1
|
Kirsch-Volders M, Mišík M, Fenech M. Tetraploidy in normal tissues and diseases: mechanisms and consequences. Chromosoma 2025; 134:3. [PMID: 40117022 PMCID: PMC11928420 DOI: 10.1007/s00412-025-00829-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 03/11/2025] [Accepted: 03/13/2025] [Indexed: 03/23/2025]
Abstract
Tetraploidisation plays a crucial role in evolution, development, stress adaptation, and disease, but its beneficial or pathological effects in different tissues remain unclear. This study aims to compare physiological and unphysiological tetraploidy in eight steps: 1) mechanisms of diploidy-to-tetraploidy transition, 2) induction and elimination of unphysiological tetraploidy, 3) tetraploid cell characteristics, 4) stress-induced unphysiological tetraploidy, 5) comparison of physiological vs. unphysiological tetraploidy, 6) consequences of unphysiological stress-induced tetraploidy, 7) nutritional or pharmacological prevention strategies of tetraploidisation, and 8) knowledge gaps and future perspectives. Unphysiological tetraploidy is an adaptive stress response at a given threshold, often involving mitotic slippage. If tetraploid cells evade elimination through apoptosis or immune surveillance, they may re-enter the cell cycle, causing genetic instability, micronuclei formation, aneuploidy, modification of the epigenome and the development of diseases. The potential contributions of unphysiological tetraploidy to neurodegenerative, cardiovascular and diabetes related diseases are summarized in schematic figures and contrasted with its role in cancer development. The mechanisms responsible for the transition from physiological to unphysiological tetraploidy and the tolerance to tetraploidisation in unphysiological tetraploidy are not fully understood. Understanding these mechanisms is of critical importance to allow the development of targeted nutritional and pharmacological prevention strategies and therapies.
Collapse
Affiliation(s)
- Micheline Kirsch-Volders
- Laboratory for Cell Genetics, Department Biology, Faculty of Sciences and Bio-Engineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Miroslav Mišík
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, 1090, Vienna, Austria.
| | - Michael Fenech
- Genome Health Foundation, North Brighton, SA, 5048, Australia
| |
Collapse
|
2
|
Kirsch-Volders M, Mišík M, de Gerlache J. Tetraploidy as a metastable state towards malignant cell transformation within a systemic approach of cancer development. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2024; 896:503764. [PMID: 38821671 DOI: 10.1016/j.mrgentox.2024.503764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/08/2024] [Accepted: 05/06/2024] [Indexed: 06/02/2024]
Abstract
Tetraploidy, a condition in which a cell has four homologous sets of chromosomes, may be a natural physiological condition or pathophysiological such as in cancer cells or stress induced tetraploidisation. Its contribution to cancer development is well known. However, among the many models proposed to explain the causes, mechanisms and steps of malignant cell transformation, only few integrate tetraploidization into a systemic multistep approach of carcinogenesis. Therefore, we will i) describe the molecular and cellular characteristics of tetraploidy; ii) assess the contribution of stress-induced tetraploidy in cancer development; iii) situate tetraploidy as a metastable state leading to cancer development in a systemic cell-centered approach; iiii) consider knowledge gaps and future perspectives. The available data shows that stress-induced tetraploidisation/polyploidisation leads to p53 stabilisation, cell cycle arrest, followed by cellular senescence or apoptosis, suppressing the proliferation of tetraploid cells. However, if tetraploid cells escape the G1-tetraploidy checkpoint, it may lead to uncontrolled proliferation of tetraploid cells, micronuclei induction, aneuploidy and deploidisation. In addition, tetraploidization favors 3D-chromatin changes and epigenetic effects. The combined effects of genetic and epigenetic changes allow the expression of oncogenic gene expression and cancer progression. Moreover, since micronuclei are inducing inflammation, which in turn may induce additional tetraploidization, tetraploidy-derived genetic instability leads to a carcinogenic vicious cycle. The concept that polyploid cells are metastable intermediates between diploidy and aneuploidy is not new. Metastability denotes an intermediate energetic state within a dynamic system other than the system's state at least energy. Considering in parallel the genetic/epigenetic changes and the probable entropy levels induced by stress-induced tetraploidisation provides a new systemic approach to describe cancer development.
Collapse
Affiliation(s)
- Micheline Kirsch-Volders
- Laboratory for Cell Genetics, Department Biology, Faculty of Sciences and Bio-engineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, Brussels 1050, Belgium
| | - Miroslav Mišík
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, Vienna 1090, Austria.
| | | |
Collapse
|
3
|
Duan L, Maki CG. Determinants of Aurora kinase B inhibitor sensitivity in small cell lung cancer. Transl Lung Cancer Res 2024; 13:223-228. [PMID: 38496702 PMCID: PMC10938090 DOI: 10.21037/tlcr-23-732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/18/2024] [Indexed: 03/19/2024]
Affiliation(s)
- Lei Duan
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, IL, USA
| | - Carl G Maki
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
4
|
Ceramide Synthase 6 Maximizes p53 Function to Prevent Progeny Formation from Polyploid Giant Cancer Cells. Cancers (Basel) 2021; 13:cancers13092212. [PMID: 34062962 PMCID: PMC8125704 DOI: 10.3390/cancers13092212] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/26/2021] [Accepted: 04/29/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary One mechanism that contributes to cancer recurrence is the ability of some malignant cells to temporarily halt cell division and accumulate multiple nuclei that are later released as progeny, which resume cell division. The release of progeny occurs via primitive cleavage and is highly dependent on the sphingolipid enzyme acid ceramidase but the role of sphingolipid metabolism in this process remains to be elucidated. This study highlights differences in sphingolipid metabolism between non-polyploid and polyploid cancer cells and shows that ceramide synthase 6, which preferentially generates C16-ceramide maximizes the ability of the tumor suppressor p53 to inhibit progeny formation in polyploid cancer cells. These results offer an explanation as to why non-cancerous polyploid cells, which express wildtype p53, do not generate progeny and suggest that cancer cells with deregulated p53 function pose a higher risk of evading therapy especially if enzymes that generate C16-ceramide are also dysregulated. Abstract Polyploid giant cancer cells (PGCC) constitute a transiently senescent subpopulation of cancer cells that arises in response to stress. PGCC are capable of generating progeny via a primitive, cleavage-like cell division that is dependent on the sphingolipid enzyme acid ceramidase (ASAH1). The goal of this study was to understand differences in sphingolipid metabolism between non-polyploid and polyploid cancer cells to gain an understanding of the ASAH1-dependence in the PGCC population. Steady-state and flux analysis of sphingolipids did not support our initial hypothesis that the ASAH1 product sphingosine is rapidly converted into the pro-survival lipid sphingosine-1-phosphate. Instead, our results suggest that ASAH1 activity is important for preventing the accumulation of long chain ceramides such as C16-ceramide. We therefore determined how modulation of C16-ceramide, either through CerS6 or p53, a known PGCC suppressor and enhancer of CerS6-derived C16-ceramide, affected PGCC progeny formation. Co-expression of the CerS6 and p53 abrogated the ability of PGCC to form offspring, suggesting that the two genes form a positive feedback loop. CerS6 enhanced the effect of p53 by significantly increasing protein half-life. Our results support the idea that sphingolipid metabolism is of functional importance in PGCC and that targeting this signaling pathway has potential for clinical intervention.
Collapse
|
5
|
Guo T, Dong X, Xie S, Zhang L, Zeng P, Zhang L. Cellular Mechanism of Gene Mutations and Potential Therapeutic Targets in Ovarian Cancer. Cancer Manag Res 2021; 13:3081-3100. [PMID: 33854378 PMCID: PMC8041604 DOI: 10.2147/cmar.s292992] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/19/2021] [Indexed: 02/05/2023] Open
Abstract
Ovarian cancer is a common and complex malignancy with poor prognostic outcome. Most women with ovarian cancer are diagnosed with advanced stage disease due to a lack of effective detection strategies in the early stage. Traditional treatment with cytoreductive surgery and platinum-based combination chemotherapy has not significantly improved prognosis and 5-year survival rates are still extremely poor. Therefore, novel treatment strategies are needed to improve the treatment of ovarian cancer patients. Recent advances of next generation sequencing technologies have both confirmed previous known mutated genes and discovered novel candidate genes in ovarian cancer. In this review, we illustrate recent advances in identifying ovarian cancer gene mutations, including those of TP53, BRCA1/2, PIK3CA, and KRAS genes. In addition, we discuss advances in targeting therapies for ovarian cancer based on these mutated genes in ovarian cancer. Further, we associate between detection of mutation genes by liquid biopsy and the potential early diagnostic value in ovarian cancer.
Collapse
Affiliation(s)
- Tao Guo
- Department of Gynecology and Obstetrics, West China Second Hospital, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Xue Dong
- Department of Gynecology, Cheng Du Shang Jin Nan Fu Hospital, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Shanli Xie
- First People's Hospital of Guangyuan, Guangyuan, Sichuan, 628000, People's Republic of China
| | - Ling Zhang
- Department of Gynecology and Obstetrics, Guangyuan Central Hospital, Guangyuan, Sichuan, 628000, People's Republic of China
| | - Peibin Zeng
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Lin Zhang
- Department of Forensic Biology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| |
Collapse
|
6
|
Li HD, Lu C, Zhang H, Hu Q, Zhang J, Cuevas IC, Sahoo SS, Aguilar M, Maurais EG, Zhang S, Wang X, Akbay EA, Li GM, Li B, Koduru P, Ly P, Fu YX, Castrillon DH. A PoleP286R mouse model of endometrial cancer recapitulates high mutational burden and immunotherapy response. JCI Insight 2020; 5:138829. [PMID: 32699191 DOI: 10.1172/jci.insight.138829] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 06/10/2020] [Indexed: 12/18/2022] Open
Abstract
Cancer is instigated by mutator phenotypes, including deficient mismatch repair and p53-associated chromosomal instability. More recently, a distinct class of cancers was identified with unusually high mutational loads due to heterozygous amino acid substitutions (most commonly P286R) in the proofreading domain of DNA polymerase ε, the leading strand replicase encoded by POLE. Immunotherapy has revolutionized cancer treatment, but new model systems are needed to recapitulate high mutational burdens characterizing human cancers and permit study of mechanisms underlying clinical responses. Here, we show that activation of a conditional LSL-PoleP286R allele in endometrium is sufficient to elicit in all animals endometrial cancers closely resembling their human counterparts, including very high mutational burden. Diverse investigations uncovered potentially novel aspects of Pole-driven tumorigenesis, including secondary p53 mutations associated with tetraploidy, and cooperation with defective mismatch repair through inactivation of Msh2. Most significantly, there were robust antitumor immune responses with increased T cell infiltrates, accelerated tumor growth following T cell depletion, and unfailing clinical regression following immune checkpoint therapy. This model predicts that human POLE-driven cancers will prove consistently responsive to immune checkpoint blockade. Furthermore, this is a robust and efficient approach to recapitulate in mice the high mutational burdens and immune responses characterizing human cancers.
Collapse
Affiliation(s)
| | | | - He Zhang
- Quantitative Biomedical Research Center, Department of Population and Data Sciences
| | | | | | | | | | | | | | | | | | - Esra A Akbay
- Department of Pathology.,Simmons Comprehensive Cancer Center
| | - Guo-Min Li
- Department of Radiation Oncology.,Advanced Imaging Research Center
| | - Bo Li
- Simmons Comprehensive Cancer Center.,Lyda Hill Department of Bioinformatics.,Department of Immunology
| | | | - Peter Ly
- Department of Pathology.,Simmons Comprehensive Cancer Center.,Department of Cell Biology, and
| | - Yang-Xin Fu
- Department of Pathology.,Simmons Comprehensive Cancer Center.,Department of Immunology
| | - Diego H Castrillon
- Department of Pathology.,Simmons Comprehensive Cancer Center.,Department of Obstetrics & Gynecology, UT Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
7
|
Abstract
Genomic instability is a common feature of tumours that has a wide range of disruptive effects on cellular homeostasis. In this review we briefly discuss how instability comes about, then focus on the impact of gain or loss of DNA (aneuploidy) on oxidative stress. We discuss several mechanisms that lead from aneuploidy to the production of reactive oxygen species, including the effects on protein complex stoichiometry, endoplasmic reticulum stress and metabolic disruption. Each of these are involved in positive feedback loops that amplify relatively minor genetic changes into major cellular disruption or cell death, depending on the capacity of the cell to induce antioxidants or processes such as mitophagy that can moderate the disruption. Finally we examine the direct effects of reactive oxygen species on mitosis and how oxidative stress can compromise centrosome number, cytoskeletal integrity and signalling processes that are vital for mitotic fidelity.
Collapse
Affiliation(s)
- David L Newman
- a Department of Molecular and Biomedical Science, University of Adelaide , Adelaide , Australia
| | - Lauren A Thurgood
- b Discipline of Molecular Medicine and Pathology and Flinders Centre for Innovation in Cancer, College of Medicine and Public Health, Flinders University , Adelaide , Australia
| | - Stephen L Gregory
- a Department of Molecular and Biomedical Science, University of Adelaide , Adelaide , Australia.,b Discipline of Molecular Medicine and Pathology and Flinders Centre for Innovation in Cancer, College of Medicine and Public Health, Flinders University , Adelaide , Australia
| |
Collapse
|
8
|
Shimono J, Miyoshi H, Kiyasu J, Kamimura T, Eto T, Miyagishima T, Nagafuji K, Seto M, Teshima T, Ohshima K. Clinicopathological analysis of polyploid diffuse large B-cell lymphoma. PLoS One 2018; 13:e0194525. [PMID: 29641580 PMCID: PMC5894967 DOI: 10.1371/journal.pone.0194525] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 03/05/2018] [Indexed: 01/24/2023] Open
Abstract
Polyploid chromosomes are those with more than two sets of homologous chromosomes. Polyploid chromosomal abnormalities are observed in various malignant tumors. The prognosis in such cases is generally poor. However, there are no studies examining the prognosis of diffuse large B-cell lymphoma (DLBCL) with polyploid chromosomal abnormalities. Therefore, we statistically compared the clinicopathological features between polyploid DLBCL and DLBCL without polyploid abnormalities. Herein, 51 polyploid DLBCL and 53 control (without polyploid chromosomal abnormalities) cases were examined. G-banding method was employed to define polyploidy by cytogenetic analysis. Subsequently, flow cytometric immunophenotyping and immunohistochemical staining were performed. Polyploid DLBCL was defined as DLBCL with either near-tetraploid or greater number of chromosomes, as detected by the G-band. In a survival analysis, a significantly worse overall survival (OS) was observed for polyploid DLBCL (p = 0.04; p = 0.02 in cases who received R-CHOP regimens). In a multivariate analysis of OS, polyploid chromosomal abnormalities were an independent prognostic factor. Our results suggest that polyploid chromosomal abnormalities detected through G-band may represent a new poor prognostic factor for DLBCL.
Collapse
Affiliation(s)
- Joji Shimono
- Department of Pathology, Kurume University, School of Medicine, Kurume, Japan.,Department of Hematology, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Hiroaki Miyoshi
- Department of Pathology, Kurume University, School of Medicine, Kurume, Japan
| | - Junichi Kiyasu
- Department of Hematology, Iizuka hospital, Iizuka, Japan
| | | | - Tetsuya Eto
- Department of Hematology, Hamanomachi Hospital, Fukuoka, Japan
| | | | - Koji Nagafuji
- Department of Hematology, Kurume University, School of Medicine, Kurume, Japan
| | - Masao Seto
- Department of Pathology, Kurume University, School of Medicine, Kurume, Japan
| | - Takanori Teshima
- Department of Hematology, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Koichi Ohshima
- Department of Pathology, Kurume University, School of Medicine, Kurume, Japan
| |
Collapse
|
9
|
Huang L, Wang SA, DiNardo C, Li S, Hu S, Xu J, Zhou W, Goswami M, Medeiros LJ, Tang G. Tetraploidy/near-tetraploidy acute myeloid leukemia. Leuk Res 2016; 53:20-27. [PMID: 27951415 DOI: 10.1016/j.leukres.2016.11.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 11/27/2016] [Accepted: 11/30/2016] [Indexed: 10/20/2022]
Abstract
A tetraploid/near tetraploid (T/NT) karyotype is a rare finding in acute myeloid leukemia (AML). Here we report 38 AML patients with a T/NT karyotype, including 26 men and 12 women with a median age of 65 years. T/NT karyotype was detected at initial diagnosis of AML in 16 patients, and acquired during the course of disease in 22 patients. All patients showed large blasts with frequent prominent nucleoli, cytoplasmic vacuoles and/or inclusions, nuclear irregularity and/or budding. Eleven patients had a non-complex and 27 had a complex T/NT karyotype; 21 patients also had pseudodiploid and/or triploid clones. After T/NT karyotype detection, 32 patients received chemotherapy and 10 also received stem cell transplant. After a median of 6.2 months follow-up, 32 patients died of disease or complications, 5 were alive with complete remission, and 1 alive with persistent AML. Median overall survival (OS) was 5 months. Patients with a non-complex T/NT karyotype had a significantly superior OS compared to those with a complex T/NT karyotype (10.7 vs. 3.4 months, p=0.0280). We conclude that T/NT karyotype in AML is often associated with distinctive morphologic features and conveys generally poor outcomes. Distinction of complex versus non-complex T/NT karyotype provides further prognostic information.
Collapse
Affiliation(s)
- Lanshan Huang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Sa A Wang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Courtney DiNardo
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shaoying Li
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shimin Hu
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jie Xu
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Wenli Zhou
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Maitrayee Goswami
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - L Jeffrey Medeiros
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Guilin Tang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
10
|
Shimono J, Miyoshi H, Seto M, Teshima T, Ohshima K. Clinical features of diffuse large B-cell lymphoma with polyploidy. Pathol Int 2016; 67:17-23. [PMID: 27868293 DOI: 10.1111/pin.12478] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 10/13/2016] [Accepted: 10/25/2016] [Indexed: 11/30/2022]
Abstract
Polyploidy, defined as more than two sets of homologous chromosomes, is found in a variety of malignant tumors and is thought to be related to disease pathogenesis. However, there have been no studies that have investigated polyploidy in diffuse large B-cell lymphoma (DLBCL). Here we reviewed clinicopathological features of 16 cases of DLBCL with polypoidy, which was defined as DLBCL with either near-tetraploid or greater number of chromosomes as detected by the G-band method. The frequency of polyploid DLBCL was 2.9 % (16/544), including 15 near-tetraploid and one near-pentaploid case. CD5, CD30 and EBER positive cases were 13 % (2/16), 13 % (2/16) and 6 % (1/16), respectively. Bcl2 positive cases were 75 % (12/16). The numbers of huge and multinucleated cells were higher in polyploid than in non-polyploid DLBCL (P = 0.0029 and P < 0.0001, respectively). Clinical features of polyploid DLBCL included reduced infiltration of extranodal sites (2/15, 13 %) and major lymph node infiltration. Of seven cases that received chemotherapy, six responded to treatment and survived. Our results suggest that polyploid DLBCL represents a clinicopathologically characteristic group of DLBCL. This knowledge can be useful for informing more personalized and targeted management of DLBCL patients.
Collapse
Affiliation(s)
- Joji Shimono
- Department of Pathology, Kurume University, School of Medicine, Kurume, Japan.,Department of Hematology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Hiroaki Miyoshi
- Department of Pathology, Kurume University, School of Medicine, Kurume, Japan
| | - Masao Seto
- Department of Pathology, Kurume University, School of Medicine, Kurume, Japan
| | - Takanori Teshima
- Department of Hematology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Koichi Ohshima
- Department of Pathology, Kurume University, School of Medicine, Kurume, Japan
| |
Collapse
|
11
|
Imai H, Fujii W, Kusakabe KT, Kiso Y, Kano K. Effects of whole genome duplication on cell size and gene expression in mouse embryonic stem cells. J Reprod Dev 2016; 62:571-576. [PMID: 27569766 PMCID: PMC5177974 DOI: 10.1262/jrd.2016-037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Alterations in ploidy tend to influence cell physiology, which in the long-term, contribute to species adaptation and evolution. Polyploid cells are observed
under physiological conditions in the nerve and liver tissues, and in tumorigenic processes. Although tetraploid cells have been studied in mammalian cells, the
basic characteristics and alterations caused by whole genome duplication are still poorly understood. The purpose of this study was to acquire basic knowledge
about the effect of whole genome duplication on the cell cycle, cell size, and gene expression. Using flow cytometry, we demonstrate that cell cycle
subpopulations in mouse tetraploid embryonic stem cells (TESCs) were similar to those in embryonic stem cells (ESCs). We performed smear preparations and flow
cytometric analysis to identify cell size alterations. These indicated that the relative cell volume of TESCs was approximately 2.2–2.5 fold that of ESCs. We
also investigated the effect of whole genome duplication on the expression of housekeeping and pluripotency marker genes using quantitative real-time PCR with
external RNA. We found that the target transcripts were 2.2 times more abundant in TESCs than those in ESCs. This indicated that gene expression and cell volume
increased in parallel. Our findings suggest the existence of a homeostatic mechanism controlling the cytoplasmic transcript levels in accordance with genome
volume changes caused by whole genome duplication.
Collapse
Affiliation(s)
- Hiroyuki Imai
- Laboratory of Veterinary Anatomy and Embryology, The United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi 753-8515, Japan
| | | | | | | | | |
Collapse
|
12
|
Xie Q, Wu MY, Zhang DX, Yang YM, Wang BS, Zhang J, Xu J, Zhong WD, Hu JN. Synergistic anticancer effect of exogenous wild-type p53 gene combined with 5-FU in human colon cancer resistant to 5-FU in vivo. World J Gastroenterol 2016; 22:7342-7352. [PMID: 27621580 PMCID: PMC4997648 DOI: 10.3748/wjg.v22.i32.7342] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 06/11/2016] [Accepted: 07/06/2016] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the anticancer effect of a recombinant adenovirus-mediated p53 (rAd-p53) combined with 5-fluorouracil (5-FU) in human colon cancer resistant to 5-FU in vivo and the mechanism of rAd-p53 in reversal of 5-FU resistance. METHODS Nude mice bearing human colon cancer SW480/5-FU (5-FU resistant) were randomly assigned to four groups (n = 25 each): control group, 5-FU group, rAd-p53 group, and rAd-p53 + 5-FU group. At 24 h, 48 h, 72 h, 120 h and 168 h after treatment, 5 mice were randomly selected from each group and sacrificed using an overdose of anesthetics. The tumors were removed and the protein expressions of p53, protein kinase C (PKC), permeability-glycoprotein (P-gp) and multidrug resistance-associated protein 1 (MRP1) (Western blot) and apoptosis (TUNEL) were determined. RESULTS The area ratios of tumor cell apoptosis were larger in the rAd/p53 + 5-FU group than that in the control, 5-FU and rAd/p53 groups (P < 0.05), and were larger in the rAd/p53 group than that of the control group (P < 0.05) and the 5-FU group at more than 48 h (P < 0.05). The p53 expression was higher in the rAd/p53 and the rAd/p53 + 5-FU groups than that of the control and 5-FU groups (P < 0.05), and were higher in the rAd/p53 + 5-FU group than that of the rAd/p53 group (P < 0.05). Overexpression of PKC, P-gp and MRP1 was observed in the 5-FU and control groups. In the rAd/p53 + 5-FU group, the expression of P-gp and MRP1 was lower that of the control and 5-FU groups (P < 0.05), and the expression of PKC was lower than that of the control, 5-FU and rAd/p53 groups at more than 48 h (P < 0.05). In the rAd/p53 group, the expression of P-gp and MRP1 was lower that of the control and 5-FU groups at more than 48 h (P < 0.05), and the expression of PKC was lower than that of the control and 5-FU groups at more than 120 h (P < 0.05). CONCLUSION 5-FU combined with rAd-p53 has a synergistic anticancer effect in SW480/5-FU (5-FU resistance), which contributes to reversal of 5-FU resistance.
Collapse
|
13
|
Dale Rein I, Solberg Landsverk K, Micci F, Patzke S, Stokke T. Replication-induced DNA damage after PARP inhibition causes G2 delay, and cell line-dependent apoptosis, necrosis and multinucleation. Cell Cycle 2016; 14:3248-60. [PMID: 26312527 PMCID: PMC4825575 DOI: 10.1080/15384101.2015.1085137] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
PARP inhibitors have been approved for treatment of tumors with mutations in or loss of BRCA1/2. The molecular mechanisms and particularly the cellular phenotypes resulting in synthetic lethality are not well understood and varying clinical responses have been observed. We have investigated the dose- and time-dependency of cell growth, cell death and cell cycle traverse of 4 malignant lymphocyte cell lines treated with the PARP inhibitor Olaparib. PARP inhibition induced a severe growth inhibition in this cell line panel and increased the levels of phosphorylated H2AX-associated DNA damage in S phase. Repair of the remaining replication related damage caused a G2 phase delay before entry into mitosis. The G2 delay, and the growth inhibition, was more pronounced in the absence of functional ATM. Further, Olaparib treated Reh and Granta-519 cells died by apoptosis, while U698 and JVM-2 cells proceeded through mitosis with aberrant chromosomes, skipped cytokinesis, and eventually died by necrosis. The TP53-deficient U698 cells went through several rounds of DNA replication and mitosis without cytokinesis, ending up as multinucleated cells with DNA contents of up to 16c before dying. In summary, we report here for the first time cell cycle-resolved DNA damage induction, and cell line-dependent differences in the mode of cell death caused by PARP inhibition.
Collapse
Affiliation(s)
- Idun Dale Rein
- a Group for Molecular Radiation Biology ; Department of Radiation Biology ; The Norwegian Radium Hospital ; Oslo , Norway
| | - Kirsti Solberg Landsverk
- a Group for Molecular Radiation Biology ; Department of Radiation Biology ; The Norwegian Radium Hospital ; Oslo , Norway
| | - Francesca Micci
- b Section of Cancer Cytogenetics, Institute for Medical Informatics, The Norwegian Radium Hospital ; Oslo , Norway.,c Centre for Cancer Biomedicine, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital ; Oslo , Norway
| | - Sebastian Patzke
- a Group for Molecular Radiation Biology ; Department of Radiation Biology ; The Norwegian Radium Hospital ; Oslo , Norway
| | - Trond Stokke
- a Group for Molecular Radiation Biology ; Department of Radiation Biology ; The Norwegian Radium Hospital ; Oslo , Norway
| |
Collapse
|
14
|
Abstract
Chromosome instability (CIN) is gaining increasing interest as a central process in cancer. CIN, either past or present, is indicated whenever tumour cells harbour an abnormal quantity of DNA, termed 'aneuploidy'. At present, the most widely used approach to detecting aneuploidy is DNA cytometry - a well-known research assay that involves staining of DNA in the nuclei of cells from a tissue sample, followed by analysis using quantitative flow cytometry or microscopic imaging. Aneuploidy in cancer tissue has been implicated as a predictor of a poor prognosis. In this Review, we have explored this hypothesis by surveying the current landscape of peer-reviewed research in which DNA cytometry has been applied in studies with disease-appropriate clinical follow up. This area of research is broad, however, and we restricted our survey to results published since 2000 relating to seven common epithelial cancers (those of the breast; endometrium, ovary, and uterine cervix; oesophagus; colon and rectum; lung; prostate; and bladder). We placed particular emphasis on results from multivariate analyses to pinpoint situations in which the prognostic value of aneuploidy as a biomarker is strong compared with that of existing indicators, such as clinical stage, histological grade, and specific molecular markers. We summarize the implications of our findings for the prognostic use of ploidy analysis in the clinic and for the theoretical understanding of the role of CIN in carcinogenesis.
Collapse
|