATP is produced by mitochondrial oxidative phosphorylation and by substantially elevated cytoplasmic glucose fermentation (i.e., the Warburg effect). Glucose transporter 1 (GLUT1) expression is significantly increased in colorectal cancer cells, and GLUT1 inhibitors block glucose uptake and hence glycolysis crucial for cancer cell growth. In addition to ATP, these metabolic pathways also provide macromolecule building blocks and signaling molecules required for tumor growth. In this study, we identify a diaminobutoxy-substituted isoflavonoid (DBI-1) that inhibits mitochondrial complex I and deprives rapidly growing cancer cells of energy needed for growth. DBI-1 and the GLUT1 inhibitor, BAY-876, synergistically inhibit colorectal cancer cell growth in vitro and in vivo. This study suggests that an electron transport chain inhibitor (i.e., DBI-1) and a glucose transport inhibitor, (i.e., BAY-876) are potentially effective combination for colorectal cancer treatment.
Collapse
Affiliation(s)
- Lichao Guo
- Lucille Parker Markey Cancer Center, University of Kentucky, Lexington, KY 40536
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY 40536
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory and Center for Drug Innovation and Discovery, College of Life Sciences, Hebei Normal University, 050024, Shijiazhuang, China
| | - Wen Zhang
- Lucille Parker Markey Cancer Center, University of Kentucky, Lexington, KY 40536
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY 40536
| | - Yanqi Xie
- Lucille Parker Markey Cancer Center, University of Kentucky, Lexington, KY 40536
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY 40536
| | - Xi Chen
- Lucille Parker Markey Cancer Center, University of Kentucky, Lexington, KY 40536
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY 40536
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory and Center for Drug Innovation and Discovery, College of Life Sciences, Hebei Normal University, 050024, Shijiazhuang, China
| | - Emma E. Olmstead
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY 40536
| | - Mengqiang Lian
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory and Center for Drug Innovation and Discovery, College of Life Sciences, Hebei Normal University, 050024, Shijiazhuang, China
| | - Baochen Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory and Center for Drug Innovation and Discovery, College of Life Sciences, Hebei Normal University, 050024, Shijiazhuang, China
| | - Yekaterina Y. Zaytseva
- Lucille Parker Markey Cancer Center, University of Kentucky, Lexington, KY 40536
- Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY 40536
| | - B. Mark Evers
- Lucille Parker Markey Cancer Center, University of Kentucky, Lexington, KY 40536
- Department of Surgery, College of Medicine, University of Kentucky, Lexington, KY 40536
| | - H. Peter Spielmann
- Lucille Parker Markey Cancer Center, University of Kentucky, Lexington, KY 40536
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY 40536
| | - Xifu Liu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory and Center for Drug Innovation and Discovery, College of Life Sciences, Hebei Normal University, 050024, Shijiazhuang, China
| | - David S. Watt
- Lucille Parker Markey Cancer Center, University of Kentucky, Lexington, KY 40536
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY 40536
| | - Chunming Liu
- Lucille Parker Markey Cancer Center, University of Kentucky, Lexington, KY 40536
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY 40536
| |
Collapse
|
4
|
Tang M, Dong X, Xiao L, Tan Z, Luo X, Yang L, Li W, Shi F, Li Y, Zhao L, Liu N, Du Q, Xie L, Hu J, Weng X, Fan J, Zhou J, Gao Q, Wu W, Zhang X, Liao W, Bode AM, Cao Y. CPT1A-mediated fatty acid oxidation promotes cell proliferation via nucleoside metabolism in nasopharyngeal carcinoma. Cell Death Dis 2022; 13:331. [PMID: 35411000 PMCID: PMC9001659 DOI: 10.1038/s41419-022-04730-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 03/05/2022] [Accepted: 03/16/2022] [Indexed: 12/24/2022]
Abstract
As the first rate-limiting enzyme in fatty acid oxidation (FAO), CPT1 plays a significant role in metabolic adaptation in cancer pathogenesis. FAO provides an alternative energy supply for cancer cells and is required for cancer cell survival. Given the high proliferation rate of cancer cells, nucleotide synthesis gains prominence in rapidly proliferating cells. In the present study, we found that CPT1A is a determining factor for the abnormal activation of FAO in nasopharyngeal carcinoma (NPC) cells. CPT1A is highly expressed in NPC cells and biopsies. CPT1A dramatically affects the malignant phenotypes in NPC, including proliferation, anchorage-independent growth, and tumor formation ability in nude mice. Moreover, an increased level of CPT1A promotes core metabolic pathways to generate ATP, inducing equivalents and the main precursors for nucleotide biosynthesis. Knockdown of CPT1A markedly lowers the fraction of 13C-palmitate-derived carbons into pyrimidine. Periodic activation of CPT1A increases the content of nucleoside metabolic intermediates promoting cell cycle progression in NPC cells. Targeting CPT1A-mediated FAO hinders the cell cycle G1/S transition. Our work verified that CPT1A links FAO to cell cycle progression in NPC cellular proliferation, which supplements additional experimental evidence for developing a therapeutic mechanism based on manipulating lipid metabolism.
Collapse
Affiliation(s)
- Min Tang
- Key Laboratory of Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China
- Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, 410078, Changsha, China
- Key Laboratory of Carcinogenesis, Chinese Ministry of Health, 410078, Changsha, China
- Molecular Imaging Research Center of Central South University, 410008, Changsha, Hunan, China
| | - Xin Dong
- Key Laboratory of Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China
- Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, 410078, Changsha, China
- Key Laboratory of Carcinogenesis, Chinese Ministry of Health, 410078, Changsha, China
- Department of Laboratory, National Cancer Center / National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Lanbo Xiao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China
- Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, 410078, Changsha, China
- Key Laboratory of Carcinogenesis, Chinese Ministry of Health, 410078, Changsha, China
| | - Zheqiong Tan
- Key Laboratory of Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China
- Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, 410078, Changsha, China
- Key Laboratory of Carcinogenesis, Chinese Ministry of Health, 410078, Changsha, China
| | - Xiangjian Luo
- Key Laboratory of Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China
- Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, 410078, Changsha, China
- Key Laboratory of Carcinogenesis, Chinese Ministry of Health, 410078, Changsha, China
- Molecular Imaging Research Center of Central South University, 410008, Changsha, Hunan, China
| | - Lifang Yang
- Key Laboratory of Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China
- Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, 410078, Changsha, China
- Key Laboratory of Carcinogenesis, Chinese Ministry of Health, 410078, Changsha, China
- Molecular Imaging Research Center of Central South University, 410008, Changsha, Hunan, China
| | - Wei Li
- Key Laboratory of Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China
- Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, 410078, Changsha, China
- Key Laboratory of Carcinogenesis, Chinese Ministry of Health, 410078, Changsha, China
| | - Feng Shi
- Key Laboratory of Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China
- Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, 410078, Changsha, China
- Key Laboratory of Carcinogenesis, Chinese Ministry of Health, 410078, Changsha, China
| | - Yueshuo Li
- Key Laboratory of Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China
- Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, 410078, Changsha, China
- Key Laboratory of Carcinogenesis, Chinese Ministry of Health, 410078, Changsha, China
| | - Lin Zhao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China
- Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, 410078, Changsha, China
- Key Laboratory of Carcinogenesis, Chinese Ministry of Health, 410078, Changsha, China
| | - Na Liu
- Key Laboratory of Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China
- Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, 410078, Changsha, China
- Key Laboratory of Carcinogenesis, Chinese Ministry of Health, 410078, Changsha, China
| | - Qianqian Du
- Key Laboratory of Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China
- Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, 410078, Changsha, China
- Key Laboratory of Carcinogenesis, Chinese Ministry of Health, 410078, Changsha, China
| | - Longlong Xie
- Key Laboratory of Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China
- Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, 410078, Changsha, China
- Key Laboratory of Carcinogenesis, Chinese Ministry of Health, 410078, Changsha, China
| | - Jianmin Hu
- Key Laboratory of Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China
- Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, 410078, Changsha, China
- Key Laboratory of Carcinogenesis, Chinese Ministry of Health, 410078, Changsha, China
| | - Xinxian Weng
- Key Laboratory of Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China
- Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, 410078, Changsha, China
- Key Laboratory of Carcinogenesis, Chinese Ministry of Health, 410078, Changsha, China
| | - Jia Fan
- Key Laboratory for Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Zhongshan Hospital, Shanghai Medical School, Fudan University, 200000, Shanghai, China
| | - Jian Zhou
- Key Laboratory for Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Zhongshan Hospital, Shanghai Medical School, Fudan University, 200000, Shanghai, China
| | - Qiang Gao
- Key Laboratory for Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Zhongshan Hospital, Shanghai Medical School, Fudan University, 200000, Shanghai, China
| | - Weizhong Wu
- Key Laboratory for Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Zhongshan Hospital, Shanghai Medical School, Fudan University, 200000, Shanghai, China
| | - Xin Zhang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 410078, Changsha, China
| | - Weihua Liao
- Molecular Imaging Research Center of Central South University, 410008, Changsha, Hunan, China
- Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China
| | - Ann M Bode
- The Hormel Institute, University of Minnesota, Austin, MN, 55912, USA
| | - Ya Cao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China.
- Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, 410078, Changsha, China.
- Key Laboratory of Carcinogenesis, Chinese Ministry of Health, 410078, Changsha, China.
- Molecular Imaging Research Center of Central South University, 410008, Changsha, Hunan, China.
- Research Center for Technologies of Nucleic Acid-Based Diagnostics and Therapeutics Hunan Province, 410078, Changsha, China.
- National Joint Engineering Research Center for Genetic Diagnostics of Infectious Diseases and Cancer, 410078, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 410078, Changsha, China.
| |
Collapse
|