1
|
Liu J, Zhang B, Huang B, Zhang K, Guo F, Wang Z, Shang D. A stumbling block in pancreatic cancer treatment: drug resistance signaling networks. Front Cell Dev Biol 2025; 12:1462808. [PMID: 39872846 PMCID: PMC11770040 DOI: 10.3389/fcell.2024.1462808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 12/30/2024] [Indexed: 01/30/2025] Open
Abstract
The primary node molecules in the cell signaling network in cancer tissues are maladjusted and mutated in comparison to normal tissues, which promotes the occurrence and progression of cancer. Pancreatic cancer (PC) is a highly fatal cancer with increasing incidence and low five-year survival rates. Currently, there are several therapies that target cell signaling networks in PC. However, PC is a "cold tumor" with a unique immunosuppressive tumor microenvironment (poor effector T cell infiltration, low antigen specificity), and targeting a single gene or pathway is basically ineffective in clinical practice. Targeted matrix therapy, targeted metabolic therapy, targeted mutant gene therapy, immunosuppressive therapy, cancer vaccines, and other emerging therapies have shown great therapeutic potential, but results have been disappointing. Therefore, we summarize the identified and potential drug-resistant cell signaling networks aimed at overcoming barriers to existing PC therapies.
Collapse
Affiliation(s)
- Jinming Liu
- Department of General Surgery, Pancreas and Biliary Center, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Biao Zhang
- Department of General Surgery, Pancreas and Biliary Center, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Bingqian Huang
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Department of Clinical Pharmacy, Affiliated Hangzhou First People’s Hospital, Westlake University, Hangzhou, China
| | - Kexin Zhang
- Central Laboratory, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Fujia Guo
- Central Laboratory, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Zhizhou Wang
- Department of General Surgery, Pancreas and Biliary Center, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Dong Shang
- Department of General Surgery, Pancreas and Biliary Center, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| |
Collapse
|
2
|
Tang H, Li YX, Lian JJ, Ng HY, Wang SSY. Personalized treatment using predictive biomarkers in solid organ malignancies: A review. TUMORI JOURNAL 2024; 110:386-404. [PMID: 39091157 DOI: 10.1177/03008916241261484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
In recent years, the influence of specific biomarkers in the diagnosis and prognosis of solid organ malignancies has been increasingly prominent. The relevance of the use of predictive biomarkers, which predict cancer response to specific forms of treatment provided, is playing a more significant role than ever before, as it affects diagnosis and initiation of treatment, monitoring for efficacy and side effects of treatment, and adjustment in treatment regimen in the long term. In the current review, we explored the use of predictive biomarkers in the treatment of solid organ malignancies, including common cancers such as colorectal cancer, breast cancer, lung cancer, prostate cancer, and cancers associated with high mortalities, such as pancreatic cancer, liver cancer, kidney cancer and cancers of the central nervous system. We additionally analyzed the goals and types of personalized treatment using predictive biomarkers, and the management of various types of solid organ malignancies using predictive biomarkers and their relative efficacies so far in the clinical settings.
Collapse
|
3
|
BAŞKÖY SAPPAK, KHUNKHUNA A, SCURIC B, NAYDENOVA Z, COE IR. Characterization of Equilibrative Nucleoside Transport of the Pancreatic Cancer Cell Line: Panc-1. Turk J Pharm Sci 2024; 21:167-173. [PMID: 38994796 PMCID: PMC11590551 DOI: 10.4274/tjps.galenos.2023.86727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 06/20/2023] [Indexed: 07/13/2024]
Abstract
Objectives Gemcitabine, a first-line chemotherapeutic nucleoside analog drug (NAD) for pancreatic cancer, faces limitations due to drug resistance. Characterizing pancreatic cancer cells' transport characteristics may help identify the mechanisms behind drug resistance, and develop more effective therapeutic strategies. Therefore, in this study, we aimed to determine the nucleoside transport properties of Panc-1 cells, one of the commonly used pancreatic adenocarcinoma cell lines. Materials and Methods To assess the presence of equilibrative nucleoside transporter-1 (ENT-1) in Panc-1 cells, we performed immunofluorescence staining, western blot analysis, and S-(4-nitrobenzyl)-6-thioinosine (NBTI) binding assays. We also conducted standard uptake assays to measure the sodium-independent uptake of [3H]-labeled chloroadenosine, hypoxanthine, and uridine. In addition, we determined the half-maximal inhibitory concentration (IC50) of gemcitabine. Statistical analyses were performed using GraphPad Prism version 8.0 for Windows. Results The sodium-independent uptake of [3H]-labeled chloroadenosine, hypoxanthine, and uridine was measured using standard uptake assays, and the transport rates were determined as 111.1 ± 3.4 pmol/mg protein/10 s, 62.5 ± 4.8 pmol/mg protein/10 s, and 101.3 ± 2.5 pmol/mg protein/10 s, respectively. Furthermore, the presence of ENT-1 protein was confirmed using NBTI binding assays (Bmax 1.52 ± 0.1 pmol/mg protein; equilibrium dissociation constant 0.42 ± 0.1 nM). Immunofluorescence assays and western blot analysis also revealed ENT-1 in Panc-1 cells. The determined IC50 of gemcitabine in Panc-1 cells was 2 μM, indicating moderate sensitivity. Conclusion These results suggest that Panc-1 is a suitable preclinical cellular model for studying NAD transport properties and potential therapies in pancreatic cancer and pharmaceutical research.
Collapse
Affiliation(s)
- Sıla APPAK BAŞKÖY
- Toronto Metropolitan University Faculty of Science, Department of Chemistry and Biology, Toronto, Ontario, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), Toronto, Ontario, Canada
| | | | - Bianca SCURIC
- Toronto Metropolitan University Faculty of Science, Department of Chemistry and Biology, Toronto, Ontario, Canada
| | - Zlatina NAYDENOVA
- Toronto Metropolitan University Faculty of Science, Department of Chemistry and Biology, Toronto, Ontario, Canada
| | - Imogen R. COE
- Toronto Metropolitan University Faculty of Science, Department of Chemistry and Biology, Toronto, Ontario, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), Toronto, Ontario, Canada
| |
Collapse
|
4
|
Qin Q, Yu R, Eriksson JE, Tsai HI, Zhu H. Cancer-associated fibroblasts in pancreatic ductal adenocarcinoma therapy: Challenges and opportunities. Cancer Lett 2024; 591:216859. [PMID: 38615928 DOI: 10.1016/j.canlet.2024.216859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/30/2024] [Accepted: 04/02/2024] [Indexed: 04/16/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a solid organ malignancy with a high mortality rate. Statistics indicate that its incidence has been increasing as well as the associated deaths. Most patients with PDAC show poor response to therapies making the clinical management of this cancer difficult. Stromal cells in the tumor microenvironment (TME) contribute to the development of resistance to therapy in PDAC cancer cells. Cancer-associated fibroblasts (CAFs), the most prevalent stromal cells in the TME, promote a desmoplastic response, produce extracellular matrix proteins and cytokines, and directly influence the biological behavior of cancer cells. These multifaceted effects make it difficult to eradicate tumor cells from the body. As a result, CAF-targeting synergistic therapeutic strategies have gained increasing attention in recent years. However, due to the substantial heterogeneity in CAF origin, definition, and function, as well as high plasticity, majority of the available CAF-targeting therapeutic approaches are not effective, and in some cases, they exacerbate disease progression. This review primarily elucidates on the effect of CAFs on therapeutic efficiency of various treatment modalities, including chemotherapy, radiotherapy, immunotherapy, and targeted therapy. Strategies for CAF targeting therapies are also discussed.
Collapse
Affiliation(s)
- Qin Qin
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang, 212001, China
| | - Rong Yu
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang, 212001, China
| | - John E Eriksson
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku, FI-20520 Finland
| | - Hsiang-I Tsai
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang, 212001, China; Department of Medical Imaging, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China.
| | - Haitao Zhu
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang, 212001, China; Department of Medical Imaging, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China.
| |
Collapse
|
5
|
Budka J, Debowski D, Mai S, Narajczyk M, Hac S, Rolka K, Vrettos EI, Tzakos AG, Inkielewicz-Stepniak I. Design, Synthesis, and Antitumor Evaluation of an Opioid Growth Factor Bioconjugate Targeting Pancreatic Ductal Adenocarcinoma. Pharmaceutics 2024; 16:283. [PMID: 38399336 PMCID: PMC10892429 DOI: 10.3390/pharmaceutics16020283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/02/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) presents a formidable challenge with high lethality and limited effective drug treatments. Its heightened metastatic potential further complicates the prognosis. Owing to the significant toxicity of current chemotherapeutics, compounds like [Met5]-enkephalin, known as opioid growth factor (OGF), have emerged in oncology clinical trials. OGF, an endogenous peptide interacting with the OGF receptor (OGFr), plays a crucial role in inhibiting cell proliferation across various cancer types. This in vitro study explores the potential anticancer efficacy of a newly synthesized OGF bioconjugate in synergy with the classic chemotherapeutic agent, gemcitabine (OGF-Gem). The study delves into assessing the impact of the OGF-Gem conjugate on cell proliferation inhibition, cell cycle regulation, the induction of cellular senescence, and apoptosis. Furthermore, the antimetastatic potential of the OGF-Gem conjugate was demonstrated through evaluations using blood platelets and AsPC-1 cells with a light aggregometer. In summary, this article demonstrates the cytotoxic impact of the innovative OGF-Gem conjugate on pancreatic cancer cells in both 2D and 3D models. We highlight the potential of both the OGF-Gem conjugate and OGF alone in effectively inhibiting the ex vivo pancreatic tumor cell-induced platelet aggregation (TCIPA) process, a phenomenon not observed with Gem alone. Furthermore, the confirmed hemocompatibility of OGF-Gem with platelets reinforces its promising potential. We anticipate that this conjugation strategy will open avenues for the development of potent anticancer agents.
Collapse
Affiliation(s)
- Justyna Budka
- Department of Pharmaceutical Pathophysiology, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Dawid Debowski
- Department of Molecular Biochemistry, University of Gdansk, 80-309 Gdansk, Poland
| | - Shaoshan Mai
- Department of Pharmaceutical Pathophysiology, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Magdalena Narajczyk
- Bioimaging Laboratory, Faculty of Biology, University of Gdansk, 80-309 Gdansk, Poland
| | - Stanislaw Hac
- Department of General Endocrine and Transplant Surgery, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Krzysztof Rolka
- Department of Molecular Biochemistry, University of Gdansk, 80-309 Gdansk, Poland
| | | | - Andreas G. Tzakos
- Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece
- University Research Center of Ioannina, Institute of Materials Science and Computing, 45110 Ioannina, Greece
| | | |
Collapse
|
6
|
Coppola A, Grasso D, Fontana F, Piacentino F, Minici R, Laganà D, Ierardi AM, Carrafiello G, D’Angelo F, Carcano G, Venturini M. Innovative Experimental Ultrasound and US-Related Techniques Using the Murine Model in Pancreatic Ductal Adenocarcinoma: A Systematic Review. J Clin Med 2023; 12:7677. [PMID: 38137745 PMCID: PMC10743777 DOI: 10.3390/jcm12247677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/24/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a cancer with one of the highest mortality rates in the world. Several studies have been conductedusing preclinical experiments in mice to find new therapeutic strategies. Experimental ultrasound, in expert hands, is a safe, multifaceted, and relatively not-expensive device that helps researchers in several ways. In this systematic review, we propose a summary of the applications of ultrasonography in a preclinical mouse model of PDAC. Eighty-eight studies met our inclusion criteria. The included studies could be divided into seven main topics: ultrasound in pancreatic cancer diagnosis and progression (n: 21); dynamic contrast-enhanced ultrasound (DCE-US) (n: 5); microbubble ultra-sound-mediated drug delivery; focused ultrasound (n: 23); sonodynamic therapy (SDT) (n: 7); harmonic motion elastography (HME) and shear wave elastography (SWE) (n: 6); ultrasound-guided procedures (n: 9). In six cases, the articles fit into two or more sections. In conclusion, ultrasound can be a really useful, eclectic, and ductile tool in different diagnostic areas, not only regarding diagnosis but also in therapy, pharmacological and interventional treatment, and follow-up. All these multiple possibilities of use certainly represent a good starting point for the effective and wide use of murine ultrasonography in the study and comprehensive evaluation of pancreatic cancer.
Collapse
Affiliation(s)
- Andrea Coppola
- Diagnostic and Interventional Radiology Unit, Circolo Hospital, ASST Sette Laghi, 21100 Varese, Italy (M.V.)
- Department of Medicine and Technological Innovation, Insubria University, 21100 Varese, Italy
| | - Dario Grasso
- Diagnostic and Interventional Radiology Unit, Circolo Hospital, ASST Sette Laghi, 21100 Varese, Italy (M.V.)
- Department of Medicine and Technological Innovation, Insubria University, 21100 Varese, Italy
| | - Federico Fontana
- Diagnostic and Interventional Radiology Unit, Circolo Hospital, ASST Sette Laghi, 21100 Varese, Italy (M.V.)
- Department of Medicine and Technological Innovation, Insubria University, 21100 Varese, Italy
| | - Filippo Piacentino
- Diagnostic and Interventional Radiology Unit, Circolo Hospital, ASST Sette Laghi, 21100 Varese, Italy (M.V.)
- Department of Medicine and Technological Innovation, Insubria University, 21100 Varese, Italy
| | - Roberto Minici
- Radiology Unit, Dulbecco University Hospital, 88100 Catanzaro, Italy; (R.M.)
| | - Domenico Laganà
- Radiology Unit, Dulbecco University Hospital, 88100 Catanzaro, Italy; (R.M.)
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
| | - Anna Maria Ierardi
- Radiology Unit, IRCCS Ca Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | | | - Fabio D’Angelo
- Department of Medicine and Surgery, Insubria University, 21100 Varese, Italy;
- Orthopedic Surgery Unit, ASST Sette Laghi, 21100 Varese, Italy
| | - Giulio Carcano
- Department of Medicine and Technological Innovation, Insubria University, 21100 Varese, Italy
- Emergency and Transplant Surgery Department, ASST Sette Laghi, 21100 Varese, Italy
| | - Massimo Venturini
- Diagnostic and Interventional Radiology Unit, Circolo Hospital, ASST Sette Laghi, 21100 Varese, Italy (M.V.)
- Department of Medicine and Technological Innovation, Insubria University, 21100 Varese, Italy
| |
Collapse
|
7
|
Identifying somatic changes in drug transporters using whole genome and transcriptome sequencing data of advanced tumors. Biomed Pharmacother 2023; 159:114210. [PMID: 36621142 DOI: 10.1016/j.biopha.2022.114210] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/23/2022] [Accepted: 12/30/2022] [Indexed: 01/09/2023] Open
Abstract
Drug resistance is a perpetual problem in cancer therapy with many underlying mechanisms. Alterations in drug transport over the cancer cell membrane can severely alter intratumoral drug exposure, contributing to resistance. Here, we present the somatic mutational landscape of 48 ATP-binding cassette and 416 solute carrier transporter genes in a cohort (CPCT-02; NCT01855477) of 3290 patients with different types of advanced and metastasized cancer through analysis of whole genome and transcriptome sequencing. In order to identify potential stressor mechanisms, we stratified patients based on previous systemic therapies and subsequently investigated the enrichment of mutations and copy-number alterations of transporter genes. In tumors from patients pretreated with protein kinase inhibitors (PKIs), genes encoding for specific copper (SLC31A1 and SLC31A2, χ2-test adjusted p-values: 6.9e-09 and 2.5e-09) and nucleoside transporters (SLC28A2 and SLC28A3, χ2-test adjusted p-values: 3.5e-06 and 6.8e-07) were deleted significantly more frequently than in patients pretreated with chemotherapy. Moreover, we detected 16 transporters that were differentially expressed at RNA level between these treatment groups. These findings contradict mechanisms of selective pressure, as they would be expected to originate during treatment with chemotherapy rather than with PKIs. Hence, they might constitute primary drug resistance mechanisms and, therefore, warrant further study.
Collapse
|
8
|
Nucleoside transporters and immunosuppressive adenosine signaling in the tumor microenvironment: Potential therapeutic opportunities. Pharmacol Ther 2022; 240:108300. [PMID: 36283452 DOI: 10.1016/j.pharmthera.2022.108300] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 11/30/2022]
Abstract
Adenosine compartmentalization has a profound impact on immune cell function by regulating adenosine localization and, therefore, extracellular signaling capabilities, which suppresses immune cell function in the tumor microenvironment. Nucleoside transporters, responsible for the translocation and cellular compartmentalization of hydrophilic adenosine, represent an understudied yet crucial component of adenosine disposition in the tumor microenvironment. In this review article, we will summarize what is known regarding nucleoside transporter's function within the purinome in relation to currently devised points of intervention (i.e., ectonucleotidases, adenosine receptors) for cancer immunotherapy, alterations in nucleoside transporter expression reported in cancer, and potential avenues for targeting of nucleoside transporters for the desired modulation of adenosine compartmentalization and action. Further, we put forward that nucleoside transporters are an unexplored therapeutic opportunity, and modulation of nucleoside transport processes could attenuate the pathogenic buildup of immunosuppressive adenosine in solid tumors, particularly those enriched with nucleoside transport proteins.
Collapse
|
9
|
Przystupski D, Ussowicz M. Landscape of Cellular Bioeffects Triggered by Ultrasound-Induced Sonoporation. Int J Mol Sci 2022; 23:ijms231911222. [PMID: 36232532 PMCID: PMC9569453 DOI: 10.3390/ijms231911222] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/16/2022] [Accepted: 09/20/2022] [Indexed: 11/18/2022] Open
Abstract
Sonoporation is the process of transient pore formation in the cell membrane triggered by ultrasound (US). Numerous studies have provided us with firm evidence that sonoporation may assist cancer treatment through effective drug and gene delivery. However, there is a massive gap in the body of literature on the issue of understanding the complexity of biophysical and biochemical sonoporation-induced cellular effects. This study provides a detailed explanation of the US-triggered bioeffects, in particular, cell compartments and the internal environment of the cell, as well as the further consequences on cell reproduction and growth. Moreover, a detailed biophysical insight into US-provoked pore formation is presented. This study is expected to review the knowledge of cellular effects initiated by US-induced sonoporation and summarize the attempts at clinical implementation.
Collapse
|
10
|
Müller JP, Gründemann D. Does Intracellular Metabolism Render Gemcitabine Uptake Undetectable in Mass Spectrometry? Int J Mol Sci 2022; 23:ijms23094690. [PMID: 35563081 PMCID: PMC9101085 DOI: 10.3390/ijms23094690] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/19/2022] [Accepted: 04/22/2022] [Indexed: 02/06/2023] Open
Abstract
The ergothioneine transporter ETT (formerly OCTN1; human gene symbol SLC22A4) is a powerful and highly specific transporter for the uptake of ergothioneine (ET). Recently, Sparreboom et al. reported that the ETT would transport nucleosides and nucleoside analogues such as cytarabine and gemcitabine with the highest efficiency. In our assay system, we could not detect any such transport. Subsequently, Sparreboom suggested that the intracellular metabolization of the nucleosides occurs so fast that the original compounds cannot be detected by LC–MS/MS after inward transport. Our current experiments with 293 cells disprove this hypothesis. Uptake of gemcitabine was easily detected by LC–MS/MS measurements when we expressed the Na+/nucleoside cotransporter CNT3 (SLC28A3). Inward transport was 1280 times faster than the intracellular production of gemcitabine triphosphate. The deoxycytidine kinase inhibitor 2-thio-2′-deoxycytidine markedly blocked the production of gemcitabine triphosphate. There was no concomitant surge in intracellular gemcitabine, however. This does not fit the rapid phosphorylation of gemcitabine. Uptake of cytarabine was very slow, but detection by MS was still possible. When the ETT was expressed and incubated with gemcitabine, there was no increase in intracellular gemcitabine triphosphate. We conclude that the ETT does not transport nucleosides.
Collapse
|
11
|
Duan H, Zhou Y, Shi X, Luo Q, Gao J, Liang L, Liu W, Peng L, Deng D, Hu J. Allosteric and transport modulation of human concentrative nucleoside transporter 3 at the atomic scale. Phys Chem Chem Phys 2021; 23:25401-25413. [PMID: 34751688 DOI: 10.1039/d1cp03756k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Nucleosides are important precursors of nucleotide synthesis in cells, and nucleoside transporters play an important role in many physiological processes by mediating transmembrane transport and absorption. During nucleoside transport, such proteins undergo a significant conformational transition between the outward- and inward-facing states, which leads to alternating access of the substrate-binding site to either side of the membrane. In this work, a variety of molecular simulation methods have been applied to comparatively investigate the motion modes of human concentrative nucleoside transporter 3 (hCNT3) in three states, as well as global and local cavity conformational changes; and finally, a possible elevator-like transport mechanism consistent with experimental data was proposed. The results of the Gaussian network model (GNM) and anisotropic network model (ANM) show that hCNT3 as a whole tends to contract inwards and shift towards a membrane inside, exhibiting an allosteric process that is more energetically favorable than the rigid conversion. To reveal the complete allosteric process of hCNT3 in detail, a series of intermediate conformations were obtained by an adaptive anisotropic network model (aANM). One of the simulated intermediate states is similar to that of a crystal structure, which indicates that the allosteric process is reliable; the state with lower energy is slightly inclined to the inward-facing structure rather than the expected intermediate crystal structure. The final HOLE analysis showed that except for the outward-facing state, the transport channels were gradually enlarged, which was conductive to the directional transport of nucleosides. Our work provides a theoretical basis for the multistep elevator-like transportation mechanism of nucleosides, which helps to further understand the dynamic recognition between nucleoside substrates and hCNT3 as well as the design of nucleoside anticancer drugs.
Collapse
Affiliation(s)
- Huaichuan Duan
- School of Pharmacy, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China.
| | - Yanxia Zhou
- Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, Department of Obstetrics, West China Second Hospital, Sichuan University, Chengdu, China.
| | - Xiaodong Shi
- School of Pharmacy, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China.
| | - Qing Luo
- School of Pharmacy, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China.
| | - Jiaxing Gao
- School of Pharmacy, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China.
| | - Li Liang
- School of Pharmacy, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China.
| | - Wei Liu
- School of Pharmacy, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China.
| | - Lianxin Peng
- School of Pharmacy, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China.
| | - Dong Deng
- Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, Department of Obstetrics, West China Second Hospital, Sichuan University, Chengdu, China.
| | - Jianping Hu
- School of Pharmacy, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China.
| |
Collapse
|
12
|
Carter CJ, Mekkawy AH, Morris DL. Role of human nucleoside transporters in pancreatic cancer and chemoresistance. World J Gastroenterol 2021; 27:6844-6860. [PMID: 34790010 PMCID: PMC8567477 DOI: 10.3748/wjg.v27.i40.6844] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/19/2021] [Accepted: 09/14/2021] [Indexed: 02/06/2023] Open
Abstract
The prognosis of pancreatic cancer is poor with the overall 5-year survival rate of less than 5% changing minimally over the past decades and future projections predicting it developing into the second leading cause of cancer related mortality within the next decade. Investigations into the mechanisms of pancreatic cancer development, progression and acquired chemoresistance have been constant for the past few decades, thus resulting in the identification of human nucleoside transporters and factors affecting cytotoxic uptake via said transporters. This review summaries the aberrant expression and role of human nucleoside transports in pancreatic cancer, more specifically human equilibrative nucleoside transporter 1/2 (hENT1, hENT2), and human concentrative nucleoside transporter 1/3 (hCNT1, hCNT3), while briefly discussing the connection and importance between these nucleoside transporters and mucins that have also been identified as being aberrantly expressed in pancreatic cancer. The review also discusses the incidence, current diagnostic techniques as well as the current therapeutic treatments for pancreatic cancer. Furthermore, we address the importance of chemoresistance in nucleoside analogue drugs, in particular, gemcitabine and we discuss prospective therapeutic treatments and strategies for overcoming acquired chemoresistance in pancreatic cancer by the enhancement of human nucleoside transporters as well as the potential targeting of mucins using a combination of mucolytic compounds with cytotoxic agents.
Collapse
Affiliation(s)
- Carly Jade Carter
- Hepatobiliary and Surgical Oncology Unit, Department of Surgery, St George Hospital, University of New South Wales, Sydney 2217, New South Wales, Australia
- Mucpharm Pty Ltd, Australia
| | - Ahmed H Mekkawy
- Hepatobiliary and Surgical Oncology Unit, Department of Surgery, St George Hospital, University of New South Wales, Sydney 2217, New South Wales, Australia
- Mucpharm Pty Ltd, Australia
| | - David L Morris
- Hepatobiliary and Surgical Oncology Unit, Department of Surgery, St George Hospital, University of New South Wales, Sydney 2217, New South Wales, Australia
- Mucpharm Pty Ltd, Australia
| |
Collapse
|
13
|
Chang YH, Tam HL, Lu MC, Huang HS. Gemcitabine-induced Gli-dependent activation of hedgehog pathway resists to the treatment of urothelial carcinoma cells. PLoS One 2021; 16:e0254011. [PMID: 34237099 PMCID: PMC8266077 DOI: 10.1371/journal.pone.0254011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 06/17/2021] [Indexed: 01/20/2023] Open
Abstract
Patients with urothelial carcinoma (UC) experience gemcitabine resistance is a critical issue. The role of hedgehog pathway in the problem was explored. The expressions of phospho-AKTser473, phospho-GSK3βser9 and Gli2 were up-regulated in gemcitabine-resistant NTUB1 (NGR) cells. Without hedgehog ligands, Gli proteins can be phosphorylated by GSK3β kinase to inhibit their downstream regulations. Furthermore, the GSK3β kinase can be phosphorylated by AKT at its Ser9 residue to become an inactive kinase. Therefore, overexpression of AKT1, Flag-GSKS9D (constitutively inactive form) or active Gli2 (GLI2ΔN) in NTUB1 cells could activate Gli2 pathway to enhance migration/invasion ability and increase gemcitabine resistance, respectively. Conversely, overexpression of Flag-GSKS9A (constitutively active form) or knockdown of Gli2 could suppress Gli2 pathway, and then reduce gemcitabine resistance in NGR cells. Therefore, we suggest gemcitabine-activated AKT/GSK3β pathway can elicit Gli2 activity, which leads to enhanced migration/invasion ability and resistance to gemcitabine therapy in UC patients. The non-canonical hedgehog pathway should be evaluated in the therapy to benefit UC patients.
Collapse
Affiliation(s)
- Yu-Hao Chang
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hoi-Lam Tam
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Meng-Chien Lu
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Huei-Sheng Huang
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- * E-mail:
| |
Collapse
|
14
|
Giannis D, Moris D, Barbas AS. Diagnostic, Predictive and Prognostic Molecular Biomarkers in Pancreatic Cancer: An Overview for Clinicians. Cancers (Basel) 2021; 13:1071. [PMID: 33802340 PMCID: PMC7959127 DOI: 10.3390/cancers13051071] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 02/13/2021] [Accepted: 02/27/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most common pancreatic malignancy and is associated with aggressive tumor behavior and poor prognosis. Most patients with PDAC present with an advanced disease stage and treatment-resistant tumors. The lack of noninvasive tests for PDAC diagnosis and survival prediction mandates the identification of novel biomarkers. The early identification of high-risk patients and patients with PDAC is of utmost importance. In addition, the identification of molecules that are associated with tumor biology, aggressiveness, and metastatic potential is crucial to predict survival and to provide patients with personalized treatment regimens. In this review, we summarize the current literature and focus on newer biomarkers, which are continuously added to the armamentarium of PDAC screening, predictive tools, and prognostic tools.
Collapse
Affiliation(s)
- Dimitrios Giannis
- Institute of Health Innovations and Outcomes Research, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA;
| | - Dimitrios Moris
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA;
| | - Andrew S. Barbas
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA;
| |
Collapse
|
15
|
Bjånes T, Kotopoulis S, Murvold ET, Kamčeva T, Gjertsen BT, Gilja OH, Schjøtt J, Riedel B, McCormack E. Ultrasound- and Microbubble-Assisted Gemcitabine Delivery to Pancreatic Cancer Cells. Pharmaceutics 2020; 12:pharmaceutics12020141. [PMID: 32046005 PMCID: PMC7076495 DOI: 10.3390/pharmaceutics12020141] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 01/28/2020] [Accepted: 02/04/2020] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a major cause of cancer death worldwide. Poor drug delivery to tumours is thought to limit chemotherapeutic treatment efficacy. Sonoporation combines ultrasound (US) and microbubbles to increase the permeability of cell membranes. We assessed gemcitabine uptake combined with sonoporation in vitro in three PDAC cell lines (BxPC-3, MIA PaCa-2 and PANC-1). Cells were cultured in hypoxic bioreactors, while gemcitabine incubation ± sonoporation was conducted in cells with operational or inhibited nucleoside membrane transporters. Intracellular active metabolite (dFdCTP), extracellular gemcitabine, and inactive metabolite (dFdU) concentrations were measured with liquid chromatography tandem mass spectrometry. Sonoporation with increasing US intensities resulted in decreasing extracellular gemcitabine concentrations in all three cell lines with inhibited membrane transporters. In cells with inhibited membrane transporters, without sonoporation, dFdCTP concentrations were reduced down to 10% of baseline. Sonoporation partially restored gemcitabine uptake in these cells, as indicated by a moderate increase in dFdCTP concentrations (up to 37% of baseline) in MIA PaCa-2 and PANC-1. In BxPC-3, gemcitabine was effectively inactivated to dFdU, which might represent a protective mechanism against dFdCTP accumulation in these cells. Intracellular dFdCTP concentrations did not change significantly following sonoporation in any of the cell lines with operational membrane transporters, indicating that the gemcitabine activation pathway may have been saturated with the drug. Sonoporation allowed a moderate increase in gemcitabine transmembrane uptake in all three cell lines, but pre-existing nucleoside transporters were the major determinants of gemcitabine uptake and retention.
Collapse
Affiliation(s)
- Tormod Bjånes
- Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen 5021, Norway; (T.K.); (J.S.); (B.R.)
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen 5021, Norway;
- Correspondence: (T.B.); (E.M.)
| | - Spiros Kotopoulis
- Phoenix Solutions AS, Ullernchausseen 64, 0379 Oslo, Norway;
- National Centre for Ultrasound in Gastroenterology, Haukeland University Hospital, Bergen 5021, Norway;
- Department of Clinical Medicine, University of Bergen, Bergen 5021, Norway
| | | | - Tina Kamčeva
- Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen 5021, Norway; (T.K.); (J.S.); (B.R.)
| | - Bjørn Tore Gjertsen
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen 5021, Norway;
- Department of Internal Medicine, Hematology Section, Haukeland University Hospital, Bergen 5021, Norway
| | - Odd Helge Gilja
- National Centre for Ultrasound in Gastroenterology, Haukeland University Hospital, Bergen 5021, Norway;
- Department of Clinical Medicine, University of Bergen, Bergen 5021, Norway
| | - Jan Schjøtt
- Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen 5021, Norway; (T.K.); (J.S.); (B.R.)
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen 5021, Norway;
| | - Bettina Riedel
- Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen 5021, Norway; (T.K.); (J.S.); (B.R.)
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen 5021, Norway;
| | - Emmet McCormack
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen 5021, Norway;
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, Bergen 5021, Norway
- Correspondence: (T.B.); (E.M.)
| |
Collapse
|
16
|
Masoudi M, Seki M, Yazdanparast R, Yachie N, Aburatani H. A genome-scale CRISPR/Cas9 knockout screening reveals SH3D21 as a sensitizer for gemcitabine. Sci Rep 2019; 9:19188. [PMID: 31844142 PMCID: PMC6915784 DOI: 10.1038/s41598-019-55893-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 12/03/2019] [Indexed: 11/17/2022] Open
Abstract
Gemcitabine, 2',2'-difluoro-2'-deoxycytidine, is used as a pro-drug in treatment of variety of solid tumour cancers including pancreatic cancer. After intake, gemcitabine is transferred to the cells by the membrane nucleoside transporter proteins. Once inside the cells, it is converted to gemcitabine triphosphate followed by incorporation into DNA chains where it causes inhibition of DNA replication and thereby cell cycle arrest and apoptosis. Currently gemcitabine is the standard drug for treatment of pancreatic cancer and despite its widespread use its effect is moderate. In this study, we performed a genome-scale CRISPR/Cas9 knockout screening on pancreatic cancer cell line Panc1 to explore the genes that are important for gemcitabine efficacy. We found SH3D21 as a novel gemcitabine sensitizer implying it may act as a therapeutic target for improvement of gemcitabine efficacy in treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Mohammad Masoudi
- Molecular Biology Department, Graduate School of Medicine, The University of Tokyo, Tokyo, 153-8904, Japan
- Genome Science Division, Research Center for Advance Science and Technology, The University of Tokyo, Tokyo, 153-8904, Japan
- Synthetic Biology Division, Research Center for Advance Science and Technology, The University of Tokyo, Tokyo, 153-8904, Japan
- Molecular Biology Laboratory, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, 13145-1384, Iran
| | - Motoaki Seki
- Synthetic Biology Division, Research Center for Advance Science and Technology, The University of Tokyo, Tokyo, 153-8904, Japan
| | - Razieh Yazdanparast
- Molecular Biology Laboratory, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, 13145-1384, Iran.
| | - Nozomu Yachie
- Synthetic Biology Division, Research Center for Advance Science and Technology, The University of Tokyo, Tokyo, 153-8904, Japan
| | - Hiroyuki Aburatani
- Molecular Biology Department, Graduate School of Medicine, The University of Tokyo, Tokyo, 153-8904, Japan.
- Genome Science Division, Research Center for Advance Science and Technology, The University of Tokyo, Tokyo, 153-8904, Japan.
| |
Collapse
|
17
|
Mariglia J, Momin S, Coe IR, Karshafian R. Analysis of the cytotoxic effects of combined ultrasound, microbubble and nucleoside analog combinations on pancreatic cells in vitro. ULTRASONICS 2018; 89:110-117. [PMID: 29775835 DOI: 10.1016/j.ultras.2018.05.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 05/02/2018] [Accepted: 05/04/2018] [Indexed: 06/08/2023]
Abstract
Ultrasonically-stimulated microbubbles enhance the therapeutic effects of various chemotherapy drugs. However, the application of ultrasound and microbubbles (USMB) for enhancing the therapeutic effect of nucleoside analogs, which are used as front-line treatments in a range of cancers, and its underlying mechanism is not well understood. This study investigated the effect of gemcitabine, a nucleoside analog drug, in combination with USMB in increasing cell cytotoxicity relative to either treatment alone in BxPC3 pancreatic cancer cells. Cells were sonicated using low frequency (0.5 MHz) ultrasound in combination with Definity® microbubbles (1.7% v/v) in the presence of 1 µM of gemcitabine for a total of 2 h. USMB in combination with gemcitabine decreased cell viability (48 h) to 44.7 ± 5.2%, 27.7 ± 4.3%, and 12.5 ± 3.4% with increasing ultrasound peak negative pressures (220, 360, 530 kPa) from 84.7 ± 3.6%, 54.2 ± 3.8%, and 26.8 ± 3.0%, respectively, when USMB was applied in the absence of drug. We further confirmed that USMB did not enhance the internalization of 1 µM of a radiolabeled nucleoside analog (2-chloroadenosine) at each of the three chosen ultrasound PNPs, determined by radiolabeled scintillation counting. These data suggest that USMB in combination with nucleoside analog drugs leads to an additive effect on cell toxicity and that USMB does not impair transporter-mediated uptake of nucleoside analogs.
Collapse
Affiliation(s)
- Julia Mariglia
- Department of Physics, Ryerson University, Toronto, ON M5B 2K3, Canada
| | - Shadab Momin
- Department of Physics, Ryerson University, Toronto, ON M5B 2K3, Canada
| | - Imogen R Coe
- Department of Chemistry and Biology, Ryerson University, Toronto, ON M5B 2K3, Canada; St. Michael's Hospital, Keenan Research Centre of LKSKI, 209 Victoria Street, Toronto, ON M5B 1W8, Canada
| | - Raffi Karshafian
- Department of Physics, Ryerson University, Toronto, ON M5B 2K3, Canada; St. Michael's Hospital, Keenan Research Centre of LKSKI, 209 Victoria Street, Toronto, ON M5B 1W8, Canada; Institute for Biomedical Engineering, Science and Technology (iBEST), a partnership between Ryerson University and St. Michael's Hospital, Toronto, Ontario, Canada.
| |
Collapse
|
18
|
Hu Q, Qin Y, Xiang J, Liu W, Xu W, Sun Q, Ji S, Liu J, Zhang Z, Ni Q, Xu J, Yu X, Zhang B. dCK negatively regulates the NRF2/ARE axis and ROS production in pancreatic cancer. Cell Prolif 2018; 51:e12456. [PMID: 29701272 PMCID: PMC6528851 DOI: 10.1111/cpr.12456] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 02/03/2018] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES Decreased deoxycytidine kinase (dCK) expression is a reported indicator of gemcitabine efficacy in pancreatic cancer, due to the impact of this kinase on gemcitabine metabolism. The transcription factor NF-E2 p45-related factor 2 (NRF2, also called Nfe2l2), a master regulator of redox homoeostasis, has been reported to tightly control the expression of numerous ROS-detoxification genes and participates in drug resistance. However, the contribution of dCK to the NRF2 signalling axis has seldom been discussed and needs investigation. MATERIALS AND METHODS By overexpressing dCK in pancreatic cancer cells, we assessed the impact of dCK on NRF2 transcriptional activity. Furthermore, we measured the impact of dCK expression on the intracellular redox balance and reactive oxygen species (ROS) production. By utilizing immunohistochemical staining and tissues from pancreatic cancer patients, we assessed the correlation between dCK and NRF2 expression. Through proliferation and metastasis assays, we examined the impact of dCK expression on cell proliferation and metastasis. RESULTS dCK negatively regulates NRF2 transcriptional activity, leading to the decreased expression of ARE-driven antioxidant genes. In addition, dCK negatively regulates intracellular redox homoeostasis and ROS production. Negative correlations between dCK and NRF2 levels in pancreatic cancer cell lines and patient samples were observed. In vitro cell line studies suggested that dCK negatively regulated proliferation and metastasis. CONCLUSION Decreased dCK expression promotes NRF2-driven antioxidant transcription, which further enhances gemcitabine treatment resistance, forming a feedback loop.
Collapse
|
19
|
Hesler RA, Huang JJ, Starr MD, Treboschi VM, Bernanke AG, Nixon AB, McCall SJ, White RR, Blobe GC. TGF-β-induced stromal CYR61 promotes resistance to gemcitabine in pancreatic ductal adenocarcinoma through downregulation of the nucleoside transporters hENT1 and hCNT3. Carcinogenesis 2017; 37:1041-1051. [PMID: 27604902 DOI: 10.1093/carcin/bgw093] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 08/16/2016] [Indexed: 12/18/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a lethal cancer in part due to inherent resistance to chemotherapy, including the first-line drug gemcitabine. Although low expression of the nucleoside transporters hENT1 and hCNT3 that mediate cellular uptake of gemcitabine has been linked to gemcitabine resistance, the mechanisms regulating their expression in the PDAC tumor microenvironment are largely unknown. Here, we report that the matricellular protein cysteine-rich angiogenic inducer 61 (CYR61) negatively regulates the nucleoside transporters hENT1 and hCNT3. CRISPR/Cas9-mediated knockout of CYR61 increased expression of hENT1 and hCNT3, increased cellular uptake of gemcitabine and sensitized PDAC cells to gemcitabine-induced apoptosis. In PDAC patient samples, expression of hENT1 and hCNT3 negatively correlates with expression of CYR61 . We demonstrate that stromal pancreatic stellate cells (PSCs) are a source of CYR61 within the PDAC tumor microenvironment. Transforming growth factor-β (TGF-β) induces the expression of CYR61 in PSCs through canonical TGF-β-ALK5-Smad2/3 signaling. Activation of TGF-β signaling or expression of CYR61 in PSCs promotes resistance to gemcitabine in PDAC cells in an in vitro co-culture assay. Our results identify CYR61 as a TGF-β-induced stromal-derived factor that regulates gemcitabine sensitivity in PDAC and suggest that targeting CYR61 may improve chemotherapy response in PDAC patients.
Collapse
Affiliation(s)
| | | | - Mark D Starr
- Division of Medical Oncology, Department of Medicine
| | | | | | | | | | - Rebekah R White
- Department of Surgery, Duke University, B354 LSRC Research Drive , Box 91004, Durham, NC 27708 , USA
| | - Gerard C Blobe
- Department of Pharmacology and Cancer Biology.,Division of Medical Oncology, Department of Medicine
| |
Collapse
|
20
|
Grixti JM, O'Hagan S, Day PJ, Kell DB. Enhancing Drug Efficacy and Therapeutic Index through Cheminformatics-Based Selection of Small Molecule Binary Weapons That Improve Transporter-Mediated Targeting: A Cytotoxicity System Based on Gemcitabine. Front Pharmacol 2017; 8:155. [PMID: 28396636 PMCID: PMC5366350 DOI: 10.3389/fphar.2017.00155] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 03/10/2017] [Indexed: 12/23/2022] Open
Abstract
The transport of drug molecules is mainly determined by the distribution of influx and efflux transporters for which they are substrates. To enable tissue targeting, we sought to develop the idea that we might affect the transporter-mediated disposition of small-molecule drugs via the addition of a second small molecule that of itself had no inhibitory pharmacological effect but that influenced the expression of transporters for the primary drug. We refer to this as a “binary weapon” strategy. The experimental system tested the ability of a molecule that on its own had no cytotoxic effect to increase the toxicity of the nucleoside analog gemcitabine to Panc1 pancreatic cancer cells. An initial phenotypic screen of a 500-member polar drug (fragment) library yielded three “hits.” The structures of 20 of the other 2,000 members of this library suite had a Tanimoto similarity greater than 0.7 to those of the initial hits, and each was itself a hit (the cheminformatics thus providing for a massive enrichment). We chose the top six representatives for further study. They fell into three clusters whose members bore reasonable structural similarities to each other (two were in fact isomers), lending strength to the self-consistency of both our conceptual and experimental strategies. Existing literature had suggested that indole-3-carbinol might play a similar role to that of our fragments, but in our hands it was without effect; nor was it structurally similar to any of our hits. As there was no evidence that the fragments could affect toxicity directly, we looked for effects on transporter transcript levels. In our hands, only the ENT1-3 uptake and ABCC2,3,4,5, and 10 efflux transporters displayed measurable transcripts in Panc1 cultures, along with a ribonucleoside reductase RRM1 known to affect gemcitabine toxicity. Very strikingly, the addition of gemcitabine alone increased the expression of the transcript for ABCC2 (MRP2) by more than 12-fold, and that of RRM1 by more than fourfold, and each of the fragment “hits” served to reverse this. However, an inhibitor of ABCC2 was without significant effect, implying that RRM1 was possibly the more significant player. These effects were somewhat selective for Panc cells. It seems, therefore, that while the effects we measured were here mediated more by efflux than influx transporters, and potentially by other means, the binary weapon idea is hereby fully confirmed: it is indeed possible to find molecules that manipulate the expression of transporters that are involved in the bioactivity of a pharmaceutical drug. This opens up an entirely new area, that of chemical genomics-based drug targeting.
Collapse
Affiliation(s)
- Justine M Grixti
- Faculty of Biology, Medicine and Health, University of ManchesterManchester, UK; Manchester Institute of Biotechnology, University of ManchesterManchester, UK
| | - Steve O'Hagan
- Manchester Institute of Biotechnology, University of ManchesterManchester, UK; School of Chemistry, University of ManchesterManchester, UK; Centre for Synthetic Biology of Fine and Speciality Chemicals, University of ManchesterManchester, UK
| | - Philip J Day
- Faculty of Biology, Medicine and Health, University of ManchesterManchester, UK; Manchester Institute of Biotechnology, University of ManchesterManchester, UK
| | - Douglas B Kell
- Manchester Institute of Biotechnology, University of ManchesterManchester, UK; School of Chemistry, University of ManchesterManchester, UK; Centre for Synthetic Biology of Fine and Speciality Chemicals, University of ManchesterManchester, UK
| |
Collapse
|
21
|
Zechner D, Bürtin F, Albert AC, Zhang X, Kumstel S, Schönrogge M, Graffunder J, Shih HY, Müller S, Radecke T, Jaster R, Vollmar B. Intratumoral heterogeneity of the therapeutical response to gemcitabine and metformin. Oncotarget 2016; 7:56395-56407. [PMID: 27486761 PMCID: PMC5302922 DOI: 10.18632/oncotarget.10892] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 07/18/2016] [Indexed: 12/15/2022] Open
Abstract
Cancer heterogeneity and microenvironmental aspects within a tumor are considered key factors influencing resistance of carcinoma cells to distinct chemotherapeutical agents. We evaluated a high concentration of metformin in combination with gemcitabine on a syngeneic orthotopic mouse model using 6606PDA cells. We observed reduced tumor size and reduced cancer cell proliferation after three weeks of chemotherapy with either compound and noticed an additive effect between gemcitabine and metformin on tumor weight. Interestingly, distinct areas of the carcinoma responded differently to either compound. Metformin inhibited the proliferation of cancer cells close to the desmoplastic reaction, whereas gemcitabine inhibited the proliferation of cancer cells mainly 360-570 μm distant to the desmoplastic reaction. Indeed, co-culture of pancreatic stellate cells with 6606PDA, 7265PDA or MIA PaCa-2 cells increased gemcitabine resistance. Metformin resistance, however, was increased by high glucose concentration in the medium. Other factors such as hypoxia or the pH of the medium had no influence on gemcitabine or metformin induced inhibition of cancer cell proliferation. These data demonstrate a spatial heterogeneity in drug resistance within pancreatic adenocarcinomas and that microenvironmental aspects such as supply of glucose and the presence of pancreatic stellate cells regulate cancer cell sensitivity towards metformin or gemcitabine.
Collapse
Affiliation(s)
- Dietmar Zechner
- Institute for Experimental Surgery, Rostock University Medical Center, 18057 Rostock, Germany
| | - Florian Bürtin
- Institute for Experimental Surgery, Rostock University Medical Center, 18057 Rostock, Germany
| | - Ann-Christin Albert
- Institute for Experimental Surgery, Rostock University Medical Center, 18057 Rostock, Germany
| | - Xianbin Zhang
- Institute for Experimental Surgery, Rostock University Medical Center, 18057 Rostock, Germany
| | - Simone Kumstel
- Institute for Experimental Surgery, Rostock University Medical Center, 18057 Rostock, Germany
| | - Maria Schönrogge
- Institute for Experimental Surgery, Rostock University Medical Center, 18057 Rostock, Germany
| | - Josefine Graffunder
- Institute for Experimental Surgery, Rostock University Medical Center, 18057 Rostock, Germany
| | - Hao-Yu Shih
- Institute for Experimental Surgery, Rostock University Medical Center, 18057 Rostock, Germany
| | - Sarah Müller
- Division of Gastroenterology, Department of Medicine II, Rostock University Medical Center, 18057 Rostock, Germany
| | - Tobias Radecke
- Institute for Experimental Surgery, Rostock University Medical Center, 18057 Rostock, Germany
| | - Robert Jaster
- Division of Gastroenterology, Department of Medicine II, Rostock University Medical Center, 18057 Rostock, Germany
| | - Brigitte Vollmar
- Institute for Experimental Surgery, Rostock University Medical Center, 18057 Rostock, Germany
| |
Collapse
|
22
|
Qin J, Wang TY, Willmann JK. Sonoporation: Applications for Cancer Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 880:263-91. [PMID: 26486343 DOI: 10.1007/978-3-319-22536-4_15] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Therapeutic efficacy of both traditional chemotherapy and gene therapy in cancer is highly dependent on the ability to deliver drugs across natural barriers, such as the vessel wall or tumor cell membranes. In this regard, sonoporation induced by ultrasound-guided microbubble (USMB) destruction has been widely investigated in the enhancement of therapeutic drug delivery given it can help overcome these natural barriers, thereby increasing drug delivery into cancer. In this chapter we discuss challenges in current cancer therapy and how some of these challenges could be overcome using USMB-mediated drug delivery. We particularly focus on recent advances in delivery approaches that have been developed to further improve therapeutic efficiency and specificity of various cancer treatments. An example of clinical translation of USMB-mediated drug delivery is also shown.
Collapse
Affiliation(s)
- Jiale Qin
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, School of Medicine, Stanford, CA, USA
| | - Tzu-Yin Wang
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, School of Medicine, Stanford, CA, USA
| | - Jürgen K Willmann
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, School of Medicine, Stanford, CA, USA.
| |
Collapse
|
23
|
Zhang L, Sun Z, Ren P, Lee RJ, Xiang G, Lv Q, Han W, Wang J, Ge S, Xie M. Ultrasound-targeted microbubble destruction (UTMD) assisted delivery of shRNA against PHD2 into H9C2 cells. PLoS One 2015; 10:e0134629. [PMID: 26267649 PMCID: PMC4534091 DOI: 10.1371/journal.pone.0134629] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 07/11/2015] [Indexed: 12/23/2022] Open
Abstract
Gene therapy has great potential for human diseases. Development of efficient delivery systems is critical to its clinical translation. Recent studies have shown that microbubbles in combination with ultrasound (US) can be used to facilitate gene delivery. An aim of this study is to investigate whether the combination of US-targeted microbubble destruction (UTMD) and polyethylenimine (PEI) (UTMD/PEI) can mediate even greater gene transfection efficiency than UTMD alone and to optimize ultrasonic irradiation parameters. Another aim of this study is to investigate the biological effects of PHD2-shRNA after its transfection into H9C2 cells. pEGFP-N1 or eukaryotic shPHD2-EGFP plasmid was mixed with albumin-coated microbubbles and PEI to form complexes for transfection. After these were added into H9C2 cells, the cells were exposed to US with various sets of parameters. The cells were then harvested and analyzed for gene expression. UTMD/PEI was shown to be highly efficient in gene transfection. An US intensity of 1.5 W/cm2, a microbubble concentration of 300μl/ml, an exposure time of 45s, and a plasmid concentration of 15μg/ml were found to be optimal for transfection. UTMD/PEI-mediated PHD2-shRNA transfection in H9C2 cells significantly down regulated the expression of PHD2 and increased expression of HIF-1α and downstream angiogenesis factors VEGF, TGF-β and bFGF. UTMD/PEI, combined with albumin-coated microbubbles, warrants further investigation for therapeutic gene delivery.
Collapse
Affiliation(s)
- Li Zhang
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, PR China
| | - Zhenxing Sun
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, PR China
| | - Pingping Ren
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, PR China
| | - Robert J. Lee
- Division of Pharmaceutics, College of Pharmacy, The Ohio State University, Columbus, Ohio, 43210, United States of America
| | - Guangya Xiang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, PR China
| | - Qing Lv
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, PR China
| | - Wei Han
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, PR China
| | - Jing Wang
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, PR China
| | - Shuping Ge
- The Heart Center, St. Christopher's Hospital for Children/Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- * E-mail: (SG); (MXX)
| | - Mingxing Xie
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, PR China
- * E-mail: (SG); (MXX)
| |
Collapse
|
24
|
Johnson ZL, Lee JH, Lee K, Lee M, Kwon DY, Hong J, Lee SY. Structural basis of nucleoside and nucleoside drug selectivity by concentrative nucleoside transporters. eLife 2014; 3:e03604. [PMID: 25082345 PMCID: PMC4139061 DOI: 10.7554/elife.03604] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Concentrative nucleoside transporters (CNTs) are responsible for cellular entry of nucleosides, which serve as precursors to nucleic acids and act as signaling molecules. CNTs also play a crucial role in the uptake of nucleoside-derived drugs, including anticancer and antiviral agents. Understanding how CNTs recognize and import their substrates could not only lead to a better understanding of nucleoside-related biological processes but also the design of nucleoside-derived drugs that can better reach their targets. Here, we present a combination of X-ray crystallographic and equilibrium-binding studies probing the molecular origins of nucleoside and nucleoside drug selectivity of a CNT from Vibrio cholerae. We then used this information in chemically modifying an anticancer drug so that it is better transported by and selective for a single human CNT subtype. This work provides proof of principle for utilizing transporter structural and functional information for the design of compounds that enter cells more efficiently and selectively. DOI:http://dx.doi.org/10.7554/eLife.03604.001 DNA molecules are made from four bases—often named ‘G’, ‘A’, ‘C’, and ‘T’—that are arranged along a backbone made of sugars and phosphate groups. Chemicals called nucleosides are essentially the same as these four building blocks of DNA (and other similar molecules) but without the phosphate groups. Proteins called nucleoside transporters are found in the membranes that surround cells and can pump nucleosides into the cell. These transporters also allow drugs that are made from modified nucleosides to enter cells; however, it was previously unclear how different transporters recognized and imported specific nucleosides. Like other proteins, nucleoside transporters are basically strings of amino acids that have folded into a specific three-dimensional shape. A protein's shape is often important for defining what that protein can do, as often other molecules must bind to proteins—much like a key fitting into a lock. Johnson et al. have now revealed the three-dimensional structure of one nucleoside transporter protein bound to different nucleosides and nucleoside-derived chemicals, including three anti-cancer drugs and one anti-viral drug. Some of these chemicals were shown to bind more strongly to the transporter protein than others, and examining the three-dimensional structures revealed that the different chemicals interacted with slightly different amino acids in the transporter protein. Johnson et al. then used this information to chemically modify an anticancer drug so that it is transported more easily into cells and is imported by only one of the subtypes of nucleoside transporters that are found in humans. This provides proof of principle that information about the structure and function of a transporter protein can help to redesign chemicals such that they can enter cells more efficiently, and to tailor them for transport by specific transporters. A similar approach may in the future allow researchers to design new nucleoside-derived drugs that are better at getting inside specific cells and, as such, provide effective treatments against cancers and viral infections. DOI:http://dx.doi.org/10.7554/eLife.03604.002
Collapse
Affiliation(s)
- Zachary Lee Johnson
- Department of Biochemistry, Duke University Medical Center, Durham, United States
| | - Jun-Ho Lee
- Department of Biochemistry, Duke University Medical Center, Durham, United States
| | - Kiyoun Lee
- Department of Chemistry, Duke University, Durham, United States
| | - Minhee Lee
- Department of Chemistry, Duke University, Durham, United States
| | - Do-Yeon Kwon
- Department of Chemistry, Duke University, Durham, United States
| | - Jiyong Hong
- Department of Chemistry, Duke University, Durham, United States Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, United States
| | - Seok-Yong Lee
- Department of Biochemistry, Duke University Medical Center, Durham, United States
| |
Collapse
|
25
|
Steroid hormones are novel nucleoside transport inhibitors by competition with nucleosides for their transporters. Biochem Biophys Res Commun 2014; 443:505-10. [DOI: 10.1016/j.bbrc.2013.11.132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2013] [Accepted: 11/29/2013] [Indexed: 11/17/2022]
|
26
|
Wang C, Lin W, Playa H, Sun S, Cameron K, Buolamwini J. Dipyridamole analogs as pharmacological inhibitors of equilibrative nucleoside transporters. Identification of novel potent and selective inhibitors of the adenosine transporter function of human equilibrative nucleoside transporter 4 (hENT4). Biochem Pharmacol 2013; 86:1531-40. [PMID: 24021350 PMCID: PMC3866046 DOI: 10.1016/j.bcp.2013.08.063] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 08/27/2013] [Accepted: 08/27/2013] [Indexed: 01/04/2023]
Abstract
To identify needed human equilibrative nucleoside transporter 4 (hENT4) inhibitors, we cloned and stably expressed the recombinant protein in PK15NTD (nucleoside transporter deficient) cells, and, investigated its interaction with a series of dipyridamole analogs synthesized in our laboratory. Compounds were tested in this newly established hENT4 expressing system as well in previous stably expressed hENT1 and hENT2 expressing systems. Of the dipyridamole analogs evaluated, about one fourth of the compounds inhibited hENT4 with higher potencies than dipyridamole. The most potent of them, Compound 30 displayed an IC₅₀ of 74.4 nM, making it about 38 times more potent than dipyridamole (IC₅₀=2.8 μM), and selectivities of about 80-fold and 20-fold relative to ENT1 and ENT2, respectively. Structure-activity relationship showed nitrogen-containing monocyclic rings and noncyclic substituents at the 4- and 8-positions of the pyrimido[5,4-d]pyrimidine were important for the inhibitory activity against hENT4. The most potent and selective hENT4 inhibitors tended to have a 2,6-di(N-monohydroxyethyl) substitution on the pyrimidopyrimidine ring system. The inhibitors of hENT4 identified in this study are the most selective and potent inhibitors of hENT4 adenosine transporter function to date, and should serve as useful pharmacological/biochemical tools and/or potential leads for ENT4-based therapeutics. Also, the new hENT4-expressing PK15 cell line established will serve as a useful screening tool for the discovery and design of hENT4 ligands.
Collapse
Affiliation(s)
- Chunmei Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | | | - Hilaire Playa
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | - Shan Sun
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | - Kenyuna Cameron
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | - John Buolamwini
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| |
Collapse
|
27
|
Mohelnikova-Duchonova B, Melichar B. Human equilibrative nucleoside transporter 1 (hENT1): do we really have a new predictive biomarker of chemotherapy outcome in pancreatic cancer patients? Pancreatology 2013; 13:558-63. [PMID: 24280569 DOI: 10.1016/j.pan.2013.09.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 09/28/2013] [Accepted: 09/30/2013] [Indexed: 02/06/2023]
Abstract
Although systemic chemotherapy significantly improves the overall survival of pancreatic cancer patients, the prognosis remains extremely poor. The development of a drug resistance, either de novo or induced resistance, significantly limits the effectiveness of chemotherapy. SLC29A1 gene encodes human equilibrative nucleoside transporter 1 (hENT1) protein that is mediating the transport of nucleotides, both purines and pyrimidines, into the tumor cells. The aim of this mini-review is to summarize the current information concerning the prognostic and predictive role of SLC29A1 transporter (hENT1) expression in pancreatic cancer. Increased expression of SLC29A1 in vitro has been described as a potential critical factor determining the sensitivity of pancreatic cancer cells to gemcitabine and 5-fluorouracil, the principal cytotoxic agents used in the treatment of pancreatic cancer. The reports on the relationship between SLC29A1 expression and prognosis of patients with pancreatic cancer are currently rather conflicting. However, majority of studies on patients with resected pancreatic cancer have suggested that high SLC29A1expression may be predictive of improved survival in patients treated with gemcitabine. SLC29A1 has not been shown to represent a predictive biomarker for patients treated by 5-fluorouracil. In conclusion, potential prognostic and predictive role of SLC29A1 has been demonstrated for selected subset of patients.
Collapse
Affiliation(s)
- Beatrice Mohelnikova-Duchonova
- Department of Oncology, Palacky University Medical School and Teaching Hospital, Olomouc, Czech Republic; Biomedical Centre, Faculty of Medicine in Plzen, Charles University in Prague, Plzen, Czech Republic.
| | | |
Collapse
|