1
|
Nakao K, Matsuo T, Shimaoka I, Hara K. Modifying immune cells using mouse bone marrow-derived cell exosomes during administration of heat-killed lactic acid bacterium Enterococcus faecalis. Biomed Rep 2025; 23:114. [PMID: 40420976 PMCID: PMC12105080 DOI: 10.3892/br.2025.1992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 04/16/2025] [Indexed: 05/28/2025] Open
Abstract
Previously, the mechanism underlying the immunostimulatory effect of orally administered heat-killed Enterococcus faecalis (HkEf) mediated by exosomes secreted after intestinal macrophage phagocytosis was clarified. In the present study, mouse bone marrow-derived dendritic cells (DCs) were used as intestinal DCs. In vitro studies evaluating the response of mouse spleen cells to exosomes purified and isolated from intestinal DCs stimulated with HkEf showed a significant increase in standard DCs and plasmacytoid DCs (pDCs), indicating a positive effect on DCs, mainly pDCs, and possibly contributing to their immunostimulatory effects. The microRNAs (miRNAs) of exosome fractions derived from intestinal DCs and macrophages were also examined using bone marrow progenitor cells. HkEf stimulation released miRNA-rich exosomes, which acted as an immune response signal mediator, and increased various miRNAs other than miR-146 that are essential for refilling innate immune cells. In the present study, the effect mediated by miRNA-rich exosomes on the distant immune system from intestinal immunity (macrophages, DCs) was observed via orally administered HkEf, a Lactobacillus preparation. The findings of the present study revealed that this mechanism can potentially prevent systemic infection.
Collapse
Affiliation(s)
- Koji Nakao
- Academic Division, NUTRI Co., Ltd., Shiba, Tokyo 108-0014, Japan
| | - Tomoe Matsuo
- Academic Division, NUTRI Co., Ltd., Shiba, Tokyo 108-0014, Japan
| | - Iwao Shimaoka
- Academic Division, NUTRI Co., Ltd., Shiba, Tokyo 108-0014, Japan
| | - Kosuke Hara
- Academic Division, NUTRI Co., Ltd., Shiba, Tokyo 108-0014, Japan
| |
Collapse
|
2
|
Jo Y, Greene TT, Chiale C, Zhang K, Fang Z, Dallari S, Marooki N, Wang W, Zuniga EI. Genomic analysis of progenitors in viral infection implicates glucocorticoids as suppressors of plasmacytoid dendritic cell generation. Proc Natl Acad Sci U S A 2025; 122:e2410092122. [PMID: 40294270 PMCID: PMC12067256 DOI: 10.1073/pnas.2410092122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 02/19/2025] [Indexed: 04/30/2025] Open
Abstract
Plasmacytoid Dendritic cells (pDCs) are the most potent producers of interferons, which are critical antiviral cytokines. pDC development is, however, compromised following a viral infection, and this phenomenon, as well as its relationship to conventional (c)DC development is still incompletely understood. By using lymphocytic choriomeningitis virus (LCMV) infection in mice as a model system, we observed that DC progenitors skewed away from pDC and toward cDC development during in vivo viral infection. Subsequent characterization of the transcriptional and epigenetic landscape of fms-like tyrosine kinase 3+ (Flt3+) DC progenitors and follow-up studies revealed increased apoptosis and reduced proliferation in different individual DC-progenitors as well as a profound type I interferon (IFN-I)-dependent ablation of pre-pDCs, but not pre-DC precursors, after both acute and chronic LCMV infections. In addition, integrated genomic analysis identified altered activity of 34 transcription factors in Flt3+ DC progenitors from infected mice, including two regulators of Glucocorticoid (GC) responses. Subsequent studies demonstrated that addition of GCs to DC progenitors led to downregulated pDC-primed-genes while upregulating cDC-primed-genes, and that endogenous GCs selectively decreased pDC, but not cDC, numbers upon in vivo LCMV infection. These findings demonstrate a significant ablation of pre-pDCs in infected mice and identify GCs as suppressors of pDC generation from early progenitors. This provides a potential explanation for the impaired pDC development following viral infection and links pDC numbers to the hypothalamic-pituitary-adrenal axis.
Collapse
Affiliation(s)
- Yeara Jo
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA92093
| | - Trever T. Greene
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA92093
| | - Carolina Chiale
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA92093
| | - Kai Zhang
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA92093
| | - Ziyan Fang
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA92093
| | - Simone Dallari
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA92093
| | - Nuha Marooki
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA92093
| | - Wei Wang
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA92093
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA92093
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA92093
| | - Elina I. Zuniga
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA92093
| |
Collapse
|
3
|
Yao XC, Wu JJ, Yuan ST, Yuan FL. Recent insights and perspectives into the role of the miRNA‑29 family in innate immunity (Review). Int J Mol Med 2025; 55:53. [PMID: 39886977 PMCID: PMC11781520 DOI: 10.3892/ijmm.2025.5494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 12/13/2024] [Indexed: 02/01/2025] Open
Abstract
Innate immunity is the first line of defence against pathogenic microorganisms and is nearly universal among eukaryotes. The innate immune system is composed of various organs, cells and immune molecules. MicroRNAs (miRs) are a class of small non‑coding RNAs (~22 nucleotides) that are widely involved in post‑transcriptional regulation of proteins within the innate immune system through the recognition of seed sequences. The present review summarizes the role of the miR‑29 family in innate immunity, with a focus on its specific functions in the differentiation of T cells, B cells, natural killer cells and macrophages, as well as the mechanisms by which the miR‑29 family participates in innate immune signalling. Additionally, this review discusses how the miR‑29 family helps the host combat infections by hepatitis B and C viruses, human immunodeficiency virus and influenza A virus through the regulation of specific signalling molecules. This comprehensive analysis of existing studies emphasizes the importance of the miR‑29 family in maintaining immune balance and defence against pathogens.
Collapse
Affiliation(s)
- Xing-Chen Yao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 210009, P.R. China
| | - Jun-Jie Wu
- Institute of Integrated Chinese and Western Medicine, The Hospital Affiliated to Jiangnan University, Wuxi, Jiangsu 214041, P.R. China
| | - Sheng-Tao Yuan
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 210009, P.R. China
| | - Feng-Lai Yuan
- Institute of Integrated Chinese and Western Medicine, The Hospital Affiliated to Jiangnan University, Wuxi, Jiangsu 214041, P.R. China
| |
Collapse
|
4
|
Jo Y, Greene TT, Zhang K, Chiale C, Fang Z, Dallari S, Marooki N, Wang W, Zuniga EI. Genomic Analysis of Progenitors in Viral Infection Implicates Glucocorticoids as Suppressors of Plasmacytoid Dendritic Cell Generation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.28.620771. [PMID: 39554106 PMCID: PMC11565824 DOI: 10.1101/2024.10.28.620771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Plasmacytoid Dendritic cells (pDCs) are the most potent producers of interferons, which are critical antiviral cytokines. pDC development is, however, compromised following a viral infection, and this phenomenon, as well as its relationship to conventional (c)DC development is still incompletely understood. By using lymphocytic choriomeningitis virus (LCMV) infection in mice as a model system, we observed that DC progenitors skewed away from pDC and towards cDC development during in vivo viral infection. Subsequent characterization of the transcriptional and epigenetic landscape of fms-like tyrosine kinase 3 + (Flt3 + ) DC progenitors and follow-up studies revealed increased apoptosis and reduced proliferation in different individual DC-progenitors as well as a profound IFN-I-dependent ablation of pre-pDCs, but not pre-DC precursor, after both acute and chronic LCMV infections. In addition, integrated genomic analysis identified altered activity of 34 transcription factors in Flt3 + DC progenitors from infected mice, including two regulators of Glucocorticoid (GC) responses. Subsequent studies demonstrated that addition of GCs to DC progenitors led to downregulated pDC-primed-genes while upregulating cDC-primed-genes, and that endogenous GCs selectively decreased pDC, but not cDC, numbers upon in-vivo LCMV infection. These findings demonstrate a significant ablation of pre-pDCs in infected mice and identify GCs as suppressors of pDC generation from early progenitors. This provides an explanation for the impaired pDC development following viral infection and links pDC generation to the hypothalamic-pituitary-adrenal axis. Significance Statement Plasmacytoid dendritic cells (pDCs) play critical roles in antiviral responses. However, adaptations of DC progenitors lead to compromised pDC generation after viral infection. Here, we characterized the transcriptional and epigenetic landscapes of DC progenitors after infection. We observed widespread changes in gene expression and chromatin accessibility, reflecting shifts in proliferation, apoptosis, and differentiation potential into various DC subsets. Notably, we identified alterations in the predicted activity of 34 transcription factors, including two regulators of glucocorticoid responses. Our data demonstrate that glucocorticoids inhibit pDC generation by reprogramming DC progenitors. These findings establish a molecular framework for understanding how DC progenitors adapt to infection and highlight the role of glucocorticoid signaling in this process.
Collapse
|
5
|
Gaál Z. Role of microRNAs in Immune Regulation with Translational and Clinical Applications. Int J Mol Sci 2024; 25:1942. [PMID: 38339220 PMCID: PMC10856342 DOI: 10.3390/ijms25031942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 01/31/2024] [Accepted: 02/03/2024] [Indexed: 02/12/2024] Open
Abstract
MicroRNAs (miRNAs) are 19-23 nucleotide long, evolutionarily conserved noncoding RNA molecules that regulate gene expression at the post-transcriptional level. In this review, involvement of miRNAs is summarized in the differentiation and function of immune cells, in anti-infective immune responses, immunodeficiencies and autoimmune diseases. Roles of miRNAs in anticancer immunity and in the transplantation of solid organs and hematopoietic stem cells are also discussed. Major focus is put on the translational clinical applications of miRNAs, including the establishment of noninvasive biomarkers for differential diagnosis and prediction of prognosis. Patient selection and response prediction to biological therapy is one of the most promising fields of application. Replacement or inhibition of miRNAs has enormous therapeutic potential, with constantly expanding possibilities. Although important challenges still await solutions, evaluation of miRNA fingerprints may contribute to an increasingly personalized management of immune dysregulation with a remarkable reduction in toxicity and treatment side effects. More detailed knowledge of the molecular effects of physical exercise and nutrition on the immune system may facilitate self-tailored lifestyle recommendations and advances in prevention.
Collapse
Affiliation(s)
- Zsuzsanna Gaál
- Department of Pediatrics, Faculty of Medicine, University of Debrecen, 98 Nagyerdei krt, 4032 Debrecen, Hungary
| |
Collapse
|
6
|
Yu Y, Lu S, Jin H, Zhu H, Wei X, Zhou T, Zhao M. RNA N6-methyladenosine methylation and skin diseases. Autoimmunity 2023; 56:2167983. [PMID: 36708146 DOI: 10.1080/08916934.2023.2167983] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Skin diseases are global health issues caused by multiple pathogenic factors, in which epigenetics plays an invaluable role. Post-transcriptional RNA modifications are important epigenetic mechanism that regulate gene expression at the genome-wide level. N6-methyladenosine (m6A) is the most prevalent modification that occurs in the messenger RNAs (mRNA) of most eukaryotes, which is installed by methyltransferases called "writers", removed by demethylases called "erasers", and recognised by RNA-binding proteins called "readers". To date, m6A is emerging to play essential part in both physiological processes and pathological progression, including skin diseases. However, a systematic summary of m6A in skin disease has not yet been reported. This review starts by illustrating each m6A-related modifier specifically and their roles in RNA processing, and then focus on the existing research advances of m6A in immune homeostasis and skin diseases.
Collapse
Affiliation(s)
- Yaqin Yu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, China.,Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Changsha, China.,Clinical Medical Research Center of Major Skin Diseases and Skin Health of Hunan Province, Changsha, China
| | - Shuang Lu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, China.,Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Changsha, China.,Clinical Medical Research Center of Major Skin Diseases and Skin Health of Hunan Province, Changsha, China
| | - Hui Jin
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, China.,Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Changsha, China.,Clinical Medical Research Center of Major Skin Diseases and Skin Health of Hunan Province, Changsha, China
| | - Huan Zhu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, China.,Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Changsha, China.,Clinical Medical Research Center of Major Skin Diseases and Skin Health of Hunan Province, Changsha, China
| | - Xingyu Wei
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, China.,Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Changsha, China.,Clinical Medical Research Center of Major Skin Diseases and Skin Health of Hunan Province, Changsha, China
| | - Tian Zhou
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, China.,Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Changsha, China.,Clinical Medical Research Center of Major Skin Diseases and Skin Health of Hunan Province, Changsha, China
| | - Ming Zhao
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, China.,Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Changsha, China.,Clinical Medical Research Center of Major Skin Diseases and Skin Health of Hunan Province, Changsha, China
| |
Collapse
|
7
|
Guo X, He C, Xin S, Gao H, Wang B, Liu X, Zhang S, Gong F, Yu X, Pan L, Sun F, Xu J. Current perspective on biological properties of plasmacytoid dendritic cells and dysfunction in gut. Immun Inflamm Dis 2023; 11:e1005. [PMID: 37773693 PMCID: PMC10510335 DOI: 10.1002/iid3.1005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/27/2023] [Accepted: 08/30/2023] [Indexed: 10/01/2023] Open
Abstract
Plasmacytoid dendritic cells (pDCs), a subtype of DC, possess unique developmental, morphological, and functional traits that have sparked much debate over the years whether they should be categorized as DCs. The digestive system has the greatest mucosal tissue overall, and the pDC therein is responsible for shaping the adaptive and innate immunity of the gastrointestinal tract, resisting pathogen invasion through generating type I interferons, presenting antigens, and participating in immunological responses. Therefore, its alleged importance in the gut has received a lot of attention in recent years, and a fresh functional overview is still required. Here, we summarize the current understanding of mouse and human pDCs, ranging from their formation and different qualities compared with related cell types to their functional characteristics in intestinal disorders, including colon cancer, infections, autoimmune diseases, and intestinal graft-versus-host disease. The purpose of this review is to convey our insights, demonstrate the limits of existing research, and lay a theoretical foundation for the rational development and use of pDCs in future clinical practice.
Collapse
Affiliation(s)
- Xueran Guo
- Department of Clinical Medicine, Beijing An Zhen HospitalCapital Medical UniversityBeijingChina
| | - Chengwei He
- Department of Physiology and Pathophysiology, School of Basic Medical SciencesCapital Medical UniversityBeijingChina
| | - Shuzi Xin
- Department of Physiology and Pathophysiology, School of Basic Medical SciencesCapital Medical UniversityBeijingChina
| | - Han Gao
- Department of Physiology and Pathophysiology, School of Basic Medical SciencesCapital Medical UniversityBeijingChina
- Department of Clinical Laboratory, Aerospace Center HospitalPeking UniversityBeijingChina
| | - Boya Wang
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing)Peking University Cancer Hospital & InstituteBeijingChina
| | - Xiaohui Liu
- Department of Physiology and Pathophysiology, School of Basic Medical SciencesCapital Medical UniversityBeijingChina
| | - Sitian Zhang
- Department of Clinical Medicine, School of Basic Medical SciencesCapital Medical UniversityBeijingChina
| | - Fengrong Gong
- Department of Clinical Medicine, School of Basic Medical SciencesCapital Medical UniversityBeijingChina
| | - Xinyi Yu
- Department of Clinical Medicine, School of Basic Medical SciencesCapital Medical UniversityBeijingChina
| | - Luming Pan
- Department of Clinical Medicine, School of Basic Medical SciencesCapital Medical UniversityBeijingChina
| | - Fangling Sun
- Department of Laboratory Animal Research, Xuan Wu HospitalCapital Medical UniversityBeijingChina
| | - Jingdong Xu
- Department of Physiology and Pathophysiology, School of Basic Medical SciencesCapital Medical UniversityBeijingChina
| |
Collapse
|
8
|
Luo J, Wang Y, Dong X, Wang W, Mu Y, Sun Y, Zhang F, Miao Y. miR-642a-5p increases glucocorticoid sensitivity by suppressing the TLR4 signalling pathway in THP-1 cells. Biochem Biophys Rep 2022; 32:101356. [PMID: 36186733 PMCID: PMC9519937 DOI: 10.1016/j.bbrep.2022.101356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 09/16/2022] [Accepted: 09/21/2022] [Indexed: 11/25/2022] Open
Abstract
The incidence rate of ulcerative colitis (UC) is increasing annually, and glucocorticoid (GC) resistance (GCR) is a common cause of UC-induced remission failure. Our previous studies have shown that the expression of miR-642a-5p is downregulated in UC with GCR, suggesting that miR-642a-5p may be related to the GC response. Therefore, we investigated the mechanism by which miR-642a-5p regulates the GC response in THP-1 cells. We found that after treatment with miR-642a-5p mimics and DEX, the expression levels of glucocorticoid receptor (GR) in the nucleus and NF-κB p65 and p50 in the cytoplasm were increased (P < 0.05). miR-642a-5p mimics transfected into THP-1 cells could synergize with dexamethasone (DEX) to reduce lipopolysaccharide (LPS)-induced inflammatory factor levels such as TNF-α, IL-1β, IL-6 and IL-12 (P < 0.05). Bioinformatics analysis and luciferase reporter assays confirmed that TLR4 is a target gene of miR-642a-5p. miR-642a-5p mimic pretreatment enhanced the inhibitory effect of DEX on TLR4 induced by LPS and inhibited the expression of TLR4 on the cell surface (P < 0.05). Additionally, miR-642a-5p further prevented the nuclear import of NF-κB P65 and inhibited the phosphorylation of ERK, p38 and JNK. These results suggest that miR-642a-5p can inhibit the inflammation by suppressing the TLR4 signalling pathway in THP-1 cells. It also highlights the TLR4 signalling pathway as a potential therapeutic target in anti-inflammation.
miR-642a-5p can inhibit the TLR4 signalling pathway induced by LPS and increase the glucocorticoid sensitivity in THP-1 cells.
Collapse
|
9
|
Liu Y, Wang X, Yang F, Zheng Y, Ye T, Yang L. Immunomodulatory Role and Therapeutic Potential of Non-Coding RNAs Mediated by Dendritic Cells in Autoimmune and Immune Tolerance-Related Diseases. Front Immunol 2021; 12:678918. [PMID: 34394079 PMCID: PMC8360493 DOI: 10.3389/fimmu.2021.678918] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 07/15/2021] [Indexed: 02/05/2023] Open
Abstract
Dendritic cells (DCs) are professional antigen-presenting cells that act as a bridge between innate immunity and adaptive immunity. After activation, DCs differentiate into subtypes with different functions, at which point they upregulate co-stimulatory molecules and produce various cytokines and chemokines. Activated DCs also process antigens for presentation to T cells and regulate the differentiation and function of T cells to modulate the immune state of the body. Non-coding RNAs, RNA transcripts that are unable to encode proteins, not only participate in the pathological mechanisms of autoimmune-related diseases but also regulate the function of immune cells in these diseases. Accumulating evidence suggests that dysregulation of non-coding RNAs contributes to DC differentiation, functions, and so on, consequently producing effects in various autoimmune diseases. In this review, we summarize the main non-coding RNAs (miRNAs, lncRNAs, circRNAs) that regulate DCs in pathological mechanisms and have tremendous potential to give rise to novel therapeutic targets and strategies for multiple autoimmune diseases and immune tolerance-related diseases.
Collapse
Affiliation(s)
- Yifeng Liu
- Department of Gastroenterology and Hepatology, Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoze Wang
- Department of Gastroenterology and Hepatology, Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, West China Hospital, Sichuan University, Chengdu, China
| | - Fan Yang
- Department of Gastroenterology and Hepatology, Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, West China Hospital, Sichuan University, Chengdu, China
| | - Yanyi Zheng
- Department of Gastroenterology and Hepatology, Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, West China Hospital, Sichuan University, Chengdu, China
| | - Tinghong Ye
- Department of Gastroenterology and Hepatology, Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, West China Hospital, Sichuan University, Chengdu, China
| | - Li Yang
- Department of Gastroenterology and Hepatology, Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Sansonetti M, De Windt LJ. Non-coding RNAs in cardiac inflammation: key drivers in the pathophysiology of heart failure. Cardiovasc Res 2021; 118:2058-2073. [PMID: 34097013 DOI: 10.1093/cvr/cvab192] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 06/04/2021] [Indexed: 12/15/2022] Open
Abstract
Heart failure is among the most progressive diseases and a leading cause of morbidity. Despite several advances in cardiovascular therapies, pharmacological treatments are limited to relieve symptoms without curing cardiac injury. Multiple observations point to the involvement of immune cells as key drivers in the pathophysiology of heart failure. In particular, there is a growing recognition that heart failure is related to a prolonged and insufficiently repressed inflammatory response leading to molecular, cellular, and functional cardiac alterations. Over the last decades, non-coding RNAs are recognized as prominent mediators of the cardiac inflammation, affecting the function of several immune cells. In the current review, we explore the contribution of the diverse immune cells in the progression of heart failure, revealing mechanistic functions for non-coding RNAs in cardiac immune cells as a new and exciting field of investigation.
Collapse
Affiliation(s)
- Marida Sansonetti
- Department of Molecular Genetics, Faculty of Science and Engineering; Faculty of Health, Medicine and Life Sciences; Maastricht University, Maastricht, The Netherlands
| | - Leon J De Windt
- Department of Molecular Genetics, Faculty of Science and Engineering; Faculty of Health, Medicine and Life Sciences; Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
11
|
Muhuri M, Zhan W, Maeda Y, Li J, Lotun A, Chen J, Sylvia K, Dasgupta I, Arjomandnejad M, Nixon T, Keeler AM, Manokaran S, He R, Su Q, Tai PWL, Gao G. Novel Combinatorial MicroRNA-Binding Sites in AAV Vectors Synergistically Diminish Antigen Presentation and Transgene Immunity for Efficient and Stable Transduction. Front Immunol 2021; 12:674242. [PMID: 33995418 PMCID: PMC8113644 DOI: 10.3389/fimmu.2021.674242] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/07/2021] [Indexed: 12/26/2022] Open
Abstract
Recombinant adeno-associated virus (rAAV) platforms hold promise for in vivo gene therapy but are undermined by the undesirable transduction of antigen presenting cells (APCs), which in turn can trigger host immunity towards rAAV-expressed transgene products. In light of recent adverse events in patients receiving high systemic AAV vector doses that were speculated to be related to host immune responses, development of strategies to mute innate and adaptive immunity is imperative. The use of miRNA binding sites (miR-BSs) to confer endogenous miRNA-mediated regulation to detarget transgene expression from APCs has shown promise for reducing transgene immunity. Studies have shown that designing miR-142BSs into rAAV1 vectors were able to repress costimulatory signals in dendritic cells (DCs), blunt the cytotoxic T cell response, and attenuate clearance of transduced muscle cells in mice to allow sustained transgene expression in myofibers with negligible anti-transgene IgG production. In this study, we screened individual and combinatorial miR-BS designs against 26 miRNAs that are abundantly expressed in APCs, but not in skeletal muscle. The highly immunogenic ovalbumin (OVA) transgene was used as a proxy for foreign antigens. In vitro screening in myoblasts, mouse DCs, and macrophages revealed that the combination of miR-142BS and miR-652-5pBS strongly mutes transgene expression in APCs but maintains high myoblast and myocyte expression. Importantly, rAAV1 vectors carrying this novel miR-142/652-5pBS cassette achieve higher transgene levels following intramuscular injections in mice than previous detargeting designs. The cassette strongly inhibits cytotoxic CTL activation and suppresses the Th17 response in vivo. Our approach, thus, advances the efficiency of miRNA-mediated detargeting to achieve synergistic reduction of transgene-specific immune responses and the development of safe and efficient delivery vehicles for gene therapy.
Collapse
Affiliation(s)
- Manish Muhuri
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, United States
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, United States
- VIDE Program, University of Massachusetts Medical School, Worcester, MA, United States
| | - Wei Zhan
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, United States
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, United States
- VIDE Program, University of Massachusetts Medical School, Worcester, MA, United States
| | - Yukiko Maeda
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, United States
- VIDE Program, University of Massachusetts Medical School, Worcester, MA, United States
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, United States
| | - Jia Li
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, United States
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, United States
| | - Anoushka Lotun
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, United States
| | - Jennifer Chen
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, United States
| | - Katelyn Sylvia
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, United States
- Department of Pediatrics, University of Massachusetts Medical School, Worcester, MA, United States
| | - Ishani Dasgupta
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, United States
- Department of Pediatrics, University of Massachusetts Medical School, Worcester, MA, United States
| | - Motahareh Arjomandnejad
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, United States
- Department of Pediatrics, University of Massachusetts Medical School, Worcester, MA, United States
| | - Thomas Nixon
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, United States
- Department of Pediatrics, University of Massachusetts Medical School, Worcester, MA, United States
| | - Allison M. Keeler
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, United States
- Department of Pediatrics, University of Massachusetts Medical School, Worcester, MA, United States
| | - Sangeetha Manokaran
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, United States
| | - Ran He
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, United States
| | - Qin Su
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, United States
| | - Phillip W. L. Tai
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, United States
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, United States
- VIDE Program, University of Massachusetts Medical School, Worcester, MA, United States
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, United States
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, United States
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA, United States
| |
Collapse
|
12
|
Gentile G, Paciello F, Zorzi V, Spampinato AG, Guarnaccia M, Crispino G, Tettey-Matey A, Scavizzi F, Raspa M, Fetoni AR, Cavallaro S, Mammano F. miRNA and mRNA Profiling Links Connexin Deficiency to Deafness via Early Oxidative Damage in the Mouse Stria Vascularis. Front Cell Dev Biol 2021; 8:616878. [PMID: 33569381 PMCID: PMC7868390 DOI: 10.3389/fcell.2020.616878] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/10/2020] [Indexed: 12/15/2022] Open
Abstract
Pathogenic mutations in the non-syndromic hearing loss and deafness 1 (DFNB1) locus are the primary cause of monogenic inheritance for prelingual hearing loss. To unravel molecular pathways involved in etiopathology and look for early degeneration biomarkers, we used a system biology approach to analyze Cx30−/− mice at an early cochlear post-natal developmental stage. These mice are a DFNB1 mouse model with severely reduced expression levels of two connexins in the inner ear, Cx30, and Cx26. Integrated analysis of miRNA and mRNA expression profiles in the cochleae of Cx30−/− mice at post-natal day 5 revealed the overexpression of five miRNAs (miR-34c, miR-29b, miR-29c, miR-141, and miR-181a) linked to apoptosis, oxidative stress, and cochlear degeneration, which have Sirt1 as a common target of transcriptional and/or post-transcriptional regulation. In young adult Cx30−/− mice (3 months of age), these alterations culminated with blood barrier disruption in the Stria vascularis (SV), which is known to have the highest aerobic metabolic rate of all cochlear structures and whose microvascular alterations contribute to age-related degeneration and progressive decline of auditory function. Our experimental validation of selected targets links hearing acquisition failure in Cx30−/− mice, early oxidative stress, and metabolic dysregulation to the activation of the Sirt1–p53 axis. This is the first integrated analysis of miRNA and mRNA in the cochlea of the Cx30−/− mouse model, providing evidence that connexin downregulation determines a miRNA-mediated response which leads to chronic exhaustion of cochlear antioxidant defense mechanisms and consequent SV dysfunction. Our analyses support the notion that connexin dysfunction intervenes early on during development, causing vascular damage later on in life. This study identifies also early miRNA-mediated biomarkers of hearing impairment, either inherited or age related.
Collapse
Affiliation(s)
- Giulia Gentile
- Department of Biomedical Sciences, National Research Council (CNR) Institute for Biomedical Research and Innovation, Catania, Italy
| | - Fabiola Paciello
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy.,Fondazione Policlinico Universitario A. Gemelli Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Veronica Zorzi
- Department of Head and Neck Surgery, Università Cattolica del Sacro Cuore, Rome, Italy.,Department of Biomedical Sciences, National Research Council (CNR) Institute of Biochemistry and Cell Biology, Rome, Italy
| | - Antonio Gianmaria Spampinato
- Department of Biomedical Sciences, National Research Council (CNR) Institute for Biomedical Research and Innovation, Catania, Italy.,Department of Mathematics and Computer Science, University of Catania, Catania, Italy
| | - Maria Guarnaccia
- Department of Biomedical Sciences, National Research Council (CNR) Institute for Biomedical Research and Innovation, Catania, Italy
| | - Giulia Crispino
- Department of Biomedical Sciences, National Research Council (CNR) Institute of Biochemistry and Cell Biology, Rome, Italy
| | - Abraham Tettey-Matey
- Department of Biomedical Sciences, National Research Council (CNR) Institute of Biochemistry and Cell Biology, Rome, Italy
| | - Ferdinando Scavizzi
- Department of Biomedical Sciences, National Research Council (CNR) Institute of Biochemistry and Cell Biology, Rome, Italy
| | - Marcello Raspa
- Fondazione Policlinico Universitario A. Gemelli Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Anna Rita Fetoni
- Fondazione Policlinico Universitario A. Gemelli Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy.,Department of Head and Neck Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Sebastiano Cavallaro
- Department of Biomedical Sciences, National Research Council (CNR) Institute for Biomedical Research and Innovation, Catania, Italy
| | - Fabio Mammano
- Department of Biomedical Sciences, National Research Council (CNR) Institute of Biochemistry and Cell Biology, Rome, Italy.,Department of Physics and Astronomy "G. Galilei", University of Padua, Padua, Italy
| |
Collapse
|
13
|
Ren B, Liu J, Wu K, Zhang J, Lv Y, Wang S, Liu L, Liu D. TNF-α-elicited miR-29b potentiates resistance to apoptosis in peripheral blood monocytes from patients with rheumatoid arthritis. Apoptosis 2020; 24:892-904. [PMID: 31473844 DOI: 10.1007/s10495-019-01567-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
CD14-positive monocytes from patients with rheumatoid arthritis (RA) are more resistant to apoptosis, which promotes their persistence at the inflammatory site and thereby contributes crucially to immunopathology. We sought to elucidate one mechanism underlying this unique pathogenesis: resistance to apoptosis and the potential involvement of miR-29b in this process. CD14-positive peripheral blood monocytes (PBMs) from RA patients were observed to be resistant to spontaneous apoptosis compared to PBMs from healthy volunteers. Intriguingly, expression of miR-29b was significantly upregulated in PBMs from RA patients than those from healthy volunteers, and this upregulation was correlated with RA disease activity. Functionally, forced expression of the exogenous miR-29b in CD14-positive Ctrl PBMs conferred resistance to spontaneous apoptosis and Fas-induced death, thereafter enhancing the production of major proinflammatory cytokines in there cells. Following identification of the potential miR-29b target transcripts using bioinformatic algorithms, we showed that miR-29b could directly bind to the 3'-UTR of the high-mobility group box-containing protein 1 (HBP1) and inhibited its transcription in PBMs. Importantly, stable expression of the exogenous HBP1 in differentiated THP-1 monocytes effectively abolished miR-29b-elicited resistance to Fas-induced apoptosis. Finally, among patients with RA and good clinical responses to immunotherapy, expression levels of miR-29b were significantly compromised in those treated with infliximab (a TNF-α inhibitor) but not in those treated with tocilizumab (a humanized mAb against the IL-6 receptor), pointing to a potential association between miR-29b activation and TNF-α induction. The available data collectively suggest that TNF-α-elicited miR-29b potentiates resistance to apoptosis in PBMs from RA patients via inhibition of HBP1 signaling, and testing patients for miR-29b/HBP1 expression ratios may provide more accurate prognostic information and could influence the recommended course of immunotherapy.
Collapse
Affiliation(s)
- Baodi Ren
- Department of Rheumatology and Immunology, Xi'an Institute of Rheumatology, Xi'an No.5 Hospital, No. 112 XiGuanZhengJie, Lian Hu District, Xi'an, 710082, Shaanxi Province, China.,Department of Rheumatology and Immunology, Shaanxi Hospital of Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Shaanxi University of Chinese Medicine, No. 112 XiGuanZhengJie, Lian Hu District, Xi'an, 710082, Shaanxi Province, China
| | - Jiayu Liu
- Department of Rheumatology and Immunology, Xi'an Institute of Rheumatology, Xi'an No.5 Hospital, No. 112 XiGuanZhengJie, Lian Hu District, Xi'an, 710082, Shaanxi Province, China.,Core Research Laboratory, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, No.157 XiWu Road, Xincheng District, Xi'an, 710004, China
| | - Kunyi Wu
- Core Research Laboratory, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, No.157 XiWu Road, Xincheng District, Xi'an, 710004, China
| | - Junli Zhang
- Department of Rheumatology and Immunology, Xi'an Institute of Rheumatology, Xi'an No.5 Hospital, No. 112 XiGuanZhengJie, Lian Hu District, Xi'an, 710082, Shaanxi Province, China.,Department of Rheumatology and Immunology, Shaanxi Hospital of Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Shaanxi University of Chinese Medicine, No. 112 XiGuanZhengJie, Lian Hu District, Xi'an, 710082, Shaanxi Province, China
| | - Yanyan Lv
- Department of Rheumatology and Immunology, Xi'an Institute of Rheumatology, Xi'an No.5 Hospital, No. 112 XiGuanZhengJie, Lian Hu District, Xi'an, 710082, Shaanxi Province, China
| | - Suzhi Wang
- Department of Rheumatology and Immunology, Xi'an Institute of Rheumatology, Xi'an No.5 Hospital, No. 112 XiGuanZhengJie, Lian Hu District, Xi'an, 710082, Shaanxi Province, China
| | - Liping Liu
- Department of Rheumatology and Immunology, Xi'an Institute of Rheumatology, Xi'an No.5 Hospital, No. 112 XiGuanZhengJie, Lian Hu District, Xi'an, 710082, Shaanxi Province, China.,Department of Rheumatology and Immunology, Shaanxi Hospital of Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Shaanxi University of Chinese Medicine, No. 112 XiGuanZhengJie, Lian Hu District, Xi'an, 710082, Shaanxi Province, China
| | - Dan Liu
- Department of Rheumatology and Immunology, Xi'an Institute of Rheumatology, Xi'an No.5 Hospital, No. 112 XiGuanZhengJie, Lian Hu District, Xi'an, 710082, Shaanxi Province, China. .,Department of Rheumatology and Immunology, Shaanxi Hospital of Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Shaanxi University of Chinese Medicine, No. 112 XiGuanZhengJie, Lian Hu District, Xi'an, 710082, Shaanxi Province, China. .,Core Research Laboratory, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, No.157 XiWu Road, Xincheng District, Xi'an, 710004, China.
| |
Collapse
|
14
|
Shi X, Ye L, Xu S, Guo G, Zuo Z, Ye M, Zhu L, Li B, Xue X, Lin Q, Ding X. Downregulated miR‑29a promotes B cell overactivation by upregulating Crk‑like protein in systemic lupus erythematosus. Mol Med Rep 2020; 22:841-849. [PMID: 32467986 PMCID: PMC7339478 DOI: 10.3892/mmr.2020.11166] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 03/31/2020] [Indexed: 12/11/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disorder; however, the pathogenesis is not fully understood. Accumulating evidence suggested an important role of microRNAs (miRNA/miR) in autoimmunity. The present study aimed therefore to determine the miRNA expression patterns in the B cells from the peripheral blood of 66 patients with SLE and 10 healthy controls (HCs) by using an Affymetrix GeneChip® miRNA 2.0 array. In addition, next‑generation sequencing was used to obtain the peripheral blood mononuclear cell (PBMC) miRNA profiles from three patients with SLE and three HCs. Candidate miRNAs that were considered to contribute to the pathogenesis of SLE were obtained based on the intersection of miRNA profiles. The analysis revealed a significant downregulation in miR‑29a expression levels in B cells from patients with SLE, which was subsequently verified using reverse transcription‑quantitative PCR. Based on these results, the expression pattern of miR‑29a in SLE was further investigated and its role in the hyperactivity of B cells was determined. miR‑29a inhibitors and mimics were transfected into PBMCs obtained from HCs and patients with SLE, and an ELISA was used to demonstrate that miR‑29a inhibition increased the production of IgG. Bioinformatics analysis predicted Crk‑like protein (CRKL) as a target gene of miR‑29a in patients with SLE. Therefore, CRKL expression levels were compared between patients with SLE and HCs by using western blotting, and its direct transcriptional regulation by miR‑29a was determined using a dual‑luciferase reporter assay. Low expression levels of miR‑29a were revealed to upregulate the expression levels of CRKL in B cells, and the protein expression levels of CRKL in patients with SLE were significantly upregulated compared with the HCs. In conclusion, the results from the present study suggested that miR‑29a may affect IgG antibody secretion in B cells by regulating CRKL, thereby contributing to the development and progression of SLE, which offers a novel candidate target for treatment.
Collapse
Affiliation(s)
- Xinyu Shi
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Lulu Ye
- Department of Laboratory Medicine, Anqing Petrochemical Hospital, Anqing, Anhui 246000, P.R. China
| | - Shuqi Xu
- First Clinical College, Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Gangqiang Guo
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Ziyi Zuo
- First Clinical College, Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Mengke Ye
- First Clinical College, Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Lejiang Zhu
- Department of Nephrology, Wenzhou Central Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Baoqing Li
- Department of Laboratory Medicine, Second Affiliated Hospital & Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Xiangyang Xue
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Qiaoai Lin
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Xiaokai Ding
- Department of Nephrology, First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| |
Collapse
|
15
|
Hillen MR, Chouri E, Wang M, Blokland SLM, Hartgring SAY, Concepcion AN, Kruize AA, Burgering BMT, Rossato M, van Roon JAG, Radstake TRDJ. Dysregulated miRNome of plasmacytoid dendritic cells from patients with Sjögren's syndrome is associated with processes at the centre of their function. Rheumatology (Oxford) 2020; 58:2305-2314. [PMID: 31131409 PMCID: PMC6880856 DOI: 10.1093/rheumatology/kez195] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/16/2019] [Indexed: 02/07/2023] Open
Abstract
Objective A considerable body of evidence supports a role for type-I IFN in the pathogenesis of primary SS (pSS). As plasmacytoid dendritic cells (pDCs) are a major source of type-I IFN, we investigated their molecular regulation by measuring expression of a large set of miRNAs. Methods pDCs were isolated from peripheral blood of pSS patients (n = 30) and healthy controls (n = 16) divided into two independent cohorts (discovery and replication). Screening of 758 miRNAs was assessed by an OpenArray quantitative PCR-based technique; replication of a set of identified miRNAs was performed by custom array. Functional annotation of miRNA targets was performed using pathway enrichment. Novel targets of miR-29a and miR-29c were identified using a proteomic approach (stable isotope labelling with amino acids in cell culture). Results In the discovery cohort, 20 miRNAs were differentially expressed in pSS pDCs compared with healthy control pDCs. Of these, differential expression of 10 miRNAs was confirmed in the replication cohort. The dysregulated miRNAs were involved in phosphoinositide 3-kinase-Ak strain transforming and mammalian target of rapamycin signalling, as well as regulation of cell death. In addition, a set of novel protein targets of miR-29a and miR-29c were identified, including five targets that were regulated by both miRs. Conclusion The dysregulated miRNome in pDCs of patients with pSS is associated with aberrant regulation of processes at the centre of pDC function, including type-I IFN production and cell death. As miR-29a and miR-29c are pro-apoptotic factors and several of the novel targets identified here are regulators of apoptosis, their downregulation in patients with pSS is associated with enhanced pDC survival.
Collapse
Affiliation(s)
- Maarten R Hillen
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Eleni Chouri
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Maojie Wang
- Department of Molecular Cancer Research, Center Molecular Medicine, Oncode Institute, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Sofie L M Blokland
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Sarita A Y Hartgring
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Arno N Concepcion
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Aike A Kruize
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Boudewijn M T Burgering
- Department of Molecular Cancer Research, Center Molecular Medicine, Oncode Institute, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Marzia Rossato
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,Department of Biotechnology, University of Verona, Verona, Italy
| | - Joel A G van Roon
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Timothy R D J Radstake
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
16
|
The epigenetic face of lupus: Focus on antigen-presenting cells. Int Immunopharmacol 2020; 81:106262. [PMID: 32045873 DOI: 10.1016/j.intimp.2020.106262] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 01/23/2020] [Accepted: 01/27/2020] [Indexed: 12/19/2022]
Abstract
In recent years, epigenetic mechanisms became widely known due to their ability to regulate and maintain physiological processes such as cell growth, development, differentiation and genomic stability. When dysregulated, epigenetic mechanisms, may introduce gene expression changes and disturbance in immune homeostasis leading to autoimmune diseases. Systemic lupus erythematosus (SLE), the most extensively studied autoimmune disorder, has already been correlated with epigenetic modifications, especially in T cells. Since these cell rely on antigen presentation, it may be assumed that erroneous activity of antigen-presenting cells (APCs), culminates in T cell abnormalities. In this review we summarize and discuss the epigenetic modifications in SLE affected APCs, with the focus on dendritic cells (DCs), B cells and monocytes. Unravelling this aspect of SLE pathogenesis, might result in identification of new disease biomarkers and putative therapeutic approaches.
Collapse
|
17
|
Wu H, Chang C, Lu Q. The Epigenetics of Lupus Erythematosus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1253:185-207. [PMID: 32445096 DOI: 10.1007/978-981-15-3449-2_7] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Systemic lupus erythematosus (SLE) is a life-threatening autoimmune disease that is characterized by dysregulated dendritic cells, T and B cells, and abundant autoantibodies. The pathogenesis of lupus remains unclear. However, increasing evidence has shown that environment factors, genetic susceptibilities, and epigenetic regulation contribute to abnormalities in the immune system. In the past decades, several risk gene loci have been identified, such as MHC and C1q. However, genetics cannot explain the high discordance of lupus incidence in homozygous twins. Environmental factor-induced epigenetic modifications on immune cells may provide some insight. Epigenetics refers to inheritable changes in a chromosome without altering DNA sequence. The primary mechanisms of epigenetics include DNA methylation, histone modifications, and non-coding RNA regulations. Increasing evidence has shown the importance of dysregulated epigenetic modifications in immune cells in pathogenesis of lupus, and has identified epigenetic changes as potential biomarkers and therapeutic targets. Environmental factors, such as drugs, diet, and pollution, may also be the triggers of epigenetic changes. Therefore, this chapter will summarize the up-to-date progress on epigenetics regulation in lupus, in order to broaden our understanding of lupus and discuss the potential roles of epigenetic regulations for clinical applications.
Collapse
Affiliation(s)
- Haijing Wu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Christopher Chang
- Division of Pediatric Immunology and Allergy, Joe DiMaggio Children's Hospital, Hollywood, FL, 33021, USA.,Division of Rheumatology, Allergy and Clinical Immunology, University of California Davis, Davis, CA, 95616, USA
| | - Qianjin Lu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
18
|
Benmoussa A, Diallo I, Salem M, Michel S, Gilbert C, Sévigny J, Provost P. Concentrates of two subsets of extracellular vesicles from cow's milk modulate symptoms and inflammation in experimental colitis. Sci Rep 2019; 9:14661. [PMID: 31601878 PMCID: PMC6787204 DOI: 10.1038/s41598-019-51092-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 09/20/2019] [Indexed: 12/17/2022] Open
Abstract
Extracellular vesicles (EVs) are involved in cell-to-cell communication and modulation of numerous physiological and pathological processes. EVs are found in large quantities in milk and contain several inflammation- and immunity-modulating proteins and microRNAs, through which they exert beneficial effects in several inflammatory disease models. Here, we investigated the effects of two EV subsets, concentrated from commercial cow's milk, on a murine model of colitis induced with dextran sodium sulfate (DSS). P35K EVs, isolated by ultracentrifugation at 35,000 g, and P100K EVs, isolated at 100,000 g, were previously characterized and administered by gavage to healthy and DSS-treated mice. P35K EVs and, to a lesser extent, P100K EVs improved several outcomes associated to DSS-induced colitis, modulated the gut microbiota, restored intestinal impermeability and replenished mucin secretion. Also, P35K EVs modulated innate immunity, while P100K EVs decreased inflammation through the downregulation of colitis-associated microRNAs, especially miR-125b, associated with a higher expression of the NFκB inhibitor TNFAIP3 (A20). These results suggest that different milk EV subsets may improve colitis outcomes through different, and possibly complementary, mechanisms. Further unveiling of these mechanisms might offer new opportunities for improving the life of patients with colitis and be of importance for milk processing, infant milk formulation and general public health.
Collapse
Affiliation(s)
- Abderrahim Benmoussa
- CHUQ Research Center/CHUL Pavilion, 2705 Blvd Laurier, Quebec, QC, G1V 4G2, Canada
- Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec, QC, G1V 0A6, Canada
| | - Idrissa Diallo
- CHUQ Research Center/CHUL Pavilion, 2705 Blvd Laurier, Quebec, QC, G1V 4G2, Canada
- Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec, QC, G1V 0A6, Canada
| | - Mabrouka Salem
- CHUQ Research Center/CHUL Pavilion, 2705 Blvd Laurier, Quebec, QC, G1V 4G2, Canada
- Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec, QC, G1V 0A6, Canada
| | - Sara Michel
- CHUQ Research Center/CHUL Pavilion, 2705 Blvd Laurier, Quebec, QC, G1V 4G2, Canada
- Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec, QC, G1V 0A6, Canada
| | - Caroline Gilbert
- CHUQ Research Center/CHUL Pavilion, 2705 Blvd Laurier, Quebec, QC, G1V 4G2, Canada
- Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec, QC, G1V 0A6, Canada
| | - Jean Sévigny
- CHUQ Research Center/CHUL Pavilion, 2705 Blvd Laurier, Quebec, QC, G1V 4G2, Canada
- Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec, QC, G1V 0A6, Canada
| | - Patrick Provost
- CHUQ Research Center/CHUL Pavilion, 2705 Blvd Laurier, Quebec, QC, G1V 4G2, Canada.
- Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec, QC, G1V 0A6, Canada.
| |
Collapse
|
19
|
Reis M, Mavin E, Nicholson L, Green K, Dickinson AM, Wang XN. Mesenchymal Stromal Cell-Derived Extracellular Vesicles Attenuate Dendritic Cell Maturation and Function. Front Immunol 2018; 9:2538. [PMID: 30473695 PMCID: PMC6237916 DOI: 10.3389/fimmu.2018.02538] [Citation(s) in RCA: 197] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 10/15/2018] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) are potent regulators of immune responses largely through paracrine signaling. MSC secreted extracellular vesicles (MSC-EVs) are increasingly recognized as the key paracrine factors responsible for the biological and therapeutic function of MSCs. We report the first comprehensive study demonstrating the immunomodulatory effect of MSC-EVs on dendritic cell (DC) maturation and function. MSC-EVs were isolated from MSC conditioned media using differential ultracentrifugation. Human monocyte-derived DCs were generated in the absence or presence of MSC-EVs (20 ug/ml) then subjected to phenotypic and functional analysis in vitro. MSC-EV treatment impaired antigen uptake by immature DCs and halted DC maturation resulting in reduced expression of the maturation and activation markers CD83, CD38, and CD80, decreased secretion of pro-inflammatory cytokines IL-6 and IL-12p70 and increased production of anti-inflammatory cytokine TGF-β. MSC-EV treated DCs also demonstrated a diminished CCR 7 expression after LPS stimulation, coupled with a significantly reduced ability to migrate toward the CCR7-ligand CCL21, although they were still able to stimulate allogeneic T cell proliferation in vitro. Through microRNA profiling we have identified 49 microRNAs, which were significantly enriched in MSC-EVs compared to their parent MSCs. MicroRNAs with known effect on DC maturation and functions, including miR-21-5p, miR-142-3p, miR-223-3p, and miR-126-3p, were detected within the top 10 most enriched miRNAs in MSC-EVs, with MiR-21-5p as the third highest expressed miRNA in MSC-EVs. In silico analysis revealed that miR-21-5p targets the CCR7 gene for degradation. To verify these observations, DCs were transfected with miR-21-5p mimics and analyzed for their ability to migrate toward the CCR7-ligand CCL21 in vitro. MiR-21-5p mimic transfected DCs showed a clear trend of reduced CCR7 expression and a significantly decreased migratory ability toward the CCL21. Our findings suggest that MSC-EVs are able to recapitulate MSC mediated DC modulation and MSC-EV enclosed microRNAs may represent a novel mechanism through which MSCs modulate DC functions. As MSCs are currently used in clinical trials to treat numerous diseases associated with immune dysregulation, such as graft-versus-host disease and inflammatory bowel disease, our data provide novel evidence to inform potential future application of MSC-EVs as a cell-free therapeutic agent.
Collapse
Affiliation(s)
- Monica Reis
- Haematological Sciences, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Emily Mavin
- Haematological Sciences, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Lindsay Nicholson
- Haematological Sciences, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Kile Green
- Haematological Sciences, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Anne M Dickinson
- Haematological Sciences, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Xiao-Nong Wang
- Haematological Sciences, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
20
|
De Iudicibus S, Lucafò M, Vitulo N, Martelossi S, Zimbello R, De Pascale F, Forcato C, Naviglio S, Di Silvestre A, Gerdol M, Stocco G, Valle G, Ventura A, Bramuzzo M, Decorti G. High-Throughput Sequencing of microRNAs in Glucocorticoid Sensitive Paediatric Inflammatory Bowel Disease Patients. Int J Mol Sci 2018; 19:1399. [PMID: 29738455 PMCID: PMC5983624 DOI: 10.3390/ijms19051399] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 04/27/2018] [Accepted: 05/03/2018] [Indexed: 01/02/2023] Open
Abstract
The aim of this research was the identification of novel pharmacogenomic biomarkers for better understanding the complex gene regulation mechanisms underpinning glucocorticoid (GC) action in paediatric inflammatory bowel disease (IBD). This goal was achieved by evaluating high-throughput microRNA (miRNA) profiles during GC treatment, integrated with the assessment of expression changes in GC receptor (GR) heterocomplex genes. Furthermore, we tested the hypothesis that differentially expressed miRNAs could be directly regulated by GCs through investigating the presence of GC responsive elements (GREs) in their gene promoters. Ten IBD paediatric patients responding to GCs were enrolled. Peripheral blood was obtained at diagnosis (T0) and after four weeks of steroid treatment (T4). MicroRNA profiles were analyzed using next generation sequencing, and selected significantly differentially expressed miRNAs were validated by quantitative reverse transcription-polymerase chain reaction. In detail, 18 miRNAs were differentially expressed from T0 to T4, 16 of which were upregulated and 2 of which were downregulated. Out of these, three miRNAs (miR-144, miR-142, and miR-96) could putatively recognize the 3’UTR of the GR gene and three miRNAs (miR-363, miR-96, miR-142) contained GREs sequences, thereby potentially enabling direct regulation by the GR. In conclusion, we identified miRNAs differently expressed during GC treatment and miRNAs which could be directly regulated by GCs in blood cells of young IBD patients. These results could represent a first step towards their translation as pharmacogenomic biomarkers.
Collapse
Affiliation(s)
- Sara De Iudicibus
- Institute for Maternal and Child Health- IRCCS "Burlo Garofolo", 34127 Trieste, Italy.
| | - Marianna Lucafò
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34127 Trieste, Italy.
| | - Nicola Vitulo
- Department of Biotechnology, University of Verona, 37100 Verona, Italy.
| | - Stefano Martelossi
- Institute for Maternal and Child Health- IRCCS "Burlo Garofolo", 34127 Trieste, Italy.
| | - Rosanna Zimbello
- CRIBI Biotechnology Centre, University of Padua, 35100 Padua, Italy.
| | - Fabio De Pascale
- CRIBI Biotechnology Centre, University of Padua, 35100 Padua, Italy.
| | - Claudio Forcato
- CRIBI Biotechnology Centre, University of Padua, 35100 Padua, Italy.
| | - Samuele Naviglio
- PhD School in Science of Reproduction and Development, University of Trieste, 34127 Trieste, Italy.
| | - Alessia Di Silvestre
- PhD School in Science of Reproduction and Development, University of Trieste, 34127 Trieste, Italy.
| | - Marco Gerdol
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy.
| | - Gabriele Stocco
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy.
| | - Giorgio Valle
- CRIBI Biotechnology Centre, University of Padua, 35100 Padua, Italy.
| | - Alessandro Ventura
- Institute for Maternal and Child Health- IRCCS "Burlo Garofolo", 34127 Trieste, Italy.
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34127 Trieste, Italy.
| | - Matteo Bramuzzo
- Institute for Maternal and Child Health- IRCCS "Burlo Garofolo", 34127 Trieste, Italy.
| | - Giuliana Decorti
- Institute for Maternal and Child Health- IRCCS "Burlo Garofolo", 34127 Trieste, Italy.
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34127 Trieste, Italy.
| |
Collapse
|
21
|
Wu H, Liao J, Li Q, Yang M, Zhao M, Lu Q. Epigenetics as biomarkers in autoimmune diseases. Clin Immunol 2018; 196:34-39. [PMID: 29574040 DOI: 10.1016/j.clim.2018.03.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 03/19/2018] [Accepted: 03/19/2018] [Indexed: 12/21/2022]
Abstract
Autoimmune diseases are immune system disorders in which immune cells cannot distinguish self-antigens from foreign ones. The current criteria for autoimmune disease diagnosis are based on clinical manifestations and laboratory tests. However, none of these markers shows both high sensitivity and specificity. In addition, some autoimmune diseases, for example, systemic lupus erythematosus (SLE), are highly heterogeneous and often exhibit various manifestations. On the other hand, certain autoimmune diseases, such as Sjogren's syndrome versus SLE, share similar symptoms and autoantibodies, which also causes difficulties in diagnosis. Therefore, biomarkers that have both high sensitivity and high specificity for diagnosis, reflect disease activity and predict drug response are necessary. An increasing number of publications have proposed the abnormal epigenetic modifications as biomarkers of autoimmune diseases. Therefore, this review will comprehensively summarize the epigenetic progress in the pathogenesis of autoimmune disorders and unearth potential biomarkers that might be appropriate for disease diagnosis and prediction.
Collapse
Affiliation(s)
- Haijing Wu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Jieyue Liao
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Qianwen Li
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Ming Yang
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Ming Zhao
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Qianjin Lu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China.
| |
Collapse
|
22
|
Effect of miR-29b on the Proliferation and Apoptosis of Pulmonary Artery Smooth Muscle Cells by Targeting Mcl-1 and CCND2. BIOMED RESEARCH INTERNATIONAL 2018; 2018:6051407. [PMID: 29662889 PMCID: PMC5831881 DOI: 10.1155/2018/6051407] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Accepted: 12/11/2017] [Indexed: 12/20/2022]
Abstract
The proliferation and apoptosis of pulmonary artery smooth muscle cells (PASMCs) are considered to be key steps in the progression of pulmonary arterial hypertension (PAH). MicroRNAs (e.g., miR-29b) have been identified in various diseases to be critical modulators of cell growth and apoptosis by targeting Mcl-1 and CCND2. However, the role of miR-29b in PAH remains unknown. So we try to investigate the effect of miR-29b on Mcl-1 and CCND2 protein in PASMCs, analyze the effect of miR-29b on the proliferation of PASMCs, and explore the significance of miR-29b in the proliferation, apoptosis, and gene therapy of PAH. It was observed that gene chip analysis showed miR-29b expression in pulmonary artery tissue. The expression of miR-29b was significantly reduced in PAH model mice. MiR-29b inhibited the proliferation of PASMCs and promoted the apoptosis of PASMCs. Mechanically, miR-29b could inhibit the expression of Mcl-1 and CCND2 protein and silenced Mcl-1 and CCND2 could abolish the change of proliferation and apoptosis of PASMCs. These results demonstrate that miR-29b suppressed cellular proliferation and promoted apoptosis of PASMCs, possibly through the inhibition of Mcl-1 and CCND2. Therefore, miR-29b may serve as a useful therapeutic tool to treat PAH.
Collapse
|
23
|
Clayton SA, Jones SW, Kurowska-Stolarska M, Clark AR. The role of microRNAs in glucocorticoid action. J Biol Chem 2018; 293:1865-1874. [PMID: 29301941 PMCID: PMC5808749 DOI: 10.1074/jbc.r117.000366] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Glucocorticoids (GCs) are steroids with profound anti-inflammatory and immunomodulatory activities. Synthetic GCs are widely used for managing chronic inflammatory and autoimmune conditions, as immunosuppressants in transplantation, and as anti-tumor agents in certain hematological cancers. However, prolonged GC exposure can cause adverse effects. A detailed understanding of GCs' mechanisms of action may enable harnessing of their desirable actions while minimizing harmful effects. Here, we review the impact on the GC biology of microRNAs, small non-coding RNAs that post-transcriptionally regulate gene expression. Emerging evidence indicates that microRNAs modulate GC production by the adrenal glands and the cells' responses to GCs. Furthermore, GCs influence cell proliferation, survival, and function at least in part by regulating microRNA expression. We propose that the beneficial effects of GCs may be enhanced through combination with reagents targeting specific microRNAs.
Collapse
Affiliation(s)
- Sally A Clayton
- From the Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2WB.,the Arthritis Research UK Rheumatoid Arthritis Pathogenesis Centre of Excellence (RACE), Glasgow, Birmingham, and Newcastle Universities, Glasgow G12 8TA, Scotland, United Kingdom
| | - Simon W Jones
- From the Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2WB.,the Arthritis Research UK Rheumatoid Arthritis Pathogenesis Centre of Excellence (RACE), Glasgow, Birmingham, and Newcastle Universities, Glasgow G12 8TA, Scotland, United Kingdom
| | - Mariola Kurowska-Stolarska
- the Arthritis Research UK Rheumatoid Arthritis Pathogenesis Centre of Excellence (RACE), Glasgow, Birmingham, and Newcastle Universities, Glasgow G12 8TA, Scotland, United Kingdom.,the Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, Scotland, and
| | - Andrew R Clark
- From the Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2WB, .,the Arthritis Research UK Rheumatoid Arthritis Pathogenesis Centre of Excellence (RACE), Glasgow, Birmingham, and Newcastle Universities, Glasgow G12 8TA, Scotland, United Kingdom
| |
Collapse
|
24
|
Kumar Kingsley SM, Vishnu Bhat B. Role of MicroRNAs in the development and function of innate immune cells. Int Rev Immunol 2017; 36:154-175. [DOI: 10.1080/08830185.2017.1284212] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- S. Manoj Kumar Kingsley
- Department of Neonatology, Jawaharlal Institute of Post Graduate Medical Education and Research (JIPMER), Puducherry, India
| | - B. Vishnu Bhat
- Department of Neonatology, Jawaharlal Institute of Post Graduate Medical Education and Research (JIPMER), Puducherry, India
| |
Collapse
|
25
|
Wu H, Fu S, Zhao M, Lu L, Lu Q. Dysregulation of Cell Death and Its Epigenetic Mechanisms in Systemic Lupus Erythematosus. Molecules 2016; 22:E30. [PMID: 28035990 PMCID: PMC6155917 DOI: 10.3390/molecules22010030] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 12/21/2016] [Accepted: 12/22/2016] [Indexed: 12/26/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a systemic autoimmune disease involving multiple organs and tissues, which is characterized by the presence of excessive anti-nuclear autoantibodies. The pathogenesis of SLE has been intensively studied but remains far from clear. Increasing evidence has shown that the genetic susceptibilities and environmental factors-induced abnormalities in immune cells, dysregulation of apoptosis, and defects in the clearance of apoptotic materials contribute to the development of SLE. As the main source of auto-antigens, aberrant cell death may play a critical role in the pathogenesis of SLE. In this review, we summarize up-to-date research progress on different levels of cell death-including increasing rate of apoptosis, necrosis, autophagy and defects in clearance of dying cells-and discuss the possible underlying mechanisms, especially epigenetic modifications, which may provide new insight in the potential development of therapeutic strategies for SLE.
Collapse
Affiliation(s)
- Haijing Wu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha 410011, China.
| | - Siqi Fu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha 410011, China.
| | - Ming Zhao
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha 410011, China.
| | - Liwei Lu
- Department of Pathology and Center for Infection and Immunology, the University of Hong Kong, Hong Kong, China.
| | - Qianjin Lu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha 410011, China.
| |
Collapse
|
26
|
Epigenetic Modulation as a Therapeutic Prospect for Treatment of Autoimmune Rheumatic Diseases. Mediators Inflamm 2016; 2016:9607946. [PMID: 27594771 PMCID: PMC4995328 DOI: 10.1155/2016/9607946] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 07/12/2016] [Indexed: 12/21/2022] Open
Abstract
Systemic inflammatory rheumatic diseases are considered as autoimmune diseases, meaning that the balance between recognition of pathogens and avoidance of self-attack is impaired and the immune system attacks and destroys its own healthy tissue. Treatment with conventional Disease Modifying Antirheumatic Drugs (DMARDs) and/or Nonsteroidal Anti-Inflammatory Drugs (NSAIDs) is often associated with various adverse reactions due to unspecific and toxic properties of those drugs. Although biologic drugs have largely improved the outcome in many patients, such drugs still pose significant problems and fail to provide a solution to all patients. Therefore, development of more effective treatments and improvements in early diagnosis of rheumatic diseases are badly needed in order to increase patient's functioning and quality of life. The reversible nature of epigenetic mechanisms offers a new class of drugs that modulate the immune system and inflammation. In fact, epigenetic drugs are already in use in some types of cancer or cardiovascular diseases. Therefore, epigenetic-based therapeutics that control autoimmunity and chronic inflammatory process have broad implications for the pathogenesis, diagnosis, and management of rheumatic diseases. This review summarises the latest information about potential therapeutic application of epigenetic modification in targeting immune abnormalities and inflammation of rheumatic diseases.
Collapse
|
27
|
Yan S, Yim LY, Tam RCY, Chan A, Lu L, Lau CS, Chan VSF. MicroRNA-155 Mediates Augmented CD40 Expression in Bone Marrow Derived Plasmacytoid Dendritic Cells in Symptomatic Lupus-Prone NZB/W F1 Mice. Int J Mol Sci 2016; 17:ijms17081282. [PMID: 27509492 PMCID: PMC5000679 DOI: 10.3390/ijms17081282] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 07/23/2016] [Accepted: 08/02/2016] [Indexed: 12/18/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic multi-organ autoimmune disease characterized by hyperactivated immune responses to self-antigens and persistent systemic inflammation. Previously, we reported abnormalities in circulating and bone marrow (BM)-derived plasmacytoid dendritic cells (pDCs) from SLE patients. Here, we aim to seek for potential regulators that mediate functional aberrations of pDCs in SLE. BM-derived pDCs from NZB/W F1 mice before and after the disease onset were compared for toll-like receptor (TLR) induced responses and microRNA profile changes. While pDCs derived from symptomatic mice were phenotypically comparable to pre-symptomatic ones, functionally they exhibited hypersensitivity to TLR7 but not TLR9 stimulation, as represented by the elevated upregulation of CD40, CD86 and MHC class II molecules upon R837 stimulation. Upregulated induction of miR-155 in symptomatic pDCs following TLR7 stimulation was observed. Transfection of miR-155 mimics in pre-symptomatic pDCs induced an augmented expression of Cd40, which is consistent with the increased CD40 expression in symptomatic pDCs. Overall, our results provide evidence for miR-155-mediated regulation in pDC functional abnormalities in SLE. Findings from this study contribute to a better understanding of SLE pathogenesis and ignite future interests in evaluating the molecular regulation in autoimmunity.
Collapse
Affiliation(s)
- Sheng Yan
- Departments of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| | - Lok Yan Yim
- Departments of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| | - Rachel Chun Yee Tam
- Departments of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| | - Albert Chan
- Departments of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| | - Liwei Lu
- Departments of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| | - Chak Sing Lau
- Departments of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| | - Vera Sau-Fong Chan
- Departments of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
28
|
MicroRNAs in Hyperglycemia Induced Endothelial Cell Dysfunction. Int J Mol Sci 2016; 17:518. [PMID: 27070575 PMCID: PMC4848974 DOI: 10.3390/ijms17040518] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 03/17/2016] [Accepted: 03/22/2016] [Indexed: 01/15/2023] Open
Abstract
Hyperglycemia is closely associated with prediabetes and Type 2 Diabetes Mellitus. Hyperglycemia increases the risk of vascular complications such as diabetic retinopathy, diabetic nephropathy, peripheral vascular disease and cerebro/cardiovascular diseases. Under hyperglycemic conditions, the endothelial cells become dysfunctional. In this study, we investigated the miRNA expression changes in human umbilical vein endothelial cells exposed to different glucose concentrations (5, 10, 25 and 40 mM glucose) and at various time intervals (6, 12, 24 and 48 h). miRNA microarray analyses showed that there is a correlation between hyperglycemia induced endothelial dysfunction and miRNA expression. In silico pathways analyses on the altered miRNA expression showed that the majority of the affected biological pathways appeared to be associated to endothelial cell dysfunction and apoptosis. We found the expression of ten miRNAs (miR-26a-5p, -26b-5p, 29b-3p, -29c-3p, -125b-1-3p, -130b-3p, -140-5p, -192-5p, -221-3p and -320a) to increase gradually with increasing concentration of glucose. These miRNAs were also found to be involved in endothelial dysfunction. At least seven of them, miR-29b-3p, -29c-3p, -125b-1-3p, -130b-3p, -221-3p, -320a and -192-5p, can be correlated to endothelial cell apoptosis.
Collapse
|
29
|
Breakdown of Immune Tolerance in Systemic Lupus Erythematosus by Dendritic Cells. J Immunol Res 2016; 2016:6269157. [PMID: 27034965 PMCID: PMC4789470 DOI: 10.1155/2016/6269157] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 01/15/2016] [Accepted: 02/07/2016] [Indexed: 02/06/2023] Open
Abstract
Dendritic cells (DC) play an important role in the pathogenesis of systemic lupus erythematosus (SLE), an autoimmune disease with multiple tissue manifestations. In this review, we summarize recent studies on the roles of conventional DC and plasmacytoid DC in the development of both murine lupus and human SLE. In the past decade, studies using selective DC depletions have demonstrated critical roles of DC in lupus progression. Comprehensive in vitro and in vivo studies suggest activation of DC by self-antigens in lupus pathogenesis, followed by breakdown of immune tolerance to self. Potential treatment strategies targeting DC have been developed. However, many questions remain regarding the mechanisms by which DC modulate lupus pathogenesis that require further investigations.
Collapse
|
30
|
Xu XM, Zhang HJ. miRNAs as new molecular insights into inflammatory bowel disease: Crucial regulators in autoimmunity and inflammation. World J Gastroenterol 2016; 22:2206-2218. [PMID: 26900285 PMCID: PMC4734997 DOI: 10.3748/wjg.v22.i7.2206] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 09/28/2015] [Accepted: 11/13/2015] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel disease (IBD) is characterized by chronic relapsing inflammatory disorders of the gastrointestinal tract, and includes two major phenotypes: ulcerative colitis and Crohn’s disease. The pathogenesis of IBD is not fully understood as of yet. It is believed that IBD results from complicated interactions between environmental factors, genetic predisposition, and immune disorders. miRNAs are a class of small non-coding RNAs that can regulate gene expression by targeting the 3′-untranslated region of specific mRNAs for degradation or translational inhibition. miRNAs are considered to play crucial regulatory roles in many biologic processes, such as immune cellular differentiation, proliferation, and apoptosis, and maintenance of immune homeostasis. Recently, aberrant expression of miRNAs was revealed to play an important role in autoimmune diseases, including IBD. In this review, we discuss the current understanding of how miRNAs regulate autoimmunity and inflammation by affecting the differentiation, maturation, and function of various immune cells. In particular, we focus on describing specific miRNA expression profiles in tissues and peripheral blood that may be associated with the pathogenesis of IBD. In addition, we summarize the opportunities for utilizing miRNAs as new biomarkers and as potential therapeutic targets in IBD.
Collapse
|
31
|
Abstract
MicroRNAs (miRNAs) are differentially regulated in healthy, activated, inflamed, neoplastic, or otherwise pathological cells and tissues. While their main functions are executed intracellularly, many miRNAs can reproducibly be detected extracellularly in plasma and serum. This circulating, extracellular miRNA is protected against degradation by complexation with carrier proteins and/or by being enclosed in subcellular membrane vesicles. This, together with their tissue- and disease-specific expression, has fuelled the interest in using circulating microRNA profiles as harbingers of disease, i.e., as diagnostic analytes and as clues to dysregulated pathways in disease. Many studies show that inflammation and immune dysregulation, e.g., in autoimmune diseases, are associated with distinct miRNA expression changes in targeted tissues and in innate and adaptive immunity cells such as lymphocytes, natural killer cells, neutrophil granulocytes, and monocyte-macrophages. Exploratory studies (only validated in a few cases) also show that specific profiles of circulating miRNAs are associated with different systemic autoimmune diseases including systemic lupus erythematosus (SLE), systemic sclerosis, and rheumatoid arthritis. Even though the link between cellular alterations and extracellular profiles is still unpredictable, the data suggest that circulating miRNAs in autoimmunity may become diagnostically useful. Here, we review important circulating miRNAs in animal models of inflammation and in systemic autoimmunity and summarize some proposed functions of miRNAs in immune regulation and dysregulation. We conclude that the studies suggest new hypotheses and additional experiments, and that further diagnostic development is highly dependent on analytical method development and on obtaining sufficient numbers of uniformly processed samples from clinically well-characterized patients and controls.
Collapse
|
32
|
Abstract
Plasmacytoid dendritic cells (pDCs) are a unique DC subset that specializes in the production of type I interferons (IFNs). pDCs promote antiviral immune responses and have been implicated in the pathogenesis of autoimmune diseases that are characterized by a type I IFN signature. However, pDCs can also induce tolerogenic immune responses. In this Review, we summarize recent progress in the field of pDC biology, focusing on the molecular mechanisms that regulate the development and functions of pDCs, the pathways involved in their sensing of pathogens and endogenous nucleic acids, their functions at mucosal sites, and their roles in infection, autoimmunity and cancer.
Collapse
|
33
|
Shi C, Huang P, Kang H, Hu B, Qi J, Jiang M, Zhou H, Guo L, Deng L. Glucocorticoid inhibits cell proliferation in differentiating osteoblasts by microRNA-199a targeting of WNT signaling. J Mol Endocrinol 2015; 54:325-37. [PMID: 25878056 DOI: 10.1530/jme-14-0314] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/15/2015] [Indexed: 11/08/2022]
Abstract
The inhibition of osteoblast proliferation by glucocorticoids (GCs) is very important in the etiology of GC-induced osteoporosis. The mechanisms of this process are still not fully understood. The results of recent studies have indicated an important role for microRNAs in GC-mediated responses in various cellular processes, including cell proliferation and apoptosis. Therefore, we developed the hypothesis that these regulatory molecules might be involved in GC-decreased osteoblast proliferation. Western blotting, quantitative real-time PCR, cell proliferation assays, and luciferase assays were employed to investigate the role of miRNAs in GC-inhibited osteoblast proliferation. microRNA-199a-5p was significantly increased in osteoblasts treated with dexamethasone (Dex). To delineate the role of microRNA-199a-5p, we silenced and overexpressed microRNA-199a-5p in osteoblasts. We found that overexpressing microRNA-199a-5p remarkably increased the inhibition effect of Dex on osteoblast proliferation, and depleting microRNA-199a-5p significantly attenuated Dex-inhibited osteoblast proliferation. Results of mechanistic studies indicated that microRNA-199a-5p inhibited FZD4 and WNT2 expression through a microRNA-199a-5p binding site within the 3'-UTR of FZD4 and WNT2. The post-transcriptional repression of FZD4 and WNT2 were further confirmed by luciferase reporter assay. These results indicated that microRNA-199a-5p may play a significant role in GC-inhibited osteoblast proliferation by regulating the WNT signaling pathway.
Collapse
Affiliation(s)
- Changgui Shi
- Shanghai Key Laboratory for Bone and Joint DiseasesShanghai Institute of Orthopaedics and Traumatology, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, No.197, The Second Ruijin Road, Luwan District, Shanghai 200025, People's Republic of ChinaDepartment of OrthopedicsChangzheng Hospital, The Second Military Medical University of China, Shanghai, People's Republic of China Shanghai Key Laboratory for Bone and Joint DiseasesShanghai Institute of Orthopaedics and Traumatology, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, No.197, The Second Ruijin Road, Luwan District, Shanghai 200025, People's Republic of ChinaDepartment of OrthopedicsChangzheng Hospital, The Second Military Medical University of China, Shanghai, People's Republic of China
| | - Ping Huang
- Shanghai Key Laboratory for Bone and Joint DiseasesShanghai Institute of Orthopaedics and Traumatology, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, No.197, The Second Ruijin Road, Luwan District, Shanghai 200025, People's Republic of ChinaDepartment of OrthopedicsChangzheng Hospital, The Second Military Medical University of China, Shanghai, People's Republic of China
| | - Hui Kang
- Shanghai Key Laboratory for Bone and Joint DiseasesShanghai Institute of Orthopaedics and Traumatology, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, No.197, The Second Ruijin Road, Luwan District, Shanghai 200025, People's Republic of ChinaDepartment of OrthopedicsChangzheng Hospital, The Second Military Medical University of China, Shanghai, People's Republic of China
| | - Bo Hu
- Shanghai Key Laboratory for Bone and Joint DiseasesShanghai Institute of Orthopaedics and Traumatology, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, No.197, The Second Ruijin Road, Luwan District, Shanghai 200025, People's Republic of ChinaDepartment of OrthopedicsChangzheng Hospital, The Second Military Medical University of China, Shanghai, People's Republic of China Shanghai Key Laboratory for Bone and Joint DiseasesShanghai Institute of Orthopaedics and Traumatology, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, No.197, The Second Ruijin Road, Luwan District, Shanghai 200025, People's Republic of ChinaDepartment of OrthopedicsChangzheng Hospital, The Second Military Medical University of China, Shanghai, People's Republic of China
| | - Jin Qi
- Shanghai Key Laboratory for Bone and Joint DiseasesShanghai Institute of Orthopaedics and Traumatology, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, No.197, The Second Ruijin Road, Luwan District, Shanghai 200025, People's Republic of ChinaDepartment of OrthopedicsChangzheng Hospital, The Second Military Medical University of China, Shanghai, People's Republic of China
| | - Min Jiang
- Shanghai Key Laboratory for Bone and Joint DiseasesShanghai Institute of Orthopaedics and Traumatology, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, No.197, The Second Ruijin Road, Luwan District, Shanghai 200025, People's Republic of ChinaDepartment of OrthopedicsChangzheng Hospital, The Second Military Medical University of China, Shanghai, People's Republic of China
| | - Hanbing Zhou
- Shanghai Key Laboratory for Bone and Joint DiseasesShanghai Institute of Orthopaedics and Traumatology, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, No.197, The Second Ruijin Road, Luwan District, Shanghai 200025, People's Republic of ChinaDepartment of OrthopedicsChangzheng Hospital, The Second Military Medical University of China, Shanghai, People's Republic of China
| | - Lei Guo
- Shanghai Key Laboratory for Bone and Joint DiseasesShanghai Institute of Orthopaedics and Traumatology, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, No.197, The Second Ruijin Road, Luwan District, Shanghai 200025, People's Republic of ChinaDepartment of OrthopedicsChangzheng Hospital, The Second Military Medical University of China, Shanghai, People's Republic of China
| | - Lianfu Deng
- Shanghai Key Laboratory for Bone and Joint DiseasesShanghai Institute of Orthopaedics and Traumatology, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, No.197, The Second Ruijin Road, Luwan District, Shanghai 200025, People's Republic of ChinaDepartment of OrthopedicsChangzheng Hospital, The Second Military Medical University of China, Shanghai, People's Republic of China
| |
Collapse
|
34
|
Wu H, Zhao M, Chang C, Lu Q. The real culprit in systemic lupus erythematosus: abnormal epigenetic regulation. Int J Mol Sci 2015; 16:11013-33. [PMID: 25988383 PMCID: PMC4463688 DOI: 10.3390/ijms160511013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 05/08/2015] [Accepted: 05/11/2015] [Indexed: 02/01/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease involving multiple organs and the presence of anti-nuclear antibodies. The pathogenesis of SLE has been intensively studied but remains far from clear. B and T lymphocyte abnormalities, dysregulation of apoptosis, defects in the clearance of apoptotic materials, and various genetic and epigenetic factors are attributed to the development of SLE. The latest research findings point to the association between abnormal epigenetic regulation and SLE, which has attracted considerable interest worldwide. It is the purpose of this review to present and discuss the relationship between aberrant epigenetic regulation and SLE, including DNA methylation, histone modifications and microRNAs in patients with SLE, the possible mechanisms of immune dysfunction caused by epigenetic changes, and to better understand the roles of aberrant epigenetic regulation in the initiation and development of SLE and to provide an insight into the related therapeutic options in SLE.
Collapse
Affiliation(s)
- Haijing Wu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha 410011, China.
| | - Ming Zhao
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha 410011, China.
| | - Christopher Chang
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis, Davis, CA 95616, USA.
| | - Qianjin Lu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha 410011, China.
| |
Collapse
|
35
|
Abstract
PURPOSE OF REVIEW Systemic lupus erythematosus (SLE) is characterized by autoantibodies directed against nuclear autoantigens normally concealed from immune recognition in healthy individuals. Here, we summarize recently identified mechanisms of abnormal cell death leading to exposure and aberrant processing of nucleoprotein self antigens, and discuss their role in the SLE pathogenesis. RECENT FINDINGS During the past few years, the unveiling of several new forms of cell death has expanded our understanding beyond the simple view of 'apoptotic' versus 'necrotic' cell death. SLE patients show abnormalities in cell death at several levels, including increased rates of apoptosis, necrosis, and autophagy, as well as reduced clearance of dying cells. These abnormalities lead to an increased autoantigen burden and antigen modifications, such as nucleic acid oxidation that increases the inflammatory properties of self antigens. Recent investigations have highlighted the role of opsonins in determining the immunogenic versus tolerogenic characteristics of self antigens. SUMMARY Dysregulation of different forms of programmed cell death contributes to increased exposure, availability, and immunogenic characteristics of intracellular self antigens, which all participate in development of lupus autoimmunity. As our understanding of abnormalities of cell death in SLE advances, potential therapeutic opportunities await human implementation.
Collapse
|
36
|
Smyth LA, Boardman DA, Tung SL, Lechler R, Lombardi G. MicroRNAs affect dendritic cell function and phenotype. Immunology 2015; 144:197-205. [PMID: 25244106 DOI: 10.1111/imm.12390] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 09/16/2014] [Accepted: 09/17/2014] [Indexed: 12/17/2022] Open
Abstract
MicroRNA (miRNA) are small, non-coding RNA molecules that have been linked with immunity through regulating/modulating gene expression. A role for these molecules in T-cell and B-cell development and function has been well established. An increasing body of literature now highlights the importance of specific miRNA in dendritic cell (DC) development as well as their maturation process, antigen presentation capacity and cytokine release. Given the unique role of DC within the immune system, linking the innate and adaptive immune responses, understanding how specific miRNA affect DC function is of importance for understanding disease. In this review we summarize recent developments in miRNA and DC research, highlighting the requirement of miRNA in DC lineage commitment from bone marrow progenitors and for the development of subsets such as plasmacytoid DC and conventional DC. In addition, we discuss how infections and tumours modulate miRNA expression and consequently DC function.
Collapse
Affiliation(s)
- Lesley A Smyth
- MRC Centre for Transplantation, King's College London, Guy's Hospital, London, UK
| | | | | | | | | |
Collapse
|
37
|
Karrich JJ, Jachimowski LCM, Uittenbogaart CH, Blom B. The plasmacytoid dendritic cell as the Swiss army knife of the immune system: molecular regulation of its multifaceted functions. THE JOURNAL OF IMMUNOLOGY 2015; 193:5772-8. [PMID: 25480956 DOI: 10.4049/jimmunol.1401541] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Plasmacytoid dendritic cells (pDC) have been regarded as the "professional type I IFN-producing cells" of the immune system following viral recognition that relies on the expression of TLR7 and TLR9. Furthermore, pDC link the innate and adaptive immune systems via cytokine production and Ag presentation. More recently, their ability to induce tolerance and cytotoxicity has been added to their "immune skills." Such a broad range of actions, resembling the diverse functional features of a Swiss army knife, requires strong and prompt molecular regulation to prevent detrimental effects, including autoimmune pathogenesis or tumor escape. Over the last decades, we and other investigators have started to unravel some aspects of the signaling pathways that regulate the various functions of human pDC. In this article, we review aspects of the molecular regulatory mechanisms to control pDC function in light of their multifaceted roles during immunity, autoimmunity, and cancer.
Collapse
Affiliation(s)
- Julien J Karrich
- Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Loes C M Jachimowski
- Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Christel H Uittenbogaart
- Department of Pediatrics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095; and Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095
| | - Bianca Blom
- Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands;
| |
Collapse
|
38
|
Palagani A, Op de Beeck K, Naulaerts S, Diddens J, Sekhar Chirumamilla C, Van Camp G, Laukens K, Heyninck K, Gerlo S, Mestdagh P, Vandesompele J, Berghe WV. Ectopic microRNA-150-5p transcription sensitizes glucocorticoid therapy response in MM1S multiple myeloma cells but fails to overcome hormone therapy resistance in MM1R cells. PLoS One 2014; 9:e113842. [PMID: 25474406 PMCID: PMC4256227 DOI: 10.1371/journal.pone.0113842] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 11/01/2014] [Indexed: 11/18/2022] Open
Abstract
Glucocorticoids (GCs) selectively trigger cell death in the multiple myeloma cell line MM1S which express NR3C1/Glucocorticoid Receptor (GR) protein, but fail to kill MM1R cells which lack GR protein. Given recent demonstrations of altered microRNA profiles in a diverse range of haematological malignancies and drug resistance, we characterized GC inducible mRNA and microRNA transcription profiles in GC sensitive MM1S as compared to GC resistant MM1R cells. Transcriptome analysis revealed that GCs regulate expression of multiple genes involved in cell cycle control, cell organization, cell death and immunological disease in MM1S cells, which remain unaffected in MM1R cells. With respect to microRNAs, mir-150-5p was identified as the most time persistent GC regulated microRNA, out of 5 QPCR validated microRNAs (mir-26b, mir-125a-5p, mir-146-5p, mir-150-5p, and mir-184), which are GC inducible in MM1S but not in MM1R cells. Functional studies further revealed that ectopic transfection of a synthetic mir-150-5p mimics GR dependent gene expression changes involved in cell death and cell proliferation pathways. Remarkably, despite the gene expression changes observed, overexpression of mir-150-5p in absence of GCs did not trigger significant cytotoxicity in MM1S or MM1R cells. This suggests the requirement of additional steps in GC induced cell death, which can not be mimicked by mir-150-5p overexpression alone. Interestingly, a combination of mir-150-5p transfection with low doses GC in MM1S cells was found to sensitize therapy response, whereas opposite effects could be observed with a mir-150-5p specific antagomir. Although mir-150-5p overexpression did not substantially change GR expression levels, it was found that mir-150-5p evokes GR specific effects through indirect mRNA regulation of GR interacting transcription factors and hormone receptors, GR chaperones, as well as various effectors of unfolded protein stress and chemokine signalling. Altogether GC-inducible mir-150-5p adds another level of regulation to GC specific therapeutic responses in multiple myeloma.
Collapse
Affiliation(s)
- Ajay Palagani
- Laboratory of Protein Chemistry, Proteomics and Epigenetic Signalling (PPES), Department of Biomedical Sciences, University of Antwerp (UA), Antwerp, Belgium
- Laboratory of Eukaryotic Gene Expression and Signal Transduction (LEGEST), Department of Physiology, Ghent University, Ghent, Belgium
| | - Ken Op de Beeck
- Center of Medical Genetics, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Laboratory of Cancer Research and Clinical Oncology, Department of Medical Oncology, University of Antwerp/Antwerp University Hospital, Antwerp, Belgium
| | - Stefan Naulaerts
- Biomedical Informatics Research Center Antwerp (Biomina), University of Antwerp & University Hospital Antwerp, Antwerp, Belgium
- Advanced Database Research and Modelling (ADReM), Department of Mathematics & Computer sciences, University of Antwerp (UA), Antwerp, Belgium
| | - Jolien Diddens
- Laboratory of Protein Chemistry, Proteomics and Epigenetic Signalling (PPES), Department of Biomedical Sciences, University of Antwerp (UA), Antwerp, Belgium
| | - Chandra Sekhar Chirumamilla
- Laboratory of Protein Chemistry, Proteomics and Epigenetic Signalling (PPES), Department of Biomedical Sciences, University of Antwerp (UA), Antwerp, Belgium
| | - Guy Van Camp
- Center of Medical Genetics, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Kris Laukens
- Biomedical Informatics Research Center Antwerp (Biomina), University of Antwerp & University Hospital Antwerp, Antwerp, Belgium
- Advanced Database Research and Modelling (ADReM), Department of Mathematics & Computer sciences, University of Antwerp (UA), Antwerp, Belgium
| | - Karen Heyninck
- Laboratory of Eukaryotic Gene Expression and Signal Transduction (LEGEST), Department of Physiology, Ghent University, Ghent, Belgium
| | - Sarah Gerlo
- VIB-UGent Department of Medical Protein Research, Ghent, Belgium
| | - Pieter Mestdagh
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Joke Vandesompele
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Wim Vanden Berghe
- Laboratory of Protein Chemistry, Proteomics and Epigenetic Signalling (PPES), Department of Biomedical Sciences, University of Antwerp (UA), Antwerp, Belgium
- Laboratory of Eukaryotic Gene Expression and Signal Transduction (LEGEST), Department of Physiology, Ghent University, Ghent, Belgium
- * E-mail:
| |
Collapse
|
39
|
Song P, Wang W, Tao G, Chu H, Wang M, Wu D, Tong N, Gong W, Zhou J, Zhang Z, Wang B, Zhu H, Zhao Q. A miR-29c binding site genetic variant in the 3'-untranslated region of LAMTOR3 gene is associated with gastric cancer risk. Biomed Pharmacother 2014; 69:70-5. [PMID: 25661340 DOI: 10.1016/j.biopha.2014.11.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 11/05/2014] [Indexed: 12/21/2022] Open
Abstract
Single nucleotide polymorphisms (SNPs) in the 3'-untranslated regions (UTRs) targeted by putative mircoRNAs (miRNAs) could influence the susceptibility of cancer. Recently, miR-29c has been reported to be down-regulated in gastric cancer (GC) and serve as a tumor suppressor that regulated tumor progression. The present study was aimed at investigating whether the miR-29c binding site SNPs within the 3'-UTRs of target genes affected the gastric cancer risk. Using bioinformatics tools, we chose three SNPs (IGHMBP2 rs3750980, LAMTOR3 rs11944405 and WWOX rs2288035) located in miR-29c binding sites. We genotyped these three SNPs to assess their associations with GC risk in a case-control study comprising 753 GC cases and 950 controls. Among these three SNPs, we found a significantly decreased risk of GC associated with the LAMTOR3 rs11944405 T>C polymorphism [TC vs. TT, adjusted odds ratio (OR)=0.79, 95% confidence interval (CI)=0.63-0.99; TC/CC vs. TT, adjusted OR=0.81, 95% CI=0.65-1.00]. The significant association was also presented in the subgroup analysis by age (≤65), sex (female), depth of invasion (T3/T4), lymph node metastasis (N1-3), distant metastasis (M0) and TNM stage (III/IV). However, no significant association was detected for IGHMBP2 rs3750980 and WWOX rs2288035. Our results suggested that the LAMTOR3 rs11944405 polymorphism may be a potential biomarker for genetic susceptibility to GC.
Collapse
Affiliation(s)
- Peng Song
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Weizhi Wang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Guoquan Tao
- Department of General Surgery, Huai-An First People's Hospital Affiliated to Nanjing Medical University, Huai-an, China
| | - Haiyan Chu
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Cancer Center, Nanjing Medical University, Nanjing, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Meilin Wang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Cancer Center, Nanjing Medical University, Nanjing, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Dongmei Wu
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Cancer Center, Nanjing Medical University, Nanjing, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Na Tong
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Cancer Center, Nanjing Medical University, Nanjing, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Weida Gong
- Department of General Surgery, Yixing Cancer Hospital, Yixing, China
| | - Jianwei Zhou
- Department of Molecular Cell Biology & Toxicology, School of Public Health, Cancer Center, Nanjing Medical University, Nanjing, China
| | - Zhengdong Zhang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Cancer Center, Nanjing Medical University, Nanjing, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Baolin Wang
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Haixia Zhu
- Core Laboratory of Nantong Tumor Hospital, Nantong, China.
| | - Qinghong Zhao
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
40
|
Epigenetics in the treatment of systemic lupus erythematosus: potential clinical application. Clin Immunol 2014; 155:79-90. [PMID: 25218424 DOI: 10.1016/j.clim.2014.09.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 09/01/2014] [Accepted: 09/02/2014] [Indexed: 10/24/2022]
Abstract
The current treatments of systemic lupus erythematosus (SLE) have been based on the use of immunosuppressive drugs which are linked to serious side effects. The more effective therapeutic approaches with minimal or no side effects for SLE patients are hard to develop, mainly due to the complexity of the disease. The discovery of pharmacoepigenetics provides a new way to solve this problem. Epigenetic modifications can influence drug efficacy by altering gene expression via changing chromatin structure. Although still in early development, epigenetic studies in SLE are expected to reveal novel therapeutic targets and disease biomarkers in autoimmunity. For example, miRNAs, which have been identified to govern many genes including drug targets, are altered in disease development and after drug administration. This review aims to present an overview of current epigenetic mechanisms involved in the pathogenesis of SLE, and discuss their potential roles in clinical and pharmacological applications.
Collapse
|
41
|
Affiliation(s)
- Marina Cella
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Giorgio Trinchieri
- Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland, USA
| |
Collapse
|