1
|
Jamshidi V, Bagheri H, Safari-Alighiarloo N, Salesi M, Azimzadeh J S, Parvin S, Ghanei M, Nobakht M Gh BF. Plasma and urine metabolomics for the identification of diagnostic biomarkers for sulfur mustard-induced lung injury. Int Immunopharmacol 2025; 154:114515. [PMID: 40184812 DOI: 10.1016/j.intimp.2025.114515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 03/02/2025] [Accepted: 03/17/2025] [Indexed: 04/07/2025]
Abstract
BACKGROUND Sulfur mustard (SM) is a highly lethal chemical warfare agent that induces severe health complications in exposed individuals. Gaining insights into the metabolic changes caused by SM exposure is essential for understanding its underlying mechanisms and developing effective diagnostic and therapeutic interventions. METHODS In this investigation, we utilized proton nuclear magnetic resonance (H-NMR) spectroscopy to conduct metabolomic analysis in patients diagnosed with mustard lung disease (MLD) using a non-targeted approach. Metabolite measurements were conducted on plasma and urine samples collected from a total of 54 individuals, including 20 individuals with mild MLD, 20 individuals with moderate MLD, and 14 healthy individuals. Multivariate and univariate analyses were applied to identify metabolites that distinguish between the different groups, and enrichment analysis was performed to unveil the underlying biochemical pathways involved. RESULTS The obtained metabolic profile had the potential to differentiate moderate from healthy plasma, but not from mild patients using multivariate analysis. Sixteen metabolites from plasma were considered significantly different between the moderate and control groups (VIP > 1 and p < 0.05) that these metabolites involved in fatty acid and amino acid metabolism. Utilizing all 16 metabolites as a combined panel, we were able to distinguish between the moderate and control groups, achieving an area under the curve (AUC) of 0.854. Moreover, 6 and 8 urinary metabolites were detected between mild vs. control and moderate vs. control groups, respectively. Fourteen metabolites exhibited significant fold changes (FC) (FC < 0.66 or FC > 1.5; p < 0.05). These metabolites are involved in amino acid and nicotinate metabolism. CONCLUSION Our study provides novel insights into the metabolic changes associated with MLD and highlights potential pathways involved in the disease progression. These findings have implications for the development of targeted diagnostic and therapeutic strategies for MLD.
Collapse
Affiliation(s)
- Vahid Jamshidi
- Chemical Injuries Research Center, Systems Biology and Poisoning Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hasan Bagheri
- Chemical Injuries Research Center, Systems Biology and Poisoning Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Nahid Safari-Alighiarloo
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
| | - Mahmood Salesi
- Chemical Injuries Research Center, Systems Biology and Poisoning Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Sadegh Azimzadeh J
- Chemical Injuries Research Center, Systems Biology and Poisoning Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Shahram Parvin
- Chemical Injuries Research Center, Systems Biology and Poisoning Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mostafa Ghanei
- Chemical Injuries Research Center, Systems Biology and Poisoning Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - B Fatemeh Nobakht M Gh
- Chemical Injuries Research Center, Systems Biology and Poisoning Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Ye F, Li L, Wang J, Yang H. Advances in gut-lung axis research: clinical perspectives on pneumonia prevention and treatment. Front Immunol 2025; 16:1576141. [PMID: 40330490 PMCID: PMC12052896 DOI: 10.3389/fimmu.2025.1576141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Accepted: 04/03/2025] [Indexed: 05/08/2025] Open
Abstract
In recent years, the study of the interaction between gut microbiota and distant organs such as the heart, lungs, brain, and liver has become a hot topic in the field of gut microbiology. With a deeper understanding of its immune regulation and mechanisms of action, these findings have increasingly highlighted their guiding value in clinical practice. The gut is not only the largest digestive organ in the human body but also the habitat for most microorganisms. Imbalances in gut microbial communities have been associated with various lung diseases, such as allergic asthma and cystic fibrosis. Furthermore, gut microbial communities have significant impacts on metabolic function and immune responses. Their metabolites not only regulate gastrointestinal immune systems but may also affect distant organs such as the lungs and brain. As one of the most common types of respiratory system diseases worldwide, pulmonary infections have high morbidity and mortality rates. Pulmonary infections caused by immune dysfunction can lead to gastrointestinal problems like diarrhea, further resulting in imbalances within complex interactions that are associated with abnormal manifestations under disequilibrium conditions. Meanwhile, clinical interventions can significantly modulate the composition of gut microbiota, and alteration in gut microbiota may subsequently indicate susceptibility to pulmonary infections and even contribute to the prevention or regulation of their progression. This review delves into the interaction between gut microbiota and pulmonary infections, elucidating the latest advancements in gut-lung axis research and providing a fresh perspective for the treatment and prevention of pneumonia.
Collapse
Affiliation(s)
| | | | | | - Hongfeng Yang
- Department of Critical Care Medicine, The Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
3
|
Hsueh MY, Jeng MJ, Chou CS, Chang CW, Zou CT. Prolonged early-life antibiotic exposure alters gut microbiota but does not exacerbate lung injury in a rat pup model. Pediatr Res 2025:10.1038/s41390-025-03924-2. [PMID: 40204871 DOI: 10.1038/s41390-025-03924-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 01/04/2025] [Accepted: 01/11/2025] [Indexed: 04/11/2025]
Abstract
BACKGROUND Early antibiotic exposure may disrupt gut microbiome and affect the gut-lung axis. We examined the impact of prolonged antibiotic exposure during early life on growth and subsequent acute lung injury (ALI) in a rat pup model. METHODS Thirty-four 7-day-old rat pups were divided into Control, Antibiotics (Anti), Lung injury (LI), and Antibiotics-Lung Injury (Anti-LI) groups. The Anti and Anti-LI groups received oral Amoxicillin-Clavulanic acid from 7 to 40 days old, while Control and LI groups received sham water. ALI was induced in LI and Anti-LI groups with intratracheally administered lipopolysaccharide at 41 days old; all were sacrificed at 42 days old. Fecal bacterial sequencing, serum cytokine analysis, and pulmonary histological examination were performed. RESULTS Control and LI groups showed better weight gain from day 19 compared to Anti and Anti-LI groups. Anti and Anti-ALI groups exhibited decreased fecal microbial diversity (P < 0.05) and reduced Firmicutes abundance (P < 0.05) versus Control and LI groups. No significant difference in ALI severity was found between antibiotic-treated and non-treated groups. CONCLUSIONS Prolonged early-life antibiotic exposure in this rat pup model significantly reduced gut microbiota diversity and exhibited a non-significant trend toward lower weight gain, without exacerbating the severity of subsequent LPS-induced ALI. IMPACT Prolonged early-life antibiotic exposure decreased gut microbial diversity in rat pups. Antibiotics-exposed groups exhibited a trend of reduced weight gain compared to controls, although the difference was not statistically significant. Despite the observed alterations in the gut microbiota, there were no significant differences in the severity of subsequent acute lung injury between the groups with and without prolonged antibiotic exposure. The study findings advocate for a more judicious use of antibiotics in neonates, emphasizing that appropriate antibiotic stewardship is critical for preserving gut health and may also support growth.
Collapse
Affiliation(s)
- Mi-Yun Hsueh
- Institute of Emergency and Critical Care Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Mei-Jy Jeng
- Institute of Emergency and Critical Care Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC.
- Neonatal Medical Care Center, Department of Pediatrics, Taipei Veterans General Hospital, Taipei, Taiwan, ROC.
- Department of Pediatrics, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC.
| | - Chia-Sui Chou
- Institute of Emergency and Critical Care Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Neonatal Medical Care Center, Department of Pediatrics, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Department of Pediatrics, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Chia-Wei Chang
- Institute of Emergency and Critical Care Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Ciao-Ting Zou
- Institute of Emergency and Critical Care Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| |
Collapse
|
4
|
Wu B, Tang Y, Zhao L, Gao Y, Shen X, Xiao S, Yao S, Qi H, Shen F. Integrated network pharmacological analysis and multi-omics techniques to reveal the mechanism of polydatin in the treatment of silicosis via gut-lung axis. Eur J Pharm Sci 2025; 207:107030. [PMID: 39929376 DOI: 10.1016/j.ejps.2025.107030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 01/05/2025] [Accepted: 01/31/2025] [Indexed: 02/16/2025]
Abstract
Silicosis is a pulmonary disease characterized by inflammation and progressive fibrosis. Previous studies have shown that polydatin (PD) has potential biological activity in key signaling pathways regulating inflammation and apoptosis. To investigate the effect of PD on rats with silicosis, this study used network pharmacology and molecular docking methods to determine the target of PD treatment for silicosis. The therapeutic effect of PD on silicosis was confirmed by measuring the lung injury score, hydroxyproline content, and mRNA expression levels of key targets. In addition, metagenomic sequencing and gas chromatography-mass spectrometry were used to determine the gut microbiota composition and targeted metabolomics analysis, respectively. The results showed that PD could inhibit the expression of inflammation-related indexes and apoptosis-related indexes at protein and mRNA levels. PD also regulates the diversity of the intestinal flora and the content of short-chain fatty acids. In conclusion, the current data suggest that PD has a protective effect against silica-induced lung injury and plays a protective role in regulating intestinal flora diversity and short-chain fatty acid levels through the gut-lung axis.
Collapse
Affiliation(s)
- Bingbing Wu
- Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology, Tangshan, Hebei, 063210, PR China
| | - Yiwen Tang
- Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology, Tangshan, Hebei, 063210, PR China
| | - Liyuan Zhao
- Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology, Tangshan, Hebei, 063210, PR China
| | - Yan Gao
- Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology, Tangshan, Hebei, 063210, PR China
| | - Xi Shen
- Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology, Tangshan, Hebei, 063210, PR China
| | - Shuyu Xiao
- Tangshan Center of Disease Control and Prevention, Tangshan, Hebei, 063000, PR China
| | - Sanqiao Yao
- Xinxiang Medical University, Xinxiang, Henan, 453003, PR China
| | - Huisheng Qi
- Tangshan City workers' Hospital, Tangshan, Hebei, 063000, PR China.
| | - Fuhai Shen
- Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology, Tangshan, Hebei, 063210, PR China.
| |
Collapse
|
5
|
Zhang M, Qin Z, Huang C, Liang B, Zhang X, Sun W. The gut microbiota modulates airway inflammation in allergic asthma through the gut-lung axis related immune modulation: A review. BIOMOLECULES & BIOMEDICINE 2025; 25:727-738. [PMID: 39465678 PMCID: PMC11959394 DOI: 10.17305/bb.2024.11280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/20/2024] [Accepted: 10/20/2024] [Indexed: 10/29/2024]
Abstract
The human gut microbiota is a vast and complex microbial community. According to statistics, the number of bacteria residing in the human intestinal tract is approximately ten times that of total human cells, with over 1000 different species. The interaction between the gut microbiota and various organ tissues plays a crucial role in the pathogenesis of local and systemic diseases, exerting a significant influence on disease progression. The relationship between the gut microbiota and intestinal diseases, along with its connection to the pulmonary immune environment and the development of lung diseases, is commonly referred to as the "gut-lung axis." The incidence of bronchial asthma is rising globally. With ongoing research on gut microbiota, it is widely believed that intestinal microorganisms and their metabolic products directly or indirectly participate in the occurrence and development of asthma. Based on the gut-lung axis, this review examines recent research suggesting that the intestinal microbiota can influence the occurrence and progression of allergic asthma through the modulation of cytokine immune balance and mucosal integrity. Though the precise immune pathways or microbial species influencing asthma through the gut-lung axis are still under exploration, summarizing the immune modulation through the gut-lung axis in allergic asthma may provide insights for the clinical management of the condition.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Gastroenterology, People’s Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province, China
| | - Ziwen Qin
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| | - Chuanjun Huang
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province, China
| | - Bin Liang
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province, China
| | - Xiuqing Zhang
- Department of Radiology, Dongying City Dongying District People’s Hospital, Dongying, Shandong Province, China
| | - Weitao Sun
- Department of Respiratory Medicine, Dongying City Dongying District People’s Hospital, Dongying, Shandong Province, China
| |
Collapse
|
6
|
Chen S, Yu W, Shen Y, Lu L, Meng X, Liu J. Unraveling the mechanisms underlying air pollution-induced dysfunction of the oral-gut-brain axis: implications for human health and well-being. ASIAN BIOMED 2025; 19:21-35. [PMID: 40231163 PMCID: PMC11994223 DOI: 10.2478/abm-2025-0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
Air pollution exposure has become an international health issue that poses many risks to life and health. The bidirectional regulatory network, known as the oral-gut-brain axis connects the oral cavity, intestine, and central nervous system, as well as its influence on health outcomes from exposure to air pollution is receiving increased attention. This article systematically details the epidemiological evidence linking air pollutants to diseases affecting the oral, respiratory, intestinal, and nervous systems, while also explaining the route of air pollutants via the oral-gut-brain axis. The oral-gut-brain axis anomalies resulting from air pollution and their underlying molecular processes are also covered. The study provides a fresh viewpoint on how exposure to air pollution affects health and investigates cutting-edge preventative and therapeutic techniques.
Collapse
Affiliation(s)
- Sisi Chen
- Department of Stomatology, Huzhou Wuxing District People's Hospital, Huzhou Wuxing District Maternal and Child Health Hospital,Huzhou, 313008, China
| | - Wenlei Yu
- Department of Stomatology, Huzhou Wuxing District People's Hospital, Huzhou Wuxing District Maternal and Child Health Hospital,Huzhou, 313008, China
| | - Yiwen Shen
- Department of Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, 210009, China
| | - Linjie Lu
- Department of Stomatology, Haining Hospital of Traditional Chinese Medicine,Jiaxing, 314400, China
| | - Xiangyong Meng
- Department of Stomatology, Medical School, Huzhou University, Huzhou, 313000, China
- Department of Stomatology, The First Affiliated Hospital of Huzhou University, Huzhou, 313099, China
| | - Jun Liu
- Department of Stomatology, Medical School, Huzhou University, Huzhou, 313000, China
- Department of Stomatology, The First Affiliated Hospital of Huzhou University, Huzhou, 313099, China
| |
Collapse
|
7
|
Lin X, Lin J, Ji L, Zhang J, Zhang Y, Hong J, Li G, Lin X. Protective effect of Haoqin Qingdan decoction on pulmonary and intestinal injury in mice with influenza viral pneumonia. Front Pharmacol 2024; 15:1449322. [PMID: 39712501 PMCID: PMC11658977 DOI: 10.3389/fphar.2024.1449322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 11/13/2024] [Indexed: 12/24/2024] Open
Abstract
Background Haoqin Qingdan decoction (HQQD), composed of eleven herbs, is a traditional Chinese formula widely recognized for its efficacy in treating pulmonary inflammation induced by viral infections. Despite its extensive use, the potential pulmonary and intestinal protective effects of HQQD on influenza viral pneumonia (IVP) and the underlying molecular mechanisms remain unclear. Materials and Methods Ultra-high-performance liquid chromatography coupled with mass spectrometry (UHPLC-MS) was employed to identify the major chemical constituents of the prescription. Subsequently, network analysis was conducted to predict the potential therapeutic targets of HQQD in IVP. The mechanisms by which HQQD mitigates lung and intestinal damage were further elucidated by assessing NP protein expression, inflammatory factors, TLR7/MyD88/NF-κB signaling pathway mRNAs and proteins, and through intestinal flora analysis. Results The protective effects of HQQD on pulmonary and intestinal injuries induced by IVP were thoroughly investigated using comprehensive network analysis, signaling pathway validation, and gut microflora analysis. UHPLC-MS analysis identified the primary chemical constituents. Validation experiments demonstrated a significant reduction in NP protein expression in the lungs. HQQD notably alleviated immune damage in the lungs and intestines of mice by inhibiting NP protein expression and the release of inflammatory factors such as interleukin-6 (IL-6), interleukin-1β (IL-1β), tumor necrosis factor-alpha (TNF-α) and interferon-gamma (IFN-γ); downregulating the expression levels of TLR7, MyD88, and phospho-NF-κB p65 (p-p65); lowering serum LPS levels; and reducing the relative abundance of Proteobacteria. Conclusion HQQD exerts therapeutic effects against influenza viral pneumonia through antiviral and anti-inflammatory mechanisms and by remodeling the intestinal flora. This study provides initial insights into the "gut-lung" axis mechanism of HQQD in combating respiratory influenza virus infection.
Collapse
Affiliation(s)
- Xi Lin
- The Third Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jian Lin
- The Third Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lichun Ji
- The Third Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiaona Zhang
- Guangzhou University of Chinese Medicine, Guangzhou, China
- Chinese Medicine Guangdong Laboratory, Guangdong, China
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yezi Zhang
- The Third Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Junbin Hong
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Geng Li
- Chinese Medicine Guangdong Laboratory, Guangdong, China
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, China
- Animal Experiment Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xingdong Lin
- The Third Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
8
|
Keshavarz Aziziraftar S, Bahrami R, Hashemi D, Shahryari A, Ramezani A, Ashrafian F, Siadat SD. The beneficial effects of Akkermansia muciniphila and its derivatives on pulmonary fibrosis. Biomed Pharmacother 2024; 180:117571. [PMID: 39418965 DOI: 10.1016/j.biopha.2024.117571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/19/2024] Open
Abstract
Pulmonary fibrosis (PF) is a progressive and debilitating respiratory condition characterized by excessive deposition of extracellular matrix proteins and scarring within the lung parenchyma. Despite extensive research, the pathogenesis of PF remains incompletely understood, and effective therapeutic options are limited. Emerging evidence suggests a potential link between gut microbiota dysbiosis and the development of PF, highlighting the gut-lung axis as a promising therapeutic target. Akkermansia muciniphila (A. muciniphila), a mucin-degrading bacterium residing in the gut mucosal layer, has garnered considerable interest due to its immunomodulatory and anti-inflammatory properties. This study investigates the therapeutic potential of live and pasteurized A. muciniphila, as well as its extracellular vesicles (EVs), in mitigating inflammation and fibrosis in a murine model of carbon tetrachloride (CCl4)-induced PF exacerbated by a high-fat diet (HFD). Male C57BL/6 mice were divided into groups receiving either a normal diet or an HFD, with or without CCl4 administration. The mice were then treated with live or pasteurized A. muciniphila, or its EVs. Lung tissue was analyzed for the expression of inflammatory markers and fibrosis markers using real-time PCR and ELISA. Administration of live and pasteurized A. muciniphila, as well as its EVs, significantly downregulated the expression of inflammatory and fibrosis markers in the lung tissue of CCl4-induced PF mice. Furthermore, these treatments ameliorated the increased production of IL-6 and reduced IL-10 levels observed in the HFD and CCl4-treated groups. These findings suggest that A. muciniphila and its derivatives exert protective effects against pulmonary inflammation and fibrosis, potentially through modulation of the gut-lung axis. The study highlights the therapeutic potential of A. muciniphila and its derivatives as novel interventions for the management of PF, warranting further preclinical and clinical investigations.
Collapse
Affiliation(s)
- Shahrbanoo Keshavarz Aziziraftar
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran; Department of Pathology, University of California San Francisco, San Francisco, US.
| | - Romina Bahrami
- B.S, Department of Microbiology and Microbial Biotech, Shahid Beheshti University, Tehran, Iran.
| | - Danial Hashemi
- B.S, Department of Animal Science and Biotechnology, Shahid Beheshti University, Tehran, Iran.
| | - Arefeh Shahryari
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran; Centennial College School of Engineering Technology and Applied Science Biotechnology Program Toronto, Ontario, Canada.
| | - Amitis Ramezani
- Clinical Research Department, Pasteur Institute of Iran, Tehran, Iran.
| | - Fatemeh Ashrafian
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran; Clinical Research Department, Pasteur Institute of Iran, Tehran, Iran.
| | - Seyed Davar Siadat
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran; Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
9
|
Dora D, Szőcs E, Soós Á, Halasy V, Somodi C, Mihucz A, Rostás M, Mógor F, Lohinai Z, Nagy N. From bench to bedside: an interdisciplinary journey through the gut-lung axis with insights into lung cancer and immunotherapy. Front Immunol 2024; 15:1434804. [PMID: 39301033 PMCID: PMC11410641 DOI: 10.3389/fimmu.2024.1434804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 08/20/2024] [Indexed: 09/22/2024] Open
Abstract
This comprehensive review undertakes a multidisciplinary exploration of the gut-lung axis, from the foundational aspects of anatomy, embryology, and histology, through the functional dynamics of pathophysiology, to implications for clinical science. The gut-lung axis, a bidirectional communication pathway, is central to understanding the interconnectedness of the gastrointestinal- and respiratory systems, both of which share embryological origins and engage in a continuous immunological crosstalk to maintain homeostasis and defend against external noxa. An essential component of this axis is the mucosa-associated lymphoid tissue system (MALT), which orchestrates immune responses across these distant sites. The review delves into the role of the gut microbiome in modulating these interactions, highlighting how microbial dysbiosis and increased gut permeability ("leaky gut") can precipitate systemic inflammation and exacerbate respiratory conditions. Moreover, we thoroughly present the implication of the axis in oncological practice, particularly in lung cancer development and response to cancer immunotherapies. Our work seeks not only to synthesize current knowledge across the spectrum of science related to the gut-lung axis but also to inspire future interdisciplinary research that bridges gaps between basic science and clinical application. Our ultimate goal was to underscore the importance of a holistic understanding of the gut-lung axis, advocating for an integrated approach to unravel its complexities in human health and disease.
Collapse
Affiliation(s)
- David Dora
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Emőke Szőcs
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Ádám Soós
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Viktória Halasy
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Csenge Somodi
- Translational Medicine Institute, Semmelweis University, Budapest, Hungary
| | - Anna Mihucz
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Melinda Rostás
- Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, Hungary
| | - Fruzsina Mógor
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Zoltan Lohinai
- Translational Medicine Institute, Semmelweis University, Budapest, Hungary
| | - Nándor Nagy
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
10
|
Bezemer GFG, Diks MAP, Mortaz E, van Ark I, van Bergenhenegouwen J, Kraneveld AD, Folkerts G, Garssen J. A synbiotic mixture of Bifidobacterium breve M16-V, oligosaccharides and pectin, enhances Short Chain Fatty Acid production and improves lung health in a preclinical model for pulmonary neutrophilia. Front Nutr 2024; 11:1371064. [PMID: 39006103 PMCID: PMC11239554 DOI: 10.3389/fnut.2024.1371064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/15/2024] [Indexed: 07/16/2024] Open
Abstract
Introduction Pulmonary neutrophilia is a hallmark of numerous airway diseases including Chronic Obstructive Pulmonary Disease (COPD), Neutrophilic asthma, Acute Lung Injury (ALI), Acute Respiratory Distress Syndrome (ARDS) and COVID-19. The aim of the current study was to investigate the effect of dietary interventions on lung health in context of pulmonary neutrophilia. Methods Male BALB/cByJ mice received 7 intra-nasal doses of either a vehicle or lipopolysaccharides (LPS). To study the effect of nutritional interventions they received 16 intra-gastric doses of either a vehicle (PBS) or the following supplements (1) probiotic Bifidobacterium breve (B. breve) M16-V; (2) a prebiotic fiber mixture of short-chain galacto-oligosaccharides, long-chain fructo-oligosaccharides, and low-viscosity pectin in a 9:1:2 ratio (scGOS/lcFOS/lvPectin); and (3) A synbiotic combination B. breve M16-V and scGOS/lcFOS/lvPectin. Parameters for lung health included lung function, lung morphology and lung inflammation. Parameters for systemic immunomodulation included levels of fecal short chain fatty acids and regulatory T cells. Results The synbiotic supplement protected against the LPS induced decline in lung function (35% improved lung resistance at baseline p = 0.0002 and 25% at peak challenge, p = 0.0002), provided a significant relief from pulmonary neutrophilia (40.7% less neutrophils, p < 0.01) and improved the pulmonary neutrophil-to-lymphocyte ratio (NLR) by 55.3% (p = 0.0033). Supplements did not impact lung morphology in this specific experiment. LPS applied to the upper airways induced less fecal SCFAs production compared to mice that received PBS. The production of acetic acid between day -5 and day 16 was increased in all unchallenged mice (PBS-PBS p = 0.0003; PBS-Pro p < 0.0001; PBS-Pre, p = 0.0045; PBS-Syn, p = 0.0005) which upon LPS challenge was only observed in mice that received the synbiotic mixture of B. breve M16-V and GOS:FOS:lvPectin (p = 0.0003). A moderate correlation was found for butyric acid and lung function parameters and a weak correlation was found between acetic acid, butyric acid and propionic acid concentrations and NLR. Conclusion This study suggests bidirectional gut lung cross-talk in a mouse model for pulmonary neutrophilia. Neutrophilic lung inflammation coexisted with attenuated levels of fecal SCFA. The beneficial effects of the synbiotic mixture of B. breve M16-V and GOS:FOS:lvPectin on lung health associated with enhanced levels of SCFAs.
Collapse
Affiliation(s)
- Gillina F G Bezemer
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
- Impact Station, Hilversum, Netherlands
| | - Mara A P Diks
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Esmaeil Mortaz
- Department of Microbiology & Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Respiratory Immunology Research Center, NRITLD, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ingrid van Ark
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Jeroen van Bergenhenegouwen
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
- Danone, Nutricia Research BV, Immunology, Utrecht, Netherlands
| | - Aletta D Kraneveld
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Gert Folkerts
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Johan Garssen
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
- Danone, Nutricia Research BV, Immunology, Utrecht, Netherlands
| |
Collapse
|
11
|
Wang J, Xue X, Zhao X, Luo L, Liu J, Dai S, Zhang F, Wu R, Liu Y, Peng C, Li Y. Forsythiaside A alleviates acute lung injury by inhibiting inflammation and epithelial barrier damages in lung and colon through PPAR-γ/RXR-α complex. J Adv Res 2024; 60:183-200. [PMID: 37579917 PMCID: PMC11156707 DOI: 10.1016/j.jare.2023.08.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/04/2023] [Accepted: 08/09/2023] [Indexed: 08/16/2023] Open
Abstract
INTRODUCTION Acute lung injury (ALI) is a lung disease characterized by inflammation and still requires further drug development. Forsythiaside A as the active compound of Forsythiae Fructus has the therapeutic potential for ALI. OBJECTIVE To investigate the mechanism of forsythiaside A in treating ALI through PPAR-γ and its conjugate RXR-α based on gut-lung axis. METHODS This study constructed in vitro and in vivo injury models using LPS and TNF-α. Forsythiaside A was used for the drug treatment, and RXR-α inhibitor UVI3003 was used to interfere with PPAR-γ/RXR-α complexes in the cells. HE staining was used for histopathological examination. Serum endotoxin contents were determined using limulus lysate kit. IHC staining and Western blot were conducted to assess the protein expressions. ELISA was applied to examine the content of pro-inflammatory cytokines in the cell supernatants. The protein interactions were analyzed via CO-IP. RESULTS In vivo results showed that forsythiaside A regulated PPAR-γ/RXR-α and inhibited TLR4/MAPK/NF-κB and MLCK/MLC2 signal pathways, thus inhibiting inflammation and epithelial barrier damages of lung and colon in ALI mice induced by intratracheal LPS. PPAR-γ/RXR-α were promoted by forsythiaside A in lungs, whereas inhibited by forsythiaside A in colons. Additionally, in vitro results showed that forsythiaside A suppressed inflammation and epithelial barrier damages in macrophages and lung/colon epithelial cells, by manipulating PPAR-γ/RXR-α to suppress the LPS- and TNF-α-induced activation of TLR4/MAPK/NF-κB and NF-κB/MLCK/MLC2 signal pathways. Moreover, further mechanism study indicated that forsythiaside A showed a cell-specific regulatory effect on PPAR-γ/RXR-α complex. Specifically, the PPAR-γ/RXR-α protein interactions were promoted by forsythiaside A in LPS-induced macrophages RAW264.7 and TNF-α-induced lung epithelial cells A549, but inhibited by forsythiaside A in TNF-α-induced colon epithelial cells SW620. CONCLUSION In the treatment of ALI, Forsythiaside A inhibited inflammation and epithelial barrier damages of lung and colon through its regulation on PPAR-γ/RXR-α complex.
Collapse
Affiliation(s)
- Jing Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xinyan Xue
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xingtao Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Lin Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Juan Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Shu Dai
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Fang Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Rui Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yanfang Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Yunxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
12
|
Kitson L, Becker AAMJ, Hartmann K, Bergmann M, Sepulveda-Garcia P, Canales N, Muller A. Characterizing the blood microbiota in healthy and febrile domestic cats via 16s rRNA sequencing. Sci Rep 2024; 14:10584. [PMID: 38719878 PMCID: PMC11079020 DOI: 10.1038/s41598-024-61023-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 04/30/2024] [Indexed: 05/12/2024] Open
Abstract
This study aimed to evaluate the blood bacterial microbiota in healthy and febrile cats. High-quality sequencing reads from the 16S rRNA gene variable region V3-V4 were obtained from genomic blood DNA belonging to 145 healthy cats, and 140 febrile cats. Comparisons between the blood microbiota of healthy and febrile cats revealed dominant presence of Actinobacteria, followed by Firmicutes and Proteobacteria, and a lower relative abundance of Bacteroidetes. Upon lower taxonomic levels, the bacterial composition was significantly different between healthy and febrile cats. The families Faecalibacterium and Kineothrix (Firmicutes), and Phyllobacterium (Proteobacteria) experienced increased abundance in febrile samples. Whereas Thioprofundum (Proteobacteria) demonstrated a significant decrease in abundance in febrile. The bacterial composition and beta diversity within febrile cats was different according to the affected body system (Oral/GI, systemic, skin, and respiratory) at both family and genus levels. Sex and age were not significant factors affecting the blood microbiota of febrile cats nor healthy ones. Age was different between young adult and mature adult healthy cats. Alpha diversity was unaffected by any factors. Overall, the findings suggest that age, health status and nature of disease are significant factors affecting blood microbiota diversity and composition in cats, but sex is not.
Collapse
Affiliation(s)
- Liam Kitson
- Graduate Program, Ross University School of Veterinary Medicine, West Farm, West Indies, Saint Kitts and Nevis
| | - Anne A M J Becker
- One Health Center for Zoonoses and Tropical Veterinary Medicine, Biomedical Sciences Department, Ross University School of Veterinary Medicine, West Farm, West Indies, Saint Kitts and Nevis
| | - Katrin Hartmann
- LMU Small Animal Clinic, Centre for Clinical Veterinary Medicine, LMU Munich, Munich, Germany
| | - Michèle Bergmann
- LMU Small Animal Clinic, Centre for Clinical Veterinary Medicine, LMU Munich, Munich, Germany
| | - Paulina Sepulveda-Garcia
- Instituto de Medicina Preventiva Veterinaria, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
- Escuela de Graduados, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Nivia Canales
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Ananda Muller
- One Health Center for Zoonoses and Tropical Veterinary Medicine, Biomedical Sciences Department, Ross University School of Veterinary Medicine, West Farm, West Indies, Saint Kitts and Nevis.
| |
Collapse
|
13
|
Marrella V, Nicchiotti F, Cassani B. Microbiota and Immunity during Respiratory Infections: Lung and Gut Affair. Int J Mol Sci 2024; 25:4051. [PMID: 38612860 PMCID: PMC11012346 DOI: 10.3390/ijms25074051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/29/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
Bacterial and viral respiratory tract infections are the most common infectious diseases, leading to worldwide morbidity and mortality. In the past 10 years, the importance of lung microbiota emerged in the context of pulmonary diseases, although the mechanisms by which it impacts the intestinal environment have not yet been fully identified. On the contrary, gut microbial dysbiosis is associated with disease etiology or/and development in the lung. In this review, we present an overview of the lung microbiome modifications occurring during respiratory infections, namely, reduced community diversity and increased microbial burden, and of the downstream consequences on host-pathogen interaction, inflammatory signals, and cytokines production, in turn affecting the disease progression and outcome. Particularly, we focus on the role of the gut-lung bidirectional communication in shaping inflammation and immunity in this context, resuming both animal and human studies. Moreover, we discuss the challenges and possibilities related to novel microbial-based (probiotics and dietary supplementation) and microbial-targeted therapies (antibacterial monoclonal antibodies and bacteriophages), aimed to remodel the composition of resident microbial communities and restore health. Finally, we propose an outlook of some relevant questions in the field to be answered with future research, which may have translational relevance for the prevention and control of respiratory infections.
Collapse
Affiliation(s)
- Veronica Marrella
- UOS Milan Unit, Istituto di Ricerca Genetica e Biomedica (IRGB), CNR, 20138 Milan, Italy;
- IRCCS Humanitas Research Hospital, 20089 Milan, Italy
| | - Federico Nicchiotti
- Department of Medical Biotechnologies and Translational Medicine, Università degli Studi di Milano, 20089 Milan, Italy;
| | - Barbara Cassani
- IRCCS Humanitas Research Hospital, 20089 Milan, Italy
- Department of Medical Biotechnologies and Translational Medicine, Università degli Studi di Milano, 20089 Milan, Italy;
| |
Collapse
|
14
|
Zeng Q, Hu D, Li Y, Zhou Z, Wu J, Li X, Yu X. Evaluating the causal association between bronchiectasis and different types of inflammatory bowel disease: a two-sample Mendelian randomization study. Front Immunol 2024; 15:1365108. [PMID: 38638444 PMCID: PMC11024297 DOI: 10.3389/fimmu.2024.1365108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/22/2024] [Indexed: 04/20/2024] Open
Abstract
Background and objectives Previous observational studies have established a connection between bronchiectasis and inflammatory bowel disease (IBD), but none of these studies have provided a clear explanation for the underlying cause of this relationship. The present study thus implemented Mendelian randomization (MR) design to explore possible bidirectional relationships between IBD and bronchiectasis risk, with an additional focus on Crohn's disease (CD) and ulcerative colitis (UC) as IBD subtypes. Materials and methods A large genome-wide association study (GWAS)-derived data pool was leveraged to examine the relationships between bronchiectasis and IBD, CD, and UC. Two-sample MR analyses were performed with an inverse variance weighted (IVW) approach supplemented with the MR-Egger and weighted median methods. Sensitivity analyses were used to further assess the reliability of the main MR study findings. The possibility of reverse causation was also evaluated using a reverse MR approach. Results The IVW MR analytical approach revealed that IBD (p = 0.074), UC (p = 0.094), and CD (p = 0.644) had no significant impact on the incidence of bronchiectasis, with the converse also being true (p = 0.471, p = 0.700, and p = 0.099, respectively). Conclusion This MR analysis demonstrated that the higher occurrence of bronchiectasis in patients with IBD is not caused by genetic predisposition.
Collapse
Affiliation(s)
- Qian Zeng
- Department of General Practice, Shenzhen Luohu Hospital Group Luohu People’s Hospital, The Third Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| | - Da Hu
- Department of General Practice, Shenzhen Luohu Hospital Group Luohu People’s Hospital, The Third Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| | - Yuan Li
- Department of General Practice, Shenzhen Luohu Hospital Group Luohu People’s Hospital, The Third Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| | - Zhiwei Zhou
- Department of Gastroenterology, Shenzhen Luohu Hospital Group Luohu People’s Hospital, The Third Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| | - Jinfeng Wu
- Department of Gastroenterology, Shenzhen Luohu Hospital Group Luohu People’s Hospital, The Third Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| | - Xiaodong Li
- Department of Gastroenterology, Shenzhen Luohu Hospital Group Luohu People’s Hospital, The Third Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| | - Xiqiu Yu
- Department of Gastroenterology, Shenzhen Luohu Hospital Group Luohu People’s Hospital, The Third Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| |
Collapse
|
15
|
Verma A, Bhagchandani T, Rai A, Nikita, Sardarni UK, Bhavesh NS, Gulati S, Malik R, Tandon R. Short-Chain Fatty Acid (SCFA) as a Connecting Link between Microbiota and Gut-Lung Axis-A Potential Therapeutic Intervention to Improve Lung Health. ACS OMEGA 2024; 9:14648-14671. [PMID: 38585101 PMCID: PMC10993281 DOI: 10.1021/acsomega.3c05846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 04/09/2024]
Abstract
The microbiome is an integral part of the human gut, and it plays a crucial role in the development of the immune system and homeostasis. Apart from the gut microbiome, the airway microbial community also forms a distinct and crucial part of the human microbiota. Furthermore, several studies indicate the existence of communication between the gut microbiome and their metabolites with the lung airways, called "gut-lung axis". Perturbations in gut microbiota composition, termed dysbiosis, can have acute and chronic effects on the pathophysiology of lung diseases. Microbes and their metabolites in lung stimulate various innate immune pathways, which modulate the expression of the inflammatory genes in pulmonary leukocytes. For instance, gut microbiota-derived metabolites such as short-chain fatty acids can suppress lung inflammation through the activation of G protein-coupled receptors (free fatty acid receptors) and can also inhibit histone deacetylase, which in turn influences the severity of acute and chronic respiratory diseases. Thus, modulation of the gut microbiome composition through probiotic/prebiotic usage and fecal microbiota transplantation can lead to alterations in lung homeostasis and immunity. The resulting manipulation of immune cells function through microbiota and their key metabolites paves the way for the development of novel therapeutic strategies in improving the lung health of individuals affected with various lung diseases including SARS-CoV-2. This review will shed light upon the mechanistic aspect of immune system programming through gut and lung microbiota and exploration of the relationship between gut-lung microbiome and also highlight the therapeutic potential of gut microbiota-derived metabolites in the management of respiratory diseases.
Collapse
Affiliation(s)
- Anjali Verma
- Laboratory
of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Tannu Bhagchandani
- Laboratory
of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Ankita Rai
- Laboratory
of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Nikita
- Laboratory
of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Urvinder Kaur Sardarni
- Laboratory
of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Neel Sarovar Bhavesh
- Transcription
Regulation Group, International Centre for
Genetic Engineering and Biotechnology (ICGEB), New Delhi 110067, India
| | - Sameer Gulati
- Department
of Medicine, Lady Hardinge Medical College
(LHMC), New Delhi 110058, India
| | - Rupali Malik
- Department
of Medicine, Vardhman Mahavir Medical College
and Safdarjung Hospital, New Delhi 110029, India
| | - Ravi Tandon
- Laboratory
of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
16
|
Baldi S, Fabbrizzi A, Di Gloria L, Pallecchi M, Nannini G, D'Ambrosio M, Luceri C, Bartolucci G, Ramazzotti M, Fontana G, Mannini C, Lavorini F, Amedei A. First Exploration of the Altered Microbial Gut-Lung Axis in the Pathogenesis of Human Refractory Chronic Cough. Lung 2024; 202:107-118. [PMID: 38526572 PMCID: PMC11009740 DOI: 10.1007/s00408-024-00681-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/04/2024] [Indexed: 03/26/2024]
Abstract
PURPOSE Cough represents a natural mechanism that plays an important defensive role in the respiratory tract, but in some conditions, it may become persistent, nonproductive, and harmful. In general, refractory chronic cough (RCC) occurs in about 20% of individuals; hence, we aimed to assess the presence of altered gut-lung communication in RCC patients through a compositional and functional characterization of both gut (GM) and oral microbiota (OM). METHODS 16S rRNA sequencing was used to characterize both GM and OM composition of RCC patients and healthy controls (HC). PICRUST2 assessed functional changes in microbial communities while gas chromatography was used to evaluate fecal short-chain fatty acid levels and serum-free fatty acid (FFA) abundances. RESULTS In comparison with HC, RCC patients reported increased saliva alpha-diversity and statistically significant beta-diversity in both GM and OM. Also, a, respectively, significant increased or reduced Firmicutes/Bacteroidota ratio in stool and saliva samples of RCC patients has been shown, in addition to a modification of the abundances of several taxa in both GM and OM. Moreover, a potential fecal over-expression of lipopolysaccharide biosynthesis and lipoic acid metabolism pathways and several differences in serum FFA levels have been reported in RCC patients than in HC. CONCLUSION Since differences in both GM and OM of RCC patients have been documented, these findings could provide new information about RCC pathogenesis and also pave the way for the development of novel nutritional or pharmacological interventions for the management of RCC through the restoration of eubiotic gut-lung communication.
Collapse
Affiliation(s)
- Simone Baldi
- Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134, Florence, Italy
| | - Alessio Fabbrizzi
- Department of Respiratory Physiopathology, Palagi Hospital, 50122, Florence, Italy
| | - Leandro Di Gloria
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio", University of Florence, 50134, Florence, Italy
| | - Marco Pallecchi
- Department of Neuroscience, Psychology, Drug Research and Child Health NEUROFARBA, University of Florence, 50139, Florence, Italy
| | - Giulia Nannini
- Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134, Florence, Italy
| | - Mario D'Ambrosio
- Department of Neuroscience, Psychology, Drug Research and Child Health NEUROFARBA, University of Florence, 50139, Florence, Italy
- Enteric Neuroscience Program, Department of Medicine, Section of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Cristina Luceri
- Department of Neuroscience, Psychology, Drug Research and Child Health NEUROFARBA, University of Florence, 50139, Florence, Italy
| | - Gianluca Bartolucci
- Department of Neuroscience, Psychology, Drug Research and Child Health NEUROFARBA, University of Florence, 50139, Florence, Italy
| | - Matteo Ramazzotti
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio", University of Florence, 50134, Florence, Italy
| | - Giovanni Fontana
- Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134, Florence, Italy
| | - Claudia Mannini
- Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134, Florence, Italy
| | - Federico Lavorini
- Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134, Florence, Italy.
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134, Florence, Italy.
- SOD of Interdisciplinary Internal Medicine, Azienda Ospedaliera Universitaria Careggi (AOUC), 50134, Florence, Italy.
| |
Collapse
|
17
|
Xu H, You J, He W, Pei L, Han Y, Wang X, Tian Z, Zheng X, Wu E, Ling Y. Dynamic changes in the migratory microbial components of colon tissue during different periods of sepsis in an LPS-induced rat model. Front Cell Infect Microbiol 2024; 13:1330087. [PMID: 38287976 PMCID: PMC10822926 DOI: 10.3389/fcimb.2023.1330087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/26/2023] [Indexed: 01/31/2024] Open
Abstract
Previous studies have shown that bacterial translocation may play an important role in worsening gastrointestinal injury during sepsis. However, the dynamics of specific microbiota components in intestinal tissues at different sepsis stages remain unclear. Rats receiving intraperitoneal lipopolysaccharide (LPS) were sacrificed at 12 h and 48 h post-injection. Routine blood, serum cytokines, and microbiota in colon tissue, colonic contents, and lung tissue at different time points were assessed. Migratory microbial components in colonic tissue at 12 h and 48 h post-LPS were identified using source tracking, characteristic component identification, and abundance difference analyses. Colonic tissue microbiota changed dynamically over time after LPS injection, involving translocation of microbial components from colon contents and lung tissue at different time points. Bacteria migrating to colon tissue at 12 h sepsis were mainly from colonic contents, while those at 48 h were predominantly from the lung tissue. The migratory microbial components in colon tissue were widely associated with blood indicators and colonizing genus abundance and microbiota functionality in colon tissue. In this study, the temporal dynamics of bacterial translocation from various sources into colon tissues at different sepsis progression stages were characterized for the first time, and the species composition of these migrating microbes was delineated. These bacterial migrants may contribute to the pathophysiological processes in sepsis through direct interactions or indirectly by modulating colonic microbiota community structure and function.
Collapse
Affiliation(s)
- Hao Xu
- School of Pharmacy, Minzu University of China, Beijing, China
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, China
| | - Jia You
- Department of Obstetrics and Gynecology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Wenqin He
- School of Pharmacy, Minzu University of China, Beijing, China
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, China
| | - Lingpeng Pei
- School of Pharmacy, Minzu University of China, Beijing, China
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, China
| | - Yue Han
- School of Pharmacy, Minzu University of China, Beijing, China
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, China
| | - Xueer Wang
- School of Pharmacy, Minzu University of China, Beijing, China
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, China
| | - Zhigang Tian
- Department of Respiratory and Critical Care Medicine, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Xiwei Zheng
- Department of Respiratory and Critical Care Medicine, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Enqi Wu
- School of Pharmacy, Minzu University of China, Beijing, China
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, China
| | - Yaqin Ling
- School of Pharmacy, Minzu University of China, Beijing, China
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, China
| |
Collapse
|
18
|
Shen J, Wang S, Xia H, Han S, Wang Q, Wu Z, Zhuge A, Li S, Chen H, Lv L, Chen Y, Li L. Akkermansia muciniphila attenuated lipopolysaccharide-induced acute lung injury by modulating the gut microbiota and SCFAs in mice. Food Funct 2023; 14:10401-10417. [PMID: 37955584 DOI: 10.1039/d3fo04051h] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Gut microbiota are closely related to lipopolysaccharide (LPS)-induced acute lung injury (ALI). Akkermansia muciniphila (A. muciniphila) maintains the intestinal barrier function and regulates the balance of reduced glutathione/oxidized glutathione. However, it may be useful as a treatment strategy for LPS-induced lung injury. Our study aimed to explore whether A. muciniphila could improve lung injury by affecting the gut microbiota. The administration of A. muciniphila effectively attenuated lung injury tissue damage and significantly decreased the oxidative stress and inflammatory reaction induced by LPS, with lower levels of myeloperoxidase (MDA), enhanced superoxide dismutase (SOD) activity, decreased pro-inflammatory cytokine levels, and reduced macrophage and neutrophil infiltration. Moreover, A. muciniphila maintained the intestinal barrier function, reshaped the disordered microbial community, and promoted the secretion of short-chain fatty acids (SCFAs). A. muciniphila significantly downregulated the expression of TLR2, MyD88 and NF-kappa B (P < 0.05). Butyrate supplementation demonstrated a significant improvement in the inflammatory response (P < 0.05) and mitigation of histopathological damage in mice with ALI, thereby restoring the intestinal butyric acid concentration. In conclusion, our findings indicate that A. muciniphila inhibits the accumulation of inflammatory cytokines and attenuates the activation of the TLR2/Myd88/NF-κB pathway due to exerting anti-inflammatory effects through butyrate. This study provides an experimental foundation for the potential application of A. muciniphila and butyrate in the prevention and treatment of ALI.
Collapse
Affiliation(s)
- Jian Shen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City 310003, China.
| | - Shuting Wang
- Department of Gastroenterology, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang 330006, China
| | - He Xia
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City 310003, China.
| | - Shengyi Han
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City 310003, China.
| | - Qiangqiang Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City 310003, China.
| | - Zhengjie Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City 310003, China.
| | - Aoxiang Zhuge
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City 310003, China.
| | - Shengjie Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City 310003, China.
| | - Hui Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City 310003, China.
| | - Longxian Lv
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City 310003, China.
| | - Yanfei Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City 310003, China.
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City 310003, China.
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
| |
Collapse
|
19
|
Choi JY, Shim B, Park Y, Kang YA. Alterations in lung and gut microbiota reduce diversity in patients with nontuberculous mycobacterial pulmonary disease. Korean J Intern Med 2023; 38:879-892. [PMID: 37867139 PMCID: PMC10636543 DOI: 10.3904/kjim.2023.097] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/25/2023] [Accepted: 06/16/2023] [Indexed: 10/24/2023] Open
Abstract
BACKGROUND/AIMS Although the incidence of nontuberculous mycobacteria pulmonary disease (NTM-PD), a chronic infectious disease, is increasing, lung and gut microbiota dysbiosis in NTM patients has rarely been studied and was therefore the focus of this study. METHODS We analyzed the microbiota diversity in sputum and stool samples from 10 healthy subjects and 10 patients with NTM-PD through sequencing of the V3 and V4 regions of the 16S rRNA gene. In NTM-PD patients, we comparatively evaluated the microbiota diversity according to the body mass index (BMI), with BMI ≤ 18.5 kg/m2 defined as "underweight" and BMI > 18.5 kg/m2 as "others." RESULTS The sputum microbiota from NTM-PD patients tended to have lower index values of amplicon sequence variant richness, Shannon evenness, and beta diversity than those from the control group. Furthermore, NTM-PD patients with a low BMI had a lower microbiota diversity than patients with high BMI. Fecal samples from NTM-PD patients also significantly differed in alpha and beta diversity compared with the control group and exhibited a diversity pattern similar to that found in sputum samples. CONCLUSION Our results reveal that the lung and gut microbiota of patients with NTM-PD exhibit an altered distribution and reduced richness and diversity.
Collapse
Affiliation(s)
- Ji Yeon Choi
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Bora Shim
- Institute of Immunology and Immunological Disease, Yonsei University College of Medicine, Seoul, Korea
| | - Youngmok Park
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Young Ae Kang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
- Institute of Immunology and Immunological Disease, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
20
|
Liu X, Wang X, Zhang P, Fang Y, Liu Y, Ding Y, Zhang W. Intestinal homeostasis in the gut-lung-kidney axis: a prospective therapeutic target in immune-related chronic kidney diseases. Front Immunol 2023; 14:1266792. [PMID: 38022571 PMCID: PMC10646503 DOI: 10.3389/fimmu.2023.1266792] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
In recent years, the role of intestinal homeostasis in health has received increasing interest, significantly improving our understanding of the complex pathophysiological interactions of the gut with other organs. Microbiota dysbiosis, impaired intestinal barrier, and aberrant intestinal immunity appear to contribute to the pathogenesis of immune-related chronic kidney diseases (CKD). Meanwhile, the relationship between the pathological changes in the respiratory tract (e.g., infection, fibrosis, granuloma) and immune-related CKD cannot be ignored. The present review aimed to elucidate the new underlying mechanism of immune-related CKD. The lungs may affect kidney function through intestinal mediation. Communication is believed to exist between the gut and lung microbiota across long physiological distances. Following the inhalation of various pathogenic factors (e.g., particulate matter 2.5 mum or less in diameter, pathogen) in the air through the mouth and nose, considering the anatomical connection between the nasopharynx and lungs, gut microbiome regulates oxidative stress and inflammatory states in the lungs and kidneys. Meanwhile, the intestine participates in the differentiation of T cells and promotes the migration of various immune cells to specific organs. This better explain the occurrence and progression of CKD caused by upper respiratory tract precursor infection and suggests the relationship between the lungs and kidney complications in some autoimmune diseases (e.g., anti-neutrophil cytoplasm antibodies -associated vasculitis, systemic lupus erythematosus). CKD can also affect the progression of lung diseases (e.g., acute respiratory distress syndrome and chronic obstructive pulmonary disease). We conclude that damage to the gut barrier appears to contribute to the development of immune-related CKD through gut-lung-kidney interplay, leading us to establish the gut-lung-kidney axis hypothesis. Further, we discuss possible therapeutic interventions and targets. For example, using prebiotics, probiotics, and laxatives (e.g., Rhubarb officinale) to regulate the gut ecology to alleviate oxidative stress, as well as improve the local immune system of the intestine and immune communication with the lungs and kidneys.
Collapse
Affiliation(s)
- Xinyin Liu
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
- Department of Traditional Chinese Medicine, Jiande First People’s Hospital, Jiande, Hangzhou, China
| | - Xiaoran Wang
- Department of Nephrology, The First People’s Hospital of Hangzhou Lin’an District, Hangzhou, China
| | - Peipei Zhang
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Yiwen Fang
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yanyan Liu
- Department of Geriatric, Zhejiang Aged Care Hospital, Hangzhou, China
| | - Yueyue Ding
- Department of Geriatric, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Wen Zhang
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| |
Collapse
|
21
|
Ma Q, Yao C, Wu Y, Wang H, Fan Q, Yang Q, Xu J, Dai H, Zhang Y, Xu F, Lu T, Dowling JK, Wang C. Neurological disorders after severe pneumonia are associated with translocation of endogenous bacteria from the lung to the brain. SCIENCE ADVANCES 2023; 9:eadi0699. [PMID: 37851811 PMCID: PMC10584344 DOI: 10.1126/sciadv.adi0699] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 09/15/2023] [Indexed: 10/20/2023]
Abstract
Neurological disorders are a common feature in patients who recover from severe acute pneumonia. However, the underlying mechanisms remain poorly understood. Here, we show that the neurological syndromes after severe acute pneumonia are partly attributed to the translocation of endogenous bacteria from the lung to the brain during pneumonia. Using principal components analysis, similarities were found between the brain's flora species and those of the lungs, indicating that the bacteria detected in the brain may originate from the lungs. We also observed impairment of both the lung-blood and brain-blood barriers, allowing endogenous lung bacteria to invade the brain during pneumonia. An elevated microglia and astrocyte activation signature via bacterial infection-related pathways was observed, indicating a bacterial-induced disruption of brain homeostasis. Collectively, we identify endogenous lung bacteria that play a role in altering brain homeostasis, which provides insight into the mechanism of neurological syndromes after severe pneumonia.
Collapse
Affiliation(s)
- Qingle Ma
- Laboratory for Biomaterial and Immunoengineering, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
| | - Chenlu Yao
- Laboratory for Biomaterial and Immunoengineering, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
| | - Yi Wu
- Laboratory for Biomaterial and Immunoengineering, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
| | - Heng Wang
- Laboratory for Biomaterial and Immunoengineering, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
| | - Qin Fan
- Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) and School of Materials Science and Engineering, Nanjing University of Posts & Telecommunications, Nanjing, P. R. China
| | - Qianyu Yang
- Laboratory for Biomaterial and Immunoengineering, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
| | - Jialu Xu
- Laboratory for Biomaterial and Immunoengineering, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
| | - Huaxing Dai
- Laboratory for Biomaterial and Immunoengineering, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
| | - Yue Zhang
- Laboratory for Biomaterial and Immunoengineering, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
| | - Fang Xu
- Laboratory for Biomaterial and Immunoengineering, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
| | - Ting Lu
- Institute of Pharmacology, Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Disease, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Jennifer K. Dowling
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, University of Medical and Health Sciences, Dublin, Ireland
| | - Chao Wang
- Laboratory for Biomaterial and Immunoengineering, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
| |
Collapse
|
22
|
Yin Z, Liu X, Guo L, Ren M, Kang W, Ma C, Waterhouse GIN, Sun-Waterhouse D. The potential of dietary fiber in building immunity against gastrointestinal and respiratory disorders. Crit Rev Food Sci Nutr 2023; 64:13318-13336. [PMID: 37837407 DOI: 10.1080/10408398.2023.2266462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2023]
Abstract
The numerous health benefits of dietary fibers (DFs) justify their inclusion in human diets and biomedical products. Given the short- and long-term human impacts of the COVID-19 virus on human health, the potential of DFs in building immunity against gastrointestinal and respiratory disorders is currently receiving high attention. This paper reviews the physicochemical properties of DFs, together with their immune functions and effects on the gastrointestinal tract and respiratory system mainly based on research in the last ten years. Possible modes of action of DFs in promoting health, especially building immunity, are explored. We seek to highlight the importance of understanding the exact physical and chemical characteristics and molecular behaviors of DFs in providing specific immune function. This review provides a perspective beyond the existing recognition of DFs' positive effects on human health, and offers a theoretical framework for the development of special DFs components and their application in functional foods and other therapeutic products against gastrointestinal and respiratory disorders. DFs enhance immunity from gastrointestinal and respiratory diseases to promote host health.
Collapse
Affiliation(s)
- Zhenhua Yin
- National R &D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, China
- Comprehensive Utilization of Edible and Medicinal Plant Resources Engineering Technology Research Center, Huanghe Science and Technology College, Zhengzhou, China
- Function Food Engineering Technology Research Center, Kaifeng, China
| | - Xiaopeng Liu
- National R &D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, China
- Function Food Engineering Technology Research Center, Kaifeng, China
| | - Lin Guo
- National R &D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, China
- Function Food Engineering Technology Research Center, Kaifeng, China
| | - Mengjie Ren
- National R &D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, China
- Function Food Engineering Technology Research Center, Kaifeng, China
| | - Wenyi Kang
- National R &D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, China
- Function Food Engineering Technology Research Center, Kaifeng, China
| | - Changyang Ma
- National R &D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, China
- Function Food Engineering Technology Research Center, Kaifeng, China
| | | | | |
Collapse
|
23
|
Shen J, Wang S, Huang Y, Wu Z, Han S, Xia H, Chen H, Li L. Lactobacillus reuteri Ameliorates Lipopolysaccharide-Induced Acute Lung Injury by Modulating the Gut Microbiota in Mice. Nutrients 2023; 15:4256. [PMID: 37836540 PMCID: PMC10574429 DOI: 10.3390/nu15194256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 09/25/2023] [Accepted: 09/30/2023] [Indexed: 10/15/2023] Open
Abstract
Acute lung injury (ALI) causes lung inflammation and edema as well as resulting in gut microbiota disorder. Probiotics, however, can improve the gut microbiota composition and modulate its immune response, playing an important role in ALI pathogenesis. Therefore, our study aims to investigate the effect of Lactobacillus reuteri on Lipopolysaccharide (LPS)-induced ALI in mice and to probe the mechanism of its synergistic modulatory effect on the lungs and intestines. We assessed the therapeutic effects of L. reuteri in the ALI mouse model by histopathology, alveolar lavage fluid and serum inflammatory factor analysis and explored microbiome and transcriptome alterations. L. reuteri intervention effectively attenuated lung tissue injury and significantly reduced the LPS-induced inflammatory response and macrophage and neutrophil infiltration. Additionally, L. reuteri improved the intestinal barrier function and remodeled the disordered microbiota. In conclusion, our study showed that L. reuteri attenuated the inflammatory response, ameliorated the pulmonary edema, repaired the intestinal barrier, and remodeled the gut microbiota in ALI mice. This study provides new perspectives on the clinical treatment of ALI.
Collapse
Affiliation(s)
- Jian Shen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
| | - Shuting Wang
- Department of Gastroenterology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Yong Huang
- Department of Infectious Disease, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou 310022, China
| | - Zhengjie Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
| | - Shengyi Han
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
| | - He Xia
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
| | - Hui Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250021, China
| |
Collapse
|
24
|
Capri FC, Prazzi E, Casamento G, Gambino D, Cassata G, Alduina R. Correlation Between Microbial Community and Hatching Failure in Loggerhead Sea Turtle Caretta caretta. MICROBIAL ECOLOGY 2023; 86:1923-1933. [PMID: 36805785 PMCID: PMC10497424 DOI: 10.1007/s00248-023-02197-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 02/11/2023] [Indexed: 06/18/2023]
Abstract
Microbial communities provide essential information about host ecology and could be helpful as a tool to improve species conservation efforts. However, microbes can also infect and compromise the host development process and viability. Caretta caretta is the most widespread marine turtle species in the Mediterranean basin and is the only species of sea turtle nesting along the Italian coasts. Little is known about the microbiota composition of the nest of sea turtles and its correlation with hatching failures. In this study, the microbial composition of two nests of C. caretta featuring different rates of hatching success from a nesting beach in Lampedusa (Italy) was analyzed and compared. The bacterial community was determined using culture-dependent methods and next-generation sequencing based on 16S rRNA gene metabarcoding analysis. Our results showed five dominant bacterial phyla (Proteobacteria, Bacteroidetes, Actinobacteria, Verrucomicrobia, and Firmicutes) and indicated different bacterial families (Pseudomonadaceae and Brucellaceae) as likely causes of hatching failures. Besides, our findings demonstrated the nests' active role in modulating the sand's bacterial communities. This study suggests microbiological analysis could be a valuable tool in monitoring nests to take preventive actions and reduce hatching failures.
Collapse
Affiliation(s)
- Fanny Claire Capri
- Dipartimento Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Viale delle Scienze, University of Palermo, 90133 Palermo, Italy
| | - Elena Prazzi
- Legambiente Sicilia-Ente Gestore Riserva Naturale Orientata Isola di Lampedusa, Via Vittorio Emanuele, 25, 92031 Lampedusa, AG Italy
| | - Giulia Casamento
- Legambiente Sicilia-Ente Gestore Riserve Naturali, via Paolo Gili,4, 90138 Palermo, PA Italy
| | - Delia Gambino
- Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, Via G. Marinuzzi, 3, 90129 Palermo, Italy
| | - Giovanni Cassata
- Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, Via G. Marinuzzi, 3, 90129 Palermo, Italy
| | - Rosa Alduina
- Dipartimento Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Viale delle Scienze, University of Palermo, 90133 Palermo, Italy
- NBFC, National Biodiversity Future Center, Piazza Marina 61, 90133 Palermo, Italy
| |
Collapse
|
25
|
Lim EY, Song EJ, Shin HS. Gut Microbiome as a Possible Cause of Occurrence and Therapeutic Target in Chronic Obstructive Pulmonary Disease. J Microbiol Biotechnol 2023; 33:1111-1118. [PMID: 37164760 PMCID: PMC10580882 DOI: 10.4014/jmb.2301.01033] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 05/12/2023]
Abstract
As a long-term condition that affects the airways and lungs, chronic obstructive pulmonary disease (COPD) is characterized by inflammation, emphysema, breathlessness, chronic cough, and sputum production. Currently, the bronchodilators and anti-inflammatory drugs prescribed for COPD are mostly off-target, warranting new disease management strategies. Accumulating research has revealed the gut-lung axis to be a bidirectional communication system. Cigarette smoke, a major exacerbating factor in COPD and lung inflammation, affects gut microbiota composition and diversity, causing gut microbiota dysbiosis, a condition that has recently been described in COPD patients and animal models. For this review, we focused on the gut-lung axis, which is influenced by gut microbial metabolites, bacterial translocation, and immune cell modulation. Further, we have summarized the findings of preclinical and clinical studies on the association between gut microbiota and COPD to provide a basis for using gut microbiota in therapeutic strategies against COPD. Our review also proposes that further research on probiotics, prebiotics, short-chain fatty acids, and fecal microbiota transplantation could assist therapeutic approaches targeting the gut microbiota to alleviate COPD.
Collapse
Affiliation(s)
- Eun Yeong Lim
- Food Functionality Research Division, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Eun-Ji Song
- Food Functionality Research Division, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Hee Soon Shin
- Food Functionality Research Division, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
- Department of Food Biotechnology, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
| |
Collapse
|
26
|
Song W, Yue Y, Zhang Q. Imbalance of gut microbiota is involved in the development of chronic obstructive pulmonary disease: A review. Biomed Pharmacother 2023; 165:115150. [PMID: 37429232 DOI: 10.1016/j.biopha.2023.115150] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/12/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a common chronic disease characterized by chronic airway inflammation and remodeling, which seriously endangers human health. Recent developments in genomics and metabolomics have revealed the roles of the gut microbiota and its metabolites in COPD. Dysbiosis of the gut microbiota directly increases gut permeability, thereby promoting the translocation of pathological bacteria. The gut microbiota and associated metabolites may influence the development and progression of COPD by modulating immunity and inflammation. Furthermore, the systemic hypoxia and oxidative stress that occur in COPD may also be involved in intestinal dysfunction. The cross-talk between the gut and lungs is known as the gut-lung axis; however, an overview of its mechanism is lacking. This review highlights the critical and complex interplay of gut microbiota and immune responses in the gut-lung axis, further explores possible links between the gut and lungs, and summarizes new interventions through diet, probiotics, vitamins, and fecal microbiota transplantation, which are critical to COPD.
Collapse
Affiliation(s)
- Wei Song
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, China
| | - Yuanyi Yue
- Department of Gastroenterology, Shengjing Hospital of China Medical University, China.
| | - Qiang Zhang
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, China.
| |
Collapse
|
27
|
Popovic D, Kulas J, Tucovic D, Popov Aleksandrov A, Malesevic A, Glamoclija J, Brdaric E, Sokovic Bajic S, Golic N, Mirkov I, Tolinacki M. Gut microbial dysbiosis occurring during pulmonary fungal infection in rats is linked to inflammation and depends on healthy microbiota composition. Microbiol Spectr 2023; 11:e0199023. [PMID: 37623316 PMCID: PMC10581041 DOI: 10.1128/spectrum.01990-23] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/25/2023] [Indexed: 08/26/2023] Open
Abstract
While the effect of gut microbiota and/or inflammation on a distant body site, including the lungs (gut-lung axis), has been well characterized, data about the influence of lung microbiota and lung inflammation on gut homeostasis (lung-gut axis) are scarce. Using a well-characterized model of pulmonary infection with the fungus Aspergillus fumigatus, we investigated alterations in the lung and gut microbiota by next-generation sequencing of the V3-V4 regions of total bacterial DNA. Pulmonary inflammation due to the fungus A. fumigatus caused bacterial dysbiosis in both lungs and gut, but with different characteristics. While increased alpha diversity and unchanged bacterial composition were noted in the lungs, dysbiosis in the gut was characterized by decreased alpha diversity indices and modified bacterial composition. The altered homeostasis in the lungs allows the immigration of new bacterial species of which 41.8% were found in the feces, indicating that some degree of bacterial migration from the gut to the lungs occurs. On the contrary, the dysbiosis occurring in the gut during pulmonary infection was a consequence of the local activity of the immune system. In addition, the alteration of gut microbiota in response to pulmonary infection depends on the bacterial composition before infection, as no changes in gut bacterial microbiota were detected in a rat strain with diverse gut bacteria. The data presented support the existence of the lung-gut axis and provide additional insight into this mechanism. IMPORTANCE Data regarding the impact of lung inflammation and lung microbiota on GIT are scarce, and the mechanisms of this interaction are still unknown. Using a well-characterized model of pulmonary infection caused by the opportunistic fungus Aspergillus fumigatus, we observed bacterial dysbiosis in both the lungs and gut that supports the existence of the lung-gut axis.
Collapse
Affiliation(s)
- Dusanka Popovic
- Immunotoxicology Group, Department of Ecology, Institute for Biological Research “Sinisa Stankovic” – National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Jelena Kulas
- Immunotoxicology Group, Department of Ecology, Institute for Biological Research “Sinisa Stankovic” – National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Dina Tucovic
- Immunotoxicology Group, Department of Ecology, Institute for Biological Research “Sinisa Stankovic” – National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Aleksandra Popov Aleksandrov
- Immunotoxicology Group, Department of Ecology, Institute for Biological Research “Sinisa Stankovic” – National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Anastasija Malesevic
- Immunotoxicology Group, Department of Ecology, Institute for Biological Research “Sinisa Stankovic” – National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Jasmina Glamoclija
- Mycology Laboratory, Department of Plant Physiology, Institute for Biological Research “Sinisa Stankovic” – National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Emilija Brdaric
- Group for Probiotics and Microbiota-Host Interaction, Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Svetlana Sokovic Bajic
- Group for Probiotics and Microbiota-Host Interaction, Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Natasa Golic
- Group for Probiotics and Microbiota-Host Interaction, Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Ivana Mirkov
- Immunotoxicology Group, Department of Ecology, Institute for Biological Research “Sinisa Stankovic” – National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Maja Tolinacki
- Group for Probiotics and Microbiota-Host Interaction, Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
28
|
Alashkar Alhamwe B, López JF, Zhernov Y, von Strandmann EP, Karaulov A, Kolahian S, Geßner R, Renz H. Impact of local human microbiota on the allergic diseases: Organ-organ interaction. Pediatr Allergy Immunol 2023; 34:e13976. [PMID: 37366206 DOI: 10.1111/pai.13976] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 05/22/2023] [Accepted: 06/02/2023] [Indexed: 06/28/2023]
Abstract
The homogeneous impact of local dysbiosis on the development of allergic diseases in the same organ has been thoroughly studied. However, much less is known about the heterogeneous influence of dysbiosis within one organ on allergic diseases in other organs. A comprehensive analysis of the current scientific literature revealed that most of the relevant publications focus on only three organs: gut, airways, and skin. Moreover, the interactions appear to be mainly unidirectional, that is, dysbiotic conditions of the gut being associated with allergic diseases of the airways and the skin. Similar to homogeneous interactions, early life appears to be not only a crucial period for the formation of the microbiota in one organ but also for the later development of allergic diseases in other organs. In particular, we were able to identify a number of specific bacterial and fungal species/genera in the intestine that were repeatedly associated in the literature with either increased or decreased allergic diseases of the skin, like atopic dermatitis, or the airways, like allergic rhinitis and asthma. The reported studies indicate that in addition to the composition of the microbiome, also the relative abundance of certain microbial species and the overall diversity are associated with allergic diseases of the corresponding organs. As anticipated for human association studies, the underlying mechanisms of the organ-organ crosstalk could not be clearly resolved yet. Thus, further work, in particular experimental animal studies are required to elucidate the mechanisms linking dysbiotic conditions of one organ to allergic diseases in other organs.
Collapse
Affiliation(s)
- Bilal Alashkar Alhamwe
- Institute of Laboratory Medicine, Member of the German Center for Lung Research (DZL), and the Universities of Giessen and Marburg Lung Center (UGMLC), Philipps University Marburg, Marburg, Germany
- Institute of Tumor Immunology, Clinic for Hematology, Oncology and Immunology, Center for Tumor Biology and Immunology, Philipps University Marburg, Marburg, Germany
- College of Pharmacy, International University for Science and Technology (IUST), Daraa, Syria
| | - Juan-Felipe López
- Institute for Immunological Research, University of Cartagena, Cartagena, Colombia
| | - Yury Zhernov
- Department of General Hygiene, F. Erismann Institute of Public Health, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Elke Pogge von Strandmann
- Institute of Tumor Immunology, Clinic for Hematology, Oncology and Immunology, Center for Tumor Biology and Immunology, Philipps University Marburg, Marburg, Germany
| | - Alexander Karaulov
- Laboratory of Immunopathology, Department of Clinical Immunology and Allergy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Saeed Kolahian
- Institute of Laboratory Medicine, Member of the German Center for Lung Research (DZL), and the Universities of Giessen and Marburg Lung Center (UGMLC), Philipps University Marburg, Marburg, Germany
| | - Reinhard Geßner
- Institute of Laboratory Medicine, Member of the German Center for Lung Research (DZL), and the Universities of Giessen and Marburg Lung Center (UGMLC), Philipps University Marburg, Marburg, Germany
| | - Harald Renz
- Institute of Laboratory Medicine, Member of the German Center for Lung Research (DZL), and the Universities of Giessen and Marburg Lung Center (UGMLC), Philipps University Marburg, Marburg, Germany
- Laboratory of Immunopathology, Department of Clinical Immunology and Allergy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| |
Collapse
|
29
|
Karakasidis E, Kotsiou OS, Gourgoulianis KI. Lung and Gut Microbiome in COPD. J Pers Med 2023; 13:jpm13050804. [PMID: 37240974 DOI: 10.3390/jpm13050804] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/06/2023] [Accepted: 05/07/2023] [Indexed: 05/28/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is one of the leading causes of death worldwide. The association between lung and gut microbiomes in the pathogenesis of COPD has been recently uncovered. The goal of this study was to discuss the role of the lung and gut microbiomes in COPD pathophysiology. A systematic search of the PubMed database for relevant articles submitted up to June 2022 was performed. We examined the association between the lung and gut microbiome dysbiosis, reflected in bronchoalveolar lavage (BAL), lung tissue, sputum, and feces samples, and the pathogenesis and progression of COPD. It is evident that the lung and gut microbiomes affect each other and both play a vital role in the pathogenesis of COPD. However, more research needs to be carried out to find the exact associations between microbiome diversity and COPD pathophysiology and exacerbation genesis. Another field that research should focus on is the impact of treatment interventions targeting the human microbiome in preventing COPD genesis and progression.
Collapse
Affiliation(s)
- Efstathios Karakasidis
- Department of Respiratory Medicine, School of Health Science, University of Thessaly, Biopolis, 41110 Larissa, Greece
| | - Ourania S Kotsiou
- Department of Respiratory Medicine, School of Health Science, University of Thessaly, Biopolis, 41110 Larissa, Greece
- Department of Human Pathophysiology, Faculty of Nursing, School of Health Science, University of Thessaly, Gaiopolis, 41110 Larissa, Greece
| | - Konstantinos I Gourgoulianis
- Department of Respiratory Medicine, School of Health Science, University of Thessaly, Biopolis, 41110 Larissa, Greece
| |
Collapse
|
30
|
Functional Two-Way Crosstalk Between Brain and Lung: The Brain-Lung Axis. Cell Mol Neurobiol 2023; 43:991-1003. [PMID: 35678887 PMCID: PMC9178545 DOI: 10.1007/s10571-022-01238-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 05/25/2022] [Indexed: 11/03/2022]
Abstract
The brain has many connections with various organs. Recent advances have demonstrated the existence of a bidirectional central nervous system (CNS) and intestinal tract, that is, the brain-gut axis. Although studies have suggested that the brain and lung can communicate with each other through many pathways, whether there is a brain-lung axis remains still unknown. Based on previous findings, we put forward a hypothesis: there is a cross-talk between the central nervous system and the lung via neuroanatomical pathway, endocrine pathway, immune pathway, metabolites and microorganism pathway, gas pathway, that is, the brain-lung axis. Beyond the regulation of the physiological state in the body, bi-directional communication between the lung and the brain is associated with a variety of disease states, including lung diseases and CNS diseases. Exploring the brain-lung axis not only helps us to understand the development of the disease from different aspects, but also provides an important target for treatment strategies.
Collapse
|
31
|
Abstract
The human microbiome is vast and is present in spaces previously thought to be sterile such as the lungs. A healthy microbiome is diverse and functions in an adaptive way to support local as well as organism health and function. Furthermore, a normal microbiome is essential for normal immune system development rendering the array of microbes that live in and on the human body key components of homeostasis. A wide array of clinical conditions and interventions including anesthesia, analgesia, and surgical intervention may derange the human microbiome in a maladaptive fashion with bacterial responses spanning decreased diversity to transformation to a pathogenic phenotype. Herein, we explore the normal microbiome of the skin, gastrointestinal tract, and the lungs as prototype sites to describe the influence of the microbiomes in each of those locations on health, and how care may derange those relations.
Collapse
|
32
|
D'Alessandro VF, D'Alessandro-Gabazza CN, Yasuma T, Toda M, Takeshita A, Tomaru A, Tharavecharak S, Lasisi IO, Hess RY, Nishihama K, Fujimoto H, Kobayashi T, Cann I, Gabazza EC. Inhibition of a Microbiota-derived Peptide Ameliorates Established Acute Lung Injury. THE AMERICAN JOURNAL OF PATHOLOGY 2023:S0002-9440(23)00113-X. [PMID: 36965776 PMCID: PMC10035802 DOI: 10.1016/j.ajpath.2023.03.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/20/2023] [Accepted: 03/07/2023] [Indexed: 03/25/2023]
Abstract
Acute lung injury is a clinical syndrome characterized by a diffuse lung inflammation that commonly evolves into acute respiratory distress syndrome and respiratory failure. The lung microbiota is involved in the pathogenesis of acute lung injury. Corisin, a proapoptotic peptide derived from the lung microbiota, plays a role in acute lung injury and acute exacerbation of pulmonary fibrosis. Preventive therapeutic intervention with a monoclonal anticorisin antibody inhibits acute lung injury in mice. However, whether inhibition of corisin with the antibody ameliorates established acute lung injury is unknown. Here, the therapeutic effectiveness of the anticorisin antibody in already established acute lung injury in mice was assessed. Lipopolysaccharide was used to induce acute lung injury in mice. After causing acute lung injury, the mice were treated with a neutralizing anticorisin antibody. Mice treated with the antibody showed significant improvement in lung radiological and histopathological findings, decreased lung infiltration of inflammatory cells, reduced markers of lung tissue damage, and inflammatory cytokines in bronchoalveolar lavage fluid compared to untreated mice. In addition, the mice treated with anticorisin antibody showed significantly increased expression of antiapoptotic proteins with decreased caspase-3 activation in the lungs compared to control mice treated with an irrelevant antibody. In conclusion, these observations suggest that the inhibition of corisin is a novel and promising approach for treating established acute lung injury.
Collapse
Affiliation(s)
- Valeria Fridman D'Alessandro
- Department of Immunology, Mie University Faculty and Graduate School of Medicine, Edobashi 2-174, Tsu, Mie 514-8507, Japan
| | - Corina N D'Alessandro-Gabazza
- Department of Immunology, Mie University Faculty and Graduate School of Medicine, Edobashi 2-174, Tsu, Mie 514-8507, Japan;; Center for Intractable Diseases, Mie University, Edobashi 2-174, Tsu, Mie 514-8507, Japan; Carl R. Woese Institute for Genomic Biology (Microbiome Metabolic Engineering), University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Taro Yasuma
- Department of Immunology, Mie University Faculty and Graduate School of Medicine, Edobashi 2-174, Tsu, Mie 514-8507, Japan;; Department of Diabetes and Endocrinology, Mie University Faculty and Graduate School of Medicine, Edobashi 2-174, Tsu, Mie 514-8507, Japan
| | - Masaaki Toda
- Department of Immunology, Mie University Faculty and Graduate School of Medicine, Edobashi 2-174, Tsu, Mie 514-8507, Japan
| | - Atsuro Takeshita
- Department of Immunology, Mie University Faculty and Graduate School of Medicine, Edobashi 2-174, Tsu, Mie 514-8507, Japan;; Department of Diabetes and Endocrinology, Mie University Faculty and Graduate School of Medicine, Edobashi 2-174, Tsu, Mie 514-8507, Japan
| | - Atsushi Tomaru
- Department of Pulmonary and Critical care Medicine, Mie University Faculty and Graduate School of Medicine, Edobashi 2-174, Tsu, Mie 514-8507, Japan
| | - Suphachai Tharavecharak
- Department of Immunology, Mie University Faculty and Graduate School of Medicine, Edobashi 2-174, Tsu, Mie 514-8507, Japan
| | - Isaiah O Lasisi
- School of Molecular and Cellular Biology, the University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Rebecca Y Hess
- School of Molecular and Cellular Biology, the University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Kota Nishihama
- Department of Diabetes and Endocrinology, Mie University Faculty and Graduate School of Medicine, Edobashi 2-174, Tsu, Mie 514-8507, Japan
| | - Hajime Fujimoto
- Department of Pulmonary and Critical care Medicine, Mie University Faculty and Graduate School of Medicine, Edobashi 2-174, Tsu, Mie 514-8507, Japan
| | - Tetsu Kobayashi
- Department of Pulmonary and Critical care Medicine, Mie University Faculty and Graduate School of Medicine, Edobashi 2-174, Tsu, Mie 514-8507, Japan
| | - Isaac Cann
- School of Molecular and Cellular Biology, the University of Illinois at Urbana-Champaign, Urbana, IL, United States; Department of Animal Science, the University of Illinois at Urbana-Champaign, Urbana, IL, United States; Department of Microbiology, the University of Illinois at Urbana-Champaign, Urbana, IL, United States; Division of Nutritional Sciences, the University of Illinois at Urbana-Champaign, Urbana, IL, United States; Center for East Asian & Pacific Studies, the University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Esteban C Gabazza
- Department of Immunology, Mie University Faculty and Graduate School of Medicine, Edobashi 2-174, Tsu, Mie 514-8507, Japan;; Center for Intractable Diseases, Mie University, Edobashi 2-174, Tsu, Mie 514-8507, Japan; Carl R. Woese Institute for Genomic Biology (Microbiome Metabolic Engineering), University of Illinois at Urbana-Champaign, Urbana, IL, United States.
| |
Collapse
|
33
|
Ancona G, Alagna L, Alteri C, Palomba E, Tonizzo A, Pastena A, Muscatello A, Gori A, Bandera A. Gut and airway microbiota dysbiosis and their role in COVID-19 and long-COVID. Front Immunol 2023; 14:1080043. [PMID: 36969243 PMCID: PMC10030519 DOI: 10.3389/fimmu.2023.1080043] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 02/13/2023] [Indexed: 03/29/2023] Open
Abstract
The gut microbiota plays a crucial role in human health and disease. Gut dysbiosis is known to be associated with increased susceptibility to respiratory diseases and modifications in the immune response and homeostasis of the lungs (the so-called gut-lung axis). Furthermore, recent studies have highlighted the possible role of dysbiosis in neurological disturbances, introducing the notion of the "gut-brain axis." During the last 2 years, several studies have described the presence of gut dysbiosis during coronavirus disease 2019 (COVID-19) and its relationship with disease severity, SARS-CoV-2 gastrointestinal replication, and immune inflammation. Moreover, the possible persistence of gut dysbiosis after disease resolution may be linked to long-COVID syndrome and particularly to its neurological manifestations. We reviewed recent evidence on the association between dysbiosis and COVID-19, investigating the possible epidemiologic confounding factors like age, location, sex, sample size, the severity of disease, comorbidities, therapy, and vaccination status on gut and airway microbial dysbiosis in selected studies on both COVID-19 and long-COVID. Moreover, we analyzed the confounding factors strictly related to microbiota, specifically diet investigation and previous use of antibiotics/probiotics, and the methodology used to study the microbiota (α- and β-diversity parameters and relative abundance tools). Of note, only a few studies focused on longitudinal analyses, especially for long-term observation in long-COVID. Lastly, there is a lack of knowledge regarding the role of microbiota transplantation and other therapeutic approaches and their possible impact on disease progression and severity. Preliminary data seem to suggest that gut and airway dysbiosis might play a role in COVID-19 and in long-COVID neurological symptoms. Indeed, the development and interpretation of these data could have important implications for future preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Giuseppe Ancona
- Infectious Diseases Unit, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Laura Alagna
- Infectious Diseases Unit, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Claudia Alteri
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Multimodal Research Area, Bambino Gesù Children Hospital (IRCCS), Rome, Italy
| | - Emanuele Palomba
- Infectious Diseases Unit, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, Centre for Multidisciplinary Research in Health Science (MACH), University of Milan, Milan, Italy
| | - Anna Tonizzo
- Infectious Diseases Unit, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, Centre for Multidisciplinary Research in Health Science (MACH), University of Milan, Milan, Italy
| | - Andrea Pastena
- Infectious Diseases Unit, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, Centre for Multidisciplinary Research in Health Science (MACH), University of Milan, Milan, Italy
| | - Antonio Muscatello
- Infectious Diseases Unit, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Andrea Gori
- Infectious Diseases Unit, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, Centre for Multidisciplinary Research in Health Science (MACH), University of Milan, Milan, Italy
| | - Alessandra Bandera
- Infectious Diseases Unit, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, Centre for Multidisciplinary Research in Health Science (MACH), University of Milan, Milan, Italy
| |
Collapse
|
34
|
El-Emam GA, El-Baz AM, Shata A, Shaaban AA, Adel El-Sokkary MM, Motawea A. Formulation and microbiological ancillary studies of gemifloxacin proniosomes for exploiting its role against LPS acute pneumonia model. J Drug Deliv Sci Technol 2023; 81:104053. [DOI: https:/doi.org/10.1016/j.jddst.2022.104053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
|
35
|
The association between the respiratory tract microbiome and clinical outcomes in patients with COPD. Microbiol Res 2023; 266:127244. [DOI: 10.1016/j.micres.2022.127244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 10/25/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022]
|
36
|
Gastrointestinal consequences of lipopolysaccharide-induced lung inflammation. Inflamm Res 2023; 72:57-74. [PMID: 36322182 PMCID: PMC9628607 DOI: 10.1007/s00011-022-01657-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 09/15/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Respiratory inflammation is the body's response to lung infection, trauma or hypersensitivity and is often accompanied by comorbidities, including gastrointestinal (GI) symptoms. Why respiratory inflammation is accompanied by GI dysfunction remains unclear. Here, we investigate the effect of lipopolysaccharide (LPS)-induced lung inflammation on intestinal barrier integrity, tight-junctions, enteric neurons and inflammatory marker expression. METHODS Female C57bl/6 mice (6-8 weeks) were intratracheally administered LPS (5 µg) or sterile saline, and assessed after either 24 or 72 h. Total and differential cell counts in bronchoalveolar lavage fluid (BALF) were used to evaluate lung inflammation. Intestinal barrier integrity was assessed via cross sectional immunohistochemistry of tight junction markers claudin-1, claudin-4 and EpCAM. Changes in the enteric nervous system (ENS) and inflammation in the intestine were quantified immunohistochemically using neuronal markers Hu + and nNOS, glial markers GFAP and S100β and pan leukocyte marker CD45. RESULTS Intratracheal LPS significantly increased the number of neutrophils in BALF at 24 and 72 h. These changes were associated with an increase in CD45 + cells in the ileal mucosa at 24 and 72 h, increased goblet cell expression at 24 h, and increased expression of EpCAM at 72 h. LPS had no effect on the expression of GFAP, S100β, nor the number of Hu + neurons or proportion of nNOS neurons in the myenteric plexus. CONCLUSIONS Intratracheal LPS administration induces inflammation in the ileum that is associated with enhanced expression of EpCAM, decreased claudin-4 expression and increased goblet cell density, these changes may contribute to systemic inflammation that is known to accompany many inflammatory diseases of the lung.
Collapse
|
37
|
S A, K G, A AM. Intermodulation of gut-lung axis microbiome and the implications of biotics to combat COVID-19. J Biomol Struct Dyn 2022; 40:14262-14278. [PMID: 34699326 DOI: 10.1080/07391102.2021.1994875] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The novel coronavirus disease pandemic caused by the COVID-19 virus has infected millions of people around the world with a surge in transmission and mortality rates. Although it is a respiratory viral infection that affects airway epithelial cells, a diverse set of complications, including cytokine storm, gastrointestinal disorders, neurological distress, and hyperactive immune responses have been reported. However, growing evidence indicates that the bidirectional crosstalk of the gut-lung axis can decipher the complexity of the disease. Though not much research has been focused on the gut-lung axis microbiome, there is a translocation of COVID-19 infection from the lung to the gut through the lymphatic system resulting in disruption of gut permeability and its integrity. It is believed that detailed elucidation of the gut-lung axis crosstalk and the role of microbiota can unravel the most significant insights on the discovery of diagnosis using microbiome-based-therapeutics for COVID-19. This review calls attention to relate the influence of dysbiosis caused by COVID-19 and the involvement of the gut-lung axis. It presents first of its kind details that concentrate on the momentousness of biotics in disease progression and restoration. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Aishwarya S
- Department of Bioinformatics, Stella Maris College, Chennai, India.,Centre for Advanced Studies in Crystallography and Biophysics, University of Madras, Chennai, India
| | - Gunasekaran K
- Centre for Advanced Studies in Crystallography and Biophysics, University of Madras, Chennai, India
| | - Anita Margret A
- Department of Biotechnology and Bioinformatics, Bishop Heber College, Tiruchirappalli, Tamil Nadu, India
| |
Collapse
|
38
|
The Role of Gut Bacteriome in Asthma, Chronic Obstructive Pulmonary Disease and Obstructive Sleep Apnoea. Microorganisms 2022; 10:microorganisms10122457. [PMID: 36557710 PMCID: PMC9781820 DOI: 10.3390/microorganisms10122457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/30/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
The human body contains a very complex and dynamic ecosystem of bacteria. The bacteriome interacts with the host bi-directionally, and changes in either factor impact the entire system. It has long been known that chronic airway diseases are associated with disturbances in the lung bacteriome. However, less is known about the role of gut bacteriome in the most common respiratory diseases. Here, we aim to summarise the evidence concerning the role of the intestinal bacteriome in the pathogenesis and disease course of bronchial asthma, chronic obstructive pulmonary disease, and obstructive sleep apnea. Furthermore, we discuss the consequences of an altered gut bacteriome on the most common comorbidities of these lung diseases. Lastly, we also reflect on the therapeutic potential of influencing the gut microbiome to improve disease outcomes.
Collapse
|
39
|
Wiscovitch-Russo R, Taal AM, Kuelbs C, Oldfield LM, Ramar M, Singh H, Fedulov AV, Gonzalez-Juarbe N. Gut and lung microbiome profiles in pregnant mice. Front Microbiol 2022; 13:946779. [PMID: 36578567 PMCID: PMC9791091 DOI: 10.3389/fmicb.2022.946779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 11/18/2022] [Indexed: 12/14/2022] Open
Abstract
In recent years, microbiome research has expanded from the gastrointestinal tract to other host sites previously thought to be abacterial such as the lungs. Yet, the effects of pregnancy in the lung and gut microbiome remains unclear. Here we examined the changes in the gut and lung microbiome in mice at 14 days of gestation. Lung tissue and stool samples were collected from pregnant and non-pregnant female BALB/c mice, DNA was isolated, amplified, and bacterial specific V4 16S rRNA gene was sequenced. Using an in-house bioinformatic pipeline we assessed the microbial composition of each organ using stool and lung tissue samples. The stool data showed that Lachnospiraceae and Lactobacillaceae were more abundant in the pregnant mice. Likewise, Lactobacillaceae were dominant in the lungs of pregnant mice. However, Streptococcaceae were dominant in the lungs of non-pregnant mice with a low microbial abundance in the pregnant mice. A permutation test showed that pregnancy significantly contributes to the variance in both the lung and stool microbiome. At the same time, we estimate that 49% of the total detected operational taxonomic units were shared between the stool and lung data. After removing common stool-associated bacteria from the lung dataset, no microbial differential abundance was detected between the pregnant and non-pregnant lung microbial community. Thus, pregnancy contributes to variance to the lung and stool microbiome but not in the unique lung microbiota.
Collapse
Affiliation(s)
| | - Aji Mary Taal
- J. Craig Venter Institute, Rockville, MD, United States
| | - Claire Kuelbs
- J. Craig Venter Institute, Rockville, MD, United States
| | | | - MohanKumar Ramar
- Department of Surgery, Division of Surgical Research, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, Providence, RI, United States
| | | | - Alexey V. Fedulov
- Department of Surgery, Division of Surgical Research, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, Providence, RI, United States
| | | |
Collapse
|
40
|
Neag MA, Vulturar DM, Gherman D, Burlacu CC, Todea DA, Buzoianu AD. Gastrointestinal microbiota: A predictor of COVID-19 severity? World J Gastroenterol 2022; 28:6328-6344. [PMID: 36533107 PMCID: PMC9753053 DOI: 10.3748/wjg.v28.i45.6328] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/26/2022] [Accepted: 11/17/2022] [Indexed: 12/02/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by a severe acute respiratory syndrome coronavirus 2 infection, has raised serious concerns worldwide over the past 3 years. The severity and clinical course of COVID-19 depends on many factors (e.g., associated comorbidities, age, etc) and may have various clinical and imaging findings, which raises management concerns. Gut microbiota composition is known to influence respiratory disease, and respiratory viral infection can also influence gut microbiota. Gut and lung microbiota and their relationship (gut-lung axis) can act as modulators of inflammation. Modulating the intestinal microbiota, by improving its composition and diversity through nutraceutical agents, can have a positive impact in the prophylaxis/treatment of COVID-19.
Collapse
Affiliation(s)
- Maria Adriana Neag
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca 400337, Romania
| | - Damiana-Maria Vulturar
- Department of Pneumology, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca 400332, Romania
| | - Diana Gherman
- Department of Radiology, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca 400347, Romania
| | - Codrin-Constantin Burlacu
- Faculty of Medicine, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca 400347, Romania
| | - Doina Adina Todea
- Department of Pneumology, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca 400332, Romania
| | - Anca Dana Buzoianu
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca 400337, Romania
| |
Collapse
|
41
|
Traina G. The Connection between Gut and Lung Microbiota, Mast Cells, Platelets and SARS-CoV-2 in the Elderly Patient. Int J Mol Sci 2022; 23:ijms232314898. [PMID: 36499222 PMCID: PMC9740794 DOI: 10.3390/ijms232314898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/21/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022] Open
Abstract
The human coronavirus SARS-CoV-2 or COVID-19 that emerged in late 2019 causes a respiratory tract infection and has currently resulted in more than 627 million confirmed cases and over 6.58 million deaths worldwide up to October 2022. The highest death rate caused by COVID-19 is in older people, especially those with comorbidities. This evidence presents a challenge for biomedical research on aging and also identifies some key players in inflammation, including mast cells and platelets, which could represent important markers and, at the same time, unconventional therapeutic targets. Studies have shown a decrease in the diversity of gut microbiota composition in the elderly, particularly a reduced abundance of butyrate-producing species, and COVID-19 patients manifest faecal microbiome alterations, with an increase in opportunistic pathogens and a depletion of commensal beneficial microorganisms. The main purpose of this narrative review is to highlight how an altered condition of the gut microbiota, especially in the elderly, could be an important factor and have a strong impact in the lung homeostasis and COVID-19 phenomenon, jointly to the activation of mast cells and platelets, and also affect the outcomes of the pathology. Therefore, a targeted and careful control of the intestinal microbiota could represent a complementary intervention to be implemented for the management and the challenge against COVID-19.
Collapse
Affiliation(s)
- Giovanna Traina
- Department of Pharmaceutical Sciences, University of Perugia, Via Romana, 06126 Perugia, Italy
| |
Collapse
|
42
|
Madany AM, Hughes HK, Ashwood P. Prenatal Maternal Antibiotics Treatment Alters the Gut Microbiota and Immune Function of Post-Weaned Prepubescent Offspring. Int J Mol Sci 2022; 23:12879. [PMID: 36361666 PMCID: PMC9655507 DOI: 10.3390/ijms232112879] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/07/2022] [Accepted: 10/19/2022] [Indexed: 11/16/2022] Open
Abstract
This study aimed to investigate the immediate and continual perturbation to the gut microbiota of offspring in the weeks post-weaning and how these may be modulated by treating pregnant C57BL/6J dams with antibiotics (ABX). We used a broad-spectrum antibiotic cocktail consisting of ampicillin 1 mg/mL, neomycin 1 mg/mL, and vancomycin 0.5 mg/mL, or vancomycin 0.5 mg/mL alone, administered ad-lib orally to dams via drinking water during gestation and stopped after delivery. We analyzed the gut microbiota of offspring, cytokine profiles in circulation, and the brain to determine if there was evidence of a gut-immune-brain connection. Computationally predicted metabolic pathways were calculated from 16s rRNA sequencing data. ABX treatment can negatively affect the gut microbiota, including reduced diversity, altered metabolic activity, and immune function. We show that the maternal ABX-treatment continues to alter the offspring's gut microbiota diversity, composition, and metabolic pathways after weaning, with the most significant differences evident in 5-week-olds as opposed to 4-week-olds. Lower levels of chemokines and inflammatory cytokines, such as interleukin (IL)-1α and IL-2, are also seen in the periphery and brains of offspring, respectively. In conclusion, this study shows maternal antibiotic administration alters gut microbiome profiles in offspring, which undergoes a continuous transformation, from week to week, at an early age after weaning.
Collapse
Affiliation(s)
- Abdullah M. Madany
- Department of Psychiatry and Behavioral Sciences, University of California at Davis, 2230 Stockton Blvd., Sacramento, CA 95817, USA
- The M.I.N.D. Institute, University of California at Davis, 2825 50th Street, Sacramento, CA 95817, USA
| | - Heather K. Hughes
- The M.I.N.D. Institute, University of California at Davis, 2825 50th Street, Sacramento, CA 95817, USA
- Department of Medical Microbiology and Immunology, University of California at Davis, 3146 One Shields Avenue, Davis, CA 95616, USA
| | - Paul Ashwood
- The M.I.N.D. Institute, University of California at Davis, 2825 50th Street, Sacramento, CA 95817, USA
- Department of Medical Microbiology and Immunology, University of California at Davis, 3146 One Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|
43
|
Wang XH, Xu DQ, Chen YY, Yue SJ, Fu RJ, Huang L, Tang YP. Traditional Chinese Medicine: A promising strategy to regulate inflammation, intestinal disorders and impaired immune function due to sepsis. Front Pharmacol 2022; 13:952938. [PMID: 36188532 PMCID: PMC9523403 DOI: 10.3389/fphar.2022.952938] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
Sepsis is described as a dysregulation of the immune response to infection, which leads to life-threatening organ dysfunction. The interaction between intestinal microbiota and sepsis can't be ignored. Furthermore, the intestinal microbiota may regulate the progress of sepsis and attenuate organ damage. Thus, maintaining or restoring microbiota may be a new way to treat sepsis. Traditional Chinese medicine (TCM) assumes a significant part in the treatment of sepsis through multi-component, multi-pathway, and multi-targeting abilities. Moreover, TCM can prevent the progress of sepsis and improve the prognosis of patients with sepsis by improving the imbalance of intestinal microbiota, improving immunity and reducing the damage to the intestinal barrier. This paper expounds the interaction between intestinal microbiota and sepsis, then reviews the current research on the treatment of sepsis with TCM, to provide a theoretical basis for its clinical application.
Collapse
Affiliation(s)
| | - Ding-Qiao Xu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xi’an, China
| | | | | | | | | | - Yu-Ping Tang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xi’an, China
| |
Collapse
|
44
|
Norouzi Masir M, Shirvaliloo M. Symptomatology and microbiology of the gastrointestinal tract in post-COVID conditions. JGH Open 2022; 6:JGH312811. [PMID: 36247234 PMCID: PMC9538198 DOI: 10.1002/jgh3.12811] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/23/2022] [Accepted: 08/10/2022] [Indexed: 06/01/2023]
Abstract
Post-COVID conditions, also known as post-acute sequelae of SARS-CoV-2 (PASC), refer to the persistence of symptoms in COVID-19 long-haulers. Various manifestations of post-COVID conditions are general symptoms and/or manifestations of damage in multiple organs. Besides, SARS-CoV-2 can involve the gastrointestinal tract, resulting in sequelae such as diarrhea, abdominal pain, nausea, anorexia, vomiting, constipation, abdominal distension, acid reflux, and/or gastrointestinal bleeding. Previous investigations point to SARS-CoV-2 entry into enterocytes enhances by the angiotensin-converting enzyme 2 (ACE2) receptors. Interestingly, ACE2 receptors are abundantly expressed in the gut, implying infection with SARS-CoV-2 might occur through this route as well as in the respiratory tract. According to mounting evidence, SARS-CoV-2 RNA has been identified in fecal specimens of patients with COVID-19 during and beyond the acute phase. In addition, studies have shown gut microbiome composition is altered in patients with PASC, hence, another putative mechanism linked to gastrointestinal symptoms is gut dysbiosis. The presence of the gut-lung axis in COVID-19 might have major implications for disease pathogenesis and treatment. This review discussed the prevalence of gastrointestinal symptoms and pathophysiology underlying possible infection of the gut in patients with PASC. Also, SARS-COV-2 induced NLRP3 inflammasome-dependent inflammatory pathways are briefly addressed.
Collapse
Affiliation(s)
- Mohamad Norouzi Masir
- Student Research CommitteeSchool of Medicine, Shahrekord University of Medical SciencesShahrekordIran
| | - Milad Shirvaliloo
- Infectious & Tropical Diseases Research CenterTabriz University of Medical SciencesTabrizIran
| |
Collapse
|
45
|
Wang J, Luo L, Zhao X, Xue X, Liao L, Deng Y, Zhou M, Peng C, Li Y. Forsythiae Fructuse extracts alleviates LPS-induced acute lung injury in mice by regulating PPAR-γ/RXR-α in lungs and colons. JOURNAL OF ETHNOPHARMACOLOGY 2022; 293:115322. [PMID: 35483561 DOI: 10.1016/j.jep.2022.115322] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/06/2022] [Accepted: 04/21/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Forsythiae Fructuse (FF), the dried fruit of Forsythia suspensa (Thunb.) Vahl, is used as a traditional Chinese medicine that has been reported to exert good anti-inflammatory effects in the treatment of many lung diseases. AIM OF THE STUDY The purpose of this study was to investigate the anti-inflammatory mechanism of FF in the treatment of acute lung injury (ALI) based on gut-lung axis. MATERIALS AND METHODS ALI model was established by the intratracheal instillation of 5 mg/kg LPS in ICR mice. Mice were administered intragastrically with dexamethasone (DEX), and low-dose, medium-dose and high-dose of FF extracts (LFF, MFF and HFF) in addition to the mice of control (CON) and model (MOD) groups. Pathological observation and inflammation scoring of lung tissues were based on HE staining. Limulus lysate assay was used to detect endotoxin levels in serum. Western blot and Real-time quantitative PCR were respectively applied to detect the protein and mRNA expressions in both lung and colon tissues. RESULTS Lung pathological injury, inflammatory score and inflammatory genes (IL-6, IL-1β, TNF-α) could be effectively suppressed by FF in LPS-induced ALI mice. FF also increased the proteins of epithelial markers (E-cadherin, ZO-1 and Claudin-1) in lung and colon tissues, and decreased colonic inflammatory genes for protecting the epithelial barriers of lung and colon. The protein expression of TLR4/MAPK/NF-κB inflammatory signaling pathway in lung and colon was significantly inhibited by FF via the regulation of PPAR-γ, a nuclear hormone receptor that forms the heterodimer with RXR-α to inhibit inflammatory gene transcription. More specifically, FF promoted the upregulation of protein, phosphorylated proteins and genes of PPAR-γ/RXR-α in lungs, while inhibited the protein overexpression and phosphorylation of PPAR-γ/RXR-α in colons. CONCLUSIONS FF exhibited anti-inflammatory effects and protected the epithelial barriers in lungs and colons by regulating PPAR-γ/RXR-α in the treatment of LPS-induced ALI.
Collapse
Affiliation(s)
- Jing Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Lin Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xingtao Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xinyan Xue
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Li Liao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Ying Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Mengting Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Yunxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
46
|
Human Blood Bacteriome: Eubiotic and Dysbiotic States in Health and Diseases. Cells 2022; 11:cells11132015. [PMID: 35805098 PMCID: PMC9265464 DOI: 10.3390/cells11132015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/07/2022] [Accepted: 06/21/2022] [Indexed: 01/27/2023] Open
Abstract
The human gut microbiome is acknowledged as being associated with homeostasis and the pathogenesis of several diseases. Conventional culture techniques are limited in that they cannot culture the commensals; however, next-generation sequencing has facilitated the discovery of the diverse and delicate microbial relationship in body sites and blood. Increasing evidence regarding the blood microbiome has revolutionized the concept of sterility and germ theory in circulation. Among the types of microbial communities in the blood, bacteriomes associated with many health conditions have been thoroughly investigated. Blood bacterial profiles in healthy subjects are identified as the eubiotic blood bacteriome, whereas the dysbiotic blood bacteriome represents the change in bacterial characteristics in subjects with diseases showing deviations from the eubiotic profiles. The blood bacterial characteristics in each study are heterogeneous; thus, the association between eubiotic and dysbiotic blood bacteriomes and health and disease is still debatable. Thereby, this review aims to summarize and discuss the evidence concerning eubiotic and dysbiotic blood bacteriomes characterized by next-generation sequencing in human studies. Knowledge pertaining to the blood bacteriome will transform the concepts around health and disease in humans, facilitating clinical implementation in the near future.
Collapse
|
47
|
Wang T, Guan K, Su Q, Wang X, Yan Z, Kuang K, Wang Y, Zhang Q, Zhou X, Liu B. Change of Gut Microbiota in PRRSV-Resistant Pigs and PRRSV-Susceptible Pigs from Tongcheng Pigs and Large White Pigs Crossed Population upon PRRSV Infection. Animals (Basel) 2022; 12:ani12121504. [PMID: 35739841 PMCID: PMC9219425 DOI: 10.3390/ani12121504] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/28/2022] [Accepted: 06/02/2022] [Indexed: 12/05/2022] Open
Abstract
Simple Summary The gut microbiota could directly induce immune responses and affect the health of the host. In this study, we assessed changes in the gut microbiota of resistant segregated phenotypic pigs under Porcine Reproductive and Respiratory Syndrome Virus exposure. The results showed that the resistance of pigs was related to the composition of gut microbiota. The quantity and relative abundance of probiotics in resistant individuals positively affected host immunity and growth performance, whereas high levels of pathogenic bacteria in susceptible individuals were associated with poorer clinical outcomes. The results of this study suggest that gut microbiota may serve as an effective probiotic resource to provide new methods for PRRS prevention and treatment. Abstract Porcine Reproductive and Respiratory Syndrome (PRRS) is one of the serious infectious diseases that threatens the swine industry. Increasing evidence shows that gut microbiota plays an important role in regulating host immune responses to PRRS virus (PRRSV). The aim of this study was to investigate gut microbiota difference between PRRSV-resistant pigs and PRRSV-suspectable pigs derived from a Tongcheng pigs and Large White pigs crossed population. PRRSV infection induces an increase in the abundance and diversity of gut microbiota. Correlation analysis showed that 36 genera were correlated with viral loads or weight gain after PRRSV infection. Prevotellaceae-NK3B31-group, Christensenellaceae-R7-group, and Parabacteroides were highly correlated with both viral load and weight gain. Notably, the diversity and abundance of beneficial bacteria such as Prevotellaceae-NK3B31-group was high in resistant pigs, and the diversity and abundance of pathogenic bacteria such as Campylobacter and Desulfovibrio were high in susceptible pigs. Gut microbiota were significantly associated with immune function and growth performance, suggesting that these genera might be related to viremia, clinical symptoms, and disease resistance. Altogether, this study revealed the correlation of gut microbiota with PRRSV infection and gut microbiota interventions may provide an effective prevention against PRRSV infection.
Collapse
Affiliation(s)
- Tengfei Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (T.W.); (K.G.); (Q.S.); (X.W.); (Z.Y.); (K.K.); (Y.W.)
| | - Kaifeng Guan
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (T.W.); (K.G.); (Q.S.); (X.W.); (Z.Y.); (K.K.); (Y.W.)
| | - Qiuju Su
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (T.W.); (K.G.); (Q.S.); (X.W.); (Z.Y.); (K.K.); (Y.W.)
| | - Xiaotong Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (T.W.); (K.G.); (Q.S.); (X.W.); (Z.Y.); (K.K.); (Y.W.)
| | - Zengqiang Yan
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (T.W.); (K.G.); (Q.S.); (X.W.); (Z.Y.); (K.K.); (Y.W.)
| | - Kailin Kuang
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (T.W.); (K.G.); (Q.S.); (X.W.); (Z.Y.); (K.K.); (Y.W.)
| | - Yuan Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (T.W.); (K.G.); (Q.S.); (X.W.); (Z.Y.); (K.K.); (Y.W.)
| | - Qingde Zhang
- Laboratory Animal Centre, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China;
| | - Xiang Zhou
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (T.W.); (K.G.); (Q.S.); (X.W.); (Z.Y.); (K.K.); (Y.W.)
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
- The Engineering Technology Research Center of Hubei Province Local Pig Breed Improvement, Wuhan 430070, China
- Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- Correspondence: (X.Z.); (B.L.)
| | - Bang Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (T.W.); (K.G.); (Q.S.); (X.W.); (Z.Y.); (K.K.); (Y.W.)
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
- The Engineering Technology Research Center of Hubei Province Local Pig Breed Improvement, Wuhan 430070, China
- Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- Correspondence: (X.Z.); (B.L.)
| |
Collapse
|
48
|
Antibiotic Treatment during Pregnancy Alters Offspring Gut Microbiota in a Sex-Dependent Manner. Biomedicines 2022; 10:biomedicines10051042. [PMID: 35625778 PMCID: PMC9138679 DOI: 10.3390/biomedicines10051042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/18/2022] [Accepted: 04/21/2022] [Indexed: 02/06/2023] Open
Abstract
This study investigated the effect of antibiotics administered to pregnant dams on offspring gut microbiome composition and metabolic capabilities, and how these changes in the microbiota may influence their immune responses in both the periphery and the brain. We orally administered a broad-spectrum antibiotic (ABX) cocktail consisting of vancomycin 0.5 mg/mL, ampicillin 1 mg/mL, and neomycin 1 mg/mL to pregnant dams during late gestation through birth. Bacterial DNA was extracted from offspring fecal samples, and 16S ribosomal RNA gene was sequenced by Illumina, followed by analysis of gut microbiota composition and PICRUSt prediction. Serum and brain tissue cytokine levels were analyzed by Luminex. Our results indicate that the ABX-cocktail led to significant diversity and taxonomic changes to the offspring's gut microbiome. In addition, the predicted KEGG and MetaCyc pathways were significantly altered in the offspring. Finally, there were decreased innate inflammatory cytokines and chemokines and interleukin (IL)-17 seen in the brains of ABX-cocktail offspring in response to lipopolysaccharide (LPS) immune challenge. Our results suggest that maternal ABX can produce long-lasting effects on the gut microbiome and neuroimmune responses of offspring. These findings support the role of the early microbiome in the development of offspring gastrointestinal and immune systems.
Collapse
|
49
|
Inczefi O, Bacsur P, Resál T, Keresztes C, Molnár T. The Influence of Nutrition on Intestinal Permeability and the Microbiome in Health and Disease. Front Nutr 2022; 9:718710. [PMID: 35548572 PMCID: PMC9082752 DOI: 10.3389/fnut.2022.718710] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 02/22/2022] [Indexed: 01/09/2023] Open
Abstract
The leakage of the intestinal barrier and the disruption of the gut microbiome are increasingly recognized as key factors in different pathophysiological conditions, such as irritable bowel syndrome (IBS), inflammatory bowel disease (IBD), chronic liver diseases, obesity, diabetes mellitus, types of cancer, and neuropsychiatric disorders. In this study, the mechanisms leading to dysbiosis and "leaky gut" are reviewed, and a short summary of the current knowledge regarding different diseases is provided. The simplest way to restore intestinal permeability and the microbiota could be ideal nutrition. Further therapeutic options are also available, such as the administration of probiotics or postbiotics or fecal microbiota transplantation.
Collapse
Affiliation(s)
- Orsolya Inczefi
- Department of Gastroenterology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Péter Bacsur
- Department of Gastroenterology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Tamás Resál
- Department of Gastroenterology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Csilla Keresztes
- Department for Medical Communication and Translation Studies, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Tamás Molnár
- Department of Gastroenterology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary,*Correspondence: Tamás Molnár,
| |
Collapse
|
50
|
Qu L, Cheng Q, Wang Y, Mu H, Zhang Y. COPD and Gut–Lung Axis: How Microbiota and Host Inflammasome Influence COPD and Related Therapeutics. Front Microbiol 2022; 13:868086. [PMID: 35432269 PMCID: PMC9012580 DOI: 10.3389/fmicb.2022.868086] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/14/2022] [Indexed: 12/14/2022] Open
Abstract
The exact pathogenesis of chronic obstructive pulmonary disease (COPD) remains largely unknown. While current management strategies are effective at stabilizing the disease or relief the symptoms, new approaches are required to target underlying disease process and reverse lung function deterioration. Recent research showed that pneumonia bacteria is critical in disease progression and gut microbiome is likely perturbed in COPD, which is usually accompanied by a decreased intestinal microbial diversity and a disturbance in immune system, contributing to a chronic inflammation. The cross-talk between gut microbes and lungs, termed as the “gut-lung axis,” is known to impact immune response and homeostasis in the airway. Although the gut and respiratory microbiota exhibit compositional differences, the gut and lung showed similarities in the origin of epithelia of both gastrointestinal and respiratory tracts, the anatomical structure, and early-life microbial colonization. Evidence showed that respiratory infection might be prevented, or at least dampened by regulating gut microbial ecosystem; thus, a promising yet understudied area of COPD management is nutrition-based preventive strategies. COPD patient is often deficient in nutrient such as antioxidant, vitamins, and fiber intake. However, further larger-scale randomized clinical trials (RCTs) are required to establish the role of these nutrition-based diet in COPD management. In this review, we highlight the important and complex interaction of microbiota and immune response on gut-lung axis. Further research into the modification and improvement of the gut microbiota and new interventions through diet, probiotics, vitamins, and fecal microbiota transplantation is extreme critical to provide new preventive therapies for COPD.
Collapse
Affiliation(s)
- Ling Qu
- Department of Respiratory and Critical Care Medicine, Shanghai Putuo District Liqun Hospital, Shanghai, China
| | - Qing Cheng
- Department of Respiratory and Critical Care Medicine, Shanghai Putuo District Liqun Hospital, Shanghai, China
| | - Yan Wang
- Department of Science and Education, Shanghai Putuo District Liqun Hospital, Shanghai, China
| | - Hui Mu
- Department of Clinical Laboratory, Shanghai Putuo District Liqun Hospital, Shanghai, China
| | - Yunfeng Zhang
- Department of Respiratory and Critical Care Medicine, Shanghai Putuo District Liqun Hospital, Shanghai, China
- Department of Science and Education, Shanghai Putuo District Liqun Hospital, Shanghai, China
- *Correspondence: Yunfeng Zhang,
| |
Collapse
|