1
|
Delshad M, Sanaei MJ, Mohammadi MH, Sadeghi A, Bashash D. Exosomal Biomarkers: A Comprehensive Overview of Diagnostic and Prognostic Applications in Malignant and Non-Malignant Disorders. Biomolecules 2025; 15:587. [PMID: 40305328 PMCID: PMC12024574 DOI: 10.3390/biom15040587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/07/2025] [Accepted: 04/09/2025] [Indexed: 05/02/2025] Open
Abstract
Exosomes are small extracellular vesicles, ranging from 30 to 150 nm, that are essential in cell biology, mediating intercellular communication and serving as biomarkers due to their origin from cells. Exosomes as biomarkers for diagnosing various illnesses have gained significant investigation due to the high cost and invasive nature of current diagnostic procedures. Exosomes have a clear advantage in the diagnosis of diseases because they include certain signals that are indicative of the genetic and proteomic profile of the ailment. This feature gives them the potential to be useful liquid biopsies for real-time, noninvasive monitoring, enabling early cancer identification for the creation of individualized treatment plans. According to our analysis, the trend toward utilizing exosomes as diagnostic and prognostic tools has raised since 2012. In this regard, the proportion of malignant indications is higher compared with non-malignant ones. To be precise, exosomes have been used the most in gastrointestinal, thoracic, and urogenital cancers, along with cardiovascular, diabetic, breathing, infectious, and brain disorders. To the best of our knowledge, this is the first research to examine all registered clinical trials that look at exosomes as a diagnostic and prognostic biomarker.
Collapse
Affiliation(s)
- Mahda Delshad
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran; (M.D.); (M.-J.S.); (M.H.M.)
- Department of Laboratory Sciences, School of Allied Medical Sciences, Zanjan University of Medical Sciences, Zanjan 1411718541, Iran
| | - Mohammad-Javad Sanaei
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran; (M.D.); (M.-J.S.); (M.H.M.)
| | - Mohammad Hossein Mohammadi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran; (M.D.); (M.-J.S.); (M.H.M.)
| | - Amir Sadeghi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran 1985717411, Iran;
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran; (M.D.); (M.-J.S.); (M.H.M.)
| |
Collapse
|
2
|
Salih DJ, Reiners KS, Alfieri R, Salih AM, Percario ZA, Di Stefano M, Francesco S, Affabris E, Hartmann G, Santantonio T. Isolation and characterization of extracellular vesicles from EGFR mutated lung cancer cells. Clin Exp Med 2025; 25:114. [PMID: 40210802 PMCID: PMC11985682 DOI: 10.1007/s10238-025-01643-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 03/17/2025] [Indexed: 04/12/2025]
Abstract
The epidermal growth factor receptor (EGFR) signaling pathway is essential for cellular processes such as proliferation, survival, and migration. Dysregulation of EGFR signaling is frequently observed in non-small cell lung cancer (NSCLC) and is associated with poor prognosis. This study aims to isolate and characterize extracellular vesicles (EVs) released by mutant EGFR lung cancer cell line PC9 and compare them with wild-type EGFR lung cancer cell line A549, while also evaluating the effect of gefitinib treatment on EV secretion and cargo composition. The two lung cancer cell lines were cultured with 2% EV-free serum, and EVs were subsequently isolated by differential ultra centrifugation. EVs were characterized by nanoparticle tracking analysis (NTA) and transmission electron microscopy (TEM) for quantification size and shape determination. Western blot analysis confirmed the enrichment and purity of isolated EVs. Results showed that EGFR mutation significantly increased EV release and altered their size, compared to EVs released by wild-type EGFR cells. In addition to classical EV markers such as CD81, Flotillin- 1, and TSG101, Western blot analysis also detected phosphorylated EGFR (p-EGFR) selectively packaged into EVs from PC9 cells. Gefitinib treatment significantly reduced EV secretion in PC9 cells and led to a marked decrease in p-EGFR incorporation into EVs, indicating that EV biogenesis and compostion are modulated by active EGFR signaling. In conclusion, this study highlights the significant influence of EGFR activation on EV secretion and cargo composition while demonstrating that EGFR inhibition via gefitinib alters EV-mediated signaling in lung cancer cells. These findings provide insights into tumor behavior, EV-mediated oncogenic communication, and the potential use of EVs as biomarkers and therapeutic targets in NSCLC.
Collapse
Affiliation(s)
- Dian Jamel Salih
- Department of Medical and Surgical Sciences, University of Foggia, Via Napoli, 121, 71122, Foggia, Italy.
- Department of Anatomy, Biology and Histology, College of Medicine, University of Duhok, Duhok, Iraq.
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany.
| | - Katrin S Reiners
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Roberta Alfieri
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | | | | | - Mariantonietta Di Stefano
- Department of Medical and Surgical Sciences, University of Foggia, Via Napoli, 121, 71122, Foggia, Italy
| | - Sollitto Francesco
- Department of Medical and Surgical Sciences, University of Foggia, Via Napoli, 121, 71122, Foggia, Italy
| | | | - Gunther Hartmann
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Teresa Santantonio
- Department of Medical and Surgical Sciences, University of Foggia, Via Napoli, 121, 71122, Foggia, Italy
| |
Collapse
|
3
|
Anyanwu NCJ, Premadasa LS, Naushad W, Okeoma BC, Mahesh M, Okeoma CM. Rigorous Process for Isolation of Gut-Derived Extracellular Vesicles (EVs) and the Effect on Latent HIV. Cells 2025; 14:568. [PMID: 40277894 PMCID: PMC12025545 DOI: 10.3390/cells14080568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/11/2025] [Accepted: 02/26/2025] [Indexed: 04/26/2025] Open
Abstract
The human gastrointestinal (GI) track host trillions of microorganisms that secrete molecules, including extracellular vesicles (EVs) and extracellular condensates (ECs) that may affect physiological and patho-physiological activities in the host. However, efficient protocols for the isolation of pure and functional GI-derived EVs|ECs is lacking. Here, we describe the use of high-resolution particle purification liquid chromatography (PPLC) gradient-bead-column integrated with polyvinylpolypyrrolidone (PVPP)-mediated extraction of impurities to isolate EVs from colonic content (ColEVs). PVPP facilitates the isolation of pure, non-toxic, and functionally active ColEVs that were internalized by cells and functionally activate HIV LTR promoter. ColEVs isolated without PVPP have a reductive effect on MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) without living cells, suggesting that ColEVs contain reductases capable of catalyzing the reduction of MTT to formazan. The assessment of the origin of ColEVs reveals that they are composed of both bacteria and host particles. This protocol requires ~12 h (5 h preprocessing, 7 h isolation) to complete and should be used to purify EVs from sources contaminated with microbial agents to improve rigor. This protocol provides a robust tool for researchers and clinicians investigating GI-derived EVs and the translational use of GI-derived EVs for diagnostic and therapeutic use. Additionally, GI-derived EVs may serve as a window into the pathogenesis of diseases.
Collapse
Affiliation(s)
- Nneoma C. J. Anyanwu
- Department of Pathology, Microbiology, and Immunology, New York Medical College, Valhalla, NY 10595-1524, USA (W.N.)
| | - Lakmini S. Premadasa
- Host Pathogen Interaction Program, Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227-5302, USA
| | - Wasifa Naushad
- Department of Pathology, Microbiology, and Immunology, New York Medical College, Valhalla, NY 10595-1524, USA (W.N.)
| | - Bryson C. Okeoma
- Department of Pathology, Microbiology, and Immunology, New York Medical College, Valhalla, NY 10595-1524, USA (W.N.)
| | - Mohan Mahesh
- Host Pathogen Interaction Program, Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227-5302, USA
| | - Chioma M. Okeoma
- Department of Pathology, Microbiology, and Immunology, New York Medical College, Valhalla, NY 10595-1524, USA (W.N.)
- Lovelace Biomedical Institute, Albuquerque, NM 87108-5127, USA
| |
Collapse
|
4
|
Sandira MI, Lim K, Yoshida T, Sajidah ES, Narimatsu S, Imakawa R, Yoshimura K, Nishide G, Qiu Y, Taoka A, Hazawa M, Ando T, Hanayama R, Wong RW. Nanoscopic Profiling of Small Extracellular Vesicles via High-Speed Atomic Force Microscopy (HS-AFM) Videography. J Extracell Vesicles 2025; 14:e270050. [PMID: 40139685 PMCID: PMC11943829 DOI: 10.1002/jev2.70050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 01/21/2025] [Accepted: 01/31/2025] [Indexed: 03/29/2025] Open
Abstract
Small extracellular vesicles (sEVs), which carry lipids, proteins and RNAs from their parent cells, serve as biomarkers for specific cell types and biological states. These vesicles, including exosomes and microvesicles, facilitate intercellular communication by transferring cellular components between cells. Current methods, such as ultracentrifugation and Tim-4 affinity method, yield high-purity sEVs. However, despite their small size, purified sEVs remain heterogeneous due to their varied intracellular origins. In this technical note, we used high-speed atomic force microscopy (HS-AFM) in conjunction with exosome markers (IgGCD63 and IgGCD81) to explore the intracellular origins of sEVs at single-sEV resolution. Our results first revealed the nanotopology of HEK293T-derived sEVs under physiological conditions. Larger sEVs (diameter > 100 nm) exhibited greater height fluctuations compared to smaller sEVs (diameter ≤ 100 nm). Next, we found that mouse-origin IgGCD63, and rabbit-origin IgGcontrol and IgGCD81, exhibited the iconic 'Y' conformation, and similar structural dynamics properties. Last, exosome marker antibodies predominantly co-localised with sEVd ≤ 100 nm but not with sEVd > 100 nm, demonstrating the CD63-CD81-enriched sEV and CD63-CD81-depleted sEV subpopulations. In summary, we demonstrate that nanoscopic profiling of surface exosome markers on sEVs using HS-AFM is feasible for characterising distinct sEV subpopulations in a heterogeneous sEV mixture.
Collapse
Affiliation(s)
- Muhammad Isman Sandira
- WPI‐Nano Life Science InstituteKanazawa UniversityKanazawaIshikawaJapan
- Division of Nano Life Science in the Graduate School of Frontier Science InitiativeKanazawa UniversityKanazawaIshikawaJapan
| | - Keesiang Lim
- WPI‐Nano Life Science InstituteKanazawa UniversityKanazawaIshikawaJapan
| | - Takeshi Yoshida
- WPI‐Nano Life Science InstituteKanazawa UniversityKanazawaIshikawaJapan
- Department of ImmunologyGraduate School of Medical SciencesKanazawa UniversityKanazawaIshikawaJapan
| | | | - Shinnosuke Narimatsu
- WPI‐Nano Life Science InstituteKanazawa UniversityKanazawaIshikawaJapan
- Division of Nano Life Science in the Graduate School of Frontier Science InitiativeKanazawa UniversityKanazawaIshikawaJapan
| | - Reon Imakawa
- The School of Biological Science and TechnologyCollege of Science and TechnologyKanazawa UniversityKanazawaIshikawaJapan
| | - Kota Yoshimura
- The School of Biological Science and TechnologyCollege of Science and TechnologyKanazawa UniversityKanazawaIshikawaJapan
| | - Goro Nishide
- WPI‐Nano Life Science InstituteKanazawa UniversityKanazawaIshikawaJapan
- Division of Nano Life Science in the Graduate School of Frontier Science InitiativeWISE Program for Nano‐Precision Medicine, Science and TechnologyKanazawa UniversityKanazawaIshikawaJapan
| | - Yujia Qiu
- WPI‐Nano Life Science InstituteKanazawa UniversityKanazawaIshikawaJapan
- Division of Nano Life Science in the Graduate School of Frontier Science InitiativeKanazawa UniversityKanazawaIshikawaJapan
| | - Azuma Taoka
- WPI‐Nano Life Science InstituteKanazawa UniversityKanazawaIshikawaJapan
| | - Masaharu Hazawa
- WPI‐Nano Life Science InstituteKanazawa UniversityKanazawaIshikawaJapan
- Cell‐Bionomics Research UnitInstitute for Frontier Science Initiative (INFINITI)Kanazawa UniversityKanazawaIshikawaJapan
| | - Toshio Ando
- WPI‐Nano Life Science InstituteKanazawa UniversityKanazawaIshikawaJapan
| | - Rikinari Hanayama
- WPI‐Nano Life Science InstituteKanazawa UniversityKanazawaIshikawaJapan
- Department of ImmunologyGraduate School of Medical SciencesKanazawa UniversityKanazawaIshikawaJapan
| | - Richard W. Wong
- WPI‐Nano Life Science InstituteKanazawa UniversityKanazawaIshikawaJapan
- Division of Nano Life Science in the Graduate School of Frontier Science InitiativeKanazawa UniversityKanazawaIshikawaJapan
- Division of Nano Life Science in the Graduate School of Frontier Science InitiativeWISE Program for Nano‐Precision Medicine, Science and TechnologyKanazawa UniversityKanazawaIshikawaJapan
- Cell‐Bionomics Research UnitInstitute for Frontier Science Initiative (INFINITI)Kanazawa UniversityKanazawaIshikawaJapan
| |
Collapse
|
5
|
Branco H, Xavier CPR, Riganti C, Vasconcelos MH. Hypoxia as a critical player in extracellular vesicles-mediated intercellular communication between tumor cells and their surrounding microenvironment. Biochim Biophys Acta Rev Cancer 2025; 1880:189244. [PMID: 39672279 DOI: 10.1016/j.bbcan.2024.189244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 12/06/2024] [Accepted: 12/09/2024] [Indexed: 12/15/2024]
Abstract
In the past years, increasing attention has been paid to the role of extracellular vesicles (EVs) as mediators of intercellular communication in cancer. These small size particles mediate the intercellular transfer of important bioactive molecules involved in malignant initiation and progression. Hypoxia, or low partial pressure of oxygen, is recognized as a remarkable feature of solid tumors and has been demonstrated to exert a profound impact on tumor prognosis and therapeutic efficacy. Indeed, the high-pitched growth rate and chaotic neovascular architecture that embodies solid tumors results in a profound reduction in oxygen pressure within the tumor microenvironment (TME). In response to oxygen-deprived conditions, tumor cells and their surrounding milieu develop homeostatic adaptation mechanisms that contribute to the establishment of a pro-tumoral phenotype. Latest evidence suggests that the hypoxic microenvironment that surrounds the tumor bulk may be a clincher for the observed elevated levels of circulating EVs in cancer patients. Thus, it is proposed that EVs may play a role in mediating intercellular communication in response to hypoxic conditions. This review focuses on the EVs-mediated crosstalk that is established between tumor cells and their surrounding immune, endothelial, and stromal cell populations, within the hypoxic TME.
Collapse
Affiliation(s)
- Helena Branco
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal; Cancer Drug Resistance Group, IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal; Department of Biological Sciences, FFUP - Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Cristina P R Xavier
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal; Cancer Drug Resistance Group, IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Toxicologic Pathology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116 Gandra, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, University Institute of Health Sciences - CESPU, 4585-116 Gandra, Portugal.
| | - Chiara Riganti
- Department of Oncology, University of Torino, 10126 Torino, Italy; Interdepartmental Research Center for Molecular Biotechnology "G. Tarone", University of Torino, 10126 Torino, Italy
| | - M Helena Vasconcelos
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal; Cancer Drug Resistance Group, IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal; Department of Biological Sciences, FFUP - Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| |
Collapse
|
6
|
Anyanwu NCJ, Premadasa LS, Naushad W, Okeoma BC, Mahesh M, Okeoma CM. Rigorous process for isolation of gut-derived extracellular vesicles and the effect on latent HIV. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.09.632234. [PMID: 39829800 PMCID: PMC11741325 DOI: 10.1101/2025.01.09.632234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Aim Extracellular particles (EPs) are produced/secreted by cells from all domains of life and are present in all body fluids, brain, and gut. EPs consist of extracellular vesicles (EVs) made up of exosomes, microvesicles, and other membranous vesicles; and extracellular condensates (ECs) that are non-membranous carriers of lipid-protein-nucleic acid aggregates. The purity of EVs|ECs, which ultimately depends on the isolation method used to obtain them is critical, particularly EVs|ECs from the gastrointestinal (GI) tract that is colonized by a huge number of enteric bacteria. Therefore, identifying GI derived EVs|ECs of bacterial and host origin may serve as a window into the pathogenesis of diseases and as a potential therapeutic target. Methods Here, we describe the use of high-resolution particle purification liquid chromatography (PPLC) gradient-bead-column integrated with polyvinylpolypyrrolidone (PVPP)-mediated extraction of impurities to isolate GI-derived EPs. Results and Conclusion PVPP facilitates isolation of pure and functionally active, non-toxic EVs ColEVs from colonic contents. ColEVs are internalized by cells and they activate HIV LTR promoter. In the absence of PVPP, ColEVs have a direct reductive potential of MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) absorbance in a cell-free system. Assessment of the origin of ColEVs reveals that they are composed of both bacteria and host particles. This protocol requires ∼12 hours (5 hours preprocessing, 7 hours isolation) to complete and should be used to purify EVs from sources contaminated with microbial agents to improve rigor. Additionally, this protocol provides a robust tool for researchers and clinicians investigating GI-derived EVs and the translational use of GI-derived EVs for diagnostic and therapeutic use. Highlight ColEVs but not ColECs are present in colonic content (GI tract) and can be isolated with gradient or single bead PPLC column.ColEVs isolated without PVPP are toxic to cells and they have a direct reductive potential of MTT. Addition of PVPP treatment in the isolation protocol results in clean and non-toxic ColEVs that transactivate the HIV LTR promoter.
Collapse
|
7
|
Yazdi ZF, Roshannezhad S, Sharif S, Abbaszadegan MR. Recent progress in prompt molecular detection of liquid biopsy using Cas enzymes: innovative approaches for cancer diagnosis and analysis. J Transl Med 2024; 22:1173. [PMID: 39741289 DOI: 10.1186/s12967-024-05908-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 11/20/2024] [Indexed: 01/02/2025] Open
Abstract
Creating fast, non-invasive, precise, and specific diagnostic tests is crucial for enhancing cancer treatment outcomes. Among diagnostic methods, those relying on nucleic acid detection are highly sensitive and specific. Recent developments in diagnostic technologies, particularly those leveraging Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR), are revolutionizing cancer detection, providing accurate and timely results. In clinical oncology, liquid biopsy has become a noninvasive and early-detectable alternative to traditional biopsies over the last two decades. Analyzing the nucleic acid content of liquid biopsy samples, which include Circulating Tumor Cells (CTCs), Circulating Tumor DNA (ctDNA), Circulating Cell-Free RNA (cfRNA), and tumor extracellular vesicles, provides a noninvasive method for cancer detection and monitoring. In this review, we explore how the characteristics of various Cas (CRISPR-associated) enzymes have been utilized in diagnostic assays for cancer liquid biopsy and highlight their main applications of innovative approaches in monitoring, as well as early and rapid detection of cancers.
Collapse
Affiliation(s)
- Zahra Farshchian Yazdi
- Department of Medical Genetics, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | - Samaneh Sharif
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Mashhad University of Medical Sciences, Azadi Square, Mashhad, Iran.
| | - Mohammad Reza Abbaszadegan
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Mashhad University of Medical Sciences, Azadi Square, Mashhad, Iran.
| |
Collapse
|
8
|
Palakurthi SS, Shah B, Kapre S, Charbe N, Immanuel S, Pasham S, Thalla M, Jain A, Palakurthi S. A comprehensive review of challenges and advances in exosome-based drug delivery systems. NANOSCALE ADVANCES 2024; 6:5803-5826. [PMID: 39484149 PMCID: PMC11523810 DOI: 10.1039/d4na00501e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 09/22/2024] [Indexed: 11/03/2024]
Abstract
Exosomes or so-called natural nanoparticles have recently shown enormous potential for targeted drug delivery systems. Several studies have reported that exosomes as advanced drug delivery platforms offer efficient targeting of chemotherapeutics compared to individual polymeric nanoparticles or liposomes. Taking structural constituents of exosomes, viz., proteins, nucleic acids, and lipids, into consideration, exosomes are the most promising carriers as genetic messengers and for treating genetic deficiencies or tumor progression. Unfortunately, very little attention has been paid to the factors like source, scalability, stability, and validation that contribute to the quality attributes of exosome-based drug products. Some studies suggested that exosomes were stable at around -80 °C, which is impractical for storing pharmaceutical products. Currently, no reports on the shelf-life and in vivo stability of exosome formulations are available. Exosomes are quickly cleared from blood circulation, and their in vivo distribution depends on the source. Considering these challenges, further studies are necessary to address major limitations such as poor drug loading, reduced in vivo stability, a need for robust, economical, and scalable production methods, etc., which may unlock the potential of exosomes in clinical applications. A few reports based on hybrid exosomes involving hybridization between different cell/tumor/macrophage-derived exosomes with synthetic liposomes through membrane fusion have shown to overcome some limitations associated with natural or synthetic exosomes. Yet, sufficient evidence is indispensable to prove their stability and clinical efficacy.
Collapse
Affiliation(s)
- Sushesh Srivatsa Palakurthi
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University Kingsville TX 78363 USA +1-361-221-0748
| | - Brijesh Shah
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University Kingsville TX 78363 USA +1-361-221-0748
| | - Sumedha Kapre
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University Kingsville TX 78363 USA +1-361-221-0748
| | - Nitin Charbe
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University Kingsville TX 78363 USA +1-361-221-0748
| | - Susan Immanuel
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University Kingsville TX 78363 USA +1-361-221-0748
| | - Sindhura Pasham
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University Kingsville TX 78363 USA +1-361-221-0748
| | - Maharshi Thalla
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University Kingsville TX 78363 USA +1-361-221-0748
| | - Ankit Jain
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University Kingsville TX 78363 USA +1-361-221-0748
| | - Srinath Palakurthi
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University Kingsville TX 78363 USA +1-361-221-0748
| |
Collapse
|
9
|
Li Y, Ou Y, Fan K, Liu G. Salivary diagnostics: opportunities and challenges. Theranostics 2024; 14:6969-6990. [PMID: 39629130 PMCID: PMC11610148 DOI: 10.7150/thno.100600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 09/29/2024] [Indexed: 12/06/2024] Open
Abstract
Saliva contains a diverse array of biomarkers indicative of various diseases. Saliva testing has been a major advancement towards non-invasive point-of-care diagnosis with clinical significance. However, there are challenges associated with salivary diagnosis from sample treatment and standardization. This review highlights the biomarkers in saliva and their role in identifying relevant diseases. It provides an overview and discussion about the current practice of saliva collection and processing, and advancements in saliva detection systems from in vitro methods to wearable oral devices. The review also addresses challenges in saliva diagnostics and proposes solutions, aiming to offer a comprehensive understanding and practical guidance for improving saliva-based detection in clinical diagnosis. Saliva diagnosis provides a rapid, effective, and safe alternative to traditional blood and urine tests for screening large populations and enhancing infectious disease diagnosis and surveillance. It meets the needs of various fields such as disease management, drug screening, and personalized healthcare with advances in saliva detection systems offering high sensitivity, fast response times, portability, and automation. Standardization of saliva collection, treatment, biomarker discovery, and detection between different laboratories needs to be implemented to obtain reliable salivary diagnosis in clinical practice.
Collapse
Affiliation(s)
| | | | | | - Guozhen Liu
- Integrated Devices and Intelligent Diagnosis (ID2) Laboratory, CUHK(SZ)-Boyalife Joint Laboratory for Regenerative Medicine Engineering, Biomedical Engineering Programme, School of Medicine, The Chinese University of Hong Kong, Shenzhen, 518172, China
| |
Collapse
|
10
|
Vergères G, Bochud M, Jotterand Chaparro C, Moretti D, Pestoni G, Probst-Hensch N, Rezzi S, Rohrmann S, Brück WM. The future backbone of nutritional science: integrating public health priorities with system-oriented precision nutrition. Br J Nutr 2024; 132:651-666. [PMID: 39320518 PMCID: PMC11531940 DOI: 10.1017/s0007114524001466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/30/2024] [Accepted: 06/23/2024] [Indexed: 09/26/2024]
Abstract
Adopting policies that promote health for the entire biosphere (One Health) requires human societies to transition towards a more sustainable food supply as well as to deepen the understanding of the metabolic and health effects of evolving food habits. At the same time, life sciences are experiencing rapid and groundbreaking technological developments, in particular in laboratory analytics and biocomputing, placing nutrition research in an unprecedented position to produce knowledge that can be translated into practice in line with One Health policies. In this dynamic context, nutrition research needs to be strategically organised to respond to these societal expectations. One key element of this strategy is to integrate precision nutrition into epidemiological research. This position article therefore reviews the recent developments in nutrition research and proposes how they could be integrated into cohort studies, with a focus on the Swiss research landscape specifically.
Collapse
Affiliation(s)
| | - Murielle Bochud
- Unisanté, University Center for Primary Care and Public Health, University of Lausanne, Lausanne, Switzerland
| | - Corinne Jotterand Chaparro
- Department of Nutrition and Dietetics, Geneva School of Health Sciences, HES-SO University of Applied Sciences and Arts Western Switzerland, Geneva, Switzerland
| | - Diego Moretti
- Nutrition Group, Swiss Distance University of Applied Sciences (FFHS)/University of Applied Sciences and Arts of Southern Switzerland (SUPSI), Zurich, Switzerland
| | - Giulia Pestoni
- Nutrition Group, Swiss Distance University of Applied Sciences (FFHS)/University of Applied Sciences and Arts of Southern Switzerland (SUPSI), Zurich, Switzerland
| | - Nicole Probst-Hensch
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Serge Rezzi
- Swiss Nutrition and Health Foundation, Epalinges, Switzerland
| | - Sabine Rohrmann
- Epidemiology, Biostatistics and Prevention Institute (EBPI), University of Zurich, Zürich, Switzerland
| | - Wolfram M. Brück
- Institute for Life Sciences, University of Applied Sciences Western Switzerland Valais-Wallis, Sion, Switzerland
| |
Collapse
|
11
|
Okeoma CM, Naushad W, Okeoma BC, Gartner C, Santos-Ortega Y, Vary C, Carregari VC, Larsen MR, Noghero A, Grassi-Oliveira R, Walss-Bass C. Lipidomic and Proteomic Insights from Extracellular Vesicles in Postmortem Dorsolateral Prefrontal Cortex Reveal Substance Use Disorder-Induced Brain Changes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.09.607388. [PMID: 39211229 PMCID: PMC11360920 DOI: 10.1101/2024.08.09.607388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Substance use disorder (SUD) significantly increases the risk of neurotoxicity, inflammation, oxidative stress, and impaired neuroplasticity. The activation of inflammatory pathways by substances may lead to glial activation and chronic neuroinflammation, potentially mediated by the release of extracellular particles (EPs), such as extracellular condensates (ECs) and extracellular vesicles (EVs). These particles, which reflect the physiological, pathophysiological, and metabolic states of their cells of origin, might carry molecular signatures indicative of SUD. In particular, our study investigated neuroinflammatory signatures in SUD by isolating EVs from the dorsolateral prefrontal cortex (dlPFC) Brodmann's area 9 (BA9) in postmortem subjects. We isolated BA9-derived EVs from postmortem brain tissues of eight individuals (controls: n=4, SUD: n=4). The EVs were analyzed for physical properties (concentration, size, zeta potential, morphology) and subjected to integrative multi-omics analysis to profile the lipidomic and proteomic characteristics. We assessed the interactions and bioactivity of EVs by evaluating their uptake by glial cells. We further assessed the effects of EVs on complement mRNA expression in glial cells as well as their effects on microglial migration. No significant differences in EV concentration, size, zeta potential, or surface markers were observed between SUD and control groups. However, lipidomic analysis revealed significant enrichment of glycerophosphoinositol bisphosphate (PIP2) in SUD EVs. Proteomic analysis indicates downregulation of SERPINB12, ACYP2, CAMK1D, DSC1, and FLNB, and upregulation of C4A, C3, and ALB in SUD EVs. Gene ontology and protein-protein interactome analyses highlight functions such as cell motility, focal adhesion, and acute phase response signaling that is associated with the identified proteins. Both control and SUD EVs increased C3 and C4 mRNA expression in microglia, but only SUD EVs upregulated these genes in astrocytes. SUD EVs also significantly enhanced microglial migration in a wound healing assay.This study successfully isolated EVs from postmortem brains and used a multi-omics approach to identify EV-associated lipids and proteins in SUD. Elevated C3 and C4 in SUD EVs and the distinct effects of EVs on glial cells suggest a crucial role in acute phase response signaling and neuroinflammation.
Collapse
|
12
|
Wang L, Wang J, Xu A, Wei L, Pei M, Shen T, Xian X, Yang K, Fei L, Pan Y, Yang H, Wang X. Future embracing: exosomes driving a revolutionary approach to the diagnosis and treatment of idiopathic membranous nephropathy. J Nanobiotechnology 2024; 22:472. [PMID: 39118155 PMCID: PMC11312222 DOI: 10.1186/s12951-024-02633-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 06/13/2024] [Indexed: 08/10/2024] Open
Abstract
Membranous nephropathy (MN) is a leading cause of nephrotic syndrome in adults and is associated with high rates of end-stage renal disease. Early detection and precise interventions are crucial for improving patient prognosis and quality of life. However, the current diagnosis primarily relies on renal biopsies and traditional biomarkers, which have limitations. Additionally, targeted therapeutic strategies are lacking. Exosomes, small vesicles that facilitate intercellular communication, have emerged as potential noninvasive diagnostic markers due to their stability, diverse cargo, and rapid detectability. They also hold promise as carriers for gene and drug delivery, presenting innovative opportunities in renal disease prognosis and treatment. However, research on exosomes in the context of idiopathic membranous nephropathy (IMN) remains limited, with a focus on exploring urinary exosomes as IMN markers. In this review, we summarize the current status of MN diagnosis and treatment, highlight the fundamental characteristics of exosomes, and discuss recent advancements in their application to IMN diagnosis and therapy. We provide insights into the clinical prospects of exosomes in IMN and acknowledge potential challenges. This article aims to offer forward-looking insights into the future of exosome-mediated IMN diagnosis and treatment, indicating a revolutionary transformation in this field.
Collapse
Affiliation(s)
- Lin Wang
- Nephrology Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300381, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Jinxiang Wang
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Guangdong, 518107, China
| | - Ao Xu
- Nephrology Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300381, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Lijuan Wei
- Nephrology Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300381, China
| | - Ming Pei
- Nephrology Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300381, China
| | - Tuwei Shen
- Nephrology Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300381, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xian Xian
- Nephrology Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300381, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Kang Yang
- Nephrology Department, The First Affiliated Hospital of Henan University of Chinese Medicine, Henan, 450099, China
| | - Lingyan Fei
- Department of Nephrology, Kidney and Urology Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, China.
| | - Yihang Pan
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Guangdong, 518107, China.
| | - Hongtao Yang
- Nephrology Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300381, China.
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Xianwen Wang
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei, 230032, People's Republic of China.
| |
Collapse
|
13
|
Xu C, Jiang C, Li Z, Gao H, Xian J, Guo W, He D, Peng X, Zhou D, Li D. Exosome nanovesicles: biomarkers and new strategies for treatment of human diseases. MedComm (Beijing) 2024; 5:e660. [PMID: 39015555 PMCID: PMC11247338 DOI: 10.1002/mco2.660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/18/2024] Open
Abstract
Exosomes are nanoscale vesicles of cellular origin. One of the main characteristics of exosomes is their ability to carry a wide range of biomolecules from their parental cells, which are important mediators of intercellular communication and play an important role in physiological and pathological processes. Exosomes have the advantages of biocompatibility, low immunogenicity, and wide biodistribution. As researchers' understanding of exosomes has increased, various strategies have been proposed for their use in diagnosing and treating diseases. Here, we provide an overview of the biogenesis and composition of exosomes, describe the relationship between exosomes and disease progression, and focus on the use of exosomes as biomarkers for early screening, disease monitoring, and guiding therapy in refractory diseases such as tumors and neurodegenerative diseases. We also summarize the current applications of exosomes, especially engineered exosomes, for efficient drug delivery, targeted therapies, gene therapies, and immune vaccines. Finally, the current challenges and potential research directions for the clinical application of exosomes are also discussed. In conclusion, exosomes, as an emerging molecule that can be used in the diagnosis and treatment of diseases, combined with multidisciplinary innovative solutions, will play an important role in clinical applications.
Collapse
Affiliation(s)
- Chuan Xu
- Department of OncologyThe General Hospital of Western Theater CommandChengduChina
| | - Chaoyang Jiang
- Department of OncologyThe General Hospital of Western Theater CommandChengduChina
| | - Zhihui Li
- Department of OncologyThe General Hospital of Western Theater CommandChengduChina
| | - Hui Gao
- Department of OncologyThe General Hospital of Western Theater CommandChengduChina
| | - Jing Xian
- Department of OncologyThe General Hospital of Western Theater CommandChengduChina
| | - Wenyan Guo
- Department of OncologyThe General Hospital of Western Theater CommandChengduChina
| | - Dan He
- Department of OncologyThe Second Affiliated Hospital of Chengdu Medical CollegeChina National Nuclear Corporation 416 HospitalChengduSichuanChina
| | - Xingchen Peng
- Department of BiotherapyCancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
| | - Daijun Zhou
- Department of OncologyThe General Hospital of Western Theater CommandChengduChina
| | - Dong Li
- Department of OncologyThe General Hospital of Western Theater CommandChengduChina
| |
Collapse
|
14
|
Din MAU, Wan A, Chu Y, Zhou J, Yan Y, Xu Z. Therapeutic role of extracellular vesicles from human umbilical cord mesenchymal stem cells and their wide therapeutic implications in inflammatory bowel disease and other inflammatory disorder. Front Med (Lausanne) 2024; 11:1406547. [PMID: 39139783 PMCID: PMC11319305 DOI: 10.3389/fmed.2024.1406547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/18/2024] [Indexed: 08/15/2024] Open
Abstract
The chronic immune-mediated inflammatory condition known as inflammatory bowel disease (IBD) significantly affects the gastrointestinal system. While the precise etiology of IBD remains elusive, extensive research suggests that a range of pathophysiological pathways and immunopathological mechanisms may significantly contribute as potential factors. Mesenchymal stem cells (MSCs) have shown significant potential in the development of novel therapeutic approaches for various medical conditions. However, some MSCs have been found to exhibit tumorigenic characteristics, which limit their potential for medical treatments. The extracellular vesicles (EVs), paracrine factors play a crucial role in the therapeutic benefits conferred by MSCs. The EVs consist of proteins, microRNAs, and lipids, and are instrumental in facilitating intercellular communication. Due to the ease of maintenance, and decreased immunogenicity, tumorigenicity the EVs have become a new and exciting option for whole cell treatment. This review comprehensively assesses recent preclinical research on human umbilical cord mesenchymal stem cell (hUC-MSC)-derived EVs as a potential IBD therapy. It comprehensively addresses key aspects of various conditions, including diabetes, cancer, dermal injuries, neurological disorders, cardiovascular issues, liver and kidney diseases, and bone-related afflictions.
Collapse
Affiliation(s)
- Muhammad Azhar Ud Din
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Wujin Hospital Affiliated with Jiangsu University, Jiangsu University, Changzhou, China
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine Jiangsu University, Zhenjiang, China
| | | | - Ying Chu
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Wujin Hospital Affiliated with Jiangsu University, Jiangsu University, Changzhou, China
| | - Jing Zhou
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Wujin Hospital Affiliated with Jiangsu University, Jiangsu University, Changzhou, China
| | - Yongmin Yan
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Wujin Hospital Affiliated with Jiangsu University, Jiangsu University, Changzhou, China
| | - Zhiliang Xu
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Wujin Hospital Affiliated with Jiangsu University, Jiangsu University, Changzhou, China
| |
Collapse
|
15
|
Shen A, Feng X, Wang D, Liu Y, Zhang K, Wang J, Li Y, Ali MM, Hu L. High-throughput proteomic analysis of extracellular vesicles from saliva by chemical probe-based array. Anal Chim Acta 2024; 1309:342699. [PMID: 38772652 DOI: 10.1016/j.aca.2024.342699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 05/06/2024] [Indexed: 05/23/2024]
Abstract
Extracellular vesicles (EVs) are cell-released, nucleus-free particles with a double-membrane structure that effectively prevents degradation of internal components by a variety of salivary enzymes. Saliva is an easily accessible biofluid that contains a wealth of valuable information for disease diagnosis and monitoring and especially reflect respiratory and digestive tract diseases. However, the lack of efficient and high-throughput methods for proteomic analysis of salivary biomarkers poses a significant challenge. Herein, we designed a salivary EV amphiphile-dendrimer supramolecular probe (SEASP) array which enables efficient enrichment and in situ detection of EVs protein biomarkers. Detergent Tween-20 washing of SEASP arrays removes high abundance of heteroproteins from saliva well. This array shows good analytical performance in the linear range of 10 μL-150 μL (LOD = 0.4 μg protein, or 10 μL saliva), exhibiting a good recovery (80.0 %). Compared to ultracentrifugation (UC), this procedure provides simple and convenient access to high-purity EVs (1.3 × 109 particles per mg protein) with good physiological status and structure. Coupling with mass spectrometry based proteomic analysis, differentially expressed proteins as selected asthma biomarkers have been screened. Then, we validated the proteomics primary screening results through clinical samples (100 μL each) using the SEASP array. Utilizing the dual antibody fluorescence technology, SEASP enables the simultaneous high-throughput detection of two proteins. Therefore, the EVs marker protein CD81 could be used as an internal standard to normalize the number of EVs, which was stably expressed in EVs. Proteomics and array results suggested that HNRNPU (P = 4.9 * 10-6) and MUC5B (P = 4.7 * 10-11) are promising protein biomarkers for infantile asthma. HNRNPU and MUC5B may be associated with disease onset and subtypes. The SEASP arrays provide a significant advancement in the field of salivary biomarker. The array enables high-throughput in situ protein detection for highly viscous and complex biological samples. It provides a rapid, low-cost, highly specific screening procedure and experimental basis for early disease screening and diagnosis in the field of liquid biopsy.
Collapse
Affiliation(s)
- Ao Shen
- Center for Supramolecular Chemical Biology, State Key Laboratory of Supramolecular Structure and Materials, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Xin Feng
- Center for Supramolecular Chemical Biology, State Key Laboratory of Supramolecular Structure and Materials, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Dongxue Wang
- Beijing Proteome Research Center, National Center for Protein Sciences, Beijing, China; The π-HuB Project Infrastructure, International Academy of Phronesis Medicine, Guangzhou, China
| | - Yuanyuan Liu
- Beijing Proteome Research Center, National Center for Protein Sciences, Beijing, China; The π-HuB Project Infrastructure, International Academy of Phronesis Medicine, Guangzhou, China
| | - Kaifu Zhang
- Center for Supramolecular Chemical Biology, State Key Laboratory of Supramolecular Structure and Materials, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Jiliang Wang
- Center for Supramolecular Chemical Biology, State Key Laboratory of Supramolecular Structure and Materials, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Yanan Li
- Department of Pediatrics Children's Medical Center, The First Hospital of Jilin University, Changchun, 130021, China.
| | - Muhammad Mujahid Ali
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing, 210096, China.
| | - Lianghai Hu
- Center for Supramolecular Chemical Biology, State Key Laboratory of Supramolecular Structure and Materials, School of Life Sciences, Jilin University, Changchun, 130012, China.
| |
Collapse
|
16
|
René CA, Parks RJ. Bioengineering extracellular vesicle cargo for optimal therapeutic efficiency. Mol Ther Methods Clin Dev 2024; 32:101259. [PMID: 38770107 PMCID: PMC11103572 DOI: 10.1016/j.omtm.2024.101259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Extracellular vesicles (EVs) have the innate ability to carry proteins, lipids, and nucleic acids between cells, and thus these vesicles have gained much attention as potential therapeutic delivery vehicles. Many strategies have been explored to enhance the loading of specific cargoes of interest into EVs, which could result in the delivery of more therapeutic to recipient cells, thus enhancing therapeutic efficacy. In this review, we discuss the natural biogenesis of EVs, the mechanism by which proteins and nucleic acids are selected for inclusion in EVs, and novel methods that have been employed to enhance loading of specific cargoes into EVs. As well, we discuss biodistribution of administered EVs in vivo and summarize clinical trials that have attempted to harness the therapeutic potential of EVs.
Collapse
Affiliation(s)
- Charlotte A. René
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Centre for Neuromuscular Disease, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Robin J. Parks
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Centre for Neuromuscular Disease, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Department of Medicine, The Ottawa Hospital and University of Ottawa, Ottawa, ON K1H 8L6, Canada
| |
Collapse
|
17
|
Zygmunciak P, Stróżna K, Błażowska O, Mrozikiewicz-Rakowska B. Extracellular Vesicles in Diabetic Cardiomyopathy-State of the Art and Future Perspectives. Int J Mol Sci 2024; 25:6117. [PMID: 38892303 PMCID: PMC11172920 DOI: 10.3390/ijms25116117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/24/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
Cardiovascular complications are the most deadly and cost-driving effects of diabetes mellitus (DM). One of them, which is steadily attracting attention among scientists, is diabetes-induced heart failure, also known as diabetic cardiomyopathy (DCM). Despite significant progress in the research concerning the disease, a universally accepted definition is still lacking. The pathophysiology of the processes accelerating heart insufficiency in diabetic patients on molecular and cellular levels also remains elusive. However, the recent interest concerning extracellular vesicles (EVs) has brought promise to further clarifying the pathological events that lead to DCM. In this review, we sum up recent investigations on the involvement of EVs in DCM and show their therapeutic and indicatory potential.
Collapse
Affiliation(s)
| | - Katarzyna Stróżna
- Faculty of Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland; (P.Z.)
| | - Olga Błażowska
- Faculty of Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland; (P.Z.)
| | - Beata Mrozikiewicz-Rakowska
- Department of Endocrinology, Centre of Postgraduate Medical Education, Marymoncka St. 99/103, 01-813 Warsaw, Poland
| |
Collapse
|
18
|
Umapathy VR, Natarajan PM, Swamikannu B. Molecular and Therapeutic Roles of Non-Coding RNAs in Oral Cancer-A Review. Molecules 2024; 29:2402. [PMID: 38792263 PMCID: PMC11123887 DOI: 10.3390/molecules29102402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/09/2024] [Accepted: 05/12/2024] [Indexed: 05/26/2024] Open
Abstract
Oral cancer (OC) is among the most common malignancies in the world. Despite advances in therapy, the worst-case scenario for OC remains metastasis, with a 50% survival rate. Therefore, it is critical to comprehend the pathophysiology of the condition and to create diagnostic and treatment plans for OC. The development of high-throughput genome sequencing has revealed that over 90% of the human genome encodes non-coding transcripts, or transcripts that do not code for any proteins. This paper describes the function of these different kinds of non-coding RNAs (ncRNAs) in OC as well as their intriguing therapeutic potential. The onset and development of OC, as well as treatment resistance, are linked to dysregulated ncRNA expression. These ncRNAs' potentially significant roles in diagnosis and prognosis have been suggested by their differing expression in blood or saliva. We have outlined every promising feature of ncRNAs in the treatment of OC in this study.
Collapse
Affiliation(s)
- Vidhya Rekha Umapathy
- Department of Public Health Dentistry, Dr. M.G.R. Educational and Research Institute, Thai Moogambigai Dental College and Hospital, Chennai 600107, Tamil Nadu, India
| | - Prabhu Manickam Natarajan
- Department of Clinical Sciences, Centre of Medical and Bio-Allied Health Sciences and Research Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Bhuminathan Swamikannu
- Department of Prosthodontics, Sree Balaji Dental College and Hospital, Pallikaranai, BIHER, Chennai 600100, Tamil Nadu, India;
| |
Collapse
|
19
|
Romanò S, Nele V, Campani V, De Rosa G, Cinti S. A comprehensive guide to extract information from extracellular vesicles: a tutorial review towards novel analytical developments. Anal Chim Acta 2024; 1302:342473. [PMID: 38580402 DOI: 10.1016/j.aca.2024.342473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 04/07/2024]
Abstract
In the medical field, extracellular vesicles (EVs) are gaining importance as they act as cells mediators. These are phospholipid bilayer vesicles and contain crucial biochemical information about their mother cells being carrier of different biomolecules such as small molecules, proteins, lipids, and nucleic acids. After release into the extracellular matrix, they enter the systemic circulation and can be found in all human biofluids. Since EVs reflect the state of the cell of origin, there is exponential attention as potential source of new circulating biomarkers for liquid biopsy. The use of EVs in clinical practice faces several challenges that need to be addressed: these include the standardization of lysis protocols, the availability of low-cost reagents and the development of analytical tools capable of detecting biomarkers. The process of lysis is a crucial step that can impact all subsequent analyses, towards the development of novel analytical strategies. To aid researchers to support the evolution of measurement science technology, this tutorial review evaluates and discuss the most commonly protocols used to characterize the contents of EVs, including their advantages and disadvantages in terms of experimental procedures, time and equipment. The purpose of this tutorial review is to offer practical guide to researchers which are intended to develop novel analytical approaches. Some of the most significant applications are considered, highlighting their main characteristics divided per mechanism of action. Finally, comprehensive tables which provide an overview at a glance are provided to readers.
Collapse
Affiliation(s)
- Sabrina Romanò
- Department of Pharmacy, University of Naples Federico II, Italy.
| | - Valeria Nele
- Department of Pharmacy, University of Naples Federico II, Italy
| | | | | | - Stefano Cinti
- Department of Pharmacy, University of Naples Federico II, Italy.
| |
Collapse
|
20
|
Caselli L, Conti L, De Santis I, Berti D. Small-angle X-ray and neutron scattering applied to lipid-based nanoparticles: Recent advancements across different length scales. Adv Colloid Interface Sci 2024; 327:103156. [PMID: 38643519 DOI: 10.1016/j.cis.2024.103156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/28/2024] [Accepted: 04/08/2024] [Indexed: 04/23/2024]
Abstract
Lipid-based nanoparticles (LNPs), ranging from nanovesicles to non-lamellar assemblies, have gained significant attention in recent years, as versatile carriers for delivering drugs, vaccines, and nutrients. Small-angle scattering methods, employing X-rays (SAXS) or neutrons (SANS), represent unique tools to unveil structure, dynamics, and interactions of such particles on different length scales, spanning from the nano to the molecular scale. This review explores the state-of-the-art on scattering methods applied to unveil the structure of lipid-based nanoparticles and their interactions with drugs and bioactive molecules, to inform their rational design and formulation for medical applications. We will focus on complementary information accessible with X-rays or neutrons, ranging from insights on the structure and colloidal processes at a nanoscale level (SAXS) to details on the lipid organization and molecular interactions of LNPs (SANS). In addition, we will review new opportunities offered by Time-resolved (TR)-SAXS and -SANS for the investigation of dynamic processes involving LNPs. These span from real-time monitoring of LNPs structural evolution in response to endogenous or external stimuli (TR-SANS), to the investigation of the kinetics of lipid diffusion and exchange upon interaction with biomolecules (TR-SANS). Finally, we will spotlight novel combinations of SAXS and SANS with complementary on-line techniques, recently enabled at Large Scale Facilities for X-rays and neutrons. This emerging technology enables synchronized multi-method investigation, offering exciting opportunities for the simultaneous characterization of the structure and chemical or mechanical properties of LNPs.
Collapse
Affiliation(s)
- Lucrezia Caselli
- Physical Chemistry 1, University of Lund, S-221 00 Lund, Sweden.
| | - Laura Conti
- Consorzio Sistemi a Grande Interfase, Department of Chemistry, University of Florence, Sesto Fiorentino, Italy
| | - Ilaria De Santis
- Department of Chemistry, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, Florence 50019, Italy
| | - Debora Berti
- Department of Chemistry, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, Florence 50019, Italy; Consorzio Sistemi a Grande Interfase, Department of Chemistry, University of Florence, Sesto Fiorentino, Italy.
| |
Collapse
|
21
|
Shalaby R, Ibrahim S, Kotb AAW, Baz S, Hafed L, Shaker O, Afifi S. MALAT1 as a potential salivary biomarker in oral squamous cell carcinoma through targeting miRNA-124. Oral Dis 2024; 30:2075-2083. [PMID: 37703315 DOI: 10.1111/odi.14730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/07/2023] [Accepted: 08/18/2023] [Indexed: 09/15/2023]
Abstract
OBJECTIVES To determine the diagnostic accuracy of the long non-coding RNA "MALAT1" measured in the saliva of patients with oral squamous cell carcinoma (OSCC) and assess the salivary expression of microRNA-124, which MALAT1 targets. SUBJECTS AND METHODS Forty subjects were collected in a consecutive pattern and allocated into two groups. Group A included 20 patients with OSCC, while Group B included 20 healthy subjects. Salivary expression of MALAT1 and microRNA (miRNA)-124 was evaluated in the two study groups using quantitative real-time polymerase chain reaction and correlated with histopathological examination of OSCC subjects. RESULTS OSCC yielded a statistically significant higher expression of MALAT1 than healthy controls and a lower expression of miRNA-124 in OSCC than controls. There is a statistically significant inverse relationship between salivary MALAT1 and miRNA-124. Moreover, there is a statistically significant difference in the MALAT1 expression in saliva samples from metastatic cases compared with non-metastatic cases, as well as in patients with lymph node involvement compared with those without involvement. At a cut-off value of 2.24, salivary MALAT1 exhibited 95% sensitivity and 90% specificity in differentiating OSCC from healthy subjects. CONCLUSION Salivary MALAT1 acts as a sponge for miRNA-124 and could be a potential salivary biomarker for OSCC.
Collapse
Affiliation(s)
- Rania Shalaby
- Oral Medicine, Oral Diagnosis and Periodontology, Faculty of Dentistry, Fayoum University, Fayoum, Egypt
| | - Sally Ibrahim
- Oral and Maxillofacial Pathology, Faculty of Dentistry, Fayoum University, Fayoum, Egypt
| | - Ali A W Kotb
- Oral and Maxillofacial Pathology, Faculty of Dentistry, Cairo University, Giza, Egypt
| | - Safaa Baz
- Oral Pathology, Faculty of Dentistry, The British University in Egypt, El Shorouk City, Egypt
| | - Layla Hafed
- Oral and Maxillofacial Pathology, Al-Mamoon Diagnostic Medical Center, Sana'a, Yemen
| | - Olfat Shaker
- Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Salsabeel Afifi
- Oral Medicine, Oral Diagnosis and Periodontology, Faculty of Dentistry, Fayoum University, Fayoum, Egypt
| |
Collapse
|
22
|
Shi L, Zhou Y, Yin Y, Zhang J, Chen K, Liu S, Chen P, Jiang H, Liu J, Wu Y. Advancing Tissue Damage Repair in Geriatric Diseases: Prospects of Combining Stem Cell-Derived Exosomes with Hydrogels. Int J Nanomedicine 2024; 19:3773-3804. [PMID: 38708181 PMCID: PMC11068057 DOI: 10.2147/ijn.s456268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/19/2024] [Indexed: 05/07/2024] Open
Abstract
Geriatric diseases are a group of diseases with unique characteristics related to senility. With the rising trend of global aging, senile diseases now mainly include endocrine, cardiovascular, neurodegenerative, skeletal, and muscular diseases and cancer. Compared with younger populations, the structure and function of various cells, tissues and organs in the body of the elderly undergo a decline as they age, rendering them more susceptible to external factors and diseases, leading to serious tissue damage. Tissue damage presents a significant obstacle to the overall health and well-being of older adults, exerting a profound impact on their quality of life. Moreover, this phenomenon places an immense burden on families, society, and the healthcare system.In recent years, stem cell-derived exosomes have become a hot topic in tissue repair research. The combination of these exosomes with biomaterials allows for the preservation of their biological activity, leading to a significant improvement in their therapeutic efficacy. Among the numerous biomaterial options available, hydrogels stand out as promising candidates for loading exosomes, owing to their exceptional properties. Due to the lack of a comprehensive review on the subject matter, this review comprehensively summarizes the application and progress of combining stem cell-derived exosomes and hydrogels in promoting tissue damage repair in geriatric diseases. In addition, the challenges encountered in the field and potential prospects are presented for future advancements.
Collapse
Affiliation(s)
- Ling Shi
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157000, People’s Republic of China
| | - Yunjun Zhou
- The Affiliated Hongqi Hospital, Mudanjiang Medical University, Mudanjiang, 157000, People’s Republic of China
| | - Yongkui Yin
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157000, People’s Republic of China
| | - Jin Zhang
- Clinical Laboratory, Zhejiang Medical & Health Group Quzhou Hospital, Quzhou, 324004, People’s Republic of China
| | - Kaiyuan Chen
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157000, People’s Republic of China
| | - Sen Liu
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157000, People’s Republic of China
| | - Peijian Chen
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157000, People’s Republic of China
| | - Hua Jiang
- The Affiliated Hongqi Hospital, Mudanjiang Medical University, Mudanjiang, 157000, People’s Republic of China
| | - Jieting Liu
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157000, People’s Republic of China
| | - Yan Wu
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157000, People’s Republic of China
| |
Collapse
|
23
|
Weber L, Torres A, Realini O, Bendek MJ, Mizgier ML, Brizuela C, Herrera D, González FE, Chaparro A. Proteomic Analysis of Salivary Extracellular Vesicles from COVID-19 Patients Reveals a Specific Anti-COVID-19 Response Protein Signature. Int J Mol Sci 2024; 25:3704. [PMID: 38612515 PMCID: PMC11011897 DOI: 10.3390/ijms25073704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 04/14/2024] Open
Abstract
Despite the understanding of the coronavirus disease-19 (COVID-19), the role of salivary extracellular vesicles (sEVs) in COVID-19 remains unclear. Exploring the proteomic cargo of sEVs could prove valuable for diagnostic and prognostic purposes in assessing COVID-19. The proteomic cargo of sEVs from COVID-19(+) subjects and their healthy close contacts (HCC) was explored. sEVs were isolated by ultracentrifugation from unstimulated saliva samples, and subsequently characterized through nanoparticle tracking, transmission electron microscopy, and Western blot analyses. The proteomic cargo of sEVs was processed by LC-MS/MS. sEVs were morphologically compatible with EVs, with the presence of Syntenin-1 and CD81 EV markers. The sEV pellet showed 1417 proteins: 1288 in COVID-19(+) cases and 1382 in HCC. In total, 124 proteins were differentially expressed in sEVs from COVID-19(+) subjects. "Coronavirus-disease response", "complement and coagulation cascades", and "PMN extracellular trap formation" were the most enriched KEGG pathways in COVID-19(+) cases. The most represented biological processes were "Hemoglobin and haptoglobin binding" and "oxygen carrier activity", and the best-denoted molecular functions were "regulated exocytosis and secretion" and "leucocyte and PMN mediated immunity". sEV proteomic cargo in COVID-19(+) suggests activity related to immune response processes, oxygen transport, and antioxidant mechanisms. In contrast, in HCC, sEV signature profiles are mainly associated with epithelial homeostasis.
Collapse
Affiliation(s)
- Laura Weber
- Department of Pathology and Conservative Dentistry, Faculty of Dentistry, Universidad de los Andes, Santiago 7620060, Chile; (L.W.); (M.J.B.); (M.L.M.); (C.B.)
| | - Alfredo Torres
- Laboratory of Experimental Immunology & Cancer, Faculty of Dentistry, Universidad de Chile, Santiago 8380492, Chile;
- Department of Conservative Dentistry, Faculty of Dentistry, Universidad de Chile, Santiago 8380492, Chile
| | - Ornella Realini
- Centre for Biomedical Research and Innovation (CIIB), Periodontal Research Laboratory, Universidad de los Andes, Santiago 7620060, Chile;
| | - María José Bendek
- Department of Pathology and Conservative Dentistry, Faculty of Dentistry, Universidad de los Andes, Santiago 7620060, Chile; (L.W.); (M.J.B.); (M.L.M.); (C.B.)
- Centre for Biomedical Research and Innovation (CIIB), Periodontal Research Laboratory, Universidad de los Andes, Santiago 7620060, Chile;
| | - María Luisa Mizgier
- Department of Pathology and Conservative Dentistry, Faculty of Dentistry, Universidad de los Andes, Santiago 7620060, Chile; (L.W.); (M.J.B.); (M.L.M.); (C.B.)
- Centre for Biomedical Research and Innovation (CIIB), Periodontal Research Laboratory, Universidad de los Andes, Santiago 7620060, Chile;
| | - Claudia Brizuela
- Department of Pathology and Conservative Dentistry, Faculty of Dentistry, Universidad de los Andes, Santiago 7620060, Chile; (L.W.); (M.J.B.); (M.L.M.); (C.B.)
| | - David Herrera
- Department of Periodontology, Faculty of Dentistry, Universidad Complutense de Madrid, 28040 Madrid, Spain;
| | - Fermín E. González
- Laboratory of Experimental Immunology & Cancer, Faculty of Dentistry, Universidad de Chile, Santiago 8380492, Chile;
- Department of Conservative Dentistry, Faculty of Dentistry, Universidad de Chile, Santiago 8380492, Chile
| | - Alejandra Chaparro
- Department of Pathology and Conservative Dentistry, Faculty of Dentistry, Universidad de los Andes, Santiago 7620060, Chile; (L.W.); (M.J.B.); (M.L.M.); (C.B.)
- Centre for Biomedical Research and Innovation (CIIB), Periodontal Research Laboratory, Universidad de los Andes, Santiago 7620060, Chile;
| |
Collapse
|
24
|
Demir Ş, Erdal E, Bagriyanik HA. Imaging of Isolated Exosomes by Correlative Microscopy. J Histochem Cytochem 2024; 72:149-156. [PMID: 38400717 PMCID: PMC10956441 DOI: 10.1369/00221554241233346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2024] Open
Abstract
Correlative microscopy is a sophisticated imaging technique that combines optical and electron microscopes, with the most common approach being the integration of light microscopy and electron microscopy, known as correlative light and electron microscopy (CLEM). While CLEM provides a comprehensive view of biological samples, it presents a significant challenge in sample preparation due to the distinct processes involved in each technique. Striking a balance between these methods is crucial. Despite numerous approaches, achieving seamless imaging with CLEM remains a complex task. Exosomes, nanovesicles ranging from 30 to 150 nm in size, are enclosed by a lipid bilayer and released by various cell types. Visualizing exosomes poses difficulties due to their small size and minimal electric charge. However, imaging exosomes at high resolution offers a direct method to understand their morphology and functions. In this study, we evaluated exosome imaging with CLEM using a combination of confocal, transmission electron microscope, and scanning electron microscope (SEM). In addition, we conducted a comparative analysis of these two techniques, evaluating their suitability and efficiency in imaging nanoscale structures. In this study, we found that confocal-SEM correlation is more applicable for imaging exosomes. Moreover, we observed that exosomes were found in clusters in confocal-SEM correlation.
Collapse
Affiliation(s)
- Şeyda Demir
- Department of Histology and Embryology, Faculty of Medicine
- Department of Histology and Embryology, Health Science Institute
| | - Esra Erdal
- Department of Medical Biology and Genetics, Faculty of Medicine
- Dokuz Eylul University, Izmir, Türkiye, and Izmir Biomedicine and Genome Center, 35340 Izmir, Türkiye
| | - Hüsnü Alper Bagriyanik
- Department of Histology and Embryology, Faculty of Medicine
- Department of Histology and Embryology, Health Science Institute
- Dokuz Eylul University, Izmir, Türkiye, and Izmir Biomedicine and Genome Center, 35340 Izmir, Türkiye
| |
Collapse
|
25
|
Gosch A, Banemann R, Dørum G, Haas C, Hadrys T, Haenggi N, Kulstein G, Neubauer J, Courts C. Spitting in the wind?-The challenges of RNA sequencing for biomarker discovery from saliva. Int J Legal Med 2024; 138:401-412. [PMID: 37847308 PMCID: PMC10861700 DOI: 10.1007/s00414-023-03100-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/25/2023] [Indexed: 10/18/2023]
Abstract
Forensic trace contextualization, i.e., assessing information beyond who deposited a biological stain, has become an issue of great and steadily growing importance in forensic genetic casework and research. The human transcriptome encodes a wide variety of information and thus has received increasing interest for the identification of biomarkers for different aspects of forensic trace contextualization over the past years. Massively parallel sequencing of reverse-transcribed RNA ("RNA sequencing") has emerged as the gold standard technology to characterize the transcriptome in its entirety and identify RNA markers showing significant expression differences not only between different forensically relevant body fluids but also within a single body fluid between forensically relevant conditions of interest. Here, we analyze the quality and composition of four RNA sequencing datasets (whole transcriptome as well as miRNA sequencing) from two different research projects (the RNAgE project and the TrACES project), aiming at identifying contextualizing forensic biomarker from the forensically relevant body fluid saliva. We describe and characterize challenges of RNA sequencing of saliva samples arising from the presence of oral bacteria, the heterogeneity of sample composition, and the confounding factor of degradation. Based on these observations, we formulate recommendations that might help to improve RNA biomarker discovery from the challenging but forensically relevant body fluid saliva.
Collapse
Affiliation(s)
- Annica Gosch
- Institute of Legal Medicine, University Hospital of Cologne, Cologne, Germany
| | - Regine Banemann
- Federal Criminal Police Office, Forensic Science Institute, Wiesbaden, Germany
| | - Guro Dørum
- Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | - Cordula Haas
- Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | - Thorsten Hadrys
- State Criminal Police Office, Forensic Science Institute, Munich, Germany
| | - Nadescha Haenggi
- Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | - Galina Kulstein
- Federal Criminal Police Office, Forensic Science Institute, Wiesbaden, Germany
| | - Jacqueline Neubauer
- Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | - Cornelius Courts
- Institute of Legal Medicine, University Hospital of Cologne, Cologne, Germany.
| |
Collapse
|
26
|
Janovičová Ľ, Holániová D, Vlková B, Celec P. Pre-Analytical Factors Affecting Extracellular DNA in Saliva. Diagnostics (Basel) 2024; 14:249. [PMID: 38337765 PMCID: PMC10855236 DOI: 10.3390/diagnostics14030249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024] Open
Abstract
Salivary DNA is widely used for genetic analyses because of its easy collection. However, its extracellular fraction in particular, similar to the extracellular DNA (ecDNA) in plasma, could be a promising biomarker for oral or systemic diseases. In contrast to genetics, the quantity of salivary ecDNA is of importance and can be affected by the pre-analytical processing of samples, but the details are not known. The aim of our study was to analyze the effects of centrifugation and freezing of saliva on the concentration of ecDNA in saliva. Fifteen healthy volunteers, free of any known systemic or oral diseases, were asked to collect unstimulated saliva samples. Aliquots were centrifuged at 1600× g and frozen or directly processed. The fresh or thawed cell-free saliva samples underwent subsequent centrifugation at 16,000× g. The supernatants were used for DNA isolation and quantification using fluorometry and real-time PCR. While freezing had minimal effects on the salivary ecDNA concentration, another centrifugation step decreased ecDNA considerably in both fresh and frozen samples (by 97.8% and 98.4%, respectively). This was mirrored in the quantitative PCR targeting a nuclear (decrease by 93.5%) and mitochondrial (decrease by 97.7%) ecDNA sequence. In conclusion, in this first study focusing on the technical aspects of salivary ecDNA quantitation, we show that, regardless of its subcellular origin, the concentration of ecDNA in saliva is mainly affected by additional centrifugation and not by the freezing of centrifuged cell-free saliva samples. This suggests that most salivary ecDNA likely is associated with cell debris and apoptotic bodies. Which fraction is affected by a particular disease should be the focus of further targeted studies.
Collapse
Affiliation(s)
- Ľubica Janovičová
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia; (Ľ.J.); (D.H.); (B.V.)
| | - Dominika Holániová
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia; (Ľ.J.); (D.H.); (B.V.)
| | - Barbora Vlková
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia; (Ľ.J.); (D.H.); (B.V.)
| | - Peter Celec
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia; (Ľ.J.); (D.H.); (B.V.)
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia
| |
Collapse
|
27
|
Reseco L, Molina-Crespo A, Atienza M, Gonzalez E, Falcon-Perez JM, Cantero JL. Characterization of Extracellular Vesicles from Human Saliva: Effects of Age and Isolation Techniques. Cells 2024; 13:95. [PMID: 38201299 PMCID: PMC10778510 DOI: 10.3390/cells13010095] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/22/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Salivary extracellular vesicles (EVs) represent an attractive source of biomarkers due to the accessibility of saliva and its non-invasive sampling methods. However, the lack of comparative studies assessing the efficacy of different EV isolation techniques hampers the use of salivary EVs in clinical settings. Moreover, the effects of age on salivary EVs are largely unknown, hindering the identification of salivary EV-associated biomarkers across the lifespan. To address these questions, we compared salivary EV concentration, size mode, protein concentration, and purity using eight EV isolation techniques before and after magnetic bead immunocapture with antibodies against CD9, CD63, and CD81. The effects of age on salivary EVs obtained with each isolation technique were further investigated. Results showed higher expression of CD63 on isolated salivary EVs compared to the expression of CD81 and flotillin-1. Overall, magnetic bead immunocapture was more efficient in recovering salivary EVs with Norgen's Saliva Exosome Purification Kit and ExoQuick-TC ULTRA at the cost of EV yield. Regardless of age, Invitrogen Total Exosome Isolation Solution showed the highest level of protein concentration, whereas Izon qEVOriginal-70nm columns revealed the highest purity. This study provides the first comprehensive comparison of salivary EVs in younger and older adults using different EV isolation techniques, which represents a step forward for assessing salivary EVs as a source of potential biomarkers of tissue-specific diseases throughout the life cycle.
Collapse
Affiliation(s)
- Lucia Reseco
- Laboratory of Functional Neuroscience, Pablo de Olavide University, 41013 Seville, Spain; (L.R.); (A.M.-C.); (M.A.)
- CIBERNED, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Angela Molina-Crespo
- Laboratory of Functional Neuroscience, Pablo de Olavide University, 41013 Seville, Spain; (L.R.); (A.M.-C.); (M.A.)
- CIBERNED, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Mercedes Atienza
- Laboratory of Functional Neuroscience, Pablo de Olavide University, 41013 Seville, Spain; (L.R.); (A.M.-C.); (M.A.)
- CIBERNED, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Esperanza Gonzalez
- Exosomes Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain; (E.G.); (J.M.F.-P.)
| | - Juan Manuel Falcon-Perez
- Exosomes Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain; (E.G.); (J.M.F.-P.)
- CIBEREHD, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, 28029 Madrid, Spain
| | - Jose L. Cantero
- Laboratory of Functional Neuroscience, Pablo de Olavide University, 41013 Seville, Spain; (L.R.); (A.M.-C.); (M.A.)
- CIBERNED, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
28
|
Al-Jipouri A, Eritja À, Bozic M. Unraveling the Multifaceted Roles of Extracellular Vesicles: Insights into Biology, Pharmacology, and Pharmaceutical Applications for Drug Delivery. Int J Mol Sci 2023; 25:485. [PMID: 38203656 PMCID: PMC10779093 DOI: 10.3390/ijms25010485] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/19/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
Extracellular vesicles (EVs) are nanoparticles released from various cell types that have emerged as powerful new therapeutic option for a variety of diseases. EVs are involved in the transmission of biological signals between cells and in the regulation of a variety of biological processes, highlighting them as potential novel targets/platforms for therapeutics intervention and/or delivery. Therefore, it is necessary to investigate new aspects of EVs' biogenesis, biodistribution, metabolism, and excretion as well as safety/compatibility of both unmodified and engineered EVs upon administration in different pharmaceutical dosage forms and delivery systems. In this review, we summarize the current knowledge of essential physiological and pathological roles of EVs in different organs and organ systems. We provide an overview regarding application of EVs as therapeutic targets, therapeutics, and drug delivery platforms. We also explore various approaches implemented over the years to improve the dosage of specific EV products for different administration routes.
Collapse
Affiliation(s)
- Ali Al-Jipouri
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, D-45147 Essen, Germany;
| | - Àuria Eritja
- Vascular and Renal Translational Research Group, Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRBLLEIDA), 25196 Lleida, Spain;
| | - Milica Bozic
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, D-45147 Essen, Germany;
- Vascular and Renal Translational Research Group, Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRBLLEIDA), 25196 Lleida, Spain;
| |
Collapse
|
29
|
Wu J, Liu G, Jia R, Guo J. Salivary Extracellular Vesicles: Biomarkers and Beyond in Human Diseases. Int J Mol Sci 2023; 24:17328. [PMID: 38139157 PMCID: PMC10743646 DOI: 10.3390/ijms242417328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/29/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Extracellular vesicles, as bioactive molecules, have been extensively studied. There are abundant studies in the literature on their biogenesis, secretion, structure, and content, and their roles in pathophysiological processes. Extracellular vesicles have been reviewed as biomarkers for use in diagnostic tools. Saliva contains many extracellular vesicles, and compared with other body fluids, it is easier to obtain in a non-invasive way, making its acquisition more easily accepted by patients. In recent years, there have been numerous new studies investigating the role of salivary extracellular vesicles as biomarkers. These studies have significant implications for future clinical diagnosis. Therefore, in this paper, we summarize and review the potential applications of salivary extracellular vesicles as biomarkers, and we also describe their other functions (e.g., hemostasis, innate immune defense) in both oral and non-oral diseases.
Collapse
Affiliation(s)
- Jialing Wu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430072, China; (J.W.); (G.L.); (R.J.)
| | - Gege Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430072, China; (J.W.); (G.L.); (R.J.)
| | - Rong Jia
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430072, China; (J.W.); (G.L.); (R.J.)
| | - Jihua Guo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430072, China; (J.W.); (G.L.); (R.J.)
- Department of Endodontics, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| |
Collapse
|
30
|
Chen TY, Mihalopoulos M, Zuluaga L, Rich J, Ganta T, Mehrazin R, Tsao CK, Tewari A, Gonzalez-Kozlova E, Badani K, Dogra N, Kyprianou N. Clinical Significance of Extracellular Vesicles in Prostate and Renal Cancer. Int J Mol Sci 2023; 24:14713. [PMID: 37834162 PMCID: PMC10573190 DOI: 10.3390/ijms241914713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/02/2023] [Accepted: 09/03/2023] [Indexed: 10/15/2023] Open
Abstract
Extracellular vesicles (EVs)-including apoptotic bodies, microvesicles, and exosomes-are released by almost all cell types and contain molecular footprints from their cell of origin, including lipids, proteins, metabolites, RNA, and DNA. They have been successfully isolated from blood, urine, semen, and other body fluids. In this review, we discuss the current understanding of the predictive value of EVs in prostate and renal cancer. We also describe the findings supporting the use of EVs from liquid biopsies in stratifying high-risk prostate/kidney cancer and advanced disease, such as castration-resistant (CRPC) and neuroendocrine prostate cancer (NEPC) as well as metastatic renal cell carcinoma (RCC). Assays based on EVs isolated from urine and blood have the potential to serve as highly sensitive diagnostic studies as well as predictive measures of tumor recurrence in patients with prostate and renal cancers. Overall, we discuss the biogenesis, isolation, liquid-biopsy, and therapeutic applications of EVs in CRPC, NEPC, and RCC.
Collapse
Affiliation(s)
- Tzu-Yi Chen
- Department of Pathology & Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (T.-Y.C.); (A.T.)
| | - Meredith Mihalopoulos
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (M.M.); (L.Z.); (J.R.); (R.M.); (K.B.)
| | - Laura Zuluaga
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (M.M.); (L.Z.); (J.R.); (R.M.); (K.B.)
| | - Jordan Rich
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (M.M.); (L.Z.); (J.R.); (R.M.); (K.B.)
| | - Teja Ganta
- Department of Hematology/Oncology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (T.G.); (C.-K.T.)
| | - Reza Mehrazin
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (M.M.); (L.Z.); (J.R.); (R.M.); (K.B.)
| | - Che-Kai Tsao
- Department of Hematology/Oncology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (T.G.); (C.-K.T.)
| | - Ash Tewari
- Department of Pathology & Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (T.-Y.C.); (A.T.)
| | - Edgar Gonzalez-Kozlova
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Ketan Badani
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (M.M.); (L.Z.); (J.R.); (R.M.); (K.B.)
| | - Navneet Dogra
- Department of Pathology & Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (T.-Y.C.); (A.T.)
| | - Natasha Kyprianou
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (M.M.); (L.Z.); (J.R.); (R.M.); (K.B.)
- The Tisch Cancer Institute, Mount Sinai Health, New York, NY 10029, USA
| |
Collapse
|
31
|
Müller Bark J, Trevisan França de Lima L, Zhang X, Broszczak D, Leo PJ, Jeffree RL, Chua B, Day BW, Punyadeera C. Proteome profiling of salivary small extracellular vesicles in glioblastoma patients. Cancer 2023; 129:2836-2847. [PMID: 37254878 PMCID: PMC10952188 DOI: 10.1002/cncr.34888] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 04/15/2023] [Accepted: 04/24/2023] [Indexed: 06/01/2023]
Abstract
BACKGROUND Extracellular vesicles (EVs) play a critical role in intercellular communication under physiological and pathological conditions, including cancer. EVs cargo reflects their cell of origin, suggesting their utility as biomarkers. EVs are detected in several biofluids, and their ability to cross the blood-brain barrier has highlighted their potential as prognostic and diagnostic biomarkers in gliomas, including glioblastoma (GBM). Studies have demonstrated the potential clinical utility of plasma-derived EVs in glioma. However, little is known about the clinical utility of saliva-derived EVs in GBM. METHODS Small EVs were isolated from whole mouth saliva of GBM patients pre- and postoperatively. Isolation was performed using differential centrifugation and/or ultracentrifugation. EVs were characterized by concentration, size, morphology, and EVs cell-surface protein markers. Protein cargo in EVs was profiled using mass spectrometry. RESULTS There were no statistically significant differences in size and concentration of EVs derived from pre- and post GBM patients' saliva samples. A higher number of proteins were detected in preoperative samples compared to postoperative samples. The authors found four highly abundant proteins (aldolase A, 14-3-3 protein ε, enoyl CoA hydratase 1, and transmembrane protease serine 11B) in preoperative saliva samples from GBM patients with poor outcomes. Functional enrichment analysis of pre- and postoperative saliva samples showed significant enrichment of several pathways, including those related to the immune system, cell cycle and programmed cell death. CONCLUSIONS This study, for the first time, demonstrates the feasibility of isolating and characterizing small EVs from pre- and postoperative saliva samples from GBM patients. Preliminary findings encourage further large cohort validation studies on salivary small EVs to evaluate prognosis in GBM.
Collapse
Affiliation(s)
- Juliana Müller Bark
- Centre for Biomedical TechnologiesThe School of Biomedical SciencesFaculty of HealthQueensland University of TechnologyBrisbaneQueenslandAustralia
- Saliva and Liquid Biopsy Translational LaboratoryGriffith Institute for Drug Discovery Griffith UniversityBrisbaneQueenslandAustralia
- Translational Research InstituteBrisbaneQueenslandAustralia
| | - Lucas Trevisan França de Lima
- Centre for Biomedical TechnologiesThe School of Biomedical SciencesFaculty of HealthQueensland University of TechnologyBrisbaneQueenslandAustralia
- Saliva and Liquid Biopsy Translational LaboratoryGriffith Institute for Drug Discovery Griffith UniversityBrisbaneQueenslandAustralia
- Translational Research InstituteBrisbaneQueenslandAustralia
- Gallipoli Medical Research InstituteGreenslopes Private HospitalBrisbaneQueenslandAustralia
| | - Xi Zhang
- Centre for Biomedical TechnologiesThe School of Biomedical SciencesFaculty of HealthQueensland University of TechnologyBrisbaneQueenslandAustralia
- Saliva and Liquid Biopsy Translational LaboratoryGriffith Institute for Drug Discovery Griffith UniversityBrisbaneQueenslandAustralia
- Translational Research InstituteBrisbaneQueenslandAustralia
| | - Daniel Broszczak
- School of Biomedical SciencesFaculty of HealthQueensland University of TechnologyBrisbaneQueenslandAustralia
| | - Paul J. Leo
- Translational Research InstituteBrisbaneQueenslandAustralia
- Translational Genomics GroupQueensland University of TechnologyTranslational Research InstituteWoolloongabbaQueenslandAustralia
| | - Rosalind L. Jeffree
- Faculty of MedicineUniversity of QueenslandBrisbaneQueenslandAustralia
- Kenneth G. Jamieson Department of NeurosurgeryRoyal Brisbane and Women's HospitalHerstonQueenslandAustralia
| | - Benjamin Chua
- Faculty of MedicineUniversity of QueenslandBrisbaneQueenslandAustralia
- Cancer Care ServicesRoyal Brisbane and Women's HospitalBrisbaneQueenslandAustralia
| | - Bryan W. Day
- Cell and Molecular Biology DepartmentSid Faithfull Brain Cancer LaboratoryQIMR Berghofer MRIBrisbaneQueenslandAustralia
| | - Chamindie Punyadeera
- Centre for Biomedical TechnologiesThe School of Biomedical SciencesFaculty of HealthQueensland University of TechnologyBrisbaneQueenslandAustralia
- Saliva and Liquid Biopsy Translational LaboratoryGriffith Institute for Drug Discovery Griffith UniversityBrisbaneQueenslandAustralia
- Menzies Health Institute (MHIQ)Griffith UniversityGold CoastQueenslandAustralia
| |
Collapse
|
32
|
Cross T, Haug KBF, Brusletto BS, Ommundsen SK, Trøseid AMS, Aspelin T, Olstad OK, Aass HCD, Galtung HK, Utheim TP, Jensen JL, Øvstebø R. Non-Coding RNA in Salivary Extracellular Vesicles: A New Frontier in Sjögren's Syndrome Diagnostics? Int J Mol Sci 2023; 24:13409. [PMID: 37686214 PMCID: PMC10488010 DOI: 10.3390/ijms241713409] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Sjögren's syndrome is an autoimmune rheumatic disease characterized by inflammation of the salivary and lacrimal glands, often manifesting as dry mouth and dry eyes. To simplify diagnostics of primary Sjögren's syndrome (pSS), a non-invasive marker is needed. The aim of the study was to compare the RNA content of salivary extracellular vesicles (EVs) between patients with pSS and healthy controls using microarray technology. Stimulated whole saliva was collected from 11 pSS patients and 11 age-matched controls. EV-RNA was isolated from the saliva samples using a Qiagen exoRNeasy Midi Kit and analyzed using Affymetrix Clariom D™ microarrays. A one-way ANOVA test was used to compare the mean signal values of each transcript between the two groups. A total of 9307 transcripts, coding and non-coding RNA, were detected in all samples. Of these transcripts, 1475 showed statistically significant differential abundance between the pSS and the control groups, generating two distinct EV-RNA patterns. In particular, tRNAs were downregulated in pSS patients, with the transcript tRNA-Ile-AAT-2-1 showing a 2-fold difference, and a promise as a potential biomarker candidate. This study therein demonstrates the potential for using salivary EV-RNA in pSS diagnostics.
Collapse
Affiliation(s)
- Tanya Cross
- The Regenerative Medicine Unit, Department of Medical Biochemistry, Oslo University Hospital, Ullevål, 0450 Oslo, Norway
| | - Kari Bente Foss Haug
- The Blood Cell Research Group, Department of Medical Biochemistry, Oslo University Hospital, Ullevål, 0450 Oslo, Norway
| | - Berit Sletbakk Brusletto
- The Blood Cell Research Group, Department of Medical Biochemistry, Oslo University Hospital, Ullevål, 0450 Oslo, Norway
| | - Stine Kamilla Ommundsen
- The Regenerative Medicine Unit, Department of Medical Biochemistry, Oslo University Hospital, Ullevål, 0450 Oslo, Norway
| | - Anne-Marie Siebke Trøseid
- The Blood Cell Research Group, Department of Medical Biochemistry, Oslo University Hospital, Ullevål, 0450 Oslo, Norway
| | - Trude Aspelin
- The Blood Cell Research Group, Department of Medical Biochemistry, Oslo University Hospital, Ullevål, 0450 Oslo, Norway
| | - Ole Kristoffer Olstad
- The Blood Cell Research Group, Department of Medical Biochemistry, Oslo University Hospital, Ullevål, 0450 Oslo, Norway
| | | | - Hilde Kanli Galtung
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, 0372 Oslo, Norway
| | - Tor Paaske Utheim
- The Regenerative Medicine Unit, Department of Medical Biochemistry, Oslo University Hospital, Ullevål, 0450 Oslo, Norway
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, 0372 Oslo, Norway
- Department of Plastic and Reconstructive Surgery, Oslo University Hospital, 0372 Oslo, Norway
- Department of Ophthalmology, Oslo University Hospital, 0450 Oslo, Norway
- Department of Ophthalmology, Sørlandet Hospital Arendal, 4838 Arendal, Norway
- Department of Ophthalmology, Vestre Viken Hospital Trust, 3004 Drammen, Norway
- The Norwegian Dry Eye Clinic, 0369 Oslo, Norway
| | - Janicke Liaaen Jensen
- Department of Oral Surgery and Oral Medicine, Faculty of Dentistry, University of Oslo, 0455 Oslo, Norway
| | - Reidun Øvstebø
- The Blood Cell Research Group, Department of Medical Biochemistry, Oslo University Hospital, Ullevål, 0450 Oslo, Norway
| |
Collapse
|
33
|
Takahashi Y, Sasaki Y, Yoshida T, Honda K, Zhou Y, Miyamoto T, Motoo T, Higashi H, Shevchuk A, Korchev Y, Ida H, Hanayama R, Fukuma T. Nanopipette Fabrication Guidelines for SICM Nanoscale Imaging. Anal Chem 2023; 95:12664-12672. [PMID: 37599426 DOI: 10.1021/acs.analchem.3c01010] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Scanning ion conductance microscopy (SICM) is a promising tool for visualizing the dynamics of nanoscale cell surface topography. However, there are still no guidelines for fabricating nanopipettes with ideal shape consisting of small apertures and thin glass walls. Therefore, most of the SICM imaging has been at a standstill at the submicron scale. In this study, we established a simple and highly reproducible method for the fabrication of nanopipettes with sub-20 nm apertures. To validate the improvement in the spatial resolution, we performed time-lapse imaging of the formation and disappearance of endocytic pits as a model of nanoscale time-lapse topographic imaging. We have also successfully imaged the localization of the hot spot and the released extracellular vesicles. The nanopipette fabrication guidelines for the SICM nanoscale topographic imaging can be an essential tool for understanding cell-cell communication.
Collapse
Affiliation(s)
- Yasufumi Takahashi
- Department of Electronics, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa 920-1192, Japan
| | - Yuya Sasaki
- Division of Electrical Engineering and Computer Science, Kanazawa University, Kanazawa 920-1192, Japan
| | - Takeshi Yoshida
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa 920-1192, Japan
| | - Kota Honda
- Department of Electronics, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Yuanshu Zhou
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa 920-1192, Japan
| | - Takafumi Miyamoto
- Division of Electrical Engineering and Computer Science, Kanazawa University, Kanazawa 920-1192, Japan
| | - Tomoko Motoo
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa 920-1192, Japan
| | - Hiroki Higashi
- Division of Electrical Engineering and Computer Science, Kanazawa University, Kanazawa 920-1192, Japan
| | - Andrew Shevchuk
- Department of Medicine, Imperial College London, London W12 0NN, U.K
| | - Yuri Korchev
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa 920-1192, Japan
- Department of Medicine, Imperial College London, London W12 0NN, U.K
| | - Hiroki Ida
- Department of Electronics, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Rikinari Hanayama
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa 920-1192, Japan
| | - Takeshi Fukuma
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa 920-1192, Japan
- Division of Electrical Engineering and Computer Science, Kanazawa University, Kanazawa 920-1192, Japan
| |
Collapse
|
34
|
Jangholi A, Bark JM, Trevisan França de Lima L, Lima LG, Möller A, Kenny L, Vasani S, Rao S, Dolcetti R, Punyadeera C. Method optimisation to enrich small extracellular vesicles from saliva samples. Clin Transl Med 2023; 13:e1341. [PMID: 37587263 PMCID: PMC10432497 DOI: 10.1002/ctm2.1341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/10/2023] [Accepted: 07/13/2023] [Indexed: 08/18/2023] Open
Affiliation(s)
- Abolfazl Jangholi
- The School of Environment and ScienceGriffith Institute for Drug Discovery (GRIDD)Griffith UniversityBrisbaneQueenslandAustralia
| | - Juliana Müller Bark
- The School of Environment and ScienceGriffith Institute for Drug Discovery (GRIDD)Griffith UniversityBrisbaneQueenslandAustralia
| | | | - Luize Goncalves Lima
- Tumour Microenvironment LaboratoryQIMR Berghofer Medical Research InstituteHerstonQueenslandAustralia
| | - Andreas Möller
- Tumour Microenvironment LaboratoryQIMR Berghofer Medical Research InstituteHerstonQueenslandAustralia
- Department of Otorhinolaryngology, Head and Neck Surgery, Faculty of MedicineThe Chinese University of Hong KongSha TinHong Kong SAR
- Li Ka Shing Institute of Health SciencesThe Chinese University of Hong KongSha TinHong Kong SAR
| | - Lizbeth Kenny
- Royal Brisbane and Women's HospitalCancer Care ServicesHerstonQueenslandAustralia
- Faculty of MedicineThe University of QueenslandBrisbaneQueenslandAustralia
| | - Sarju Vasani
- Royal Brisbane and Women's HospitalCancer Care ServicesHerstonQueenslandAustralia
- Department of OtolaryngologyRoyal Brisbane and Women's HospitalHerstonQueenslandAustralia
| | - Sudha Rao
- Gene Regulation and Translational Medicine LaboratoryQIMR Berghofer Medical Research InstituteBrisbaneQueenslandAustralia
| | - Riccardo Dolcetti
- Peter MacCallum Cancer CentreMelbourneVictoriaAustralia
- Sir Peter MacCallum Department of OncologyThe University of MelbourneMelbourneVictoriaAustralia
- Department of Microbiology and ImmunologyThe University of MelbourneMelbourneVictoriaAustralia
- The University of Queensland Diamantina InstituteBrisbaneQueenslandAustralia
| | - Chamindie Punyadeera
- The School of Environment and ScienceGriffith Institute for Drug Discovery (GRIDD)Griffith UniversityBrisbaneQueenslandAustralia
- Menzies Health Institute Queensland (MIHQ)Griffith UniversityGold CoastQueenslandAustralia
| |
Collapse
|
35
|
Choi WWY, Sánchez C, Li JJ, Dinarvand M, Adomat H, Ghaffari M, Khoja L, Vafaee F, Joshua AM, Chi KN, Guns EST, Hosseini-Beheshti E. Extracellular vesicles from biological fluids as potential markers in castration resistant prostate cancer. J Cancer Res Clin Oncol 2023; 149:4701-4717. [PMID: 36222898 PMCID: PMC10349738 DOI: 10.1007/s00432-022-04391-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/03/2022] [Indexed: 11/28/2022]
Abstract
PURPOSE Extracellular vesicles (EV) secreted from cancer cells are present in various biological fluids, carrying distinctly different cellular components compared to normal cells, and have great potential to be used as markers for disease initiation, progression, and response to treatment. This under-utilised tool provides insights into a better understanding of prostate cancer. METHODS EV from serum and urine of healthy men and castration-resistant prostate cancer (CRPC) patients were isolated and characterised by transmission electron microscopy, particle size analysis, and western blot. Proteomic and cholesterol liquid chromatography-mass spectrometry (LC-MS) analyses were conducted. RESULTS There was a successful enrichment of small EV/exosomes isolated from serum and urine. EV derived from biological fluids of CRPC patients had significant differences in composition when compared with those from healthy controls. Analysis of matched serum and urine samples from six prostate cancer patients revealed specific EV proteins common in both types of biological fluid for each patient. CONCLUSION Some of the EV proteins identified from our analyses have potential to be used as CRPC markers. These markers may depict a pattern in cancer progression through non-invasive sample collection.
Collapse
Affiliation(s)
- Wendy W Y Choi
- Vancouver Prostate Centre, 2660 Oak St, Vancouver, BC, V6H 3Z6, Canada
| | | | - Jiao Jiao Li
- Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, 2065, Australia
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Mojdeh Dinarvand
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, NSW, 2052, Australia
| | - Hans Adomat
- Vancouver Prostate Centre, 2660 Oak St, Vancouver, BC, V6H 3Z6, Canada
| | - Mazyar Ghaffari
- Vancouver Prostate Centre, 2660 Oak St, Vancouver, BC, V6H 3Z6, Canada
- Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Leila Khoja
- St Vincent's Hospital Sydney, Darlinghurst, NSW, 2010, Australia
| | - Fatemeh Vafaee
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, NSW, 2052, Australia
- UNSW Data Science Hub, University of New South Wales, Kensington, NSW, 2052, Australia
| | - Anthony M Joshua
- St Vincent's Hospital Sydney, Darlinghurst, NSW, 2010, Australia
| | - Kim N Chi
- BC Cancer Agency, 600 West 10th Avenue, Vancouver, BC, V5Z 4E6, Canada
| | - Emma S Tomlinson Guns
- Vancouver Prostate Centre, 2660 Oak St, Vancouver, BC, V6H 3Z6, Canada
- BC Cancer Agency, 600 West 10th Avenue, Vancouver, BC, V5Z 4E6, Canada
| | - Elham Hosseini-Beheshti
- Vancouver Prostate Centre, 2660 Oak St, Vancouver, BC, V6H 3Z6, Canada.
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia.
- The Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
36
|
Soleymani T, Chen TY, Gonzalez-Kozlova E, Dogra N. The human neurosecretome: extracellular vesicles and particles (EVPs) of the brain for intercellular communication, therapy, and liquid-biopsy applications. Front Mol Biosci 2023; 10:1156821. [PMID: 37266331 PMCID: PMC10229797 DOI: 10.3389/fmolb.2023.1156821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/25/2023] [Indexed: 06/03/2023] Open
Abstract
Emerging evidence suggests that brain derived extracellular vesicles (EVs) and particles (EPs) can cross blood-brain barrier and mediate communication among neurons, astrocytes, microglial, and other cells of the central nervous system (CNS). Yet, a complete understanding of the molecular landscape and function of circulating EVs & EPs (EVPs) remain a major gap in knowledge. This is mainly due to the lack of technologies to isolate and separate all EVPs of heterogeneous dimensions and low buoyant density. In this review, we aim to provide a comprehensive understanding of the neurosecretome, including the extracellular vesicles that carry the molecular signature of the brain in both its microenvironment and the systemic circulation. We discuss the biogenesis of EVPs, their function, cell-to-cell communication, past and emerging isolation technologies, therapeutics, and liquid-biopsy applications. It is important to highlight that the landscape of EVPs is in a constant state of evolution; hence, we not only discuss the past literature and current landscape of the EVPs, but we also speculate as to how novel EVPs may contribute to the etiology of addiction, depression, psychiatric, neurodegenerative diseases, and aid in the real time monitoring of the "living brain". Overall, the neurosecretome is a concept we introduce here to embody the compendium of circulating particles of the brain for their function and disease pathogenesis. Finally, for the purpose of inclusion of all extracellular particles, we have used the term EVPs as defined by the International Society of Extracellular Vesicles (ISEV).
Collapse
Affiliation(s)
- Taliah Soleymani
- Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Tzu-Yi Chen
- Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Edgar Gonzalez-Kozlova
- Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Navneet Dogra
- Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
37
|
Ahmed MSU, Lord BD, Adu Addai B, Singhal SK, Gardner K, Salam AB, Ghebremedhin A, White J, Mahmud I, Martini R, Bedi D, Lin H, Jones JD, Karanam B, Dean-Colomb W, Grizzle W, Wang H, Davis M, Yates CC. Immune Profile of Exosomes in African American Breast Cancer Patients Is Mediated by Kaiso/THBS1/CD47 Signaling. Cancers (Basel) 2023; 15:cancers15082282. [PMID: 37190208 DOI: 10.3390/cancers15082282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 04/02/2023] [Accepted: 04/04/2023] [Indexed: 05/17/2023] Open
Abstract
African American (AA) women with breast cancer are more likely to have higher inflammation and a stronger overall immune response, which correlate with poorer outcomes. In this report, we applied the nanostring immune panel to identify differences in inflammatory and immune gene expression by race. We observed a higher expression of multiple cytokines in AA patients compared to EA patients, with high expression of CD47, TGFB1, and NFKB1 associated with the transcriptional repressor Kaiso. To investigate the mechanism associated with this expression pattern, we observed that Kaiso depletion results in decreased expression of CD47, and its ligand SIRPA. Furthermore, Kaiso appears to directly bind to the methylated sequences of the THBS1 promotor and repress gene expression. Similarly, Kaiso depletion attenuated tumor formation in athymic nude mice, and these Kaiso-depleted xenograft tissues showed significantly higher phagocytosis and increased infiltration of M1 macrophages. In vitro validation using MCF7 and THP1 macrophages treated with Kaiso-depleted exosomes showed a reduced expression of immune-related markers (CD47 and SIRPA) and macrophage polarization towards the M1 phenotype compared to MCF7 cells treated with exosomes isolated from high-Kaiso cells. Lastly, analysis of TCGA breast cancer patient data demonstrates that this gene signature is most prominent in the basal-like subtype, which is more frequently observed in AA breast cancer patients.
Collapse
Affiliation(s)
- Md Shakir Uddin Ahmed
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL 36088, USA
- Bangladesh Council of Scientific and Industrial Research, Dhaka 1205, Bangladesh
| | - Brittany D Lord
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Benjamin Adu Addai
- School of Veterinary Medicine, Tuskegee University, Tuskegee, AL 36088, USA
| | - Sandeep K Singhal
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
- Department of Biomedical Engineering, School of Electrical Engineering and Computer Science, University of North Dakota, Grand Forks, ND 58202, USA
| | - Kevin Gardner
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA
| | - Ahmad Bin Salam
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL 36088, USA
| | - Anghesom Ghebremedhin
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL 36088, USA
| | - Jason White
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL 36088, USA
| | - Iqbal Mahmud
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Rachel Martini
- Department of Surgery, Weill Cornell Medicine, New York, NY 10065, USA
| | - Deepa Bedi
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL 36088, USA
| | - Huixian Lin
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL 36088, USA
| | - Jacqueline D Jones
- Department of Biological and Environmental Sciences, Troy University, Troy, AL 36082, USA
| | | | - Windy Dean-Colomb
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL 36088, USA
- Piedmont Oncology-Newnan, Newnan, GA 30265, USA
| | - William Grizzle
- Department of Pathology, School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Honghe Wang
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL 36088, USA
| | - Melissa Davis
- Department of Surgery, Weill Cornell Medicine, New York, NY 10065, USA
| | - Clayton C Yates
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL 36088, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
38
|
Liu A, Hefley B, Escandon P, Nicholas SE, Karamichos D. Salivary Exosomes in Health and Disease: Future Prospects in the Eye. Int J Mol Sci 2023; 24:ijms24076363. [PMID: 37047335 PMCID: PMC10094317 DOI: 10.3390/ijms24076363] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
Exosomes are a group of vesicles that package and transport DNA, RNA, proteins, and lipids to recipient cells. They can be derived from blood, saliva, urine, and/or other biological tissues. Their impact on several diseases, such as neurodegenerative, autoimmune, and ocular diseases, have been reported, but not fully unraveled. The exosomes that are derived from saliva are less studied, but offer significant advantages over exosomes from other sources, due to their accessibility and ease of collection. Thus, their role in the pathophysiology of diseases is largely unknown. In the context of ocular diseases, salivary exosomes have been under-utilized, thus creating an enormous gap in the literature. The current review discusses the state of exosomes research on systemic and ocular diseases and highlights the role and potential of salivary exosomes as future ocular therapeutic vehicles.
Collapse
Affiliation(s)
- Angela Liu
- Texas College of Osteopathic Medicine, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107, USA
- North Texas Eye Research Institute, University of North Texas Health Science Center, 3430 Camp Bowie Blvd., Fort Worth, TX 76107, USA
| | - Brenna Hefley
- North Texas Eye Research Institute, University of North Texas Health Science Center, 3430 Camp Bowie Blvd., Fort Worth, TX 76107, USA
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107, USA
| | - Paulina Escandon
- North Texas Eye Research Institute, University of North Texas Health Science Center, 3430 Camp Bowie Blvd., Fort Worth, TX 76107, USA
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107, USA
| | - Sarah E. Nicholas
- North Texas Eye Research Institute, University of North Texas Health Science Center, 3430 Camp Bowie Blvd., Fort Worth, TX 76107, USA
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107, USA
| | - Dimitrios Karamichos
- North Texas Eye Research Institute, University of North Texas Health Science Center, 3430 Camp Bowie Blvd., Fort Worth, TX 76107, USA
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107, USA
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107, USA
- Correspondence: ; Tel.: +1-817-735-2101
| |
Collapse
|
39
|
Shen L, Ma J, Yang Y, Liao T, Wang J, Chen L, Zhang S, Zhao Y, Niu L, Hao X, Jiang A, Li X, Gan M, Zhu L. Cooked pork-derived exosome nanovesicles mediate metabolic disorder-microRNA could be the culprit. J Nanobiotechnology 2023; 21:83. [PMID: 36894941 PMCID: PMC9999493 DOI: 10.1186/s12951-023-01837-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 03/02/2023] [Indexed: 03/11/2023] Open
Abstract
In this study, exosomes from cooked meat were extracted by ultra-high-speed centrifugation. Approximately 80% of exosome vesicles were within 20-200 nm. In addition, the surface biomarkers of isolated exosomes were evaluated using flow cytometry. Further studies showed the exosomal microRNA profiles were different among cooked porcine muscle, fat and liver. Cooked pork-derived exosomes were chronically administered to ICR mice by drinking for 80 days. The mice plasma levels of miR-1, miR-133a-3p, miR-206 and miR-99a were increased to varying degrees after drinking exosome enriched water. Furthermore, GTT and ITT results confirmed an abnormal glucose metabolism and insulin resistance in mice. Moreover, the lipid droplets were significantly increased in the mice liver. A transcriptome analysis performed with mice liver samples identified 446 differentially expressed genes (DEGs). Functional enrichment analysis found that DEGs were enriched in metabolic pathways. Overall, the results suggest that microRNAs derived form cooked pork may function as a critical regulator of metabolic disorder in mice.
Collapse
Affiliation(s)
- Linyuan Shen
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China.,Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jianfeng Ma
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China.,Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yiting Yang
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China.,Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Tianci Liao
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China.,Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jinyong Wang
- Chongqing Academy of Animal Science, Chongqing, 402460, China
| | - Lei Chen
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China.,Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shunhua Zhang
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China.,Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ye Zhao
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China.,Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lili Niu
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China.,Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiaoxia Hao
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China.,Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Anan Jiang
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China.,Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xuewei Li
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China.,Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Mailin Gan
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China. .,Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Li Zhu
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China. .,Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
40
|
Kopcho S, McDew-White M, Naushad W, Mohan M, Okeoma CM. SIV Infection Regulates Compartmentalization of Circulating Blood Plasma miRNAs within Extracellular Vesicles (EVs) and Extracellular Condensates (ECs) and Decreases EV-Associated miRNA-128. Viruses 2023; 15:622. [PMID: 36992331 PMCID: PMC10059597 DOI: 10.3390/v15030622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 03/03/2023] Open
Abstract
Background: This is Manuscript 1 of a two-part Manuscript of the same series. Here, we present findings from our first set of studies on the abundance and compartmentalization of blood plasma extracellular microRNAs (exmiRNAs) into extracellular particles, including blood plasma extracellular vesicles (EVs) and extracellular condensates (ECs) in the setting of untreated HIV/SIV infection. The goals of the study presented in this Manuscript 1 are to (i) assess the abundance and compartmentalization of exmiRNAs in EVs versus ECs in the healthy uninfected state, and (ii) evaluate how SIV infection may affect exmiRNA abundance and compartmentalization in these particles. Considerable effort has been devoted to studying the epigenetic control of viral infection, particularly in understanding the role of exmiRNAs as key regulators of viral pathogenesis. MicroRNA (miRNAs) are small (~20-22 nts) non-coding RNAs that regulate cellular processes through targeted mRNA degradation and/or repression of protein translation. Originally associated with the cellular microenvironment, circulating miRNAs are now known to be present in various extracellular environments, including blood serum and plasma. While in circulation, miRNAs are protected from degradation by ribonucleases through their association with lipid and protein carriers, such as lipoproteins and other extracellular particles-EVs and ECs. Functionally, miRNAs play important roles in diverse biological processes and diseases (cell proliferation, differentiation, apoptosis, stress responses, inflammation, cardiovascular diseases, cancer, aging, neurological diseases, and HIV/SIV pathogenesis). While lipoproteins and EV-associated exmiRNAs have been characterized and linked to various disease processes, the association of exmiRNAs with ECs is yet to be made. Likewise, the effect of SIV infection on the abundance and compartmentalization of exmiRNAs within extracellular particles is unclear. Literature in the EV field has suggested that most circulating miRNAs may not be associated with EVs. However, a systematic analysis of the carriers of exmiRNAs has not been conducted due to the inefficient separation of EVs from other extracellular particles, including ECs. Methods: Paired EVs and ECs were separated from EDTA blood plasma of SIV-uninfected male Indian rhesus macaques (RMs, n = 15). Additionally, paired EVs and ECs were isolated from EDTA blood plasma of combination anti-retroviral therapy (cART) naïve SIV-infected (SIV+, n = 3) RMs at two time points (1- and 5-months post infection, 1 MPI and 5 MPI). Separation of EVs and ECs was achieved with PPLC, a state-of-the-art, innovative technology equipped with gradient agarose bead sizes and a fast fraction collector that allows high-resolution separation and retrieval of preparative quantities of sub-populations of extracellular particles. Global miRNA profiles of the paired EVs and ECs were determined with RealSeq Biosciences (Santa Cruz, CA) custom sequencing platform by conducting small RNA (sRNA)-seq. The sRNA-seq data were analyzed using various bioinformatic tools. Validation of key exmiRNAs was performed using specific TaqMan microRNA stem-loop RT-qPCR assays. Results: We showed that exmiRNAs in blood plasma are not restricted to any type of extracellular particles but are associated with lipid-based carriers-EVs and non-lipid-based carriers-ECs, with a significant (~30%) proportion of the exmiRNAs being associated with ECs. In the blood plasma of uninfected RMs, a total of 315 miRNAs were associated with EVs, while 410 miRNAs were associated with ECs. A comparison of detectable miRNAs within paired EVs and ECs revealed 19 and 114 common miRNAs, respectively, detected in all 15 RMs. Let-7a-5p, Let-7c-5p, miR-26a-5p, miR-191-5p, and let-7f-5p were among the top 5 detectable miRNAs associated with EVs in that order. In ECs, miR-16-5p, miR-451, miR-191-5p, miR-27a-3p, and miR-27b-3p, in that order, were the top detectable miRNAs in ECs. miRNA-target enrichment analysis of the top 10 detected common EV and EC miRNAs identified MYC and TNPO1 as top target genes, respectively. Functional enrichment analysis of top EV- and EC-associated miRNAs identified common and distinct gene-network signatures associated with various biological and disease processes. Top EV-associated miRNAs were implicated in cytokine-cytokine receptor interactions, Th17 cell differentiation, IL-17 signaling, inflammatory bowel disease, and glioma. On the other hand, top EC-associated miRNAs were implicated in lipid and atherosclerosis, Th1 and Th2 cell differentiation, Th17 cell differentiation, and glioma. Interestingly, infection of RMs with SIV revealed that the brain-enriched miR-128-3p was longitudinally and significantly downregulated in EVs, but not ECs. This SIV-mediated decrease in miR-128-3p counts was validated by specific TaqMan microRNA stem-loop RT-qPCR assay. Remarkably, the observed SIV-mediated decrease in miR-128-3p levels in EVs from RMs agrees with publicly available EV miRNAome data by Kaddour et al., 2021, which showed that miR-128-3p levels were significantly lower in semen-derived EVs from HIV-infected men who used or did not use cocaine compared to HIV-uninfected individuals. These findings confirmed our previously reported finding and suggested that miR-128 may be a target of HIV/SIV. Conclusions: In the present study, we used sRNA sequencing to provide a holistic understanding of the repertoire of circulating exmiRNAs and their association with extracellular particles, such as EVs and ECs. Our data also showed that SIV infection altered the profile of the miRNAome of EVs and revealed that miR-128-3p may be a potential target of HIV/SIV. The significant decrease in miR-128-3p in HIV-infected humans and in SIV-infected RMs may indicate disease progression. Our study has important implications for the development of biomarker approaches for various types of cancer, cardiovascular diseases, organ injury, and HIV based on the capture and analysis of circulating exmiRNAs.
Collapse
Affiliation(s)
- Steven Kopcho
- Department of Pharmacology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794-8651, USA
| | - Marina McDew-White
- Host Pathogen Interaction Program, Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227-5302, USA
| | - Wasifa Naushad
- Department of Pathology, Microbiology, and Immunology, New York Medical College, Valhalla, NY 10595-1524, USA
| | - Mahesh Mohan
- Host Pathogen Interaction Program, Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227-5302, USA
| | - Chioma M. Okeoma
- Department of Pathology, Microbiology, and Immunology, New York Medical College, Valhalla, NY 10595-1524, USA
- Lovelace Biomedical Institute, Albuquerque, NM 87108-5127, USA
| |
Collapse
|
41
|
Nikoloff J, Saucedo-Espinosa MA, Dittrich PS. Microfluidic Platform for Profiling of Extracellular Vesicles from Single Breast Cancer Cells. Anal Chem 2023; 95:1933-1939. [PMID: 36608325 PMCID: PMC9878503 DOI: 10.1021/acs.analchem.2c04106] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 12/16/2022] [Indexed: 01/07/2023]
Abstract
Extracellular vesicles (EVs) are considered as valuable biomarkers to discriminate healthy from diseased cells such as cancer. Passing cytosolic and plasma membranes before their release, EVs inherit the biochemical properties of the cell. Here, we determine protein profiles of single EVs to understand how much they represent their cell of origin. We use a microfluidic platform which allows to immobilize EVs from completely isolated single cells, reducing heterogeneity of EVs as strongly seen in cell populations. After immunostaining, we employ four-color total internal reflection fluorescence microscopy to enumerate EVs and determine their biochemical fingerprint encoded in membranous or cytosolic proteins. Analyzing single cells derived from pleural effusions of two different human adenocarcinoma as well as from human embryonic kidney (SkBr3, MCF-7 and HEK293, respectively), we observed that a single cell secretes enough EVs to extract the respective tissue fingerprint. We show that overexpressed integral plasma membrane proteins are also found in EV membranes, which together with populations of colocalized proteins, provide a cell-specific, characteristic pattern. Our method highlights the potential of EVs as a diagnostic marker and can be directly employed for fundamental studies of EV biogenesis.
Collapse
Affiliation(s)
- Jonas
M. Nikoloff
- Department of Biosystems
Science and Engineering, ETH Zurich, CH-4058 Basel, Switzerland
| | | | - Petra S. Dittrich
- Department of Biosystems
Science and Engineering, ETH Zurich, CH-4058 Basel, Switzerland
| |
Collapse
|
42
|
Ge Y, Ye T, Fu S, Jiang X, Song H, Liu B, Wang G, Wang J. Research progress of extracellular vesicles as biomarkers in immunotherapy for non-small cell lung cancer. Front Immunol 2023; 14:1114041. [PMID: 37153619 PMCID: PMC10162406 DOI: 10.3389/fimmu.2023.1114041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 04/07/2023] [Indexed: 05/10/2023] Open
Abstract
Lung cancer is one of the most severe forms of malignancy and a leading cause of cancer-related death worldwide, of which non-small cell lung cancer (NSCLC) is the most primary type observed in the clinic. NSCLC is mainly treated with surgery, radiotherapy, and chemotherapy. Additionally, targeted therapy and immunotherapy have also shown promising results. Several immunotherapies, including immune checkpoint inhibitors, have been developed for clinical use and have benefited patients with NSCLC. However, immunotherapy faces several challenges like poor response and unknown effective population. It is essential to identify novel predictive markers to further advance precision immunotherapy for NSCLC. Extracellular vesicles (EVs) present an important research direction. In this review, we focus on the role of EVs as a biomarker in NSCLC immunotherapy considering various perspectives, including the definition and properties of EVs, their role as biomarkers in current NSCLC immunotherapy, and different EV components as biomarkers in NSCLC immunotherapy research. We describe the cross-talk between the role of EVs as biomarkers and novel technical approaches or research concepts in NSCLC immunotherapy, such as neoadjuvants, multi-omics analysis, and the tumour microenvironment. This review will provide a reference for future research to improve the benefits of immunotherapy for patients with NSCLC.
Collapse
Affiliation(s)
- Yang Ge
- Graduate School, Anhui University of Chinese Medicine, Hefei, China
| | - Ting Ye
- Graduate School, Anhui University of Chinese Medicine, Hefei, China
| | - Siyun Fu
- Department of Cellular and Molecular Biology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Xiaoying Jiang
- Department of Science and Technology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Hang Song
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Bin Liu
- Department of Cellular and Molecular Biology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
- *Correspondence: Bin Liu, ; Guoquan Wang, ; Jinghui Wang,
| | - Guoquan Wang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
- *Correspondence: Bin Liu, ; Guoquan Wang, ; Jinghui Wang,
| | - Jinghui Wang
- Department of Cellular and Molecular Biology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
- *Correspondence: Bin Liu, ; Guoquan Wang, ; Jinghui Wang,
| |
Collapse
|
43
|
Cheng P, Wang X, Liu Q, Yang T, Qu H, Zhou H. Extracellular vesicles mediate biological information delivery: A double-edged sword in cardiac remodeling after myocardial infarction. Front Pharmacol 2023; 14:1067992. [PMID: 36909157 PMCID: PMC9992194 DOI: 10.3389/fphar.2023.1067992] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 02/13/2023] [Indexed: 02/24/2023] Open
Abstract
Acute myocardial infarction (AMI) is a severe ischemic disease with high morbidity and mortality worldwide. Maladaptive cardiac remodeling is a series of abnormalities in cardiac structure and function that occurs following myocardial infarction (MI). The pathophysiology of this process can be separated into two distinct phases: the initial inflammatory response, and the subsequent longer-term scar revision that includes the regression of inflammation, neovascularization, and fibrotic scar formation. Extracellular vesicles are nano-sized lipid bilayer vesicles released into the extracellular environment by eukaryotic cells, containing bioinformatic transmitters which are essential mediators of intercellular communication. EVs of different cellular origins play an essential role in cardiac remodeling after myocardial infarction. In this review, we first introduce the pathophysiology of post-infarction cardiac remodeling, as well as the biogenesis, classification, delivery, and functions of EVs. Then, we explore the dual role of these small molecule transmitters delivered by EVs in post-infarction cardiac remodeling, including the double-edged sword of pro-and anti-inflammation, and pro-and anti-fibrosis, which is significant for post-infarction cardiac repair. Finally, we discuss the pharmacological and engineered targeting of EVs for promoting heart repair after MI, thus revealing the potential value of targeted modulation of EVs and its use as a drug delivery vehicle in the therapeutic process of post-infarction cardiac remodeling.
Collapse
Affiliation(s)
- Peipei Cheng
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xinting Wang
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qian Liu
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tao Yang
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huiyan Qu
- Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Cardiovascular Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hua Zhou
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Cardiovascular Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
44
|
Iskrzak J, Zygmunciak P, Misiewicz-Krzemińska I, Puła B. Extracellular Vesicles in Multiple Myeloma-Cracking the Code to a Better Understanding of the Disease. Cancers (Basel) 2022; 14:cancers14225575. [PMID: 36428668 PMCID: PMC9688731 DOI: 10.3390/cancers14225575] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Multiple myeloma (MM) is a plasma cell-derived malignancy that stands for around 1.5% of newly discovered cancer cases. Despite constantly improving treatment methods, the disease is incurable with over 13,000 deaths in the US and over 30,000 in Europe. Recent studies suggest that extracellular vesicles (EVs) might play a significant role in the pathogenesis and evolution of MM. Further investigation of their role could prove to be beneficial in establishing new therapies and hence, improve the prognosis of MM patients. What is more, EVs might serve as novel markers in diagnosing and monitoring the disease. Great advancements concerning the position of EVs in the pathophysiology of MM have recently been shown in research and in this review, we would like to delve into the still expanding state of knowledge.
Collapse
Affiliation(s)
- Justyna Iskrzak
- Medical University of Warsaw, 02-091 Warsaw, Poland
- Institute of Hematology and Transfusion Medicine, Indira Gandhi Str. 14, 02-776 Warsaw, Poland
| | - Przemysław Zygmunciak
- Medical University of Warsaw, 02-091 Warsaw, Poland
- Institute of Hematology and Transfusion Medicine, Indira Gandhi Str. 14, 02-776 Warsaw, Poland
| | - Irena Misiewicz-Krzemińska
- Department of Experimental Hematology, Institute of Hematology and Transfusion Medicine, Chocimska Str. 5, 00-791 Warsaw, Poland
| | - Bartosz Puła
- Department of Hematology, Institute of Hematology and Transfusion Medicine, Indira Gandhi Str. 14, 02-776 Warsaw, Poland
- Correspondence: ; Tel.: +48-223-496-302; Fax: +48-223-496-335
| |
Collapse
|
45
|
Negrete-García MC, de Jesús Ramos-Abundis J, Alvarado-Vasquez N, Montes-Martínez E, Montaño M, Ramos C, Sommer B. Exosomal Micro-RNAs as Intercellular Communicators in Idiopathic Pulmonary Fibrosis. Int J Mol Sci 2022; 23:11047. [PMID: 36232350 PMCID: PMC9569972 DOI: 10.3390/ijms231911047] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/09/2022] [Accepted: 09/14/2022] [Indexed: 12/12/2022] Open
Abstract
Communication between neighboring or distant cells is made through a complex network that includes extracellular vesicles (EVs). Exosomes, which are a subgroup of EVs, are released from most cell types and have been found in biological fluids such as urine, plasma, and airway secretions like bronchoalveolar lavage (BAL), nasal lavage, saliva, and sputum. Mainly, the cargo exosomes are enriched with mRNAs and microRNAs (miRNAs), which can be transferred to a recipient cell consequently modifying and redirecting its biological function. The effects of miRNAs derive from their role as gene expression regulators by repressing or degrading their target mRNAs. Nowadays, various types of research are focused on evaluating the potential of exosomal miRNAs as biomarkers for the prognosis and diagnosis of different pathologies. Nevertheless, there are few reports on their role in the pathophysiology of idiopathic pulmonary fibrosis (IPF), a chronic lung disease characterized by progressive lung scarring with no cure. In this review, we focus on the role and effect of exosomal miRNAs as intercellular communicators in the onset and progression of IPF, as well as discussing their potential utility as therapeutic agents for the treatment of this disease.
Collapse
Affiliation(s)
- María Cristina Negrete-García
- Molecular Biology Laboratory, Department of Research in Pulmonary Fibrosis, National Institute of Respiratory Diseases “Ismael Cosío Villegas”, Calzada de Tlalpan 4502, Col. Sección XVI, Mexico City 14080, Mexico
| | - Javier de Jesús Ramos-Abundis
- Molecular Biology Laboratory, Department of Research in Pulmonary Fibrosis, National Institute of Respiratory Diseases “Ismael Cosío Villegas”, Calzada de Tlalpan 4502, Col. Sección XVI, Mexico City 14080, Mexico
- Higher School of Medicine Instituto Politécnico Nacional, Salvador Díaz Mirón esquina Plan de San Luis S/N, Miguel Hidalgo, Casco de Santo Tomás, Mexico City 11340, Mexico
| | - Noé Alvarado-Vasquez
- Biochemistry Department, National Institute of Respiratory Diseases “Ismael Cosío Villegas”, Calzada de Tlalpan 4502, Col. Sección XVI, Mexico City 14080, Mexico
| | - Eduardo Montes-Martínez
- Molecular Biology Laboratory, Department of Research in Pulmonary Fibrosis, National Institute of Respiratory Diseases “Ismael Cosío Villegas”, Calzada de Tlalpan 4502, Col. Sección XVI, Mexico City 14080, Mexico
| | - Martha Montaño
- Cell Biology Laboratory, Department of Research in Pulmonary Fibrosis, National Institute of Respiratory Diseases “Ismael Cosío Villegas”, Calzada de Tlalpan 4502, Col. Sección XVI, Mexico City 14080, Mexico
| | - Carlos Ramos
- Cell Biology Laboratory, Department of Research in Pulmonary Fibrosis, National Institute of Respiratory Diseases “Ismael Cosío Villegas”, Calzada de Tlalpan 4502, Col. Sección XVI, Mexico City 14080, Mexico
| | - Bettina Sommer
- Bronchial Hyperreactivity Research Department, National Institute of Respiratory Diseases “Ismael Cosío Villegas” Calzada de Tlalpan 4502, Col. Sección XVI, Mexico City 14080, Mexico
| |
Collapse
|
46
|
Kaddour H, McDew-White M, Madeira MM, Tranquille MA, Tsirka SE, Mohan M, Okeoma CM. Chronic delta-9-tetrahydrocannabinol (THC) treatment counteracts SIV-induced modulation of proinflammatory microRNA cargo in basal ganglia-derived extracellular vesicles. J Neuroinflammation 2022; 19:225. [PMID: 36096938 PMCID: PMC9469539 DOI: 10.1186/s12974-022-02586-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 08/24/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Early invasion of the central nervous system (CNS) by human immunodeficiency virus (HIV) (Gray et al. in Brain Pathol 6:1-15, 1996; An et al. in Ann Neurol 40:611-6172, 1996), results in neuroinflammation, potentially through extracellular vesicles (EVs) and their micro RNAs (miRNA) cargoes (Sharma et al. in FASEB J 32:5174-5185, 2018; Hu et al. in Cell Death Dis 3:e381, 2012). Although the basal ganglia (BG) is a major target and reservoir of HIV in the CNS (Chaganti et al. in Aids 33:1843-1852, 2019; Mintzopoulos et al. in Magn Reson Med 81:2896-2904, 2019), whether BG produces EVs and the effect of HIV and/or the phytocannabinoid-delta-9-tetrahydrocannabinol (THC) on BG-EVs and HIV neuropathogenesis remain unknown. METHODS We used the simian immunodeficiency virus (SIV) model of HIV and THC treatment in rhesus macaques (Molina et al. in AIDS Res Hum Retroviruses 27:585-592, 2011) to demonstrate for the first time that BG contains EVs (BG-EVs), and that BG-EVs cargo and function are modulated by SIV and THC. We also used primary astrocytes from the brains of wild type (WT) and CX3CR1+/GFP mice to investigate the significance of BG-EVs in CNS cells. RESULTS Significant changes in BG-EV-associated miRNA specific to SIV infection and THC treatment were observed. BG-EVs from SIV-infected rhesus macaques (SIV EVs) contained 11 significantly downregulated miRNAs. Remarkably, intervention with THC led to significant upregulation of 37 miRNAs in BG-EVs (SIV-THC EVs). Most of these miRNAs are predicted to regulate pathways related to inflammation/immune regulation, TLR signaling, Neurotrophin TRK receptor signaling, and cell death/response. BG-EVs activated WT and CX3CR1+/GFP astrocytes and altered the expression of CD40, TNFα, MMP-2, and MMP-2 gene products in primary mouse astrocytes in an EV and CX3CR1 dependent manners. CONCLUSIONS Our findings reveal a role for BG-EVs as a vehicle with potential to disseminate HIV- and THC-induced changes within the CNS.
Collapse
Affiliation(s)
- Hussein Kaddour
- Department of Pharmacology, Stony Brook University Renaissance School of Medicine, Stony Brook, NY 11794-8651 USA
- Present Address: Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591 USA
| | - Marina McDew-White
- Host Pathogen Interaction Program, Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227-5302 USA
| | - Miguel M. Madeira
- Department of Pharmacology, Stony Brook University Renaissance School of Medicine, Stony Brook, NY 11794-8651 USA
| | - Malik A. Tranquille
- Department of Pharmacology, Stony Brook University Renaissance School of Medicine, Stony Brook, NY 11794-8651 USA
| | - Stella E. Tsirka
- Department of Pharmacology, Stony Brook University Renaissance School of Medicine, Stony Brook, NY 11794-8651 USA
| | - Mahesh Mohan
- Host Pathogen Interaction Program, Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227-5302 USA
| | - Chioma M. Okeoma
- Department of Pharmacology, Stony Brook University Renaissance School of Medicine, Stony Brook, NY 11794-8651 USA
- Department of Pathology, Microbiology, and Immunology, New York Medical College, Valhalla, NY 10595-1524 USA
| |
Collapse
|
47
|
Plant-derived extracellular vesicles as oral drug delivery carriers. J Control Release 2022; 350:389-400. [PMID: 36037973 DOI: 10.1016/j.jconrel.2022.08.046] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/21/2022]
Abstract
Oral administration is one of the most convenient and widely utilized methods of drug administration. However, many drugs were difficult to be administered orally due to their poor oral bioavailability. Designing a safe and effective oral drug delivery system is one of the basic strategies to overcome the poor oral bioavailability. Plant-derived extracellular vesicles (PDEVs) were found in a variety of plants and have similar physical and chemical properties to mammalian EVs. It has been proved that PDEVs can effectively encapsulate hydrophilic and hydrophobic drugs, remain stable in harsh gastrointestinal environments, and cross biological barriers to reach target tissues. Furthermore, the biological activity of PDEVs enables it to play a synergistic therapeutic role with drugs. In addition, the safety and high yield of PDEVs indicate their potential as oral drug carriers. In this review, we introduce the biogenesis, isolation, characterization and drug delivery methods of PDEVs, describe their stability, transport, delivery and therapeutic applications. Finally, the potential and challenges of PDEVs as drug carriers are discussed.
Collapse
|
48
|
Morales RTT, Ko J. Future of Digital Assays to Resolve Clinical Heterogeneity of Single Extracellular Vesicles. ACS NANO 2022; 16:11619-11645. [PMID: 35904433 PMCID: PMC10174080 DOI: 10.1021/acsnano.2c04337] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Extracellular vesicles (EVs) are complex lipid membrane vehicles with variable expressions of molecular cargo, composed of diverse subpopulations that participate in the intercellular signaling of biological responses in disease. EV-based liquid biopsies demonstrate invaluable clinical potential for overhauling current practices of disease management. Yet, EV heterogeneity is a major needle-in-a-haystack challenge to translate their use into clinical practice. In this review, existing digital assays will be discussed to analyze EVs at a single vesicle resolution, and future opportunities to optimize the throughput, multiplexing, and sensitivity of current digital EV assays will be highlighted. Furthermore, this review will outline the challenges and opportunities that impact the clinical translation of single EV technologies for disease diagnostics and treatment monitoring.
Collapse
Affiliation(s)
- Renee-Tyler T Morales
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Jina Ko
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
49
|
Fordjour FK, Guo C, Ai Y, Daaboul GG, Gould SJ. A shared, stochastic pathway mediates exosome protein budding along plasma and endosome membranes. J Biol Chem 2022; 298:102394. [PMID: 35988652 PMCID: PMC9512851 DOI: 10.1016/j.jbc.2022.102394] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 08/14/2022] [Accepted: 08/16/2022] [Indexed: 11/19/2022] Open
Abstract
Exosomes are small extracellular vesicles of ∼30 to 150 nm that are secreted by all cells, abundant in all biofluids, and play important roles in health and disease. However, details about the mechanism of exosome biogenesis are unclear. Here, we carried out a cargo-based analysis of exosome cargo protein biogenesis in which we identified the most highly enriched exosomal cargo proteins and then followed their biogenesis, trafficking, and exosomal secretion to test different hypotheses for how cells make exosomes. We show that exosome cargo proteins bud from cells (i) in exosome-sized vesicles regardless of whether they are localized to plasma or endosome membranes, (ii) ∼5-fold more efficiently when localized to the plasma membrane, (iii) ∼5-fold less efficiently when targeted to the endosome membrane, (iv) by a stochastic process that leads to ∼100-fold differences in their abundance from one exosome to another, and (v) independently of small GTPase Rab27a, the ESCRT complex–associated protein Alix, or the cargo protein CD63. Taken together, our results demonstrate that cells use a shared, stochastic mechanism to bud exosome cargoes along the spectrum of plasma and endosome membranes and far more efficiently from the plasma membrane than the endosome. Our observations also indicate that the pronounced variation in content between different exosome-sized vesicles is an inevitable consequence of a stochastic mechanism of small vesicle biogenesis, that the origin membrane of exosome-sized extracellular vesicles simply cannot be determined, and that most of what we currently know about exosomes has likely come from studies of plasma membrane-derived vesicles.
Collapse
Affiliation(s)
- Francis K Fordjour
- Department of Biological Chemistry, Johns Hopkins University, Baltimore, MD, USA
| | - Chenxu Guo
- Department of Biological Chemistry, Johns Hopkins University, Baltimore, MD, USA
| | - Yiwei Ai
- Department of Biological Chemistry, Johns Hopkins University, Baltimore, MD, USA
| | | | - Stephen J Gould
- Department of Biological Chemistry, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
50
|
Cui X, Fu Q, Wang X, Xia P, Cui X, Bai X, Lu Z. Molecular mechanisms and clinical applications of exosomes in prostate cancer. Biomark Res 2022; 10:56. [PMID: 35906674 PMCID: PMC9338661 DOI: 10.1186/s40364-022-00398-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/11/2022] [Indexed: 11/30/2022] Open
Abstract
Prostate cancer (PC) is a common tumor in men, and the incidence rate is high worldwide. Exosomes are nanosized vesicles released by all types of cells into multiple biological fluid types. These vesicles contribute to intercellular communication by delivering both nucleic acids and proteins to recipient cells. In recent years, many studies have explored the mechanisms by which exosomes mediate the epithelial-mesenchymal transition, angiogenesis, tumor microenvironment establishment, and drug resistance acquisition in PC, and the mechanisms that have been identified and the molecules involved have provided new perspectives for the possible discovery of novel diagnostic markers in PC. Furthermore, the excellent biophysical properties of exosomes, such as their high stability, high biocompatibility and ability to cross biological barriers, have made exosomes promising candidates for use in novel targeted drug delivery system development. In this review, we summarize the roles of exosomes in the growth and signal transmission in PC and show the promising future of exosome contributions to PC diagnostics and treatment.
Collapse
Affiliation(s)
- Xiaolin Cui
- Department of Clinical Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.,Department of Clinical Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China
| | - Qiang Fu
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Xueying Wang
- Department of Clinical Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.,Department of Clinical Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China
| | - Pengcheng Xia
- Department of Clinical Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.,Department of Clinical Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China
| | - Xianglun Cui
- Department of Clinical Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.,Department of Clinical Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China
| | - Xiaohui Bai
- Department of Clinical Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.,Department of Clinical Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China
| | - Zhiming Lu
- Department of Clinical Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China. .,Department of Clinical Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China.
| |
Collapse
|