1
|
Hirsch TI, Tsikis ST, Fligor SC, Pan AS, Wang SZ, Quigley M, Dadi S, Kishikawa H, Mitchell PD, Niaudet C, Bielenberg DR, Puder M. Systemic heparin administration impairs lung development in neonatal mice. Sci Rep 2025; 15:15273. [PMID: 40312554 PMCID: PMC12046039 DOI: 10.1038/s41598-025-99831-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 04/23/2025] [Indexed: 05/03/2025] Open
Abstract
Preterm infants born in the saccular stage of lung development are at risk for developing bronchopulmonary dysplasia (BPD). Oxygen toxicity and volutrauma are identified as major contributors of BPD. Despite mitigation of these risks preterm infants continue to be affected by chronic lung disease. Heparin is commonly administered to preterm infants and is known to interfere with angiogenesis, a critical element of lung development. We previously demonstrated, in a murine model, that compensatory lung growth after left pneumonectomy is inhibited by heparin administration. Based on these results, we hypothesized that heparin would interfere with lung development in neonatal mice, which are born during the saccular phase of lung development. Newborn C57BL/6J mice received either therapeutic unfractionated heparin (UFH), low molecular weight heparin (LMWH) or normal saline (control) for the first week of life. At one month, both UFH and LMWH produced an emphysematous lung phenotype. Late administration of heparin, after the saccular phase did not impact lung function or growth. This data establishes the negative effects of UFH and LMWH during the critical period of postnatal lung development. Based on this work, clinical studies on the impact of heparin on lung development of newborn and preterm infants are warranted.
Collapse
Affiliation(s)
- Thomas I Hirsch
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Surgery, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave, Fegan 3, Boston, MA, 02115, USA
| | - Savas T Tsikis
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Surgery, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave, Fegan 3, Boston, MA, 02115, USA
| | - Scott C Fligor
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Surgery, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave, Fegan 3, Boston, MA, 02115, USA
| | - Amy Shei Pan
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Surgery, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave, Fegan 3, Boston, MA, 02115, USA
| | - Sarah Z Wang
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Surgery, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave, Fegan 3, Boston, MA, 02115, USA
| | - Mikayla Quigley
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Surgery, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave, Fegan 3, Boston, MA, 02115, USA
| | - Srujan Dadi
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Hiroko Kishikawa
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Paul D Mitchell
- Biostatistics and Research Design Center, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Colin Niaudet
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Diane R Bielenberg
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Mark Puder
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
- Department of Surgery, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave, Fegan 3, Boston, MA, 02115, USA.
| |
Collapse
|
2
|
Fan W, Fu D, Zhang L, Xiao Z, Shen X, Chen J, Qi X. Enoxaparin sodium bone cement plays an anti-inflammatory immunomodulatory role by inducing the polarization of M2 macrophages. J Orthop Surg Res 2023; 18:380. [PMID: 37221568 DOI: 10.1186/s13018-023-03865-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/18/2023] [Indexed: 05/25/2023] Open
Abstract
OBJECTIVE The implantation of PMMA bone cement results in an immune response and the release of PMMA bone cement particles causes an inflammatory cascade. Our study discovered that ES-PMMA bone cement can induce M2 polarization of macrophages, which has an anti-inflammatory immunomodulatory effect. We also delved into the molecular mechanisms that underlie this process. METHODS In this study, we designed and prepared samples of bone cement. These included PMMA bone cement samples and ES-PMMA bone cement samples, which were implanted into the back muscles of rats. At 3, 7, and 14 days after the operation, we removed the bone cement and a small amount of surrounding tissue. We then performed immunohistochemistry and immunofluorescence to observe the polarization of macrophages and the expression of related inflammatory factors in the surrounding tissues. The RAW264.7 cells were exposed to lipopolysaccharide (LPS) for 24 h to establish the macrophage inflammation model. Then, each group was treated with enoxaparin sodium medium, PMMA bone cement extract medium, and ES-PMMA bone cement extract medium, respectively, and cultured for another 24 h. We collected cells from each group and used flow cytometry to detect the expressions of CD86 and CD206 in macrophages. Additionally, we performed RT-qPCR to determine the mRNA levels of three markers of M1 macrophages (TNF-α, IL-6, iNOS) and two M2 macrophage markers (Arg-1, IL-10). Furthermore, we analyzed the expression of TLR4, p-NF-κB p65, and NF-κB p65 through Western blotting. RESULTS The immunofluorescence results indicate that the ES-PMMA group exhibited an upregulation of CD206, an M2 marker, and a downregulation of CD86, an M1 marker, in comparison to the PMMA group. Additionally, the immunohistochemistry results revealed that the levels of IL-6 and TNF-α expression were lower in the ES-PMMA group than in the PMMA group, while the expression level of IL-10 was higher in the ES-PMMA group. Flow cytometry and RT-qPCR analyses revealed that the expression of M1-type macrophage marker CD86 was significantly elevated in the LPS group compared to the NC group. Additionally, M1-type macrophage-related cytokines TNF-α, IL-6, and iNOS were also found to be increased. However, in the LPS + ES group, the expression levels of CD86, TNF-α, IL-6, and iNOS were decreased, while the expression of M2-type macrophage markers CD206 and M2-type macrophage-related cytokines (IL-10, Arg-1) were increased compared to the LPS group. In comparison to the LPS + PMMA group, the LPS + ES-PMMA group demonstrated a down-regulation of CD86, TNF-α, IL-6, and iNOS expression levels, while increasing the expression levels of CD206, IL-10, and Arg-1. Western blotting results revealed a significant decrease in TLR4/GAPDH and p-NF-κB p65/NF-κB p65 in the LPS + ES group when compared to the LPS group. Additionally, the LPS + ES-PMMA group exhibited a decrease in TLR4/GAPDH and p-NF-κB p65/NF-κB p65 levels when compared to the LPS + PMMA group. CONCLUSION ES-PMMA bone cement is more effective than PMMA bone cement in down-regulating the expression of the TLR4/NF-κB signaling pathway. Additionally, it induces macrophages to polarize towards the M2 phenotype, making it a crucial player in anti-inflammatory immune regulation.
Collapse
Affiliation(s)
- Weiye Fan
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, 050035, People's Republic of China
| | - Dehao Fu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Li Zhang
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, 050035, People's Republic of China
| | - Zhihang Xiao
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, 050035, People's Republic of China
| | - Xiaoyu Shen
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, 050035, People's Republic of China
| | - Jianchao Chen
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, 050035, People's Republic of China
| | - Xiangbei Qi
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, 050035, People's Republic of China.
| |
Collapse
|
3
|
Yang X, Wang Q, Zhang A, Shao X, Liu T, Tang B, Fang G. Strategies for sustained release of heparin: A review. Carbohydr Polym 2022; 294:119793. [PMID: 35868762 DOI: 10.1016/j.carbpol.2022.119793] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/18/2022] [Accepted: 06/25/2022] [Indexed: 11/28/2022]
Abstract
Heparin, a sulfate-containing linear polysaccharide, has proven preclinical and clinical efficacy for a variety of disorders. Heparin, including unfractionated heparin (UFH), low-molecular-weight heparin (LMWH), and ultra-low-molecular-weight heparin (ULMWH), is administered systematically, in the form of a solution in the clinic. However, it is eliminated quickly, due to its short half-life, especially in the case of UFH and LMWH. Frequent administration is required to ensure its therapeutic efficacy, leading to poor patient compliance. Moreover, heparin is used to coat blood-contacting medical devices to avoid thrombosis through physical interaction. However, the short-term durability of heparin on the surface of the stent limits its further application. Various advanced sustained-release strategies have been used to prolong its half-life in vivo as preparation technologies have improved. Herein, we briefly introduce the pharmacological activity and mechanisms of action of heparin. In addition, the strategies for sustained release of heparin are comprehensively summarized.
Collapse
Affiliation(s)
- Xuewen Yang
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province, 226001, China
| | - Qiuxiang Wang
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province, 226001, China
| | - Aiwen Zhang
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province, 226001, China
| | - Xinyao Shao
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province, 226001, China
| | - Tianqing Liu
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia
| | - Bo Tang
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province, 226001, China.
| | - Guihua Fang
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province, 226001, China.
| |
Collapse
|
4
|
Ethanol Extracts of Rice Bran and Whole Grain Adlay Seeds Mitigate Colonic Inflammation and Damage in Mice with Colitis. Nutrients 2022; 14:nu14183877. [PMID: 36145253 PMCID: PMC9506450 DOI: 10.3390/nu14183877] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/08/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
Ulcerative colitis (UC) is a chronic inflammatory bowel disease with frequent relapsing inflammation in the colon. Whole grains have been promoted as healthy and sustainable foods; however, the use of whole gains in UC is inconclusive. The aim of this study was to investigate the effects of ethanol extracts of rice bran (RBE) and whole-grain adlay seeds (ADE) on inflammation, oxidative stress, and colonic damage in UC. Male C57BL/6JNarl mice were intra-rectal injected twice with 2,4-dinitrobenzene sulfonic acid to induce (day 0) and reactivate (day 21) UC. Control mice were fed AIN-93M diet (R group) and injected with a vehicle. UC mice were fed AIN-93M diet (UC group) supplemented with RBE (RBE group) or ADE (ADE group) for 21 days. The results showed that the UC group had an increased disease activity index, plasma interleukin (IL)-6 and glutathione levels, microscopic injury scores, and inflammatory cytokine and chemokine levels in the colon and decreased colonic claudin-4 compared to the R group. RBE and ADE supplementation significantly reduced UC-elevated plasma IL-6 and colonic glutathione and pro-inflammatory cytokines and a chemokine. In addition, RBE and ADE supplementation significantly decreased T-helper-cell-associated cytokines in the plasma and colon. Moreover, RBE supplementation increased colonic IL-10 and tight junction protein claudin-4 levels, and ADE supplementation alleviated diarrhea in UC mice. In conclusion, these results suggest that RBE and ADE may mitigate colonic inflammation, oxidative stress, and damage in UC relapse.
Collapse
|
5
|
Ho SW, El-Nezami H, Corke H, Ho CS, Shah NP. L-citrulline enriched fermented milk with Lactobacillus helveticus attenuates dextran sulfate sodium (DSS) induced colitis in mice. J Nutr Biochem 2021; 99:108858. [PMID: 34587540 DOI: 10.1016/j.jnutbio.2021.108858] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 05/28/2021] [Accepted: 07/25/2021] [Indexed: 11/30/2022]
Abstract
Inflammatory bowel disease (IBD) is a group of chronic inflammatory gastrointestinal diseases that causes worldwide suffering. L. helveticus is a probiotic that can enhance intestinal barrier function via alleviation of excessive inflammatory response. Citrulline, a functional amino acid, has been reported to stimulate muscle synthesis and to function with a prebiotic-like action with certain Lactobacillus strains. The aim of this study was to investigate the potential synergistic effect of combining L. helveticus and citrulline on protection against damage induced by dextran sulfate sodium (DSS) in a mouse model. 6-week-old male C57BL/6J mice were fed with DSS water and randomly divided for administering with different milk treatments: 1) plain milk (control or DSS control), 2) 1% (w/v) citrulline enriched milk (Cit_milk), 3) milk fermented with L. helveticus (LHFM) and 4) DSS+milk fermented with L. helveticus with 1% (w/v) citrulline (Cit_LHFM). The treatment effects on the survival and macroscopic and microscopic signs were examined. All treatments presented different degrees of protective effects on attenuating the damages induced by DSS. All treatments reduced the body weight loss, disease activity index (DAI), histological scores, pro-inflammatory cytokine expression (IL-6, TNF-α and IFN-γ) and production (IL-4) (all P <0.05) and the tight junction (TJ) protein (zonula occluden-1 (ZO-1) expression. LHFM and Cit_LHFM improved survival rate (both at P<0.05). Particularly, Cit_LHFM showed greater effects on protecting the damages induced by DSS, especially in ameliorating colonic permeability, TJ protein (ZO-1, occludin and claudin-1) expression and distribution as well as in reducing IL-4 and IL-17 expression (all P <0.05). Our findings suggested that the combination of and citrulline had significant synergistic effect on protecting against injury from DSS-induced colitis. Therefore, citrulline enriched L. helveticus fermented milk is suggested to be a potential therapy for treating IBD.
Collapse
Affiliation(s)
- Sze Wing Ho
- Food and Nutritional Science, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong
| | - Hani El-Nezami
- Food and Nutritional Science, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong
| | - Harold Corke
- Biotechnology and Food Engineering Program, Guangdong Technion-Israel Institute of Technology, Shantou, Guangdong, China; Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Chun Sing Ho
- Department of Pathology, Tuen Mun Hospital, Tuen Mun, Hong Kong
| | - Nagendra P Shah
- Food and Nutritional Science, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong.
| |
Collapse
|
6
|
Liu Y, Wang B, Xu H, Ge W, Xie Y, Zhang M, Kong M, Fan W. Synergistic Effect of Diacylglycerol and Vitamin D in Ameliorating Dextran Sodium Sulfate-Induced Colitis in Rats. Lipids 2020; 55:585-598. [PMID: 32419184 DOI: 10.1002/lipd.12248] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/29/2020] [Accepted: 04/29/2020] [Indexed: 11/09/2022]
Abstract
Vitamin D (VD) has the function of antibacteria and protect intestinal mucosa. Diacylglycerol has the property of dissolving VD, anti-bacterial, and antioxidant effects. The purpose of this study was to explore the potentially synergistic effects of diacylglycerol and VD in ameliorating dextran sodium sulfate-induced colitis in rats. A 2 × 3 factorial design was used in this experiment, consisting of two levels of VD (2.5 and 5 μg/day) crossed with three levels of duck oil diacylglycerol (0.5, 1, and 2 mL/day). The experiment lasted for 2 weeks. Compared with the colitis group, the physiological indexes were altered in colitis rats treated with diacylglycerol and VD, the concentrations of the pro-inflammatory indices were significantly reduced, the antioxidant enzyme activities were significantly increased, the diversity of caecal microflora was significantly increased. Besides, the expression of PPARγ was up-regulated while the expression of NF-κBp65 was downregulated. The changes of all those measures were toward those in the Healthy Control, and the mostly appropriate combination was 1 mL/day of diacylglycerol plus 2.5 μg/day VD.
Collapse
Affiliation(s)
- Yanan Liu
- Department of Food Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Baowei Wang
- Department of Food Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China.,National Waterfowl Industry Technical System Nutrition and Feed Function Laboratory, Qingdao, 266109, China
| | - Huixin Xu
- Department of Food Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Wenhua Ge
- National Waterfowl Industry Technical System Nutrition and Feed Function Laboratory, Qingdao, 266109, China
| | - Yue Xie
- Department of Food Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Mingai Zhang
- Department of Food Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Min Kong
- National Waterfowl Industry Technical System Nutrition and Feed Function Laboratory, Qingdao, 266109, China
| | - Wenlei Fan
- Department of Food Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| |
Collapse
|
7
|
Characteristics of Hemorheology in Patients with Acute Severe Ulcerative Colitis and the Clinical Study of Rivaroxaban Anticoagulant Therapy. HEPATITIS MONTHLY 2020. [DOI: 10.5812/hepatmon.92536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
8
|
Idebenone Protects against Acute Murine Colitis via Antioxidant and Anti-Inflammatory Mechanisms. Int J Mol Sci 2020; 21:ijms21020484. [PMID: 31940911 PMCID: PMC7013829 DOI: 10.3390/ijms21020484] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/09/2020] [Accepted: 01/09/2020] [Indexed: 12/24/2022] Open
Abstract
Oxidative stress is a key player of the inflammatory cascade responsible for the initiation of ulcerative colitis (UC). Although the short chain quinone idebenone is considered a potent antioxidant and a mitochondrial electron donor, emerging evidence suggests that idebenone also displays anti-inflammatory activity. This study evaluated the impact of idebenone in the widely used dextran sodium sulphate (DSS)-induced mouse model of acute colitis. Acute colitis was induced in C57BL/6J mice via continuous exposure to 2.5% DSS over 7 days. Idebenone was co-administered orally at a dose of 200 mg/kg body weight. Idebenone significantly prevented body weight loss and improved the disease activity index (DAI), colon length, and histopathological score. Consistent with its reported antioxidant function, idebenone significantly reduced the colonic levels of malondialdehyde (MDA) and nitric oxide (NO), and increased the expression of the redox factor NAD(P)H (nicotinamide adenine dinucleotide phosphate) dehydrogenase quinone-1 (NQO-1) in DSS-exposed mice. Immunohistochemistry revealed a significantly increased expression of tight junction proteins, which protect and maintain paracellular intestinal permeability. In support of an anti-inflammatory activity, idebenone significantly attenuated the elevated levels of pro-inflammatory cytokines in colon tissue. These results suggest that idebenone could represent a promising therapeutic strategy to interfere with disease pathology in UC by simultaneously inducing antioxidative and anti-inflammatory pathways.
Collapse
|
9
|
Shinde T, Perera AP, Vemuri R, Gondalia SV, Karpe AV, Beale DJ, Shastri S, Southam B, Eri R, Stanley R. Synbiotic Supplementation Containing Whole Plant Sugar Cane Fibre and Probiotic Spores Potentiates Protective Synergistic Effects in Mouse Model of IBD. Nutrients 2019; 11:E818. [PMID: 30979002 PMCID: PMC6521199 DOI: 10.3390/nu11040818] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/09/2019] [Accepted: 04/10/2019] [Indexed: 12/20/2022] Open
Abstract
Inflammatory bowel diseases (IBD) are a chronic inflammatory disorders with increasing global incidence. Synbiotic, which is a two-point approach carrying probiotic and prebiotic components in mitigating inflammation in IBD, is thought to be a pragmatic approach owing to the synergistic outcomes. In this study, the impacts of dietary supplementation with probiotic Bacillus coagulans MTCC5856 spores (B. coagulans) and prebiotic whole plant sugar cane fibre (PSCF) was assessed using a murine model of IBD. Eight-week-old C57BL/6 mice were fed a normal chow diet supplemented with either B. coagulans, PSCF or its synbiotic combination. After seven days of supplementation, colitis was induced with dextran sulfate sodium (DSS) in drinking water for seven days during the continuation of the supplemented diets. Synbiotic supplementation ameliorated disease activity index and histological score (-72%, 7.38, respectively), more effectively than either B. coagulans (-47%, 10.1) and PSCF (-53%, 13.0) alone. Synbiotic supplementation also significantly (p < 0.0001) prevented the expression of tight junction proteins and modulated the altered serum IL-1β (-40%), IL-10 (+26%), and C-reactive protein (CRP) (-39%) levels. Synbiotic supplementations also raised the short-chain fatty acids (SCFA) profile more extensively compared to the unsupplemented DSS-control. The synbiotic health outcome effect of the probiotic and prebiotic combinations may be associated with a synergistic direct immune-regulating efficacy of the components, their ability to protect epithelial integrity, stimulation of probiotic spores by the prebiotic fibre, and/or with stimulation of greater levels of fermentation of fibres releasing SCFAs that mediate the reduction in colonic inflammation. Our model findings suggest synbiotic supplementation should be tested in clinical trials.
Collapse
Affiliation(s)
- Tanvi Shinde
- Centre for Food Safety and Innovation, Tasmanian Institute of Agriculture, University of Tasmania, Launceston, TAS 7250, Australia.
- School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, TAS 7250, Australia.
| | - Agampodi Promoda Perera
- School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, TAS 7250, Australia.
| | - Ravichandra Vemuri
- School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, TAS 7250, Australia.
| | - Shakuntla V Gondalia
- Centre for Human Psychopharmacology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia.
| | - Avinash V Karpe
- Land and Water, Commonwealth Scientific and Industrial Research Organization (CSIRO), Ecosciences Precinct, Dutton Park, QLD 4102, Australia.
| | - David J Beale
- Land and Water, Commonwealth Scientific and Industrial Research Organization (CSIRO), Ecosciences Precinct, Dutton Park, QLD 4102, Australia.
| | - Sonia Shastri
- School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, TAS 7250, Australia.
| | - Benjamin Southam
- School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, TAS 7250, Australia.
| | - Rajaraman Eri
- School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, TAS 7250, Australia.
| | - Roger Stanley
- Centre for Food Safety and Innovation, Tasmanian Institute of Agriculture, University of Tasmania, Launceston, TAS 7250, Australia.
| |
Collapse
|
10
|
Mushroom polysaccharide lentinan for treating different types of cancers: A review of 12 years clinical studies in China. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 163:297-328. [DOI: 10.1016/bs.pmbts.2019.02.013] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
11
|
Perera AP, Fernando R, Shinde T, Gundamaraju R, Southam B, Sohal SS, Robertson AAB, Schroder K, Kunde D, Eri R. MCC950, a specific small molecule inhibitor of NLRP3 inflammasome attenuates colonic inflammation in spontaneous colitis mice. Sci Rep 2018; 8:8618. [PMID: 29872077 PMCID: PMC5988655 DOI: 10.1038/s41598-018-26775-w] [Citation(s) in RCA: 219] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 03/01/2018] [Indexed: 12/28/2022] Open
Abstract
MCC950 a potent, highly specific small molecule inhibitor of canonical and noncanonical activation of NLRP3 inflammasome has been evaluated in a multitude of NLRP3 driven inflammatory diseases. However, the effect of MCC950 on colonic inflammation has not yet been reported. In the present study we investigated the effect of MCC950 in a spontaneous chronic colitis mouse model Winnie, which mimics human ulcerative colitis. Oral administration of 40 mg/kg MCC950 commencing at Winnie week seven for three weeks significantly improved body weight gain, colon length, colon weight to body weight ratio, disease activity index and histopathological scores. MCC950 significantly suppressed release of proinflammatory cytokines IL-1β, IL-18, IL1-α, IFNγ, TNF-α, IL6, IL17, chemokine MIP1a and Nitric Oxide in colonic explants. Moreover, MCC950 resulted in a significant decrease of IL-1β release and activation of caspase-1 in colonic explants and macrophage cells isolated from Winnie. Complete inhibition with MCC950 in Winnie colonic explants shows, for the first time, the contribution of inflammatory effects resulting exclusively from canonical and noncanonical NLRP3 inflammasome activation in colitis. Taken together, our results illustrate the efficacy of MCC950 in the treatment of murine ulcerative colitis and provides avenue for a potential novel therapeutic agent for human inflammatory bowel diseases.
Collapse
Affiliation(s)
| | - Ruchira Fernando
- Department of Pathology, Launceston General Hospital, Launceston, TAS, Australia
| | - Tanvi Shinde
- School of Health Sciences, University of Tasmania, Launceston, TAS, Australia
| | - Rohit Gundamaraju
- School of Health Sciences, University of Tasmania, Launceston, TAS, Australia
| | - Benjamin Southam
- School of Health Sciences, University of Tasmania, Launceston, TAS, Australia
| | | | - Avril A B Robertson
- Institute for Molecular Bioscience, University of Queensland, St Lucia, QLD, Australia
| | - Kate Schroder
- Institute for Molecular Bioscience, University of Queensland, St Lucia, QLD, Australia
| | - Dale Kunde
- School of Health Sciences, University of Tasmania, Launceston, TAS, Australia
| | - Rajaraman Eri
- School of Health Sciences, University of Tasmania, Launceston, TAS, Australia.
| |
Collapse
|
12
|
Liu W, Guo W, Hang N, Yang Y, Wu X, Shen Y, Cao J, Sun Y, Xu Q. MALT1 inhibitors prevent the development of DSS-induced experimental colitis in mice via inhibiting NF-κB and NLRP3 inflammasome activation. Oncotarget 2017; 7:30536-49. [PMID: 27105502 PMCID: PMC5058699 DOI: 10.18632/oncotarget.8867] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 03/31/2016] [Indexed: 12/25/2022] Open
Abstract
Mucosa-associated-lymphoid-tissue lymphoma-translocation gene 1 (MALT1), a paracaspase and essential regulator for nuclear factor kB (NF-κB) activation, plays an important role in innate and adaptive immunity. Suppression of MALT1 protease activity with small molecule inhibitors showed promising efficacies in subtypes of B cell lymphoma and improvement in experimental autoimmune encephalomyelitis model. However, whether MALT1 inhibitors could ameliorate colitis remains unclear. In the present study, we examined the pharmacological effect of two specific MALT1 inhibitors MI-2 and mepazine on the dextran sulfate sodium (DSS)-induced experimental colitis in mice, followed by mechanistic analysis on NF-κB and NLRP3 inflammasome activation. Treatment with MI-2 and mepazine dose-dependently attenuated symptoms of colitis in mice, evidenced by reduction in the elevated disease activity index, the shortening of colon length as well as the histopathologic improvement. Moreover, protein and mRNA levels of DSS-induced proinflammatory cytokines in colon, including TNF, IL-1β, IL-6, IL-18, IL-17A and IFN-γ, were markedly suppressed by MALT1 inhibitors. The underlying mechanisms for the protective effect of MALT1 inhibitors in DSS-induced colitis may be attributed to its inhibition on NF-κB and NLRP3 inflammasome activation in macrophages. The in vitro study showed that MALT1 inhibitors decreased production of IL-1β/IL-18 in phorbol myristate acetate-differentiated THP-1 cells and bone marrow derived macrophage via suppressing the activation of NF-κB and NLRP3 inflammasome. Taken together, our results demonstrated that inhibition of the protease activity of MALT1 might be a viable strategy to treat inflammatory bowel disease and the NLRP3 inflammasome and NF-κB activation are critical components in MALT1 signaling cascades in this disease model.
Collapse
Affiliation(s)
- Wen Liu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Wenjie Guo
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Nan Hang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Yuanyuan Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Xuefeng Wu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Yan Shen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Jingsong Cao
- Eternity Bioscience Inc, Cranbury, NJ 08512, USA
| | - Yang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China
| |
Collapse
|
13
|
Yazeji T, Moulari B, Beduneau A, Stein V, Dietrich D, Pellequer Y, Lamprecht A. Nanoparticle-based delivery enhances anti-inflammatory effect of low molecular weight heparin in experimental ulcerative colitis. Drug Deliv 2017; 24:811-817. [PMID: 28509629 PMCID: PMC8240985 DOI: 10.1080/10717544.2017.1324530] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 04/25/2017] [Indexed: 01/07/2023] Open
Abstract
Epithelial administration of low molecular weight heparin (LMWH) has proven its therapeutic efficiency in ulcerative colitis (UC) but still lacks of a sufficiently selective drug delivery system. Polymeric nanoparticles were used here not only to protect LMWH from intestinal degradation but also to provide targeted delivery to inflamed tissue in experimental colitis mice. LMWH was associated with polymethacrylate nanoparticles (NP) type A (PEMT-A) or type B (PEMT-B) of a size: 150 nm resulting in a maximum drug loading: 0.1 mg/mg. In a lipopolysaccharide-stimulated macrophages both, free LMWH and LMWH-NP have significantly reduced the cytokines secretion independently from cellular uptake. The in-vivo therapeutic efficiency was dose dependent as at low doses (100 IU/kg) only minor differences between free LMWH and LMWH-NP were found and the superiority of LMWH-NP became prominent with dose increase (500 IU/kg). Administration of LMWH-NP at 500 IU/kg has markedly improved the clinical activity as compared to LMWH while similarly pathophysiological indicators revealed increased therapeutic outcome in presence of NP compared to LMWH alone: Myeloperoxidase (Colitis control: 10 480 ± 5335, LMWH-PEMT-A NP: 1507 ± 2165, LMWH-PEMT-B NP: 382 ± 143, LMWH: 8549 ± 5021 units/g) and tumor necrosis factor: (Colitis control: 1636 ± 544, LMWH-PEMT-A NP: 511 ± 506, LMWH-PEMT-B NP: 435 ± 473, LMWH: 1110 ± 309 pg/g). Associating LMWH with NP is improving the anti-inflammatory efficiency of LMWH in-vivo by its protection against degradation in luminal environment and selective drug delivery. Such a combination holds promise for a highly specific therapy by its double selectivity towards the inflamed intestinal tissue. LMWH-PEMT NP have significantly improved the clinical activity in-vivo in comparison to free LMWH.
Collapse
Affiliation(s)
- Tawfek Yazeji
- Department of Pharmaceutics, University of Bonn, Bonn, Germany
| | | | | | - Valentin Stein
- Institute of Physiology II, Medical Faculty, University of Bonn, Bonn, Germany, and
| | - Dirk Dietrich
- Department of Neurosurgery, University of Bonn, Bonn, Germany
| | | | - Alf Lamprecht
- Department of Pharmaceutics, University of Bonn, Bonn, Germany
- FDE EA4267University of Burgundy, Besançon, France
| |
Collapse
|
14
|
Heparin and Heparin-Derivatives in Post-Subarachnoid Hemorrhage Brain Injury: A Multimodal Therapy for a Multimodal Disease. Molecules 2017; 22:molecules22050724. [PMID: 28468328 PMCID: PMC6154575 DOI: 10.3390/molecules22050724] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 04/24/2017] [Accepted: 04/26/2017] [Indexed: 12/23/2022] Open
Abstract
Pharmacologic efforts to improve outcomes following aneurysmal subarachnoid hemorrhage (aSAH) remain disappointing, likely owing to the complex nature of post-hemorrhage brain injury. Previous work suggests that heparin, due to the multimodal nature of its actions, reduces the incidence of clinical vasospasm and delayed cerebral ischemia that accompany the disease. This narrative review examines how heparin may mitigate the non-vasospastic pathological aspects of aSAH, particularly those related to neuroinflammation. Following a brief review of early brain injury in aSAH and heparin’s general pharmacology, we discuss potential mechanistic roles of heparin therapy in treating post-aSAH inflammatory injury. These roles include reducing ischemia-reperfusion injury, preventing leukocyte extravasation, modulating phagocyte activation, countering oxidative stress, and correcting blood-brain barrier dysfunction. Following a discussion of evidence to support these mechanistic roles, we provide a brief discussion of potential complications of heparin usage in aSAH. Our review suggests that heparin’s use in aSAH is not only safe, but effectively addresses a number of pathologies initiated by aSAH.
Collapse
|
15
|
Sanderlin EJ, Leffler NR, Lertpiriyapong K, Cai Q, Hong H, Bakthavatchalu V, Fox JG, Oswald JZ, Justus CR, Krewson EA, O'Rourke D, Yang LV. GPR4 deficiency alleviates intestinal inflammation in a mouse model of acute experimental colitis. Biochim Biophys Acta Mol Basis Dis 2016; 1863:569-584. [PMID: 27940273 DOI: 10.1016/j.bbadis.2016.12.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 11/13/2016] [Accepted: 12/06/2016] [Indexed: 02/07/2023]
Abstract
GPR4 is a proton-sensing G protein-coupled receptor that can be activated by extracellular acidosis. It has recently been demonstrated that activation of GPR4 by acidosis increases the expression of numerous inflammatory and stress response genes in vascular endothelial cells (ECs) and also augments EC-leukocyte adhesion. Inhibition of GPR4 by siRNA or small molecule inhibitors reduces endothelial cell inflammation. As acidotic tissue microenvironments exist in many types of inflammatory disorders, including inflammatory bowel disease (IBD), we examined the role of GPR4 in intestinal inflammation using a dextran sulfate sodium (DSS)-induced acute colitis mouse model. We observed that GPR4 mRNA expression was increased in mouse and human IBD tissues when compared to control intestinal tissues. To determine the function of GPR4 in intestinal inflammation, wild-type and GPR4-deficient mice were treated with 3% DSS for 7days to induce acute colitis. Our results showed that the severity of colitis was decreased in GPR4-deficient DSS-treated mice in comparison to wild-type DSS-treated mice. Clinical parameters, macroscopic disease indicators, and histopathological features were less severe in the DSS-treated GPR4-deficient mice than the DSS-treated wild-type mice. Endothelial adhesion molecule expression, leukocyte infiltration, and isolated lymphoid follicle (ILF) formation were reduced in intestinal tissues of DSS-treated GPR4-null mice. Collectively, our results suggest GPR4 provides a pro-inflammatory role in the inflamed gut as the absence of GPR4 ameliorates intestinal inflammation in the acute experimental colitis mouse model.
Collapse
Affiliation(s)
- Edward J Sanderlin
- Department of Internal Medicine, Brody School of Medicine, East Carolina University, USA
| | - Nancy R Leffler
- Department of Internal Medicine, Brody School of Medicine, East Carolina University, USA
| | - Kvin Lertpiriyapong
- Department of Comparative Medicine, Brody School of Medicine, East Carolina University, USA
| | - Qi Cai
- Department of Pathology, Brody School of Medicine, East Carolina University, USA
| | - Heng Hong
- Department of Pathology, Brody School of Medicine, East Carolina University, USA
| | | | - James G Fox
- Division of Comparative Medicine, Massachusetts Institute of Technology, USA
| | - Joani Zary Oswald
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, USA
| | - Calvin R Justus
- Department of Internal Medicine, Brody School of Medicine, East Carolina University, USA
| | - Elizabeth A Krewson
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, USA
| | - Dorcas O'Rourke
- Department of Comparative Medicine, Brody School of Medicine, East Carolina University, USA
| | - Li V Yang
- Department of Internal Medicine, Brody School of Medicine, East Carolina University, USA; Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, USA.
| |
Collapse
|
16
|
Ozkececi ZT, Gonul Y, Karavelioglu A, Bozkurt MF, Kacar E, Bal A, Ozsoy M, Turamanlar O, Celep B. The effect of enoxaparin on seroma and mesh-tissue adhesion in a hernia model. Clin Exp Pharmacol Physiol 2016; 43:690-7. [DOI: 10.1111/1440-1681.12582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 04/07/2016] [Accepted: 04/21/2016] [Indexed: 11/29/2022]
Affiliation(s)
- Ziya T Ozkececi
- Department of General Surgery; Afyon Kocatepe University; Afyonkarahisar Turkey
| | - Yucel Gonul
- Department of Anatomy; Afyon Kocatepe University; Afyonkarahisar Turkey
| | - Afra Karavelioglu
- Department of Pediatric Surgery; Afyon Kocatepe University; Afyonkarahisar Turkey
| | - Mehmet F Bozkurt
- Department of Pathology; Faculty of Veterinary Medicine; Afyon Kocatepe University; Afyonkarahisar Turkey
| | - Emre Kacar
- Department of Radiology; Faculty of Medicine; Afyon Kocatepe University; Afyonkarahisar Turkey
| | - Ahmet Bal
- Department of General Surgery; Afyon Kocatepe University; Afyonkarahisar Turkey
| | - Mustafa Ozsoy
- Department of General Surgery; Afyon Kocatepe University; Afyonkarahisar Turkey
| | - Ozan Turamanlar
- Department of Anatomy; Afyon Kocatepe University; Afyonkarahisar Turkey
| | - Bahadir Celep
- Department of General Surgery; Afyon Kocatepe University; Afyonkarahisar Turkey
| |
Collapse
|
17
|
Lean QY, Gueven N, Eri RD, Bhatia R, Sohal SS, Stewart N, Peterson GM, Patel RP. Heparins in ulcerative colitis: proposed mechanisms of action and potential reasons for inconsistent clinical outcomes. Expert Rev Clin Pharmacol 2015; 8:795-811. [PMID: 26308504 DOI: 10.1586/17512433.2015.1082425] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Current drug therapies for ulcerative colitis (UC) are not completely effective in managing moderate-to-severe UC and approximately 20% of patients with severe UC require surgical interventions. Heparins, polydisperse mixtures of non-anticoagulant and anticoagulant oligosaccharides, are widely used as anticoagulants. However, heparins are also reported to have anti-inflammatory properties. Unfractionated heparin was initially used in patients with UC for the treatment of rectal microthrombi. Surprisingly, it was found to be effective in reducing UC-associated symptoms. Since then, several pre-clinical and clinical studies have reported promising outcomes of heparins in UC. In contrast, some controlled clinical trials demonstrated no or only limited benefits, thus the potential of heparins for the treatment of UC remains uncertain. This review discusses potential mechanisms of action of heparins, as well as proposed reasons for their contradictory clinical effectiveness in the treatment of UC.
Collapse
Affiliation(s)
- Qi Ying Lean
- a 1 Division of Pharmacy, School of Medicine, Faculty of Health, University of Tasmania , Hobart, Tasmania, Australia.,b 2 Faculty of Pharmacy, University of Technology MARA, Puncak Alam , Selangor, Malaysia
| | - Nuri Gueven
- a 1 Division of Pharmacy, School of Medicine, Faculty of Health, University of Tasmania , Hobart, Tasmania, Australia
| | - Rajaraman D Eri
- c 3 School of Health Sciences, Faculty of Health, University of Tasmania, Launceston , Tasmania, Australia
| | - Rajesh Bhatia
- d 4 Royal Hobart Hospital , Hobart, Tasmania, Australia
| | - Sukhwinder Singh Sohal
- c 3 School of Health Sciences, Faculty of Health, University of Tasmania, Launceston , Tasmania, Australia.,e 5 Breathe Well Centre of Research Excellence for Chronic Respiratory Disease and Lung Ageing, School of Medicine, Faculty of Health, University of Tasmania , Hobart, Tasmania, Australia
| | - Niall Stewart
- a 1 Division of Pharmacy, School of Medicine, Faculty of Health, University of Tasmania , Hobart, Tasmania, Australia
| | - Gregory M Peterson
- a 1 Division of Pharmacy, School of Medicine, Faculty of Health, University of Tasmania , Hobart, Tasmania, Australia.,e 5 Breathe Well Centre of Research Excellence for Chronic Respiratory Disease and Lung Ageing, School of Medicine, Faculty of Health, University of Tasmania , Hobart, Tasmania, Australia.,f 6 Health Services Innovation Tasmania, School of Medicine, Faculty of Health, University of Tasmania , Hobart, Tasmania, Australia
| | - Rahul P Patel
- a 1 Division of Pharmacy, School of Medicine, Faculty of Health, University of Tasmania , Hobart, Tasmania, Australia
| |
Collapse
|