1
|
Liu L, Ma C, Ji J, Gao R, Li D. Role of antidiarrheal agents nifuroxazide in antitumor multi‑target anticancer, multi‑mechanism anticancer drug (Review). Oncol Lett 2025; 29:260. [PMID: 40230426 PMCID: PMC11995686 DOI: 10.3892/ol.2025.15006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 01/07/2025] [Indexed: 04/16/2025] Open
Abstract
Nifuroxazide (NFZ) is an antimicrobial drug, which has been found to be a promising antitumor agent in recent years. In addition to being a classic STAT3 inhibitor, NFZ can also act on IL-6 and exert an anti-tumor role through inflammatory factor pathways. It can also bind to target proteins of aldehyde dehydrogenase 1, one of the families of E-twenty-six transcription factors and ubiquitin-specific protease 21 to play an anti-tumor role in different pathways. NFZ is able to act on the tumor cell microenvironment to inhibit tumor angiogenesis and tumor cell migration, enhance tumor immune cells, increase the cytotoxicity of tumor cells and enhance the anti-tumor effect of other drugs. Furthermore, it has high safety with few toxic side effects. The anti-tumor mechanisms of NFZ were described in the current review, aiming to provide insight and a reference for future studies promoting the implementation of NFZ as an anti-tumor drug in the clinic.
Collapse
Affiliation(s)
- Liping Liu
- Oncology Department, Qingdao Endocrine and Diabetes Hospital, Qingdao, Shandong 266000, P.R. China
| | - Chengshan Ma
- Department of Orthopedic Surgery, Affiliated Hospital of Shandong First Medical University, Jinan, Shandong 250000, P.R. China
| | - Jinfeng Ji
- Oncology Department, Qingdao Endocrine and Diabetes Hospital, Qingdao, Shandong 266000, P.R. China
| | - Rong Gao
- Oncology Department, Qingdao Endocrine and Diabetes Hospital, Qingdao, Shandong 266000, P.R. China
| | - Deliang Li
- Emergency Department, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266100, P.R. China
| |
Collapse
|
2
|
Li Z, LoBue A, Heuser SK, Li J, Engelhardt E, Papapetropoulos A, Patel HH, Lilley E, Ferdinandy P, Schulz R, Cortese-Krott MM. Best practices for blood collection and anaesthesia in mice: Selection, application and reporting. Br J Pharmacol 2025; 182:2337-2353. [PMID: 40234101 DOI: 10.1111/bph.70029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Accepted: 02/27/2025] [Indexed: 04/17/2025] Open
Abstract
Blood collection in mice is a common procedure in biomedical research. The choice of blood collection method and the need for analgesia and/or anaesthesia depend on multiple factors, including the experimental setup, animal welfare considerations and the intended downstream analyses. This minireview describes key non-surgical and surgical blood collection techniques, the appropriate use of analgesia and anaesthesia, and the best practice for documentation and adherence to reporting standards in animal studies. We here provide a table summarising collection procedures; a table listing animal welfare guidelines from multiple countries; a table describing the most common analgesics and anaesthetics, with doses and route of administration; and a table outlining key points for reporting blood collection, anaesthesia and analgesia protocols. A decision chart is also included to assist in selecting the most suitable method. Ultimately, with this minireview, we aim to promote standardised practices, improve data reproducibility, and support ethical animal research.
Collapse
Affiliation(s)
- Zhixin Li
- Myocardial Infarction Research Laboratory, Department of Cardiology, Pulmonology, and Angiology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Anthea LoBue
- Myocardial Infarction Research Laboratory, Department of Cardiology, Pulmonology, and Angiology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Sophia K Heuser
- Myocardial Infarction Research Laboratory, Department of Cardiology, Pulmonology, and Angiology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Junjie Li
- Myocardial Infarction Research Laboratory, Department of Cardiology, Pulmonology, and Angiology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Eva Engelhardt
- Central Institution for Animal Research and Scientific Animal Welfare (ZETT), Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Andreas Papapetropoulos
- Laboratory of Pharmacology, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
- Clinical Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Hemal H Patel
- Department of Anesthesiology, University of California, San Diego, California, USA
- VA San Diego Healthcare System, University of California, San Diego, USA
| | - Elliot Lilley
- National Centre for the Replacement, Reduction and Refinement of Animals in Research, NC3Rs, London, UK
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
- Center for Pharmacology and Drug Research and Development, Semmelweis University, Budapest, Hungary
| | - Rainer Schulz
- Institute of Physiology, University of Giessen, Giessen, Germany
| | - Miriam M Cortese-Krott
- Myocardial Infarction Research Laboratory, Department of Cardiology, Pulmonology, and Angiology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- CARID, Cardiovascular Research Institute Düsseldorf, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
3
|
Nielsen G, Gondim DD, Cave MC, Heiger-Bernays WJ, Webster TF, Schlezinger JJ. Perfluorooctanoic acid increases serum cholesterol in a PPARα-dependent manner in female mice. Arch Toxicol 2025; 99:2087-2105. [PMID: 40021516 DOI: 10.1007/s00204-025-03984-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 02/05/2025] [Indexed: 03/03/2025]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a large group of persistent chemicals that are pervasive in the environment leading to widespread exposure for humans. Perfluorooctanoic acid (PFOA), one of the most commonly measured PFAS in people, disrupts liver and serum lipid homeostasis as shown in animal toxicity and human epidemiological studies. We tested the hypothesis that the effects of PFOA exposure in mice expressing mouse PPARα (mPPARα) are driven largely through PPARα-dependent mechanisms while non-PPARα dependent mechanisms will be more apparent in mice expressing human PPARα (hPPARα). Female and male mPPARα, hPPARα, and PPARα null mice were exposed to PFOA (0.5, 1.4 or 6.2 mg PFOA/L) via drinking water for 14 weeks. Concurrently, mice consumed an American diet containing human diet-relevant amounts of fat and cholesterol. Here, we focused on the effects in female mice, given the dearth of data reported on PFAS-induced effects in females. Increasing the duration of PFOA exposure reduced weight gain in all genotypes of female mice while end-of-study body fat was lower in PFOA exposed hPPARα and PPARα null mice. Serum cholesterol, but not triacylglyceride, concentrations were increased by PFOA exposure in a PPARα-dependent manner. Hepatic triacylglycerides were higher in vehicle-exposed mPPARα and PPARα null mice than hPPARα mice, and PFOA significantly reduced concentrations in mPPARα and PPARα null mice only. In contrast, PFOA increased hepatic cholesterol content in a PPARα-dependent manner. Changes in liver and serum cholesterol may be explained by a strong, PPARα-dependent downregulation of Cyp7a1 expression. PFOA significantly increased PPARα target gene expression in mPPARα mice. Other nuclear receptors were examined: CAR target gene expression was only induced by PFOA in hPPARα and PPARα null mice. PXR target gene expression was induced by PFOA in all genotypes. Results were similar in male mice with two exceptions: (1) vehicle-exposed male mice of all genotypes were equally susceptible to diet-induced hepatic steatosis; (2) male mice drank less water, resulting in lower serum PFOA levels, which may explain the less significant changes in lipid endpoints. Overall, our results show that PFOA modifies triacylglyceride and cholesterol homeostasis independently and that PPARα plays an important role in PFOA-induced increases in liver and serum cholesterol.
Collapse
Affiliation(s)
- G Nielsen
- Department of Environmental Health, School of Public Heath, Boston University, Boston, MA, USA
| | - D D Gondim
- Division of Gastroenterology, Hepatology and Nutrition, University of Louisville, Louisville, KY, USA
| | - M C Cave
- Division of Gastroenterology, Hepatology and Nutrition, University of Louisville, Louisville, KY, USA
| | - W J Heiger-Bernays
- Department of Environmental Health, School of Public Heath, Boston University, Boston, MA, USA
| | - T F Webster
- Department of Environmental Health, School of Public Heath, Boston University, Boston, MA, USA
| | - J J Schlezinger
- Department of Environmental Health, School of Public Heath, Boston University, Boston, MA, USA.
| |
Collapse
|
4
|
Wang B, Li Y, Ouyang Q, Xu MT, Wang YY, Fu SJ, Liu WQ, Liu XT, Ling H, Zhang X, Xiu RJ, Liu MM. Strain- and sex-dependent variability in hepatic microcirculation and liver function in mice. World J Gastroenterol 2025; 31:101058. [PMID: 40309233 PMCID: PMC12038547 DOI: 10.3748/wjg.v31.i15.101058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 02/02/2025] [Accepted: 03/26/2025] [Indexed: 04/18/2025] Open
Abstract
BACKGROUND The integrity and functionality of the hepatic microcirculation are essential for maintaining liver health, which is influenced by sex and genetic background. Understanding these variations is crucial for addressing disparities in liver disease outcomes. AIM To investigate the sexual dimorphism and genetic heterogeneity of liver microcirculatory function in mice. METHODS We assessed hepatic microhemodynamics in BALB/c, C57BL/6J, and KM mouse strains using laser Doppler flowmetry and wavelet analysis. We analyzed the serum levels of alanine transaminase, glutamic acid aminotransferase, total bile acid, total protein, alkaline phosphatase, and glucose. Histological and immunohistochemical staining were employed to quantify microvascular density and the expression levels of cluster of differentiation (CD) 31, and estrogen receptor α, and β. Statistical analyses, including the Mantel test and Pearson correlation, were conducted to determine the relationships among hepatic function, microcirculation, and marcocirculation between different sexes and across genetic backgrounds. RESULTS We identified sex-based disparities in hepatic microhemodynamics across all strains, with males exhibiting higher microvascular perfusion and erythrocyte concentration, but lower blood velocity. Strain-specific differences were evident, particularly in the endothelial oscillatory characteristics of the erythrocyte concentration. No sex-dependent differences in estrogen receptor expression were observed, while significant variations in CD31 expression and microvascular density were observed. The correlations highlighted relationships between hepatic microhemodynamics and liver function indicators. CONCLUSION Our findings indicate the influence of genetic and sex differences on hepatic microcirculation and liver function, highlighting the necessity of incorporating both genetic background and sex into hepatic physiology studies and potential liver disease management strategies.
Collapse
Affiliation(s)
- Bing Wang
- Institute of Microcirculation, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
- International Center of Microvascular Medicine, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Yuan Li
- Institute of Microcirculation, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
- International Center of Microvascular Medicine, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Qin Ouyang
- Department of Pathology, Wangjing Hospital, China Academy of Chinese Medical Science, Beijing 100102, China
| | - Meng-Ting Xu
- Institute of Microcirculation, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
- International Center of Microvascular Medicine, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Ying-Yu Wang
- Institute of Microcirculation, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
- International Center of Microvascular Medicine, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Sun-Jing Fu
- Department of Cardiology, Peking University China-Japan Friendship School of Clinical Medicine, Beijing 100029, China
| | - Wei-Qi Liu
- Institute of Microcirculation, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
- International Center of Microvascular Medicine, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Xue-Ting Liu
- Institute of Microcirculation, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
- International Center of Microvascular Medicine, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Hao Ling
- Department of Radiology, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha 410004, Hunan Province, China
| | - Xu Zhang
- Laboratory of Electron Microscopy, Ultrastructural Pathology Center, Peking University First Hospital, Beijing 100034, China
| | - Rui-Juan Xiu
- Institute of Microcirculation, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
- International Center of Microvascular Medicine, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Ming-Ming Liu
- Institute of Microcirculation, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
- International Center of Microvascular Medicine, Chinese Academy of Medical Sciences, Beijing 100005, China
- Diabetes Research Center, Chinese Academy of Medical Sciences, Beijing 100005, China
| |
Collapse
|
5
|
Nie J, Eom K, AlGhosain HM, Neifert A, Cherian A, Gerbaka GM, Ma KY, Liu T, Lee J. Intravitreally Injected Plasmonic Nanorods Activate Bipolar Cells with Patterned Near-Infrared Laser Projection. ACS NANO 2025; 19:11823-11840. [PMID: 40110744 PMCID: PMC12105531 DOI: 10.1021/acsnano.4c14061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Retinal prostheses aim to restore vision in individuals affected by degenerative conditions, such as age-related macular degeneration and retinitis pigmentosa. Traditional approaches, including implantable electrode arrays and optogenetics, often require invasive surgery or genetic modification and face limitations in spatial resolution and visual field size. While emerging nanoparticle-based methods offer minimally invasive solutions, some of them rely on intense visible light, which may interfere with residual vision. Plasmonic gold nanorods (AuNRs), tuned to absorb near-infrared (NIR) light, provide a promising alternative by enabling photothermal neuromodulation without affecting the remaining sight. However, effectively utilizing photothermal stimulation with patterned laser projection for precise neural activation remains underexplored. In this study, we introduce a less invasive approach using intravitreally injected anti-Thy1 antibody-conjugated AuNRs to primarily activate bipolar cells─a target traditionally reached through more invasive subretinal injections. This technique allows for extensive retinal coverage and facilitates high-resolution visual restoration via patterned NIR stimulation. Following injection, a scanning NIR laser beam projected in a square pattern with a spot size of 20 μm consistently triggered highly localized neuronal activation, specifically stimulating bipolar cells through temperature-sensitive ion channels. In vivo, this patterned stimulation evoked electrocorticogram responses in the visual cortex of both wild-type and fully blind mouse models without inducing systemic toxicity or significant retinal damage. Our innovative approach promises significant advancements in spatial resolution and broad applicability, offering a precise, customizable, and less invasive method to restore vision.
Collapse
Affiliation(s)
- Jiarui Nie
- School of Engineering, Brown University, Providence, 02912, RI, USA
- Carney Institute for Brain Science, Brown University, Providence, 02906, RI, USA
- Institute for Biology, Engineering and Medicine, Brown University, Providence, 02912, RI, USA
| | - Kyungsik Eom
- School of Engineering, Brown University, Providence, 02912, RI, USA
- Department of Electronics Engineering, Pusan National University, Busan, 43241, South Korea
| | - Hafithe M. AlGhosain
- School of Engineering, Brown University, Providence, 02912, RI, USA
- Institute for Biology, Engineering and Medicine, Brown University, Providence, 02912, RI, USA
| | - Alexander Neifert
- Institute for Biology, Engineering and Medicine, Brown University, Providence, 02912, RI, USA
| | - Aaron Cherian
- Institute for Biology, Engineering and Medicine, Brown University, Providence, 02912, RI, USA
| | - Gaia Marie Gerbaka
- Institute for Biology, Engineering and Medicine, Brown University, Providence, 02912, RI, USA
| | - Kristine Y. Ma
- Institute for Biology, Engineering and Medicine, Brown University, Providence, 02912, RI, USA
| | - Tao Liu
- Department of Biostatistics, Brown University School of Public Health, Providence, 02912 RI, USA
| | - Jonghwan Lee
- School of Engineering, Brown University, Providence, 02912, RI, USA
- Carney Institute for Brain Science, Brown University, Providence, 02906, RI, USA
- Institute for Biology, Engineering and Medicine, Brown University, Providence, 02912, RI, USA
- Center on the Biology of Aging, Brown University, Providence, 02912, RI, USA
- Center for Alternative to Animals in Testing, Brown University, Providence, 02912, RI, USA
| |
Collapse
|
6
|
Illa AC, Hvid H, Elm T, Frederiksen CA, Bangshof LF, Danielsen DF, Skov S, Dan Ley C. From early development to maturity: a phenotypic analysis of the Townes sickle cell disease mice. Biol Open 2025; 14:bio061828. [PMID: 39912492 PMCID: PMC11832121 DOI: 10.1242/bio.061828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 01/07/2025] [Indexed: 02/07/2025] Open
Abstract
Well-characterised mouse models of disease may provide valuable insights into pathophysiology. This study characterises the Townes mouse model of sickle cell disease (SCD) and establishes a time window in which the disease is present but does not progress significantly in terms of severity. We examined Townes mice with the HbAA, HbAS, and HbSS genotypes from young (4 weeks) to mature (5 months) stages of life to assess the disease state at different ages and any progression. We conducted blood tests, histological organ damage evaluations, and metabolic assessments to identify a suitable time frame for study based on welfare considerations. Townes HbSS mice displayed key SCD features such as anaemia, haemolysis, thromboinflammation and organ pathology. Notably, these manifestations remained relatively stable over the study period, indicating a stable phase suitable for conducting intervention studies. Mice with HbAS and HbAA genotypes served as comparative controls, showing minimal to no pathology throughout. These findings are valuable for future research on SCD and may ultimately lead to the development of more effective treatments for this debilitating disease.
Collapse
Affiliation(s)
- Ariadna Carol Illa
- Rare Disease Research, Global Drug Discovery, Novo Nordisk A/S, 2760 Måløv, Denmark
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg C, Denmark
| | - Henning Hvid
- Global Discovery & Development Sciences, Global Drug Discovery, Novo Nordisk A/S, 2760 Måløv, Denmark
| | - Torben Elm
- Rare Disease Research, Global Drug Discovery, Novo Nordisk A/S, 2760 Måløv, Denmark
| | | | | | | | - Søren Skov
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg C, Denmark
| | - Carsten Dan Ley
- Rare Disease Research, Global Drug Discovery, Novo Nordisk A/S, 2760 Måløv, Denmark
| |
Collapse
|
7
|
Bromer F, Lodberg A, Eijken M, Andersen C, Poulsen M, Thomsen J, Brüel A. The Effect of Anti-Activin Receptor Type IIA and Type IIB Antibody on Muscle, Bone and Blood in Healthy and Osteosarcopenic Mice. J Cachexia Sarcopenia Muscle 2025; 16:e13718. [PMID: 39887865 PMCID: PMC11780395 DOI: 10.1002/jcsm.13718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 11/09/2024] [Accepted: 11/29/2024] [Indexed: 02/01/2025] Open
Abstract
BACKGROUND Anti-Activin Receptor Type IIA and Type IIB antibody (αActRIIA/IIB ab) is a recently developed drug class that targets the activin receptor signalling pathway. Inhibition of receptor ligands (activins, myostatin, growth differentiation factor 11, etc.) can lead to skeletal muscle hypertrophy, bone formation, and increased haematopoiesis. Despite the αActRIIA/IIB ab, bimagrumab, having progressed to clinical trials, two crucial questions about αActRIIA/IIB ab therapy remain: Does αActRIIA/IIB ab influence bone metabolism and bone strength similarly to its generic classmates (activin receptor-based ligand traps)? Does αActRIIA/IIB ab affect red blood cell parameters, thereby increasing the risk of thromboembolism, similar to its generic classmates? Therefore, the aim of the present study was to investigate the therapeutic potential of αActRIIA/IIB ab in a mouse model of concurrent sarcopenia and osteopenia and to investigate the effect on bone and haematopoiesis in more detail. METHODS In C57BL/6JRj mice, combined sarcopenia and osteopenia were induced locally by injecting botulinum toxin A into the right hindlimb, resulting in acute muscle paresis. Immediately after immobilization, mice received twice-weekly intraperitoneal injections with αActRIIA/IIB ab (10 mg/kg) for 21 days, after which they were sacrificed. Muscle mass, skeletal muscle fibre size and Smad2 expression were analysed in the rectus femoris and gastrocnemius muscles. Bone mass and bone microstructure were analysed in the trabecular bone at the distal femoral metaphysis, while the cortical bone was analysed at the femoral mid-diaphysis. In a substudy, the effect on haematopoiesis was explored 2 and 7 days after a single αActRIIA/IIB ab (30 mg/kg) injection in C57BL/6JRj mice. RESULTS αActRIIA/IIB ab caused a large increase in muscle mass in both healthy (+21%) and immobilized (sarcopenic and osteopenic) (+12%) mice. Furthermore, αActRIIA/IIB ab increased trabecular bone (bone volume fraction) for both healthy (+65%) and immobilized (+44%) mice. For cortical bone, αActRIIA/IIB ab caused a small, but significant, increase in bone area (+6%) for immobilized mice, but not for healthy mice. Treatment with αActRIIA/IIB ab did not change red blood cell count, haemoglobin concentration or mean cell volume after either 2 or 7 days. CONCLUSIONS Treatment with αActRIIA/IIB ab caused a significant increase in both skeletal muscle mass and bone parameters in both healthy and immobilized mice, suggesting a potential in the treatment of concurrent osteopenia and sarcopenia. Interestingly, the bone anabolic effect of the treatment was much more pronounced on trabecular bone than on cortical bone. There was no pronounced effect of short-term treatment on haematopoiesis.
Collapse
Affiliation(s)
| | - Andreas Lodberg
- Department of BiomedicineAarhus UniversityAarhusDenmark
- Department of Clinical MedicineAarhus UniversityAarhusDenmark
- Department of Endocrinology and Internal MedicineAarhus University HospitalAarhusDenmark
| | - Marco Eijken
- Department of Clinical MedicineAarhus UniversityAarhusDenmark
| | | | - Mathias Flensted Poulsen
- Department of BiomedicineAarhus UniversityAarhusDenmark
- Department of Clinical MedicineAarhus UniversityAarhusDenmark
- Department of Endocrinology and Internal MedicineAarhus University HospitalAarhusDenmark
| | | | | |
Collapse
|
8
|
Yu SH, Oh HR, Park YH, Hong HR, Kim HJ, Park J, Han Y, Ko SG, Shin EC, Kim TG, Cho HT, Pan JH, Shim YY, Reaney MJT, Cho TJ, Hong JY, Kim YJ, Han BK, Lee GJ, Lee K, Do SG, Kim JK. UG0712, A Ginsenoside Complex, Improved Endurance Performance and Changed Hepatic and Muscular Transcriptomic Signatures in C57BL/6N Male Mice. J Med Food 2025; 28:127-143. [PMID: 39579161 DOI: 10.1089/jmf.2024.k.0089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2024] Open
Abstract
Ginsenosides, active compounds derived from Panax ginseng, exhibit promising potential in enhancing physical performance. This study investigates the impact of UG0712 (UG), a novel ginsenoside compound, on endurance capacity, body weight, organ weights, blood parameters, and specific transcriptomic changes in liver and muscle tissues using a C57BL/6N mouse model. The mice received UGs orally at three doses: UG50 (50 mg/kg), UG100 (100 mg/kg), and UG200 (200 mg/kg) for a specified duration. Endurance capacity, physiological parameters, and transcriptome signatures in liver and muscle tissues were assessed. UG administration significantly improved time to exhaustion, with UG50 and UG200 showing substantial enhancements. Body and organ weights exhibited no notable differences, suggesting a lack of adverse effects. Biochemical markers, except for decreased creatine kinase levels in the UG100 group, showed no significant variations. Transcriptome analysis revealed limited group separation and dose-dependent patterns. The UG100 group displayed significant enrichment in lipid metabolism and muscle-related terms. Identified dose-dependent improvements in endurance capacity highlight UGs' potential as supplements. The absence of adverse effects on body and organ weights, along with positive effects on biochemical markers, supports their safety. Despite limited dose-dependent patterns in transcriptomic analyses, the UG100 group showcased significant enrichment in pathways related to muscle and lipid metabolism. These findings offer valuable insights for athletes and aging individuals seeking to enhance physical performance, warranting further exploration into UG effects' on molecular mechanisms.
Collapse
Affiliation(s)
- Su Hyun Yu
- Department of Food Regulatory Science, Korea University, Sejong, Republic of Korea
- Univera Co., Ltd., Cheonan, Republic of Korea
| | - Hea Ry Oh
- Department of Food Regulatory Science, Korea University, Sejong, Republic of Korea
- Naturetech, Jingcheon, Republic of Korea
| | - Yong Hyun Park
- Department of Food Regulatory Science, Korea University, Sejong, Republic of Korea
- Naturetech, Jingcheon, Republic of Korea
| | | | - Hyun Jin Kim
- Department of Food Regulatory Science, Korea University, Sejong, Republic of Korea
- Naturetech, Jingcheon, Republic of Korea
| | - Jinbong Park
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Yohan Han
- Department of Microbiology, Wonkwang University School of Medicine, Iksan, Republic of Korea
| | - Seong-Gyu Ko
- Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Eui Cheol Shin
- Department of GreenBio Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Tae Gyun Kim
- The Bioinformatix, Gwangmyeong, Republic of Korea
| | | | - Jeong Hoon Pan
- Department of Food and Nutrition, Chosun University, Gwangju, Republic of Korea
- The Basic Science Institute of Chosun University, Gwangju, Republic of Korea
| | - Youn Young Shim
- Department of Food and Biotechnology, Korea University, Sejong, Republic of Korea
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, Canada
| | - Martin J T Reaney
- Department of Food and Biotechnology, Korea University, Sejong, Republic of Korea
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, Canada
| | - Tae Jin Cho
- Department of Food and Biotechnology, Korea University, Sejong, Republic of Korea
| | - Ji Youn Hong
- Department of Food Regulatory Science, Korea University, Sejong, Republic of Korea
- Department of Food and Biotechnology, Korea University, Sejong, Republic of Korea
| | - Young Jun Kim
- Department of Food Regulatory Science, Korea University, Sejong, Republic of Korea
- Department of Food and Biotechnology, Korea University, Sejong, Republic of Korea
| | - Bok Kyung Han
- Department of Food Regulatory Science, Korea University, Sejong, Republic of Korea
- Department of Food and Biotechnology, Korea University, Sejong, Republic of Korea
| | - Geung-Joo Lee
- Department of Horticulture, Chungnam National University, Daejeon, Republic of Korea
| | - Kangwook Lee
- Department of Food and Biotechnology, Korea University, Sejong, Republic of Korea
| | | | - Jae Kyeom Kim
- Department of Food and Biotechnology, Korea University, Sejong, Republic of Korea
- Department of Behavioral Health and Nutrition, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
9
|
Pellegrino MR, Bindzus M, Kottom TJ, Ayyalasomayajula S, Yi ES, Limper AH. Preclinical and Toxicology Assessment of ISFP10, an Inhibitor of Fungal Phosphoglucomutase (PGM). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.07.631740. [PMID: 39829820 PMCID: PMC11741402 DOI: 10.1101/2025.01.07.631740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Background and Objective Previously, the novel small molecule ISFP10 has been shown to inhibit fungal phosphoglucomutase (PGM) activity in Aspergillus fumigatus and Pneumocystis spp. With 50-fold selectivity over the human PGM molecule due to the presence of a unique yet conserved cysteine residue present in a number pathogenic fungal PGMs, use of this compound may provide a novel broad-spectrum approach to treating fungal infections. Accordingly, we sought to determine the tolerability in test animals receiving this compound, as well as the potential antifungal activity of ISFP10 on cultures of the common fungal pathogens Candida albicans and Candida glabrata . Methods C57BL6 mice received once daily intraperitoneal (IP) injections of 100 mL of vehicle control (DMSO) or ISFP10 at a concentration of 10 mg/kg. Body weights were recorded daily for 7 days of treatment. On the final day, mice were weighed and euthanized. Postmortem blood collection was conducted via cardiac puncture and distributed to EDTA and lithium heparin tubes for complete blood count (CBC) and comprehensive blood chemistry panels, respectively. Liver, kidney, and lung tissue were also harvested and placed in 10% formalin for H&E staining and blinded histopathologic scoring. Lung samples were further analyzed for proinflammatory cytokines using enzyme-linked immunosorbent assays (ELISA) and quantitative PCR (qPCR). Furthermore, ISPF10 was tested for antifungal activity via 8-hour growth curve analysis in a concentration-dependent fashion against Candida albicans and Candida glabrata . Results There was no significant difference in the daily or final body weights of the mice receiving 10 mg/kg of ISFP10 compared to those of the vehicle control group. Extracellular matrix (ECM) transcripts for IL-6 and TNFα were statistically similar via qPCR. ELISA results of proinflammatory cytokines for IL-6 was not significant whereas TNFα levels in lung tissue from the ISFP10 treatment group were significantly reduced, indicating a potential anti-inflammatory effect of ISFP10 at this dosage. Overall, blood chemistry and CBC analysis revealed no overall significant differences between the two groups, except for increased neutrophil counts and decreased potassium levels in samples collected from ISFP10 treated animals compared to the vehicle control group. These laboratory abnormalities were not of clinical significance to the test animals. Blinded histopathological examination revealed no abnormalities or evidence of critical organ toxicity from all groups. Inhibition of C. albicans and C. glabrata culture growth by ISFP10 was concentration-dependent in YPD liquid media containing the ISFP10 compared to vehicle control. Conclusions Our preliminary testing of ISFP10 revealed no inherent safety or toxicology concerns within the observed parameters. These data further support significant culture suppressive activity against C. albicans and C. glabrata . Taken together, these observations of ISFP10 further indicate that targeting PGM might be a novel and viable therapeutic strategy for serious fungal infections. Key points An inhibitor specific to fungal PGM enzymes, termed ISFP10, was generally well tolerated when administered via intraperitoneal (IP) injection in mice. ISFP10 displays antifungal activity in a concentration-dependent manner against C. albicans and C. glabrata .
Collapse
|
10
|
Wang X, Xia H, Li T, Zuo Q, Wang Z, Yan K, Xu Z, Xue W, Sun G, Liu Z, Zhang Y. Minimalist Adjuvant-Free Nano-Vaccine Based on Antigen Self-Assembled Amyloid-Like Fibrils to Induce Potent Immune Response. Adv Healthc Mater 2025; 14:e2401625. [PMID: 39491532 DOI: 10.1002/adhm.202401625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 10/12/2024] [Indexed: 11/05/2024]
Abstract
The development of cancer vaccines is at the forefront of cancer immunotherapy. Most existing strategies to induce an efficient anti-tumor immune response rely on molecular adjuvants and the incorporation of complex synthetic vectors into vaccine formulations. In contrast, this study introduces a one-step engineering technique to assemble the model antigen, Ovalbumin (OVA), into amyloid aggregates, leveraging biomimetic folding and aggregation to create non-fibrillar OVA globular aggregates and OVA amyloid-like fibrils as single-component, adjuvant-free vaccines. Notably, the OVA amyloid-like fibrils induced stronger immune responses compared to the native form, as evidenced by robust humoral immune reactions and the establishment of immune memory. These enhanced responses can be attributed to the self-adjuvant effect of the unique assembled structure, which preserves antigenic epitopes, improves antigen stability, facilitates antigen internalization, prolongs retention at the injection site, enhances antigen trafficking to the lymphoid organs, and promotes increased secretion of antibodies and cytokines. Furthermore, the efficacy of the vaccine was validated in a high OVA-expressing tumor model, demonstrating the potential of OVA amyloid-like fibrils as an effective vaccine for cancer immunoprevention. This minimalist self-adjuvant vaccine strategy holds promising implications for cancer immunotherapy and can inform the design of other protein antigen-based vaccines.
Collapse
Affiliation(s)
- Xiang Wang
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China
| | - Haiyang Xia
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China
| | - Tiantian Li
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China
| | - Qinhua Zuo
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China
| | - Zhen Wang
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China
| | - Kangjian Yan
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China
| | - Zejun Xu
- College of Pharmacy, Jinan University, Guangzhou, 510630, China
- Bai Yun Shan Pharmaceutical General Factory, Guangzhou Bai Yun Shan Pharmaceutical Holdings Co.Ltd., Guangzhou, 510515, China
| | - Wei Xue
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China
| | - Guodong Sun
- Guangdong Provincial Key Laboratory of Spine and Spinal Cord Reconstruction, The Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Jinan University, Heyuan, 517000, China
| | - Zonghua Liu
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China
| | - Yi Zhang
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China
- Guangdong Provincial Key Laboratory of Spine and Spinal Cord Reconstruction, The Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Jinan University, Heyuan, 517000, China
| |
Collapse
|
11
|
Shin SW, Shim JH, Nam YH, Kim NW, Seo GJ, Nevedita M, Subha P, Nguyen QH, Jeong YS, Hong BN, Kang TH. Effects of Korean red ginseng on auditory, cognitive, and liver functions in a naturally aged mouse model. J Ginseng Res 2025; 49:71-79. [PMID: 39872287 PMCID: PMC11764134 DOI: 10.1016/j.jgr.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/08/2024] [Accepted: 10/13/2024] [Indexed: 01/30/2025] Open
Abstract
Background Korean Red Ginseng and ginsenosides have been studied for their efficacy against various diseases, including those related to aging. However, most aging studies use D-galactose to induce aging, which often does not accurately represent natural aging. This study aimed to verify improvements in auditory, cognitive, and liver function through administering red ginseng to an 18-month-old naturally aging mouse model. Methods Auditory function was assessed using Auditory Brainstem Response (ABR) and Auditory Middle Latency Response (AMLR). Cognitive function was evaluated electrophysiologically with P300 and mismatch negativity (MMN), and behaviorally using the Y-maze. Additionally, biochemical tests and histological analysis were conducted to assess liver function. The effects of red ginseng on gene expression regulation were also examined in the cochlea, auditory cortex, and liver, focusing on age-related disease processes. Results Red ginseng significantly decreased hearing thresholds and improved central auditory function. It also enhanced cognitive behavior and function in response to external stimulation. Furthermore, red ginseng regulated alkaline phosphatase (ALP), albumin (Alb), and total protein (TP) levels, notably decreasing aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels. Hematoxylin and eosin (H&E) staining of liver tissue showed significant improvement in fat droplets. These effects appear to be mediated by the regulation of aging-related genes Dec, c-Jun, Stat5b, and Lims2. Conclusion These results suggest that red ginseng improves auditory, cognitive, and liver functions in a naturally aged mouse model.
Collapse
Affiliation(s)
- Sung Woo Shin
- Department of Oriental Medicine Biotechnology, Graduate School of Biotechnology, Kyung Hee University, Global Campus, Yongin, Gyeonggi-do, Republic of Korea
| | - Ji Heon Shim
- Department of Oriental Medicine Biotechnology, Graduate School of Biotechnology, Kyung Hee University, Global Campus, Yongin, Gyeonggi-do, Republic of Korea
| | - Youn Hee Nam
- Department of Oriental Medicine Biotechnology, Graduate School of Biotechnology, Kyung Hee University, Global Campus, Yongin, Gyeonggi-do, Republic of Korea
- Invivotec Co., Ltd., Seongnam, Gyeonggi-do, Republic of Korea
| | - Na Woo Kim
- Department of Oriental Medicine Biotechnology, Graduate School of Biotechnology, Kyung Hee University, Global Campus, Yongin, Gyeonggi-do, Republic of Korea
- Invivotec Co., Ltd., Seongnam, Gyeonggi-do, Republic of Korea
| | - Gyeong Jin Seo
- Department of Oriental Medicine Biotechnology, Graduate School of Biotechnology, Kyung Hee University, Global Campus, Yongin, Gyeonggi-do, Republic of Korea
| | - Murughanantham Nevedita
- Department of Oriental Medicine Biotechnology, Graduate School of Biotechnology, Kyung Hee University, Global Campus, Yongin, Gyeonggi-do, Republic of Korea
| | - Pandian Subha
- Department of Oriental Medicine Biotechnology, Graduate School of Biotechnology, Kyung Hee University, Global Campus, Yongin, Gyeonggi-do, Republic of Korea
| | - Quy-Hoai Nguyen
- Department of Genetic Engineering, College of Life Sciences and Graduate School of Biotechnology, Kyung Hee University, Global Campus, Yongin, Gyeonggi-do, Republic of Korea
| | - Yong Su Jeong
- Department of Genetic Engineering, College of Life Sciences and Graduate School of Biotechnology, Kyung Hee University, Global Campus, Yongin, Gyeonggi-do, Republic of Korea
| | - Bin Na Hong
- Department of Oriental Medicine Biotechnology, Graduate School of Biotechnology, Kyung Hee University, Global Campus, Yongin, Gyeonggi-do, Republic of Korea
- Invivotec Co., Ltd., Seongnam, Gyeonggi-do, Republic of Korea
| | - Tong Ho Kang
- Department of Oriental Medicine Biotechnology, Graduate School of Biotechnology, Kyung Hee University, Global Campus, Yongin, Gyeonggi-do, Republic of Korea
| |
Collapse
|
12
|
Patel S, Patel S, Kotadiya A, Patel S, Shrimali B, Tank M, Patel T, Trivedi H, Kshirsagar S, Jain M. Comparative Analysis of the Effect of Sex and Age on the Hematological and Biochemical Profile of BALB/c and C57BL/6 Inbred Mice. JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE : JAALAS 2025; 64:132-145. [PMID: 40035280 PMCID: PMC11808370 DOI: 10.30802/aalas-jaalas-24-075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/12/2024] [Accepted: 10/22/2024] [Indexed: 03/05/2025]
Abstract
Mice are the most commonly used models of infectious disease, and disease in mice is similar to that of humans. As a consequence, standard hematology and biochemistry reference values in mice are essential to evaluate functional changes caused by experimental treatments, although very few data in the literature provide a comparative reference range. The aim of this investigation was to establish the reference intervals for major hematology and biochemistry analytes in 2 inbred mouse strains, BALB/c and C57BL/6, at 3 different age ranges. Parameters were assessed in 600 mice (300 male and 300 female) of BALB/c and C57BL/6 strains at 6 to 8 wk, 10 to 14 wk, and 6 to 9 mo of age. Reference intervals were calculated by nonparametric or robust methods according to sample size, and statistical analyses were performed to assess the changes in relation to sex, age, and strain. The data demonstrate that strain, sex, and age have significant effects on the hematologic and biochemical profiles of mice. Hemoglobin, Hct, MCH, MCHC, neutrophils, eosinophils, and ALP were found to be significantly greater in BALB/c mice. In contrast, WBC, lymphocytes, basophils, glucose, total protein, albumin, and urea were found to be significantly greater in C57BL/6 mice in all age ranges. Lymphocytes and ALP progressively decreased with age, while neutrophils increased with age in both strains. The study successfully defined and established reference intervals for hematologic and biochemical analytes in 2 inbred mouse strains at 3 different age ranges. The reference values reported here could be useful in characterizing the phenotype of experimental mice and assessing the changes caused by investigational treatments.
Collapse
Affiliation(s)
- Suresh Patel
- Animal Research Facility, Zydus Research Centre, Zydus Lifesciences Limited, Ahmedabad, India; and
| | - Satish Patel
- Animal Research Facility, Zydus Research Centre, Zydus Lifesciences Limited, Ahmedabad, India; and
| | - Ashvin Kotadiya
- Animal Research Facility, Zydus Research Centre, Zydus Lifesciences Limited, Ahmedabad, India; and
| | - Samir Patel
- Animal Research Facility, Zydus Research Centre, Zydus Lifesciences Limited, Ahmedabad, India; and
| | - Bhavesh Shrimali
- Animal Research Facility, Zydus Research Centre, Zydus Lifesciences Limited, Ahmedabad, India; and
| | - Mihir Tank
- Animal Research Facility, Zydus Research Centre, Zydus Lifesciences Limited, Ahmedabad, India; and
| | - Tushar Patel
- Department of Pharmacology and Toxicology, Zydus Research Centre, Zydus Lifesciences Limited, Ahmedabad, India
| | - Harshida Trivedi
- Department of Pharmacology and Toxicology, Zydus Research Centre, Zydus Lifesciences Limited, Ahmedabad, India
| | - Samadhan Kshirsagar
- Department of Pharmacology and Toxicology, Zydus Research Centre, Zydus Lifesciences Limited, Ahmedabad, India
| | - Mukul Jain
- Department of Pharmacology and Toxicology, Zydus Research Centre, Zydus Lifesciences Limited, Ahmedabad, India
| |
Collapse
|
13
|
Gargiulo S, Barone V, Bonente D, Tamborrino T, Inzalaco G, Gherardini L, Bertelli E, Chiariello M. Integrated Ultrasound Characterization of the Diet-Induced Obesity (DIO) Model in Young Adult c57bl/6j Mice: Assessment of Cardiovascular, Renal and Hepatic Changes. J Imaging 2024; 10:217. [PMID: 39330437 PMCID: PMC11433005 DOI: 10.3390/jimaging10090217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/28/2024] Open
Abstract
Consuming an unbalanced diet and being overweight represent a global health problem in young people and adults of both sexes, and may lead to metabolic syndrome. The diet-induced obesity (DIO) model in the C57BL/6J mouse substrain that mimics the gradual weight gain in humans consuming a "Western-type" (WD) diet is of great interest. This study aims to characterize this animal model, using high-frequency ultrasound imaging (HFUS) as a complementary tool to longitudinally monitor changes in the liver, heart and kidney. Long-term WD feeding increased mice body weight (BW), liver/BW ratio and body condition score (BCS), transaminases, glucose and insulin, and caused dyslipidemia and insulin resistance. Echocardiography revealed subtle cardiac remodeling in WD-fed mice, highlighting a significant age-diet interaction for some left ventricular morphofunctional parameters. Qualitative and parametric HFUS analyses of the liver in WD-fed mice showed a progressive increase in echogenicity and echotexture heterogeneity, and equal or higher brightness of the renal cortex. Furthermore, renal circulation was impaired in WD-fed female mice. The ultrasound and histopathological findings were concordant. Overall, HFUS can improve the translational value of preclinical DIO models through an integrated approach with conventional methods, enabling a comprehensive identification of early stages of diseases in vivo and non-invasively, according to the 3Rs.
Collapse
Affiliation(s)
- Sara Gargiulo
- Institute of Clinical Physiology, National Research Council, Via Fiorentina 1, 53100 Siena, Italy
- Core Research Laboratory (CRL), Istituto per lo Studio la Prevenzione e la Rete Oncologica (ISPRO), 53100 Siena, Italy
| | - Virginia Barone
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
| | - Denise Bonente
- Department of Life Sciences, University of Siena, 53100 Siena, Italy
| | | | - Giovanni Inzalaco
- Institute of Clinical Physiology, National Research Council, Via Fiorentina 1, 53100 Siena, Italy
- Core Research Laboratory (CRL), Istituto per lo Studio la Prevenzione e la Rete Oncologica (ISPRO), 53100 Siena, Italy
| | - Lisa Gherardini
- Institute of Clinical Physiology, National Research Council, Via Fiorentina 1, 53100 Siena, Italy
- Core Research Laboratory (CRL), Istituto per lo Studio la Prevenzione e la Rete Oncologica (ISPRO), 53100 Siena, Italy
| | - Eugenio Bertelli
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
| | - Mario Chiariello
- Institute of Clinical Physiology, National Research Council, Via Fiorentina 1, 53100 Siena, Italy
- Core Research Laboratory (CRL), Istituto per lo Studio la Prevenzione e la Rete Oncologica (ISPRO), 53100 Siena, Italy
| |
Collapse
|
14
|
Agno KC, Yang K, Byun SH, Oh S, Lee S, Kim H, Kim K, Cho S, Jeong WI, Jeong JW. A temperature-responsive intravenous needle that irreversibly softens on insertion. Nat Biomed Eng 2024; 8:963-976. [PMID: 37903901 DOI: 10.1038/s41551-023-01116-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 09/26/2023] [Indexed: 11/01/2023]
Abstract
The high stiffness of intravenous needles can cause tissue injury and increase the risk of transmission of blood-borne pathogens through accidental needlesticks. Here we describe the development and performance of an intravenous needle whose stiffness and shape depend on body temperature. The needle is sufficiently stiff for insertion into soft tissue yet becomes irreversibly flexible after insertion, adapting to the shape of the blood vessel and reducing the risk of needlestick injury on removal, as we show in vein phantoms and ex vivo porcine tissue. In mice, the needles had similar fluid-delivery performance and caused substantially less inflammation than commercial devices for intravenous access of similar size. We also show that an intravenous needle integrated with a thin-film temperature sensor can monitor core body temperature in mice and detect fluid leakage in porcine tissue ex vivo. Temperature-responsive intravenous needles may improve patient care.
Collapse
Affiliation(s)
- Karen-Christian Agno
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Keungmo Yang
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sang-Hyuk Byun
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Subin Oh
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Simok Lee
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Heesoo Kim
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Kyurae Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Sungwoo Cho
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Won-Il Jeong
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.
| | - Jae-Woong Jeong
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.
- KAIST Institute for Health Science and Technology, Daejeon, Republic of Korea.
| |
Collapse
|
15
|
Bozadjieva-Kramer N, Shin JH, Blok NB, Jain C, Das NK, Polex-Wolf J, Knudsen LB, Shah YM, Seeley RJ. Liraglutide Impacts Iron Homeostasis in a Murine Model of Hereditary Hemochromatosis. Endocrinology 2024; 165:bqae090. [PMID: 39045670 PMCID: PMC11311705 DOI: 10.1210/endocr/bqae090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/18/2024] [Accepted: 07/17/2024] [Indexed: 07/25/2024]
Abstract
Classic hereditary hemochromatosis (HH) is an autosomal recessive iron-overload disorder resulting from loss-of-function mutations of the HFE gene. Patients with HH exhibit excessive hepatic iron accumulation that predisposes these patients to liver disease, including the risk for developing liver cancer. Chronic iron overload also poses a risk for the development of metabolic disorders such as obesity, type 2 diabetes, and insulin resistance. We hypothesized that liraglutide, GLP1 receptor agonist, alters iron metabolism while also reducing body weight and glucose tolerance in a mouse model of HH (global HFE knockout, HFE KO) and diet-induced obesity and glucose intolerance. The total body HFE KO and wild-type control mice were fed high-fat diet for 8 weeks. Mice were subdivided into liraglutide and vehicle-treated groups and received daily subcutaneous administration of the respective treatment once daily for 18 weeks. Liraglutide improved glucose tolerance and hepatic lipid markers and reduced body weight in a mouse model of HH, the HFE KO mouse, similar to wild-type controls. Importantly, our data show that liraglutide alters iron metabolism in HFE KO mice, leading to decreased circulating and stored iron levels in HFE KO mice. These observations highlight the potential that GLP1 receptor agonist could be used to reduce iron overload in addition to reducing body weight and improving glucose regulation in HH patients.
Collapse
Affiliation(s)
- Nadejda Bozadjieva-Kramer
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
- Veterans Affairs Ann Arbor Healthcare System, Research Service, Ann Arbor, MI 48105, USA
| | - Jae Hoon Shin
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Neil B Blok
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Chesta Jain
- Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Nupur K Das
- Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | - Yatrik M Shah
- Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Randy J Seeley
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
16
|
Wu W, Jin Q, Östlund C, Tanji K, Shin JY, Han J, Leu CS, Kushner J, Worman HJ. mTOR Inhibition Prolongs Survival and Has Beneficial Effects on Heart Function After Onset of Lamin A/C Gene Mutation Cardiomyopathy in Mice. Circ Heart Fail 2024; 17:e011110. [PMID: 38567527 PMCID: PMC11008450 DOI: 10.1161/circheartfailure.123.011110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 02/12/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND Mutations in LMNA encoding nuclear envelope proteins lamin A/C cause dilated cardiomyopathy. Activation of the AKT/mTOR (RAC-α serine/threonine-protein kinase/mammalian target of rapamycin) pathway is implicated as a potential pathophysiologic mechanism. The aim of this study was to assess whether pharmacological inhibition of mTOR signaling has beneficial effects on heart function and prolongs survival in a mouse model of the disease, after onset of heart failure. METHODS We treated male LmnaH222P/H222P mice, after the onset of heart failure, with placebo or either of 2 orally bioavailable mTOR inhibitors: everolimus or NV-20494, a rapamycin analog highly selective against mTORC1. We examined left ventricular remodeling, and the cell biological, biochemical, and histopathologic features of cardiomyopathy, potential drug toxicity, and survival. RESULTS Everolimus treatment (n=17) significantly reduced left ventricular dilatation and increased contractility on echocardiography, with a 7% (P=0.018) reduction in left ventricular end-diastolic diameter and a 39% (P=0.0159) increase fractional shortening compared with placebo (n=17) after 6 weeks of treatment. NV-20494 treatment (n=15) yielded similar but more modest and nonsignificant changes. Neither drug prevented the development of cardiac fibrosis. Drug treatment reactivated suppressed autophagy and inhibited mTORC1 signaling in the heart, although everolimus was more potent. With regards to drug toxicity, everolimus alone led to a modest degree of glucose intolerance during glucose challenge. Everolimus (n=20) and NV-20494 (n=20) significantly prolonged median survival in LmnaH222P/H222P mice, by 9% (P=0.0348) and 11% (P=0.0206), respectively, compared with placebo (n=20). CONCLUSIONS These results suggest that mTOR inhibitors may be beneficial in patients with cardiomyopathy caused by LMNA mutations and that further study is warranted.
Collapse
Affiliation(s)
- Wei Wu
- Department of Medicine, Vagelos College of Physicians and Surgeons, (W.W., Q.J., C.Ö., J.-Y.S., J.K., H.J.W.), Columbia University, New York, NY
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons (W.W., Q.J., C.Ö., K.T., H.J.W.), Columbia University, New York, NY
| | - Qi Jin
- Department of Medicine, Vagelos College of Physicians and Surgeons, (W.W., Q.J., C.Ö., J.-Y.S., J.K., H.J.W.), Columbia University, New York, NY
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons (W.W., Q.J., C.Ö., K.T., H.J.W.), Columbia University, New York, NY
| | - Cecilia Östlund
- Department of Medicine, Vagelos College of Physicians and Surgeons, (W.W., Q.J., C.Ö., J.-Y.S., J.K., H.J.W.), Columbia University, New York, NY
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons (W.W., Q.J., C.Ö., K.T., H.J.W.), Columbia University, New York, NY
| | - Kurenai Tanji
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons (W.W., Q.J., C.Ö., K.T., H.J.W.), Columbia University, New York, NY
| | - Ji-Yeon Shin
- Department of Medicine, Vagelos College of Physicians and Surgeons, (W.W., Q.J., C.Ö., J.-Y.S., J.K., H.J.W.), Columbia University, New York, NY
| | - Jiying Han
- Department of Biostatistics, Mailman School of Public Health (J.H., C.-S.L.), Columbia University, New York, NY
| | - Cheng-Shiun Leu
- Department of Biostatistics, Mailman School of Public Health (J.H., C.-S.L.), Columbia University, New York, NY
| | - Jared Kushner
- Department of Medicine, Vagelos College of Physicians and Surgeons, (W.W., Q.J., C.Ö., J.-Y.S., J.K., H.J.W.), Columbia University, New York, NY
| | - Howard J. Worman
- Department of Medicine, Vagelos College of Physicians and Surgeons, (W.W., Q.J., C.Ö., J.-Y.S., J.K., H.J.W.), Columbia University, New York, NY
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons (W.W., Q.J., C.Ö., K.T., H.J.W.), Columbia University, New York, NY
| |
Collapse
|
17
|
Nabar N, Dacoba TG, Covarrubias G, Romero-Cruz D, Hammond PT. Electrostatic adsorption of polyanions onto lipid nanoparticles controls uptake, trafficking, and transfection of RNA and DNA therapies. Proc Natl Acad Sci U S A 2024; 121:e2307809121. [PMID: 38437543 PMCID: PMC10945854 DOI: 10.1073/pnas.2307809121] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/09/2023] [Indexed: 03/06/2024] Open
Abstract
Rapid advances in nucleic acid therapies highlight the immense therapeutic potential of genetic therapeutics. Lipid nanoparticles (LNPs) are highly potent nonviral transfection agents that can encapsulate and deliver various nucleic acid therapeutics, including but not limited to messenger RNA (mRNA), silencing RNA (siRNA), and plasmid DNA (pDNA). However, a major challenge of targeted LNP-mediated systemic delivery is the nanoparticles' nonspecific uptake by the liver and the mononuclear phagocytic system, due partly to the adsorption of endogenous serum proteins onto LNP surfaces. Tunable LNP surface chemistries may enable efficacious delivery across a range of organs and cell types. Here, we describe a method to electrostatically adsorb bioactive polyelectrolytes onto LNPs to create layered LNPs (LLNPs). LNP cores varying in nucleic acid cargo and component lipids were stably layered with four biologically relevant polyanions: hyaluronate (HA), poly-L-aspartate (PLD), poly-L-glutamate (PLE), and polyacrylate (PAA). We further investigated the impact of the four surface polyanions on the transfection and uptake of mRNA- and pDNA-loaded LNPs in cell cultures. PLD- and PLE-LLNPs increased mRNA transfection twofold over unlayered LNPs in immune cells. HA-LLNPs increased pDNA transfection rates by more than twofold in epithelial and immune cells. In a healthy C57BL/6 murine model, PLE- and HA-LLNPs increased transfection by 1.8-fold to 2.5-fold over unlayered LNPs in the liver and spleen. These results suggest that LbL assembly is a generalizable, highly tunable platform to modify the targeting specificity, stability, and transfection efficacy of LNPs, as well as incorporate other charged targeting and therapeutic molecules into these systems.
Collapse
Affiliation(s)
- Namita Nabar
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02139
| | - Tamara G. Dacoba
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02139
| | - Gil Covarrubias
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Denisse Romero-Cruz
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Paula T. Hammond
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02139
| |
Collapse
|
18
|
Yamamoto K, Miyano K, Fujita M, Kurata W, Ohta H, Matsumoto K, Chiba M. Changes in cognitive ability and serum microRNA levels during aging in mice. Exp Ther Med 2024; 27:120. [PMID: 38361521 PMCID: PMC10867737 DOI: 10.3892/etm.2024.12408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/08/2024] [Indexed: 02/17/2024] Open
Abstract
Mild cognitive impairment (MCI) is an early stage that can result in dementia. MCI can be reversed, and diagnosis at an early stage is crucial to control the progression to dementia. Dementia is currently diagnosed based on interviews and screening tests; however, novel biomarkers must be identified to allow early MCI detection. Therefore, the present study aimed to identify novel biomarkers in the form of blood microRNAs (miRNAs/miRs) for the diagnosis of MCI or early dementia. Blood samples were collected from C57BL/6NJcl male mice at four time points, including 4-week-old (4W), 8-week-old (8W), 36-week-old (36W) and 58-week-old (58W), and serum was isolated. Body weight and blood total cholesterol levels were increased, and blood alkaline phosphatase was decreased with aging. The 8W mice exhibited the highest cognitive ability in the Morris water maze test, whereas the 58W mice demonstrated decreased cognitive ability. The serum RNA concentrations of the 4W, 8W, 36W and 58W mice demonstrated no significant differences. Furthermore, small RNA levels were detected in the serum of all mice. miRNA microarray analysis revealed a >1.5-fold increase in the serum expression of two miRNAs (miR-21a-5p and miR-92a-3p) and a >1.5-fold decrease in the serum expression of two other miRNAs (miR-6769b-5p and miR-709) in 58W mice compared with those in 8W mice. In the future, we aim to further analyze aged mice to discover novel MCI biomarkers.
Collapse
Affiliation(s)
- Keisuke Yamamoto
- Department of Bioscience and Laboratory Medicine, Graduate School of Health Sciences, Hirosaki University, Hirosaki, Aomori 036-8564, Japan
| | - Kohta Miyano
- Department of Medical Technology, School of Health Sciences, Hirosaki University, Hirosaki, Aomori 036-8564, Japan
| | - Minami Fujita
- Department of Medical Technology, School of Health Sciences, Hirosaki University, Hirosaki, Aomori 036-8564, Japan
| | - Wakana Kurata
- Department of Medical Technology, School of Health Sciences, Hirosaki University, Hirosaki, Aomori 036-8564, Japan
| | - Hiroya Ohta
- Department of Medical Technology, School of Health Sciences, Hirosaki University, Hirosaki, Aomori 036-8564, Japan
| | - Kana Matsumoto
- Department of Bioscience and Laboratory Medicine, Graduate School of Health Sciences, Hirosaki University, Hirosaki, Aomori 036-8564, Japan
| | - Mitsuru Chiba
- Department of Bioscience and Laboratory Medicine, Graduate School of Health Sciences, Hirosaki University, Hirosaki, Aomori 036-8564, Japan
- Research Center for Biomedical Sciences, Hirosaki University, Hirosaki, Aomori 036-8564, Japan
| |
Collapse
|
19
|
Dos Santos VHB, de Azevedo Ximenes ECP, de Souza RAF, da Silva RPC, da Conceição Silva M, de Andrade LVM, de Souza Oliveira VM, de Melo-Júnior MR, Costa VMA, de Barros Lorena VM, de Araújo HDA, de Lima Aires A, de Azevedo Albuquerque MCP. Effects of the probiotic Bacillus cereus GM on experimental schistosomiasis mansoni. Parasitol Res 2023; 123:72. [PMID: 38148420 DOI: 10.1007/s00436-023-08090-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/09/2023] [Indexed: 12/28/2023]
Abstract
Probiotics contribute to the integrity of the intestinal mucosa and preventing dysbiosis caused by opportunistic pathogens, such as intestinal helminths. Bacillus cereus GM obtained from Biovicerin® was cultured to obtain spores for in vivo evaluation on experimental schistosomiasis. The assay was performed for 90 days, where all animals were infected with 50 cercariae of Schistosoma mansoni on the 15th day. Three experimental groups were formed, as follows: G1-saline solution from the 1st until the 90th day; G2-B. cereus GM (105 spores in 300 μL of sterile saline) from the 1st until the 90th day; and G3-B. cereus GM 35th day (onset of oviposition) until the 90th day. G2 showed a significant reduction of 43.4% of total worms, 48.8% of female worms and 42.5% of eggs in the liver tissue. In G3, the reduction was 25.2%, 29.1%, and 44% of the total number of worms, female worms, and eggs in the liver tissue, respectively. G2 and G3 showed a 25% (p < 0.001) and 22% (p < 0.001) reduction in AST levels, respectively, but ALT levels did not change. ALP levels were reduced by 23% (p < 0.001) in the G2 group, but not in the G3. The average volume of granulomas reduced (p < 0.0001) 65.2% and 46.3% in the liver tissue and 83.0% and 53.2% in the intestine, respectively, in groups G2 and G3. Th1 profile cytokine (IFN-γ, TNF-α, and IL-6) and IL-17 were significantly increased (p < 0.001) stimulated with B. cereus GM in groups G2 and G3. IL-4 showed significant values when the stimulus was mediated by ConA. By modulating the immune response, B. cereus GM reduced the burden of worms, improved some markers of liver function, and reduced the granulomatous inflammatory reaction in mice infected with S. mansoni, especially when administered before infection.
Collapse
Affiliation(s)
- Victor Hugo Barbosa Dos Santos
- Instituto Keizo Asami (iLIKA), Universidade Federal de Pernambuco, Recife, PE, Brazil
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Eulália Camelo Pessoa de Azevedo Ximenes
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Pernambuco, Recife, PE, Brazil
- Departamento de Antibióticos, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Renan Andrade Fernandes de Souza
- Instituto Keizo Asami (iLIKA), Universidade Federal de Pernambuco, Recife, PE, Brazil
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | | | | | | | - Valdenia Maria de Souza Oliveira
- Instituto Keizo Asami (iLIKA), Universidade Federal de Pernambuco, Recife, PE, Brazil
- Departamento de Ciências Farmacêuticas, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | | | - Vlaudia Maria Assis Costa
- Instituto Keizo Asami (iLIKA), Universidade Federal de Pernambuco, Recife, PE, Brazil
- Departamento de Patologia, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | | | - Hallysson Douglas Andrade de Araújo
- Instituto Keizo Asami (iLIKA), Universidade Federal de Pernambuco, Recife, PE, Brazil
- Laboratório de Biotecnologia e Fármacos e Laboratório de Tecnologia de Biomateriais - Centro Acadêmico de Vitória de Santo Antão, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - André de Lima Aires
- Instituto Keizo Asami (iLIKA), Universidade Federal de Pernambuco, Recife, PE, Brazil
- Centro de Ciências Médicas, Área Acadêmica de Medicina Tropical, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Mônica Camelo Pessoa de Azevedo Albuquerque
- Instituto Keizo Asami (iLIKA), Universidade Federal de Pernambuco, Recife, PE, Brazil.
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Pernambuco, Recife, PE, Brazil.
- Centro de Ciências Médicas, Área Acadêmica de Medicina Tropical, Universidade Federal de Pernambuco, Recife, PE, Brazil.
| |
Collapse
|
20
|
Trant J, Sanchez G, McDermott JP, Blanco G. Ouabain enhances renal cyst growth in a slowly progressive mouse model of autosomal dominant polycystic kidney disease. Am J Physiol Renal Physiol 2023; 325:F857-F869. [PMID: 37823195 PMCID: PMC10874652 DOI: 10.1152/ajprenal.00056.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 10/11/2023] [Accepted: 10/11/2023] [Indexed: 10/13/2023] Open
Abstract
Renal cyst progression in autosomal dominant polycystic kidney disease (ADPKD) is highly dependent on agents circulating in blood. We have previously shown, using different in vitro models, that one of these agents is the hormone ouabain. By binding to Na+-K+-ATPase (NKA), ouabain triggers a cascade of signal transduction events that enhance ADPKD cyst progression by stimulating cell proliferation, fluid secretion, and dedifferentiation of the renal tubular epithelial cells. Here, we determined the effects of ouabain in vivo. We show that daily administration of ouabain to Pkd1RC/RC ADPKD mice for 1-5 mo, at physiological levels, augmented kidney cyst area and number compared with saline-injected controls. Also, ouabain favored renal fibrosis; however, renal function was not significantly altered as determined by blood urea nitrogen levels. Ouabain did not have a sex preferential effect, with male and female mice being affected equally. By contrast, ouabain had no significant effect on wild-type mice. In addition, the actions of ouabain on Pkd1RC/RC mice were exacerbated when another mutation that increased the affinity of NKA for ouabain was introduced to the mice (Pkd1RC/RCNKAα1OS/OS mice). Altogether, this work highlights the role of ouabain as a procystogenic factor in the development of ADPKD in vivo, that the ouabain affinity site on NKA is critical for this effect, and that circulating ouabain is an epigenetic factor that worsens the ADPKD phenotype.NEW & NOTEWORTHY This work shows that the hormone ouabain enhances the progression of autosomal dominant polycystic kidney disease (ADPKD) in vivo. Ouabain augments the size and number of renal cysts, the kidney weight to body weight ratio, and kidney fibrosis in an ADPKD mouse model. The Na+-K+-ATPase affinity for ouabain plays a critical role in these effects. In addition, these outcomes are independent of the sex of the mice.
Collapse
Affiliation(s)
- Jordan Trant
- Department of Cell Biology and Physiology, University of Kansas Medical Center, The Kidney Institute, Kansas City, Kansas, United States
| | - Gladis Sanchez
- Department of Cell Biology and Physiology, University of Kansas Medical Center, The Kidney Institute, Kansas City, Kansas, United States
| | - Jeffrey P McDermott
- Department of Cell Biology and Physiology, University of Kansas Medical Center, The Kidney Institute, Kansas City, Kansas, United States
| | - Gustavo Blanco
- Department of Cell Biology and Physiology, University of Kansas Medical Center, The Kidney Institute, Kansas City, Kansas, United States
| |
Collapse
|
21
|
Watanabe M, Kakutani M, Hiura K, Sasaki H, Sasaki N. Differences in susceptibility to ADR nephropathy among C57BL/6 substrains. Exp Anim 2023; 72:520-525. [PMID: 37344407 PMCID: PMC10658096 DOI: 10.1538/expanim.23-0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 06/14/2023] [Indexed: 06/23/2023] Open
Abstract
Adriamycin (ADR) nephropathy is the most widely used nephropathy model to study the pathophysiological mechanisms of chronic kidney disease (CKD) in mice. However, its application is limited to a few mouse strains such as the BALB/c strain; the standard strain, C57BL/6J (B6J), does not develop ADR nephropathy. Nevertheless, Arif et al. reported that C57BL/6N (B6N), another standard strain, is ADR-susceptible. Since then, no follow-up reports or other studies have been published on ADR nephropathy in B6N mice. Therefore, the goal of this study was to determine whether B6N mice are indeed susceptible to ADR nephropathy and whether there are differences in ADR susceptibility among the substrains of C57BL/6NCrl (NCrl) and C57BL/6NJcl (NJcl). NCrl mice showed marked albuminuria and mesangial cell proliferation, which are associated with mild ADR nephropathy, confirming that NCrl mice were susceptible to ADR nephropathy. On the other hand, NJcl mice did not exhibit these symptoms. ADR nephropathy models are usually generated by administering ADR through the tail vein, but Arif et al. administered ADR through the orbital vein. Therefore, we investigated the effect of the route of administration on ADR nephropathy. The degree of ADR nephropathy was found to vary based on the route of administration: more severe nephropathy was observed upon administration through the tail vein than through the orbital vein. Therefore, we conclude that NCrl mice are susceptible to ADR nephropathy, and the severity of ADR-induced nephropathy through orbital vein administration is relatively lower than that through the tail vein.
Collapse
Affiliation(s)
- Masaki Watanabe
- Laboratory of Laboratory Animal Science and Medicine, School of Veterinary Medicine, Kitasato University, 35-1 Higashi-23, Towada, Aomori 034-8628, Japan
| | - Momoka Kakutani
- Laboratory of Laboratory Animal Science and Medicine, School of Veterinary Medicine, Kitasato University, 35-1 Higashi-23, Towada, Aomori 034-8628, Japan
| | - Koki Hiura
- Laboratory of Laboratory Animal Science and Medicine, School of Veterinary Medicine, Kitasato University, 35-1 Higashi-23, Towada, Aomori 034-8628, Japan
| | - Hayato Sasaki
- Laboratory of Laboratory Animal Science and Medicine, School of Veterinary Medicine, Kitasato University, 35-1 Higashi-23, Towada, Aomori 034-8628, Japan
| | - Nobuya Sasaki
- Laboratory of Laboratory Animal Science and Medicine, School of Veterinary Medicine, Kitasato University, 35-1 Higashi-23, Towada, Aomori 034-8628, Japan
| |
Collapse
|
22
|
Cheng Y, Pang X, Wu J, Zhou L, Cao J, Wang L, Qian K, Yang P, Xu M, Sheng D, Meng R, Wang P, Guo Q, Xu S, Wei Y, Zhang Q. Medium-chain triglyceride-stabilized docetaxel-loaded HSA nanoparticles effectively inhibited metastatic non-small cell lung cancer. Drug Deliv Transl Res 2023; 13:2869-2884. [PMID: 37204680 DOI: 10.1007/s13346-023-01355-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2023] [Indexed: 05/20/2023]
Abstract
Metastatic non-small cell lung cancer (NSCLC) is refractory with a very poor prognosis. Docetaxel (DTX) injection (Taxotere®) has been approved for the treatment of locally advanced or metastatic NSCLC. However, its clinical application is restricted by severe adverse effects and non-selective tissue distribution. In this study, we successfully developed DTX-loaded human serum albumin (HSA) nanoparticles (DNPs) with modified Nab technology, by introducing medium-chain triglyceride (MCT) as a stabilizer. The optimized formulation had a particle size of approximately 130 nm and a favorable stabilization time of more than 24 h. DNPs dissociated in circulation in a concentration-dependent manner and slowly released DTX. Compared with DTX injection, DNPs were more effectively taken up by NSCLC cells, thus exerting stronger inhibitory effects on their proliferation, adhesion, migration, and invasion. In addition, DNPs showed prolonged blood retention and increased tumor accumulation relative to DTX injection. Ultimately, DNPs produced more potent inhibitory effects on primary or metastatic tumor foci than DTX injections but caused markedly lower organ toxicity and hematotoxicity. Overall, these results support that DNPs hold great potential for the treatment of metastatic NSCLC in clinical.
Collapse
Affiliation(s)
- Yunlong Cheng
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Xiaoying Pang
- Department of Pharmacy, the Obstetrics and Gynecology Hospital, Fudan University, 200011, Shanghai, China
| | - Jing Wu
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Lingling Zhou
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Jinxu Cao
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Liuchang Wang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Kang Qian
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Peng Yang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Minjun Xu
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Dongyu Sheng
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Ran Meng
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Pengzhen Wang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Qian Guo
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Shuting Xu
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Yan Wei
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China.
| | - Qizhi Zhang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, 201203, China.
| |
Collapse
|
23
|
Timpani CA, Rasmussen L, Rybalka E. Adenylosuccinic Acid Is a Non-Toxic Small Molecule In Vitro and In Vivo. Pharmaceuticals (Basel) 2023; 16:1458. [PMID: 37895929 PMCID: PMC10609790 DOI: 10.3390/ph16101458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/29/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
Adenylosuccinic acid (ASA) is a small molecule dicarboxylate that could be a strong clinical development candidate for inherited myopathies involving dysregulated purine nucleotide metabolism. Currently, there are no published pharmacokinetic/dynamic or toxicology data available, although 10-year clinical trial data on Duchenne muscular dystrophy patients suggests it is a chronically safe drug. In this study, we tested the toxicity of ASA to cultured myoblasts in vitro and its acute systemic toxicity in mice. ASA is a non-toxic small molecule with an LD50 > 5000 mg/kg. Some background necrotic foci in the liver, kidney and gastrointestinal tract were shown that are likely incidental but warrant follow-up sub-/chronic oral exposure studies.
Collapse
Affiliation(s)
- Cara A. Timpani
- Institute for Health and Sport (IHeS), Victoria University, Melbourne, VIC 8001, Australia;
- Inherited and Acquired Myopathy Program, Australian Institute for Musculoskeletal Science (AIMSS), St Albans, VIC 3021, Australia
- Department of Medicine—Western Health, Melbourne Medical School, The University of Melbourne, St Albans, VIC 3021, Australia
| | | | - Emma Rybalka
- Institute for Health and Sport (IHeS), Victoria University, Melbourne, VIC 8001, Australia;
- Inherited and Acquired Myopathy Program, Australian Institute for Musculoskeletal Science (AIMSS), St Albans, VIC 3021, Australia
- Department of Medicine—Western Health, Melbourne Medical School, The University of Melbourne, St Albans, VIC 3021, Australia
- Division of Neuropaediatrics and Developmental Medicine, University Children’s Hospital of Basel (UKBB), 4031 Basel, Switzerland
| |
Collapse
|
24
|
Du X, Yada E, Terai Y, Takahashi T, Nakanishi H, Tanaka H, Akita H, Itaka K. Comprehensive Evaluation of Lipid Nanoparticles and Polyplex Nanomicelles for Muscle-Targeted mRNA Delivery. Pharmaceutics 2023; 15:2291. [PMID: 37765260 PMCID: PMC10536695 DOI: 10.3390/pharmaceutics15092291] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 08/31/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
The growing significance of messenger RNA (mRNA) therapeutics in diverse medical applications, such as cancer, infectious diseases, and genetic disorders, highlighted the need for efficient and safe delivery systems. Lipid nanoparticles (LNPs) have shown great promise for mRNA delivery, but challenges such as toxicity and immunogenicity still remain to be addressed. In this study, we aimed to compare the performance of polyplex nanomicelles, our original cationic polymer-based carrier, and LNPs in various aspects, including delivery efficiency, organ toxicity, muscle damage, immune reaction, and pain. Our results showed that nanomicelles (PEG-PAsp(DET)) and LNPs (SM-102) exhibited distinct characteristics, with the former demonstrating relatively sustained protein production and reduced inflammation, making them suitable for therapeutic purposes. On the other hand, LNPs displayed desirable properties for vaccines, such as rapid mRNA expression and potent immune response. Taken together, these results suggest the different potentials of nanomicelles and LNPs, supporting further optimization of mRNA delivery systems tailored for specific purposes.
Collapse
Affiliation(s)
- Xuan Du
- Department of Biofunction Research, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Tokyo 101-0062, Japan
| | - Erica Yada
- Department of Biofunction Research, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Tokyo 101-0062, Japan
- NANO MRNA, Co., Ltd. Tokyo 104-0031, Japan
| | - Yuki Terai
- Department of Biofunction Research, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Tokyo 101-0062, Japan
| | - Takuya Takahashi
- Department of Biofunction Research, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Tokyo 101-0062, Japan
| | - Hideyuki Nakanishi
- Department of Biofunction Research, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Tokyo 101-0062, Japan
| | - Hiroki Tanaka
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Hidetaka Akita
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Keiji Itaka
- Department of Biofunction Research, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Tokyo 101-0062, Japan
- Clinical Biotechnology Team, Center for Infectious Disease Education and Research (CiDER), Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
25
|
Choi SR, Talmon GA, Hearne K, Woo J, Truong VL, Britigan BE, Narayanasamy P. Combination Therapy with Gallium Protoporphyrin and Gallium Nitrate Exhibits Enhanced Antimicrobial Activity In Vitro and In Vivo against Methicillin-Resistant Staphylococcus aureus. Mol Pharm 2023; 20:4058-4070. [PMID: 37471668 DOI: 10.1021/acs.molpharmaceut.3c00223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
There is a major need for the development of new therapeutics to combat antibiotic-resistant Staphylococcus aureus. Recently, gallium (Ga)-based complexes have shown promising antimicrobial effects against various bacteria, including multidrug-resistant organisms, by targeting multiple heme/iron-dependent metabolic pathways. Among these, Ga protoporphyrin (GaPP) inhibits bacterial growth by targeting heme pathways, including aerobic respiration. Ga(NO3)3, an iron mimetic, disrupts elemental iron pathways. Here, we demonstrate the enhanced antimicrobial activity of the combination of GaPP and Ga(NO3)3 against methicillin-resistant S. aureus (MRSA) under iron-limited conditions, including small colony variants (SCV). This therapy demonstrated significant antimicrobial activity without inducing slow-growing SCV. We also observed that the combination of GaPP and Ga(NO3)3 inhibited the MRSA catalase but not above that seen with Ga(NO3)3 alone. Neither GaPP nor Ga(NO3)3 alone or their combination inhibited the dominant superoxide dismutase expressed (SodA) under the iron-limited conditions examined. Intranasal administration of the combination of the two compounds improved drug biodistribution in the lungs compared to intraperitoneal administration. In a murine MRSA lung infection model, we observed a significant increase in survival and decrease in MRSA lung CFUs in mice that received combination therapy with intranasal GaPP and Ga(NO3)3 compared to untreated control or mice receiving GaPP or Ga(NO3)3 alone. No drug-related toxicity was observed as assessed histologically in the spleen, lung, nasal cavity, and kidney for both single and repeated doses of 10 mg Ga /Kg of mice over 13 days. Our results strongly suggest that GaPP and Ga(NO3)3 in combination have excellent synergism and potential to be developed as a novel therapy for infections with S. aureus.
Collapse
Affiliation(s)
- Seoung-Ryoung Choi
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Geoffrey A Talmon
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Kenneth Hearne
- Aridis Pharmaceuticals, Los Gatos, California 95032, United States
| | - Jennifer Woo
- Aridis Pharmaceuticals, Los Gatos, California 95032, United States
| | - Vu L Truong
- Aridis Pharmaceuticals, Los Gatos, California 95032, United States
| | - Bradley E Britigan
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
- Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
- Department of Internal Medicine and Research Service, Veterans Affairs Medical Center-Nebraska Western Iowa, Omaha, Nebraska 68105, United States
| | - Prabagaran Narayanasamy
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| |
Collapse
|
26
|
Bagon BB, Lee J, Matienzo ME, Lee SJ, Pak SW, Kim K, Lee J, Lee CM, Shin IS, Moon C, Park MJ, Kim DI. Cold-induced adaptive thermogenesis is impaired by exposure of Asian sand dust in mice. J Therm Biol 2023; 116:103675. [PMID: 37517326 DOI: 10.1016/j.jtherbio.2023.103675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 07/11/2023] [Accepted: 07/11/2023] [Indexed: 08/01/2023]
Abstract
Desertification and desert sandstorms caused by the worsening global warming pose increasing risks to human health. In particular, Asian sand dust (ASD) exposure has been related to an increase in mortality and hospital admissions for respiratory diseases. In this study, we investigated the effects of ASD on metabolic tissues in comparison to diesel particulate matter (DPM) that is known to cause adverse health effects. We found that larger lipid droplets were accumulated in the brown adipose tissues (BAT) of ASD-administered but not DPM-administered mice. Thermogenic gene expression was decreased in these mice as well. When ASD-administered mice were exposed to the cold, they failed to maintain their body temperature, suggesting that the ASD administration had led to impairments in cold-induced adaptive thermogenesis. However, impaired thermogenesis was not observed in DPM-administered mice. Furthermore, mice fed a high-fat diet that were chronically administered ASD demonstrated unexplained weight loss, indicating that chronic administration of ASD could be lethal in obese mice. We further identified that ASD-induced lung inflammation was not exacerbated in uncoupling protein 1 knockout mice, whose thermogenic capacity is impaired. Collectively, ASD exposure can impair cold-induced adaptive thermogenic responses in mice and increase the risk of mortality in obese mice.
Collapse
Affiliation(s)
- Bernadette B Bagon
- Department of Veterinary Physiology, College of Veterinary Medicine, Chonnam National University, Gwangju, 61186, South Korea
| | - Junhyeong Lee
- Department of Veterinary Physiology, College of Veterinary Medicine, Chonnam National University, Gwangju, 61186, South Korea; College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, 61186, South Korea
| | - Merc Emil Matienzo
- Department of Veterinary Physiology, College of Veterinary Medicine, Chonnam National University, Gwangju, 61186, South Korea; College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, 61186, South Korea
| | - Se-Jin Lee
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, 61186, South Korea; Department of Veterinary Pharmacology, College of Veterinary Medicine, Chonnam National University, Gwangju, 61186, South Korea
| | - So-Won Pak
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, 61186, South Korea; Department of Veterinary Pharmacology, College of Veterinary Medicine, Chonnam National University, Gwangju, 61186, South Korea
| | - Keon Kim
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, 61186, South Korea; Department of Veterinary Internal Medicine, College of Veterinary Medicine, Chonnam National University, Gwangju, 61186, South Korea
| | - Jeongmin Lee
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, 61186, South Korea; Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine, Chonnam National University, Gwangju, 61186, South Korea
| | - Chang-Min Lee
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, 61186, South Korea; Department of Veterinary Internal Medicine, College of Veterinary Medicine, Chonnam National University, Gwangju, 61186, South Korea
| | - In-Sik Shin
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, 61186, South Korea; Department of Veterinary Pharmacology, College of Veterinary Medicine, Chonnam National University, Gwangju, 61186, South Korea
| | - Changjong Moon
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, 61186, South Korea; Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine, Chonnam National University, Gwangju, 61186, South Korea
| | - Min-Jung Park
- Department of Veterinary Physiology, College of Veterinary Medicine, Chonnam National University, Gwangju, 61186, South Korea.
| | - Dong-Il Kim
- Department of Veterinary Physiology, College of Veterinary Medicine, Chonnam National University, Gwangju, 61186, South Korea; College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, 61186, South Korea.
| |
Collapse
|
27
|
Zhang Y, Wang L, Zhang C, Zhang J, Yuan L, Jin S, Zhou W, Guan X, Kang P, Zhang C, Tian J, Chen X, Li D, Jia W. Preclinical assessment of IRDye800CW-labeled gastrin-releasing peptide receptor-targeting peptide for near infrared-II imaging of brain malignancies. Bioeng Transl Med 2023; 8:e10532. [PMID: 37476052 PMCID: PMC10354759 DOI: 10.1002/btm2.10532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 04/03/2023] [Accepted: 04/05/2023] [Indexed: 07/22/2023] Open
Abstract
We aimed to develop a new biocompatible gastrin-releasing peptide receptor (GRPR) targeted optical probe, IRDye800-RM26, for fluorescence image-guided surgery (FGS) of brain malignancies in near-infrared window II (NIR-II) imaging. We developed a novel GRPR targeting probe using a nine-amino-acid bombesin antagonist analog RM26 combined with IRDye800CW, and explored the fluorescent probe according to optical properties. Fluorescence imaging characterization in NIR-I/II region was performed in vitro and in vivo. Following simulated NIR-II image-guided surgery, we obtained time-fluorescent intensity curves and time-signal and background ratio curves. Further, we used histological sections of brain from tumor-beating mice model to compare imaging specificity between 5-aminolevulinic acid (5-ALA) and IRDye800-RM26, and evaluated biodistribution and biocompatibility. IRDye800-RM26 had broad emission ranging from 800 to 1200 nm, showing considerable fluorescent intensity in NIR-II region. High-resolution NIR-II imaging of IRDye800-RM26 can enhance the advantages of NIR-I imaging. Dynamic and real time fluorescence imaging in NIR-II region showed that the probe can be used to treat brain malignancies in mice between 12 and 24 h post injection. Its specificity in targeting glioblastoma was superior to 5-ALA. Biodistribution analysis indicated IRDye800-RM26 excretion in the kidney and liver. Histological and blood test analyses did not reveal acute severe toxicities in mice treated with effective dose (40 μg) of the probe for NIR-II imaging. Because of the considerable fluorescent intensity in NIR-II region and high spatial resolution, biocompatible and excretable IRDye800-RM26 holds great potentials for FGS, and is essential for translation into human use.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Beijing Neurosurgical InstituteBeijingChina
| | - Li Wang
- Jiangsu Xinrui Pharmaceutical Co., Ltd.NantongChina
| | - Chengkai Zhang
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Beijing Neurosurgical InstituteBeijingChina
| | - Jingjing Zhang
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of EngineeringNational University of SingaporeSingaporeSingapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Linhao Yuan
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Beijing Neurosurgical InstituteBeijingChina
| | - Shucheng Jin
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Beijing Neurosurgical InstituteBeijingChina
| | - Wenjianlong Zhou
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Beijing Neurosurgical InstituteBeijingChina
| | - Xiudong Guan
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Beijing Neurosurgical InstituteBeijingChina
| | - Peng Kang
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Beijing Neurosurgical InstituteBeijingChina
| | - Chuanbao Zhang
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Beijing Neurosurgical InstituteBeijingChina
| | - Jie Tian
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex SystemsInstitute of Automation, Chinese Academy of SciencesBeijingChina
- School of Artificial IntelligenceUniversity of Chinese Academy of SciencesBeijingChina
- Beijing Advanced Innovation Center for Big Data‐Based Precision Medicine, School of MedicineBeihang UniversityBeijingChina
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of EngineeringNational University of SingaporeSingaporeSingapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Deling Li
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Beijing Neurosurgical InstituteBeijingChina
| | - Wang Jia
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Beijing Neurosurgical InstituteBeijingChina
| |
Collapse
|
28
|
Ruiz de la Bastida A, Langa S, Peirotén Á, Fernández-Gonzalez R, Sánchez-Jiménez A, Maroto Oltra M, Luis Arqués J, Gutierrez-Adan A, María Landete J. Effect of fermented soy beverage in aged female mice model. Food Res Int 2023; 169:112745. [DOI: 10.1016/j.foodres.2023.112745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 03/16/2023] [Accepted: 03/18/2023] [Indexed: 04/08/2023]
|
29
|
Kohram F, Deng Z, Zhang Y, Al Reza A, Li E, Kolesnichenko OA, Shukla S, Ustiyan V, Gomez-Arroyo J, Acharya A, Shi D, Kalinichenko VV, Kenny AP. Demonstration of Safety in Wild Type Mice of npFOXF1, a Novel Nanoparticle-Based Gene Therapy for Alveolar Capillary Dysplasia with Misaligned Pulmonary Veins. Biologics 2023; 17:43-55. [PMID: 36969329 PMCID: PMC10031269 DOI: 10.2147/btt.s400006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/14/2023] [Indexed: 03/22/2023]
Abstract
Introduction Alveolar Capillary Dysplasia with Misaligned Pulmonary Veins (ACDMPV) is a fatal congenital disease resulting from a pulmonary vascular endothelial deficiency of FOXF1, producing abnormal morphogenesis of alveolar capillaries, malpositioned pulmonary veins and disordered development of lung lobes. Affected neonates suffer from cyanosis, severe breathing insufficiency, pulmonary hypertension, and death typically within days to weeks after birth. Currently, no treatment exists for ACDMPV, although recent murine research in the Kalinichenko lab demonstrates nanoparticle delivery improves survival and reconstitutes normal alveolar-capillary architecture. The aim of the present study is to investigate the safety of intravenous administration of FOXF1-expressing PEI-PEG nanoparticles (npFOXF1), our pioneering treatment for ACDMPV. Methods npFOXF1 was constructed, validated, and subsequently administered in a single dose to postnatal day 14 (P14) mice via retro-orbital injection. Biochemical, serologic, and histologic safety were monitored at postnatal day 16 (P16) and postnatal day 21 (P21). Results With treatment we observed no lethality, and the general condition of mice revealed no obvious abnormalities. Serum chemistry, whole blood, and histologic toxicity was assayed on P16 and P21 and revealed no abnormality. Discussion In conclusion, npFOXF1 has a very good safety profile and combined with preceding studies showing therapeutic efficacy, npFOXF1 can be considered as a good candidate therapy for ACDMPV in human neonates.
Collapse
Affiliation(s)
- Fatemeh Kohram
- Department of Pediatrics, University of Cincinnati and Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Center for Lung Regenerative Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Zicheng Deng
- Department of Pediatrics, University of Cincinnati and Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Center for Lung Regenerative Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- The Materials Science and Engineering Program, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, OH, USA
| | - Yufang Zhang
- Department of Pediatrics, University of Cincinnati and Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Center for Lung Regenerative Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Abid Al Reza
- Department of Pediatrics, University of Cincinnati and Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Center for Lung Regenerative Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Enhong Li
- Department of Pediatrics, University of Cincinnati and Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Center for Lung Regenerative Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Olena A Kolesnichenko
- Department of Pediatrics, University of Cincinnati and Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Center for Lung Regenerative Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Samriddhi Shukla
- Department of Pediatrics, University of Cincinnati and Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Center for Lung Regenerative Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Vladimir Ustiyan
- Department of Pediatrics, University of Cincinnati and Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Center for Lung Regenerative Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Jose Gomez-Arroyo
- Department of Pediatrics, University of Cincinnati and Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Center for Lung Regenerative Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Anusha Acharya
- Department of Pediatrics, University of Cincinnati and Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Center for Lung Regenerative Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Donglu Shi
- The Materials Science and Engineering Program, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, OH, USA
| | - Vladimir V Kalinichenko
- Department of Pediatrics, University of Cincinnati and Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Center for Lung Regenerative Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Alan P Kenny
- Department of Pediatrics, University of Cincinnati and Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Division of Neonatology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
30
|
Individualized Housing Modifies the Immune–Endocrine System in CD1 Adult Male Mice. Animals (Basel) 2023; 13:ani13061026. [PMID: 36978567 PMCID: PMC10044133 DOI: 10.3390/ani13061026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
In the last years, different research groups have made considerable efforts to improve the care and use of animals in research. Mice (Mus musculus) are the most widely used animal species in research in the European Union and are sociable and hierarchical creatures. During experiments, researchers tend to individualize males, but no consideration is given to whether this social isolation causes them stress. The aim of this study was, therefore, to explore whether 4 weeks of social isolation could induce changes in different physiological parameters in adult Crl:CD1(ICR) (CD1) males, which may interfere with experimental results. Body weight, blood cells, and fecal corticosterone metabolites levels were the analyzed parameters. Blood and fecal samples were collected at weeks 1 and 4 of the experimental procedure. Four weeks of single housing produced a significant time-dependent decrease in monocytes and granulocytes. Fecal corticosterone metabolite levels were higher in single-housed mice after 1 week and then normalized after 4 weeks of isolation. Body weight, red blood cells, and platelets remained unchanged in both groups during this period. We can, therefore, conclude that social isolation affects some immune and endocrine parameters, and that this should be taken into account in the interpretation of research data.
Collapse
|
31
|
Li C, Zhang J, Wu Q, Kumar A, Pan G, Kelvin DJ. Nifuroxazide Activates the Parthanatos to Overcome TMPRSS2:ERG Fusion-Positive Prostate Cancer. Mol Cancer Ther 2023; 22:306-316. [PMID: 36622760 PMCID: PMC9978883 DOI: 10.1158/1535-7163.mct-22-0159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 08/24/2022] [Accepted: 12/30/2022] [Indexed: 01/10/2023]
Abstract
Fusion of the E-26 transformation-specific (ETS)-related gene (ERG) with transmembrane serine protease 2 (TMPRSS2) is a crucial step in the occurrence and progression of approximately 50% of prostate cancers. Despite significant progress in drug discovery, ERG inhibitors have yet to be approved for the clinical treatment of prostate cancer. In this study, we used computer-aided drug design (CADD)-based virtual screening to screen for potential inhibitors of ERG. In vivo and in vitro methods revealed that nifuroxazide (NFZ) inhibited the proliferation of a TMPRSS2:ERG fusion-positive prostate cancer cell line (VCaP) with an IC50 lower than that of ERG-negative prostate cancer cell lines (LNCaP, DU145, and WPMY cells). Poly [ADP-ribose] polymerase 1, the critical mediator of parthanatos, is known to bind ERG and is required for ERG-mediated transcription. NFZ blocked this interaction and overly activated PARP1, leading to cell death that was reduced by olaparib, a PARP1 inhibitor. These results show that NFZ inhibits ERG, leading to parthanatic cell death.
Collapse
Affiliation(s)
- Chengxun Li
- Laboratory of Immunity, Shantou University Medical College, Guangdong, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jiale Zhang
- Laboratory of Immunity, Shantou University Medical College, Guangdong, China
| | - Qiming Wu
- Laboratory of Immunity, Shantou University Medical College, Guangdong, China
| | - Anuj Kumar
- Laboratory of Immunity, Shantou University Medical College, Guangdong, China
- Department of Microbiology and Immunology, Faculty of Medicine, Canadian Center for Vaccinology, Dalhousie University, Halifax, NS, Canada
| | - Guihong Pan
- Laboratory of Immunity, Shantou University Medical College, Guangdong, China
| | - David J. Kelvin
- Laboratory of Immunity, Shantou University Medical College, Guangdong, China
- Department of Microbiology and Immunology, Faculty of Medicine, Canadian Center for Vaccinology, Dalhousie University, Halifax, NS, Canada
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Guangdong, China
- Corresponding Author: David J. Kelvin, Laboratory of Immunity, Shantou University Medical College, Guangdong, China. E-mail:
| |
Collapse
|
32
|
Parker S, McDowall C, Sanchez-Perez L, Osorio C, Duncker PC, Briley A, Swartz AM, Herndon JE, Yu YRA, McLendon RE, Tedder TF, Desjardins A, Ashley DM, Gunn MD, Enterline DS, Knorr DA, Pastan IH, Nair SK, Bigner DD, Chandramohan V. Immunotoxin-αCD40 therapy activates innate and adaptive immunity and generates a durable antitumor response in glioblastoma models. Sci Transl Med 2023; 15:eabn5649. [PMID: 36753564 PMCID: PMC10440725 DOI: 10.1126/scitranslmed.abn5649] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/17/2023] [Indexed: 02/10/2023]
Abstract
D2C7-immunotoxin (IT), a dual-specific IT targeting wild-type epidermal growth factor receptor (EGFR) and mutant EGFR variant III (EGFRvIII) proteins, demonstrates encouraging survival outcomes in a subset of patients with glioblastoma. We hypothesized that immunosuppression in glioblastoma limits D2C7-IT efficacy. To improve the response rate and reverse immunosuppression, we combined D2C7-IT tumor cell killing with αCD40 costimulation of antigen-presenting cells. In murine glioma models, a single intratumoral injection of D2C7-IT+αCD40 treatment activated a proinflammatory phenotype in microglia and macrophages, promoted long-term tumor-specific CD8+ T cell immunity, and generated cures. D2C7-IT+αCD40 treatment increased intratumoral Slamf6+CD8+ T cells with a progenitor phenotype and decreased terminally exhausted CD8+ T cells. D2C7-IT+αCD40 treatment stimulated intratumoral CD8+ T cell proliferation and generated cures in glioma-bearing mice despite FTY720-induced peripheral T cell sequestration. Tumor transcriptome profiling established CD40 up-regulation, pattern recognition receptor, cell senescence, and immune response pathway activation as the drivers of D2C7-IT+αCD40 antitumor responses. To determine potential translation, immunohistochemistry staining confirmed CD40 expression in human GBM tissue sections. These promising preclinical data allowed us to initiate a phase 1 study with D2C7-IT+αhCD40 in patients with malignant glioma (NCT04547777) to further evaluate this treatment in humans.
Collapse
Affiliation(s)
- Scott Parker
- Department of Neurosurgery, Duke University Medical Center, Durham, NC 27710, USA
| | - Charlotte McDowall
- Department of Neurosurgery, Duke University Medical Center, Durham, NC 27710, USA
| | - Luis Sanchez-Perez
- Department of Neurosurgery, Duke University Medical Center, Durham, NC 27710, USA
| | - Cristina Osorio
- Department of Neurosurgery, Duke University Medical Center, Durham, NC 27710, USA
| | | | - Aaron Briley
- Department of Neurosurgery, Duke University Medical Center, Durham, NC 27710, USA
| | - Adam M Swartz
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | - James E Herndon
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC 27710, USA
| | - Yen-Rei A Yu
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Roger E McLendon
- Department of Neurosurgery, Duke University Medical Center, Durham, NC 27710, USA
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| | - Thomas F Tedder
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | - Annick Desjardins
- Department of Neurosurgery, Duke University Medical Center, Durham, NC 27710, USA
| | - David M Ashley
- Department of Neurosurgery, Duke University Medical Center, Durham, NC 27710, USA
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| | - Michael Dee Gunn
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - David S Enterline
- Department of Radiology, Duke University Medical Center, Durham, NC 27710, USA
| | - David A Knorr
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ira H Pastan
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Smita K Nair
- Department of Neurosurgery, Duke University Medical Center, Durham, NC 27710, USA
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| | - Darell D Bigner
- Department of Neurosurgery, Duke University Medical Center, Durham, NC 27710, USA
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| | - Vidyalakshmi Chandramohan
- Department of Neurosurgery, Duke University Medical Center, Durham, NC 27710, USA
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
33
|
Tovey Crutchfield EC, Garnish SE, Day J, Anderton H, Chiou S, Hempel A, Hall C, Patel KM, Gangatirkar P, Martin KR, Li Wai Suen CSN, Garnham AL, Kueh AJ, Wicks IP, Silke J, Nachbur U, Samson AL, Murphy JM, Hildebrand JM. MLKL deficiency protects against low-grade, sterile inflammation in aged mice. Cell Death Differ 2023; 30:1059-1071. [PMID: 36755069 PMCID: PMC10070424 DOI: 10.1038/s41418-023-01121-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/16/2023] [Accepted: 01/23/2023] [Indexed: 02/10/2023] Open
Abstract
MLKL and RIPK3 are the core signaling proteins of the inflammatory cell death pathway, necroptosis, which is a known mediator and modifier of human disease. Necroptosis has been implicated in the progression of disease in almost every physiological system and recent reports suggest a role for necroptosis in aging. Here, we present the first comprehensive analysis of age-related histopathological and immunological phenotypes in a cohort of Mlkl-/- and Ripk3-/- mice on a congenic C57BL/6 J genetic background. We show that genetic deletion of Mlkl in female mice interrupts immune system aging, specifically delaying the age-related reduction of circulating lymphocytes. -Seventeen-month-old Mlkl-/- female mice were also protected against age-related chronic sterile inflammation in connective tissue and skeletal muscle relative to wild-type littermate controls, exhibiting a reduced number of immune cell infiltrates in these sites and fewer regenerating myocytes. These observations implicate MLKL in age-related sterile inflammation, suggesting a possible application for long-term anti-necroptotic therapy in humans.
Collapse
Affiliation(s)
- Emma C Tovey Crutchfield
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia.,The University of Melbourne, Department of Medical Biology, Parkville, VIC, Australia.,The University of Melbourne, Faculty of Medicine, Dentistry and Health Sciences, Parkville, VIC, Australia
| | - Sarah E Garnish
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia.,The University of Melbourne, Department of Medical Biology, Parkville, VIC, Australia
| | - Jessica Day
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia.,The University of Melbourne, Department of Medical Biology, Parkville, VIC, Australia.,Royal Melbourne Hospital, Rheumatology Unit, Parkville, VIC, Australia
| | - Holly Anderton
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia.,The University of Melbourne, Department of Medical Biology, Parkville, VIC, Australia
| | - Shene Chiou
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia.,The University of Melbourne, Department of Medical Biology, Parkville, VIC, Australia
| | - Anne Hempel
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia
| | - Cathrine Hall
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia
| | - Komal M Patel
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia
| | | | - Katherine R Martin
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia.,The University of Melbourne, Department of Medical Biology, Parkville, VIC, Australia
| | | | | | - Andrew J Kueh
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia.,The University of Melbourne, Department of Medical Biology, Parkville, VIC, Australia
| | - Ian P Wicks
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia.,The University of Melbourne, Department of Medical Biology, Parkville, VIC, Australia.,Royal Melbourne Hospital, Rheumatology Unit, Parkville, VIC, Australia
| | - John Silke
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia.,The University of Melbourne, Department of Medical Biology, Parkville, VIC, Australia
| | - Ueli Nachbur
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia.,The University of Melbourne, Department of Medical Biology, Parkville, VIC, Australia
| | - Andre L Samson
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia.,The University of Melbourne, Department of Medical Biology, Parkville, VIC, Australia
| | - James M Murphy
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia. .,The University of Melbourne, Department of Medical Biology, Parkville, VIC, Australia.
| | - Joanne M Hildebrand
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia. .,The University of Melbourne, Department of Medical Biology, Parkville, VIC, Australia.
| |
Collapse
|
34
|
Liu ZS, Li PL, Ku YW, Chen PW. Oral Administration of Recombinant Lactoferrin-Expressing Probiotics Ameliorates Diet-Induced Lipid Accumulation and Inflammation in Non-Alcoholic Fatty Liver Disease in Mice. Microorganisms 2022; 10:2215. [PMID: 36363807 PMCID: PMC9694622 DOI: 10.3390/microorganisms10112215] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 07/22/2023] Open
Abstract
We have recently developed probiotics that can express bovine, human, or porcine lactoferrin (LF), and the present study evaluated the effect of these probiotics in improving non-alcoholic fatty liver disease (NAFLD). Three kinds of probiotic supplements, including lactic acid bacteria (LAB), LAB/LF, and inactivated LAB/LF, were prepared. The LAB supplement was prepared from 10 viable LAB without recombinant LF-expression, the LAB/LF supplement was prepared from 10 viable probiotics expressing LF, and the inactivated LAB/LF supplement was prepared from 10 inactivated probiotics expressing LF. A model of obese/NAFLD mice induced by a high-fat diet was established, and the mice were randomly divided into four groups and fed with a placebo, LAB, LAB/LF, or inactivated LAB daily for four weeks via oral gavage. The body weight, food intake, organ weight, biochemistry, and hepatic histopathological alterations and severity scoring were measured. The results revealed that the obese mice fed with any one of the three probiotic mixtures prepared from recombinant probiotics for four weeks exhibited considerably improved hepatic steatosis. These findings confirmed the assumption that specific probiotic strains or LF supplements could help to control NAFLD, as suggested in previous reports. Our data also suggest that the probiotics and LFs in probiotic mixtures contribute differently to improving the efficacy against NAFLD, and the expressed LF content in probiotics may help to boost their efficacy in comparison with the original probiotic mixtures. Moreover, when these LF-expressing probiotics were further inactivated by sonication, they displayed better efficacies than the viable probiotics against NAFLD. This study has provided intriguing data supporting the potential of recombinant probiotics in improving hepatic steatosis.
Collapse
Affiliation(s)
- Zhen-Shu Liu
- Department of Safety, Health and Environmental Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan
- Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Chiayi 61363, Taiwan
| | - Pei-Lin Li
- Department of Veterinary Medicine, National Chung Hsing University, Taichung 40249, Taiwan
| | - Yu-We Ku
- Department of Veterinary Medicine, National Chung Hsing University, Taichung 40249, Taiwan
- Animal and Plant Disease Control Center Yilan County, Wujie Township, Yilan County 268015, Taiwan
| | - Po-Wen Chen
- Department of Veterinary Medicine, National Chung Hsing University, Taichung 40249, Taiwan
| |
Collapse
|
35
|
Doan TKD, Umezawa M, Okubo K, Kamimura M, Yamaguchi M, Fujii H, Soga K. The effect of Gd-DOTA locations within PLGA- b-PEG micelle encapsulated IR-1061 on bimodal over-1000 nm near-infrared fluorescence and magnetic resonance imaging. Biomater Sci 2022; 10:6244-6257. [PMID: 36106960 DOI: 10.1039/d2bm01213h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Multimodal imaging is attractive in biomedical research because it can provide multidimensional information about objects that individual techniques cannot accomplish. In particular, combining over one-thousand-nanometer near-infrared (OTN-NIR) fluorescence and magnetic resonance (MR) imaging is promising for detecting lesions with high sensitivity and structural information. Herein, we describe the development of a bimodal OTN-NIR/MRI probe from gadolinium-tetraazacyclododecanetetraacetic acid (Gd-DOTA) conjugated poly(lactic-co-glycolic acid)-block-poly(ethylene glycol) copolymer (PLGA-b-PEG) micelle encapsulated IR-1061 at two different locations. One configuration contains Gd-DOTA at the end of the PEG of the hydrophilic shell and the other contains Gd-DOTA at the border of PLGA/PEG. The two structures show remarkable differences in fluorescence and R1 relaxation rates in biological environments; the structure with Gd-DOTA at the border of PLGA/PEG exhibits stable fluorescence and T1 signal distribution in live mice. The introduction ratio of Gd-DOTA to PEG is significant for controlling the properties of both structures; a higher Gd-DOTA ratio is preferable for the contrast enhancement effect. We found that Gd-DOTA ratios higher than 10% degraded the fluorescence intensity when Gd-DOTA was bound to the end of PEG. In contrast, the introduction of 70% Gd-DOTA at the border of PLGA/PEG did not exhibit a degraded signal, and the structural stability was enhanced with higher ratios of Gd-DOTA. In conclusion, we confirmed that the location of Gd-DOTA is a crucial factor in designing high-performance probes. The overall properties improve when Gd-DOTA is set on the border of PLGA/PEG. These improvements in the properties by controlling the probe structures are promising for future biomedical applications.
Collapse
Affiliation(s)
- Thi Kim Dung Doan
- Research Institute for Biomedical Science, Tokyo University of Science, 2669 Yamazaki, Noda, Chiba 278-0022, Japan. .,Division of Functional Imaging, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, 6-5-1 Kashiwanoha, Kashiwa 277-8577, Japan
| | - Masakazu Umezawa
- Department of Material Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Kyohei Okubo
- Department of Material Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Masao Kamimura
- Department of Material Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Masayuki Yamaguchi
- Division of Functional Imaging, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, 6-5-1 Kashiwanoha, Kashiwa 277-8577, Japan
| | - Hirofumi Fujii
- Division of Functional Imaging, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, 6-5-1 Kashiwanoha, Kashiwa 277-8577, Japan
| | - Kohei Soga
- Research Institute for Biomedical Science, Tokyo University of Science, 2669 Yamazaki, Noda, Chiba 278-0022, Japan. .,Department of Material Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| |
Collapse
|
36
|
Gao X, Wang Z, Xiong L, Wu F, Gan X, Liu J, Huang X, Liu J, Tang L, Li Y, Huang J, Huang Y, Li W, Zeng H, Ban Y, Chen T, He S, Lin A, Han F, Guo X, Yu Q, Shu W, Zhang B, Zou R, Zhou Y, Chen Y, Tian H, Wei W, Zhang Z, Wei C, Wei Y, Liu H, Yao H, Chen Q, Zou Z. The bs-YHEDA peptide protects the brains of senile mice and thus recovers intelligence by reducing iron and free radicals. Free Radic Biol Med 2022; 190:216-225. [PMID: 35970250 DOI: 10.1016/j.freeradbiomed.2022.08.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 08/08/2022] [Accepted: 08/08/2022] [Indexed: 11/24/2022]
Abstract
Iron accumulates in the brain with age and catalyzes free radical damage to neurons, thus playing a pathogenic role in Alzheimer's disease (AD). To decrease the incidence of AD, we synthesized the iron-affinitive peptide 5YHEDA to scavenge the excess iron in the senile brain. However, the blood-brain barrier (BBB) blocks the entrance of macromolecules into the brain, thus decreasing the therapeutic effects. To facilitate the entrance of the 5YHEDA peptide, we linked the low-density lipoprotein receptor (LDLR)-binding segment of ApoB-100 to 5YHEDA (named "bs-YHEDA"). The results of intravenous injections of bs-5YHEDA into senescent mice demonstrated that bs-YHEDA entered the brain, increased ferriportin levels, reduced iron and free radical levels, decreased the consequences of neuronal necrosis and ameliorated cognitive disfunction without kidney or liver damage. bs-5YHEDA is a safe iron and free radical remover that potentially alleviates aging and Alzheimer's disease.
Collapse
Affiliation(s)
- Xiaodie Gao
- Brain Hospital of Guangxi Zhuang Autonomous Region, Liuzhou, 542005, China; Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, 541199, China
| | - Zhigang Wang
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, 541199, China; Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Lijun Xiong
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, 541199, China
| | - Fengyao Wu
- Brain Hospital of Guangxi Zhuang Autonomous Region, Liuzhou, 542005, China; Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, 541199, China
| | - Xinying Gan
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, 541199, China
| | - Jinlian Liu
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, 541199, China
| | - Xiansheng Huang
- Brain Hospital of Guangxi Zhuang Autonomous Region, Liuzhou, 542005, China
| | - Juxia Liu
- Brain Hospital of Guangxi Zhuang Autonomous Region, Liuzhou, 542005, China
| | - Liling Tang
- Brain Hospital of Guangxi Zhuang Autonomous Region, Liuzhou, 542005, China
| | - Yanmei Li
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, 541199, China
| | - Jinli Huang
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, 541199, China
| | - Yuping Huang
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, 541199, China
| | - Wenyang Li
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, 541199, China
| | - Hongji Zeng
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, 541199, China
| | - Yunfei Ban
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, 541199, China
| | - Tingting Chen
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, 541199, China
| | - Suyuan He
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, 541199, China
| | - Anni Lin
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, 541199, China
| | - Fei Han
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, 541199, China
| | - Xuefeng Guo
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, 541199, China
| | - Qiming Yu
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, 541199, China
| | - Wei Shu
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, 541199, China
| | - Bo Zhang
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, 541199, China
| | - Ruyi Zou
- Chemical Department of Shangrao Normal University, Shangrao, 334001, China.
| | - Yong Zhou
- Central Hospital Affiliated to Taizhou University, Taizhou, 318000, China
| | - Yongfeng Chen
- Central Hospital Affiliated to Taizhou University, Taizhou, 318000, China
| | - Haibo Tian
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, 541199, China
| | - Wenjia Wei
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, 541199, China.
| | - Zhen Zhang
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, 541199, China
| | - Chuandong Wei
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, 541199, China
| | - Yuhua Wei
- Brain Hospital of Guangxi Zhuang Autonomous Region, Liuzhou, 542005, China
| | - Huihua Liu
- Brain Hospital of Guangxi Zhuang Autonomous Region, Liuzhou, 542005, China.
| | - Hua Yao
- Brain Hospital of Guangxi Zhuang Autonomous Region, Liuzhou, 542005, China.
| | - Qiang Chen
- Brain Hospital of Guangxi Zhuang Autonomous Region, Liuzhou, 542005, China.
| | - Zhenyou Zou
- Brain Hospital of Guangxi Zhuang Autonomous Region, Liuzhou, 542005, China; Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, 541199, China; Biochemistry Department of Purdue University, West Lafayette, IN47006, USA.
| |
Collapse
|
37
|
Nazemoroaya Z, Sarafbidabad M, Mahdieh A, Zeini D, Nyström B. Use of Saponinosomes from Ziziphus spina-christi as Anticancer Drug Carriers. ACS OMEGA 2022; 7:28421-28433. [PMID: 35990496 PMCID: PMC9386697 DOI: 10.1021/acsomega.2c03109] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/22/2022] [Indexed: 05/06/2023]
Abstract
Saponins are plant glycosides with different structures and biological activities, such as anticancer effects. Ziziphus spina-christi is a plant rich in saponin, and this compound is used to treat malignant melanoma in the present study. Nanophytosomes can be used as an advantageous nanodrug delivery system for plant extracts. The aim of this work is to use the saponin-rich fraction (SRF) from Z. spina-christi and prepare SRF-loaded nanophytosomes (saponinosomes) and observe the in vitro and in vivo effects of these carriers. First, the SRF was obtained from Z. spina-christi by a solvent-solvent fractionation method. Then, Fourier transform infrared (FTIR) analyses were performed to confirm the presence of saponins in the extracted material. Subsequently, the saponinosomes were prepared by the solvent injection method (ether injection method) using a 1:1:1 ratio of lecithin/cholesterol/SRF in the mixture. Characterization of the prepared saponinosomes was performed by FTIR, dynamic light scattering (DLS), field-emission scanning electron microscopy (FE-SEM), and atomic force microscopy (AFM) analyses. In addition, a UV-vis spectrophotometer was used to determine the entrapment efficiency (EE) and in vitro release of the SRF. Finally, cell cytotoxicity of the different formulations was evaluated using a 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) assay on both mouse melanoma cells (B16F10) and fibroblasts (L929). Using DLS, AFM, and FE-SEM analyses, the particle size was determined to be 58 ± 6 nm with a zeta potential of -32 ± 2 mV. The calculated EE was 85 ± 3%. The results of the in vitro release profile showed that 68.2% of the SRF was released from the saponinosome after 48 h. The results of the MTT assay showed that the SRF and saponinosomes have high toxicity on B16F10 melanoma cells, but saponinosomes showed a significant decrease in cytotoxicity on L929 fibroblast cells compared with that of the SRF. Our results indicate that the SRF from Z. spina-christi has anticancer activity, and the saponinosomes prepared in this work can control tumor growth, improve therapeutic efficacy, and reduce the side effects of saponins.
Collapse
Affiliation(s)
- Zahra Nazemoroaya
- Student
Research Committee, School of Pharmacy, Shahid Beheshti University of Medical Sciences, 19839-63113 Tehran, Iran
| | - Mohsen Sarafbidabad
- Department
of Biomedical Engineering, Faculty of Engineering, University of Isfahan, 81746-73441 Isfahan, Iran
| | - Athar Mahdieh
- School
of Pharmacy, Department of Pharmaceutics, University of Oslo, P.O. Box 1068,
Blindern, N-0316 Oslo, Norway
- Department
of Chemistry, University of Oslo, P.O. Box 1033, Blindern, N-0315 Oslo, Norway
| | - Darya Zeini
- Department
of Chemistry, University of Oslo, P.O. Box 1033, Blindern, N-0315 Oslo, Norway
- Laboratory
of Neural Development and Optical Recording (NDEVOR), Department of
Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, P.O.
Box 1103, N-0317 Oslo, Norway
| | - Bo Nyström
- Department
of Chemistry, University of Oslo, P.O. Box 1033, Blindern, N-0315 Oslo, Norway
| |
Collapse
|
38
|
Uremic mouse model to study vascular calcification and "inflamm-aging". J Mol Med (Berl) 2022; 100:1321-1330. [PMID: 35916902 PMCID: PMC9402761 DOI: 10.1007/s00109-022-02234-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 05/19/2022] [Accepted: 07/05/2022] [Indexed: 11/05/2022]
Abstract
Calcification and chronic inflammation of the vascular wall is a high-risk factor for cardiovascular mortality, especially in patients with chronic uremia. For the reduction or prevention of rapid disease progression, no specific treatment options are currently available. This study aimed to evaluate an adenine-based uremic mouse model for studying medial vessel calcification and senescence-associated secretory phenotype (SASP) changes of aortic tissue to unravel molecular pathogenesis and provide a model for therapy testing. The dietary adenine administration induced a stable and similar degree of chronic uremia in DBA2/N mice with an increase of uremia blood markers such as blood urea nitrogen, calcium, creatinine, alkaline phosphatase, and parathyroid hormone. Also, renal fibrosis and crystal deposits were detected upon adenine feeding. The uremic condition is related to a moderate to severe medial vessel calcification and subsequent elastin disorganization. In addition, expression of osteogenic markers as Bmp-2 and its transcription factor Sox-9 as well as p21 as senescence marker were increased in uremic mice compared to controls. Pro-inflammatory uremic proteins such as serum amyloid A, interleukin (Il)-1β, and Il-6 increased. This novel model of chronic uremia provides a simple method for investigation of signaling pathways in vascular inflammation and calcification and therefore offers an experimental basis for the development of potential therapeutic intervention studies.
Collapse
|
39
|
de Castro Nobre AC, Pimentel CF, do Rêgo GMS, Paludo GR, Pereira Neto GB, de Castro MB, Nitz N, Hecht M, Dallago B, Hagström L. Insights from the use of erythropoietin in experimental Chagas disease. Int J Parasitol Drugs Drug Resist 2022; 19:65-80. [PMID: 35772309 PMCID: PMC9253553 DOI: 10.1016/j.ijpddr.2022.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 05/26/2022] [Accepted: 05/31/2022] [Indexed: 11/23/2022]
Abstract
In addition to the long-established role in erythropoiesis, erythropoietin (Epo) has protective functions in a variety of tissues, including the heart. This is the most affected organ in chronic Chagas disease, caused by the protozoan Trypanosoma cruzi. Despite seven million people being infected with T. cruzi worldwide, there is no effective treatment preventing the disease progression to the chronic phase when the pathological involvement of the heart is often observed. Chronic chagasic cardiomyopathy has a wide variety of manifestations, like left ventricular systolic dysfunction, dilated cardiomyopathy, and heart failure. Since Epo may help maintain cardiac function by reducing myocardial necrosis, inflammation, and fibrosis, this study aimed to evaluate whether the Epo has positive effects on experimental Chagas disease. For that, we assessed the earlier (acute phase) and also the later (chronic phase) use of Epo in infected C57BL/6 mice. Blood cell count, biochemical parameters, parasitic load, and echocardiography data were evaluated. In addition, histopathological analysis was carried out. Our data showed that Epo had no trypanocide effect nor did it modify the production of anti-T. cruzi antibodies. Epo-treated groups exhibited parasitic burden much lower in the heart compared to blood. No pattern of hematological changes was observed combining infection with treatment with Epo. Chronic Epo administration reduced CK-MB serum activity from d0 to d180, irrespectively of T. cruzi infection. Likewise, echocardiography and histological results indicate that Epo treatment is more effective in the chronic phase of experimental Chagas disease. Since treatment is one of the greatest challenges of Chagas disease, alternative therapies should be investigated, including Epo combined with benznidazole.
Collapse
Affiliation(s)
| | - Carlos Fernando Pimentel
- Interdisciplinary Laboratory of Biosciences, Faculty of Medicine, University of Brasilia, Brasília, Brazil
| | - George Magno Sousa do Rêgo
- Laboratory of Veterinary Clinical Pathology, Faculty of Agronomy and Veterinary Medicine, University of Brasília, Brasília, Brazil
| | - Giane Regina Paludo
- Laboratory of Veterinary Clinical Pathology, Faculty of Agronomy and Veterinary Medicine, University of Brasília, Brasília, Brazil
| | - Glaucia Bueno Pereira Neto
- Veterinary Hospital, Faculty of Agronomy and Veterinary Medicine, University of Brasília, Brasília, Brazil
| | - Márcio Botelho de Castro
- Laboratory of Veterinary Pathology, Faculty of Agronomy and Veterinary Medicine, University of Brasília, Brasília, Brazil
| | - Nadjar Nitz
- Interdisciplinary Laboratory of Biosciences, Faculty of Medicine, University of Brasilia, Brasília, Brazil
| | - Mariana Hecht
- Interdisciplinary Laboratory of Biosciences, Faculty of Medicine, University of Brasilia, Brasília, Brazil
| | - Bruno Dallago
- Interdisciplinary Laboratory of Biosciences, Faculty of Medicine, University of Brasilia, Brasília, Brazil; Veterinary Hospital, Faculty of Agronomy and Veterinary Medicine, University of Brasília, Brasília, Brazil
| | - Luciana Hagström
- Interdisciplinary Laboratory of Biosciences, Faculty of Medicine, University of Brasilia, Brasília, Brazil; Faculty of Physical Education, University of Brasília, Brasília, Brazil.
| |
Collapse
|
40
|
Comparison of adjuvant properties of chitosan during oral and subcutaneous immunization of mice with BSA. UKRAINIAN BIOCHEMICAL JOURNAL 2022. [DOI: 10.15407/ubj94.02.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Vaccination is the best method to prevent the spread of infectious diseases, its disadvantages are side effects. Potentially safe DNA, RNA or protein molecules possess antigenic properties, but are low-immunogenic and therefore require conjugation with an adjuvant. The aim of the research was to evaluate Chitosan (CS) potency as an adjuvant and compare its effectiveness depending on the route of drug administration. The experiments were carried out on 3 groups of BALB/c mice. Mice of the first group were injected subcutaneously with 20 µl of a mixture of CS (3.3 mg/kg) and BSA (1.7 mg/kg). The mixture of CS and BSA at the same doses and volume was administered orally to mice of the second experimental group. The third group – control – unvaccinated mice. Anti-BSA antibody levels were measured by ELISA. Aspartate aminotransferase, alanine aminotransferase activity and cholesterol, creatinine and urea levels were determined in the serum. It was found that both subcutaneous and mucosal immunizations provided a 2-fold increase in anti-BSA antibody titers against the background of maintaining all biochemical blood parameters at the level of the physiological norm. However, AST activity in the serum of oral-immunized mice was elevated as compared to subcutaneous-immunized mice. Serum cholesterol level in the group of subcutaneously immunized mice and creatinine and urea levels in both experimental groups were reduced compared to the control. It is concluded that oral immunization with CS is the optimal route for antigen-specific IgG antibody response induction.
Collapse
|
41
|
Lapuente JP, Gómez G, Marco-Brualla J, Fernández P, Desportes P, Sanz J, García-Gil M, Bermejo F, San Martín JV, Algaba A, De Gregorio JC, Lapuente D, De Gregorio A, Lapuente B, Gómez S, Andrés MDLV, Anel A. Evaluation in a Cytokine Storm Model in Vivo of the Safety and Efficacy of Intravenous Administration of PRS CK STORM (Standardized Conditioned Medium Obtained by Coculture of Monocytes and Mesenchymal Stromal Cells). Biomedicines 2022; 10:biomedicines10051094. [PMID: 35625831 PMCID: PMC9138962 DOI: 10.3390/biomedicines10051094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/02/2022] [Accepted: 05/05/2022] [Indexed: 11/16/2022] Open
Abstract
Our research group has been developing a series of biological drugs produced by coculture techniques with M2-polarized macrophages with different primary tissue cells and/or mesenchymal stromal cells (MSC), generally from fat, to produce anti-inflammatory and anti-fibrotic effects, avoiding the overexpression of pro-inflammatory cytokines by the innate immune system at a given time. One of these products is the drug PRS CK STORM, a medium conditioned by allogenic M2-polarized macrophages, from coculture, with those macrophages M2 with MSC from fat, whose composition, in vitro safety, and efficacy we studied. In the present work, we publish the results obtained in terms of safety (pharmacodynamics and pharmacokinetics) and efficacy of the intravenous application of this biological drug in a murine model of cytokine storm associated with severe infectious processes, including those associated with COVID-19. The results demonstrate the safety and high efficacy of PRS CK STORM as an intravenous drug to prevent and treat the cytokine storm associated with infectious processes, including COVID-19.
Collapse
Affiliation(s)
- Juan Pedro Lapuente
- R4T Molecular and Cell Biology Research Laboratories, Fuenlabrada Hospital, 28942 Madrid, Spain; (G.G.); (P.F.); (J.C.D.G.); (D.L.); (A.D.G.); (B.L.); (S.G.); (M.d.l.V.A.)
- Correspondence: (J.P.L.); (A.A.)
| | - Gonzalo Gómez
- R4T Molecular and Cell Biology Research Laboratories, Fuenlabrada Hospital, 28942 Madrid, Spain; (G.G.); (P.F.); (J.C.D.G.); (D.L.); (A.D.G.); (B.L.); (S.G.); (M.d.l.V.A.)
| | - Joaquín Marco-Brualla
- Group Immunity, Cancer and Stem Cells, Faculty of Sciences, University of Zaragoza, 50009 Zaragoza, Spain;
| | - Pablo Fernández
- R4T Molecular and Cell Biology Research Laboratories, Fuenlabrada Hospital, 28942 Madrid, Spain; (G.G.); (P.F.); (J.C.D.G.); (D.L.); (A.D.G.); (B.L.); (S.G.); (M.d.l.V.A.)
| | - Paula Desportes
- GMP Facility, Peaches Biotech, 28050 Madrid, Spain; (P.D.); (J.S.)
| | - Jara Sanz
- GMP Facility, Peaches Biotech, 28050 Madrid, Spain; (P.D.); (J.S.)
| | | | - Fernando Bermejo
- Digestive Department, Fuenlabrada Hospital, 28942 Madrid, Spain;
- Medicine Department, University Rey Juan Carlos, 28942 Madrid, Spain
| | | | - Alicia Algaba
- Clinical Assay Department, Fuelabrada Hospital, 28942 Madrid, Spain;
| | - Juan Carlos De Gregorio
- R4T Molecular and Cell Biology Research Laboratories, Fuenlabrada Hospital, 28942 Madrid, Spain; (G.G.); (P.F.); (J.C.D.G.); (D.L.); (A.D.G.); (B.L.); (S.G.); (M.d.l.V.A.)
| | - Daniel Lapuente
- R4T Molecular and Cell Biology Research Laboratories, Fuenlabrada Hospital, 28942 Madrid, Spain; (G.G.); (P.F.); (J.C.D.G.); (D.L.); (A.D.G.); (B.L.); (S.G.); (M.d.l.V.A.)
| | - Almudena De Gregorio
- R4T Molecular and Cell Biology Research Laboratories, Fuenlabrada Hospital, 28942 Madrid, Spain; (G.G.); (P.F.); (J.C.D.G.); (D.L.); (A.D.G.); (B.L.); (S.G.); (M.d.l.V.A.)
| | - Belén Lapuente
- R4T Molecular and Cell Biology Research Laboratories, Fuenlabrada Hospital, 28942 Madrid, Spain; (G.G.); (P.F.); (J.C.D.G.); (D.L.); (A.D.G.); (B.L.); (S.G.); (M.d.l.V.A.)
| | - Sergio Gómez
- R4T Molecular and Cell Biology Research Laboratories, Fuenlabrada Hospital, 28942 Madrid, Spain; (G.G.); (P.F.); (J.C.D.G.); (D.L.); (A.D.G.); (B.L.); (S.G.); (M.d.l.V.A.)
| | - María de las Viñas Andrés
- R4T Molecular and Cell Biology Research Laboratories, Fuenlabrada Hospital, 28942 Madrid, Spain; (G.G.); (P.F.); (J.C.D.G.); (D.L.); (A.D.G.); (B.L.); (S.G.); (M.d.l.V.A.)
| | - Alberto Anel
- Group Immunity, Cancer and Stem Cells, Faculty of Sciences, University of Zaragoza, 50009 Zaragoza, Spain;
- Correspondence: (J.P.L.); (A.A.)
| |
Collapse
|
42
|
Timin AS, Postovalova AS, Karpov TE, Antuganov D, Bukreeva AS, Akhmetova DR, Rogova AS, Muslimov AR, Rodimova SA, Kuznetsova DS, Zyuzin MV. Calcium carbonate carriers for combined chemo- and radionuclide therapy of metastatic lung cancer. J Control Release 2022; 344:1-11. [PMID: 35181413 DOI: 10.1016/j.jconrel.2022.02.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/05/2022] [Accepted: 02/14/2022] [Indexed: 12/13/2022]
Abstract
Considering the clinical limitations of individual approaches against metastatic lung cancer, the use of combined therapy can potentially improve the therapeutic effect of treatment. However, determination of the appropriate strategy of combined treatment can be challenging. In this study, combined chemo- and radionuclide therapy has been realized using radionuclide carriers (177Lu-labeled core-shell particles, 177Lu-MPs) and chemotherapeutic drug (cisplatin, CDDP) for treatment of lung metastatic cancer. The developed core-shell particles can be effectively loaded with 177Lu therapeutic radionuclide and exhibit good radiochemical stability for a prolonged period of time. In vivo biodistribution experiments have demonstrated the accumulation of the developed carriers predominantly in lungs. Direct radiometry analysis did not reveal an increased absorbance of radiation by healthy organs. It has been shown that the radionuclide therapy with 177Lu-MPs in mono-regime is able to inhibit the number of metastatic nodules (untreated mice = 120 ± 12 versus177Lu-MPs = 50 ± 7). The combination of chemo- and radionuclide therapy when using 177Lu-MPs and CDDP further enhanced the therapeutic efficiency of tumor treatment compared to the single therapy (177Lu-MPs = 50 ± 7 and CDDP = 65 ± 10 versus177Lu-MPs + CDDP = 37 ± 5). Thus, this work is a systematic research on the applicability of the combination of chemo- and radionuclide therapy to treat metastatic lung cancer.
Collapse
Affiliation(s)
- Alexander S Timin
- Granov Russian Research Center of Radiology & Surgical Technologies, Leningradskaya Street 70 Pesochny, St. Petersburg 197758, Russian Federation; Peter The Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, St. Petersburg 195251, Russian Federation; Research School of Chemical and Biomedical Engineering, National Research Tomsk Polytechnic University, Lenin Avenue 30, Tomsk 634050, Russian Federation.
| | - Alisa S Postovalova
- Granov Russian Research Center of Radiology & Surgical Technologies, Leningradskaya Street 70 Pesochny, St. Petersburg 197758, Russian Federation; Peter The Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, St. Petersburg 195251, Russian Federation
| | - Timofey E Karpov
- Granov Russian Research Center of Radiology & Surgical Technologies, Leningradskaya Street 70 Pesochny, St. Petersburg 197758, Russian Federation; Peter The Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, St. Petersburg 195251, Russian Federation
| | - Dmitrii Antuganov
- Granov Russian Research Center of Radiology & Surgical Technologies, Leningradskaya Street 70 Pesochny, St. Petersburg 197758, Russian Federation
| | - Anastasia S Bukreeva
- Peter The Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, St. Petersburg 195251, Russian Federation
| | - Darya R Akhmetova
- Peter The Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, St. Petersburg 195251, Russian Federation
| | - Anna S Rogova
- Peter The Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, St. Petersburg 195251, Russian Federation
| | - Albert R Muslimov
- Peter The Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, St. Petersburg 195251, Russian Federation
| | - Svetlana A Rodimova
- N.I. Lobachevsky Nizhny Novgorod National Research State University, 23 Gagarina ave., Nizhny Novgorod 603022, Russian Federation; Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky research medical university, 10/1 Minin and Pozharsky sq., Nizhny Novgorod 603022, Russian Federation
| | - Daria S Kuznetsova
- N.I. Lobachevsky Nizhny Novgorod National Research State University, 23 Gagarina ave., Nizhny Novgorod 603022, Russian Federation; Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky research medical university, 10/1 Minin and Pozharsky sq., Nizhny Novgorod 603022, Russian Federation
| | - Mikhail V Zyuzin
- School of Physics and Engineering, ITMO University, Lomonosova 9, St. Petersburg 191002, Russian Federation
| |
Collapse
|
43
|
Mekuria SA, Kinyuru JN, Mokua BK, Tenagashaw MW. Growth performance, biochemical and haematological parameters of BALB/c mice fed on staple grains and bee larvae (Apis Mellifera) blended complementary foods. Heliyon 2022; 8:e09003. [PMID: 35243107 PMCID: PMC8885981 DOI: 10.1016/j.heliyon.2022.e09003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/18/2021] [Accepted: 02/21/2022] [Indexed: 12/02/2022] Open
Abstract
In Sub-Saharan Africa, inadequate complementary feeding practices and being nutritionally inadequate are primary factors in infant and young child malnutrition, growth failure, and high morbidity and mortality. Therefore, novel complementary foods need to be developed to alleviate malnutrition problems in IYC. Therefore, this experimental study aimed to assess the effects of newly developed grain-bee larvae blended complementary foods on the growth performance, haematological, and biochemical parameters of BALB/c mice. A complete randomized design was used and a total of 75 BALB/c mice were assigned to each of the five treatments. The treatments were: T1 = Casein diet; T2 = 57 % Maize, 29 % Teff, 14 % Soybean; T3 = 58 % Maize, 29 % Teff, 13 % Bee larvae; T4 = Commercial wean mix; and T5 = Basal diet alone. The in vivo experiment trial was done for 28 days along with seven days of adaptation. Dietary intake was not significantly different (P = 0.96) between treatments, but it was noted that T3 had gained the highest final body weight (38.52 g). The examined biochemical parameters showed T4 had the lowest serum protein (6.27 mg/dl) and globulin (3.61 mg/dl). Compared to others, T3 significantly (P < 0.001) increased WBC (4 × 106 mm3), RBC (11.37 × 103 mm3), Haemoglobin (16.42 g/dl), and Hematocrit (63.04 %). The highest serum levels of zinc (0.55 mg/dl) and iron (2.08 mg/dl) were reported on T2, while the highest serum calcium content (10.64 mg/dl) was reported on T1. The results indicated that T3 can aid body growth, health, and prevent malnutrition in infants and young children.
Collapse
Affiliation(s)
- Shewangzaw Addisu Mekuria
- Department of Food Science and Nutrition, Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000-00200, Nairobi, Kenya
- University of Gondar, P.O. Box 196, Gondar, Ethiopia
- Corresponding author.
| | - John N. Kinyuru
- Department of Food Science and Nutrition, Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000-00200, Nairobi, Kenya
| | - Beatrice Kiage Mokua
- Department of Food Science and Nutrition, Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000-00200, Nairobi, Kenya
| | | |
Collapse
|
44
|
Cooper TK, Meyerholz DK, Beck AP, Delaney MA, Piersigilli A, Southard TL, Brayton CF. Research-Relevant Conditions and Pathology of Laboratory Mice, Rats, Gerbils, Guinea Pigs, Hamsters, Naked Mole Rats, and Rabbits. ILAR J 2022; 62:77-132. [PMID: 34979559 DOI: 10.1093/ilar/ilab022] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/12/2021] [Indexed: 12/31/2022] Open
Abstract
Animals are valuable resources in biomedical research in investigations of biological processes, disease pathogenesis, therapeutic interventions, safety, toxicity, and carcinogenicity. Interpretation of data from animals requires knowledge not only of the processes or diseases (pathophysiology) under study but also recognition of spontaneous conditions and background lesions (pathology) that can influence or confound the study results. Species, strain/stock, sex, age, anatomy, physiology, spontaneous diseases (noninfectious and infectious), and neoplasia impact experimental results and interpretation as well as animal welfare. This review and the references selected aim to provide a pathology resource for researchers, pathologists, and veterinary personnel who strive to achieve research rigor and validity and must understand the spectrum of "normal" and expected conditions to accurately identify research-relevant experimental phenotypes as well as unusual illness, pathology, or other conditions that can compromise studies involving laboratory mice, rats, gerbils, guinea pigs, hamsters, naked mole rats, and rabbits.
Collapse
Affiliation(s)
- Timothy K Cooper
- Department of Comparative Medicine, Penn State Hershey Medical Center, Hershey, PA, USA
| | - David K Meyerholz
- Department of Pathology, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa, USA
| | - Amanda P Beck
- Department of Pathology, Yeshiva University Albert Einstein College of Medicine, Bronx, New York, USA
| | - Martha A Delaney
- Zoological Pathology Program, University of Illinois at Urbana-Champaign College of Veterinary Medicine, Urbana-Champaign, Illinois, USA
| | - Alessandra Piersigilli
- Laboratory of Comparative Pathology and the Genetically Modified Animal Phenotyping Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Teresa L Southard
- Department of Biomedical Sciences, Cornell University College of Veterinary Medicine, Ithaca, New York, USA
| | - Cory F Brayton
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
45
|
Choi H, Cao J, Qiao H, Chen IW, Zhou R. Improving Cancer Detection and Treatment by pH‐Sensitive Peptide Nanoparticle Drug Delivery Platform: Pharmacokinetics, Toxicity, and Immunogenicity Profile. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Hoon Choi
- Department of Radiology University of Pennsylvania Philadelphia PA 19104 USA
| | - Jianbo Cao
- Department of Radiology University of Pennsylvania Philadelphia PA 19104 USA
| | - Hui Qiao
- Department of Pathology Children‘s Hospital of Philadelphia Philadelphia PA 19104 USA
| | - I-Wei Chen
- Department of Material Science University of Pennsylvania Philadelphia PA 19104 USA
| | - Rong Zhou
- Department of Radiology University of Pennsylvania Philadelphia PA 19104 USA
- Abramson Cancer Center University of Pennsylvania Philadelphia PA 19104 USA
| |
Collapse
|
46
|
Bau-Gaudreault L, Arndt T, Provencher A, Brayton CF. Research-Relevant Clinical Pathology Resources: Emphasis on Mice, Rats, Rabbits, Dogs, Minipigs, and Non-Human Primates. ILAR J 2021; 62:203-222. [PMID: 34877602 DOI: 10.1093/ilar/ilab028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 08/16/2021] [Accepted: 09/07/2021] [Indexed: 12/15/2022] Open
Abstract
Clinical pathology testing for investigative or biomedical research and for preclinical toxicity and safety assessment in laboratory animals is a distinct specialty requiring an understanding of species specific and other influential variables on results and interpretation. This review of clinical pathology principles and testing recommendations in laboratory animal species aims to provide a useful resource for researchers, veterinary specialists, toxicologists, and clinical or anatomic pathologists.
Collapse
Affiliation(s)
- Liza Bau-Gaudreault
- Clinical Laboratories, Charles River Laboratories - ULC, Senneville, Quebec, Canada
| | - Tara Arndt
- Labcorp Drug Development, Madison, Wisconsin, United States
| | - Anne Provencher
- Clinical Laboratories, Charles River Laboratories - ULC, Sherbrooke, Quebec, Canada
| | - Cory F Brayton
- Molecular and Comparative Pathobiology, John Hopkins University, School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
47
|
Yang L, Li F, Cao Y, Liu Q, Jing G, Niu J, Sun F, Qian Y, Wang S, Li A. Multifunctional silica nanocomposites prime tumoricidal immunity for efficient cancer immunotherapy. J Nanobiotechnology 2021; 19:328. [PMID: 34663354 PMCID: PMC8524820 DOI: 10.1186/s12951-021-01073-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 10/04/2021] [Indexed: 12/18/2022] Open
Abstract
The tumor immune microenvironment (TIME) has been demonstrated to be the main cause of cancer immunotherapy failure in various malignant tumors, due to poor immunogenicity and existence of immunosuppressive factors. Thus, establishing effective treatments for hostile TIME remodeling has considerable potential to enhance immune response rates for durable tumor growth retardation. This study aims to develop a novel nanocomposite, polyethyleneimine-modified dendritic mesoporous silica nanoparticles loaded with microRNA-125a (DMSN-PEI@125a) to synergistically enhance immune response and immunosuppression reversion, ultimately generating a tumoricidal environment. Our results showed that DMSN-PEI@125a exhibited excellent ability in cellular uptake by murine macrophages and the cervical cancer cell line TC-1, repolarization of tumor associated macrophages (TAMs) to M1 type in a synergistic manner, and promotion of TC-1 immunogenic death. Intratumor injection of DMSN-PEI@125a facilitated the release of more damage-related molecular patterns and enhanced the infiltration of natural killer and CD8+ T cells. Meanwhile, repolarized TAMs could function as a helper to promote antitumor immunity, thus inhibiting tumor growth in TC-1 mouse models in a collaborative manner. Collectively, this work highlights the multifunctional roles of DMSN-PEI@125a in generating an inflammatory TIME and provoking antitumor immunity, which may serve as a potential agent for cancer immunotherapy.
Collapse
Affiliation(s)
- Linnan Yang
- Research Center for Translational Medicine at East Hospital, School of Life Science and Technology, Tongji University, Shanghai, People's Republic of China.,Central Laboratory, First Affiliated Hospital, Anhui Medical University, Hefei, People's Republic of China
| | - Feng Li
- Research Center for Translational Medicine at East Hospital, School of Life Science and Technology, Tongji University, Shanghai, People's Republic of China
| | - Yongsheng Cao
- The Second Department of Urology, Anhui Provincial Children's Hospital, Hefei, People's Republic of China
| | - Qiang Liu
- Research Center for Translational Medicine at East Hospital, School of Life Science and Technology, Tongji University, Shanghai, People's Republic of China
| | - Guoxin Jing
- Research Center for Translational Medicine at East Hospital, School of Life Science and Technology, Tongji University, Shanghai, People's Republic of China
| | - Jintong Niu
- Research Center for Translational Medicine at East Hospital, School of Life Science and Technology, Tongji University, Shanghai, People's Republic of China
| | - Feiyue Sun
- Research Center for Translational Medicine at East Hospital, School of Life Science and Technology, Tongji University, Shanghai, People's Republic of China
| | - Yechang Qian
- Department of Respiratory Disease, Baoshan District Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, People's Republic of China.
| | - Shilong Wang
- Research Center for Translational Medicine at East Hospital, School of Life Science and Technology, Tongji University, Shanghai, People's Republic of China.
| | - Ang Li
- Research Center for Translational Medicine at East Hospital, School of Life Science and Technology, Tongji University, Shanghai, People's Republic of China.
| |
Collapse
|
48
|
Autophagy Promotes the Survival of Adipose Mesenchymal Stem/Stromal Cells and Enhances Their Therapeutic Effects in Cisplatin-Induced Liver Injury via Modulating TGF-β1/Smad and PI3K/AKT Signaling Pathways. Cells 2021; 10:cells10092475. [PMID: 34572126 PMCID: PMC8470434 DOI: 10.3390/cells10092475] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/13/2021] [Accepted: 09/13/2021] [Indexed: 02/07/2023] Open
Abstract
Autophagy is a key metabolic process where cells can recycle its proteins and organelles to regenerate its own cellular building blocks. Chemotherapy is indispensable for cancer treatment but associated with various side-effects, including organ damage. Stem cell-based therapy is a promising approach for reducing chemotherapeutic side effects, however, one of its main culprits is the poor survival of transplanted stem cells in damaged tissues. Here, we aimed to test the effects of activating autophagy in adipose-derived mesenchymal stem/stromal cells (ADSCs) on the survival of ADSCs, and their therapeutic value in cisplatin-induced liver injury model. Autophagy was activated in ADSCs by rapamycin (50 nM/L) for two hours before transplantation and were compared to non-preconditioned ADSCs. Rapamycin preconditioning resulted in activated autophagy and improved survival of ADSCs achieved by increased autophagosomes, upregulated autophagy-specific LC3-II gene, decreased protein degradation/ubiquitination by downregulated p62 gene, downregulated mTOR gene, and finally, upregulated antiapoptotic BCL-2 gene. In addition, autophagic ADSCs transplantation in the cisplatin liver injury model, liver biochemical parameters (AST, ALT and albumin), lipid peroxidation (MDA), antioxidant profile (SOD and GPX) and histopathological picture were improved, approaching near-normal conditions. These promising autophagic ADSCs effects were achieved by modulation of components in TGF-β1/Smad and PI3K-AKT signaling pathways, besides reducing NF-κB gene expression (marker for inflammation), reducing TGF-β1 levels (marker for fibrosis) and increasing SDF-1 levels (liver regeneration marker) in liver. Therefore, current results highlight the importance of autophagy in augmenting the therapeutic potential of stem cell therapy in alleviating cisplatin-associated liver damage and opens the path for improved cell-based therapies, in general, and with chemotherapeutics, in particular.
Collapse
|
49
|
Stožer A, Skelin Klemen M, Gosak M, Križančić Bombek L, Pohorec V, Slak Rupnik M, Dolenšek J. Glucose-dependent activation, activity, and deactivation of beta cell networks in acute mouse pancreas tissue slices. Am J Physiol Endocrinol Metab 2021; 321:E305-E323. [PMID: 34280052 DOI: 10.1152/ajpendo.00043.2021] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 07/09/2021] [Indexed: 12/14/2022]
Abstract
Many details of glucose-stimulated intracellular calcium changes in β cells during activation, activity, and deactivation, as well as their concentration-dependence, remain to be analyzed. Classical physiological experiments indicated that in islets, functional differences between individual cells are largely attenuated, but recent findings suggest considerable intercellular heterogeneity, with some cells possibly coordinating the collective responses. To address the above with an emphasis on heterogeneity and describing the relations between classical physiological and functional network properties, we performed functional multicellular calcium imaging in mouse pancreas tissue slices over a wide range of glucose concentrations. During activation, delays to activation of cells and any-cell-to-first-responder delays are shortened, and the sizes of simultaneously responding clusters increased with increasing glucose concentrations. Exactly the opposite characterized deactivation. The frequency of fast calcium oscillations during activity increased with increasing glucose up to 12 mM glucose concentration, beyond which oscillation duration became longer, resulting in a homogenous increase in active time. In terms of functional connectivity, islets progressed from a very segregated network to a single large functional unit with increasing glucose concentration. A comparison between classical physiological and network parameters revealed that the first-responders during activation had longer active times during plateau and the most active cells during the plateau tended to deactivate later. Cells with the most functional connections tended to activate sooner, have longer active times, and deactivate later. Our findings provide a common ground for recent differing views on β cell heterogeneity and an important baseline for future studies of stimulus-secretion and intercellular coupling.NEW & NOTEWORTHY We assessed concentration-dependence in coupled β cells, degree of functional heterogeneity, and uncovered possible specialized subpopulations during the different phases of the response to glucose at the level of many individual cells. To this aim, we combined acute mouse pancreas tissue slices with functional multicellular calcium imaging over a wide range from threshold (7 mM) and physiological (8 and 9 mM) to supraphysiological (12 and 16 mM) glucose concentrations, classical physiological, and advanced network analyses.
Collapse
Affiliation(s)
- Andraž Stožer
- Faculty of Medicine, Institute of Physiology, University of Maribor, Maribor, Slovenia
| | - Maša Skelin Klemen
- Faculty of Medicine, Institute of Physiology, University of Maribor, Maribor, Slovenia
| | - Marko Gosak
- Faculty of Medicine, Institute of Physiology, University of Maribor, Maribor, Slovenia
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
| | | | - Viljem Pohorec
- Faculty of Medicine, Institute of Physiology, University of Maribor, Maribor, Slovenia
| | - Marjan Slak Rupnik
- Faculty of Medicine, Institute of Physiology, University of Maribor, Maribor, Slovenia
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
- Alma Mater Europaea-European Center Maribor, Maribor, Slovenia
| | - Jurij Dolenšek
- Faculty of Medicine, Institute of Physiology, University of Maribor, Maribor, Slovenia
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
| |
Collapse
|
50
|
Spittler AP, Afzali MF, Bork SB, Burton LH, Radakovich LB, Seebart CA, Moore AR, Santangelo KS. Age- and sex-associated differences in hematology and biochemistry parameters of Dunkin Hartley guinea pigs (Cavia porcellus). PLoS One 2021; 16:e0253794. [PMID: 34242236 PMCID: PMC8270176 DOI: 10.1371/journal.pone.0253794] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/12/2021] [Indexed: 12/05/2022] Open
Abstract
The Dunkin Hartley is the most common guinea pig strain used in biomedical research, particularly for studies of asthma, allergy, infectious disease, reproduction, and osteoarthritis. Minimally invasive blood tests, such as complete blood counts and serum biochemistry profiles, are often collected for diagnostics and laboratory analyses. However, reference intervals for these assays have not yet been well-documented in this strain. The purpose of this study was to establish reference intervals for hematologic and biochemical parameters of Dunkin Hartley guinea pigs and determine age- and sex-related differences. Hematologic and biochemical parameters were retrospectively obtained from 145 male and 68 female guinea pigs between 2 and 15 months of age. All blood parameters were analyzed by a veterinary clinical pathology laboratory. Reference intervals were established according to the American Society for Veterinary Clinical Pathology guidelines. Age- and sex-related differences were determined using unpaired t-tests or nonparametric Mann-Whitney tests. Hematocrit, red blood cell distribution width, mean platelet volume, white blood cell count, heterophils, monocytes, eosinophils, glucose, blood urea nitrogen, creatinine, calcium, magnesium, total protein, albumin, globulin, cholesterol, aspartate aminotransferase, gamma glutamyl transferase, and bicarbonate increased with age. Mean corpuscular hemoglobin concentration, cellular hemoglobin concentration mean, platelets, lymphocytes, phosphorus, albumin/globulin ratio, alkaline phosphatase, anion gap, and calculated osmolality decreased with age. Males had higher hemoglobin, hematocrit, red blood cell count, mean corpuscular hemoglobin concentration, white blood cell count, heterophils, Foa-Kurloff cells, alanine aminotransferase, and bicarbonate and lower mean corpuscular volume, red blood cell distribution width, platelets, mean platelet volume, eosinophils, total protein, albumin, globulin, cholesterol, potassium, anion gap, calculated osmolality, and iron compared to females. Establishing age and sex differences in hematologic and biochemical parameters of Dunkin Hartley guinea pigs provides valuable insight into their physiology to better evaluate diagnostics and experimental results.
Collapse
Affiliation(s)
- Alexa P. Spittler
- Department of Microbiology, Immunology, & Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Maryam F. Afzali
- Department of Microbiology, Immunology, & Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Sydney B. Bork
- Department of Microbiology, Immunology, & Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Lindsey H. Burton
- Department of Microbiology, Immunology, & Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Lauren B. Radakovich
- Department of Microbiology, Immunology, & Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Cassie A. Seebart
- Department of Microbiology, Immunology, & Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - A. Russell Moore
- Department of Microbiology, Immunology, & Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Kelly S. Santangelo
- Department of Microbiology, Immunology, & Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
- * E-mail:
| |
Collapse
|