1
|
Ma C, Yu X, Zhang X, Su L, Jiang O, Cui R. Combination of radiotherapy and ICIs in advanced hepatocellular carcinoma: A systematic review of current evidence and future prospects (Review). Oncol Lett 2025; 30:342. [PMID: 40438865 PMCID: PMC12117537 DOI: 10.3892/ol.2025.15088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 03/24/2025] [Indexed: 06/01/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is a global health concern because of its rising prevalence and high fatality rates. Conventional treatments for advanced HCC (aHCC) have limited success, emphasizing the need for novel treatment options. Radiotherapy (RT) treatments, such as stereotactic body radiation and proton therapy, improve local tumor management via precision targeting. Moreover, immune checkpoint inhibitors (ICIs) that target the programmed cell death protein 1(PD-1)/PD ligand 1 (PD-L1) and cytotoxic T lymphocyte associated protein 4 (CTLA-4) pathways have promise for systemic antitumor effectiveness. The combination of RT and ICIs takes advantage of their complementary mechanisms: RT kills immunogenic cells and controls the tumor microenvironment to increase antigen presentation, whereas ICIs enhance and maintain antitumor immune responses. This combination enhances tumor regression and immune response in aHCC, improving response rate and progression-free survival with manageable safety. The present review aimed to summarize the rationale for combining RT + ICIs in patients with aHCC and clinical outcomes, as well as ways to enhance this combination technique. The combination of these models is a promising technique for improving outcomes for patients with aHCC and warrants further investigation.
Collapse
Affiliation(s)
- Cheng Ma
- Department of Oncology, The First People's Hospital of Neijiang, Neijiang, Sichuan 641000, P.R. China
| | - Xinlin Yu
- Department of Oncology, The Affiliated Hospital of Chengdu University, Chengdu, Sichuan 610000, P.R. China
| | - Xialin Zhang
- Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Lihong Su
- Department of Oncology, The First People's Hospital of Neijiang, Neijiang, Sichuan 641000, P.R. China
| | - Ou Jiang
- Department of Oncology, The First People's Hospital of Neijiang, Neijiang, Sichuan 641000, P.R. China
| | - Ran Cui
- Department of Oncology, The First People's Hospital of Neijiang, Neijiang, Sichuan 641000, P.R. China
| |
Collapse
|
2
|
Schalck A, Tran T, Li J, Sei E, Bai S, Hu M, Lin J, Bright SJ, Reddick S, Yang F, Batra H, Contreras A, Raso MG, Stauder MC, Hoffman KE, Reddy JP, Nead KT, Smith BD, Sawakuchi GO, Woodward WA, Watowich SS, Litton JK, Bedrosian I, Mittendorf EA, Le-Petross H, Navin NE, Shaitelman SF. The impact of breast radiotherapy on the tumor genome and immune ecosystem. Cell Rep 2025; 44:115703. [PMID: 40378044 DOI: 10.1016/j.celrep.2025.115703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 02/17/2025] [Accepted: 04/24/2025] [Indexed: 05/18/2025] Open
Abstract
Radiotherapy is a pillar of breast cancer treatment; however, it remains unclear how radiotherapy modulates the tumor microenvironment. We investigated this question in a cohort of 20 patients with estrogen-receptor positive (ER+) breast tumors who received neoadjuvant radiotherapy. Tumor biopsies were collected before and 7 days postradiation. Single-cell DNA sequencing (scDNA-seq) and scRNA-seq were conducted on 8 and 11 patients, respectively, at these two time points. The scRNA data showed increased infiltration of naive-like CD4 T cells and an early, activated CD8 T cell population following radiotherapy. Radiotherapy also eliminated existing cytotoxic T cells and resulted in myeloid cell increases. In tumor cells, the scDNA-seq data showed a high genomic selection of subclones in half of the patients with high ER expression, while the remaining number had low genomic selection and an interferon response. Collectively, these data provide insight into the impact of radiotherapy in ER+ breast cancer patients.
Collapse
Affiliation(s)
- Aislyn Schalck
- Department of Systems Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Graduate School of Biological Sciences, University of Texas, Houston, TX 770303, USA
| | - Tuan Tran
- Department of Systems Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jianzhuo Li
- Department of Systems Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Emi Sei
- Department of Systems Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shanshan Bai
- Department of Systems Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Min Hu
- Department of Systems Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jerome Lin
- Department of Systems Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Scott J Bright
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Samuel Reddick
- Department of Breast Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Fei Yang
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Janssen China Research & Development, Johnson&Johnson, Shanghai 201210, China
| | - Harsh Batra
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Alejandro Contreras
- Department of Anatomical Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Maria Gabriela Raso
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Michael C Stauder
- Department of Breast Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Karen E Hoffman
- Department of Breast Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jay P Reddy
- Department of Breast Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kevin T Nead
- Department of Breast Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Benjamin D Smith
- Department of Breast Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Gabriel O Sawakuchi
- Graduate School of Biological Sciences, University of Texas, Houston, TX 770303, USA; Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Wendy A Woodward
- Department of Breast Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Stephanie S Watowich
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jennifer K Litton
- Department of Breast Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Isabelle Bedrosian
- Department of Breast Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Elizabeth A Mittendorf
- Department of Breast Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Division of Breast Surgery, Department of Surgery, Brigham and Women's Hospital, Boston, MA 02115, USA; Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Huong Le-Petross
- Department of Breast Imaging, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Nicholas E Navin
- Department of Systems Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Graduate School of Biological Sciences, University of Texas, Houston, TX 770303, USA; Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Simona F Shaitelman
- Department of Breast Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
3
|
Yang K, Noh JM, Kim YJ, Pyo H. Early Dynamics of Circulating Tumor DNA Following Curative Hypofractionated Radiotherapy Related to Disease Control in Lung Cancer. Diagnostics (Basel) 2025; 15:1198. [PMID: 40428191 PMCID: PMC12109695 DOI: 10.3390/diagnostics15101198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2025] [Revised: 05/01/2025] [Accepted: 05/07/2025] [Indexed: 05/29/2025] Open
Abstract
Background/objectives: We aimed to characterize the dynamic pattern of circulating tumor DNA (ctDNA) during hypofractionated radiation therapy (RT) in patients with lung cancer and assess its clinical relevance. Metholds: Prospectively, 24 patients diagnosed with early-stage lung cancer underwent curative RT with 60-64 Gy in 4-20 fractions. Blood samples were collected at baseline (D0) and on post-RT days 1-3 and 7 (D1-3 and D7). The ctDNA was longitudinally analyzed using LiquidSCAN. To find a feasible index associated with outcome, total VAF(%), max VAF(%), total GE (hGE/mL) and max GE (hGE/mL), were evaluated. Results: Thirteen patients with available samples were analyzed with a median 22.2-month follow-up (range, 5.2-34.3 months). Four patients experienced progression between 7.9 and 16.6 months after RT (PD group), and the nine presented no evidence of disease (NED group). The Dmax, the day with the highest ctDNA level among D0-7, was significantly different between the groups with total GE and max GE (p = 0.035 and 0.021, respectively). According to the ROC curves, the max GE showed the best AUC (86.1%) and the cut-off value of the Dmax was 1.5 (sensitivity: 66.7%, specificity: 100%, positive-predictive value: 100%, and negative-predictive value: 57.1%). Tumor size ≥ 3 cm, squamous histology, and a daily dose 3-4 Gy were correlated with the Dmax = D2-3. The Dmax showed better disease control rate with marginal significance (p = 0.081). Conclusions: The timing of early ctDNA elevation may have the potential to predict RT response. The max GE may be an index to verify the ctDNA levels after RT.
Collapse
Affiliation(s)
- Kyungmi Yang
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Jae Myoung Noh
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Yeon Jeong Kim
- Samsung Genome Institute, Samsung Medical Center, Seoul 06351, Republic of Korea
| | - Hongryull Pyo
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| |
Collapse
|
4
|
Sakai SA, Saeki K, Chi S, Hamaya Y, Du J, Nakamura M, Hojo H, Kojima T, Nakamura Y, Bando H, Kojima M, Suzuki A, Suzuki Y, Akimoto T, Tsuchihara K, Haeno H, Yamashita R, Kageyama SI. Mathematical Modeling Predicts Optimal Immune Checkpoint Inhibitor and Radiotherapy Combinations and Timing of Administration. Cancer Immunol Res 2025; 13:353-364. [PMID: 39666379 PMCID: PMC11876959 DOI: 10.1158/2326-6066.cir-24-0610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/04/2024] [Accepted: 12/10/2024] [Indexed: 12/13/2024]
Abstract
Radiotherapy (RT) combined with immune checkpoint inhibitor (ICI) therapy has attracted substantial attention due to its potential to improve outcomes for patients with several types of cancer. However, the optimal administration timepoints and drug combinations remain unclear because the mechanisms underlying RT-induced changes in immune checkpoint molecule expression and interaction with their ligand(s) remain unclear. In this study, we demonstrated the dynamics of lymphocyte-mediated molecular interactions in tissue samples from patients with esophageal cancer throughout RT schedules. Single-cell RNA sequencing and spatial transcriptomic analyses were performed to investigate the dynamics of these interactions. The biological signal in lymphocytes transitioned from innate to adaptive immune reaction, with increases in ligand-receptor interactions, such as PD-1-PD-L1, CTLA4-CD80/86, and TIGIT-PVR interactions. A mathematical model was constructed to predict the efficacy of five types of ICIs when administered at four different timepoints. The model suggested that concurrent anti-PD-1/PD-L1 therapy or concurrent/adjuvant anti-CTLA4/TIGIT therapy would exert a maximal effect with RT. This study provides rationale for clinical trials of RT combined with defined ICI therapy, and these findings will support future studies to search for more effective targets and timing of therapy administration.
Collapse
Affiliation(s)
- Shunsuke A. Sakai
- Division of Translational Informatics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
- Department of Radiation Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Koichi Saeki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - SungGi Chi
- Division of Translational Informatics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Yamato Hamaya
- Division of Translational Informatics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Junyan Du
- Division of Translational Informatics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Masaki Nakamura
- Department of Radiation Oncology, National Cancer Center Hospital East, Kashiwa, Japan
- Division of Radiation Oncology and Particle Therapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Hidehiro Hojo
- Department of Radiation Oncology, National Cancer Center Hospital East, Kashiwa, Japan
- Division of Radiation Oncology and Particle Therapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Takashi Kojima
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Yoshiaki Nakamura
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan
- Translational Research Support Office, National Cancer Center Hospital East, Kashiwa, Japan
| | - Hideaki Bando
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan
- Translational Research Support Office, National Cancer Center Hospital East, Kashiwa, Japan
| | - Motohiro Kojima
- Department of Pathology and Clinical Laboratories, National Cancer Center Hospital East, Kashiwa, Japan
- Pathology Division, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Ayako Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Tetsuo Akimoto
- Department of Radiation Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Katsuya Tsuchihara
- Division of Translational Informatics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Hiroshi Haeno
- Division of Integrated Research, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| | - Riu Yamashita
- Division of Translational Informatics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Shun-Ichiro Kageyama
- Department of Radiation Oncology, National Cancer Center Hospital East, Kashiwa, Japan
- Division of Radiation Oncology and Particle Therapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| |
Collapse
|
5
|
Bedi D, Hassan M, Yirsaw A, Vikas B, Datta P, Samuel T. The immunopeptidome of colon cancer cells treated with topoisomerase inhibiting drug reveals differential as well as common endogenous protein sampling and display of MHC I-associated peptides. Mol Cell Oncol 2025; 12:2471640. [PMID: 40051755 PMCID: PMC11881837 DOI: 10.1080/23723556.2025.2471640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 08/05/2024] [Accepted: 02/20/2025] [Indexed: 03/09/2025]
Abstract
Immunotherapy options for microsatellite stable (MSS) colorectal cancer are currently very limited. The lack of detectably unique or altered immunogens in the tumor microenvironment may be a factor. Radiation and chemotherapy may enhance immunotherapy by increasing cancer cell visibility through Major Histocompatibility Complex I (MHC I) expression. To investigate this, we treated MSS and microsatellite-instable (MSI) colon cancer cells with a topoisomerase inhibitor and analyzed MHC I-associated peptides. Treatment increased peptide numbers by 5% in RKO (MSI) cells and 83% in SW620 (MSS) cells, with 40-50% of peptides being exclusive to treatment. Additionally, clustering analysis revealed a set of peptides with uniquely conserved residues displayed only in treated MSS SW620 cells. Gene Ontology analysis of MHC I-displayed proteins revealed a treatment-induced increase in extracellular vesicle- and nuclear-derived proteins, alongside reduced cytosolic protein sampling. Overall, we present evidence for treatment-inducible differential display of peptides, some of which may affect interactions and functions of immune cells. Given the multitude of factors that modulate the effects of increased MHC I expression and associated peptides, further studies are needed to elucidate the pathophysiological implications of these changes.
Collapse
Affiliation(s)
- Deepa Bedi
- Departments of Pathobiology and Biomedical Sciences, Tuskegee University, College of Veterinary Medicine and Center for Biomedical Research, Tuskegee, AL, USA
| | - Mohammed Hassan
- Departments of Pathobiology and Biomedical Sciences, Tuskegee University, College of Veterinary Medicine and Center for Biomedical Research, Tuskegee, AL, USA
| | - Alehegne Yirsaw
- Departments of Pathobiology and Biomedical Sciences, Tuskegee University, College of Veterinary Medicine and Center for Biomedical Research, Tuskegee, AL, USA
| | - Biba Vikas
- Departments of Pathobiology and Biomedical Sciences, Tuskegee University, College of Veterinary Medicine and Center for Biomedical Research, Tuskegee, AL, USA
| | - Pran Datta
- University of Alabama at Birmingham, Birmingham, AL, USA
| | - Temesgen Samuel
- Departments of Pathobiology and Biomedical Sciences, Tuskegee University, College of Veterinary Medicine and Center for Biomedical Research, Tuskegee, AL, USA
| |
Collapse
|
6
|
Morris ZS, Demaria S, Monjazeb AM, Formenti SC, Weichselbaum RR, Welsh J, Enderling H, Schoenfeld JD, Brody JD, McGee HM, Mondini M, Kent MS, Young KH, Galluzzi L, Karam SD, Theelen WSME, Chang JY, Huynh MA, Daib A, Pitroda S, Chung C, Serre R, Grassberger C, Deng J, Sodji QH, Nguyen AT, Patel RB, Krebs S, Kalbasi A, Kerr C, Vanpouille-Box C, Vick L, Aguilera TA, Ong IM, Herrera F, Menon H, Smart D, Ahmed J, Gartrell RD, Roland CL, Fekrmandi F, Chakraborty B, Bent EH, Berg TJ, Hutson A, Khleif S, Sikora AG, Fong L. Proceedings of the National Cancer Institute Workshop on combining immunotherapy with radiotherapy: challenges and opportunities for clinical translation. Lancet Oncol 2025; 26:e152-e170. [PMID: 40049206 DOI: 10.1016/s1470-2045(24)00656-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/31/2024] [Accepted: 11/05/2024] [Indexed: 03/09/2025]
Abstract
Radiotherapy both promotes and antagonises tumour immune recognition. Some clinical studies show improved patient outcomes when immunotherapies are integrated with radiotherapy. Safe, greater than additive, clinical response to the combination is limited to a subset of patients, however, and how radiotherapy can best be combined with immunotherapies remains unclear. The National Cancer Institute-Immuno-Oncology Translational Network-Society for Immunotherapy of Cancer-American Association of Immunology Workshop on Combining Immunotherapy with Radiotherapy was convened to identify and prioritise opportunities and challenges for radiotherapy and immunotherapy combinations. Sessions examined the immune effects of radiation, barriers to anti-tumour immune response, previous clinical trial data, immunological and computational assessment of response, and next-generation radiotherapy-immunotherapy combinations. Panel recommendations included: developing and implementing patient selection and biomarker-guided approaches; applying mechanistic understanding to optimise delivery of radiotherapy and selection of immunotherapies; using rigorous preclinical models including companion animal studies; embracing data sharing and standardisation, advanced modelling, and multidisciplinary cross-institution collaboration; interrogating clinical data, including negative trials; and incorporating novel clinical endpoints and trial designs.
Collapse
Affiliation(s)
- Zachary S Morris
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
| | - Sandra Demaria
- Weill Cornell Medicine, Department of Radiation Oncology, New York, NY, USA
| | - Arta M Monjazeb
- UC Davis Health, Department of Radiation Oncology, Sacramento, CA, USA
| | - Silvia C Formenti
- Weill Cornell Medicine, Department of Radiation Oncology, New York, NY, USA
| | - Ralph R Weichselbaum
- Department of Radiation and Cellular Oncology and the Ludwig Center for Metastasis Research, The University of Chicago, Chicago, IL, USA
| | - James Welsh
- Department of Thoracic Radiation Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Heiko Enderling
- Department of Thoracic Radiation Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | | | - Joshua D Brody
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Heather M McGee
- Department of Radiation Oncology and Department of Immuno-Oncology, City of Hope, Duarte, CA, USA
| | - Michele Mondini
- Gustave Roussy, Université Paris-Saclay, INSERM U1030, Villejuif, France
| | - Michael S Kent
- Davis School of Veterinary Medicine, University of California, Davis, CA, USA
| | | | - Lorenzo Galluzzi
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Sana D Karam
- Department of Radiation Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | - Joe Y Chang
- Department of Thoracic Radiation Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Mai Anh Huynh
- Brigham and Women's Hospital-Dana-Farber Cancer Institute, Boston, MA, USA
| | - Adi Daib
- Department of Thoracic Radiation Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Sean Pitroda
- Department of Radiation and Cellular Oncology and the Ludwig Center for Metastasis Research, The University of Chicago, Chicago, IL, USA
| | - Caroline Chung
- Department of Thoracic Radiation Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Raphael Serre
- Aix Marseille University, SMARTc Unit, Inserm S 911 CRO2, Marseille, France
| | | | - Jie Deng
- Department of Radiation Oncology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Quaovi H Sodji
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Anthony T Nguyen
- Cedars-Sinai Medical Center, Department of Radiation Oncology, Los Angeles, CA, USA
| | - Ravi B Patel
- Department of Radiation Oncology, University of Pittsburgh Hillman Cancer Center, Pittsburgh, PA, USA
| | - Simone Krebs
- Molecular Imaging and Therapy Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Weill Cornell Medicine, Department of Radiology, New York, NY, USA
| | - Anusha Kalbasi
- Department of Radiation Oncology, Stanford Cancer Institute, Stanford School of Medicine, Stanford, CA, USA
| | - Caroline Kerr
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | | | - Logan Vick
- Department of Dermatology, University of California Davis School of Medicine, Sacramento, CA, USA
| | | | - Irene M Ong
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Fernanda Herrera
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne, Lausanne, Switzerland
| | - Hari Menon
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - DeeDee Smart
- Radiation Oncology Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA
| | - Jalal Ahmed
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Robyn D Gartrell
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA; Department of Oncology, Division of Pediatric Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Christina L Roland
- Department of Thoracic Radiation Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Fatemeh Fekrmandi
- Department of Radiation Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Binita Chakraborty
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Eric H Bent
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tracy J Berg
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Alan Hutson
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Samir Khleif
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Andrew G Sikora
- Department of Head and Neck Surgery, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Lawrence Fong
- Fred Hutchinson Cancer Center, University of Washington, Seattle, WA, USA
| |
Collapse
|
7
|
Jeong M, Yoon J, Kim K, Wang J, Koo Y, Sailor MJ, Joo J, Park JH. Programmable Porous Silicon Microparticles for Temporally Staged Drug Delivery in Combination Cancer Immunotherapy. ACS APPLIED MATERIALS & INTERFACES 2025; 17:7395-7405. [PMID: 39847761 DOI: 10.1021/acsami.4c19425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
Combination therapies using checkpoint inhibitors with immunostimulatory agonists have attracted great attention due to their synergistic therapeutic effects for cancer treatment. However, such combination immunotherapies require specific timing of doses to show sufficient antitumor efficacy. Sequential treatment usually requires multiple administrations of the individual drugs at specific time points, thus increasing the complexity of the drug regimen and compromising patient compliance. Here, we introduce an injectable porous silicon microparticle (pSiMP) for combination cancer immunotherapy where its multilayered nanopore structure was electrochemically programmed to achieve release of three distinct immunomodulatory drugs in the right sequence at the desired time. We find the optimal sequential treatment timeline of stimulator of interferon genes (STING) agonist, anti-OX40 antibody (aOX40), and anti-PD-1 antibody (aPD-1) for immunosuppressive tumors. We show that a single intratumoral injection of a cocktail of release-programmed pSiMPs coloaded with each antibody and a STING agonist significantly suppresses the tumor growth compared to conventional treatment involving sequential bolus injections, or an injection of pSiMPs configured to release all drugs at the same time, with no delay. With the timely release of immunomodulatory drugs, the programmable pSiMPs offer an effective treatment strategy for combination immunotherapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jinmyoung Joo
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea
| | | |
Collapse
|
8
|
Ghalehtaki R, Amini A, Abyaneh R. Optimizing neoadjuvant radiotherapy for locally advanced esophageal squamous cell carcinoma: a comprehensive review on the role of concomitant or sequential immune checkpoint inhibitors. Esophagus 2025; 22:5-18. [PMID: 39562407 DOI: 10.1007/s10388-024-01097-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/23/2024] [Indexed: 11/21/2024]
Abstract
Esophageal squamous cell carcinoma (ESCC) is a prevalent form of esophageal cancer with a poor prognosis despite advances in treatment. Combining immune checkpoint inhibitors (ICIs) with radiotherapy (RT) or chemoradiotherapy (CRT) has shown potential in enhancing treatment efficacy. We conducted a comprehensive review of clinical trials published between 2019 and 2024, sourced from PubMed, Scopus, and Embase databases. Studies included were prospective phase II trials that evaluated the combination of ICIs with neoadjuvant chemoradiotherapy (nCRT) in resectable locally advanced ESCC. Ten trials met the inclusion criteria. The review highlights various approaches in combining ICIs with CRT, including concurrent, induction, and consolidation therapy. Among the included trials, a significant proportion focused on concurrently administering ICIs with CRT, showing promising outcomes with high pathological complete response rates (pCR) and manageable toxicities. However, further research is needed to validate the efficacy of induction and consolidation therapies and determine optimal treatment protocols. The combination of ICIs and nCRT can potentially improve treatment responses and outcomes for patients with locally advanced ESCC. Despite recent encouraging findings, most trials were single-arm with small sample sizes, indicating the need for larger studies with longer follow-ups to assess survival outcomes comprehensively.
Collapse
Affiliation(s)
- Reza Ghalehtaki
- Department of Radiation Oncology, Cancer Institute, IKHC, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Radiation Oncology Research Center, Cancer Research Institute, IKHC, Tehran University of Medical Sciences, Tehran, Iran
| | - Arya Amini
- Department of Radiation Oncology, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Romina Abyaneh
- Radiation Oncology Research Center, Cancer Research Institute, IKHC, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Pan X, Guo X, Wang J, Yang C, Chen M, Qiu H, Wu Q. Improved outcomes of palliative radiotherapy combined with immune checkpoint inhibitors in recurrent or metastatic cervical cancers. Int Immunopharmacol 2024; 143:113268. [PMID: 39357206 DOI: 10.1016/j.intimp.2024.113268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/24/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND Immunotherapy provides a remarkable survival advantage for patients with recurrent or metastatic cervical cancer (R/M CC). However, the role of immunotherapy in combination with radiotherapy in R/M CC remains unclear. METHODS We retrospectively analyzed factors affecting immunotherapy effectiveness in patients with R/M CC. Clinical outcomes including tumor response and patient survival were assessed. Kaplan-Meier curves with the log-rank test were employed to compare survival data. Cox regression analysis was utilized to investigate prognostic factors. RESULTS A total of 65 R/M CC patients treated with immune checkpoint inhibitors were eligible for analysis. We found that immunotherapy combined with palliative radiotherapy showed a significant positive correlation with complete response (OR = 6.31; 95 %CI: 1.74-22.91; p = 0.005). The 36-month progression-free survival (PFS) rate (73.7 % vs 33.8 %, p = 0.0048) and 36-month overall survival (OS) rate (85.7 % vs 38.7 %, p = 0.0043) were also prominently increased. We further demonstrated that patients prolonged 36-month PFS rate (69.9 % vs 15.2 %; p < 0.001) and 36-month OS rate (64.6 % vs 39.7 %; p = 0.032) when they had more than 4 cycles of immunotherapy. Meanwhile, our findings showed that patients with only recurrence had longer 36-month OS rate (77.7 % vs 44.4 % vs 40.1 %; p = 0.024) compared to those with only metastasis and both. We also observed that patients with squamous carcinoma had higher 2-year PFS rate (57.9 % vs 14.6 %; p = 0.042) than those with other pathological subtypes (adenocarcinoma, adenosquamous carcinoma and neuroendocrine carcinoma). CONCLUSIONS The combination of immunotherapy and palliative radiotherapy increased complete response rates and improved survivals in recurrent or metastatic cervical cancer patients.
Collapse
Affiliation(s)
- Xinyu Pan
- School of Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Xiaowan Guo
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Key Laboratory of Tumor Biological Behavior, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Provincial Clinical Research Center for Cancer, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Juan Wang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Key Laboratory of Tumor Biological Behavior, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Provincial Clinical Research Center for Cancer, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Chunxu Yang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Key Laboratory of Tumor Biological Behavior, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Provincial Clinical Research Center for Cancer, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Min Chen
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Key Laboratory of Tumor Biological Behavior, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Provincial Clinical Research Center for Cancer, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Hui Qiu
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Key Laboratory of Tumor Biological Behavior, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Provincial Clinical Research Center for Cancer, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| | - Qiuji Wu
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Key Laboratory of Tumor Biological Behavior, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Provincial Clinical Research Center for Cancer, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| |
Collapse
|
10
|
Ng AM, MacKinnon KM, Cook AA, D'Alonzo RA, Rowshanfarzad P, Nowak AK, Gill S, Ebert MA. Mechanistic in silico explorations of the immunogenic and synergistic effects of radiotherapy and immunotherapy: a critical review. Phys Eng Sci Med 2024; 47:1291-1306. [PMID: 39017990 PMCID: PMC11666662 DOI: 10.1007/s13246-024-01458-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 06/17/2024] [Indexed: 07/18/2024]
Abstract
Immunotherapy is a rapidly evolving field, with many models attempting to describe its impact on the immune system, especially when paired with radiotherapy. Tumor response to this combination involves a complex spatiotemporal dynamic which makes either clinical or pre-clinical in vivo investigation across the resulting extensive solution space extremely difficult. In this review, several in silico models of the interaction between radiotherapy, immunotherapy, and the patient's immune system are examined. The study included only mathematical models published in English that investigated the effects of radiotherapy on the immune system, or the effect of immuno-radiotherapy with immune checkpoint inhibitors. The findings indicate that treatment efficacy was predicted to improve when both radiotherapy and immunotherapy were administered, compared to radiotherapy or immunotherapy alone. However, the models do not agree on the optimal schedule and fractionation of radiotherapy and immunotherapy. This corresponds to relevant clinical trials, which report an improved treatment efficacy with combination therapy, however, the optimal scheduling varies between clinical trials. This discrepancy between the models can be attributed to the variation in model approach and the specific cancer types modeled, making the determination of the optimum general treatment schedule and model challenging. Further research needs to be conducted with similar data sets to evaluate the best model and treatment schedule for a specific cancer type and stage.
Collapse
Affiliation(s)
- Allison M Ng
- School of Physics, Mathematics and Computing, The University of Western Australia, Crawley, WA, Australia
| | - Kelly M MacKinnon
- School of Physics, Mathematics and Computing, The University of Western Australia, Crawley, WA, Australia
- National Centre for Asbestos Related Diseases, The University of Western Australia, Crawley, WA, Australia
| | - Alistair A Cook
- National Centre for Asbestos Related Diseases, The University of Western Australia, Crawley, WA, Australia
- Institute for Respiratory Health, Institute for Respiratory Health, Perth, WA, Australia
- School of Biomedical Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Rebecca A D'Alonzo
- School of Physics, Mathematics and Computing, The University of Western Australia, Crawley, WA, Australia
- National Centre for Asbestos Related Diseases, The University of Western Australia, Crawley, WA, Australia
- Institute for Respiratory Health, Institute for Respiratory Health, Perth, WA, Australia
| | - Pejman Rowshanfarzad
- School of Physics, Mathematics and Computing, The University of Western Australia, Crawley, WA, Australia
- Centre for Advanced Technologies in Cancer Research (CATCR), Perth, WA, Australia
| | - Anna K Nowak
- National Centre for Asbestos Related Diseases, The University of Western Australia, Crawley, WA, Australia
- Institute for Respiratory Health, Institute for Respiratory Health, Perth, WA, Australia
- Medical School, The University of Western Australia, Crawley, WA, Australia
| | - Suki Gill
- School of Physics, Mathematics and Computing, The University of Western Australia, Crawley, WA, Australia
- Department of Radiation Oncology, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
| | - Martin A Ebert
- School of Physics, Mathematics and Computing, The University of Western Australia, Crawley, WA, Australia.
- Centre for Advanced Technologies in Cancer Research (CATCR), Perth, WA, Australia.
- Department of Radiation Oncology, Sir Charles Gairdner Hospital, Nedlands, WA, Australia.
| |
Collapse
|
11
|
Hu S, Li X, Yang B, Yu T, Yi F, Qin X, Chen C, Wang C, Yu X, Zhu J. Innovations in radiotherapy for tongue squamous cell carcinoma. J Transl Med 2024; 22:1082. [PMID: 39614244 DOI: 10.1186/s12967-024-05885-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 11/14/2024] [Indexed: 12/01/2024] Open
Abstract
Radiotherapy sensitivity is associated with the prognosis of patients with tongue squamous cell carcinoma (TSCC). In the present study, we proposed to explore the specific mechanism of interventional radiology (IR) therapy for TSCC in vitro and in vivo. TSCC cells were treated with 6 Gy IR and tumor bearing mice were treated with 20 Gy × 1 IR. DIA quantitative proteomics along with bioinformatics analysis were conducted in TSCC cells to investigate differential proteins related to IR and relation of which involved in TMEM147 and SPHK1 was confirmed by immunoprecipitation. Cell proliferation, apoptosis, autophagy& autophagy flux along with calcium signaling pathway detection were performed in vitro and in vivo. Our results showed that IR induced increasing calcium levels accompanied by up-regulated TMEM147 and down-regulated SPHK1 along with enhancing autophagy together with apoptosis. The effect of calcium overloading induced by IR on autophagy and apoptosis was dependent on increasing TMEM147 and decreasing SPHK1. However, IR-induced autophagy and apoptosis tended to be independent of only increasing calcium levels when down-regulating TMEM147 or up-regulating SPHK1 expression in vitro and in vivo. Our study suggested that calcium-mediated TMEM147/SPHK1 may promote autophagy and apoptosis to improve radiotherapy sensitivity in TSCC.
Collapse
Affiliation(s)
- Songling Hu
- Department of Preventive Dentistry, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, 1258 Fuxing Middle Road, Shanghai, 200001, China.
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, 200001, China.
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Xiaofei Li
- Department of Preventive Dentistry, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, 1258 Fuxing Middle Road, Shanghai, 200001, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, 200001, China
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Bin Yang
- Department of Preventive Dentistry, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, 1258 Fuxing Middle Road, Shanghai, 200001, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, 200001, China
| | - Tian Yu
- Department of Preventive Dentistry, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, 1258 Fuxing Middle Road, Shanghai, 200001, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, 200001, China
| | - Fangyu Yi
- Department of Preventive Dentistry, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, 1258 Fuxing Middle Road, Shanghai, 200001, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, 200001, China
| | - Xiurong Qin
- Department of Preventive Dentistry, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, 1258 Fuxing Middle Road, Shanghai, 200001, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, 200001, China
| | - Cong Chen
- Department of Preventive Dentistry, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, 1258 Fuxing Middle Road, Shanghai, 200001, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, 200001, China
| | - Can Wang
- Department of Preventive Dentistry, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, 1258 Fuxing Middle Road, Shanghai, 200001, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, 200001, China
| | - Xin Yu
- Department of Preventive Dentistry, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, 1258 Fuxing Middle Road, Shanghai, 200001, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, 200001, China
| | - Jing Zhu
- Department of Preventive Dentistry, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, 1258 Fuxing Middle Road, Shanghai, 200001, China.
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, 200001, China.
| |
Collapse
|
12
|
Hamza FN, Mohammad KS. Immunotherapy in the Battle Against Bone Metastases: Mechanisms and Emerging Treatments. Pharmaceuticals (Basel) 2024; 17:1591. [PMID: 39770433 PMCID: PMC11679356 DOI: 10.3390/ph17121591] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/20/2024] [Accepted: 11/23/2024] [Indexed: 01/11/2025] Open
Abstract
Bone metastases are a prevalent complication in advanced cancers, particularly in breast, prostate, and lung cancers, and are associated with severe skeletal-related events (SREs), including fractures, spinal cord compression, and debilitating pain. Conventional bone-targeted treatments like bisphosphonates and RANKL inhibitors (denosumab) reduce osteoclast-mediated bone resorption but do not directly impact tumor progression within the bone. This review focuses on examining the growing potential of immunotherapy in targeting the unique challenges posed by bone metastases. Even though immune checkpoint inhibitors (ICIs) have significantly changed cancer treatment, their impact on bone metastases appears limited because of the bone microenvironment's immunosuppressive traits, which include high levels of transforming growth factor-beta (TGFβ) and the immune-suppressing cells, such as regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs). This review underscores the investigation of combined therapeutic approaches that might ease these difficulties, such as the synergy of immune checkpoint inhibitors with agents aimed at bones (denosumab, bisphosphonates), chemotherapy, and radiotherapy, as well as the combination of immune checkpoint inhibitors with different immunotherapeutic methods, including CAR T-cell therapy. This review provides a comprehensive analysis of preclinical studies and clinical trials that show the synergistic potential of these combination approaches, which aim to both enhance immune responses and mitigate bone destruction. By offering an in-depth exploration of how these strategies can be tailored to the bone microenvironment, this review underscores the need for personalized treatment approaches. The findings emphasize the urgent need for further research into overcoming immune evasion in bone metastases, with the goal of improving patient survival and quality of life.
Collapse
Affiliation(s)
- Fatheia N. Hamza
- Department of Biochemistry, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia;
| | - Khalid Said Mohammad
- Department of Anatomy and Genetics, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| |
Collapse
|
13
|
Pedersoli F, Mohammad IS, Patel AK, Kessler J, Chao C, Liu B, Lall C, Guerra C, Park JJ, Boas FE. Bioinspired intratumoral infusion port catheter improves local drug delivery in the liver. Sci Rep 2024; 14:27782. [PMID: 39538011 PMCID: PMC11561066 DOI: 10.1038/s41598-024-79694-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 11/11/2024] [Indexed: 11/16/2024] Open
Abstract
Tumor immune modulation can be achieved using intratumoral injection of different immunomodulators during different phases of the cancer-immunity cycle. Intratumoral infusion catheters have been used in brain tumors, but these are not suitable outside the brain, where breathing motion results in catheter migration. Here, we use microstereolithography to manufacture a barbed sidehole catheter, modeled after the barbs in a bee stinger, where the barbs maintain the catheter position in the tumor, and sideholes within the barbs infuse drug into tumor tissue. In pig liver, we demonstrated 183-fold higher local drug concentration using the barbed sidehole catheter, compared to intravenous injection of water-soluble drug. High resistance sideholes and pulsatile injection both generate higher pressure in the catheter, which overcomes the tissue pressure, resulting in more drug delivery into tumor. A physical model of intratumoral infusion catheters accurately predicts the observed drug delivery results. Our catheter design is retained in the liver (and does not migrate out with breathing motion), and it preferentially infuses the drug into tumor tissue (not intratumoral vessels).
Collapse
Affiliation(s)
- Federico Pedersoli
- Interventional Radiology, Imaging Institute of Southern Switzerland (IIMSI), Ente Ospedaliero Cantonale (EOC), Locarno, Switzerland
| | - Imran Shair Mohammad
- Department of Radiology / Interventional Radiology, City of Hope Medical Center, 1500 East Duarte Road, Duarte, CA, 91010, USA
| | - Anup Kumar Patel
- Department of Radiology / Interventional Radiology, City of Hope Medical Center, 1500 East Duarte Road, Duarte, CA, 91010, USA
| | - Jonathan Kessler
- Department of Radiology / Interventional Radiology, City of Hope Medical Center, 1500 East Duarte Road, Duarte, CA, 91010, USA
| | - Cherng Chao
- Department of Radiology / Interventional Radiology, City of Hope Medical Center, 1500 East Duarte Road, Duarte, CA, 91010, USA
| | - Bo Liu
- Department of Radiology / Interventional Radiology, City of Hope Medical Center, 1500 East Duarte Road, Duarte, CA, 91010, USA
| | - Chandana Lall
- Department of Radiology / Interventional Radiology, City of Hope Medical Center, 1500 East Duarte Road, Duarte, CA, 91010, USA
| | | | - John J Park
- Harbor-UCLA Medical Center, Torrance, CA, USA
| | - F Edward Boas
- Department of Radiology / Interventional Radiology, City of Hope Medical Center, 1500 East Duarte Road, Duarte, CA, 91010, USA.
| |
Collapse
|
14
|
Chen X, Ding W, Jiang Y, Shi W, Qiu Y, Zhao H, Luo X. Emerging Strategies for Local Delivery of Immune Checkpoint Inhibitors to Potentiate Cancer Immunotherapy: Current Status and Future Prospects. ACS APPLIED MATERIALS & INTERFACES 2024; 16:59682-59696. [PMID: 39436983 DOI: 10.1021/acsami.4c12603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Cancer constitutes a significant threat to patients' lives worldwide. Immunotherapy, particularly immune checkpoint inhibitors (ICIs) that boost antitumor immunity by targeting immune checkpoint components, has emerged as a promising strategy for its treatment in recent years. However, the objective response rates of the ICIs are unsatisfactory. As the primary route, systemic administration of ICIs is often accompanied by immune-related adverse events. Local delivery of ICIs serves as a potential therapeutic strategy that can improve the efficacy while simultaneously reducing side effects through precise drug release at the tumor site. Initial validation of direct local application of ICIs for tumors in clinical trials has indicated reduced side effects and improved efficacy, while low bioavailability remains a challenge. Furthermore, research on various carriers, including nanoparticles, microneedles, hydrogels, combined platforms, and implantable devices for local release of ICIs has exhibited applying potential in treating murine tumors, among which combined platforms such as combined hydrogel system hold the highest promise due to their encompassment of the advantages of multiple carriers. These carriers, by incorporating ICIs and other therapeutics, could manage cancers more potently, which needs to be confirmed in clinical trials after the refinement of their biocompatibility. This review summarizes the latest research advancements regarding local administration of ICIs, with a particular focus on the carriers for local delivery as well as the combination therapies, thus providing novel insights and research guidance for scholars to enhance the efficacy of locally delivered ICIs on managing multiple cancers in the future.
Collapse
Affiliation(s)
- Xin Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Wei Ding
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yuchen Jiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Wenjin Shi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yan Qiu
- Department of Pathology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hang Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Xiaobo Luo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| |
Collapse
|
15
|
Danbala IA, Fu S, Sheng W, Tang H, Magashi MA, Wang X. Immune checkpoint inhibitors with or without radiotherapy in metastatic non‑small cell lung cancer: A meta‑analysis and literature review. Oncol Lett 2024; 28:489. [PMID: 39185490 PMCID: PMC11342421 DOI: 10.3892/ol.2024.14622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 07/03/2024] [Indexed: 08/27/2024] Open
Abstract
The combination of immune checkpoint inhibitors (ICIs) and radiotherapy has shown promise in the treatment of metastatic non-small cell lung cancer (NSCLC). The present meta-analysis aimed to determine the efficacy and safety of combining radiotherapy (RT) ICIs for the treatment of metastatic NSCLC. PubMed, Google Scholar, the Cochrane Library and Web of Science databases were searched for relevant articles up to February 1, 2023. Post-therapy outcomes such as progression-free survival (PFS), complete response, partial response (PR), progressive disease (PD), stable disease and adverse events (AEs) were analyzed. The meta-analysis was performed using RevMan 5.4 software. A total of seven studies involving 682 patients were included (384 patients who received ICI + RT vs. RT and 298 patients who received ICI + RT vs. ICI alone). No significant difference in PFS was demonstrated between the ICI + RT group and the RT group (heterogeneity: χ2=2.35; df=1; P=0.13; I2=57% and test for overall effect: Z=0.10; P=0.92). Conversely, patients in the ICI alone group had significantly decreased PR rates (heterogeneity: Τ2=0.00; χ2=2.13; df=3; P=0.54; I2=0% and test for overall effect: Z=2.57; P=0.01) compared with patients in the ICI + RT group. The ICI + RT group also had significantly lower rates of PD (heterogeneity: Τ2=0.00; χ2=0.91; df=3; P=0.82; I2=0% and test for overall effect: Z=2.52; P=0.01) compared with the ICI alone group. Safety analysis revealed no significant difference between patients who received ICI + RT and those who received RT in terms of grade 1 or 2 AEs. In conclusion, the combination of ICIs + RT demonstrates promising efficacy and safety for patients with metastatic NSCLC. However, clinical trials that have tested this combination are lacking, which emphasizes the need for further research.
Collapse
Affiliation(s)
- Isah Adamu Danbala
- Department of Radiation Oncology, Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
- Overseas Education College, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Shengqiao Fu
- Department of Radiation Oncology, Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Wanying Sheng
- Department of Radiation Oncology, Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Haowen Tang
- Department of Radiation Oncology, Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Mahmud Abdulkadir Magashi
- Overseas Education College, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
- Department of Gastrointestinal Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu 212002, P.R. China
| | - Xu Wang
- Department of Radiation Oncology, Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| |
Collapse
|
16
|
Hung SK, Lee MS, Chiou WY, Liu DW, Yu CC, Chen LC, Lin RI, Chew CH, Hsu FC, Yang HJ, Chan MWY, Lin HY. Epigenetic modification in radiotherapy and immunotherapy for cancers. Tzu Chi Med J 2024; 36:396-406. [PMID: 39421493 PMCID: PMC11483092 DOI: 10.4103/tcmj.tcmj_3_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/20/2024] [Accepted: 06/18/2024] [Indexed: 10/19/2024] Open
Abstract
Radiotherapy (RT) is one of the primary treatment modalities in managing cancer patients. Recently, combined RT and immunotherapy (IT) (i.e., radio-IT [RIT]) have been aggressively investigated in managing cancer patients. However, several issues in conducting RIT are challenging, such as incorporating advanced irradiation techniques, predictive/prognostic biomarkers, and other treatment modalities. Several clinical efforts and novel biomarkers have been introduced and developed to solve these challenges. For example, stereotactic radiosurgery/stereotactic radiotherapy, stereotactic body radiotherapy/stereotactic ablative body radiotherapy, and FLASH-RT have been applied for delivering precise irradiation to lung and liver tumors in conjunction with IT. Besides, several novel IT agents and incorporations of other therapies, such as targeted and thermal therapies, have been further investigated. The present study reviewed the emerging challenges of RIT in modern oncology. We also evaluated clinical practice, bench research, and multimodality treatments. In addition to several clinically applicable biomarkers, we emphasize the roles of advanced irradiation techniques and epigenetic modification as predictive/prognostic biomarkers and potential therapeutic targets. For example, 6(m) A-based epigenetic agents demonstrate the potential to enhance the treatment effects of RIT. However, further prospective randomized trials should be conducted to confirm their roles.
Collapse
Affiliation(s)
- Shih-Kai Hung
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
- Cancer Centre, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Moon-Sing Lee
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Wen-Yen Chiou
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Dai-Wei Liu
- Department of Radiation Oncology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Department of Biomedical Sciences, National Chung Cheng University, Chiayi, Taiwan
| | - Chih-Chia Yu
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
- Department of Biomedical Sciences, National Chung Cheng University, Chiayi, Taiwan
| | - Liang-Cheng Chen
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Ru-Inn Lin
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
- Department of Biomedical Sciences, National Chung Cheng University, Chiayi, Taiwan
| | - Chia-Hui Chew
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Feng-Chun Hsu
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
| | - Hsuan-Ju Yang
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
| | - Michael W. Y. Chan
- Department of Biomedical Sciences, National Chung Cheng University, Chiayi, Taiwan
| | - Hon-Yi Lin
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
- Cancer Centre, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
- Department of Biomedical Sciences, National Chung Cheng University, Chiayi, Taiwan
| |
Collapse
|
17
|
Wang X, Zhang H, XinZhang, Liu Y. Abscopal effect: from a rare phenomenon to a new frontier in cancer therapy. Biomark Res 2024; 12:98. [PMID: 39228005 PMCID: PMC11373306 DOI: 10.1186/s40364-024-00628-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 07/30/2024] [Indexed: 09/05/2024] Open
Abstract
Radiotherapy (RT) controls local lesions, meantime it has the capability to induce systemic response to inhibit distant, metastatic, non-radiated tumors, which is referred to as the "abscopal effect". It is widely recognized that radiotherapy can stimulate systemic immune response. This provides a compelling theoretical basis for the combination of immune therapy combined with radiotherapy(iRT). Indeed, this phenomenon has also been observed in clinical treatment, bringing significant clinical benefits to patients, and a series of basic studies are underway to amplify this effect. However, the molecular mechanisms of immune response induced by RT, determination of the optimal treatment regimen for iRT, and how to amplify the abscopal effect. In order to amplify and utilize this effect in clinical management, these key issues require to be well addressed; In this review, we comprehensively summarize the growing consensus and emphasize the emerging limitations of enhancing the abscopal effect with radiotherapy or immunotherapy. Finally, we discuss the prospects and barriers to the current clinical translational applications.
Collapse
Affiliation(s)
- Xueying Wang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
- Clinical Research Center for Laryngopharyngeal and Voice Disorders in Hunan Province, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, 410008, Hunan, China
| | - Haoyu Zhang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
- Clinical Research Center for Laryngopharyngeal and Voice Disorders in Hunan Province, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, 410008, Hunan, China
| | - XinZhang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China.
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China.
- Clinical Research Center for Laryngopharyngeal and Voice Disorders in Hunan Province, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China.
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, 410008, Hunan, China.
| | - Yong Liu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China.
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China.
- Clinical Research Center for Laryngopharyngeal and Voice Disorders in Hunan Province, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China.
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, 410008, Hunan, China.
| |
Collapse
|
18
|
Haghani L, Zhan C, Yarmohammadi H, Ziv E, Sotirchos VS, Sarkar D, Shoushtari AN, Erinjeri JP. Immunotherapy and transarterial embolization in patients with metastatic melanoma: a retrospective cohort study. Immunotherapy 2024; 16:955-962. [PMID: 39225651 PMCID: PMC11485943 DOI: 10.1080/1750743x.2024.2382665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/17/2024] [Indexed: 09/04/2024] Open
Abstract
Aim: To investigate how the sequence of checkpoint immunotherapy (CPI) and transarterial embolization (TAE) affects overall survival (OS) of patients with metastatic melanoma.Materials & methods: This retrospective cohort study included 65 patients with metastatic melanoma who underwent both TAE and CPI between September 2011 and January 2022.Results: Significantly higher OS was seen in patients who received CPI before and after embolization (22 months, 95% CI 14-NR, p < 0.001) compared with only before embolization (4.5 months 95% CI, 14-NR). ≤3 hepatic metastasis (p < 0.01), more TAE procedures (p < 0.001) and CPI sequence (before and after embolization) (p < 0.001) were independent predictors of survival.Conclusion: Metastatic melanoma patients who underwent TAE have longer survival when CPI was sequenced both before and after embolization.
Collapse
Affiliation(s)
- Leila Haghani
- Interventional Radiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, H-118, New York, NY10065, USA
| | - Chenyang Zhan
- Interventional Radiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, H-118, New York, NY10065, USA
| | - Hooman Yarmohammadi
- Interventional Radiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, H-118, New York, NY10065, USA
| | - Etay Ziv
- Interventional Radiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, H-118, New York, NY10065, USA
| | - Vlasios S Sotirchos
- Interventional Radiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, H-118, New York, NY10065, USA
| | - Debkumar Sarkar
- Interventional Radiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, H-118, New York, NY10065, USA
| | - Alexander N Shoushtari
- Department of Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY10065,USA
| | - Joseph P Erinjeri
- Interventional Radiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, H-118, New York, NY10065, USA
| |
Collapse
|
19
|
Minaei E, Ranson M, Aghmesheh M, Sluyter R, Vine KL. Enhancing pancreatic cancer immunotherapy: Leveraging localized delivery strategies through the use of implantable devices and scaffolds. J Control Release 2024; 373:145-160. [PMID: 38996923 DOI: 10.1016/j.jconrel.2024.07.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/03/2024] [Accepted: 07/09/2024] [Indexed: 07/14/2024]
Abstract
Pancreatic cancer (PC) remains the predominant type of upper gastrointestinal tract cancer, associated with heightened morbidity and a survival rate below 12%. While immunotherapy has brought about transformative changes in the standards of care for most solid tumors, its application in PC is hindered by the ''cold tumor'' microenvironment, marked by the presence of immunosuppressive cells. Modest response rates in PC are attributed, in part to, the fibrotic stroma that obstructs the delivery of systemic immunotherapy. Furthermore, the occurrence of immune-related adverse events (iRAEs) often necessitates the use of sub-therapeutic doses or treatment discontinuation. In the pursuit of innovative approaches to enhance the effectiveness of immunotherapy for PC, implantable drug delivery devices and scaffolds emerge as promising strategies. These technologies offer the potential for sustained drug delivery directly to the tumor site, overcoming stromal barriers, immunosuppression, T cell exclusion, immunotherapy resistance, optimizing drug dosage, and mitigating systemic toxicity. This review offers a comprehensive exploration of pancreatic ductal adenocarcinoma (PDAC), the most common and aggressive form of PC, accompanied by a critical analysis of the challenges the microenvironment presents to the development of successful combinational immunotherapy approaches. Despite efforts, these approaches have thus far fallen short in enhancing treatment outcomes for PDAC. The review will subsequently delve into the imperative need for refining delivery strategies, providing an examination of past and ongoing studies in the field of localized immunotherapy for PDAC. Addressing these issues will lay the groundwork for the development of effective new therapies, thereby enhancing treatment response, patient survival, and overall quality of life for individuals diagnosed with PDAC.
Collapse
Affiliation(s)
- E Minaei
- School of Chemistry and Molecular Bioscience, Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia.
| | - M Ranson
- School of Chemistry and Molecular Bioscience, Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | - M Aghmesheh
- Nelune Comprehensive Cancer Centre, Bright Building, Prince of Wales Hospital, Sydney, NSW, Australia; Faculty of Medicine and Health, UNSW, Sydney, NSW, Australia
| | - R Sluyter
- School of Chemistry and Molecular Bioscience, Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | - K L Vine
- School of Chemistry and Molecular Bioscience, Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia.
| |
Collapse
|
20
|
Liao KL, Wieler AJ, Gascon PML. Mathematical modeling and analysis of cancer treatment with radiation and anti-PD-L1. Math Biosci 2024; 374:109218. [PMID: 38797473 DOI: 10.1016/j.mbs.2024.109218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 05/12/2024] [Accepted: 05/16/2024] [Indexed: 05/29/2024]
Abstract
In cancer treatment, radiation therapy (RT) induces direct tumor cell death due to DNA damage, but it also enhances the deaths of radiosensitive immune cells and is followed by local relapse and up-regulation of immune checkpoint ligand PD-L1. Since the binding between PD-1 and PD-L1 curtails anti-tumor immunities, combining RT and PD-L1 inhibitor, anti-PD-L1, is a potential method to improve the treatment efficacy by RT. Some experiments support this hypothesis by showing that the combination of ionizing irradiation (IR) and anti-PD-L1 improves tumor reduction comparing to the monotherapy of IR or anti-PD-L1. In this work, we create a simplified ODE model to study the order of tumor growths under treatments of IR and anti-PD-L1. Our synergy analysis indicates that both IR and anti-PD-L1 improve the tumor reduction of each other, when IR and anti-PD-L1 are given simultaneously. When giving IR and anti-PD-L1 separately, a high dosage of IR should be given first to efficiently reduce tumor load and then followed by anti-PD-L1 with strong efficacy to maintain the tumor reduction and slow down the relapse. Increasing the duration of anti-PD-L1 improves the tumor reduction, but it cannot prolong the duration that tumor relapses to the level of the control case. Under some simplification, we also prove that the model has an unstable tumor free equilibrium and a locally asymptotically stable tumor persistent equilibrium. Our bifurcation diagram reveals a transition from tumor elimination to tumor persistence, as the tumor growth rate increases. In the tumor persistent case, both anti-PD-L1 and IR can reduce tumor amount in the long term.
Collapse
Affiliation(s)
- Kang-Ling Liao
- Department of Mathematics, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada.
| | - Adam J Wieler
- Department of Mathematics, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Pedro M Lopez Gascon
- Department of Mathematics, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| |
Collapse
|
21
|
Bliley R, Avant A, Medina TM, Lanning RM. Radiation and Melanoma: Where Are We Now? Curr Oncol Rep 2024; 26:904-914. [PMID: 38822928 DOI: 10.1007/s11912-024-01557-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2024] [Indexed: 06/03/2024]
Abstract
PURPOSE OF REVIEW This review summarizes the current role of radiotherapy for the treatment of cutaneous melanoma in the definitive, adjuvant, and palliative settings, and combinations with immunotherapy and targeted therapies. RECENT FINDINGS Definitive radiotherapy may be considered for lentigo maligna if surgery would be disfiguring. High risk, resected melanoma may be treated with adjuvant radiotherapy, but the role is poorly defined since the advent of effective systemic therapies. For patients with metastatic disease, immunotherapy and targeted therapies can be delivered safely in tandem with radiotherapy to improve outcomes. Radiotherapy and modern systemic therapies act in concert to improve outcomes, especially in the metastatic setting. Further prospective data is needed to guide the use of definitive radiotherapy for lentigo maligna and adjuvant radiotherapy for high-risk melanoma in the immunotherapy era. Current evidence does not support an abscopal response or at least identify the conditions necessary to reliably produce one with combinations of radiation and immunotherapy.
Collapse
Affiliation(s)
- Roy Bliley
- Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Adam Avant
- Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Theresa M Medina
- Department of Medical Oncology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Ryan M Lanning
- Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, CO, USA.
| |
Collapse
|
22
|
Vounckx M, Tijtgat J, Stevens L, Dirven I, Ilsen B, Vandenbroucke F, Raeymaeckers S, Vekens K, Forsyth R, Geeraerts X, Van Riet I, Schwarze JK, Tuyaerts S, Decoster L, De Ridder M, Dufait I, Neyns B. A randomized phase II clinical trial of stereotactic body radiation therapy (SBRT) and systemic pembrolizumab with or without intratumoral avelumab/ipilimumab plus CD1c (BDCA-1) +/CD141 (BDCA-3) + myeloid dendritic cells in solid tumors. Cancer Immunol Immunother 2024; 73:167. [PMID: 38954010 PMCID: PMC11219623 DOI: 10.1007/s00262-024-03751-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/29/2024] [Indexed: 07/04/2024]
Abstract
BACKGROUND Radiotherapy (RT) synergizes with immune checkpoint blockade (ICB). CD1c(BDCA-1)+/CD141(BDCA-3)+ myeloid dendritic cells (myDC) in the tumor microenvironment are indispensable at initiating effector T-cell responses and response to ICB. METHODS In this phase II clinical trial, anti-PD-1 ICB pretreated oligometastatic patients (tumor agnostic) underwent a leukapheresis followed by isolation of CD1c(BDCA-1)+/CD141(BDCA-3)+ myDC. Following hypofractionated stereotactic body RT (3 × 8 Gy), patients were randomized (3:1). Respectively, in arm A (immediate treatment), intratumoral (IT) ipilimumab (10 mg) and avelumab (40 mg) combined with intravenous (IV) pembrolizumab (200 mg) were administered followed by IT injection of myDC; subsequently, IV pembrolizumab and IT ipilimumab/avelumab were continued (q3W). In arm B (contemporary control arm), patients received IV pembrolizumab, with possibility to cross-over at progression. Primary endpoint was 1-year progression-free survival rate (PFS). Secondary endpoints were safety, feasibility, objective response rate, PFS, and overall survival (OS). RESULTS Thirteen patients (10 in arm A, eight non-small cell lung cancer, and five melanoma) were enrolled. Two patients crossed over. One-year PFS rate was 10% in arm A and 0% in arm B. Two patients in arm A obtained a partial response, and one patient obtained a stable disease as best response. In arm B, one patient obtained a SD. Median PFS and OS were 21.8 weeks (arm A) versus 24.9 (arm B), and 62.7 versus 57.9 weeks, respectively. An iatrogenic pneumothorax was the only grade 3 treatment-related adverse event. CONCLUSION SBRT and pembrolizumab with or without IT avelumab/ipilimumab and IT myDC in oligometastatic patients are safe and feasible with a clinically meaningful tumor response rate. However, the study failed to reach its primary endpoint. TRIAL REGISTRATION NUMBER Clinicaltrials.gov: NCT04571632 (09 AUG 2020). EUDRACT 2019-003668-32. Date of registration: 17 DEC 2019, amendment 1: 6 MAR 2021, amendment 2: 4 FEB 2022.
Collapse
Affiliation(s)
- Manon Vounckx
- Department of Medical Oncology, Laboratory for Medical and Molecular Oncology (LMMO), Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090, Brussels, Belgium.
| | - Jens Tijtgat
- Department of Medical Oncology, Laboratory for Medical and Molecular Oncology (LMMO), Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090, Brussels, Belgium
| | - Latoya Stevens
- Department of Medical Oncology, Laboratory for Medical and Molecular Oncology (LMMO), Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090, Brussels, Belgium
| | - Iris Dirven
- Department of Medical Oncology, Laboratory for Medical and Molecular Oncology (LMMO), Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090, Brussels, Belgium
| | - Bart Ilsen
- Department of Radiology, Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090, Brussels, Belgium
| | - Frederik Vandenbroucke
- Department of Radiology, Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090, Brussels, Belgium
| | - Steven Raeymaeckers
- Department of Radiology, Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090, Brussels, Belgium
| | - Karolien Vekens
- Department of Medical Oncology, Laboratory for Medical and Molecular Oncology (LMMO), Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090, Brussels, Belgium
| | - Ramses Forsyth
- Department of Pathology, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090, Brussels, Belgium
| | - Xenia Geeraerts
- Department of Medical Oncology, Laboratory for Medical and Molecular Oncology (LMMO), Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090, Brussels, Belgium
| | - Ivan Van Riet
- Department of Hematology, Stem Cell Laboratory, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090, Brussels, Belgium
| | - Julia Katharina Schwarze
- Department of Medical Oncology, Laboratory for Medical and Molecular Oncology (LMMO), Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090, Brussels, Belgium
| | - Sandra Tuyaerts
- Department of Medical Oncology, Laboratory for Medical and Molecular Oncology (LMMO), Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090, Brussels, Belgium
| | - Lore Decoster
- Department of Medical Oncology, Laboratory for Medical and Molecular Oncology (LMMO), Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090, Brussels, Belgium
| | - Mark De Ridder
- Department of Radiotherapy, Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090, Brussels, Belgium
| | - Ines Dufait
- Department of Radiotherapy, Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090, Brussels, Belgium
| | - Bart Neyns
- Department of Medical Oncology, Laboratory for Medical and Molecular Oncology (LMMO), Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090, Brussels, Belgium
| |
Collapse
|
23
|
Zemek RM, Anagnostou V, Pires da Silva I, Long GV, Lesterhuis WJ. Exploiting temporal aspects of cancer immunotherapy. Nat Rev Cancer 2024; 24:480-497. [PMID: 38886574 DOI: 10.1038/s41568-024-00699-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/25/2024] [Indexed: 06/20/2024]
Abstract
Many mechanisms underlying an effective immunotherapy-induced antitumour response are transient and critically time dependent. This is equally true for several immunological events in the tumour microenvironment induced by other cancer treatments. Immune checkpoint therapy (ICT) has proven to be very effective in the treatment of some cancers, but unfortunately, with many cancer types, most patients do not experience a benefit. To improve outcomes, a multitude of clinical trials are testing combinations of ICT with various other treatment modalities. Ideally, those combination treatments should take time-dependent immunological events into account. Recent studies have started to map the dynamic cellular and molecular changes that occur during treatment with ICT, in the tumour and systemically. Here, we overlay the dynamic ICT response with the therapeutic response following surgery, radiotherapy, chemotherapy and targeted therapies. We propose that by combining treatments in a time-conscious manner, we may optimally exploit the interactions between the individual therapies.
Collapse
Affiliation(s)
- Rachael M Zemek
- Telethon Kids Institute, University of Western Australia, Perth, Western Australia, Australia
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Valsamo Anagnostou
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Inês Pires da Silva
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine & Health, The University of Sydney, Sydney, New South Wales, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- Crown Princess Mary Cancer Centre Westmead, Blacktown Hospital, Sydney, New South Wales, Australia
| | - Georgina V Long
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine & Health, The University of Sydney, Sydney, New South Wales, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- Royal North Shore and Mater Hospitals, Sydney, New South Wales, Australia
| | - Willem Joost Lesterhuis
- Telethon Kids Institute, University of Western Australia, Perth, Western Australia, Australia.
| |
Collapse
|
24
|
Mitrea DA, Froicu EM, Prenen H, Gambacorta MA, Span PN, Poortmans P. Combining immunotherapy and radiation therapy in gastrointestinal cancers: A review. Crit Rev Oncol Hematol 2024; 199:104381. [PMID: 38735504 DOI: 10.1016/j.critrevonc.2024.104381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 04/28/2024] [Accepted: 05/02/2024] [Indexed: 05/14/2024] Open
Abstract
INTRODUCTION AND PURPOSE With a significant global impact, treatment of gastrointestinal (GI) cancers still presents with challenges, despite current multimodality approaches in advanced stages. Clinical trials are expanding for checkpoint inhibition (ICI) combined with radiation therapy (RT). This review intends to offer a comprehensive image of the current data regarding the effectiveness of this association, and to reflect on possible directions to further optimize the results. RESULTS Several early phase studies demonstrated encouraging potential. However, translating preclinical outcomes to clinical settings proves challenging, especially in immunologically "cold" environments. GI cancers exhibit heterogeneity, requiring tailored approaches based on disease stage and patient characteristics. Current results, though promising, lack the power of evidence to influence the general practice. CONCLUSIONS Finding biomarkers for identifying or converting resistant cancers is essential for maximizing responses, moreover in this context strategic RT parameters need to be carefully considered. Our review emphasizes the significance of having a thorough grasp of how immunology, tumour biology, and treatment settings interact in order to propose novel research avenues and efficient GI cancer therapy.
Collapse
Affiliation(s)
- Diana A Mitrea
- Department of Radiation Oncology, Centre Antoine-Lacassagne, 33 Av. de Valombrose, Nice 06100, France.
| | - Eliza M Froicu
- Department of Medical Oncology, Faculty of Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, Romania
| | - Hans Prenen
- Department of Medical Oncology, Antwerp University Hospital, Edegem, Belgium
| | - Maria A Gambacorta
- Department of Radiation Oncology Fondazione Policlinico Universitario "A. Gemelli", Rome, Italy
| | - Paul N Span
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Philip Poortmans
- Department of Radiation Oncology, Iridium Netwerk, Wilrijk-Antwerp, Belgium; University of Antwerp, Faculty of Medicine and Health Sciences, Wilrijk-Antwerp, Belgium
| |
Collapse
|
25
|
Wu Y, Yi M, Niu M, Zhou B, Mei Q, Wu K. Beyond success: unveiling the hidden potential of radiotherapy and immunotherapy in solid tumors. Cancer Commun (Lond) 2024; 44:739-760. [PMID: 38837878 PMCID: PMC11260771 DOI: 10.1002/cac2.12576] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 05/06/2024] [Accepted: 05/22/2024] [Indexed: 06/07/2024] Open
Abstract
Immunotherapy, particularly with immune checkpoint inhibitors, has significantly transformed cancer treatment. Despite its success, many patients struggle to respond adequately or sustain long-lasting clinical improvement. A growing consensus has emerged that radiotherapy (RT) enhances the response rate and overall efficacy of immunotherapy. Although combining RT and immunotherapy has been extensively investigated in preclinical models and has shown promising results, establishing itself as a dynamic and thriving area of research, clinical evidence for this combination strategy over the past five years has shown both positive and disappointing results, suggesting the need for a more nuanced understanding. This review provides a balanced and updated analysis of the combination of immunotherapy and RT. We summarized the preclinical mechanisms through which RT boosts antitumor immune responses and mainly focused on the outcomes of recently updated clinical trials, including those that may not have met expectations. We investigated the optimization of the therapeutic potential of this combined strategy, including key challenges, such as fractionation and scheduling, lymph node irradiation, and toxicity. Finally, we offered insights into the prospects and challenges associated with the clinical translation of this combination therapy, providing a realistic perspective on the current state of research and potential future directions.
Collapse
Affiliation(s)
- Yuze Wu
- Department of OncologyTongji Hospital of Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiP. R. China
| | - Ming Yi
- Department of Breast SurgeryZhejiang University School of Medicine First Affiliated HospitalHangzhouZhejiangP. R. China
| | - Mengke Niu
- Department of OncologyTongji Hospital of Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiP. R. China
| | - Binghan Zhou
- Department of OncologyTongji Hospital of Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiP. R. China
| | - Qi Mei
- Department of OncologyTongji Hospital of Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiP. R. China
| | - Kongming Wu
- Cancer CenterShanxi Bethune HospitalShanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical UniversityTaiyuanShanxiP. R. China
- Cancer CenterTongji Hospital of Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiP. R. China
| |
Collapse
|
26
|
Hsu S, Chao Y, Hu Y, Zhang Y, Hong W, Chen Y, Chen R, Zeng Z, Du S. Radiotherapy enhances efficacy of PD-1 inhibitors in advanced hepatocellular carcinoma: A propensity-matched real-world study. Chin Med J (Engl) 2024; 137:1332-1342. [PMID: 38725345 PMCID: PMC11191029 DOI: 10.1097/cm9.0000000000003124] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Indexed: 06/19/2024] Open
Abstract
BACKGROUND To address the need for immunotherapy in patients with advanced primary hepatocellular carcinoma (HCC), combination with radiotherapy (RT) has emerged as a promising strategy. In preclinical studies, irradiated tumors released tumor antigens to synergistically increase the antitumor effect of immunotherapy. Hence, we investigated whether RT enhances the efficacy of anti-programmed death receptor-1 (PD-1) inhibitors in advanced HCC in real-world practice. METHODS Between August 2018 and June 2021, 172 patients with advanced primary HCC were enrolled in the tertiary center (Zhongshan Hospital of Fudan University); 95 were treated with a combination of RT and the inhibitor of PD-1 (RT-PD1 cohort), and 77 were administered anti-PD-1 therapy (PD1 cohort). The first cycle of PD-1 inhibitors was administered within 60 days or concurrently with RT. Propensity score matching for bias reduction was used to evaluate the clinical outcomes. RESULTS Among 71 propensity-matched pairs, median progression-free survival was 5.7 months in the RT-PD1 cohort vs. 2.9 months in the PD1 cohort ( P <0.001). Median overall survival was 20.9 months in the RT-PD1 cohort vs. 11.2 months in the PD1 cohort ( P = 0.018). Compared with patients in the PD1 cohort, patients in the RT-PD1 cohort had significantly higher objective response rates (40.8%, 29/71 vs. 19.7%, 14/71, P = 0.006) and disease control rates (62.0%, 44/71 vs. 31.0%, 22/71, P <0.001). The incidences of toxic effects were not significantly different between the two cohorts. CONCLUSIONS RT plus anti-PD-1 therapy is well tolerated. RT enhances the efficacy of anti-PD-1 therapy in patients with advanced primary HCC by improving survival outcomes without increased toxic effects.
Collapse
Affiliation(s)
- Shujung Hsu
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yencheng Chao
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yong Hu
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yang Zhang
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Weifeng Hong
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yixing Chen
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Rongxin Chen
- Department of Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Zhaochong Zeng
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Shisuo Du
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
27
|
Jin Y, Jiang J, Mao W, Bai M, Chen Q, Zhu J. Treatment strategies and molecular mechanism of radiotherapy combined with immunotherapy in colorectal cancer. Cancer Lett 2024; 591:216858. [PMID: 38621460 DOI: 10.1016/j.canlet.2024.216858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 03/25/2024] [Accepted: 04/02/2024] [Indexed: 04/17/2024]
Abstract
Radiotherapy (RT) remodels the tumor immune microenvironment (TIME) and modulates the immune response to indirectly destroy tumor cells, in addition to directly killing tumor cells. RT combined with immunotherapy may significantly enhance the efficacy of RT in colorectal cancer by modulating the microenvironment. However, the molecular mechanisms by which RT acts as an immunomodulator to modulate the immune microenvironment remain unclear. Further, the optimal modalities of RT combined with immunotherapy for the treatment of colorectal cancer, such as the time point of combining RT and immunization, the fractionation pattern and dosage of radiotherapy, and other methods to improve the efficacy, are also being explored parallelly. To address these aspects, in this review, we summarized the mechanisms by which RT modulates TIME and concluded the progress of RT combined with immunization in preclinical and clinical trials. Finally, we discussed heavy ion radiation therapy and the efficacy of prediction markers and other immune combination therapies. Overall, combining RT with immunotherapy to enhance antitumor effects will have a significant clinical implication and will help to facilitate individualized treatment modalities.
Collapse
Affiliation(s)
- Yuzhao Jin
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, 310000, China; Wenzhou Medical University, Wenzhou, 325000, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences Hangzhou, 310000, China; Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, 310000, China
| | - Jin Jiang
- Department of Oncology, Affiliated Hospital of Jiaxing University, The First Hospital of Jiaxing, Jiaxing, 31400, China
| | - Wei Mao
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, 310000, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences Hangzhou, 310000, China; Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, 310000, China
| | - Minghua Bai
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, 310000, China; Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, 310000, China
| | - Qianping Chen
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, 310000, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences Hangzhou, 310000, China; Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, 310000, China.
| | - Ji Zhu
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, 310000, China; Wenzhou Medical University, Wenzhou, 325000, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences Hangzhou, 310000, China; Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, 310000, China.
| |
Collapse
|
28
|
Tam A, Ladbury C, Kassardjian A, Modi B, McGee H, Melstrom L, Margolin K, Xing Y, Amini A. Combined Regional Approach of Talimogene laherparepvec and Radiotherapy in the Treatment of Advanced Melanoma. Cancers (Basel) 2024; 16:1951. [PMID: 38893072 PMCID: PMC11171111 DOI: 10.3390/cancers16111951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 06/21/2024] Open
Abstract
Talimogene laherparepvec (TVEC) is a genetically modified oncolytic herpes simplex virus (HSV-1) that is used for the intralesional treatment of advanced or metastatic melanoma. Given that TVEC produces the granulocyte-macrophage colony-stimulating factor (GM-CSF), recent reports have suggested that radiation treatment (RT) given in conjunction with TVEC may provide synergistic immune activation at the site, and possibly systemically. However, studies on combining RT with TVEC remain limited. We conducted a retrospective review of melanoma patients from a single cancer center who received TVEC and RT in the same region of the body and compared them to patients who received TVEC with RT at another site (other than the site of TVEC injection). Between January 2015 and September 2022, we identified twenty patients who were treated with TVEC and RT; fourteen patients received TVEC and RT in the same region, and six had treatments in separate regions. Regions were determined at the time of analysis and were based on anatomic sites (such as arm, leg, torso, etc.). Kaplan-Meier analysis of progression-free survival (PFS), analyses of time to distant metastasis (DM), overall survival (OS), and locoregional control (LRC), and the corresponding log-rank test were performed. With a median follow-up of 10.5 months [mos] (range 1.0-58.7 mos), we found an improvement in PFS with TVEC and RT in the same region compared to different regions, which were 6.4 mos (95% CI, 2.4-NR mos) and 2.8 mos (95% CI, 0.7-4.4 mos), respectively; p = 0.005. There was also a significant improvement in DM when TVEC and RT were used in the same region compared to different regions: 13.8 mos (95% CI, 4.6-NR mos) and 2.8 mos (95% CI, 0.7-4.4 mos), respectively (p = 0.001). However, we found no difference in overall survival (OS) between patients who had TVEC and RT in the same region (19.0 mos, 95% confidence interval [CI], 4.1-not reached [NR] mos) and those who received treatments in different regions (18.5 mos, 95% CI, 1.0-NR mos); p = 0.366. There was no statistically significant improvement in locoregional control (LRC) in patients who had TVEC and RT in the same region was 26.0 mos (95% CI, 6.4-26.0 mos) compared to patients who received TVEC and RT in different regions (4.4 mos) (95% CI, 0.7-NR mos) (p = 0.115). No grade 3 or higher toxicities were documented in either group. Overall, there were improvements in PFS and DM when TVEC and RT were delivered to the same region of the body compared to when they were used in different regions. However, we did not find a significant difference in locoregional recurrence or OS. Future studies are needed to assess the sequence and timing of combining RT and TVEC to potentially enhance the immune response both locally and distantly.
Collapse
Affiliation(s)
- Andrew Tam
- Department of Radiation Oncology, City of Hope Comprehensive Cancer Center, 1500 E Duarte Rd., Duarte, CA 91010, USA; (A.T.)
| | - Colton Ladbury
- Department of Radiation Oncology, City of Hope Comprehensive Cancer Center, 1500 E Duarte Rd., Duarte, CA 91010, USA; (A.T.)
| | - Ari Kassardjian
- Department of Radiation Oncology, City of Hope Comprehensive Cancer Center, 1500 E Duarte Rd., Duarte, CA 91010, USA; (A.T.)
| | - Badri Modi
- Department of Dermatology, City of Hope Comprehensive Cancer Center, 1500 E Duarte Rd., Duarte, CA 91010, USA
| | - Heather McGee
- Department of Radiation Oncology, City of Hope Comprehensive Cancer Center, 1500 E Duarte Rd., Duarte, CA 91010, USA; (A.T.)
| | - Laleh Melstrom
- Department of Surgery, City of Hope Comprehensive Cancer Center, 1500 E Duarte Rd., Duarte, CA 91010, USA
| | - Kim Margolin
- St. John’s Cancer Institute, 2121 Santa Monica Blvd., Santa Monica, CA 90404, USA
| | - Yan Xing
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, 1500 E Duarte Rd, Duarte, CA 91010, USA
| | - Arya Amini
- Department of Radiation Oncology, City of Hope Comprehensive Cancer Center, 1500 E Duarte Rd., Duarte, CA 91010, USA; (A.T.)
| |
Collapse
|
29
|
Weishan H, Donglin Z, Guangmei D, Wenya L, Fasheng W, Jibing C. Immunoradiotherapy for NSCLC: mechanisms, clinical outcomes, and future directions. Clin Transl Oncol 2024; 26:1063-1076. [PMID: 37921958 PMCID: PMC11026276 DOI: 10.1007/s12094-023-03337-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/10/2023] [Indexed: 11/05/2023]
Abstract
Non-small-cell lung cancer (NSCLC) has an extremely low 5-year survival rate, with the only effective treatment being immunoradiotherapy (iRT). Here, we review the progress of clinical research on iRT for non-small-cell lung cancer (NSCLC) over 2018-2023, as well as the future directions. We first discuss the synergistic mechanisms of iRT, reflected in three aspects: immune regulation of RT, RT-activated immune-related pathways, and RT-related immune sensitization. iRT may include either external-beam or stereotactic-body RT combined with either immune checkpoint inhibitors (e.g., immunoglobulins against immune programmed cell death (PD) 1/PD ligand 1 or CD8+ T lymphocyte antigen 4) or traditional Chinese medicine drugs. Regarding clinical effectiveness and safety, iRT increases overall and progression-free survival and tumor control rate among patients with NSCLC but without a considerable increase in toxicity risk. We finally discuss iRT challenges and future directions reported over 2018-2023.
Collapse
Affiliation(s)
- He Weishan
- Graduate School, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Zheng Donglin
- Ruikang Hospital, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Deng Guangmei
- Graduate School, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Liu Wenya
- Graduate School, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Wu Fasheng
- Ruikang Hospital, Guangxi University of Chinese Medicine, Nanning, Guangxi, China.
| | - Chen Jibing
- Ruikang Hospital, Guangxi University of Chinese Medicine, Nanning, Guangxi, China.
| |
Collapse
|
30
|
Ma J, Xin Y, Wang Q, Ding L. Roles of cGAS-STING Pathway in Radiotherapy Combined with Immunotherapy for Hepatocellular Carcinoma. Mol Cancer Ther 2024; 23:447-453. [PMID: 38049087 DOI: 10.1158/1535-7163.mct-23-0373] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/14/2023] [Accepted: 11/27/2023] [Indexed: 12/06/2023]
Abstract
Although great strides have been made in the management and treatment of hepatocellular carcinoma (HCC), its prognosis is still poor yielding a high mortality. Immunotherapy is recommended for treating advanced HCC, but its efficiency is hampered because of hepatic immunosuppression. Stimulator of interferon genes (STING) pathway, serving as a critical cytoplasmic DNA-sensing process, is reported to initiate the antitumor immune response, and link the innate immunity to the adaptive immune system. Radiotherapy has been well acknowledged to induce destruction and release of tumor-derived DNA into the cytoplasm, which then activates the cGAS-STING pathway. On this basis, radiotherapy can be used as a sensitizer for immunotherapy, and its combination with immunotherapy may bring in changes to the suboptimal efficacy of immune checkpoint inhibitor monotherapy. In this review, we summarized the roles of cGAS-STING pathway in regulation of radiotherapy combined with immunotherapy for treating HCC.
Collapse
Affiliation(s)
- Jianing Ma
- Department of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, P.R. China
| | - Yuning Xin
- Department of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, P.R. China
| | - Qiang Wang
- Department of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, P.R. China
| | - Lijuan Ding
- Department of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, P.R. China
| |
Collapse
|
31
|
Zhang QS, Hayes JP, Gondi V, Pollack SM. Immunotherapy and Radiotherapy Combinations for Sarcoma. Semin Radiat Oncol 2024; 34:229-242. [PMID: 38508787 DOI: 10.1016/j.semradonc.2023.12.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Sarcomas are a heterogeneous group of bone and soft tissue tumors. Survival outcomes for advanced (unresectable or metastatic) disease remain poor, so therapeutic improvements are needed. Radiotherapy plays an integral role in the neoadjuvant and adjuvant treatment of localized disease as well as in the treatment of metastatic disease. Combining radiotherapy with immunotherapy to potentiate immunotherapy has been used in a variety of cancers other than sarcoma, and there is opportunity to further investigate combining immunotherapy with radiotherapy to try to improve outcomes in sarcoma. In this review, we describe the diversity of the tumor immune microenvironments for sarcomas and describe the immunomodulatory effects of radiotherapy. We discuss studies on the timing of radiotherapy relative to immunotherapy and studies on the radiotherapy dose and fractionation regimen to be used in combination with immunotherapy. We describe the impact of radiotherapy on the tumor immune microenvironment. We review completed and ongoing clinical trials combining radiotherapy with immunotherapy for sarcoma and propose future directions for studies combining immunotherapy with radiotherapy in the treatment of sarcoma.
Collapse
Affiliation(s)
- Qian S Zhang
- Department of Radiation Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - John P Hayes
- Department of Radiation Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Vinai Gondi
- Department of Radiation Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Seth M Pollack
- Division of Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL..
| |
Collapse
|
32
|
Zhang Y, Deshane JS, Yang ES, Larimer B. A Novel Translational PET Imaging Approach to Quantifying Distal Tumor Immune Activation After Targeted Radiation Therapy and Checkpoint Blockade. Int J Radiat Oncol Biol Phys 2024; 118:1217-1227. [PMID: 38199384 PMCID: PMC11907763 DOI: 10.1016/j.ijrobp.2023.12.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 12/20/2023] [Accepted: 12/30/2023] [Indexed: 01/12/2024]
Abstract
PURPOSE This study aimed to provide a novel noninvasive method to quantify abscopal immune activation and predict combinational treatment response using [68Ga]-NOTA-GZP positron emission tomography (PET) imaging. METHODS AND MATERIALS 4T1 breast cancer cells were implanted bilaterally in the mammary fat pad of Balb/c mice and Lewis's lung cancer cells (LLC) were implanted bilaterally on the shoulders of C57/Bl6 mice. One of the tumors received a single fraction of 12 Gy irradiation followed by combination of concurrent PD-1 and CTLA-4 inhibitors or controls. Tumor growth of the irradiated and nonirradiated tumors was measured and compared with 12 Gy irradiation only, checkpoint inhibitor only, and no treatment control group. Changes in granzyme B activity were assessed with [68Ga]-NOTA-GZP PET imaging from baseline and every 3 days until day 9. RESULTS In the 4T1 model, concurrent treatment with dual checkpoint inhibitors and radiation resulted in reduction of the irradiated tumor volume at day 30. At this same time point, the nonirradiated tumor volume for combination treatment decreased significantly, consistent with abscopal immune activation. Similarly, in the LLC model, concurrent treatment inhibited tumor growth on the nonirradiated tumor at day 15. On day 9, granzyme B PET signal in both 4T1 and LLC models was significantly higher in the nonirradiated tumors that responded to concurrent treatment compared with subsequent nonresponding tumors. A similar lack of granzyme B signal was observed in the nonirradiated tumors from mice that received radiation or checkpoint inhibitors only and control tumors. Receiver operating characteristic analysis identified a PET threshold of 1.505 and 1.233 on day 9 that predicted treatment response in 4T1 and LLC models, respectively. CONCLUSIONS [68Ga]-NOTA-GZP PET imaging was able to noninvasively predict abscopal immune activation before subsequent tumor volume changes after combination treatment. It provides a potential translational paradigm for investigating distal immune activation postradiation in a clinical setting.
Collapse
Affiliation(s)
- Yujun Zhang
- Graduate Biomedical Sciences, The University of Alabama at Birmingham, Birmingham, Alabama; Department of Radiology, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Jessy S Deshane
- Division of Pulmonary Allergy and Critical Care Medicine, Department of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Eddy S Yang
- O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama; Department of Radiation Oncology, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Benjamin Larimer
- O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama; Department of Radiology, The University of Alabama at Birmingham, Birmingham, Alabama.
| |
Collapse
|
33
|
Tojjari A, Yu J, Saeed A. Immunotherapy and Radiation Therapy Combinatorial Approaches in Hepatocellular Carcinoma. Cancers (Basel) 2024; 16:1058. [PMID: 38473415 DOI: 10.3390/cancers16051058] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 02/29/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024] Open
Abstract
Hepatocellular carcinoma (HCC), a prevalent and often fatal liver cancer, presents significant treatment challenges, especially in its advanced stages. This article delves into the promising approach of combining immunotherapy, particularly immune checkpoint inhibitors, with radiation therapy, a cornerstone of HCC management. Our review synthesizes current preclinical and clinical research, highlighting the potential synergistic effects of this combinational treatment. Emerging evidence suggests that this synergy enhances tumor control and improves patient survival rates. The combination leverages the localized, tumor-targeting ability of radiation therapy and the systemic, immune-boosting effects of immunotherapy, potentially overcoming the limitations inherent in each treatment modality when used separately. This integrative approach is especially promising in addressing the complex tumor microenvironment of HCC. However, the treatment landscape is nuanced, with challenges such as patient-specific response variability and potential resistance to therapies. Future research directions should focus on refining these combination strategies, tailoring them to individual patient profiles, and understanding the underlying mechanisms that govern the interaction between immunotherapy and radiation therapy. Such advancements could significantly improve HCC management, setting new standards for patient care and treatment efficacy.
Collapse
Affiliation(s)
- Alireza Tojjari
- Division of Hematology & Oncology, Department of Medicine, University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA 15232, USA
| | - James Yu
- Division of Hematology and Medical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Anwaar Saeed
- Division of Hematology & Oncology, Department of Medicine, University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA 15232, USA
| |
Collapse
|
34
|
Xuan L, Bai C, Ju Z, Luo J, Guan H, Zhou PK, Huang R. Radiation-targeted immunotherapy: A new perspective in cancer radiotherapy. Cytokine Growth Factor Rev 2024; 75:1-11. [PMID: 38061920 DOI: 10.1016/j.cytogfr.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/22/2023] [Accepted: 11/28/2023] [Indexed: 02/16/2024]
Abstract
In contemporary oncology, radiation therapy and immunotherapy stand as critical treatments, each with distinct mechanisms and outcomes. Radiation therapy, a key player in cancer management, targets cancer cells by damaging their DNA with ionizing radiation. Its effectiveness is heightened when used alongside other treatments like surgery and chemotherapy. Employing varied radiation types like X-rays, gamma rays, and proton beams, this approach aims to minimize damage to healthy tissue. However, it is not without risks, including potential damage to surrounding normal cells and side effects ranging from skin inflammation to serious long-term complications. Conversely, immunotherapy marks a revolutionary step in cancer treatment, leveraging the body's immune system to target and destroy cancer cells. It manipulates the immune system's specificity and memory, offering a versatile approach either alone or in combination with other treatments. Immunotherapy is known for its targeted action, long-lasting responses, and fewer side effects compared to traditional therapies. The interaction between radiation therapy and immunotherapy is intricate, with potential for both synergistic and antagonistic effects. Their combined use can be more effective than either treatment alone, but careful consideration of timing and sequence is essential. This review explores the impact of various radiation therapy regimens on immunotherapy, focusing on changes in the immune microenvironment, immune protein expression, and epigenetic factors, emphasizing the need for personalized treatment strategies and ongoing research to enhance the efficacy of these combined therapies in cancer care.
Collapse
Affiliation(s)
- Lihui Xuan
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan Province 410078, China; Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Chenjun Bai
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Zhao Ju
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan Province 410078, China; Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Jinhua Luo
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan Province 410078, China; Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Hua Guan
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China.
| | - Ping-Kun Zhou
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China.
| | - Ruixue Huang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan Province 410078, China.
| |
Collapse
|
35
|
Schwarzlmueller P, Corradini S, Seidensticker M, Zimmermann P, Schreiner J, Maier T, Triebig A, Knösel T, Pazos M, Pfluger T, Weigand I, Belka C, Ricke J, Reincke M, Schmidmaier R, Kroiss M. High-Dose Rate Brachytherapy Combined with PD-1 Blockade as a Treatment for Metastatic Adrenocortical Carcinoma - A Single Center Case Series. Horm Metab Res 2024; 56:30-37. [PMID: 37748508 DOI: 10.1055/a-2150-3944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
The response rate of advanced adrenocortical carcinoma (ACC) to standard chemotherapy with mitotane and etoposide/doxorubicin/cisplatin (EDP-M) is unsatisfactory, and benefit is frequently short lived. Immune checkpoint inhibitors (CPI) have been examined in patient's refractory to EDP-M, but objective response rates are only approximately 15%. High-dose rate brachytherapy (HDR-BT) is a catheter-based internal radiotherapy and expected to favorably combine with immunotherapies. Here we describe three cases of patients with advanced ACC who were treated with HDR-BT and the CPI pembrolizumab. None of the tumors were positive for established response markers to CPI. All patients were female, had progressed on EDP-M and received external beam radiation therapy for metastatic ACC. Pembrolizumab was initiated 7 or 23 months after brachytherapy in two cases and prior to brachytherapy in one case. Best response of lesions treated with brachytherapy was complete (n=2) or partial response (n=1) that was ongoing at last follow up after 23, 45 and 4 months, respectively. Considering all sites of tumor, response was complete and partial remission in the two patients with brachytherapy prior to pembrolizumab. The third patient developed progressive disease with severe Cushing's syndrome and died due to COVID-19. Immune-related adverse events of colitis (grade 3), gastroduodenitis (grade 3), pneumonitis (grade 2) and thyroiditis (grade 1) occurred in the two patients with systemic response. HDR-BT controlled metastases locally. Sequential combination with CPI therapy may enhance an abscopal antitumoral effect in non-irradiated metastases in ACC. Systematic studies are required to confirm this preliminary experience and to understand underlying mechanisms.
Collapse
Affiliation(s)
| | - Stefanie Corradini
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Max Seidensticker
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Petra Zimmermann
- Department of General, Visceral and Transplant Surgery, University Hospital, LMU Munich, Munich, Germany
| | - Jochen Schreiner
- Department of Medicine IV, University Hospital, LMU Munich, Munich, Germany
| | - Tanja Maier
- Department of Medicine IV, University Hospital, LMU Munich, Munich, Germany
| | - Alexandra Triebig
- Department of Medicine IV, University Hospital, LMU Munich, Munich, Germany
| | - Thomas Knösel
- Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Montserrat Pazos
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Thomas Pfluger
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Isabel Weigand
- Department of Medicine IV, University Hospital, LMU Munich, Munich, Germany
| | - Claus Belka
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Jens Ricke
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Martin Reincke
- Department of Medicine IV, University Hospital, LMU Munich, Munich, Germany
| | - Ralf Schmidmaier
- Department of Medicine IV, University Hospital, LMU Munich, Munich, Germany
| | - Matthias Kroiss
- Department of Medicine IV, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
36
|
Sankar K, Gong J, Osipov A, Miles SA, Kosari K, Nissen NN, Hendifar AE, Koltsova EK, Yang JD. Recent advances in the management of hepatocellular carcinoma. Clin Mol Hepatol 2024; 30:1-15. [PMID: 37482076 PMCID: PMC10776289 DOI: 10.3350/cmh.2023.0125] [Citation(s) in RCA: 49] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 07/18/2023] [Accepted: 07/18/2023] [Indexed: 07/25/2023] Open
Abstract
Liver cancer remains a challenge of global health, being the 4th leading cause of cancer death worldwide. Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer, and is usually precipitated by chronic viral infections (hepatitis B and C), non-alcoholic steatohepatitis, heavy alcohol use, and other factors which may lead to chronic inflammation and cirrhosis of the liver. There have been significant advances in the systemic treatment options for HCC over the past decades, with several approvals of both immune checkpoint inhibitors and tyrosine kinase inhibitors in patients with preserved liver function. These advances have led to improvement in survival outcomes, with expected survival of greater than 18 months, in those with sensitive tumors, adequate liver function, and those functionally fit to receive sequential therapies. Several ongoing and promising trials are now evaluating combinational strategies with novel systemic agents and combinations of systemic therapy with locoregional therapy. In view of these trials, further advances in the treatment of HCC are foreseen in the near future.
Collapse
Affiliation(s)
- Kamya Sankar
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jun Gong
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Arsen Osipov
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Steven A. Miles
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Kambiz Kosari
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Nicholas N. Nissen
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Andrew E. Hendifar
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ekaterina K. Koltsova
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ju Dong Yang
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
37
|
Araghi M, Gharebakhshi F, Faramarzi F, Mafi A, Mousavi T, Alimohammadi M, Soleimantabar H. Efficacy and Safety of Pembrolizumab Monotherapy or Combined Therapy in Patients with Metastatic Triple-negative Breast Cancer: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Curr Gene Ther 2024; 25:72-88. [PMID: 39468438 DOI: 10.2174/0115665232283880240301035621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/17/2024] [Accepted: 02/19/2024] [Indexed: 10/30/2024]
Abstract
BACKGROUND Metastatic Triple-negative Breast Cancer (mTNBC) is the most aggressive form of breast cancer, with a greater risk of metastasis and recurrence. Research studies have published in-depth analyses of the advantages and disadvantages of pembrolizumab, and early data from numerous trials suggests that patients with mTNBC have had remarkable outcomes. This meta-analysis compares the data from numerous relevant studies in order to evaluate the safety and efficacy of pembrolizumab monotherapy or combination therapies for mTNBC. METHODS To identify eligible RCTs, a thorough literature search was carried out using electronic databases. CMA software was utilized to perform heterogeneity tests using fixed and random-effects models. RESULTS According to our pooled data, the median Progression-free Survival (PFS) was 2.66 months, and the median overall survival (OS) was 12.26 months. Furthermore, by comparing efficacy indicators between PD-L1-positive and PD-L1-negative groups, a correlation was found between the overexpression of PD-L1 with OS, PFS, and ORR. Patients with PD-L1-positive tumors had a higher response rate, with an ORR of 21.1%, compared to the patients with PD-L1-negative tumors. The ORR for first-line immunotherapy was higher than that of ≥second-line immunotherapy. In addition, pembrolizumab plus combination treatment resulted in a pooled incidence of immune- related adverse events of 22.7%. CONCLUSION A modest response to pembrolizumab monotherapy was detected in the mTNBC patients. Furthermore, a better outcome from pembrolizumab treatment may be predicted by PD-L1-- positive status, non-liver/lung metastases, combination therapy, and first-line immunotherapy. Pembrolizumab, in combination with chemotherapy, may be more beneficial for patients whose tumors are PD-L1 positive.
Collapse
Affiliation(s)
- Mahmood Araghi
- Department of Pathology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Farshad Gharebakhshi
- Department of Radiology, School of Medicine, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Faramarzi
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Alireza Mafi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Tahoora Mousavi
- Molecular and Cell Biology Research Center (MCBRC), Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
- Medical Sciences Technologies, Molecular and Cell Biology Research Center (MCBRC), Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mina Alimohammadi
- Student Research Committee, Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hussein Soleimantabar
- Department of Radiology, School of Medicine, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
38
|
Harris JP, Park J, Ku E, Seyedin S, Stitzlein R, Goldin A, Chen WP, McLaren C, Chen AM, Chow W. A Pilot Study of Pembrolizumab Combined With Stereotactic Ablative Radiotherapy for Patients With Advanced or Metastatic Sarcoma. Cancer Control 2024; 31:10732748241237331. [PMID: 38449377 PMCID: PMC10919132 DOI: 10.1177/10732748241237331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/07/2024] [Accepted: 02/19/2024] [Indexed: 03/08/2024] Open
Abstract
OBJECTIVES Immunotherapy with immune checkpoint inhibitors has shown only limited success in the management of metastatic soft tissue sarcoma. Overall response rates (ORR) with single agent pembrolizumab were 18% and median PFS was 18 weeks on the clinical trial SARC028. One strategy to improve the responses to immunotherapy is with stereotactic body radiation therapy (SBRT), which can enhance the antitumor CD8 T cell response through the release of tumor-specific antigens, potentially priming a more diverse class of T cell receptors. METHODS This is a phase 0, pilot prospective study taking place at a single center with 2 arms. In Arm A, patients are treated with pembrolizumab 400 mg IV infusion on day 1 of a 42-day cycle. Stereotactic body radiation therapy (SBRT) is delivered in 1-5 fractions starting on C1D15-28 and given every other day. In Arm B, patients who have started an immune checkpoint inhibitor within 60 days are treated with SBRT in addition to the current therapy. RESULTS In this study we outline testing the feasibility of adding SBRT to pembrolizumab. CONCLUSION The ultimate goal of combination therapy is improved overall response, including tumors not treated with SBRT. This trial can be found registered online: NCT05488366.
Collapse
Affiliation(s)
- Jeremy P. Harris
- Department of Radiation Oncology, University of California Irvine, Orange, CA, USA
| | - Jino Park
- Department of Radiation Oncology, University of California Irvine, Orange, CA, USA
| | - Eric Ku
- Department of Radiation Oncology, University of California Irvine, Orange, CA, USA
| | - Steven Seyedin
- Department of Radiation Oncology, University of California Irvine, Orange, CA, USA
| | - Russell Stitzlein
- Department of Orthopaedic Surgery, University of California Irvine, Orange, CA, USA
| | - Amanda Goldin
- Department of Orthopaedic Surgery, University of California Irvine, Orange, CA, USA
| | - Wen-Pin Chen
- Biostatistics Shared Resource, University of California Irvine, Chao Family Comprehensive Cancer Center, Orange, CA, USA
| | - Christine McLaren
- Biostatistics Shared Resource, University of California Irvine, Chao Family Comprehensive Cancer Center, Orange, CA, USA
| | - Allen M. Chen
- Department of Radiation Oncology, University of California Irvine, Orange, CA, USA
| | - Warren Chow
- Department of Medicine, Division of Hematology/Oncology, University of California Irvine, Orange, CA, USA
| |
Collapse
|
39
|
Bidarmaghz B, Idrees M, Lee YY, Hodgkinson P. Large hepatocellular carcinoma treated with sequential SBRT and immunotherapy with anti-VEGF (Vascular Endothelial Growth Factor) therapy. BMJ Case Rep 2023; 16:e256931. [PMID: 38061854 PMCID: PMC10711845 DOI: 10.1136/bcr-2023-256931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2023] [Indexed: 12/18/2023] Open
Abstract
Managing large solitary hepatocellular carcinoma (HCC) remains challenging as guidelines recommend a palliative approach given the general poor prognosis without accounting for variations in the underlying tumour biology. Surgical resection provides significantly better survival than other modalities for HCC, but only a small proportion of patients with large tumours qualify for surgical resection. Recently, with technological advances in radiation therapy, stereotactic body radiation therapy (SBRT) has emerged as an alternative treatment option for HCC . In this paper, we present a patient who was diagnosed with a 13 cm HCC with vascular invasion. SBRT was delivered as a locoregional therapy followed by immunotherapy with the outcome of complete pathological response observed on right hemi-hepatectomy.
Collapse
Affiliation(s)
- Bardia Bidarmaghz
- Transplant, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| | - Marwan Idrees
- Transplant, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| | - Yoo Young Lee
- Radiation Oncology, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| | - Peter Hodgkinson
- Transplant, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| |
Collapse
|
40
|
Sano T, Saito R, Aizawa R, Watanabe T, Murakami K, Kita Y, Masui K, Goto T, Mizowaki T, Kobayashi T. Current trends in the promising immune checkpoint inhibition and radiotherapy combination for locally advanced and metastatic urothelial carcinoma. Int J Clin Oncol 2023; 28:1573-1584. [PMID: 37874429 DOI: 10.1007/s10147-023-02421-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 09/28/2023] [Indexed: 10/25/2023]
Abstract
Locally advanced and metastatic urothelial carcinoma (UC) remains a challenging malignancy, though several novel therapeutic drugs have been developed in recent years. Over the past decade, immune checkpoint inhibitors (ICI) have shifted the paradigm of therapeutic strategies for UC; however, only a limited number of patients respond to ICI. Since radiotherapy (RT) is widely known to induce systemic immune activation, it may boost the efficacy of ICI. Conversely, RT also causes exhaustion of cytotoxic T cells, and the activation and recruitment of immunosuppressive cells; ICI may help overcome these immunosuppressive effects. Therefore, the combination of ICI and RT has attracted attention in recent years. The therapeutic benefits of this combination therapy and its optimal regimen have not yet been determined through prospective studies. Therefore, this review article aimed to provide an overview of the current preclinical and clinical studies that illustrate the underlying mechanisms and explore the optimization of the RT regimen along with the ICI and RT combination sequence. We also analyzed ongoing prospective studies on ICI and RT combination therapies for metastatic UC. We noted that the tumor response to ICI and RT combination seemingly differs among cancer types. Thus, our findings highlight the need for well-designed prospective trials to determine the optimal combination of ICI and RT for locally advanced and metastatic UC.
Collapse
Affiliation(s)
- Takeshi Sano
- Department of Urology and Andrology, Kansai Medical University Hospital, 2-5-1 Shin-machi, Hirakata-shi, Osaka, 573-1010, Japan
- Department of Urology, Graduate School of Medicine, Kyoto University, 54 Shogoinkawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Ryoichi Saito
- Department of Urology, Graduate School of Medicine, Kyoto University, 54 Shogoinkawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Rihito Aizawa
- Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University, 54 Shogoinkawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Tsubasa Watanabe
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2 Asashiro-Nishi, Kumatori-cho, Sennan-gun, Osaka, 590-0494, Japan
| | - Kaoru Murakami
- Department of Urology, Graduate School of Medicine, Kyoto University, 54 Shogoinkawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Yuki Kita
- Department of Urology, Graduate School of Medicine, Kyoto University, 54 Shogoinkawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Kimihiko Masui
- Department of Urology, Graduate School of Medicine, Kyoto University, 54 Shogoinkawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Takayuki Goto
- Department of Urology, Graduate School of Medicine, Kyoto University, 54 Shogoinkawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Takashi Mizowaki
- Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University, 54 Shogoinkawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Takashi Kobayashi
- Department of Urology, Graduate School of Medicine, Kyoto University, 54 Shogoinkawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan.
| |
Collapse
|
41
|
Chami P, Diab Y, Khalil DN, Azhari H, Jarnagin WR, Abou-Alfa GK, Harding JJ, Hajj J, Ma J, El Homsi M, Reyngold M, Crane C, Hajj C. Radiation and Immune Checkpoint Inhibitors: Combination Therapy for Treatment of Hepatocellular Carcinoma. Int J Mol Sci 2023; 24:16773. [PMID: 38069095 PMCID: PMC10706661 DOI: 10.3390/ijms242316773] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/24/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
The liver tumor immune microenvironment has been thought to possess a critical role in the development and progression of hepatocellular carcinoma (HCC). Despite the approval of immune checkpoint inhibitors (ICIs), such as programmed cell death receptor 1 (PD-1)/programmed cell death ligand 1 (PD-L1) and cytotoxic T lymphocyte associated protein 4 (CTLA-4) inhibitors, for several types of cancers, including HCC, liver metastases have shown evidence of resistance or poor response to immunotherapies. Radiation therapy (RT) has displayed evidence of immunosuppressive effects through the upregulation of immune checkpoint molecules post-treatment. However, it was revealed that the limitations of ICIs can be overcome through the use of RT, as it can reshape the liver immune microenvironment. Moreover, ICIs are able to overcome the RT-induced inhibitory signals, effectively restoring anti-tumor activity. Owing to the synergetic effect believed to arise from the combination of ICIs with RT, several clinical trials are currently ongoing to assess the efficacy and safety of this treatment for patients with HCC.
Collapse
Affiliation(s)
- Perla Chami
- Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon;
| | - Youssef Diab
- Faculty of Medicine, University of Balamand, Beirut 1100, Lebanon; (Y.D.)
| | - Danny N. Khalil
- Memorial Sloan Kettering Cancer Center, New York, NY 10027, USA
| | - Hassan Azhari
- Memorial Sloan Kettering Cancer Center, New York, NY 10027, USA
| | - William R. Jarnagin
- Memorial Sloan Kettering Cancer Center, New York, NY 10027, USA
- Department of Surgery, Weill Medical College, Cornell University, New York, NY 10021, USA
| | - Ghassan K. Abou-Alfa
- Memorial Sloan Kettering Cancer Center, New York, NY 10027, USA
- Department of Medicine, Weill Medical College, Cornell University, New York, NY 10021, USA
| | - James J. Harding
- Memorial Sloan Kettering Cancer Center, New York, NY 10027, USA
- Department of Medicine, Weill Medical College, Cornell University, New York, NY 10021, USA
| | - Joseph Hajj
- Faculty of Medicine, University of Balamand, Beirut 1100, Lebanon; (Y.D.)
| | - Jennifer Ma
- Memorial Sloan Kettering Cancer Center, New York, NY 10027, USA
| | - Maria El Homsi
- Memorial Sloan Kettering Cancer Center, New York, NY 10027, USA
| | - Marsha Reyngold
- Memorial Sloan Kettering Cancer Center, New York, NY 10027, USA
| | | | - Carla Hajj
- Memorial Sloan Kettering Cancer Center, New York, NY 10027, USA
- New York Proton Center, New York, NY 10035, USA
| |
Collapse
|
42
|
Van Dingenen L, Segers C, Wouters S, Mysara M, Leys N, Kumar-Singh S, Malhotra-Kumar S, Van Houdt R. Dissecting the role of the gut microbiome and fecal microbiota transplantation in radio- and immunotherapy treatment of colorectal cancer. Front Cell Infect Microbiol 2023; 13:1298264. [PMID: 38035338 PMCID: PMC10687483 DOI: 10.3389/fcimb.2023.1298264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most commonly diagnosed cancers and poses a major burden on the human health worldwide. At the moment, treatment of CRC consists of surgery in combination with (neo)adjuvant chemotherapy and/or radiotherapy. More recently, immune checkpoint blockers (ICBs) have also been approved for CRC treatment. In addition, recent studies have shown that radiotherapy and ICBs act synergistically, with radiotherapy stimulating the immune system that is activated by ICBs. However, both treatments are also associated with severe toxicity and efficacy issues, which can lead to temporary or permanent discontinuation of these treatment programs. There's growing evidence pointing to the gut microbiome playing a role in these issues. Some microorganisms seem to contribute to radiotherapy-associated toxicity and hinder ICB efficacy, while others seem to reduce radiotherapy-associated toxicity or enhance ICB efficacy. Consequently, fecal microbiota transplantation (FMT) has been applied to reduce radio- and immunotherapy-related toxicity and enhance their efficacies. Here, we have reviewed the currently available preclinical and clinical data in CRC treatment, with a focus on how the gut microbiome influences radio- and immunotherapy toxicity and efficacy and if these treatments could benefit from FMT.
Collapse
Affiliation(s)
- Lena Van Dingenen
- Nuclear Medical Applications, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, Faculty of Medicine, University of Antwerp, Antwerp, Belgium
| | - Charlotte Segers
- Nuclear Medical Applications, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium
| | - Shari Wouters
- Nuclear Medical Applications, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium
- Molecular Pathology Group, Laboratory of Cell Biology and Histology, Faculty of Medicine, University of Antwerp, Antwerp, Belgium
| | - Mohamed Mysara
- Bioinformatics Group, Center for Informatics Science, School of Information Technology and Computer Science, Nile University, Giza, Egypt
| | - Natalie Leys
- Nuclear Medical Applications, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium
| | - Samir Kumar-Singh
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, Faculty of Medicine, University of Antwerp, Antwerp, Belgium
- Molecular Pathology Group, Laboratory of Cell Biology and Histology, Faculty of Medicine, University of Antwerp, Antwerp, Belgium
| | - Surbhi Malhotra-Kumar
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, Faculty of Medicine, University of Antwerp, Antwerp, Belgium
| | - Rob Van Houdt
- Nuclear Medical Applications, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium
| |
Collapse
|
43
|
Karapetyan L, Iheagwara UK, Olson AC, Chmura SJ, Skinner HK, Luke JJ. Radiation dose, schedule, and novel systemic targets for radio-immunotherapy combinations. J Natl Cancer Inst 2023; 115:1278-1293. [PMID: 37348864 PMCID: PMC10637035 DOI: 10.1093/jnci/djad118] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/09/2023] [Accepted: 06/16/2023] [Indexed: 06/24/2023] Open
Abstract
Immunotherapy combinations are being investigated to expand the benefit of immune checkpoint blockade across many cancer types. Radiation combinations, in particular using stereotactic body radiotherapy, are of keen interest because of underlying mechanistic rationale, safety, and availability as a standard of care in certain cancers. In addition to direct tumor cytotoxicity, radiation therapy has immunomodulatory effects such as induction of immunogenic cell death, enhancement of antigen presentation, and expansion of the T-cell receptor repertoire as well as recruitment and increased activity of tumor-specific effector CD8+ cells. Combinations of radiation with cytokines and/or chemokines and anti-programmed death 1 and anticytotoxic T-lymphocyte antigen 4 therapies have demonstrated safety and feasibility, as well as the potential to improve long-term outcomes and possibly induce out of irradiated field or abscopal responses. Novel immunoradiotherapy combinations represent a promising therapeutic approach to overcome radioresistance and further enhance systemic immunotherapy. Potential benefits include reversing CD8+ T-cell exhaustion, inhibiting myeloid-derived suppressor cells, and reversing M2 macrophage polarization as well as decreasing levels of colony-stimulating factor-1 and transforming growth factor-β. Here, we discuss current data and mechanistic rationale for combining novel immunotherapy agents with radiation therapy.
Collapse
Affiliation(s)
- Lilit Karapetyan
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Uzoma K Iheagwara
- Department of Medicine, University of Pittsburgh Medical Center and Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Radiation Oncology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Adam C Olson
- Department of Medicine, University of Pittsburgh Medical Center and Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Radiation Oncology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Steven J Chmura
- Department of Radiation Oncology, University of Chicago, Chicago, IL, USA
| | - Heath K Skinner
- Department of Medicine, University of Pittsburgh Medical Center and Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Radiation Oncology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jason J Luke
- Department of Medicine, University of Pittsburgh Medical Center and Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
44
|
Melissourgou-Syka L, Gillespie MA, O'Cathail SM, Sansom OJ, Steele CW, Roxburgh CSD. A Review of Scheduling Strategies for Radiotherapy and Immune Checkpoint Inhibition in Locally Advanced Rectal Cancer. JOURNAL OF IMMUNOTHERAPY AND PRECISION ONCOLOGY 2023; 6:187-197. [PMID: 38143952 PMCID: PMC10734391 DOI: 10.36401/jipo-23-10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/07/2023] [Accepted: 07/15/2023] [Indexed: 12/26/2023]
Abstract
Colorectal cancer (CRC) is the third most common malignancy across the globe and, despite advances in treatment strategies, survival rates remain low. Rectal cancer (RC) accounts for most of these cases, and traditional management strategies for advanced disease include total neoadjuvant therapy (TNT) with chemoradiotherapy followed by curative surgery. Unfortunately, approximately 10-15% of patients have no response to treatment or have recurrence at a short interval following radiotherapy. The introduction of immunotherapy in the form of immune checkpoint blockade (ICB) in metastatic colorectal cancer has improved clinical outcomes, yet most patients with RC present with microsatellite stable disease, which lacks the immune-rich microenvironment where ICB is most effective. There is evidence that combining radiotherapy with ICB can unlock the mechanisms that drive resistance in patients; however, the sequencing of these therapies is still debated. This review offers a comprehensive overview of clinical trials and preclinical models that use radiotherapy-immunotherapy combinations in RC in an attempt to extrapolate the ideal sequencing of the two treatment modalities. The results highlight the dearth of evidence to answer the question of whether ICB should be given before, during, or after radiotherapy, yet it is suggested that improving the relevance of our preclinical models will provide a platform with higher translational value and will lead to appropriate clinical trial designs.
Collapse
Affiliation(s)
- Lydia Melissourgou-Syka
- School of Cancer Sciences, University of Glasgow, Glasgow, Scotland
- CRUK Beatson Institute, Glasgow, Scotland
| | | | - Sean M. O'Cathail
- School of Cancer Sciences, University of Glasgow, Glasgow, Scotland
- Beatson West of Scotland Cancer Centre, Glasgow, Scotland
| | - Owen J. Sansom
- School of Cancer Sciences, University of Glasgow, Glasgow, Scotland
- CRUK Beatson Institute, Glasgow, Scotland
| | - Colin W. Steele
- School of Cancer Sciences, University of Glasgow, Glasgow, Scotland
- CRUK Beatson Institute, Glasgow, Scotland
- Academic Unit of Surgery, Glasgow Royal Infirmary, Glasgow, Scotland
| | - Campbell S. D. Roxburgh
- School of Cancer Sciences, University of Glasgow, Glasgow, Scotland
- Academic Unit of Surgery, Glasgow Royal Infirmary, Glasgow, Scotland
| |
Collapse
|
45
|
Deng W, Chang X, Dong X, Zhao Y, Yang D, Jiang L, Shi A, Yu H, Yu R, Xiao Z, Wang W. Induction immunochemotherapy followed by radiotherapy for patients with unresectable locally advanced or metastatic esophageal cancer: A propensity score-matched analysis. Int Immunopharmacol 2023; 124:110955. [PMID: 37725845 DOI: 10.1016/j.intimp.2023.110955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 09/21/2023]
Abstract
BACKGROUND The study aimed to investigate the efficacy of induction immunochemotherapy before radiotherapy (RT) for patients with locally advanced or metastatic esophageal cancer. METHODS Patients with unresectable locally advanced or metastatic esophageal cancer who received induction immunochemotherapy followed by RT (ICIs + RT group) and RT alone (RT group) were retrospectively identified in two cancer centers, respectively. Propensity score matching (PSM) was used to balance the potential confounders between the two groups. Overall survival (OS), progression-free survival (PFS), and recurrence patterns were evaluated. RESULTS A total of 467 patients were reviewed, and 66 were matched in each group. After PSM, the 1- and 2-year OS rates were 84.6% and 57.9% in ICIs + RT group, and 71.1% and 43.0% in RT group (HR 0.60, 95% CI 0.36-1.00, p = 0.050). The absolute increase of restricted mean survival time (RMST) for OS in ICIs + RT group compared with RT group were 0.89 years (p = 0.023) at one year and 2.59 years at two years (p = 0.030). The median PFS time, 1- and 2-year PFS rates were 20.3 months, 69.3%, and 45.7% in ICIs + RT group, and 12.2 months, 51.4%, and 35.8% in RT group (HR 0.64, 95% CI 0.41-0.99, p = 0.045). The cumulative locoregional recurrence (LRR) rate was significantly lower in ICIs + RT group (1-year rate, 17.4% vs. 38.8%, p = 0.011), and distant metastasis (DM) rates were comparable (p = 0.755). Consolidation ICIs was associated with a trend of improved 1-year OS and PFS. CONCLUSION Induction immunochemotherapy followed by RT might improve locoregional control and survival outcomes for patients with unresectable locally advanced or metastatic esophageal cancer.
Collapse
Affiliation(s)
- Wei Deng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Xiao Chang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Xin Dong
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Yuting Zhao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Dan Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Leilei Jiang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Anhui Shi
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Huiming Yu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Rong Yu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Zefen Xiao
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| | - Weihu Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China.
| |
Collapse
|
46
|
Prendergast CM, Lopci E, Seban RD, De Jong D, Ammari S, Aneja S, Lévy A, Sajan A, Salvatore MM, Cappacione KM, Schwartz LH, Deutsch E, Dercle L. Integrating [ 18F]-Fluorodeoxyglucose Positron Emission Tomography with Computed Tomography with Radiation Therapy and Immunomodulation in Precision Therapy for Solid Tumors. Cancers (Basel) 2023; 15:5179. [PMID: 37958353 PMCID: PMC10648321 DOI: 10.3390/cancers15215179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 11/15/2023] Open
Abstract
[18F]-FDG positron emission tomography with computed tomography (PET/CT) imaging is widely used to enhance the quality of care in patients diagnosed with cancer. Furthermore, it holds the potential to offer insight into the synergic effect of combining radiation therapy (RT) with immuno-oncological (IO) agents. This is achieved by evaluating treatment responses both at the RT and distant tumor sites, thereby encompassing the phenomenon known as the abscopal effect. In this context, PET/CT can play an important role in establishing timelines for RT/IO administration and monitoring responses, including novel patterns such as hyperprogression, oligoprogression, and pseudoprogression, as well as immune-related adverse events. In this commentary, we explore the incremental value of PET/CT to enhance the combination of RT with IO in precision therapy for solid tumors, by offering supplementary insights to recently released joint guidelines.
Collapse
Affiliation(s)
- Conor M. Prendergast
- Department of Radiology, NewYork-Presbyterian, Columbia University Irving Medical Center, New York, NY 10032, USA (M.M.S.); (K.M.C.)
| | - Egesta Lopci
- Nuclear Medicine Unit, IRCCS—Humanitas Research Hospital, 20089 Rozzano, Italy
| | - Romain-David Seban
- Department of Nuclear Medicine, Institut Curie, 92210 Saint-Cloud, France
- Laboratory of Translational Imaging in Oncology, Inserm, Institut Curie, 91401 Orsay, France
| | - Dorine De Jong
- RefleXion Medical, Inc., Hayward, CA 94545, USA
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Samy Ammari
- Department of Medical Imaging, Institut Gustave Roussy, 94805 Villejuif, France
| | - Sanjay Aneja
- Department of Radiation Oncology, Smilow Cancer Hospital, Yale School of Medicine, New Haven, CT 06519, USA
| | - Antonin Lévy
- Department of Radiation Oncology, Gustave Roussy, 94805 Villejuif, France
| | - Abin Sajan
- Department of Radiology, NewYork-Presbyterian, Columbia University Irving Medical Center, New York, NY 10032, USA (M.M.S.); (K.M.C.)
| | - Mary M. Salvatore
- Department of Radiology, NewYork-Presbyterian, Columbia University Irving Medical Center, New York, NY 10032, USA (M.M.S.); (K.M.C.)
| | - Kathleen M. Cappacione
- Department of Radiology, NewYork-Presbyterian, Columbia University Irving Medical Center, New York, NY 10032, USA (M.M.S.); (K.M.C.)
| | - Lawrence H. Schwartz
- Department of Radiology, NewYork-Presbyterian, Columbia University Irving Medical Center, New York, NY 10032, USA (M.M.S.); (K.M.C.)
| | - Eric Deutsch
- Department of Radiation Oncology, Gustave Roussy, 94805 Villejuif, France
| | - Laurent Dercle
- Department of Radiology, NewYork-Presbyterian, Columbia University Irving Medical Center, New York, NY 10032, USA (M.M.S.); (K.M.C.)
| |
Collapse
|
47
|
Liu S, Wang W, Hu S, Jia B, Tuo B, Sun H, Wang Q, Liu Y, Sun Z. Radiotherapy remodels the tumor microenvironment for enhancing immunotherapeutic sensitivity. Cell Death Dis 2023; 14:679. [PMID: 37833255 PMCID: PMC10575861 DOI: 10.1038/s41419-023-06211-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/22/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023]
Abstract
Cancer immunotherapy has transformed traditional treatments, with immune checkpoint blockade being particularly prominent. However, immunotherapy has minimal benefit for patients in most types of cancer and is largely ineffective in some cancers (such as pancreatic cancer and glioma). A synergistic anti-tumor response may be produced through the combined application with traditional tumor treatment methods. Radiotherapy (RT) not only kills tumor cells but also triggers the pro-inflammatory molecules' release and immune cell infiltration, which remodel the tumor microenvironment (TME). Therefore, the combination of RT and immunotherapy is expected to achieve improved efficacy. In this review, we summarize the effects of RT on cellular components of the TME, including T cell receptor repertoires, different T cell subsets, metabolism, tumor-associated macrophages and other myeloid cells (dendritic cells, myeloid-derived suppressor cells, neutrophils and eosinophils). Meanwhile, non-cellular components such as lactate and extracellular vesicles are also elaborated. In addition, we discuss the impact of different RT modalities on tumor immunity and issues related to the clinical practice of combination therapy.
Collapse
Affiliation(s)
- Senbo Liu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
- Henan Institute of Interconnected Intelligent Health Management, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Wenkang Wang
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Shengyun Hu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Bin Jia
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Baojing Tuo
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
- Henan Institute of Interconnected Intelligent Health Management, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Haifeng Sun
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Qiming Wang
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, 450001, Zhengzhou, China.
| | - Yang Liu
- Department of Radiotherapy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, 450001, Zhengzhou, China.
| | - Zhenqiang Sun
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China.
- Henan Institute of Interconnected Intelligent Health Management, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China.
| |
Collapse
|
48
|
Ali Mohammad S, Hak A, Pogu SV, Rengan AK. Radiotherapy, photodynamic therapy, and cryoablation-induced abscopal effect: Challenges and future prospects. CANCER INNOVATION 2023; 2:323-345. [PMID: 38090387 PMCID: PMC10686191 DOI: 10.1002/cai2.53] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 12/10/2022] [Accepted: 12/29/2022] [Indexed: 10/15/2024]
Abstract
Local therapy modalities such as radiation therapy, photodynamic therapy, photothermal therapy, and cryoablation have been used to treat localized tumors for decades. The discovery of the abscopal effect causes a paradigm shift where local therapy also causes systemic effects and leads to the remission of nonirradiated tumors. The abscopal effect of radiation therapy, alone or in combination with other treatments, has been extensively studied over the last six decades. However, the results are unsatisfactory in producing robust, reproducible, and long-lasting systemic effects. Although immunotherapy and radiation therapy are promising in producing the abscopal effect, the abscopal effect's mechanism is still unclear, owing to various factors such as irradiation type and dose and cancer type. This article reviews the research progress, clinical and preclinical evidence of the abscopal effect by various local therapies alone and in combination with chemotherapy and immunotherapy, case reports, and the current challenges in producing the abscopal effect by various local therapies, focusing on radiotherapy, photodynamic therapy, cryoablation, and the prospects for obtaining a robust, reproducible, and long-lasting abscopal effect.
Collapse
Affiliation(s)
| | - Arshadul Hak
- Indian Institute of Technology HyderabadKandi, SangareddyTelanganaIndia
| | - Sunil V. Pogu
- Indian Institute of Technology HyderabadKandi, SangareddyTelanganaIndia
| | - Aravind K. Rengan
- Indian Institute of Technology HyderabadKandi, SangareddyTelanganaIndia
| |
Collapse
|
49
|
Wang L, Yi S, Teng Y, Li W, Cai J. Role of the tumor microenvironment in the lymphatic metastasis of cervical cancer (Review). Exp Ther Med 2023; 26:486. [PMID: 37753293 PMCID: PMC10518654 DOI: 10.3892/etm.2023.12185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/15/2023] [Indexed: 09/28/2023] Open
Abstract
Lymphatic metastasis is the primary type of cervical cancer metastasis and is associated with an extremely poor prognosis in patients. The tumor microenvironment primarily includes cancer-associated fibroblasts, tumor-associated macrophages, myeloid-derived suppressor cells, immune and inflammatory cells, and blood and lymphatic vascular networks, which can promote the establishment of lymphatic metastatic sites within immunosuppressive microenvironments or promote lymphatic metastasis by stimulating lymphangiogenesis and epithelial-mesenchymal transformation. As the most important feature of the tumor microenvironment, hypoxia plays an essential role in lymph node metastasis. In this review, the known mechanisms of hypoxia, and the involvement of stromal components and immune inflammatory cells in the tumor microenvironment of lymphatic metastasis of cervical cancer are discussed. Additionally, a summary of the clinical trials targeting the tumor microenvironment for the treatment of cervical cancer is provided, emphasizing the potential and challenges of immunotherapy.
Collapse
Affiliation(s)
- Lufang Wang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Shuyan Yi
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Yun Teng
- Department of Laboratory Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine; Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province; Institute of Laboratory Medicine, Zhejiang University, Hangzhou, Zhejiang 310000, P.R. China
| | - Wenhan Li
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Jing Cai
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
50
|
Monjazeb AM, Daly ME, Luxardi G, Maverakis E, Merleev AA, Marusina AI, Borowsky A, Mirhadi A, Shiao SL, Beckett L, Chen S, Eastham D, Li T, Vick LV, McGee HM, Lara F, Garcia L, Morris LA, Canter RJ, Riess JW, Schalper KA, Murphy WJ, Kelly K. Atezolizumab plus stereotactic ablative radiotherapy for medically inoperable patients with early-stage non-small cell lung cancer: a multi-institutional phase I trial. Nat Commun 2023; 14:5332. [PMID: 37658083 PMCID: PMC10474145 DOI: 10.1038/s41467-023-40813-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/11/2023] [Indexed: 09/03/2023] Open
Abstract
Stereotactic ablative radiotherapy (SABR) is a standard-of-care for medically-inoperable-early-stage non-small cell lung cancer (NSCLC). One third of patients progress and chemotherapy is rarely used in this population. We questioned if addition of the immune-checkpoint-inhibitor (ICI) atezolizumab to standard-of-care SABR can improve outcomes. We initiated a multi-institutional single-arm phase I study (NCT02599454) enrolling twenty patients with the primary endpoint of maximum tolerated dose (MTD); secondary endpoints of safety and efficacy; and exploratory mechanistic correlatives. Treatment is well tolerated and full dose atezolizumab (1200 mg) is the MTD. Efficacy signals include early responses (after 2 cycles of ICI, before initiation of SABR) in 17% of patients. Biomarkers of functional adaptive immunity, including T cell activation in the tumor and response to ex-vivo stimulation by circulating T cells, are highly predictive of benefit. These results require validation and are being tested in a phase III randomized trial.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Amin Mirhadi
- Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | | | | | - Shuai Chen
- UC Davis Health, Sacramento, CA, 95817, USA
| | - David Eastham
- David Grant USAF Medical Center, Travis AFB, Fairfield, CA, 93405, USA
| | | | | | | | | | | | | | | | | | | | | | - Karen Kelly
- UC Davis Health, Sacramento, CA, 95817, USA
- International Association for the Study of Lung Cancer, Denver, CO, 80202, USA
| |
Collapse
|