1
|
Subalakshmi S, Rushendran R, Vellapandian C. Revisiting Migraine Pathophysiology: from Neurons To Immune Cells Through Lens of Immune Regulatory Pathways. J Neuroimmune Pharmacol 2025; 20:30. [PMID: 40172704 DOI: 10.1007/s11481-025-10197-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 03/20/2025] [Indexed: 04/04/2025]
Abstract
Migraine is a prevalent neurological disorder characterized by severe, recurrent headaches accompanied by symptoms, such as nausea, photophobia, and phonophobia, significantly affecting the quality of life of millions of people worldwide. Although the neurovascular pathway, involving blood vessel dilation and neurogenic inflammation, has been a cornerstone in understanding migraine pathophysiology. Emerging evidence suggests that immune dysregulation plays a pivotal role in the onset and progression of migraine. This review uniquely synthesizes recent advances linking immune regulatory pathways to migraine, an area that has not been widely explored in the literature. Specifically, we highlighted the involvement of CD4 + CD25 + regulatory T (Treg) cells, interleukins, and pro-inflammatory and anti-inflammatory cytokines, which have been implicated in pain signaling and immune imbalance in patients with migraine. Furthermore, genetic studies have provided compelling evidence by identifying associations between migraine susceptibility and immune-related polymorphisms, particularly in forkhead box P3 (FOXP3) and nuclear factor of activated T cells (NFAT). Moreover, the higher prevalence of migraine in individuals with comorbid autoimmune diseases further supports the hypothesis of a shared pathophysiological mechanism. Despite the growing recognition of immune involvement in migraine, its precise mechanisms remain unclear. By integrating key immune biomarkers and genetic insights, this review proposes a novel framework for understanding the immune-mediated pathways in migraine progression. Future research should focus on elucidating the specific immunological mechanisms underlying migraine, which could open new avenues for innovative, targeted therapeutic strategies.
Collapse
Affiliation(s)
- Sugumar Subalakshmi
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamil Nadu, 603203, India
| | - R Rushendran
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamil Nadu, 603203, India
| | - Chitra Vellapandian
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamil Nadu, 603203, India.
| |
Collapse
|
2
|
Liu H, Ai J, Wang T, Tan G. Adhesion Promotes Allergic Rhinitis CD4 +IL4 + T Cell Differentiation via ICAM1 and E-Selectin. Am J Rhinol Allergy 2022; 36:521-528. [PMID: 35296145 DOI: 10.1177/19458924221086061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Neuroimmune communication plays an important role in allergic inflammation, but the neuroimmune regulation of allergic rhinitis remains unclear. OBJECTIVE The goal of this study was to investigate the role of CD4-positive T lymphocyte (CD4+ T cells) adhesion to D-U87 neuron-like cells in mediating allergic rhinitis CD4+ T cell differentiation. METHODS D-U87 neuron-like cells were derived from the human glioblastoma U87 cell line. CD4+ T cells were isolated from human peripheral blood using a magnetic separation technique. In vitro coculture of D-U87 neuron-like cells and CD4+ T cells was established. The number of adherent CD4+ T cells was counted using a fluorescence microscope. The percentages of CD4+IFNγ+ and CD4+IL4+ T cells and the levels of IFNγ and IL4 cytokines in the supernatant were measured by flow cytometry. RESULTS The results showed that the number of adherent CD4+ T cells in patients with allergic rhinitis was significantly higher than that in healthy controls. In allergic rhinitis, the percentage of CD4+IL4+ T cells was significantly increased in the adherent group compared with that in the nonadherent group. Moreover, blocking ICAM1 and E-selectin decreased the number of adherent CD4+ T cells and the percentage of CD4+IL4+ T cells in allergic rhinitis. CONCLUSION Adhesion contributes to CD4+IL4+ T cell differentiation in the in vitro coculture system of D-U87 neuron-like cells and allergic rhinitis CD4+ T cells, which may provide new insights into therapeutic strategies for allergic rhinitis.
Collapse
Affiliation(s)
- Honghui Liu
- Department of Otorhinolaryngology - Head Neck Surgery, Third Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Jingang Ai
- Department of Otorhinolaryngology - Head Neck Surgery, Third Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Tiansheng Wang
- Department of Otorhinolaryngology - Head Neck Surgery, Third Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Guolin Tan
- Department of Otorhinolaryngology - Head Neck Surgery, Third Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| |
Collapse
|
3
|
Liu JA, Yu J, Cheung CW. Immune Actions on the Peripheral Nervous System in Pain. Int J Mol Sci 2021; 22:ijms22031448. [PMID: 33535595 PMCID: PMC7867183 DOI: 10.3390/ijms22031448] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 02/07/2023] Open
Abstract
Pain can be induced by tissue injuries, diseases and infections. The interactions between the peripheral nervous system (PNS) and immune system are primary actions in pain sensitizations. In response to stimuli, nociceptors release various mediators from their terminals that potently activate and recruit immune cells, whereas infiltrated immune cells further promote sensitization of nociceptors and the transition from acute to chronic pain by producing cytokines, chemokines, lipid mediators and growth factors. Immune cells not only play roles in pain production but also contribute to PNS repair and pain resolution by secreting anti-inflammatory or analgesic effectors. Here, we discuss the distinct roles of four major types of immune cells (monocyte/macrophage, neutrophil, mast cell, and T cell) acting on the PNS during pain process. Integration of this current knowledge will enhance our understanding of cellular changes and molecular mechanisms underlying pain pathogenies, providing insights for developing new therapeutic strategies.
Collapse
Affiliation(s)
- Jessica Aijia Liu
- Correspondence: (J.A.L.); (C.W.C.); Tel.: +852-2255-3303 (J.A.L. & C.W.C.); Fax: +852-2855-1654 (J.A.L. & C.W.C.)
| | | | - Chi Wai Cheung
- Correspondence: (J.A.L.); (C.W.C.); Tel.: +852-2255-3303 (J.A.L. & C.W.C.); Fax: +852-2855-1654 (J.A.L. & C.W.C.)
| |
Collapse
|
4
|
Masli S, Dartt DA. Mouse Models of Sjögren's Syndrome with Ocular Surface Disease. Int J Mol Sci 2020; 21:ijms21239112. [PMID: 33266081 PMCID: PMC7730359 DOI: 10.3390/ijms21239112] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/28/2020] [Accepted: 11/28/2020] [Indexed: 12/12/2022] Open
Abstract
Sjögren’s syndrome (SS) is a systemic rheumatic disease that predominantly affects salivary and lacrimal glands resulting in oral and ocular dryness, respectively, referred to as sicca symptoms. The clinical presentation of ocular dryness includes keratoconjunctivitis sicca (KCS), resulting from the inflammatory damage to the ocular surface tissues of cornea and conjunctiva. The diagnostic evaluation of KCS is a critical component of the classification criteria used by clinicians worldwide to confirm SS diagnosis. Therapeutic management of SS requires both topical and systemic treatments. Several mouse models of SS have contributed to our current understanding of immunopathologic mechanisms underlying the disease. This information also helps develop novel therapeutic interventions. Although these models address glandular aspects of SS pathology, their impact on ocular surface tissues is addressed only in a few models such as thrombospondin (TSP)-1 deficient, C57BL/6.NOD.Aec1Aec2, NOD.H2b, NOD.Aire KO, and IL-2Rα (CD25) KO mice. While corneal and/or conjunctival damage is reported in most of these models, the characteristic SS specific autoantibodies are only reported in the TSP-1 deficient mouse model, which is also validated as a preclinical model. This review summarizes valuable insights provided by investigations on the ocular spectrum of the SS pathology in these models.
Collapse
Affiliation(s)
- Sharmila Masli
- Department of Ophthalmology, Boston University School of Medicine, Boston, MA 02118, USA
- Correspondence: (S.M.); (D.A.D.); Tel.: +1-617-358-2195 (S.M.); +1-617-912-0272 (D.A.D.)
| | - Darlene A. Dartt
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
- Correspondence: (S.M.); (D.A.D.); Tel.: +1-617-358-2195 (S.M.); +1-617-912-0272 (D.A.D.)
| |
Collapse
|
5
|
Liu H, Wang T, Xia J, Ai J, Li W, Song Y, Shen Y, Zhang X, Tan G. Cholinergic neuron-like D-U87 cells promote polarization of allergic rhinitis T-helper 2 cells. Int Forum Allergy Rhinol 2019; 10:233-242. [PMID: 31658507 DOI: 10.1002/alr.22467] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 09/09/2019] [Accepted: 10/11/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND Parasympathetic nerve hypersensitivity contributes to the severity of allergic rhinitis (AR), but the precise mechanism underlying neuroimmune regulation in patients with AR remains unclear. This study investigated the effect of cholinergic nerve inhibition on AR CD4+ T-helper (Th)2-cell polarization and the underlying regulatory mechanism in vitro. METHODS An in-vitro neuroimmune coculture model of D-U87 cells and CD4+ T cells was established. D-U87 cells with cholinergic neuron characteristics were used as cholinergic neuron models. CD4+ T cells were derived from peripheral blood monocytes from AR patients (n = 60) and control subjects (n = 40). Th1- and Th2-cell percentages were measured by flow cytometry. Proteins involved in related signaling pathways were analyzed by protein chip assay and Western blotting. RESULTS The Th2-cell percentage among CD4+ T cells from AR patients was significantly increased after coculture with D-U87 cells and was decreased by ipratropium bromide (IB) treatment. In contrast, the Th1-cell percentage among control CD4+ T cells was significantly increased after coculture with D-U87 cells, but was unaltered by IB treatment. Furthermore, phosphorylated Akt (p-Akt) protein levels increased in CD4+ T cells from both controls and AR patients after coculture with D-U87 cells and decreased after IB treatment. However, higher p-Akt levels were observed in cells from AR patients than in cells from control subjects. Moreover, Akt inhibition decreased Th2-cell percentage in AR patients. CONCLUSION In-vitro cholinergic nerve inhibition with IB decreased AR CD4+ T-cell polarization into Th2 cells partially through an Akt-dependent mechanism.
Collapse
Affiliation(s)
- Honghui Liu
- Department of Otorhinolaryngology-Head Neck Surgery, Third Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Tiansheng Wang
- Department of Otorhinolaryngology-Head Neck Surgery, Third Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Jinye Xia
- Department of Otorhinolaryngology-Head Neck Surgery, Third Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Jingang Ai
- Department of Otorhinolaryngology-Head Neck Surgery, Third Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Wei Li
- Department of Otorhinolaryngology-Head Neck Surgery, Third Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Yexun Song
- Department of Otorhinolaryngology-Head Neck Surgery, Third Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Yang Shen
- Department of Otorhinolaryngology-Head Neck Surgery, Third Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Xiaowei Zhang
- Department of Otorhinolaryngology-Head Neck Surgery, Third Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Guolin Tan
- Department of Otorhinolaryngology-Head Neck Surgery, Third Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| |
Collapse
|
6
|
Laumet G, Ma J, Robison AJ, Kumari S, Heijnen CJ, Kavelaars A. T Cells as an Emerging Target for Chronic Pain Therapy. Front Mol Neurosci 2019; 12:216. [PMID: 31572125 PMCID: PMC6749081 DOI: 10.3389/fnmol.2019.00216] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 08/26/2019] [Indexed: 11/13/2022] Open
Abstract
The immune system is critically involved in the development and maintenance of chronic pain. However, T cells, one of the main regulators of the immune response, have only recently become a focus of investigations on chronic pain pathophysiology. Emerging clinical data suggest that patients with chronic pain have a different phenotypic profile of circulating T cells compared to controls. At the preclinical level, findings on the function of T cells are mixed and differ between nerve injury, chemotherapy, and inflammatory models of persistent pain. Depending on the type of injury, the subset of T cells and the sex of the animal, T cells may contribute to the onset and/or the resolution of pain, underlining T cells as a major player in the transition from acute to chronic pain. Specific T cell subsets release mediators such as cytokines and endogenous opioid peptides that can promote, suppress, or even resolve pain. Inhibiting the pain-promoting functions of T cells and/or enhancing the beneficial effects of pro-resolution T cells may offer new disease-modifying strategies for the treatment of chronic pain, a critical need in view of the current opioid crisis.
Collapse
Affiliation(s)
- Geoffroy Laumet
- Department of Physiology, Michigan State University, East Lansing, MI, United States.,Laboratories of Neuroimmunology, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jiacheng Ma
- Laboratories of Neuroimmunology, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Alfred J Robison
- Department of Physiology, Michigan State University, East Lansing, MI, United States
| | - Susmita Kumari
- Laboratories of Neuroimmunology, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Cobi J Heijnen
- Laboratories of Neuroimmunology, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Annemieke Kavelaars
- Laboratories of Neuroimmunology, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
7
|
Yan XB, Zhao YF, Yang YM, Wang N, He BZ, Qiu XT. Impact of astrocyte and lymphocyte interactions on the blood-brain barrier in multiple sclerosis. Rev Neurol (Paris) 2019; 175:396-402. [PMID: 31027862 DOI: 10.1016/j.neurol.2018.12.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/12/2018] [Accepted: 12/28/2018] [Indexed: 11/25/2022]
Abstract
OBJECTIVE This study was designed to investigate the impact of astrocyte and lymphocyte (LC) interactions in the blood-brain barrier (BBB) on the pathogenesis of multiple sclerosis (MS). METHODS Primary rat brain microvascular endothelial cells (rBMECs) and astrocytes isolated from Sprague-Dawley rats were used to establish in vitro BBB models. Transendothelial electrical resistance (TEER) and permeability were compared between rBMEC monocultures and rBMEC/astrocyte co-cultures to evaluate the validity of each as a BBB cell model. rBMEC/LC co-cultures and rBMEC/astrocyte/LC tri-cultures were established to evaluate inflammatory responses in MS by measuring the gene expression levels of nerve growth factor (NGF), matrix metalloproteinase 2 (MMP-2), matrix metalloproteinase 9 (MMP-9), interleukin 17 (IL-17), interferon γ (IFN-γ), and forkhead box P3 (Foxp3). RESULTS The rBMEC/astrocyte co-cultures exhibited higher TEER values and lower lymphocyte permeabilities than those of rBMEC monocultures. Compared to the rBMEC mono-cultures, the rBMEC/astrocyte/LC tri-cultures showed significantly decreased NGF, IL-17, and IFN-γ and increased MMP-2 and Foxp3 expression. Furthermore, the tri-cultures exhibited decreased NGF, IL-17, and IFN-γ expression compared to the rBMEC/astrocyte co-cultures, and increased MMP-2 expression compared to that shown by the rBMEC/LC co-cultures. MMP-9 expression did not vary significantly between the four established BBB cell models. CONCLUSION These results suggest that the synergistic effect between astrocytes and LCs may increase the expression of MMP-2 and decrease that of IL-17 and IFN-γ at the BBB. Furthermore, the use of rBMEC/astrocytes/LC tri-cultures enabled us to test the synergistic effect between astrocytes and LCs and their roles in MS pathogenesis.
Collapse
Affiliation(s)
- X-B Yan
- Department of Neurology, The Second Clinical Hospital of Harbin Medical University, 150086 Harbin, China.
| | - Y-F Zhao
- Department of Neurology, The Second Clinical Hospital of Harbin Medical University, 150086 Harbin, China
| | - Y-M Yang
- Department of Neurology, The Second Clinical Hospital of Harbin Medical University, 150086 Harbin, China
| | - N Wang
- Department of Neurology, The Second Clinical Hospital of Harbin Medical University, 150086 Harbin, China
| | - B-Z He
- The University of New South Wales, 2033 Kensington, Australia
| | - X-T Qiu
- Department of Neurology, The Second Clinical Hospital of Harbin Medical University, 150086 Harbin, China
| |
Collapse
|
8
|
Tatematsu Y, Khan Q, Blanco T, Bair JA, Hodges RR, Masli S, Dartt DA. Thrombospondin-1 Is Necessary for the Development and Repair of Corneal Nerves. Int J Mol Sci 2018; 19:ijms19103191. [PMID: 30332778 PMCID: PMC6214039 DOI: 10.3390/ijms19103191] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/09/2018] [Accepted: 10/10/2018] [Indexed: 01/27/2023] Open
Abstract
Thrombospondin-1-deficient (TSP-1-/-) mice are used as an animal model of Sjögren's Syndrome because they exhibit many of the symptoms associated with the autoimmune type of dry eye found in primary Sjögren's Syndrome. This type of dry eye is linked to the inflammation of the lacrimal gland, conjunctiva, and cornea, and is thought to involve dysfunction of the complex neuronal reflex arc that mediates tear production in response to noxious stimuli on the ocular surface. This study characterizes the structural and functional changes to the corneal nerves that are the afferent arm of this arc in young and older TSP-1-/- and wild type (WT) mice. The structure and subtype of nerves were characterized by immunohistochemistry, in vivo confocal microscopy, and confocal microscopy. Cytokine expression analysis was determined by Q-PCR and the number of monocytes was measured by immunohistochemistry. We found that only the pro-inflammatory cytokine MIP-2 increased in young corneas of TSP-1-/- compared to WT mice, but tumor necrosis factor-α (TNF-α), monocyte chemoattractant protein-1 (MCP-1), and macrophage inflammatory protein-2 (MIP-2) all increased in older TSP-1-/- mouse corneas. In contrast, CD11b+ pro-inflammatory monocytes did not increase even in older mouse corneas. Calcitonin gene-related peptide (CGRP)-, but not Substance P (SubP)-containing corneal nerves decreased in older, but not younger TSP-1-/- compared to WT mouse corneas. We conclude that CGRP-containing corneal sensory nerves exhibit distinct structural deficiencies as disease progresses in TSP-1-/- mice, suggesting that: (1) TSP-1 is needed for the development or repair of these nerves and (2) impaired afferent corneal nerve structure and hence function may contribute to ocular surface dysfunction that develops as TSP-1-/- mice age.
Collapse
Affiliation(s)
- Yukako Tatematsu
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA.
| | - Qalbi Khan
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA.
- Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, Tromsø 9037, Norway.
| | - Tomas Blanco
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA.
| | - Jeffrey A Bair
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA.
| | - Robin R Hodges
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA.
| | - Sharmila Masli
- Department of Ophthalmology, Boston University School of Medicine, Boston, MA 02118, USA.
| | - Darlene A Dartt
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
9
|
Nurkhametova D, Kudryavtsev I, Khayrutdinova O, Serebryakova M, Altunbaev R, Malm T, Giniatullin R. Purinergic Profiling of Regulatory T-cells in Patients With Episodic Migraine. Front Cell Neurosci 2018; 12:326. [PMID: 30319363 PMCID: PMC6167492 DOI: 10.3389/fncel.2018.00326] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 09/07/2018] [Indexed: 01/03/2023] Open
Abstract
Objectives: Immune responses in migraine are poorly characterized, yet implicated in the disease pathogenesis. This study was carried out to characterize purinergic profiles of T-cells in patients with episodic migraine without aura (MWoA) to provide mechanistic evidence for ATP and adenosine involvement in modulation of immune regulation in migraine. Methods: Peripheral blood samples were obtained from patients with migraine (n = 16) and age-matched control subjects (n = 21). Subsets of T-cells were identified by flow cytometry based on specific membrane markers. Results: Migraine patients showed reduced total T-cell counts in the peripheral blood. Whereas the total number of CD3+CD4+, CD3+CD8+, or regulatory T lymphocytes (Treg) was not changed, the proportion of Treg CD45R0+CD62L- and CD45R0-CD62L- cells was increased. Interestingly, in migraine, less Treg cells expressed CD39 and CD73 suggesting disrupted ATP breakdown to adenosine. The negative correlations were observed between the duration of migraine and the relative number of CD73+CD39- Tregs and total number of CD73-positive CD45R0+CD62L+ Tregs. Conclusion: Obtained data indicate that T-cell populations are altered in episodic migraine and suggest the involvement of Tregs in the pathophysiology of this disorder. Reduced expression of CD39 and CD73 suggests promotion of ATP-dependent pro-inflammatory and reduction of adenosine-mediated anti-inflammatory mechanisms in migraine.
Collapse
Affiliation(s)
- Dilyara Nurkhametova
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia
| | - Igor Kudryavtsev
- Department of Immunology, Institute of Experimental Medicine, St. Petersburg, Russia
- Department of Fundamental Medicine, Far Eastern Federal University, Vladivostok, Russia
| | - Olga Khayrutdinova
- Department of Neurology and Rehabilitation, Kazan State Medical University, Kazan, Russia
| | - Maria Serebryakova
- Department of Immunology, Institute of Experimental Medicine, St. Petersburg, Russia
| | - Rashid Altunbaev
- Department of Neurology and Rehabilitation, Kazan State Medical University, Kazan, Russia
| | - Tarja Malm
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Rashid Giniatullin
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia
| |
Collapse
|
10
|
Immunotherapeutic effects of lymphocytes co-cultured with human cord blood-derived multipotent stem cells transplantation on APP/PS1 mice. Behav Brain Res 2016; 315:94-102. [PMID: 27528555 DOI: 10.1016/j.bbr.2016.08.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 08/09/2016] [Accepted: 08/11/2016] [Indexed: 01/24/2023]
Abstract
Alzheimer's disease (AD) is an inexorable neurodegenerative disease that involves neuroinflammation in the brain, in addition to abnormal accumulation of amyloid-β (Aβ) and hyperphosphorylated tau. Evidence shows that human cord blood-derived multipotent stem cells (CB-SCs) can modulate autoimmune responses by altering regulatory T cells (Tregs). Our previous study found that CB-SCs could regulate the peripheral immune system of AD patients in vitro, mainly increasing the proportion of Tregs and anti-inflammatory cytokines. To further investigate the effects of lymphocytes co-cultured with CB-SCs on AD, the APP/PS1 mice received monthly transplants of lymphocytes co-cultured with CB-SCs for 4 months. Then, the ethological and biochemical experiments were conducted. We found that APP/PS1 mice injected with lymphocytes co-cultured with CB-SCs showed improved spatial learning, which significantly correlated with fewer Aβ plaques in brain. The present study also indicated that lymphocytes co-cultured with CB-SCs could promote the protective and reparative cytokines in the peripheral blood and brain to alleviate neuroinflammation in AD mice. These findings conclude that the systemic transplantation of lymphocytes co-cultured with CB-SCs can improve cognitive and pathological impairment of APP/PS1 mice via an immunomodulatory effect.
Collapse
|