1
|
Kim K, Zheng Y, Joyce BT, Nannini DR, Wang J, Qu Y, Hawkins CA, Okeke E, Lesi OA, Roberts LR, Gursel DB, Abdulkareem FB, Akanmu AS, Duguru MJ, Davwar P, Nyam DP, Adisa RA, Imade G, Wei JJ, Kocherginsky M, Kim KY, Adeyemo WL, Odeghe E, Wehbe FH, Achenbach C, Sagay A, Ogunsola F, Murphy RL, Hou L. Cell-free DNA methylation-based inflammation score as a marker for hepatocellular carcinoma among people living with HIV. Hepatol Int 2024:10.1007/s12072-024-10768-1. [PMID: 39704909 DOI: 10.1007/s12072-024-10768-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 12/07/2024] [Indexed: 12/21/2024]
Abstract
BACKGROUND People living with the human immunodeficiency virus (HIV) are at a greater risk of developing hepatocellular carcinoma (HCC), potentially due to the stimulation of inflammation by HIV infection. Inflammation-related DNA methylation signatures obtained in liquid biopsy, such as circulating cell-free DNA (cfDNA), may serve as promising minimally invasive biomarkers that can inform diagnosis of HCC. METHODS Using data from 249 individuals with HIV (114 individuals with normal liver conditions, 69 with fibrosis, 30 with cirrhosis, and 36 with HCC), we constructed a cfDNA methylation-based inflammation score (inflammation-DNAm score) based on 54 CpGs previously associated with circulating C-reactive protein concentrations. Associations of DNAm scores with HCC were assessed using multivariable logistic regression models. Receiver operating characteristic analysis was conducted to assess the performance of discriminating HCC between the inflammation-DNAm score and alpha-fetoprotein (AFP), one of the current screening biomarkers. RESULTS A higher inflammation-DNAm score was associated with a 29% increase in the odds of HCC (OR = 1.29, 95% CI = 1.01-1.65). The association remained consistent in the models adjusted for cellular origin proportions. The DNAm score exhibited superior performance in discriminating HCC from controls (AUC = 0.94, 95% CI = 0.90-0.98), compared to AFP (AUC = 0.68, 95% CI = 0.51-0.85). CONCLUSIONS Our findings suggest that cfDNA methylation-based biomarkers may aid in the detection of HCC in people living with HIV, a population at high-risk of developing HCC.
Collapse
Affiliation(s)
- Kyeezu Kim
- Sungkyunkwan University School of Medicine, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, 16419, South Korea.
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| | - Yinan Zheng
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Brian T Joyce
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Drew R Nannini
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jun Wang
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Yishu Qu
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Claudia A Hawkins
- Robert J. Harvey, MD Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | | | - Lewis R Roberts
- Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Demirkan B Gursel
- Robert J. Harvey, MD Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | | | | | | | | | | | | | - Jian-Jun Wei
- Robert J. Harvey, MD Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | - Kwang-Youn Kim
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | | | - Firas H Wehbe
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Chad Achenbach
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | | | - Robert L Murphy
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Robert J. Harvey, MD Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Lifang Hou
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
- Robert J. Harvey, MD Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, 680 N. Lake Shore Drive, Suite 1400, Chicago, IL, 60611, USA.
| |
Collapse
|
2
|
Bilbao I, Recalde M, Daian F, Herranz JM, Elizalde M, Iñarrairaegui M, Canale M, Fernández-Barrena MG, Casadei-Gardini A, Sangro B, Ávila MA, Landecho Acha MF, Berasain C, Arechederra M. Comprehensive in silico CpG methylation analysis in hepatocellular carcinoma identifies tissue- and tumor-type specific marks disconnected from gene expression. J Physiol Biochem 2024; 80:865-879. [PMID: 39305372 PMCID: PMC11682006 DOI: 10.1007/s13105-024-01045-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/27/2024] [Indexed: 12/29/2024]
Abstract
DNA methylation is crucial for chromatin structure, transcription regulation and genome stability, defining cellular identity. Aberrant hypermethylation of CpG-rich regions is common in cancer, influencing gene expression. However, the specific contributions of individual epigenetic modifications to tumorigenesis remain under investigation. In hepatocellular carcinoma (HCC), DNA methylation alterations are documented as in other tumor types. We aimed to identify hypermethylated CpGs in HCC, assess their specificity across other tumor types, and investigate their impact on gene expression. To this end, public methylomes from HCC, other liver diseases, and 27 tumor types as well as expression data from TCGA-LIHC and GTEx were analyzed. This study identified 39 CpG sites that were hypermethylated in HCC compared to control liver tissue, and were located within promoter, gene bodies, and intergenic CpG islands. Notably, these CpGs were predominantly unmethylated in healthy liver tissue and other normal tissues. Comparative analysis with 27 other tumors revealed both common and HCC-specific hypermethylated CpGs. Interestingly, the HCC-hypermethylated genes showed minimal expression in the different healthy tissues, with marginal changes in the level of expression in the corresponding tumors. These findings confirm previous evidence on the limited influence of DNA hypermethylation on gene expression regulation in cancer. It also highlights the existence of mechanisms that allow the selection of tissue-specific methylation marks in normally unexpressed genes during carcinogenesis. Overall, our study contributes to demonstrate the complexity of cancer epigenetics, emphasizing the need of better understanding the interplay between DNA methylation, gene expression dynamics, and tumorigenesis.
Collapse
Affiliation(s)
- Idoia Bilbao
- Liver Unit and HPB Oncology Area, Clínica Universidad de Navarra, Avda. Pio XII, n55, 31008, Pamplona, Spain
| | - Miriam Recalde
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, 3008, Pamplona, Spain
| | - Fabrice Daian
- Laboratoire d'Informatique Et Système (LIS), Aix Marseille Univ, Aix Marseille Univ, CNRS, 13009, Marseille, France
| | - José Maria Herranz
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, 3008, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029, Madrid, Spain
| | - María Elizalde
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, 3008, Pamplona, Spain
| | - Mercedes Iñarrairaegui
- Liver Unit and HPB Oncology Area, Clínica Universidad de Navarra, Avda. Pio XII, n55, 31008, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029, Madrid, Spain
- IdiSNA, Navarra Institute for Health Research, 31008, Pamplona, Spain
| | - Matteo Canale
- Biosciences Laboratory-IRCCS Istituto Romagnolo Per Lo Studio Dei Tumori (IRST) "Dino Amadori", 47014, Meldola, Italy
| | - Maite G Fernández-Barrena
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, 3008, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029, Madrid, Spain
- IdiSNA, Navarra Institute for Health Research, 31008, Pamplona, Spain
| | - Andrea Casadei-Gardini
- Medical Oncology Department, IRCSS San Raffaele Scientific Institute, Milan, Italy
- Department of Oncology, Vita-Salute San Raffaele University, Milan, Italy
| | - Bruno Sangro
- Liver Unit and HPB Oncology Area, Clínica Universidad de Navarra, Avda. Pio XII, n55, 31008, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029, Madrid, Spain
- IdiSNA, Navarra Institute for Health Research, 31008, Pamplona, Spain
| | - Matías A Ávila
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, 3008, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029, Madrid, Spain
- IdiSNA, Navarra Institute for Health Research, 31008, Pamplona, Spain
| | | | - Carmen Berasain
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, 3008, Pamplona, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029, Madrid, Spain.
| | - María Arechederra
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, 3008, Pamplona, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029, Madrid, Spain.
- IdiSNA, Navarra Institute for Health Research, 31008, Pamplona, Spain.
| |
Collapse
|
3
|
Yang K, Nong J, Xie H, Wan Z, Zhou X, Liu J, Qin C, Luo J, Zhu G, Peng T. DPF2 overexpression correlates with immune infiltration and dismal prognosis in hepatocellular carcinoma. J Cancer 2024; 15:4668-4685. [PMID: 39006087 PMCID: PMC11242344 DOI: 10.7150/jca.97437] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/06/2024] [Indexed: 07/16/2024] Open
Abstract
Background: Double plant homeodomain finger 2 (DPF2), belonging to the d4 family of structural domains, has been associated with various human malignancies. However, its impact on hepatocellular carcinoma (HCC) remains unclear. The objective of this study is to elucidate the role of DPF2 in the diagnosis and prognosis of HCC. Methods: DPF2 gene expression in HCC and adjacent tissues was analyzed using Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases, validated by immunohistochemical staining of Guangxi specimens and data from the Human Protein Atlas (HPA). Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genome (KEGG), and Gene Set Enrichment Analysis (GSEA) were used to identify DPF2's potential pathways and functions in HCC. DPF2's mutation and methylation statuses were assessed via cBioPortal and MethSurv. The association between DPF2 and immune infiltration was investigated by TIMER. The prognostic value of DPF2 in HCC was established through Kaplan-Meier and Cox regression analyses. Results: DPF2 levels were significantly higher in HCC than normal tissues (p<0.001), correlating with more severe HCC features (p<0.05). Higher DPF2 expression predicted poorer overall survival (OS), disease-specific survival (DSS), and progression-free interval (PFI). DPF2 involvement was noted in critical signaling pathways including the cell cycle and Wnt. It also correlated with T helper cells, Th2 cells, and immune checkpoints like CTLA-4, PD-1, and PD-L1. Conclusion: High DPF2 expression, associated with poor HCC prognosis, may disrupt tumor immune balance and promote immune evasion. DPF2 could potentially be utilized as a biomarker for diagnosing and prognosticating hepatocellular carcinoma.
Collapse
Affiliation(s)
- Kejian Yang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
- Key Laboratory of early Prevention & Treatment for regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Jusen Nong
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
- Key Laboratory of early Prevention & Treatment for regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Haixiang Xie
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
- Key Laboratory of early Prevention & Treatment for regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Zuyin Wan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
- Key Laboratory of early Prevention & Treatment for regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Xin Zhou
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
- Key Laboratory of early Prevention & Treatment for regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Junqi Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
- Key Laboratory of early Prevention & Treatment for regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Chongjiu Qin
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
- Key Laboratory of early Prevention & Treatment for regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Jianzhu Luo
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
- Key Laboratory of early Prevention & Treatment for regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Guangzhi Zhu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
- Key Laboratory of early Prevention & Treatment for regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Tao Peng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
- Key Laboratory of early Prevention & Treatment for regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| |
Collapse
|
4
|
Draškovič T, Hauptman N. Discovery of novel DNA methylation biomarker panels for the diagnosis and differentiation between common adenocarcinomas and their liver metastases. Sci Rep 2024; 14:3095. [PMID: 38326602 PMCID: PMC10850119 DOI: 10.1038/s41598-024-53754-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/05/2024] [Indexed: 02/09/2024] Open
Abstract
Differentiation between adenocarcinomas is sometimes challenging. The promising avenue for discovering new biomarkers lies in bioinformatics using DNA methylation analysis. Utilizing a 2853-sample identification dataset and a 782-sample independent verification dataset, we have identified diagnostic DNA methylation biomarkers that are hypermethylated in cancer and differentiate between breast invasive carcinoma, cholangiocarcinoma, colorectal cancer, hepatocellular carcinoma, lung adenocarcinoma, pancreatic adenocarcinoma and stomach adenocarcinoma. The best panels for cancer type exhibit sensitivity of 77.8-95.9%, a specificity of 92.7-97.5% for tumors, a specificity of 91.5-97.7% for tumors and normal tissues and a diagnostic accuracy of 85.3-96.4%. We have shown that the results can be extended from the primary cancers to their liver metastases, as the best panels diagnose and differentiate between pancreatic adenocarcinoma liver metastases and breast invasive carcinoma liver metastases with a sensitivity and specificity of 83.3-100% and a diagnostic accuracy of 86.8-91.9%. Moreover, the panels could detect hypermethylation of selected regions in the cell-free DNA of patients with liver metastases. At the same time, these were unmethylated in the cell-free DNA of healthy donors, confirming their applicability for liquid biopsies.
Collapse
Affiliation(s)
- Tina Draškovič
- Faculty of Medicine, Institute of Pathology, University of Ljubljana, Ljubljana, Slovenia
| | - Nina Hauptman
- Faculty of Medicine, Institute of Pathology, University of Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
5
|
Charles J, Vrionis A, Mansur A, Mathias T, Shaikh J, Ciner A, Jiang Y, Nezami N. Potential Immunotherapy Targets for Liver-Directed Therapies, and the Current Scope of Immunotherapeutics for Liver-Related Malignancies. Cancers (Basel) 2023; 15:2624. [PMID: 37174089 PMCID: PMC10177356 DOI: 10.3390/cancers15092624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/01/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
Liver cancer, including hepatocellular carcinoma and intrahepatic cholangiocarcinoma, is increasing in incidence and mortality across the globe. An improved understanding of the complex tumor microenvironment has opened many therapeutic doors and led to the development of novel pharmaceuticals targeting cellular signaling pathways or immune checkpoints. These interventions have significantly improved tumor control rates and patient outcomes, both in clinical trials and in real-world practice. Interventional radiologists play an important role in the multidisciplinary team given their expertise in minimally invasive locoregional therapy, as the bulk of these tumors are usually in the liver. The aim of this review is to highlight the immunological therapeutic targets for primary liver cancers, the available immune-based approaches, and the contributions that interventional radiology can provide in the care of these patients.
Collapse
Affiliation(s)
- Jonathan Charles
- Morsani College of Medicine, University of South Florida, 560 Channelside Drive, Tampa, FL 33602, USA; (J.C.); (A.V.); (J.S.)
| | - Andrea Vrionis
- Morsani College of Medicine, University of South Florida, 560 Channelside Drive, Tampa, FL 33602, USA; (J.C.); (A.V.); (J.S.)
| | - Arian Mansur
- Harvard Medical School, Harvard University, Boston, MA 02115, USA;
| | - Trevor Mathias
- School of Medicine, University of Maryland, Baltimore, MD 21201, USA;
| | - Jamil Shaikh
- Morsani College of Medicine, University of South Florida, 560 Channelside Drive, Tampa, FL 33602, USA; (J.C.); (A.V.); (J.S.)
- Department of Radiology, Tampa General Hospital, University of South Florida Health, Tampa General Cir, Tampa, FL 33606, USA
| | - Aaron Ciner
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (A.C.); (Y.J.)
| | - Yixing Jiang
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (A.C.); (Y.J.)
| | - Nariman Nezami
- Division of Vascular and Interventional Radiology, Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Experimental Therapeutics Program, University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201, USA
| |
Collapse
|
6
|
Kmeid M, Park YN, Chung T, Pacheco RR, Arslan ME, Lee H. SEPT9 Expression in Hepatic Nodules: An Immunohistochemical Study of Hepatocellular Neoplasm and Metastasis. Appl Immunohistochem Mol Morphol 2023; 31:278-287. [PMID: 36867734 DOI: 10.1097/pai.0000000000001112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 01/24/2023] [Indexed: 03/05/2023]
Abstract
The methylated SEPT9 DNA ( mSEPT9 ) in plasma is a US Food and Drug Administration (FDA)-approved screening biomarker in colorectal cancer and is emerging as a promising diagnostic and prognostic biomarker in hepatocellular carcinoma (HCC). We evaluated the SEPT9 protein expression by immunohistochemistry (IHC) in various hepatic tumors from 164 hepatectomies and explants. Cases diagnosed as HCC (n=68), hepatocellular adenoma (n=31), dysplastic nodule (n=24), and metastasis (n=41) were retrieved. SEPT9 stain was performed on representative tissue blocks showing tumor/liver interface. For HCC, archived IHC (SATB2, CK19, CDX2, CK20, and CDH17) slides were also reviewed. The findings were correlated with demographics, risk factors, tumor size, alpha fetoprotein levels at diagnosis, T stage and oncologic outcomes, with significance defined as P <0.05. Percentage of SEPT9 positivity differed significantly among hepatocellular adenoma (3%), dysplastic nodule (0%), HCC (32%), and metastasis (83%, P <0.001). Compared with patients with SEPT9- HCC, those with SEPT9+ HCC were older (70 vs. 63 y, P =0.01). The extent of SEPT9 staining correlated with age ( rs =0.31, P =0.01), tumor grade ( rs =0.30, P =0.01), and extent of SATB2 staining ( rs =0.28, P =0.02). No associations were found between SEPT9 staining and tumor size, T stage, risk factors, CK19, CDX2, CK20, or CDH17 expression, alpha fetoprotein levels at diagnosis, METAVIR fibrosis stage, and oncologic outcome in the HCC cohort. SEPT9 is likely implicated in liver carcinogenesis in a HCC subset. Similar to mSEPT9 DNA measurement in liquid biopsies, SEPT9 staining by IHC may prove helpful as an adjunct diagnostic biomarker with potential prognostic ramifications.
Collapse
Affiliation(s)
- Michel Kmeid
- Department of Pathology, Albany Medical Center, Albany, NY
| | | | - Taek Chung
- Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul, Republic of Korea
| | | | | | - Hwajeong Lee
- Department of Pathology, Albany Medical Center, Albany, NY
| |
Collapse
|
7
|
Oura K, Morishita A, Hamaya S, Fujita K, Masaki T. The Roles of Epigenetic Regulation and the Tumor Microenvironment in the Mechanism of Resistance to Systemic Therapy in Hepatocellular Carcinoma. Int J Mol Sci 2023; 24:2805. [PMID: 36769116 PMCID: PMC9917861 DOI: 10.3390/ijms24032805] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Primary liver cancer is the sixth most common cancer and the third most common cause of cancer-related deaths worldwide. Hepatocellular carcinoma (HCC) is a major histologic type with a poor prognosis owing to the difficulty in early detection, the chemotherapy resistance, and the high recurrence rate of the disease. Despite recent advancements in HCC prevention and diagnosis, over 50% of patients are diagnosed at Barcelona Clinic Liver Cancer Stage B or C. Systemic therapies are recommended for unresectable HCC (uHCC) with major vascular invasion, extrahepatic metastases, or intrahepatic lesions that have a limited response to transcatheter arterial chemoembolization, but the treatment outcome tends to be unsatisfactory due to acquired drug resistance. Elucidation of the mechanisms underlying the resistance to systemic therapies and the appropriate response strategies to solve this issue will contribute to improved outcomes in the multidisciplinary treatment of uHCC. In this review, we summarize recent findings on the mechanisms of resistance to drugs such as sorafenib, regorafenib, and lenvatinib in molecularly targeted therapy, with a focus on epigenetic regulation and the tumor microenvironment and outline the approaches to improve the therapeutic outcome for patients with advanced HCC.
Collapse
Affiliation(s)
- Kyoko Oura
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kita 761-0793, Kagawa, Japan
| | | | | | | | | |
Collapse
|
8
|
Kim M, Delgado E, Ko S. DNA methylation in cell plasticity and malignant transformation in liver diseases. Pharmacol Ther 2023; 241:108334. [PMID: 36535346 PMCID: PMC9841769 DOI: 10.1016/j.pharmthera.2022.108334] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/09/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
The liver possesses extraordinary regenerative capacity mainly attributable to the ability of hepatocytes (HCs) and biliary epithelial cells (BECs) to self-replicate. This ability is left over from their bipotent parent cell, the hepatoblast, during development. When this innate regeneration is compromised due to the absence of proliferative parenchymal cells, such as during cirrhosis, HCs and BEC can transdifferentiate; thus, adding another layer of complexity to the process of liver repair. In addition, dysregulated lineage maintenance in these two cell populations has been shown to promote malignant growth in experimental conditions. Here, malignant transformation, driven in part by insufficient maintenance of lineage reprogramming, contributes to end-stage liver disease. Epigenetic changes are key drivers for cell fate decisions as well as transformation by finetuning overall transcription and gene expression. In this review, we address how altered DNA methylation contributes to the initiation and progression of hepatic cell fate conversion and cancer formation. We also discussed the diagnostic and therapeutic potential of targeting DNA methylation in liver cancer, its current limitations, and what future research is necessary to facilitate its contribution to clinical translation.
Collapse
Affiliation(s)
- Minwook Kim
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
| | - Evan Delgado
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America; Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
| | - Sungjin Ko
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America; Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America.
| |
Collapse
|
9
|
Correlation between DNA Methylation and Cell Proliferation Identifies New Candidate Predictive Markers in Meningioma. Cancers (Basel) 2022; 14:cancers14246227. [PMID: 36551712 PMCID: PMC9776514 DOI: 10.3390/cancers14246227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/05/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Meningiomas are the most common primary tumors of the central nervous system. Based on the 2021 WHO classification, they are classified into three grades reflecting recurrence risk and aggressiveness. However, the WHO's histopathological criteria defining these grades are somewhat subjective. Together with reliable immunohistochemical proliferation indices, other molecular markers such as those studied with genome-wide epigenetics promise to revamp the current prognostic classification. In this study, 48 meningiomas of various grades were randomly included and explored for DNA methylation with the Infinium MethylationEPIC microarray over 850k CpG sites. We conducted differential and correlative analyses on grade and several proliferation indices and markers, such as mitotic index and Ki-67 or MCM6 immunohistochemistry. We also set up Cox proportional hazard models for extensive associations between CpG methylation and survival. We identified loci highly correlated with cell growth and a targeted methylation signature of regulatory regions persistently associated with proliferation, grade, and survival. Candidate genes under the control of these regions include SMC4, ESRRG, PAX6, DOK7, VAV2, OTX1, and PCDHA-PCDHB-PCDHG, i.e., the protocadherin gene clusters. This study highlights the crucial role played by epigenetic mechanisms in shaping dysregulated cellular proliferation and provides potential biomarkers bearing prognostic and therapeutic value for the clinical management of meningioma.
Collapse
|
10
|
Xie RT, Li QY, Sun XC, Zhi QJ, Huang XX, Zhu XC, Miao QZ, Zhou DZ, Han DY. Hypomethylation of Thyroid Peroxidase as a Biomarker for Hepatocellular Carcinoma with Tumor Thrombosis. Curr Med Sci 2022; 42:1248-1255. [PMID: 36542322 DOI: 10.1007/s11596-022-2643-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 12/31/2021] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Thyroid hormones (THs) regulate multiple physiological activities in the liver, including cellular metabolism, differentiation, and cell growth, and play important roles in the pathogenesis of hepatocellular carcinoma (HCC). Thyroid peroxidase (TPO) is a key molecule involved in the THs synthesis and signaling pathway. As an epigenetic modification, DNA methylation has a critical role in tumorigenesis with diagnostic potential. However, the connection between THs and DNA methylation has been rarely investigated. METHODS The methylation of key TH-related genes was analyzed by in-house epigenome-wide scanning, and we further analyzed the methylation levels of the TPO promotor in 164 sample pairs of HCC and adjacent non-cancerous tissues by Sequenom EpiTYPER assays, and evaluated their clinical implications. RESULTS We identified that the methylation of the TPO promoter was downregulated in the HCC tissues (P<0.0001) with a mean difference ranging from 18.5% to 22.3%. This methylation pattern correlated with several clinical factors, including a multi-satellite tumor, fibrous capsule, and the presence of tumor thrombus. The receiver operator characteristic (ROC) curve analysis further confirmed that the percent methylated reference (PMR) values for TPO were predictive of the tumor [the area under the curve (AUC) ranged from 0.755 to 0.818] and the thrombosis in the HCC patients (the AUC ranged from 0.706 to 0.777). CONCLUSION These findings demonstrated that epigenetic alterations of TPO, as indicated by the PMR values, were a potential biomarker for HCC patients with tumor thrombosis.
Collapse
Affiliation(s)
- Ru-Ting Xie
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Qian-Yu Li
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Xue-Chen Sun
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Qing-Jun Zhi
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Xiang-Xiang Huang
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Xing-Chen Zhu
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Qi-Zeng Miao
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Dai-Zhan Zhou
- Bio-X Center, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200000, China.
| | - Dong-Yan Han
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.
| |
Collapse
|
11
|
Nagaraju GP, Dariya B, Kasa P, Peela S, El-Rayes BF. Epigenetics in hepatocellular carcinoma. Semin Cancer Biol 2022; 86:622-632. [PMID: 34324953 DOI: 10.1016/j.semcancer.2021.07.017] [Citation(s) in RCA: 164] [Impact Index Per Article: 54.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/17/2021] [Accepted: 07/25/2021] [Indexed: 01/27/2023]
Abstract
Hepatocellular carcinoma (HCC) is the most common primary malignancy of the liver and has a high fatality rate. Genetic and epigenetic aberrations are commonly observed in HCC. The epigenetic processes include chromatin remodelling, histone alterations, DNA methylation, and noncoding RNA (ncRNA) expression and are connected with the progression and metastasis of HCC. Due to their potential reversibility, these epigenetic alterations are widely targeted for the development of biomarkers. In-depth understanding of the epigenetics of HCC is critical for developing rational clinical strategies that can provide a meaningful improvement in overall survival and prediction of therapeutic outcomes. In this article, we have summarised the epigenetic modifications involved in HCC progression and highlighted the potential biomarkers for diagnosis and drug development.
Collapse
Affiliation(s)
- Ganji Purnachandra Nagaraju
- Department of Hematology & Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | - Begum Dariya
- Department of Biosciences and Biotechnology, Banasthali University, Banasthali, 304022, Rajasthan, India
| | - Prameswari Kasa
- Dr. L.V. Prasad Diagnostics and Research Laboratory, Khairtabad, Hyderabad 500004, India
| | - Sujatha Peela
- Department of Biotechnology, Dr. B.R. Ambedkar University, Srikakulam, 532410 AP, India
| | - Bassel F El-Rayes
- Department of Hematology & Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
12
|
Hong J, Rhee JK. Genomic Effect of DNA Methylation on Gene Expression in Colorectal Cancer. BIOLOGY 2022; 11:1388. [PMID: 36290295 PMCID: PMC9598958 DOI: 10.3390/biology11101388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/16/2022] [Accepted: 09/20/2022] [Indexed: 11/25/2022]
Abstract
The aberrant expression of cancer-related genes can lead to colorectal cancer (CRC) carcinogenesis, and DNA methylation is one of the causes of abnormal expression. Although many studies have been conducted to reveal how DNA methylation affects transcription regulation, the ways in which it modulates gene expression and the regions that significantly affect DNA methylation-mediated gene regulation remain unclear. In this study, we investigated how DNA methylation in specific genomic areas can influence gene expression. Several regression models were constructed for gene expression prediction based on DNA methylation. Among these models, ElasticNet, which had the best performance, was chosen for further analysis. DNA methylation near transcription start sites (TSS), especially from 2 kb upstream to 7 kb downstream of TSS, had an essential regulatory role in gene expression. Moreover, methylation-affected and survival-associated genes were compiled and found to be mainly enriched in immune-related pathways. This study investigated genomic regions in which methylation changes can affect gene expression. In addition, this study proposed that aberrantly expressed genes due to DNA methylation can lead to CRC pathogenesis by the immune system.
Collapse
Affiliation(s)
| | - Je-Keun Rhee
- Department of Bioinformatics & Life Science, Soongsil University, Seoul 06978, Korea
| |
Collapse
|
13
|
Chu S, Avery A, Yoshimoto J, Bryan JN. Genome wide exploration of the methylome in aggressive B-cell lymphoma in Golden Retrievers reveals a conserved hypermethylome. Epigenetics 2022; 17:2022-2038. [PMID: 35912844 PMCID: PMC9665123 DOI: 10.1080/15592294.2022.2105033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Few recurrent DNA mutations are seen in aggressive canine B cell lymphomas (cBCL), suggesting other frequent drivers. The methylated island recovery assay (MIRA-seq) or methylated CpG-binding domain sequencing (MBD-seq) was used to define the genome-wide methylation profiles in aggressive cBCL in Golden Retrievers to determine if cBCL can be better defined by epigenetic changes than by DNA mutations. DNA hypermethylation patterns were relatively homogenous within cBCL samples in Golden Retrievers, in different breeds and in geographical regions. Aberrant hypermethylation is thus suspected to be a central and early event in cBCL lymphomagenesis. Distinct subgroups within cBCL in Golden Retrievers were not identified with DNA methylation profiles. In comparison, the methylome profile of human DLBCL (hDLBCL) is relatively heterogeneous. Only moderate similarity between hDLBCL and cBCL was seen and cBCL likely cannot be accurately classified into the subtypes seen in hDLBCL. Genes with hypermethylated regions in the promoter-TSS-first exon of cBCL compared to normal B cells often also had additional hyper- and hypomethylated regions distributed throughout the gene suggesting non-randomized repeat targeting of key genes by epigenetic mechanisms. The prevalence of hypermethylation in transcription factor families in aggressive cBCL may represent a fundamental step in lymphomagenesis.
Collapse
Affiliation(s)
- Shirley Chu
- Department of Veterinary Medicine and Surgery, University of Missouri, 900 E. Campus Drive, Columbia, MO, USA
| | - Anne Avery
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Janna Yoshimoto
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Jeffrey N Bryan
- Department of Veterinary Medicine and Surgery, University of Missouri, 900 E. Campus Drive, Columbia, MO, USA
| |
Collapse
|
14
|
Braghini MR, Lo Re O, Romito I, Fernandez-Barrena MG, Barbaro B, Pomella S, Rota R, Vinciguerra M, Avila MA, Alisi A. Epigenetic remodelling in human hepatocellular carcinoma. J Exp Clin Cancer Res 2022; 41:107. [PMID: 35331312 PMCID: PMC8943959 DOI: 10.1186/s13046-022-02297-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/19/2022] [Indexed: 04/13/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most frequent primary liver cancer, being the sixth most commonly diagnosed cancer and the fourth leading cause of cancer-related death. As other heterogeneous solid tumours, HCC results from a unique synergistic combination of genetic alterations mixed with epigenetic modifications.In HCC the patterns and frequencies of somatic variations change depending on the nearby chromatin. On the other hand, epigenetic alterations often induce genomic instability prone to mutations. Epigenetics refers to heritable states of gene expression without alteration to the DNA sequence itself and, unlike genetic changes, the epigenetic modifications are reversible and affect gene expression more extensively than genetic changes. Thus, studies of epigenetic regulation and the involved molecular machinery are greatly contributing to the understanding of the mechanisms that underline HCC onset and heterogeneity. Moreover, this knowledge may help to identify biomarkers for HCC diagnosis and prognosis, as well as future new targets for more efficacious therapeutic approaches.In this comprehensive review we will discuss the state-of-the-art knowledge about the epigenetic landscape in hepatocarcinogenesis, including evidence on the diagnostic and prognostic role of non-coding RNAs, modifications occurring at the chromatin level, and their role in the era of precision medicine.Apart from other better-known risk factors that predispose to the development of HCC, characterization of the epigenetic remodelling that occurs during hepatocarcinogenesis could open the way to the identification of personalized biomarkers. It may also enable a more accurate diagnosis and stratification of patients, and the discovery of new targets for more efficient therapeutic approaches.
Collapse
Affiliation(s)
- Maria Rita Braghini
- Unit of Molecular Genetics of Complex Phenotypes, Bambino Gesù Children's Hospital, IRCCS, Viale S. Paolo, 15, 00146, Rome, Italy
| | - Oriana Lo Re
- Department of Translational Stem Cell Biology, Research Institute of the Medical University of Varna, Varna, Bulgaria
| | - Ilaria Romito
- Unit of Molecular Genetics of Complex Phenotypes, Bambino Gesù Children's Hospital, IRCCS, Viale S. Paolo, 15, 00146, Rome, Italy
| | - Maite G Fernandez-Barrena
- Hepatology Program, CIMA, University of Navarra, Pamplona, Spain
- Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Barbara Barbaro
- Unit of Molecular Genetics of Complex Phenotypes, Bambino Gesù Children's Hospital, IRCCS, Viale S. Paolo, 15, 00146, Rome, Italy
| | - Silvia Pomella
- Department of Paediatric Haematology/Oncology and Cellular and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Rossella Rota
- Department of Paediatric Haematology/Oncology and Cellular and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Manlio Vinciguerra
- Department of Translational Stem Cell Biology, Research Institute of the Medical University of Varna, Varna, Bulgaria
| | - Matias A Avila
- Hepatology Program, CIMA, University of Navarra, Pamplona, Spain
- Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Anna Alisi
- Unit of Molecular Genetics of Complex Phenotypes, Bambino Gesù Children's Hospital, IRCCS, Viale S. Paolo, 15, 00146, Rome, Italy.
| |
Collapse
|
15
|
Epigenome-Wide DNA Methylation Profiling in Colorectal Cancer and Normal Adjacent Colon Using Infinium Human Methylation 450K. Diagnostics (Basel) 2022; 12:diagnostics12010198. [PMID: 35054365 PMCID: PMC8775085 DOI: 10.3390/diagnostics12010198] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/31/2021] [Accepted: 01/03/2022] [Indexed: 01/20/2023] Open
Abstract
The aims were to profile the DNA methylation in colorectal cancer (CRC) and to explore cancer-specific methylation biomarkers. Fifty-four pairs of CRCs and the adjacent normal tissues were subjected to Infinium Human Methylation 450K assay and analysed using ChAMP R package. A total of 26,093 differentially methylated probes were identified, which represent 6156 genes; 650 probes were hypermethylated, and 25,443 were hypomethylated. Hypermethylated sites were common in CpG islands, while hypomethylated sites were in open sea. Most of the hypermethylated genes were associated with pathways in cancer, while the hypomethylated genes were involved in the PI3K-AKT signalling pathway. Among the identified differentially methylated probes, we found evidence of four potential probes in CRCs versus adjacent normal; HOXA2 cg06786372, OPLAH cg17301223, cg15638338, and TRIM31 cg02583465 that could serve as a new biomarker in CRC since these probes were aberrantly methylated in CRC as well as involved in the progression of CRC. Furthermore, we revealed the potential of promoter methylation ADHFE1 cg18065361 in differentiating the CRC from normal colonic tissue from the integrated analysis. In conclusion, aberrant DNA methylation is significantly involved in CRC pathogenesis and is associated with gene silencing. This study reports several potential important methylated genes in CRC and, therefore, merit further validation as novel candidate biomarker genes in CRC.
Collapse
|
16
|
Emergence of clone with PHF6 nonsense mutation in chronic myelomonocytic leukemia at relapse after allogeneic HCT. Int J Hematol 2022; 115:748-752. [PMID: 34988909 DOI: 10.1007/s12185-021-03284-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/23/2021] [Accepted: 12/23/2021] [Indexed: 10/19/2022]
Abstract
Disease relapse is a major cause of treatment failure after allogeneic hematopoietic cell transplantation (HCT) and the mechanisms of relapse remain unclear. We encountered a 58-year-old man with chronic myelomonocytic leukemia (CMML) that relapsed after haploidentical HCT from his daughter. Peripheral blood samples collected at HCT and at relapse were analyzed, and CD14+/CD16- monocytes that typically accumulate in CMML were isolated by flow cytometry. Whole-exome sequencing of the monocytes revealed 8 common mutations in CMML at HCT. In addition, a PHF6 nonsense mutation not detected at HCT was detected at relapse. RNA sequencing could not detect changes in expression of HLA or immune-checkpoint molecules, which are important mechanisms of immune evasion. However, gene set enrichment analysis (GSEA) revealed that a TNF-α signaling pathway was downregulated at relapse. Ubiquitination of histone H2B at lysine residue 120 (H2BK120ub) at relapse was significantly decreased at the protein level, indicating that PHF6 loss might downregulate a TNF-α signaling pathway by reduction of H2BK120ub. This case illustrates that PHF6 loss contributes to a competitive advantage for the clone under stress conditions and leads to relapse after HCT.
Collapse
|
17
|
Varghese RS, Barefoot ME, Jain S, Chen Y, Zhang Y, Alley A, Kroemer AH, Tadesse MG, Kumar D, Sherif ZA, Ressom HW. Integrative Analysis of DNA Methylation and microRNA Expression Reveals Mechanisms of Racial Heterogeneity in Hepatocellular Carcinoma. Front Genet 2021; 12:708326. [PMID: 34557219 PMCID: PMC8453167 DOI: 10.3389/fgene.2021.708326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 08/05/2021] [Indexed: 11/13/2022] Open
Abstract
Pathologic alterations in epigenetic regulation have long been considered a hallmark of many cancers, including hepatocellular carcinoma (HCC). In a healthy individual, the relationship between DNA methylation and microRNA (miRNA) expression maintains a fine balance; however, disruptions in this harmony can aid in the genesis of cancer or the propagation of existing cancers. The balance between DNA methylation and microRNA expression and its potential disturbance in HCC can vary by race. There is emerging evidence linking epigenetic events including DNA methylation and miRNA expression to cancer disparities. In this paper, we evaluate the epigenetic mechanisms of racial heterogenity in HCC through an integrated analysis of DNA methylation, miRNA, and combined regulation of gene expression. Specifically, we generated DNA methylation, mRNA-seq, and miRNA-seq data through the analysis of tumor and adjacent non-tumor liver tissues from African Americans (AA) and European Americans (EA) with HCC. Using mixed ANOVA, we identified cytosine-phosphate-guanine (CpG) sites, mRNAs, and miRNAs that are significantly altered in HCC vs. adjacent non-tumor tissue in a race-specific manner. We observed that the methylome was drastically changed in EA with a significantly larger number of differentially methylated and differentially expressed genes than in AA. On the other hand, the miRNA expression was altered to a larger extent in AA than in EA. Pathway analysis functionally linked epigenetic regulation in EA to processes involved in immune cell maturation, inflammation, and vascular remodeling. In contrast, cellular proliferation, metabolism, and growth pathways are found to predominate in AA as a result of this epigenetic analysis. Furthermore, through integrative analysis, we identified significantly differentially expressed genes in HCC with disparate epigenetic regulation, associated with changes in miRNA expression for AA and DNA methylation for EA.
Collapse
Affiliation(s)
- Rency S. Varghese
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, United States
| | - Megan E. Barefoot
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, United States
| | - Sidharth Jain
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, United States
| | - Yifan Chen
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, United States
| | - Yunxi Zhang
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, United States
| | - Amber Alley
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, United States
| | | | - Mahlet G. Tadesse
- Department of Mathematics and Statistics, Georgetown University, Washington, DC, United States
| | - Deepak Kumar
- Department of Pharmaceutical Sciences, North Carolina Central University, Durham, NC, United States
| | - Zaki A. Sherif
- Department of Biochemistry and Molecular Biology, College of Medicine, Howard University, Washington, DC, United States
| | - Habtom W. Ressom
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, United States
| |
Collapse
|
18
|
Jiangzhou H, Zhang H, Sun R, Fahira A, Wang K, Li Z, Shi Y, Wang Z. Integrative omics analysis reveals effective stratification and potential prognosis markers of pan-gastrointestinal cancers. iScience 2021; 24:102824. [PMID: 34381964 PMCID: PMC8340129 DOI: 10.1016/j.isci.2021.102824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 05/01/2021] [Accepted: 07/05/2021] [Indexed: 12/09/2022] Open
Abstract
Gastrointestinal (GI) tract cancers are the most common malignant cancers with high mortality rate. Pan-cancer multi-omics data fusion provides a powerful strategy to examine commonalities and differences among various cancer types and benefits for the identification of pan-cancer drug targets. Herein, we conducted an integrative omics analysis on The Cancer Genome Atlas pan-GI samples including six carcinomas and stratified into 9 clusters, i.e. 5 single-type-dominant clusters and 4 mixed clusters, the clustering reveals the molecular features of different subtypes, other than the organ and cell-of-origin classifications. Especially the mixed clusters revealed the homogeneity of pan-GI cancers. We demonstrated that the prognosis differences among pan-GI subtypes based on multi-omics integration are more significant than clustering by single-omics. The potential prognostic markers for pan-GI stratification were identified by proportional hazards model, such as PSCA (for colorectal and stomach cancer) and PPP1CB (for liver and pancreatic cancer), which have prominent prognostic power supported by high concordance index.
Pan-cancer multi-omics strategy reveals homogeneity and heterogeneity of pan-GI cancers Identify 9 iclusters with significantly different survival and molecular features Potential prognostic markers have prominent power supported by concordance index
Collapse
Affiliation(s)
- Huiting Jiangzhou
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Centre for Brain Science, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Hang Zhang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Centre for Brain Science, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Renliang Sun
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Centre for Brain Science, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Aamir Fahira
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Centre for Brain Science, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Ke Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Centre for Brain Science, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Zhiqiang Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Centre for Brain Science, Shanghai Jiao Tong University, Shanghai 200030, China.,Affiliated Hospital of Qingdao University & Biomedical Sciences Institute of Qingdao University, Qingdao University, Qingdao 266003, China
| | - Yongyong Shi
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Centre for Brain Science, Shanghai Jiao Tong University, Shanghai 200030, China.,Affiliated Hospital of Qingdao University & Biomedical Sciences Institute of Qingdao University, Qingdao University, Qingdao 266003, China
| | - Zhuo Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Centre for Brain Science, Shanghai Jiao Tong University, Shanghai 200030, China
| |
Collapse
|
19
|
Hernandez-Meza G, von Felden J, Gonzalez-Kozlova EE, Garcia-Lezana T, Peix J, Portela A, Craig AJ, Sayols S, Schwartz M, Losic B, Mazzaferro V, Esteller M, Llovet JM, Villanueva A. DNA Methylation Profiling of Human Hepatocarcinogenesis. Hepatology 2021; 74:183-199. [PMID: 33237575 PMCID: PMC8144238 DOI: 10.1002/hep.31659] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 10/28/2020] [Accepted: 10/30/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND AND AIMS Mutations in TERT (telomerase reverse transcriptase) promoter are established gatekeepers in early hepatocarcinogenesis, but little is known about other molecular alterations driving this process. Epigenetic deregulation is a critical event in early malignancies. Thus, we aimed to (1) analyze DNA methylation changes during the transition from preneoplastic lesions to early HCC (eHCC) and identify candidate epigenetic gatekeepers, and to (2) assess the prognostic potential of methylation changes in cirrhotic tissue. APPROACH AND RESULTS Methylome profiling was performed using Illumina HumanMethylation450 (485,000 cytosine-phosphateguanine, 96% of known cytosine-phosphateguanine islands), with data available for a total of 390 samples: 16 healthy liver, 139 cirrhotic tissue, 8 dysplastic nodules, and 227 HCC samples, including 40 eHCC below 2cm. A phylo-epigenetic tree derived from the Euclidean distances between differentially DNA-methylated sites (n = 421,997) revealed a gradient of methylation changes spanning healthy liver, cirrhotic tissue, dysplastic nodules, and HCC with closest proximity of dysplasia to HCC. Focusing on promoter regions, we identified epigenetic gatekeeper candidates with an increasing proportion of hypermethylated samples (beta value > 0.5) from cirrhotic tissue (<1%), to dysplastic nodules (≥25%), to eHCC (≥50%), and confirmed inverse correlation between DNA methylation and gene expression for TSPYL5 (testis-specific Y-encoded-like protein 5), KCNA3 (potassium voltage-gated channel, shaker-related subfamily, member 3), LDHB (lactate dehydrogenase B), and SPINT2 (serine peptidase inhibitor, Kunitz type 2) (all P < 0.001). Unsupervised clustering of genome-wide methylation profiles of cirrhotic tissue identified two clusters, M1 and M2, with 42% and 58% of patients, respectively, which correlates with survival (P < 0.05), independent of etiology. CONCLUSIONS Genome-wide DNA-methylation profiles accurately discriminate the different histological stages of human hepatocarcinogenesis. We report on epigenetic gatekeepers in the transition between dysplastic nodules and eHCC. DNA-methylation changes in cirrhotic tissue correlate with clinical outcomes.
Collapse
Affiliation(s)
- Gabriela Hernandez-Meza
- Division of Liver Diseases, Liver Cancer Program, Tisch Cancer Institute, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Johann von Felden
- Division of Liver Diseases, Liver Cancer Program, Tisch Cancer Institute, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,I. Department of Internal Medicine, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Edgar E. Gonzalez-Kozlova
- Department of Genetics and Genomic Sciences, Cancer Immunology Program, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Teresa Garcia-Lezana
- Division of Liver Diseases, Liver Cancer Program, Tisch Cancer Institute, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Judit Peix
- Translational Research in Hepatic Oncology, Liver Unit, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)-Hospital Clínic, Universitat De Barcelona, Catalonia, Spain
| | - Anna Portela
- Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Amanda J. Craig
- Division of Liver Diseases, Liver Cancer Program, Tisch Cancer Institute, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sergi Sayols
- Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain.,Institute of Molecular Biology, Mainz, Germany
| | - Myron Schwartz
- Department of Surgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bojan Losic
- Department of Genetics and Genomic Sciences, Cancer Immunology Program, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Vincenzo Mazzaferro
- Gastrointestinal Surgery and Liver Transplantation Unit, National Cancer Institute, Milan, Italy
| | - Manel Esteller
- Josep Carreras Leukemia Research Institute (IJC), Badalona, Barcelona, Catalonia, Spain,Centro de Investigacion Biomedica en Red Cancer (CIBERONC), Madrid, Spain.,Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain.,Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Barcelona, Catalonia, Spain
| | - Josep M. Llovet
- Division of Liver Diseases, Liver Cancer Program, Tisch Cancer Institute, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Translational Research in Hepatic Oncology, Liver Unit, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)-Hospital Clínic, Universitat De Barcelona, Catalonia, Spain,Institució Catalana de Recerca i Estudis Avançats, Barcelona, Catalonia, Spain
| | - Augusto Villanueva
- Division of Liver Diseases, Liver Cancer Program, Tisch Cancer Institute, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Division of Hematology and Medical Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
20
|
Chen QL, Yan Q, Feng KL, Xie CF, Fang CK, Wang JN, Liu LH, Li Y, Zhong C. Using Integrated Bioinformatics Analysis to Identify Abnormally Methylated Differentially Expressed Genes in Hepatocellular Carcinoma. Int J Gen Med 2021; 14:805-823. [PMID: 33732011 PMCID: PMC7956867 DOI: 10.2147/ijgm.s294505] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/19/2021] [Indexed: 12/12/2022] Open
Abstract
Objective For the identification of abnormally methylated differentially expressed genes (MDEGs) in hepatocellular carcinoma (HCC), this study integrated four microarray datasets to investigate the fundamental mechanisms of tumorigenesis. Methods We obtained the expression (GSE76427, GSE57957) and methylation (GSE89852, GSE54503) profiles from Gene Expression Omnibus (GEO). The abnormally MDEGs were identified by using R software. We used the clusterProfiler package for the functional and pathway enrichment analysis. The String database was used to build the protein–protein interaction (PPI) network and visualize it in Cytoscape. MCODE was employed in the module analysis. Additionally, Gene Expression Profiling Interactive Analysis (GEPIA) and The Cancer Genome Atlas (TCGA) were employed to validate results. Lastly, we used cBioPortal software to examine the hub genetic alterations. Results We identified 162 hypermethylated, down-regulated genes and 190 hypomethylated, up-regulated genes. Up-regulated genes with low methylation were enriched in biological processes, such as keratinocyte proliferation, and calcium homeostasis. Pathway analysis was enriched in the AMPK and PI3K-Akt signaling pathways. The PPI network identified PTK2, VWF, and ITGA2 as hypomethylated, high-expressing hub genes. Down-regulated genes with high methylation were related to responses to peptide hormones and estradiol, multi-multicellular organism process. Pathway analysis indicated enrichment in camp, oxytocin signaling pathways. The PPI network identified CFTR, ESR1, and CXCL12 as hypermethylated, low-expressing hub genes. Upon verification in TCGA databases, we found that the expression and methylation statuses of the hub genes changed significantly, and it was consistent with our results. Conclusion The novel abnormally MDEGs and pathways in HCC were identified. These results helped us further understand the molecular mechanisms underlying HCC invasion, metastasis, and development. Hub genes can serve as biomarkers for an accurate diagnosis and treatment of HCC, and PTK2, VWF, ITGA2, CFTR, ESR1, and CXCL12 are included.
Collapse
Affiliation(s)
- Qing-Lian Chen
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, People's Republic of China.,Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, People's Republic of China
| | - Qian Yan
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, People's Republic of China
| | - Kun-Liang Feng
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, People's Republic of China.,Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, People's Republic of China
| | - Chun-Feng Xie
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, People's Republic of China.,Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, People's Republic of China
| | - Chong-Kai Fang
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, People's Republic of China.,Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, People's Republic of China
| | - Ji-Nan Wang
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, People's Republic of China.,Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, People's Republic of China
| | - Li-Hua Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, People's Republic of China.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, People's Republic of China
| | - Ya Li
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, People's Republic of China
| | - Chong Zhong
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, People's Republic of China.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, People's Republic of China
| |
Collapse
|
21
|
Yin J, Li F, Zhou Y, Mou M, Lu Y, Chen K, Xue J, Luo Y, Fu J, He X, Gao J, Zeng S, Yu L, Zhu F. INTEDE: interactome of drug-metabolizing enzymes. Nucleic Acids Res 2021; 49:D1233-D1243. [PMID: 33045737 PMCID: PMC7779056 DOI: 10.1093/nar/gkaa755] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/19/2020] [Accepted: 09/22/2020] [Indexed: 12/15/2022] Open
Abstract
Drug-metabolizing enzymes (DMEs) are critical determinant of drug safety and efficacy, and the interactome of DMEs has attracted extensive attention. There are 3 major interaction types in an interactome: microbiome-DME interaction (MICBIO), xenobiotics-DME interaction (XEOTIC) and host protein-DME interaction (HOSPPI). The interaction data of each type are essential for drug metabolism, and the collective consideration of multiple types has implication for the future practice of precision medicine. However, no database was designed to systematically provide the data of all types of DME interactions. Here, a database of the Interactome of Drug-Metabolizing Enzymes (INTEDE) was therefore constructed to offer these interaction data. First, 1047 unique DMEs (448 host and 599 microbial) were confirmed, for the first time, using their metabolizing drugs. Second, for these newly confirmed DMEs, all types of their interactions (3359 MICBIOs between 225 microbial species and 185 DMEs; 47 778 XEOTICs between 4150 xenobiotics and 501 DMEs; 7849 HOSPPIs between 565 human proteins and 566 DMEs) were comprehensively collected and then provided, which enabled the crosstalk analysis among multiple types. Because of the huge amount of accumulated data, the INTEDE made it possible to generalize key features for revealing disease etiology and optimizing clinical treatment. INTEDE is freely accessible at: https://idrblab.org/intede/.
Collapse
Affiliation(s)
- Jiayi Yin
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Fengcheng Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ying Zhou
- The First Affiliated Hospital, Zhejiang University, Hangzhou 310000, China
| | - Minjie Mou
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yinjing Lu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Kangli Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jia Xue
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yongchao Luo
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jianbo Fu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xu He
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jianqing Gao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, China
| | - Su Zeng
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, China
| | - Lushan Yu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Feng Zhu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, China
| |
Collapse
|
22
|
Azim R, Wang S, Zhou S, Zhong X. Purity estimation from differentially methylated sites using Illumina Infinium methylation microarray data. Cell Cycle 2020; 19:2028-2039. [PMID: 32627651 PMCID: PMC7469651 DOI: 10.1080/15384101.2020.1789315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 06/11/2020] [Accepted: 06/23/2020] [Indexed: 10/23/2022] Open
Abstract
Solid tissues collected from patient-driven clinical settings are composed of both normal and cancer cells, which often precede complications in data analysis and epigenetic findings. The Purity estimation of samples is crucial for reliable genomic aberration identification and uniform inter-sample and inter-patient comparisons as well. Here, an effective and flexible method has been developed and designed to estimate the level of methylation, which infers tumor purity without prior knowledge from the other datasets. The comprehensive analysis of our approach on Illumina Infinium 450 k methylation microarray explains that TCGA Breast Cancer data exhibits improved performance for purity assessment. This assessment has a strong correlation with other advanced methods.
Collapse
Affiliation(s)
- Riasat Azim
- College of Information Science and Engineering, Hunan University, Changsha, Hunan, P.R. China
| | - Shulin Wang
- College of Information Science and Engineering, Hunan University, Changsha, Hunan, P.R. China
| | - Su Zhou
- College of Information Science and Engineering, Hunan University, Changsha, Hunan, P.R. China
| | - Xing Zhong
- College of Information Science and Engineering, Hunan University, Changsha, Hunan, P.R. China
| |
Collapse
|
23
|
Genome-Wide Open Chromatin Methylome Profiles in Colorectal Cancer. Biomolecules 2020; 10:biom10050719. [PMID: 32380793 PMCID: PMC7277229 DOI: 10.3390/biom10050719] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/25/2020] [Accepted: 04/29/2020] [Indexed: 12/24/2022] Open
Abstract
The methylome of open chromatins was investigated in colorectal cancer (CRC) to explore cancer-specific methylation and potential biomarkers. Epigenome-wide methylome of open chromatins was studied in colorectal cancer tissues using the Infinium DNA MethylationEPIC assay. Differentially methylated regions were identified using the ChAMP Bioconductor. Our stringent analysis led to the discovery of 2187 significant differentially methylated open chromatins in CRCs. More hypomethylated probes were observed and the trend was similar across all chromosomes. The majority of hyper- and hypomethylated probes in open chromatin were in chromosome 1. Our unsupervised hierarchical clustering analysis showed that 40 significant differentially methylated open chromatins were able to segregate CRC from normal colonic tissues. Receiver operating characteristic analyses from the top 40 probes revealed several significant, highly discriminative, specific and sensitive probes such as OPLAH cg26256223, EYA4 cg01328892, and CCNA1 cg11513637, among others. OPLAH cg26256223 hypermethylation is associated with reduced gene expression in the CRC. This study reports many open chromatin loci with novel differential methylation statuses, some of which with the potential as candidate markers for diagnostic purposes.
Collapse
|
24
|
Sun S, Li Y, Han S, Jia H, Li X, Li X. A comprehensive genome-wide profiling comparison between HBV and HCV infected hepatocellular carcinoma. BMC Med Genomics 2019; 12:147. [PMID: 31660973 PMCID: PMC6819460 DOI: 10.1186/s12920-019-0580-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 09/09/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide, especially in East Asia. Even with the progress in therapy, 5-year survival rates remain unsatisfied. Chronic infection with the hepatitis B virus (HBV) or hepatitis C virus (HCV) has been epidemiologically associated with HCC and is the major etiology in the East Asian population. The detailed mechanism, especially the changes of DNA methylation and gene expression between the two types of virus-related HCC, and their contributions to the HCC development, metastasis, and recurrence remain largely unknown. METHODS In this integrated analysis, we characterized genome-scale profiles of HBV and HCV infected HCC by comparing their gene expression pattern, methylation profiles, and copy number variations from the publicly accessible data of The Cancer Genome Atlas Program (TCGA). RESULTS The HLA-A, STAT1, and OAS2 genes were highly enriched and up-regulated discovered in the HCV-infected HCC. Hypomethylation but not copy number variations might be the major factor for the up-regulation of these immune-related genes in HCV-infected HCC. CONCLUSIONS The results indicated the different epigenetic changes of HBV/HCV related hepatocarcinogenesis. The top up-regulated genes in HCV group were significantly clustered in the immune-related and defense response pathways. These findings will help us to understand the pathogenesis of HBV/HCV associated hepatocellular carcinoma.
Collapse
Affiliation(s)
- Suofeng Sun
- Department of Gastroenterology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, China
| | - Yuan Li
- Department of Traditional Chinese Medicine, The Third Affiliated Hospital Affiliated of Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Shuangyin Han
- Department of Gastroenterology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, China
| | - Hongtao Jia
- Tianjia Genomes Tech CO, LTD., No. 6 Longquan Road, Anhui Chaohu economic develop zone, Hefei, 238014, People's Republic of China
| | - Xiuling Li
- Department of Gastroenterology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, China.
| | - Xiaofang Li
- Department of Gastroenterology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, China.
| |
Collapse
|
25
|
Lim WJ, Kim KH, Kim JY, Kim HJ, Kim M, Park JL, Yoon S, Oh JH, Cho JW, Kim YS, Kim N. Investigation of Gene Expression and DNA Methylation From Seven Different Brain Regions of a Crab-Eating Monkey as Determined by RNA-Seq and Whole-Genome Bisulfite Sequencing. Front Genet 2019; 10:694. [PMID: 31428131 PMCID: PMC6690020 DOI: 10.3389/fgene.2019.00694] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 07/02/2019] [Indexed: 01/04/2023] Open
Abstract
The crab-eating monkey is widely used in biomedical research for pharmacological experiments. Epigenetic regulation in the brain regions of primates involves complex patterns of DNA methylation. Previous studies of methylated CpG-binding domains using microarray technology or peak identification of sequence reads mostly focused on developmental stages or disease, rather than normal brains. To identify correlations between gene expression and DNA methylation levels that may be related to transcriptional regulation, we generated RNA-seq and whole-genome bisulfite sequencing data from seven different brain regions from a single crab-eating monkey. We identified 92 genes whose expression levels were significantly correlated, positively or negatively, with DNA methylation levels. Among them, 11 genes exhibited brain region-specific characteristics, and their expression patterns were strongly correlated with DNA methylation level. Nine genes (SLC2A5, MCM5, DRAM1, TTC12, DHX40, COR01A, LRAT, FLVCR2, and PTER) had effects on brain and eye function and development, and two (LHX6 and MEST) were previously identified as genes in which DNA methylation levels change significantly in the promoter region and are therefore considered brain epigenetic markers. Furthermore, we characterized DNA methylation of repetitive elements at the whole genome through repeat annotation at single-base resolution. Our results reveal the diverse roles of DNA methylation at single-base resolution throughout the genome and reflect the epigenetic variations in adult brain tissues.
Collapse
Affiliation(s)
- Won-Jun Lim
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
- Department of Bioinformatics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, South Korea
| | - Kyoung Hyoun Kim
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
- Department of Bioinformatics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, South Korea
| | - Jae-Yoon Kim
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
- Department of Bioinformatics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, South Korea
| | - Hee-Jin Kim
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
| | - Mirang Kim
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
| | - Jong-Lyul Park
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
| | - Seokjoo Yoon
- Predictive Toxicity Department, Korea Institute of Toxicology (KIT), Daejeon, South Korea
| | - Jung-Hwa Oh
- Predictive Toxicity Department, Korea Institute of Toxicology (KIT), Daejeon, South Korea
| | - Jae-Woo Cho
- Predictive Toxicity Department, Korea Institute of Toxicology (KIT), Daejeon, South Korea
| | - Yong Sung Kim
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
| | - Namshin Kim
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
- Department of Bioinformatics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, South Korea
| |
Collapse
|
26
|
Toh TB, Lim JJ, Chow EKH. Epigenetics of hepatocellular carcinoma. Clin Transl Med 2019; 8:13. [PMID: 31056726 PMCID: PMC6500786 DOI: 10.1186/s40169-019-0230-0] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 04/08/2019] [Indexed: 12/13/2022] Open
Abstract
In recent years, large scale genomics and genome-wide studies using comprehensive genomic tools have reshaped our understanding of cancer evolution and heterogeneity. Hepatocellular carcinoma, being one of the most deadly cancers in the world has been well established as a disease of the genome that harbours a multitude of genetic and epigenetic aberrations during the process of liver carcinogenesis. As such, in depth understanding of the cancer epigenetics in cancer specimens and biopsy can be useful in clinical settings for molecular subclassification, prognosis, and prediction of therapeutic responses. In this review, we present a concise discussion on recent progress in the field of liver cancer epigenetics and some of the current works that contribute to the progress of liver cancer therapeutics.
Collapse
Affiliation(s)
- Tan Boon Toh
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, MD6 #12-01, Singapore, 117599, Singapore
| | - Jhin Jieh Lim
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, MD6 #12-01, Singapore, 117599, Singapore
| | - Edward Kai-Hua Chow
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, MD6 #12-01, Singapore, 117599, Singapore. .,Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Level 5, Singapore, 117597, Singapore.
| |
Collapse
|
27
|
Shi Q, Shen L, Gan J, He L, Lin J, Guo S, Xiong Z, Lin J, Zhang S. Integrative analysis identifies DNMTs against immune-infiltrating neutrophils and dendritic cells in colorectal cancer. Epigenetics 2019; 14:392-404. [PMID: 30880552 DOI: 10.1080/15592294.2019.1588684] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Molecular characterizations, including microsatellite instability (MSI) and the CpG island methylator phenotype (CIMP) showed strong associations in colorectal carcinoma (CRC) and provided a deeper understanding of the etiology of disease. However, the global relationship between epigenetic alternations and changes in mRNA expression in CRC remains largely undefined, especially regarding the roles of DNA methyltransferases (DNMTs). Here, we conducted a systematic network comparison to explore the global conservation between co-expressed and co-methylated modules. We successfully identified immune-related modules that were regulated by DNMTs and had strong associations with immune-infiltrating neutrophils and dendritic cells in CRC. Moreover, we found that genes in those modules were prognostic for CRC, with 97.1% (168/173) being significantly influenced by DNMTs. Thus, this study resolved an interaction between DNA methylation and mRNA expression through DNMTs. Additionally, we provided evidence that DNMTs control the global hypomethylation of oncogenes, including ALOX5AP and CSF3R that otherwise have high methylation in normal colons. Such genes were also more sensitive to DNMT changes, such as in CRC. Collectively, our analyzes provided a systems biology approach to investigate the association among different molecular phenotypes in diseases.
Collapse
Affiliation(s)
- Qili Shi
- a Stem Cell and Regenerative Medicine Laboratory , Ningbo No. 2 Hospital , Ningbo , Zhejiang , P.R. China
| | - Libing Shen
- b Institute of Neuroscience, Shanghai Institute for Biological Sciences , Chinese Academy of Sciences , Shanghai , P.R. China
| | - Jun Gan
- c School of Laboratory Medicine and Life Science , Wenzhou Medical University , Wenzhou , Zhejiang , P.R. China
| | - Lirong He
- a Stem Cell and Regenerative Medicine Laboratory , Ningbo No. 2 Hospital , Ningbo , Zhejiang , P.R. China
| | - Jing Lin
- a Stem Cell and Regenerative Medicine Laboratory , Ningbo No. 2 Hospital , Ningbo , Zhejiang , P.R. China
| | - Shiyu Guo
- a Stem Cell and Regenerative Medicine Laboratory , Ningbo No. 2 Hospital , Ningbo , Zhejiang , P.R. China
| | - Zi Xiong
- a Stem Cell and Regenerative Medicine Laboratory , Ningbo No. 2 Hospital , Ningbo , Zhejiang , P.R. China
| | - Jie Lin
- a Stem Cell and Regenerative Medicine Laboratory , Ningbo No. 2 Hospital , Ningbo , Zhejiang , P.R. China
| | - Shun Zhang
- a Stem Cell and Regenerative Medicine Laboratory , Ningbo No. 2 Hospital , Ningbo , Zhejiang , P.R. China
| |
Collapse
|
28
|
Zhao J, Gray SG, Greene CM, Lawless MW. Unmasking the pathological and therapeutic potential of histone deacetylases for liver cancer. Expert Rev Gastroenterol Hepatol 2019; 13:247-256. [PMID: 30791763 DOI: 10.1080/17474124.2019.1568870] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is the most common form of primary liver cancer, currently ranking as one of the highest neoplastic-related mortalities in the world. Due to the difficulty in early diagnosis and lack of effective treatment options, the 5-year survival rate of HCC remains extremely low. Histone deacetylation is one of the most important epigenetic mechanisms, regulating cellular events such as differentiation, proliferation and cell cycle. Histone deacetylases (HDACs), the chief mediators of this epigenetic mechanism, are often aberrantly expressed in various tumours including HCC. Areas covered: This review focuses on the most up-to-date findings of HDACs and their associated molecular mechanisms in HCC onset and progression. In addition, a potential network between HDACs and non-coding RNAs including microRNAs and long noncoding RNAs underlying hepatocarcinogenesis is considered. Expert opinion: Unmasking the role of HDACs and their association with HCC pathogenesis could have implications for future personalized therapeutic and diagnostic targeting.
Collapse
Affiliation(s)
- Jun Zhao
- a Experimental Medicine, UCD School of Medicine and Medical Science , Mater Misericordiae University Hospital , Dublin , Ireland
| | - Steven G Gray
- b Department of Clinical Medicine , Trinity Centre for Health Sciences, Trinity Translational Medicine Institute, St. James's Hospital & Trinity College , Dublin , Ireland
| | - Catherine M Greene
- c Clinical Microbiology , Royal College of Surgeons in Ireland, Beaumont Hospital , Dublin , Ireland
| | - Matthew W Lawless
- a Experimental Medicine, UCD School of Medicine and Medical Science , Mater Misericordiae University Hospital , Dublin , Ireland
| |
Collapse
|
29
|
Han TS, Ban HS, Hur K, Cho HS. The Epigenetic Regulation of HCC Metastasis. Int J Mol Sci 2018; 19:ijms19123978. [PMID: 30544763 PMCID: PMC6321007 DOI: 10.3390/ijms19123978] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/05/2018] [Accepted: 12/07/2018] [Indexed: 12/22/2022] Open
Abstract
Epigenetic alterations, such as histone modification, DNA methylation, and miRNA-mediated processes, are critically associated with various mechanisms of proliferation and metastasis in several types of cancer. To overcome the side effects and limited effectiveness of drugs for cancer treatment, there is a continuous need for the identification of more effective drug targets and the execution of mechanism of action (MOA) studies. Recently, epigenetic modifiers have been recognized as important therapeutic targets for hepatocellular carcinoma (HCC) based on their reported abilities to suppress HCC metastasis and proliferation in both in vivo and in vitro studies. Therefore, here, we introduce epigenetic modifiers and alterations related to HCC metastasis and proliferation, and their molecular mechanisms in HCC metastasis. The existing data suggest that the study of epigenetic modifiers is important for the development of specific inhibitors and diagnostic targets for HCC treatment.
Collapse
Affiliation(s)
- Tae-Su Han
- Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea.
| | - Hyun Seung Ban
- Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea.
| | - Keun Hur
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu 41944, Korea.
| | - Hyun-Soo Cho
- Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea.
| |
Collapse
|
30
|
Mekky MA, Salama RH, Abdel-Aal MF, Ghaliony MA, Zaky S. Studying the frequency of aberrant DNA methylation of APC, P14, and E-cadherin genes in HCV-related hepatocarcinogenesis. Cancer Biomark 2018; 22:503-509. [PMID: 29865038 DOI: 10.3233/cbm-171156] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Data about the molecular pathogenesis of hepatitis C-related hepatocellular carcinoma (HCC) are still challenging. OBJECTIVES Therefore, we tried to investigate the epigenetic study of three nominated genes (APC, P14, and E-cadherin) in the pathogenesis of HCV-related HCC in Egyptian. METHODS Between March 2016 and March 2017, the DNA methylation, and quantification using (epigenetic ELISA kit) for E-cadherin, APC, and P14 genes were studied in three groups of patients: HCV related liver cirrhosis without HCC group (LC-group; n= 20), HCC on top of HCV-related cirrhosis (HCC-group; n= 20), and a third apparently healthy control group (control-group; n= 10). RESULTS E-cad methylation showed non-significant differences between groups. P14 methylation was occurred only in HCC-group (45%). APC methylation was the highest in HCC group (70%). Methylation level was high in HCC group in comparison to both LC and control groups (P< 0.001). DNA methylation at a cutoff point > 2.9 ng/ml predicts HCC in LC-group with 90% sensitivity and 80% specificity and at level > 2.3 ng/ml had 95% sensitivity and 90% specificity in control-group. The pooled sensitivity, specificity, positive and negative predictive values and accuracy were 90%, 60%, 69.2, 85.7 and 75% respectively. CONCLUSION Aberrant DNA methylation of multiple genes is associated with disease progression in HCV related cirrhosis. Moreover, early detection of promotor methylation of these may sever as good biomarker for early detection and therapeutic targets in high risk patients.
Collapse
Affiliation(s)
- Mohamed A Mekky
- Department of Tropical Medicine and Gastroenterology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Rgaa H Salama
- Department of Biochemistry, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Mahmoud F Abdel-Aal
- Department of Tropical Medicine and Gastroenterology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Mohamed A Ghaliony
- Department of Tropical Medicine and Gastroenterology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Saad Zaky
- Department of Tropical Medicine and Gastroenterology, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
31
|
The therapeutic properties of resminostat for hepatocellular carcinoma. Oncoscience 2018; 5:196-208. [PMID: 30035186 PMCID: PMC6049311 DOI: 10.18632/oncoscience.420] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 03/03/2018] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common form of primary liver cancer with increases in new cases being reported annually. Histopathologists have identified hepatic steatosis as a characteristic of a broad range of chronic liver diseases that are associated with the onset and development of HCC. In this context, epigenetic modifications may serve as precancerous factors predisposing normal cells to the initiation of carcinogenesis. This study demonstrated that hepatic tumorigenesis and differentiated adipocytes may modulate both global histone deacetylase (HDAC) expression and specific class I HDAC genes in the tumour microenvironment. The novel class I HDAC inhibitor Resminostat was shown to reduce the proliferation of HCC cells along with its specificity in targeting class I HDACs and oncogenes. The combined effect of Resminostat with several pharmaceutical agents such as Sorafenib, Cisplatin and Doxorubicin was also demonstrated. The inhibition of heat shock protein 90 (HSP90) has been demonstrated as a potential therapeutic option for HCC. In line with this, the specific HSP90 inhibitor 17-(allylamino)-17-demethoxygeldanamycin (17-AAG) was selected and it was found that the combination of Resminostat and 17-AAG may provide a “smart” clinical strategy for HCC patients by targeting cellular communication within the tumour microenvironment. This study provides an insight into the use of Resminostat as an epigenetic based therapeutic for HCC along with other pharmaceutical options, in particular by targeting the cell-to-cell communication that occurs between hepatoma and adipocytes.
Collapse
|
32
|
Erstad DJ, Fuchs BC, Tanabe KK. Molecular signatures in hepatocellular carcinoma: A step toward rationally designed cancer therapy. Cancer 2018; 124:3084-3104. [DOI: 10.1002/cncr.31257] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 12/12/2017] [Accepted: 12/13/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Derek J. Erstad
- Department of SurgeryMassachusetts General HospitalBoston Massachusetts
| | - Bryan C. Fuchs
- Division of Surgical OncologyMassachusetts General HospitalBoston Massachusetts
| | - Kenneth K. Tanabe
- Division of Surgical OncologyMassachusetts General HospitalBoston Massachusetts
| |
Collapse
|
33
|
Gentilini D, Scala S, Gaudenzi G, Garagnani P, Capri M, Cescon M, Grazi GL, Bacalini MG, Pisoni S, Dicitore A, Circelli L, Santagata S, Izzo F, Di Blasio AM, Persani L, Franceschi C, Vitale G. Epigenome-wide association study in hepatocellular carcinoma: Identification of stochastic epigenetic mutations through an innovative statistical approach. Oncotarget 2018; 8:41890-41902. [PMID: 28514750 PMCID: PMC5522036 DOI: 10.18632/oncotarget.17462] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 04/15/2017] [Indexed: 12/16/2022] Open
Abstract
Hepatocellular carcinoma (HCC) results from accumulation of both genetic and epigenetic alterations. We investigated the genome-wide DNA methylation profile in 69 pairs of HCC and adjacent non-cancerous liver tissues using the Infinium HumanMethylation 450K BeadChip array. An innovative analytical approach has been adopted to identify Stochastic Epigenetic Mutations (SEMs) in HCC.HCC and peritumoral tissues showed a different epigenetic profile, mainly characterized by loss of DNA methylation in HCC. Total number of SEMs was significantly higher in HCC tumor (median: 77,370) than in peritumoral (median: 5,656) tissues and correlated with tumor grade. A significant positive association emerged between SEMs measured in peritumoral tissue and hepatitis B and/or C virus infection status. A restricted number of SEMs resulted to be shared by more than 90% of HCC tumor samples and never present in peritumoral tissue. This analysis allowed the identification of four epigenetically regulated candidate genes (AJAP1, ADARB2, PTPRN2, SDK1), potentially involved in the pathogenesis of HCC.In conclusion, HCC showed a methylation profile completely deregulated and very far from adjacent non-cancerous liver tissues. The SEM analysis provided valuable clues for further investigations in understanding the process of tumorigenesis in HCC.
Collapse
Affiliation(s)
- Davide Gentilini
- Istituto Auxologico Italiano IRCCS, Cusano Milanino, Milan, Italy
| | - Stefania Scala
- Functional Genomics, Istituto Nazionale per lo Studio e la Cura dei Tumori, IRCCS Fondazione "G. Pascale", Napoli, Italy
| | - Germano Gaudenzi
- Department of Clinical Sciences and Community Health (DISCCO), University of Milan, Milan, Italy
| | - Paolo Garagnani
- Department of Experimental, Diagnostic and Specialty Medicine, Alma Mater Studiorum, University of Bologna, Bologna, Italy.,Interdepartmental Center
| | - Miriam Capri
- Department of Experimental, Diagnostic and Specialty Medicine, Alma Mater Studiorum, University of Bologna, Bologna, Italy.,Interdepartmental Center
| | - Matteo Cescon
- DIMEC-Department of General Surgery and Medicine Sciences, S. Orsola-Malpighi Hospital, Bologna, Italy
| | - Gian Luca Grazi
- Regina Elena National Cancer Institute Via Elio Chianesi 53, Rome, Italy
| | | | - Serena Pisoni
- Istituto Auxologico Italiano IRCCS, Cusano Milanino, Milan, Italy
| | | | - Luisa Circelli
- Department of Experimental Oncology, Laboratory of Molecular Biology and Viral Oncology, Istituto Nazionale per lo Studio e la Cura dei Tumori, Fondazione "G. Pascale", Napoli, Italy
| | - Sara Santagata
- Functional Genomics, Istituto Nazionale per lo Studio e la Cura dei Tumori, IRCCS Fondazione "G. Pascale", Napoli, Italy
| | - Francesco Izzo
- Department of Surgical Oncology, Abdominal and Hepatobiliary Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori, IRCCS Fondazione " G. Pascale", Napoli, Italy
| | | | - Luca Persani
- Istituto Auxologico Italiano IRCCS, Cusano Milanino, Milan, Italy.,Department of Clinical Sciences and Community Health (DISCCO), University of Milan, Milan, Italy
| | - Claudio Franceschi
- Department of Experimental, Diagnostic and Specialty Medicine, Alma Mater Studiorum, University of Bologna, Bologna, Italy.,Interdepartmental Center.,IRCCS Institute of Neurological Sciences, Bologna, Italy
| | - Giovanni Vitale
- Istituto Auxologico Italiano IRCCS, Cusano Milanino, Milan, Italy.,Department of Clinical Sciences and Community Health (DISCCO), University of Milan, Milan, Italy
| |
Collapse
|
34
|
Lohitesh K, Chowdhury R, Mukherjee S. Resistance a major hindrance to chemotherapy in hepatocellular carcinoma: an insight. Cancer Cell Int 2018; 18:44. [PMID: 29568237 PMCID: PMC5859782 DOI: 10.1186/s12935-018-0538-7] [Citation(s) in RCA: 192] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 03/12/2018] [Indexed: 12/18/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer mortality, accounting for almost 90% of total liver cancer burden. Surgical resection followed by adjuvant and systemic chemotherapy are the most meticulously followed treatment procedures but the complex etiology and high metastatic potential of the disease renders surgical treatment futile in majority of the cases. Another hindrance to the scenario is the acquired resistance to drugs resulting in relapse of the disease. Hence, to provide insights into development of novel therapeutic targets and diagnostic biomarkers, this review focuses on the various molecular mechanisms underlying chemoresistance in HCC. We have provided a comprehensive summary of the various strategies adopted by HCC cells, extending from apoptosis evasion, autophagy activation, drug expulsion to epigenetic transformation as modes of therapy resistance. The role of stem cells in imparting chemoresistance is also discussed. Furthermore, the review also focuses on how this knowledge might be exploited for the development of an effective, prospective therapy against HCC.
Collapse
Affiliation(s)
- K Lohitesh
- Department of Biological-Sciences, Birla Institute of Technology and Sciences (BITS), Campus, VidyaVihar, Pilani, Rajasthan 333031 India
| | - Rajdeep Chowdhury
- Department of Biological-Sciences, Birla Institute of Technology and Sciences (BITS), Campus, VidyaVihar, Pilani, Rajasthan 333031 India
| | - Sudeshna Mukherjee
- Department of Biological-Sciences, Birla Institute of Technology and Sciences (BITS), Campus, VidyaVihar, Pilani, Rajasthan 333031 India
| |
Collapse
|
35
|
Chaudhary K, Poirion OB, Lu L, Garmire LX. Deep Learning-Based Multi-Omics Integration Robustly Predicts Survival in Liver Cancer. Clin Cancer Res 2018; 24:1248-1259. [PMID: 28982688 PMCID: PMC6050171 DOI: 10.1158/1078-0432.ccr-17-0853] [Citation(s) in RCA: 573] [Impact Index Per Article: 81.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 06/18/2017] [Accepted: 10/02/2017] [Indexed: 02/07/2023]
Abstract
Identifying robust survival subgroups of hepatocellular carcinoma (HCC) will significantly improve patient care. Currently, endeavor of integrating multi-omics data to explicitly predict HCC survival from multiple patient cohorts is lacking. To fill this gap, we present a deep learning (DL)-based model on HCC that robustly differentiates survival subpopulations of patients in six cohorts. We built the DL-based, survival-sensitive model on 360 HCC patients' data using RNA sequencing (RNA-Seq), miRNA sequencing (miRNA-Seq), and methylation data from The Cancer Genome Atlas (TCGA), which predicts prognosis as good as an alternative model where genomics and clinical data are both considered. This DL-based model provides two optimal subgroups of patients with significant survival differences (P = 7.13e-6) and good model fitness [concordance index (C-index) = 0.68]. More aggressive subtype is associated with frequent TP53 inactivation mutations, higher expression of stemness markers (KRT19 and EPCAM) and tumor marker BIRC5, and activated Wnt and Akt signaling pathways. We validated this multi-omics model on five external datasets of various omics types: LIRI-JP cohort (n = 230, C-index = 0.75), NCI cohort (n = 221, C-index = 0.67), Chinese cohort (n = 166, C-index = 0.69), E-TABM-36 cohort (n = 40, C-index = 0.77), and Hawaiian cohort (n = 27, C-index = 0.82). This is the first study to employ DL to identify multi-omics features linked to the differential survival of patients with HCC. Given its robustness over multiple cohorts, we expect this workflow to be useful at predicting HCC prognosis prediction. Clin Cancer Res; 24(6); 1248-59. ©2017 AACR.
Collapse
Affiliation(s)
| | - Olivier B Poirion
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, Hawaii
| | - Liangqun Lu
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, Hawaii
- Molecular Biosciences and Bioengineering Graduate Program, University of Hawaii at Manoa, Honolulu, Hawaii
| | - Lana X Garmire
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, Hawaii.
- Molecular Biosciences and Bioengineering Graduate Program, University of Hawaii at Manoa, Honolulu, Hawaii
| |
Collapse
|
36
|
Sekhar V, Pollicino T, Diaz G, Engle RE, Alayli F, Melis M, Kabat J, Tice A, Pomerenke A, Altan-Bonnet N, Zamboni F, Lusso P, Emerson SU, Farci P. Infection with hepatitis C virus depends on TACSTD2, a regulator of claudin-1 and occludin highly downregulated in hepatocellular carcinoma. PLoS Pathog 2018. [PMID: 29538454 PMCID: PMC5882150 DOI: 10.1371/journal.ppat.1006916] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Entry of hepatitis C virus (HCV) into hepatocytes is a complex process that involves numerous cellular factors, including the scavenger receptor class B type 1 (SR-B1), the tetraspanin CD81, and the tight junction (TJ) proteins claudin-1 (CLDN1) and occludin (OCLN). Despite expression of all known HCV-entry factors, in vitro models based on hepatoma cell lines do not fully reproduce the in vivo susceptibility of liver cells to primary HCV isolates, implying the existence of additional host factors which are critical for HCV entry and/or replication. Likewise, HCV replication is severely impaired within hepatocellular carcinoma (HCC) tissue in vivo, but the mechanisms responsible for this restriction are presently unknown. Here, we identify tumor-associated calcium signal transducer 2 (TACSTD2), one of the most downregulated genes in primary HCC tissue, as a host factor that interacts with CLDN1 and OCLN and regulates their cellular localization. TACSTD2 gene silencing disrupts the typical linear distribution of CLDN1 and OCLN along the cellular membrane in both hepatoma cells and primary human hepatocytes, recapitulating the pattern observed in vivo in primary HCC tissue. Mechanistic studies suggest that TACSTD2 is involved in the phosphorylation of CLDN1 and OCLN, which is required for their proper cellular localization. Silencing of TACSTD2 dramatically inhibits HCV infection with a pan-genotype effect that occurs at the level of viral entry. Our study identifies TACSTD2 as a novel regulator of two major HCV-entry factors, CLDN1 and OCLN, which is strongly downregulated in malignant hepatocytes. These results provide new insights into the complex process of HCV entry into hepatocytes and may assist in the development of more efficient cellular systems for HCV propagation in vitro.
Collapse
Affiliation(s)
- Vandana Sekhar
- Hepatic Pathogenesis Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Teresa Pollicino
- Hepatic Pathogenesis Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- Division of Clinical and Molecular Hepatology, Department of Human Pathology, University of Messina, Messina, Italy
| | - Giacomo Diaz
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Ronald E. Engle
- Hepatic Pathogenesis Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Farah Alayli
- Hepatic Pathogenesis Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Marta Melis
- Hepatic Pathogenesis Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Juraj Kabat
- Biological Imaging Facility/Research Technologies Branch, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ashley Tice
- Hepatic Pathogenesis Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Anna Pomerenke
- Hepatic Pathogenesis Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Nihal Altan-Bonnet
- Laboratory of Host-Pathogen Dynamics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Fausto Zamboni
- Liver Transplantation Center, Brotzu Hospital, Cagliari, Italy
| | - Paolo Lusso
- Viral Pathogenesis Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Suzanne U. Emerson
- Molecular Hepatitis Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Patrizia Farci
- Hepatic Pathogenesis Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
37
|
Mani SKK, Andrisani O. Hepatitis B Virus-Associated Hepatocellular Carcinoma and Hepatic Cancer Stem Cells. Genes (Basel) 2018; 9:genes9030137. [PMID: 29498629 PMCID: PMC5867858 DOI: 10.3390/genes9030137] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 02/23/2018] [Accepted: 02/23/2018] [Indexed: 02/06/2023] Open
Abstract
Chronic Hepatitis B Virus (HBV) infection is linked to hepatocellular carcinoma (HCC) pathogenesis. Despite the availability of a HBV vaccine, current treatments for HCC are inadequate. Globally, 257 million people are chronic HBV carriers, and children born from HBV-infected mothers become chronic carriers, destined to develop liver cancer. Thus, new therapeutic approaches are needed to target essential pathways involved in HCC pathogenesis. Accumulating evidence supports existence of hepatic cancer stem cells (hCSCs), which contribute to chemotherapy resistance and cancer recurrence after treatment or surgery. Understanding how hCSCs form will enable development of therapeutic strategies to prevent their formation. Recent studies have identified an epigenetic mechanism involving the downregulation of the chromatin modifying Polycomb Repressive Complex 2 (PRC2) during HBV infection, which results in re-expression of hCSC marker genes in infected hepatocytes and HBV-associated liver tumors. However, the genesis of hCSCs requires, in addition to the expression of hCSC markers cellular changes, rewiring of metabolism, cell survival, escape from programmed cell death, and immune evasion. How these changes occur in chronically HBV-infected hepatocytes is not yet understood. In this review, we will present the basics about HBV infection and hepatocarcinogenesis. Next, we will discuss studies describing the mutational landscape of liver cancers and how epigenetic mechanisms likely orchestrate cellular reprograming of hepatocytes to enable formation of hCSCs.
Collapse
Affiliation(s)
- Saravana Kumar Kailasam Mani
- Department of Basic Medical Sciences and Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA.
| | - Ourania Andrisani
- Department of Basic Medical Sciences and Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
38
|
Wen S, Wang X, Wang Y, Shen J, Pu J, Liang H, Chen C, Liu L, Dai P. Nucleoside diphosphate kinase 2 confers acquired 5-fluorouracil resistance in colorectal cancer cells. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:896-905. [DOI: 10.1080/21691401.2018.1439835] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Shaojia Wen
- College of Life Science, Northwest University, Xi’an, PR China
| | - Xun Wang
- College of Life Science, Northwest University, Xi’an, PR China
| | - Yamin Wang
- College of Life Science, Northwest University, Xi’an, PR China
| | - Jianfeng Shen
- College of Life Science, Northwest University, Xi’an, PR China
| | - Junyi Pu
- College of Life Science, Northwest University, Xi’an, PR China
| | - Hui Liang
- College of Life Science, Northwest University, Xi’an, PR China
| | - Chao Chen
- College of Life Science, Northwest University, Xi’an, PR China
| | - Linna Liu
- Pharmacy Department, Tangdu Hospital, Fourth Military Medical University, Xi’an, PR China
| | - Penggao Dai
- College of Life Science, Northwest University, Xi’an, PR China
| |
Collapse
|
39
|
Zhang C, Li J, Huang T, Duan S, Dai D, Jiang D, Sui X, Li D, Chen Y, Ding F, Huang C, Chen G, Wang K. Meta-analysis of DNA methylation biomarkers in hepatocellular carcinoma. Oncotarget 2018; 7:81255-81267. [PMID: 27835605 PMCID: PMC5348390 DOI: 10.18632/oncotarget.13221] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 11/01/2016] [Indexed: 12/14/2022] Open
Abstract
DNA methylation is an epigenetic mechanism in the pathogenesis of hepatocellular carcinoma (HCC). Here, we conducted a systematic meta-analysis to evaluate the contribution of DNA methylation to the risk of HCC. A total of 2109 publications were initially retrieved from PubMed, Web of Science, Cochrane Library, Embase, CNKI and Wanfang literature database. After a four-step filtration, we harvested 144 case-control articles in the meta-analysis. Our results revealed that 24 genes (carcinoma tissues vs adjacent tissues), 17 genes (carcinoma tissues vs normal tissues) and six genes (carcinoma serums vs normal serums) were significantly hypermethylated in HCC. Subgroup meta-analysis by geographical populations showed that six genes (carcinoma tissues vs adjacent tissues) and four genes (carcinoma tissues vs normal tissues) were significantly hypermethylated in HCC. Our meta-analysis identified the correlations between a number of aberrant methylated genes (p16, RASSF1A, GSTP1, p14, CDH1, APC, RUNX3, SOCS1, p15, MGMT, SFRP1, WIF1, PRDM2, DAPK1, RARβ, hMLH1, p73, DLC1, p53, SPINT2, OPCML and WT1) and HCC. Aberrant DNA methylation might become useful biomarkers for the prediction and diagnosis of HCC.
Collapse
Affiliation(s)
- Cheng Zhang
- Department of Medical Oncology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Jinyun Li
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Tao Huang
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Shiwei Duan
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Dongjun Dai
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Danjie Jiang
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Xinbing Sui
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang, China
| | - Da Li
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yidan Chen
- Department of Medical Oncology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Fei Ding
- Department of Medical Oncology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Changxin Huang
- Department of Medical Oncology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Gongying Chen
- Department of Medical Oncology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Kaifeng Wang
- Department of Medical Oncology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
| |
Collapse
|
40
|
Li CW, Chang PY, Chen BS. Investigating the mechanism of hepatocellular carcinoma progression by constructing genetic and epigenetic networks using NGS data identification and big database mining method. Oncotarget 2018; 7:79453-79473. [PMID: 27821810 PMCID: PMC5346727 DOI: 10.18632/oncotarget.13100] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 10/26/2016] [Indexed: 12/21/2022] Open
Abstract
The mechanisms leading to the development and progression of hepatocellular carcinoma (HCC) are complicated and regulated genetically and epigenetically. The recent advancement in high-throughput sequencing has facilitated investigations into the role of genetic and epigenetic regulations in hepatocarcinogenesis. Therefore, we used systems biology and big database mining to construct genetic and epigenetic networks (GENs) using the information about mRNA, miRNA, and methylation profiles of HCC patients. Our approach involves analyzing gene regulatory networks (GRNs), protein-protein networks (PPINs), and epigenetic networks at different stages of hepatocarcinogenesis. The core GENs, influencing each stage of HCC, were extracted via principal network projection (PNP). The pathways during different stages of HCC were compared. We observed that extracellular signals were further transduced to transcription factors (TFs), resulting in the aberrant regulation of their target genes, in turn inducing mechanisms that are responsible for HCC progression, including cell proliferation, anti-apoptosis, aberrant cell cycle, cell survival, and metastasis. We also selected potential multiple drugs specific to prominent epigenetic network markers of each stage of HCC: lestaurtinib, dinaciclib, and perifosine against the NTRK2, MYC, and AKT1 markers influencing HCC progression from stage I to stage II; celecoxib, axitinib, and vinblastine against the DDIT3, PDGFB, and JUN markers influencing HCC progression from stage II to stage III; and atiprimod, celastrol, and bortezomib against STAT3, IL1B, and NFKB1 markers influencing HCC progression from stage III to stage IV.
Collapse
Affiliation(s)
- Cheng-Wei Li
- Laboratory of Control and Systems Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Ping-Yao Chang
- Laboratory of Control and Systems Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Bor-Sen Chen
- Laboratory of Control and Systems Biology, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
41
|
Bhat V, Srinathan S, Pasini E, Angeli M, Chen E, Baciu C, Bhat M. Epigenetic basis of hepatocellular carcinoma: A network-based integrative meta-analysis. World J Hepatol 2018; 10:155-165. [PMID: 29399289 PMCID: PMC5787679 DOI: 10.4254/wjh.v10.i1.155] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 11/17/2017] [Accepted: 12/07/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To identify the key epigenetically modulated genes and pathways in HCC by performing an integrative meta-analysis of all major, well-annotated and publicly available methylation datasets using tools of network analysis.
METHODS PubMed and Gene Expression Omnibus were searched for genome-wide DNA methylation datasets. Patient clinical and demographic characteristics were obtained. DNA methylation data were integrated using the Ingenuity Pathway Analysis, a software package for visualizing and analyzing biological networks. Pathway enrichment analysis was performed using IPA, which also provides literature-driven and computationally-predicted annotations for significant association of genes to curated molecular pathways.
RESULTS From an initial 928 potential abstracts, we identified and analyzed 11 eligible high-throughput methylation datasets representing 354 patients. A significant proportion of studies did not provide concomitant clinical data. In the promoter region, HIST1H2AJ and SPDYA were the most commonly methylated, whereas HRNBP3 gene was the most commonly hypomethylated. ESR1 and ERK were central genes in the principal networks. The pathways most associated with the frequently methylated genes were G-protein coupled receptor and cAMP-mediated signalling.
CONCLUSION Using an integrative network-based analysis approach of genome-wide DNA methylation data of both the promoter and body of genes, we identified G-protein coupled receptor signalling as the most highly associated with HCC. This encompasses a diverse range of cancer pathways, such as the PI3K/Akt/mTOR and Ras/Raf/MAPK pathways, and is therefore supportive of previous literature on gene expression in HCC. However, there are novel targetable genes such as HIST1H2AJ that are epigenetically modified, suggesting their potential as biomarkers and for therapeutic targeting of the HCC epigenome.
Collapse
Affiliation(s)
- Venkat Bhat
- Department of Psychiatry, University Health Network and University of Toronto, Toronto M5G2N2, Canada
| | - Sujitha Srinathan
- Multi Organ Transplant Program, University Health Network, Toronto M5G2N2, Canada
| | - Elisa Pasini
- Multi Organ Transplant Program, University Health Network, Toronto M5G2N2, Canada
| | - Marc Angeli
- Multi Organ Transplant Program, University Health Network, Toronto M5G2N2, Canada
| | - Emily Chen
- Multi Organ Transplant Program, University Health Network, Toronto M5G2N2, Canada
| | - Cristina Baciu
- Multi Organ Transplant Program, University Health Network, Toronto M5G2N2, Canada
| | - Mamatha Bhat
- Multi Organ Transplant Program, University Health Network, Toronto M5G2N2, Canada
- Division of Gastroenterology, Department of Medicine, University Health Network and University of Toronto, Toronto M5G2N2, Canada
| |
Collapse
|
42
|
Mehra M, Chauhan R. Long Noncoding RNAs as a Key Player in Hepatocellular Carcinoma. BIOMARKERS IN CANCER 2017; 9:1179299X17737301. [PMID: 29147078 PMCID: PMC5673005 DOI: 10.1177/1179299x17737301] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Indexed: 12/16/2022]
Abstract
Hepatocellular carcinoma (HCC) is a major malignancy in the liver and has emerged as one of the main cancers in the world with a high mortality rate. However, the molecular mechanisms of HCC are still poorly understood. Long noncoding RNAs (lncRNAs) have recently come to the forefront as functional non-protein-coding RNAs that are involved in a variety of cellular processes ranging from maintaining the structural integrity of chromosomes to gene expression regulation in a spatiotemporal manner. Many recent studies have reported the involvement of lncRNAs in HCC which has led to a better understanding of the underlying molecular mechanisms operating in HCC. Long noncoding RNAs have been shown to regulate development and progression of HCC, and thus, lncRNAs have both diagnostic and therapeutic potentials. In this review, we present an overview of the lncRNAs involved in different stages of HCC and their potential in clinical applications which have been studied so far.
Collapse
Affiliation(s)
- Mrigaya Mehra
- Studio of Computational Biology & Bioinformatics, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, India
- Academy of Scientific & Innovative Research, Chennai, India
| | - Ranjit Chauhan
- Department of Hepatology, Loyola University Chicago, Chicago, IL, USA
- Molecular Virology and Hepatology Research Group, Division of BioMedical Sciences, Health Sciences Center, Memorial University, St John’s, Newfoundland and Labrador, Canada
| |
Collapse
|
43
|
Wu HC, Yang HI, Wang Q, Chen CJ, Santella RM. Plasma DNA methylation marker and hepatocellular carcinoma risk prediction model for the general population. Carcinogenesis 2017; 38:1021-1028. [PMID: 28981677 PMCID: PMC5862336 DOI: 10.1093/carcin/bgx078] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 07/18/2017] [Accepted: 07/27/2017] [Indexed: 01/10/2023] Open
Abstract
Metastases in the later stages of hepatocellular carcinoma (HCC) cause the majority of deaths associated with the disease, making early detection crucial to patient survival. Risk models assessing HCC risk in the general population can be used for risk stratification for further HCC surveillance, however, none have been validated externally. Methylation of circulating DNA shows potential for non-invasive diagnosis of HCC. We conducted a prospective case-control study nested within a community-based cohort. We measured methylation levels in six genes (CDKN2A, RASSF1A, STEAP4, TBX2, VIM and ZNF154) which were identified in our previous work, using pre-diagnostic plasma DNA from 237 HCC cases and 257 matched controls. We found TBX2 hypermethylation was associated with increased HCC risk, with ORs (95% CI) of 3.2 (1.8-6.0). The associations were mainly among high-risk subjects; among subjects infected with HBV/HCV, the OR (95% CI) of TBX2 methylation was 5.3 (2.2-12.7). Among subjects with high risk scores, the ORs (95% CIs) were 7.8 (1.5-38.6) for Wen-HCC model ≥16, 5.8 (2.2-15.5) for Hung-HCC ≥15 and 7.5 (2.2-26.0) for Michikawa-HCC ≥8. Adding TBX2 methylation improved the accuracy of risk models for a high-risk population, with the area under the curve (AUC) of 76% for Wen-HCC score with TBX2 methylation compared with 69% with Wen-HCC alone. The AUCs were 63% for Hung-HCC score plus TBX2 methylation, and 53% for Hung-HCC alone, 65% for Michikawa-HCC score plus TBX2 methylation and 58% for Michikawa-HCC alone. Our findings suggest the potential increase in risk assessment discrimination and accuracy from incorporation of DNA methylation.
Collapse
Affiliation(s)
- Hui-Chen Wu
- Department of Environmental Health Sciences, Mailman School of Public Health of Columbia University, New York, NY 10032, USA
| | - Hwai-I Yang
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan
- Institute of Clinical Medicine, National Yang-Ming University, Taipei 112, Taiwan
| | - Qiao Wang
- Department of Environmental Health Sciences, Mailman School of Public Health of Columbia University, New York, NY 10032, USA
| | - Chien-Jen Chen
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan
- Graduate Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei 112, Taiwan and
| | - Regina M Santella
- Department of Environmental Health Sciences, Mailman School of Public Health of Columbia University, New York, NY 10032, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032,USA
| |
Collapse
|
44
|
Barrow TM, Klett H, Toth R, Böhm J, Gigic B, Habermann N, Scherer D, Schrotz-King P, Skender S, Abbenhardt-Martin C, Zielske L, Schneider M, Ulrich A, Schirmacher P, Herpel E, Brenner H, Busch H, Boerries M, Ulrich CM, Michels KB. Smoking is associated with hypermethylation of the APC 1A promoter in colorectal cancer: the ColoCare Study. J Pathol 2017; 243:366-375. [PMID: 28791728 DOI: 10.1002/path.4955] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 07/02/2017] [Accepted: 08/01/2017] [Indexed: 12/22/2022]
Abstract
Smoking tobacco is a known risk factor for the development of colorectal cancer and for mortality associated with the disease. Smoking has been reported to be associated with changes in DNA methylation in blood and in lung tumour tissues, although there has been scant investigation of how epigenetic factors may be implicated in the increased risk of developing colorectal cancer. To identify epigenetic changes associated with smoking behaviours, we performed epigenome-wide analysis of DNA methylation in colorectal tumours from 36 never-smokers, 47 former smokers, and 13 active smokers, and in adjacent mucosa from 49 never-smokers, 64 former smokers, and 18 active smokers. Our analyses identified 15 CpG sites within the APC 1A promoter that were significantly hypermethylated and 14 CpG loci within the NFATC1 gene body that were significantly hypomethylated (pLIS < 1 × 10-5 ) in the tumours of active smokers. The APC 1A promoter was hypermethylated in 7 of 36 tumours from never-smokers (19%), 12 of 47 tumours from former smokers (26%), and 8 of 13 tumours from active smokers (62%). Promoter hypermethylation was positively associated with duration of smoking (Spearman rank correlation, ρ = 0.26, p = 0.03) and was confined to tumours, with hypermethylation never being observed in adjacent mucosa. Further analysis of adjacent mucosa revealed significant hypomethylation of four loci associated with the TNXB gene in tissue from active smokers. Our findings provide exploratory evidence for hypermethylation of the key tumour suppressor gene APC being implicated in smoking-associated colorectal carcinogenesis. Further work is required to establish the validity of our observations in independent cohorts. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Timothy M Barrow
- German Cancer Consortium (DKTK), Heidelberg, Germany.,Institute for Prevention and Cancer Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Hagen Klett
- German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Institute of Molecular Medicine and Cell Research, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Reka Toth
- German Cancer Consortium (DKTK), Heidelberg, Germany.,Division of Preventive Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jürgen Böhm
- German Cancer Consortium (DKTK), Heidelberg, Germany.,Division of Preventive Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Biljana Gigic
- German Cancer Consortium (DKTK), Heidelberg, Germany.,Division of Preventive Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Surgical Oncology, University Clinic Heidelberg, Heidelberg, Germany
| | - Nina Habermann
- German Cancer Consortium (DKTK), Heidelberg, Germany.,Division of Preventive Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dominique Scherer
- German Cancer Consortium (DKTK), Heidelberg, Germany.,Division of Preventive Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Institute of Medical Biometry and Informatics, University of Heidelberg, Heidelberg, Germany
| | - Petra Schrotz-King
- German Cancer Consortium (DKTK), Heidelberg, Germany.,Division of Preventive Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stephanie Skender
- German Cancer Consortium (DKTK), Heidelberg, Germany.,Division of Preventive Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Clare Abbenhardt-Martin
- German Cancer Consortium (DKTK), Heidelberg, Germany.,Division of Preventive Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Lin Zielske
- German Cancer Consortium (DKTK), Heidelberg, Germany.,Division of Preventive Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Martin Schneider
- Department of Surgical Oncology, University Clinic Heidelberg, Heidelberg, Germany
| | - Alexis Ulrich
- Department of Surgical Oncology, University Clinic Heidelberg, Heidelberg, Germany
| | - Peter Schirmacher
- German Cancer Consortium (DKTK), Heidelberg, Germany.,Department of General Pathology, University Clinic Heidelberg, Heidelberg, Germany
| | - Esther Herpel
- German Cancer Consortium (DKTK), Heidelberg, Germany.,Department of General Pathology, University Clinic Heidelberg, Heidelberg, Germany
| | - Hermann Brenner
- German Cancer Consortium (DKTK), Heidelberg, Germany.,Division of Preventive Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Hauke Busch
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany.,Lübeck Institute of Experimental Dermatology and Institute of Cardiogenetics, University of Lübeck, Lübeck, Germany
| | - Melanie Boerries
- German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Institute of Molecular Medicine and Cell Research, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Cornelia M Ulrich
- German Cancer Consortium (DKTK), Heidelberg, Germany.,Division of Preventive Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Population Sciences, Huntsman Cancer Institute, Salt Lake City, Utah, USA
| | - Karin B Michels
- German Cancer Consortium (DKTK), Heidelberg, Germany.,Institute for Prevention and Cancer Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany.,Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, California, USA
| |
Collapse
|
45
|
Boyle M, Mann J. WITHDRAWN: Epigenetics in Chronic Liver Disease. J Hepatol 2017:S0168-8278(17)32255-9. [PMID: 28855099 DOI: 10.1016/j.jhep.2017.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 08/17/2017] [Accepted: 08/18/2017] [Indexed: 12/04/2022]
Abstract
This article has been withdrawn at the request of the editors. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
Collapse
Affiliation(s)
- Marie Boyle
- Institute of Cellular Medicine, Faculty of Medical Sciences, 4(th) Floor, William Leech Building, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Jelena Mann
- Institute of Cellular Medicine, Faculty of Medical Sciences, 4(th) Floor, William Leech Building, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK.
| |
Collapse
|
46
|
Wang Y, Teschendorff AE, Widschwendter M, Wang S. Accounting for differential variability in detecting differentially methylated regions. Brief Bioinform 2017; 20:47-57. [DOI: 10.1093/bib/bbx097] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Indexed: 12/11/2022] Open
Affiliation(s)
- Ya Wang
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Andrew E Teschendorff
- Department of Women's Cancer, University College London, London, UK
- CAS Key Lab of Computational Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- Statistical Cancer Genomics, UCL Cancer Institute, University College London, London, UK
| | | | - Shuang Wang
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY, USA
| |
Collapse
|
47
|
Mansour LA, El Raziky M, Mohamed AA, Mahmoud EH, Hamdy S, El Sayed EH. Circulating Hypermethylated RASSF1A as a Molecular Biomarker for Diagnosis of Hepatocellular Carcinoma. Asian Pac J Cancer Prev 2017; 18:1637-1643. [PMID: 28670882 PMCID: PMC6373823 DOI: 10.22034/apjcp.2017.18.6.1637] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background: Detection of circulating DNA can be applied for the diagnosis of many malignant neoplasms, including the hepatocellular carcinoma (HCC). The molecular pathogenesis of HCC is complex, involving different genetic and epigenetic alterations, chromosomal aberrations, gene mutations and altered molecular pathways. RASSF1A is a well-established tumor suppressor gene which suffers frequent inactivation due to promoter hypermethylation of CPG islands in multiple tumors including HCC, resulting in the reduction or loss of gene expression. Objective: To examine the role of circulating RASSF1A as a non-invasive diagnostic marker for HCC. Participant and Methods: A total of 45 HCC patients with a background of HCV infection, 40 cases of HCV infection without tumours and 40 apparently healthy controls were subjected to full history taking, clinical examination, routine laboratory investigations, assessment of serum AFP and detection of circulating hypermethylated RASSF1A gene by methylation-sensitive restriction enzyme digestion and real-time PCR. Results: The level of hypermethylated RASSF1A was significantly elevated in the HCC group as compared to the HCV and control groups (p=0.001 for both). Copy number in serum was associated with increased tumor size (p value <0.001). On the other hand, no significant correlation was observed between RASSF1A and AFP (p=0.5). Using ROC curve analysis, the best cut-off for circulating serum RASSF1A to differentiate the HCC group was 8 copies/µl. Conclusion: The presence of hypermethylated RASSF1A in serum may be a useful and informative biomarker for HCC diagnosis and might be introduced as a screening method for populations at risk of HCC development.
Collapse
Affiliation(s)
- Lamiaa A Mansour
- Clinical and Chemical Pathology Department, Faculty of Medicine, Cairo University, Cairo, Egypt.
| | | | | | | | | | | |
Collapse
|
48
|
Xu J, Zheng J, Shen W, Ma L, Zhao M, Wang X, Tang J, Yan J, Wu Z, Zou Z, Bu S, Xi Y. Elevated SLC26A4 gene promoter methylation is associated with the risk of presbycusis in men. Mol Med Rep 2017; 16:347-352. [PMID: 28498466 DOI: 10.3892/mmr.2017.6565] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 03/02/2017] [Indexed: 11/05/2022] Open
Abstract
Presbycusis affects approximately one-third of people over the age of 65 and is a worldwide health problem. In the current study, whether the methylation level of solute carrier family 26 member 4 (SLC26A4) predicted an increased risk of presbycusis was investigated. Peripheral blood samples from 102 patients with presbycusis and 104 controls were collected, and the methylation of the CpG sites of SLC26A4 was measured by applying pyrosequencing technology combined with sodium bisulfate DNA conversion chemistry. Within the SLC26A4 promoter region, one CpG site (CpG3) exhibited a significantly (P<0.0001) greater methylation level in the patients with presbycusis (26.5±5.56%) compared with the controls (23.8±3.85%). Significantly different CpG3 methylation levels were observed between the patients with presbycusis and the controls among the male participants (P=0.0004). In addition, a significant decrease in the transcriptional level of SLC26A4 in peripheral blood was observed in the patients with presbycusis compared with the controls. Furthermore, analyses of the receiver operating characteristic (ROC) curves indicated that CpG3 methylation at the SLC26A4 promoter predicted the risk of presbycusis in the male participants (AUC=0.684, 95% CI=0.584‑0.784, P=0.001). The results demonstrated the significance of the CpG site methylation level of SLC26A4, and thus provides a potential marker for the diagnosis of presbycusis.
Collapse
Affiliation(s)
- Jin Xu
- Department of Otorhinolaryngology, Ningbo No. 7 Hospital, Ningbo, Zhejiang 315202, P.R. China
| | - Jiachen Zheng
- Zhejiang Provincial Key Laboratory of Pathophysiology, Diabetes Center, Institute of Biochemistry and Molecular Biology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Wanjing Shen
- Zhejiang Provincial Key Laboratory of Pathophysiology, Diabetes Center, Institute of Biochemistry and Molecular Biology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Lili Ma
- Zhejiang Provincial Key Laboratory of Pathophysiology, Diabetes Center, Institute of Biochemistry and Molecular Biology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Ming Zhao
- Zhejiang Provincial Key Laboratory of Pathophysiology, Diabetes Center, Institute of Biochemistry and Molecular Biology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Xubo Wang
- Department of Otorhinolaryngology, Ningbo No. 7 Hospital, Ningbo, Zhejiang 315202, P.R. China
| | - Jiyuan Tang
- Department of Otorhinolaryngology, Ningbo No. 7 Hospital, Ningbo, Zhejiang 315202, P.R. China
| | - Jihong Yan
- Department of Otorhinolaryngology, Ningbo No. 7 Hospital, Ningbo, Zhejiang 315202, P.R. China
| | - Zhenhua Wu
- Department of Otorhinolaryngology, Lihuili Hospital, Ningbo, Zhejiang 315041, P.R. China
| | - Zuquan Zou
- Zhejiang Provincial Key Laboratory of Pathophysiology, Diabetes Center, Institute of Biochemistry and Molecular Biology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Shizhong Bu
- Zhejiang Provincial Key Laboratory of Pathophysiology, Diabetes Center, Institute of Biochemistry and Molecular Biology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Yang Xi
- Zhejiang Provincial Key Laboratory of Pathophysiology, Diabetes Center, Institute of Biochemistry and Molecular Biology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| |
Collapse
|
49
|
Wijetunga NA, Pascual M, Tozour J, Delahaye F, Alani M, Adeyeye M, Wolkoff AW, Verma A, Greally JM. A pre-neoplastic epigenetic field defect in HCV-infected liver at transcription factor binding sites and polycomb targets. Oncogene 2017; 36:2030-2044. [PMID: 27721404 PMCID: PMC5383522 DOI: 10.1038/onc.2016.340] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 07/26/2016] [Accepted: 08/05/2016] [Indexed: 12/11/2022]
Abstract
The predisposition of patients with Hepatitis C virus (HCV) infection to hepatocellular carcinoma (HCC) involves components of viral infection, inflammation and time. The development of multifocal, genetically distinct tumours is suggestive of a field defect affecting the entire liver. The molecular susceptibility mediating such a field defect is not understood. One potential mediator of long-term cellular reprogramming is heritable (epigenetic) regulation of transcription, exemplified by DNA methylation. We studied epigenetic and transcriptional changes in HCV-infected livers in comparison with control, uninfected livers and HCC, allowing us to identify pre-neoplastic epigenetic and transcriptional events. We find the HCV-infected liver to have a pattern of acquisition of DNA methylation targeted to candidate enhancers active in liver cells, enriched for the binding sites of the FOXA1, FOXA2 and HNF4A transcription factors. These enhancers can be subdivided into those proximal to genes implicated in liver cancer or to genes involved in stem cell development, the latter distinguished by increased CG dinucleotide density and polycomb-mediated repression, manifested by the additional acquisition of histone H3 lysine 27 trimethylation (H3K27me3). Transcriptional studies on our samples showed that the increased DNA methylation at enhancers was associated with decreased local gene expression, results validated in independent samples from The Cancer Genome Atlas. Pharmacological depletion of H3K27me3 using the EZH2 inhibitor GSK343 in HepG2 cells suppressed cell growth and also revealed that local acquired DNA methylation was not dependent upon the presence of polycomb-mediated repression. The results support a model of HCV infection influencing the binding of transcription factors to cognate sites in the genome, with consequent local acquisition of DNA methylation, and the added repressive influence of polycomb at a subset of CG-dense cis-regulatory sequences. These epigenetic events occur before neoplastic transformation, resulting in what may be a pharmacologically reversible epigenetic field defect in HCV-infected liver.
Collapse
Affiliation(s)
- N A Wijetunga
- Department of Genetics and Center for Epigenomics, Bronx, NY, USA
| | - M Pascual
- Department of Genetics and Center for Epigenomics, Bronx, NY, USA
- Centro de Investigación Médica Aplicada (CIMA), IDISNA, Oncohematology Department, Pamplona, Spain
| | - J Tozour
- Department of Genetics and Center for Epigenomics, Bronx, NY, USA
| | - F Delahaye
- Department of Obstetrics, Gynecology and Women's Health, Bronx, NY, USA
| | - M Alani
- Department of Medicine (Division of Gastroenterology and Liver Diseases), Bronx, NY, USA
- Marion Bessin Liver Research Center, Bronx, NY, USA
| | - M Adeyeye
- Department of Genetics and Center for Epigenomics, Bronx, NY, USA
| | - A W Wolkoff
- Department of Medicine (Division of Gastroenterology and Liver Diseases), Bronx, NY, USA
- Marion Bessin Liver Research Center, Bronx, NY, USA
| | - A Verma
- Department of Medicine (Oncology), Albert Einstein College of Medicine, Bronx, NY, USA
| | - J M Greally
- Department of Genetics and Center for Epigenomics, Bronx, NY, USA
- Albert Einstein College of Medicine, 1301 Morris Park Avenue, Bronx NY 10461, USA. E-mail:
| |
Collapse
|
50
|
Wahid B, Ali A, Rafique S, Idrees M. New Insights into the Epigenetics of Hepatocellular Carcinoma. BIOMED RESEARCH INTERNATIONAL 2017; 2017:1609575. [PMID: 28401148 PMCID: PMC5376429 DOI: 10.1155/2017/1609575] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 01/17/2017] [Indexed: 02/07/2023]
Abstract
Hepatocellular Carcinoma (HCC) is one of the most predominant malignancies with high fatality rate. This deadly cancer is rising at an alarming rate because it is quite resistant to radio- and chemotherapy. Different epigenetic mechanisms such as histone modifications, DNA methylation, chromatin remodeling, and expression of noncoding RNAs drive the cell proliferation, invasion, metastasis, initiation, progression, and development of HCC. These epigenetic alterations because of potential reversibility open way towards the development of biomarkers and therapeutics. The contribution of these epigenetic changes to HCC development has not been thoroughly explored yet. Further research on HCC epigenetics is necessary to better understand novel molecular-targeted HCC treatment and prevention. This review highlights latest research progress and current updates regarding epigenetics of HCC, biomarker discovery, and future preventive and therapeutic strategies to combat the increasing risk of HCC.
Collapse
Affiliation(s)
- Braira Wahid
- Centre for Applied Molecular Biology, 87 West Canal Bank Road Thokar Niaz Baig, University of the Punjab, Lahore, Pakistan
| | - Amjad Ali
- Centre for Applied Molecular Biology, 87 West Canal Bank Road Thokar Niaz Baig, University of the Punjab, Lahore, Pakistan
| | - Shazia Rafique
- Centre for Applied Molecular Biology, 87 West Canal Bank Road Thokar Niaz Baig, University of the Punjab, Lahore, Pakistan
| | - Muhammad Idrees
- Centre for Applied Molecular Biology, 87 West Canal Bank Road Thokar Niaz Baig, University of the Punjab, Lahore, Pakistan
- Hazara University, Mansehra, Pakistan
| |
Collapse
|