1
|
Tran GT, Bedi S, Rakesh P, Verma ND, Carter N, Robinson CM, Al-Atiyah R, Hall BM, Hodgkinson SJ. Autoantigen and IL-2 activated CD4 +CD25 +T regulatory cells are induced to express CD8 and are autoantigen specific in inhibiting experimental autoimmune encephalomyelitis. J Neuroimmunol 2025; 404:578611. [PMID: 40228404 DOI: 10.1016/j.jneuroim.2025.578611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 03/18/2025] [Accepted: 04/06/2025] [Indexed: 04/16/2025]
Abstract
Experimental autoimmune encephalomyelitis (EAE) induced by immunization with myelin basic protein (MBP) is a self-limiting disease model of multiple sclerosis. CD4+CD25+Foxp3+T cells play a role in limiting autoimmune disease but treatment with antigen naïve CD4+CD25+ cells does not reduce EAE. This study examined if in vitro activation by MBP and rIL-2 induced CD4+CD25+Foxp3+ cells that could inhibit EAE. Culture of CD4+CD8-CD25+cells from naïve rats with MBP and rIL-2 induced activated Treg that reduced the severity of clinical EAE and infiltration of CD8+T cells and macrophage into brain stem. CD4+CD25+T cells activated by an irrelevant autoantigen and rIL-2 did not suppress EAE. Resting CD4+CD25+T cells activated by autoantigen and rIL-2 have mRNA for Infgr, Il12rb2, Il5 but not Tbet, Gata3, Ilr5ra or Ifng. These changes in mRNA expression are the markers of Ts1 cells. A proportion of CD4+CD8-CD25+ cells activated by MBP/rIL-2 were induced to express CD8α, CD8β and CD62L. Depletion of CD4+CD8α+CD25+ cells removed the capacity of MBP and rIL-2 activated CD4+CD25+T cells to suppress EAE. This study demonstrated that in vitro activation of CD4+CD8-CD25+ cells by MBP/rIL-2 induced relevant antigen-specific Treg within days, which expressed CD8α, CD8β and CD62L with a Ts1 phenotype and that had greater potency than freshly isolated antigen naive CD4+CD25+Treg in suppressing clinical severity of EAE and immune inflammation in CNS. These findings may guide development of antigen-specific Treg for therapy.
Collapse
MESH Headings
- Animals
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Rats
- Autoantigens/immunology
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/metabolism
- Interleukin-2/pharmacology
- Interleukin-2/immunology
- Myelin Basic Protein/immunology
- Rats, Inbred Lew
- Female
- Interleukin-2 Receptor alpha Subunit/metabolism
- CD8 Antigens/biosynthesis
- CD8 Antigens/metabolism
- Cells, Cultured
- Lymphocyte Activation/drug effects
- Lymphocyte Activation/immunology
Collapse
Affiliation(s)
- Giang T Tran
- Immune Tolerance Laboratory, Faculty of Medicine, UNSW Sydney, Ingham Institute, Liverpool, NSW, Australia.
| | - Sukhandep Bedi
- Immune Tolerance Laboratory, Faculty of Medicine, UNSW Sydney, Ingham Institute, Liverpool, NSW, Australia
| | - Prateek Rakesh
- Immune Tolerance Laboratory, Faculty of Medicine, UNSW Sydney, Ingham Institute, Liverpool, NSW, Australia.
| | - Nirupama D Verma
- Immune Tolerance Laboratory, Faculty of Medicine, UNSW Sydney, Ingham Institute, Liverpool, NSW, Australia.
| | - Nicole Carter
- Immune Tolerance Laboratory, Faculty of Medicine, UNSW Sydney, Ingham Institute, Liverpool, NSW, Australia; Departments of Neurology Liverpool Health Service, Liverpool, NSW, Australia; Department of Nephrology, Liverpool Health Service, Liverpool, NSW, Australia
| | - Catherine M Robinson
- Immune Tolerance Laboratory, Faculty of Medicine, UNSW Sydney, Ingham Institute, Liverpool, NSW, Australia; Departments of Neurology Liverpool Health Service, Liverpool, NSW, Australia; Department of Nephrology, Liverpool Health Service, Liverpool, NSW, Australia
| | - Ranje Al-Atiyah
- Immune Tolerance Laboratory, Faculty of Medicine, UNSW Sydney, Ingham Institute, Liverpool, NSW, Australia; Departments of Neurology Liverpool Health Service, Liverpool, NSW, Australia; Department of Nephrology, Liverpool Health Service, Liverpool, NSW, Australia
| | - Bruce M Hall
- Immune Tolerance Laboratory, Faculty of Medicine, UNSW Sydney, Ingham Institute, Liverpool, NSW, Australia; Department of Nephrology, Liverpool Health Service, Liverpool, NSW, Australia.
| | - Suzanne J Hodgkinson
- Immune Tolerance Laboratory, Faculty of Medicine, UNSW Sydney, Ingham Institute, Liverpool, NSW, Australia; Departments of Neurology Liverpool Health Service, Liverpool, NSW, Australia.
| |
Collapse
|
2
|
Suzuki K, Rao A, Onodera A. The TET-TDG axis in T cells and biological processes. Int Immunol 2025; 37:299-312. [PMID: 39921704 PMCID: PMC12096163 DOI: 10.1093/intimm/dxaf006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 02/06/2025] [Indexed: 02/10/2025] Open
Abstract
Ten-eleven translocation (TET) proteins are dioxygenases that sequentially oxidize the methyl group of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC). All three epigenetic modifications are intermediates in DNA demethylation. In the "passive" (replication-dependent) DNA demethylation pathway, sequential oxidation reactions by TETs are essential and modified cytosines (C) are diluted at each cycle of DNA replication. In the "active" (replication-independent) DNA demethylation pathway, both thymine DNA glycosylase (TDG) and TETs play important roles. TDG removes 5fC and 5caC from 5fC:G and 5caC:G base pairs and these modified bases are replaced by unmodified C via base excision repair. Through epigenetic regulation of DNA demethylation, TETs and TDG are involved in cell development, differentiation, and homeostasis. The interplay between TDG and TETs is involved in embryo development, stem cell differentiation, neural development, immune responses, and tumorigenesis. Loss-of-function mutations of TET proteins in immune cells are associated with a variety of abnormalities, including inflammation, cancer, and clonal hematopoiesis, a condition related to aging. Loss of TETs also has a significant impact on the plasticity and differentiation of T cells, which contributes to inflammation and cancer. In this review, we describe recent findings in functions of TETs in T cell plasticity and differentiation and the TET-TDG axis in selected biological processes.
Collapse
Affiliation(s)
- Kazumasa Suzuki
- La Jolla Institute for Immunology, Center for Autoimmunity and Inflammation, La Jolla, CA 92037, USA
| | - Anjana Rao
- La Jolla Institute for Immunology, Center for Autoimmunity and Inflammation, La Jolla, CA 92037, USA
- Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
- Moores Cancer Center, UC San Diego, La Jolla, CA 92037, USA
- Program in Immunology, UC San Diego, La Jolla, CA 92093, USA
- Department of Pharmacology, UC San Diego, La Jolla, CA 92161, USA
| | - Atsushi Onodera
- Institute for Advanced Academic Research (IAAR), Chiba University, Chiba, 263-8522, Japan
- Research Institute of Disaster Medicine (RIDM), Chiba University, Chiba, 260-8670, Japan
- Center for Human Immunological Diseases and Therapy Development (cCHID), Chiba University, Chiba, 260-8670, Japan
| |
Collapse
|
3
|
Liu Y, Fu Q, Yang M, Xu J, Zhou Z, Chen X, Zhang Y, Yuan H, Jia G, He S, Yang L, Zhao G. Downregulation of N6-methyladenosine (m6A) methylation of Sema4D mRNA contributes to Treg dysfunction and allograft rejection. Am J Transplant 2025; 25:930-942. [PMID: 39848338 DOI: 10.1016/j.ajt.2025.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/08/2024] [Accepted: 01/13/2025] [Indexed: 01/25/2025]
Abstract
Regulatory T cells (Tregs) have been shown to be involved in the induction of transplantation tolerance in numerous models. Our previous work demonstrated that methyltransferase-like 14 (METTL14) loss impaired Treg function and hindered the establishment of transplantation tolerance. However, the underlying mechanisms remain unclear. In this study, we found that METTL14 knockdown in Tregs significantly impaired their regulatory function, leading to poor allograft function and accelerated transplant rejection. Using methylated RNA immunoprecipitation- and mRNA-sequencing approaches, we discovered that METTL14 deficiency fostered the expression of semaphorin 4D (Sema4D) mRNA, a key semaphorin family member with immunoregulatory activity. Methylation of target adenosines reduced Sema4D mRNA degradation, a process mediated by the METTL14-YTH N6-methyladenosine RNA binding protein 2 axis. Inhibition of Sema4D suppressed its interaction with its receptor, thereby preserving Treg immunoregulation capability and prolonging allograft survival through the p21-activated kinase-signal transducer and activator of transcription 5signaling pathway. Importantly, Sema4D expression in kidney transplant biopsies were negatively correlated with renal allograft survival. In summary, our findings suggest that METTL14 deficiency in Tregs leads to transplant rejection and reveal for the first time that Sema4D may serve as a potential therapeutic target to enhance Treg function in transplantation.
Collapse
Affiliation(s)
- Yanzhuo Liu
- Department of Gastrointestinal Surgery, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China; Department of Oncology, Medical Research Center, Affiliated Hospital of Southwest Jiao Tong University, The Third People's Hospital of Chengdu, Chengdu, Sichuan Province, China
| | - Qiang Fu
- Organ Transplant Center, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China; Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China
| | - Maozhu Yang
- Department of International Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China
| | - Jianli Xu
- Institute of Neurology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China
| | - Zili Zhou
- Department of Gastrointestinal Surgery, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China
| | - Xingmin Chen
- Institute of Neurology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China
| | - Yanling Zhang
- Department of Gastrointestinal Surgery, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China; Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China
| | - Hao Yuan
- The Seventh People's Hospital of Chengdu Affiliated Cancer Hospital of Chengdu Medical College, Chengdu, Sichuan Province, China
| | - Guiqing Jia
- Department of Gastrointestinal Surgery, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China
| | - Shu He
- Institute of Neurology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China
| | - Lu Yang
- Institute of Neurology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China.
| | - Gaoping Zhao
- Department of Gastrointestinal Surgery, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China; Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China.
| |
Collapse
|
4
|
Lu HY, Vaseghi-Shanjani M, Lam AJ, Sharma M, Mohajeri A, Silva LBR, Gillies J, Yang GX, Lin S, Fu MP, Salman A, Rahmanian R, Armstrong L, Halparin J, Yang CL, Chilvers M, Henkelman E, Rehmus W, Morrison D, Setiadi A, Mostafavi S, Kobor MS, Kozak FK, Biggs CM, van Karnebeek C, Hildebrand KJ, Levings MK, Turvey SE. A Germline Heterozygous Dominant Negative IKZF2 Variant Causing Syndromic Primary Immune Regulatory Disorder and ICHAD. J Clin Immunol 2025; 45:89. [PMID: 40295428 PMCID: PMC12037660 DOI: 10.1007/s10875-025-01882-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 04/14/2025] [Indexed: 04/30/2025]
Abstract
Monogenic defects that impair the control of inflammation and tolerance lead to profound immune dysregulation, including autoimmunity and atopy. Studying these disorders reveals important molecular and cellular factors that regulate human immune homeostasis and identifies potential precision medicine targets. Here, we provide a detailed immunological assessment of a pediatric patient with a recently discovered syndrome causing Immunodysregulation, Craniofacial anomalies, Hearing impairment, Athelia, and Developmental delay (or ICHAD syndrome). The immunodysregulation resulted in autoimmune hemolytic anemia (AIHA) and atopic dermatitis. The patient carried a de novo germline heterozygous c.406+540_574+13477dup;p.Gly136_Ser191dup variant in IKAROS family zinc finger 2 (IKZF2), which encodes HELIOS. This variant led to reduced HELIOS protein expression and dominant interference of wild-type HELIOS-mediated repression of the IL2 promoter. Multi-parameter flow cytometry analyses of patient peripheral blood mononuclear cells revealed strongly impaired natural killer cell differentiation and function, and increased CD8+ T cell activation and cytokine secretion. Strikingly, patient CD4+ T cells were hyperactive, produced elevated levels of nearly all T helper (TH) cytokines, and readily proliferated in response to stimulation. Patient regulatory T cells (Tregs) developed normally but aberrantly produced high levels of many TH cytokines. Single-cell RNA sequencing revealed largely normal Tregs (albeit mostly memory), but naïve CD4+ T cells that were more enriched in genes related to activation, proliferation, metabolism, and TH differentiation. This work describes the immunological phenotype of one of the first reported cases of germline dominant negative HELIOS deficiency, expands our understanding of the pathogenesis of AIHA on a single cell level, and provides valuable insights into HELIOS function in a variety of lymphocyte subsets.
Collapse
Affiliation(s)
- Henry Y Lu
- Department of Pediatrics, BC Children's Hospital, The University of British Columbia, 950 West 28 th Avenue, Vancouver, BC, V5Z 4H4, Canada
- Experimental Medicine Program, Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Maryam Vaseghi-Shanjani
- Department of Pediatrics, BC Children's Hospital, The University of British Columbia, 950 West 28 th Avenue, Vancouver, BC, V5Z 4H4, Canada
- Experimental Medicine Program, Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Avery J Lam
- BC Children's Hospital Research Institute, Vancouver, BC, Canada
- Department of Surgery, The University of British Columbia, Vancouver, BC, Canada
| | - Mehul Sharma
- Department of Pediatrics, BC Children's Hospital, The University of British Columbia, 950 West 28 th Avenue, Vancouver, BC, V5Z 4H4, Canada
- Experimental Medicine Program, Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Arezoo Mohajeri
- Department of Medical Genetics, The University of British Columbia, Vancouver, BC, Canada
| | - Leandro B R Silva
- Department of Pediatrics, BC Children's Hospital, The University of British Columbia, 950 West 28 th Avenue, Vancouver, BC, V5Z 4H4, Canada
| | - Jana Gillies
- BC Children's Hospital Research Institute, Vancouver, BC, Canada
- Department of Surgery, The University of British Columbia, Vancouver, BC, Canada
| | - Gui Xiang Yang
- Department of Medical Genetics, The University of British Columbia, Vancouver, BC, Canada
| | - Susan Lin
- Department of Pediatrics, BC Children's Hospital, The University of British Columbia, 950 West 28 th Avenue, Vancouver, BC, V5Z 4H4, Canada
| | - Maggie P Fu
- Department of Medical Genetics, The University of British Columbia, Vancouver, BC, Canada
- Genome Science and Technology Program, Faculty of Science, The University of British Columbia, Vancouver, BC, Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC, Canada
| | - Areesha Salman
- Department of Medical Genetics, The University of British Columbia, Vancouver, BC, Canada
| | - Ronak Rahmanian
- Division of Otolaryngology - Head & Neck Surgery, BC Children's Hospital, The University of British Columbia, Vancouver, BC, Canada
| | - Linlea Armstrong
- Department of Medical Genetics, The University of British Columbia, Vancouver, BC, Canada
| | - Jessica Halparin
- Department of Pediatrics, BC Children's Hospital, The University of British Columbia, 950 West 28 th Avenue, Vancouver, BC, V5Z 4H4, Canada
- Division of Hematology, Oncology & Bone Marrow Transplant, BC Children's Hospital, The University of British Columbia, Vancouver, BC, Canada
| | - Connie L Yang
- Department of Pediatrics, BC Children's Hospital, The University of British Columbia, 950 West 28 th Avenue, Vancouver, BC, V5Z 4H4, Canada
- Division of Respiratory Medicine, BC Children's Hospital, The University of British Columbia, Vancouver, BC, Canada
| | - Mark Chilvers
- Department of Pediatrics, BC Children's Hospital, The University of British Columbia, 950 West 28 th Avenue, Vancouver, BC, V5Z 4H4, Canada
- Division of Respiratory Medicine, BC Children's Hospital, The University of British Columbia, Vancouver, BC, Canada
| | - Erika Henkelman
- Division of Plastic Surgery, BC Children's Hospital, The University of British Columbia, Vancouver, BC, Canada
| | - Wingfield Rehmus
- Department of Pediatrics, BC Children's Hospital, The University of British Columbia, 950 West 28 th Avenue, Vancouver, BC, V5Z 4H4, Canada
- Division of Dermatology, BC Children's Hospital, The University of British Columbia, Vancouver, BC, Canada
| | - Douglas Morrison
- Department of Pediatrics, BC Children's Hospital, The University of British Columbia, 950 West 28 th Avenue, Vancouver, BC, V5Z 4H4, Canada
- Department of Pathology and Laboratory Medicine, BC Children's Hospital, The University of British Columbia, Vancouver, BC, Canada
| | - Audi Setiadi
- Department of Pediatrics, BC Children's Hospital, The University of British Columbia, 950 West 28 th Avenue, Vancouver, BC, V5Z 4H4, Canada
- Department of Pathology and Laboratory Medicine, BC Children's Hospital, The University of British Columbia, Vancouver, BC, Canada
| | - Sara Mostafavi
- Department of Medical Genetics, The University of British Columbia, Vancouver, BC, Canada
- Department of Statistics, The University of British Columbia, Vancouver, BC, Canada
| | - Michael S Kobor
- Department of Medical Genetics, The University of British Columbia, Vancouver, BC, Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC, Canada
| | - Frederick K Kozak
- Division of Otolaryngology - Head & Neck Surgery, BC Children's Hospital, The University of British Columbia, Vancouver, BC, Canada
| | - Catherine M Biggs
- Department of Pediatrics, BC Children's Hospital, The University of British Columbia, 950 West 28 th Avenue, Vancouver, BC, V5Z 4H4, Canada
- Division of Immunology, BC Children's Hospital, The University of British Columbia, Vancouver, BC, Canada
| | - Clara van Karnebeek
- Department of Pediatrics, BC Children's Hospital, The University of British Columbia, 950 West 28 th Avenue, Vancouver, BC, V5Z 4H4, Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC, Canada
| | - Kyla J Hildebrand
- Department of Pediatrics, BC Children's Hospital, The University of British Columbia, 950 West 28 th Avenue, Vancouver, BC, V5Z 4H4, Canada
- Division of Immunology, BC Children's Hospital, The University of British Columbia, Vancouver, BC, Canada
| | - Megan K Levings
- BC Children's Hospital Research Institute, Vancouver, BC, Canada
- Department of Surgery, The University of British Columbia, Vancouver, BC, Canada
- School of Biomedical Engineering, The University of British Columbia, Vancouver, BC, Canada
| | - Stuart E Turvey
- Department of Pediatrics, BC Children's Hospital, The University of British Columbia, 950 West 28 th Avenue, Vancouver, BC, V5Z 4H4, Canada.
- Experimental Medicine Program, Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada.
- Division of Immunology, BC Children's Hospital, The University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
5
|
Stüve P, Godoy GJ, Ferreyra FN, Hellriegel F, Boukhallouk F, Kao YS, More TH, Matthies AM, Akimova T, Abraham WR, Kaever V, Schmitz I, Hiller K, Lochner M, Salomon BL, Beier UH, Rehli M, Sparwasser T, Berod L. ACC1 is a dual metabolic-epigenetic regulator of Treg stability and immune tolerance. Mol Metab 2025; 94:102111. [PMID: 39929287 PMCID: PMC11893314 DOI: 10.1016/j.molmet.2025.102111] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 02/06/2025] [Indexed: 02/17/2025] Open
Abstract
OBJECTIVE Regulatory T cells (Tregs) are essential in maintaining immune tolerance and controlling inflammation. Treg stability relies on transcriptional and post-translational mechanisms, including histone acetylation at the Foxp3 locus and FoxP3 protein acetylation. Additionally, Tregs depend on specific metabolic programs for differentiation, yet the underlying molecular mechanisms remain elusive. We aimed to investigate the role of acetyl-CoA carboxylase 1 (ACC1) in the differentiation, stability, and function of regulatory T cells (Tregs). METHODS We used either T cell-specific ACC1 knockout mice or ACC1 inhibition via a pharmacological agent to examine the effects on Treg differentiation and stability. The impact of ACC1 inhibition on Treg function was assessed in vivo through adoptive transfer models of Th1/Th17-driven inflammatory diseases. RESULTS Inhibition or genetic deletion of ACC1 led to an increase in acetyl-CoA availability, promoting enhanced histone and protein acetylation, and sustained FoxP3 transcription even under inflammatory conditions. Mice with T cell-specific ACC1 deletion exhibited an enrichment of double positive RORγt+FoxP3+ cells. Moreover, Tregs treated with an ACC1 inhibitor demonstrated superior long-term stability and an enhanced capacity to suppress Th1/Th17-driven inflammatory diseases in adoptive transfer models. CONCLUSIONS We identified ACC1 as a metabolic checkpoint in Treg biology. Our data demonstrate that ACC1 inhibition promotes Treg differentiation and long-term stability in vitro and in vivo. Thus, ACC1 serves as a dual metabolic and epigenetic hub, regulating immune tolerance and inflammation by balancing de novo lipid synthesis and protein acetylation.
Collapse
Affiliation(s)
- Philipp Stüve
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, Germany; A Joint Venture Between the Hannover Medical School (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover 30625, Germany; Leibniz Institute for Immunotherapy, Regensburg, Germany; Institute of Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz 55122, Germany
| | - Gloria J Godoy
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz 55131, Germany
| | - Fernando N Ferreyra
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz 55131, Germany; Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina; Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Florencia Hellriegel
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz 55131, Germany; Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina; Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Fatima Boukhallouk
- Institute of Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz 55122, Germany
| | - Yu-San Kao
- Institute of Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz 55122, Germany
| | - Tushar H More
- Department of Bioinformatics and Biochemistry, BRICS, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - Anne-Marie Matthies
- Systems-Oriented Immunology and Inflammation Research Group, Department of Experimental Immunology, HZI, Braunschweig 38124, Germany; Institute for Molecular and Clinical Immunology, Otto-von-Guericke University Magdeburg, Magdeburg 39106, Germany; Institute for Molecular Immunology, Ruhr-University Bochum, Bochum 44801, Germany
| | - Tatiana Akimova
- Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Wolf-Rainer Abraham
- Department of Bioinformatics and Biochemistry, BRICS, Technische Universität Braunschweig, 38106 Braunschweig, Germany; Department of Chemical Microbiology, HZI, Braunschweig 38124, Germany
| | - Volkhard Kaever
- Research Core Unit Metabolomics, MHH, Hannover 30625, Germany
| | - Ingo Schmitz
- Systems-Oriented Immunology and Inflammation Research Group, Department of Experimental Immunology, HZI, Braunschweig 38124, Germany; Institute for Molecular and Clinical Immunology, Otto-von-Guericke University Magdeburg, Magdeburg 39106, Germany; Institute for Molecular Immunology, Ruhr-University Bochum, Bochum 44801, Germany
| | - Karsten Hiller
- Department of Bioinformatics and Biochemistry, BRICS, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - Matthias Lochner
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, Germany; A Joint Venture Between the Hannover Medical School (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover 30625, Germany; Institute of Medical Microbiology and Hospital Epidemiology, MHH, Hannover 30625, Germany
| | - Benoît L Salomon
- Sorbonne Université, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris 75013, France
| | - Ulf H Beier
- Division of Nephrology and Department of Pediatrics, Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael Rehli
- Leibniz Institute for Immunotherapy, Regensburg, Germany; Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Tim Sparwasser
- Institute of Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz 55122, Germany; Research Center for Immunotherapy (FZI), University Medical Center Mainz, 55131 Mainz, Germany
| | - Luciana Berod
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz 55131, Germany; Research Center for Immunotherapy (FZI), University Medical Center Mainz, 55131 Mainz, Germany.
| |
Collapse
|
6
|
Chen KY, Kibayashi T, Giguelay A, Hata M, Nakajima S, Mikami N, Takeshima Y, Ichiyama K, Omiya R, Ludwig LS, Hattori K, Sakaguchi S. Genome-wide CRISPR screen in human T cells reveals regulators of FOXP3. Nature 2025:10.1038/s41586-025-08795-5. [PMID: 40140585 DOI: 10.1038/s41586-025-08795-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 02/14/2025] [Indexed: 03/28/2025]
Abstract
Regulatory T (Treg) cells, which specifically express the master transcription factor FOXP3, have a pivotal role in maintaining immunological tolerance and homeostasis and have the potential to revolutionize cell therapies for autoimmune diseases1-3. Although stimulation of naive CD4+ T cells in the presence of TGFβ and IL-2 can induce FOXP3+ Treg cells in vitro (iTreg cells), the resulting cells are often unstable and have thus far hampered translational efforts4-6. A systematic approach towards understanding the regulatory networks that dictate Treg differentiation could lead to more effective iTreg cell-based therapies. Here we performed a genome-wide CRISPR loss-of-function screen to catalogue gene regulatory determinants of FOXP3 induction in primary human T cells and characterized their effects at single-cell resolution using Perturb-icCITE-seq. We identify the RBPJ-NCOR repressor complex as a novel, context-specific negative regulator of FOXP3 expression. RBPJ-targeted knockout enhanced iTreg differentiation and function, independent of canonical Notch signalling. Repeated cytokine and T cell receptor signalling stimulation in vitro revealed that RBPJ-deficient iTreg cells exhibit increased phenotypic stability compared with control cells through DNA demethylation of the FOXP3 enhancer CNS2, reinforcing FOXP3 expression. Conversely, overexpression of RBPJ potently suppressed FOXP3 induction through direct modulation of FOXP3 histone acetylation by HDAC3. Finally, RBPJ-ablated human iTreg cells more effectively suppressed xenogeneic graft-versus-host disease than control iTreg cells in a humanized mouse model. Together, our findings reveal novel regulators of FOXP3 and point towards new avenues to improve the efficacy of adoptive cell therapy for autoimmune disease.
Collapse
Affiliation(s)
- Kelvin Y Chen
- Laboratory of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan.
| | - Tatsuya Kibayashi
- Joint Research Chair of Innovative Drug Discovery in Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Research Division, Chugai Pharmaceutical Co. Ltd, Yokohama, Japan
| | - Ambre Giguelay
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany
| | - Mayu Hata
- Laboratory of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Shunsuke Nakajima
- Joint Research Chair of Innovative Drug Discovery in Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Research Division, Chugai Pharmaceutical Co. Ltd, Yokohama, Japan
| | - Norihisa Mikami
- Laboratory of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Yusuke Takeshima
- Laboratory of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Kenji Ichiyama
- Laboratory of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Ryusuke Omiya
- Joint Research Chair of Innovative Drug Discovery in Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Research Division, Chugai Pharmaceutical Co. Ltd, Yokohama, Japan
| | - Leif S Ludwig
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany
| | - Kunihiro Hattori
- Joint Research Chair of Innovative Drug Discovery in Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Research Division, Chugai Pharmaceutical Co. Ltd, Yokohama, Japan
| | - Shimon Sakaguchi
- Laboratory of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan.
- Department of Experimental Pathology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan.
| |
Collapse
|
7
|
Sarkar I, Basak D, Ghosh P, Gautam A, Bhoumik A, Singh P, Kar A, Mahanti S, Chowdhury S, Chakraborty L, Mondal S, Mukherjee R, Mehrotra S, Majumder S, Sengupta S, Paul S, Chatterjee S. CD38-mediated metabolic reprogramming promotes the stability and suppressive function of regulatory T cells in tumor. SCIENCE ADVANCES 2025; 11:eadt2117. [PMID: 40117361 PMCID: PMC11927613 DOI: 10.1126/sciadv.adt2117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 02/14/2025] [Indexed: 03/23/2025]
Abstract
In the tumor microenvironment (TME), regulatory T cells (Tregs) adapt their metabolism to thrive in low-glucose, high-lactate conditions, but the mechanisms remain unclear. Our study identifies CD38 as a key regulator of this adaptation by depleting nicotinamide adenine dinucleotide (oxidized form) (NAD+), redirecting lactate-derived pyruvate toward phosphoenolpyruvate and bypassing the tricarboxylic acid (TCA) cycle. This prevents accumulation of α-ketoglutarate, which destabilizes Tregs by inducing hypermethylation at the Foxp3 locus. Restoring NAD+ with nicotinamide mononucleotide reverses this adaptation, pushing Tregs back to the TCA cycle and reducing their suppressive function. In YUMM1.7 melanoma-bearing mice, small-molecule CD38 inhibition selectively destabilizes intratumoral Tregs, sparking robust antitumor immunity. These findings reveal that targeting the CD38-NAD+ axis disrupts Tregs metabolic adaptation and offers a strategy to enhance antitumor responses.
Collapse
Affiliation(s)
- Ishita Sarkar
- Division of Cancer Biology and Inflammatory Disorder, IICB-Translational Research Unit of Excellence, CSIR–Indian Institute of Chemical Biology, Kolkata 700032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Debashree Basak
- Division of Cancer Biology and Inflammatory Disorder, IICB-Translational Research Unit of Excellence, CSIR–Indian Institute of Chemical Biology, Kolkata 700032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Puspendu Ghosh
- Division of Cancer Biology and Inflammatory Disorder, IICB-Translational Research Unit of Excellence, CSIR–Indian Institute of Chemical Biology, Kolkata 700032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Anupam Gautam
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, Sand 14, 72076 Tübingen, Germany
- International Max Planck Research School “From Molecules to Organisms”, Max Planck Institute for Biology Tübingen, Max-Planck-Ring 5, 72076, Tübingen, Germany
| | - Arpita Bhoumik
- Division of Cancer Biology and Inflammatory Disorder, IICB-Translational Research Unit of Excellence, CSIR–Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Praveen Singh
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- CSIR–Institute of Genomics and Integrative Biology, New Delhi 110020, India
| | - Anwesha Kar
- Division of Cancer Biology and Inflammatory Disorder, IICB-Translational Research Unit of Excellence, CSIR–Indian Institute of Chemical Biology, Kolkata 700032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shaun Mahanti
- Division of Cancer Biology and Inflammatory Disorder, IICB-Translational Research Unit of Excellence, CSIR–Indian Institute of Chemical Biology, Kolkata 700032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Snehanshu Chowdhury
- Division of Cancer Biology and Inflammatory Disorder, IICB-Translational Research Unit of Excellence, CSIR–Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Lagnajita Chakraborty
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Division of Infectious Disease and Immunology, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Soumya Mondal
- Department of Urology, IPGME&R and SSKM Hospital, Kolkata, India
| | | | | | - Saikat Majumder
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Division of Infectious Disease and Immunology, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Shantanu Sengupta
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- CSIR–Institute of Genomics and Integrative Biology, New Delhi 110020, India
| | - Sandip Paul
- Center for Health Science and Technology, JIS Institute of Advanced Studies and Research, JIS University, Kolkata, India
| | - Shilpak Chatterjee
- Division of Cancer Biology and Inflammatory Disorder, IICB-Translational Research Unit of Excellence, CSIR–Indian Institute of Chemical Biology, Kolkata 700032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
8
|
Qin T, Mattox AK, Campbell JS, Park JC, Shin KY, Li S, Sadow PM, Faquin WC, Micevic G, Daniels AJ, Haddad R, Garris CS, Pittet MJ, Mempel TR, ONeill A, Sartor MA, Pai SI. Epigenetic therapy sensitizes anti-PD-1 refractory head and neck cancers to immunotherapy rechallenge. J Clin Invest 2025; 135:e181671. [PMID: 40091844 PMCID: PMC11910227 DOI: 10.1172/jci181671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025] Open
Abstract
BACKGROUNDImmune checkpoint blockade (ICB) is an effective treatment in a subset of patients diagnosed with head and neck squamous cell carcinoma (HNSCC); however, the majority of patients are refractory.METHODSIn a nonrandomized, open-label Phase 1b clinical trial, participants with recurrent and/or metastatic (R/M) HNSCC were treated with low-dose 5-azacytidine (5-aza) daily for either 5 or 10 days in combination with durvalumab and tremelimumab after progression on ICB. The primary objective was to assess the biologically effective dose of 5-aza as determined by molecular changes in paired baseline and on-treatment tumor biopsies; the secondary objective was safety.RESULTSThirty-eight percent (3 of 8) of participants with evaluable paired tissue samples had a greater-than 2-fold increase from baseline in IFN-γ signature and CD274 (programmed cell death protein 1 ligand, PD-L1) expression within the tumor microenvironment (TME), which was associated with increased CD8+ T cell infiltration and decreased infiltration of CD4+ T regulatory cells. The mean neutrophil-to-lymphocyte ratio (NLR) decreased by greater than 50%, from 14.2 (SD 22.6) to 6.9 (SD 5.2). Median overall survival (OS) was 16.3 months (95% CI 1.9, NA), 2-year OS rate was 24.7% (95% CI: 4.5%, 53.2%), and 58% (7 of 12) of treated participants demonstrated prolonged OS of greater than 12 months.CONCLUSIONOur findings suggest that low-dose 5-aza can reprogram systemic host immune responses and the local TME to increase IFN-γ and PD-L1 expression. The increased expression of these established biomarkers correlated with prolonged OS upon ICB rechallenge.TRIAL REGISTRATIONClinicalTrials.gov NCT03019003.FUNDINGNIH/NCI P01 CA240239.
Collapse
Affiliation(s)
- Tingting Qin
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - Austin K. Mattox
- Department of Surgery, Division of Otolaryngology—Head and Neck Surgery, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | - Jong Chul Park
- Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Kee-Young Shin
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Shiting Li
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - Peter M. Sadow
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - William C. Faquin
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Goran Micevic
- Department of Dermatology, and
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Andrew J. Daniels
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Robert Haddad
- Department of Medical Oncology, Center for Head and Neck Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Christopher S. Garris
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Center for Systems Biology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Mikael J. Pittet
- University of Geneva, Geneva, Switzerland
- AGORA Cancer Center and Swiss Cancer Center Leman, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, Lausanne, Switzerland
| | - Thorsten R. Mempel
- Center for Systems Biology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Anne ONeill
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Maureen A. Sartor
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - Sara I. Pai
- Department of Surgery, and
- Cancer Immunology Program, Dana-Farber Harvard Cancer Center, Boston, Massachusetts, USA
| |
Collapse
|
9
|
Fong H, Mendel M, Jascur J, Najmi L, Kim K, Lew G, Garimalla S, Schock S, Hu J, Villegas AG, Conway A, Fontenot JD, Zompi S. A serum- and feeder-free system to generate CD4 and regulatory T cells from human iPSCs. Stem Cells 2025; 43:sxaf001. [PMID: 39878584 DOI: 10.1093/stmcls/sxaf001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 01/02/2025] [Indexed: 01/31/2025]
Abstract
iPSCs can serve as a renewable source of a consistent edited cell product, overcoming limitations of primary cells. While feeder-free generation of clinical grade iPSC-derived CD8 T cells has been achieved, differentiation of iPSC-derived CD4sp and regulatory T cells requires mouse stromal cells in an artificial thymic organoid. Here we report a serum- and feeder-free differentiation process suitable for large-scale production. Using an optimized concentration of PMA/Ionomycin, we generated iPSC-CD4sp T cells at high efficiency and converted them to Tregs using TGFβ and ATRA. Using genetic engineering, we demonstrated high, non-viral, targeted integration of an HLA-A2 CAR in iPSCs. iPSC-Tregs ± HLA-A2-targeted CAR phenotypically, transcriptionally and functionally resemble primary Tregs and suppress T-cell proliferation in vitro. Our work is the first to demonstrate an iPSC-based platform amenable to manufacturing CD4 T cells to complement iPSC-CD8 oncology products and functional iPSC-Tregs to deliver Treg cell therapies at scale.
Collapse
Affiliation(s)
- Helen Fong
- Sangamo Therapeutics, Richmond, CA 94804, United States
- Proximity Therapeutics, San Francisco, CA 94107, United States
| | | | - John Jascur
- Sangamo Therapeutics, Richmond, CA 94804, United States
- Proximity Therapeutics, San Francisco, CA 94107, United States
| | - Laeya Najmi
- Sangamo Therapeutics, Richmond, CA 94804, United States
- BioMarin, Novato, CA 94949, United States
| | - Ken Kim
- Sangamo Therapeutics, Richmond, CA 94804, United States
| | - Garrett Lew
- Sangamo Therapeutics, Richmond, CA 94804, United States
| | - Swetha Garimalla
- Sangamo Therapeutics, Richmond, CA 94804, United States
- OmniAb, Emeryville, CA 94608, United States
| | | | - Jing Hu
- Sangamo Therapeutics, Richmond, CA 94804, United States
| | - Andres Gordillo Villegas
- Sangamo Therapeutics, Richmond, CA 94804, United States
- Kodiak Sciences, Palo Alto, CA 94304, United States
| | - Anthony Conway
- Sangamo Therapeutics, Richmond, CA 94804, United States
- Replay, San Diego, CA 92121, United States
| | - Jason D Fontenot
- Sangamo Therapeutics, Richmond, CA 94804, United States
- Stylus Medicine, Cambridge, MA 02139, United States
| | - Simona Zompi
- Sangamo Therapeutics, Richmond, CA 94804, United States
- CARGO Therapeutics, San Carlos, CA 94070, United States
| |
Collapse
|
10
|
Ji Y, Xiao C, Fan T, Deng Z, Wang D, Cai W, Li J, Liao T, Li C, He J. The epigenetic hallmarks of immune cells in cancer. Mol Cancer 2025; 24:66. [PMID: 40038722 PMCID: PMC11881328 DOI: 10.1186/s12943-025-02255-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 01/30/2025] [Indexed: 03/06/2025] Open
Abstract
Targeting the dysregulation of epigenetic mechanisms in cancer has emerged as a promising therapeutic strategy. Although the significant rationale progress of epigenetic therapies in blocking cancer cells, how epigenetic regulation shapes tumor microenvironment (TME) and establishes antitumor immunity remains less understood. Recent study focus has been put on the epigenetic-mediated changes in the fate of immune cells, including the differentiation, expansion, recruitment, functionalization, and exhaustion of T cells, natural killer (NK) cells, tumor-associated macrophages (TAMs), dendritic cells (DCs), myeloid-derived suppressor cells (MDSCs), and B cells within the TME. Here, we review the latest molecular and clinical insights into how DNA modifications, histone modification, and epitranscriptome-related regulations shape immune cells of various cancers. We also discuss opportunities for leveraging epigenetic therapies to improve cancer immunotherapies. This review provides the epigenetic foundations of cancer immunity and proposes the future direction of combination therapies.
Collapse
Affiliation(s)
- Yu Ji
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- 4+4 Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Chu Xiao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Tao Fan
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Ziqin Deng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Di Wang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Wenpeng Cai
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jia Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Tianle Liao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chunxiang Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
11
|
Fu M, Lv M, Guo J, Mei A, Qian H, Yang H, Wu W, Liu Z, Zhong J, Wei Y, Min X, Wu H, Chen J. The clinical significance of T-cell regulation in hypertension treatment. Front Immunol 2025; 16:1550206. [PMID: 40079010 PMCID: PMC11897580 DOI: 10.3389/fimmu.2025.1550206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 02/10/2025] [Indexed: 03/14/2025] Open
Abstract
Hypertension, a globally prevalent condition, is closely associated with T cell-mediated inflammatory responses. Studies have shown that T cells, by secreting pro-inflammatory cytokines such as interferon-gamma (IFN-γ), Interleukin-17 (IL-17), and Tumor necrosis factor-alpha (TNF-α), directly lead to vascular dysfunction and elevated blood pressure. The activation of Th1 and Th17 cell subsets, along with the dysfunction of regulatory T cells (Tregs), is a critical mechanism in the onset and progression of hypertension. This review explores the role of T cells in the pathophysiology of hypertension and discusses potential therapeutic strategies targeting T cell regulation, such as immunotherapy and gene-editing technologies. These emerging treatments hold promise for providing personalized therapeutic options for hypertensive patients, reducing inflammatory complications, and improving treatment outcomes.
Collapse
Affiliation(s)
- Miaoxin Fu
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, Hubei, China
| | - Mingzhu Lv
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, Hubei, China
| | - Jinyue Guo
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, Hubei, China
| | - Aihua Mei
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, Hubei, China
| | - Hang Qian
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, Hubei, China
| | - Handong Yang
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, Hubei, China
| | - Wenwen Wu
- Shiyan Key Laboratory of Virology, Hubei University of Medicine, Shiyan, China
- School of Public Health, Hubei University of Medicine, Shiyan, Hubei, China
| | - Zhixin Liu
- Shiyan Key Laboratory of Virology, Hubei University of Medicine, Shiyan, China
| | - Jixin Zhong
- Department of Rheumatology and Immunology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ying Wei
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, Hubei, China
| | - Xinwen Min
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, Hubei, China
| | - Haiyan Wu
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, Hubei, China
| | - Jun Chen
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, Hubei, China
- Shiyan Key Laboratory of Virology, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
12
|
Lachota M, Zagożdżon R. Synthetic receptor-based cell therapies for autoimmune diseases: an update. Cytotherapy 2025:S1465-3249(25)00064-7. [PMID: 40117434 DOI: 10.1016/j.jcyt.2025.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 02/13/2025] [Accepted: 02/20/2025] [Indexed: 03/23/2025]
Abstract
Increasing frequency of autoimmune diseases is one of the major problems in modern societies. Despite the introduction of new therapeutic agents for autoimmunity over the past several decades, more progress is needed. Synthetic receptor-based cell therapies are being adopted as an option for treating autoimmune diseases from the field of oncology. Currently evaluated strategies can be summarized into two approaches. The first one is the elimination of autoreactive cells by targeting them, for example, with CAR-T or CAAR-T cells. The second is based on rebalancing the proinflammatory milieu with engineered immunosuppressive cells, for example, CAR-Treg. Both approaches can be supplemented with the use of synthetic systems such as Split-CAR, SynNotch, MESA, GEMS, and SNIPR, or prospective off-the-shelf approaches, for example, in situ use of the in vitro transcribed mRNA, ultimately allowing for enhanced efficacy and safety. The primary goal of our review is to provide some perspective on both strategies in basic, translational, and clinical studies with all their advantages and disadvantages to allow for informed future design of adoptive cell therapies for autoimmune diseases.
Collapse
Affiliation(s)
- Mieszko Lachota
- Laboratory of Cellular and Genetic Therapies, Medical University of Warsaw, Warsaw, Poland; Department of Ophthalmology, Children's Memorial Health Institute, Warsaw, Poland
| | - Radosław Zagożdżon
- Laboratory of Cellular and Genetic Therapies, Medical University of Warsaw, Warsaw, Poland.
| |
Collapse
|
13
|
Yu H, Nishio H, Barbi J, Mitchell-Flack M, Vignali PDA, Zheng Y, Lebid A, Chang KY, Fu J, Higgins M, Huang CT, Zhang X, Li Z, Blosser L, Tam A, Drake C, Pardoll D. Neurotrophic factor Neuritin modulates T cell electrical and metabolic state for the balance of tolerance and immunity. eLife 2024; 13:RP96812. [PMID: 39565188 PMCID: PMC11578584 DOI: 10.7554/elife.96812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024] Open
Abstract
The adaptive T cell response is accompanied by continuous rewiring of the T cell's electric and metabolic state. Ion channels and nutrient transporters integrate bioelectric and biochemical signals from the environment, setting cellular electric and metabolic states. Divergent electric and metabolic states contribute to T cell immunity or tolerance. Here, we report in mice that neuritin (Nrn1) contributes to tolerance development by modulating regulatory and effector T cell function. Nrn1 expression in regulatory T cells promotes its expansion and suppression function, while expression in the T effector cell dampens its inflammatory response. Nrn1 deficiency in mice causes dysregulation of ion channel and nutrient transporter expression in Treg and effector T cells, resulting in divergent metabolic outcomes and impacting autoimmune disease progression and recovery. These findings identify a novel immune function of the neurotrophic factor Nrn1 in regulating the T cell metabolic state in a cell context-dependent manner and modulating the outcome of an immune response.
Collapse
Affiliation(s)
- Hong Yu
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Immunology and Hematopoiesis Division, Department of Oncology, Johns Hopkins University School of MedicineBaltimoreUnited States
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Hiroshi Nishio
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Immunology and Hematopoiesis Division, Department of Oncology, Johns Hopkins University School of MedicineBaltimoreUnited States
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Joseph Barbi
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Immunology and Hematopoiesis Division, Department of Oncology, Johns Hopkins University School of MedicineBaltimoreUnited States
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Marisa Mitchell-Flack
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Immunology and Hematopoiesis Division, Department of Oncology, Johns Hopkins University School of MedicineBaltimoreUnited States
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Paolo DA Vignali
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Immunology and Hematopoiesis Division, Department of Oncology, Johns Hopkins University School of MedicineBaltimoreUnited States
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Ying Zheng
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Immunology and Hematopoiesis Division, Department of Oncology, Johns Hopkins University School of MedicineBaltimoreUnited States
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Andriana Lebid
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Immunology and Hematopoiesis Division, Department of Oncology, Johns Hopkins University School of MedicineBaltimoreUnited States
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Kwang-Yu Chang
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Immunology and Hematopoiesis Division, Department of Oncology, Johns Hopkins University School of MedicineBaltimoreUnited States
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Juan Fu
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Immunology and Hematopoiesis Division, Department of Oncology, Johns Hopkins University School of MedicineBaltimoreUnited States
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Makenzie Higgins
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Immunology and Hematopoiesis Division, Department of Oncology, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Ching-Tai Huang
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Xuehong Zhang
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical UniversityDalianChina
| | - Zhiguang Li
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical UniversityDalianChina
| | - Lee Blosser
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Immunology and Hematopoiesis Division, Department of Oncology, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Ada Tam
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Immunology and Hematopoiesis Division, Department of Oncology, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Charles Drake
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Drew Pardoll
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Immunology and Hematopoiesis Division, Department of Oncology, Johns Hopkins University School of MedicineBaltimoreUnited States
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of MedicineBaltimoreUnited States
| |
Collapse
|
14
|
Singer M, Elsayed AM, Husseiny MI. Regulatory T-cells: The Face-off of the Immune Balance. FRONT BIOSCI-LANDMRK 2024; 29:377. [PMID: 39614434 DOI: 10.31083/j.fbl2911377] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/29/2024] [Accepted: 08/13/2024] [Indexed: 12/01/2024]
Abstract
Regulatory T-cells (Tregs) play a crucial role in maintaining immune homeostasis, ensuring a balanced immune response. Tregs primarily operate in an antigen-specific fashion, facilitated by their distinct distribution within discrete niches. Tregs have been studied extensively, from their point of origin in the thymus origin to their fate in the periphery or organs. Signals received from antigen-presenting cells (APCs) stimulate Tregs to dampen inflammation. Almost all tumors are characterized by a pathological abundance of immune suppression in their microenvironment. Conversely, the lack thereof proves detrimental to immunological disorders. Achieving a balanced expression of Tregs in relation to other immune compartments is important in establishing an effective and adaptable immune tolerance towards cancer cells and autoantigens. In the context of cancer, it is essential to decrease the frequency of Tregs to overcome tumor suppression. A lower survival rate is associated with the presence of excessive exhausted effector immune cells and an increased frequency of regulatory cells. However, when it comes to treating graft rejection and autoimmune diseases, the focus lies on immune tolerance and the transfer of Tregs. Here, we explore the complex mechanisms that Tregs use in human disease to balance effector immune cells.
Collapse
Affiliation(s)
- Mahmoud Singer
- School of Medicine, University of California Irvine, Irvine, CA 92617, USA
| | - Ahmed M Elsayed
- Division of Infectious Diseases, The Lundquist Institute at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Mohamed I Husseiny
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| |
Collapse
|
15
|
Wang Y, Xue L. Decoding the role of FOXP3 in esophageal cancer: Underlying mechanisms and therapeutic implications. Biochim Biophys Acta Rev Cancer 2024; 1879:189211. [PMID: 39532205 DOI: 10.1016/j.bbcan.2024.189211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/05/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
Esophageal cancer is a significant contributor to cancer-related mortality, and its poor prognosis is primarily attributed to the aggressive nature of the tumor and challenges in early detection. Currently, there are no ideal drugs developed for treatment, making it crucial to explore potential biomarkers and molecular targets for esophageal cancer. FOXP3, as a transcription factor and major regulator of regulatory T cells, not only plays a role in promoting or inhibiting tumor development in various types of cancer cells including esophageal cancer cells but also influences the function of Treg cells by regulating the expression of multiple genes. This paper provides an in-depth discussion on the functional properties, regulatory mechanisms, key signaling pathways, as well as the role and potential application of FOXP3 in treating esophageal cancer. Furthermore, it comprehensively analyzes the complex role of this transcription factor within the tumor immune microenvironment with an aim to aid in developing new potential targets for esophageal cancer treatment.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Department of Thoracic Surgery, Shanghai Changzheng Hospital, Second Affiliated Hospital of Naval Military Medical University, 200003 Shanghai, China.
| | - Lei Xue
- Department of Thoracic Surgery, Shanghai Changzheng Hospital, Second Affiliated Hospital of Naval Military Medical University, 200003 Shanghai, China.
| |
Collapse
|
16
|
Stolz V, de Freitas e Silva R, Rica R, Zhu C, Preglej T, Hamminger P, Hainberger D, Alteneder M, Müller L, Waldherr M, Waltenberger D, Hladik A, Agerer B, Schuster M, Frey T, Krausgruber T, Knapp S, Campbell C, Schmetterer K, Trauner M, Bergthaler A, Bock C, Boucheron N, Ellmeier W. Nuclear receptor corepressor 1 controls regulatory T cell subset differentiation and effector function. eLife 2024; 13:e78738. [PMID: 39466314 PMCID: PMC11517256 DOI: 10.7554/elife.78738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 09/25/2024] [Indexed: 10/29/2024] Open
Abstract
FOXP3+ regulatory T cells (Treg cells) are key for immune homeostasis. Here, we reveal that nuclear receptor corepressor 1 (NCOR1) controls naïve and effector Treg cell states. Upon NCOR1 deletion in T cells, effector Treg cell frequencies were elevated in mice and in in vitro-generated human Treg cells. NCOR1-deficient Treg cells failed to protect mice from severe weight loss and intestinal inflammation associated with CD4+ T cell transfer colitis, indicating impaired suppressive function. NCOR1 controls the transcriptional integrity of Treg cells, since effector gene signatures were already upregulated in naïve NCOR1-deficient Treg cells while effector NCOR1-deficient Treg cells failed to repress genes associated with naïve Treg cells. Moreover, genes related to cholesterol homeostasis including targets of liver X receptor (LXR) were dysregulated in NCOR1-deficient Treg cells. However, genetic ablation of LXRβ in T cells did not revert the effects of NCOR1 deficiency, indicating that NCOR1 controls naïve and effector Treg cell subset composition independent from its ability to repress LXRβ-induced gene expression. Thus, our study reveals that NCOR1 maintains naïve and effector Treg cell states via regulating their transcriptional integrity. We also reveal a critical role for this epigenetic regulator in supporting the suppressive functions of Treg cells in vivo.
Collapse
Affiliation(s)
- Valentina Stolz
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute of ImmunologyViennaAustria
| | - Rafael de Freitas e Silva
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute of ImmunologyViennaAustria
| | - Ramona Rica
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute of ImmunologyViennaAustria
| | - Ci Zhu
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute of ImmunologyViennaAustria
| | - Teresa Preglej
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute of ImmunologyViennaAustria
| | - Patricia Hamminger
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute of ImmunologyViennaAustria
| | - Daniela Hainberger
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute of ImmunologyViennaAustria
| | - Marlis Alteneder
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute of ImmunologyViennaAustria
| | - Lena Müller
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute of ImmunologyViennaAustria
| | - Monika Waldherr
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute of ImmunologyViennaAustria
| | - Darina Waltenberger
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute of ImmunologyViennaAustria
| | - Anastasiya Hladik
- Medical University of Vienna, Vienna, Department of Medicine I, Laboratory of Infection BiologyViennaAustria
| | - Benedikt Agerer
- CeMM Research Centre for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| | - Michael Schuster
- CeMM Research Centre for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| | - Tobias Frey
- Medical University of Vienna, Department of Laboratory MedicineViennaAustria
| | - Thomas Krausgruber
- CeMM Research Centre for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
- Medical University of Vienna, Center for Medical Statistics, Informatics, and Intelligent Systems, Institute of Artificial IntelligenceViennaAustria
| | - Sylvia Knapp
- Medical University of Vienna, Vienna, Department of Medicine I, Laboratory of Infection BiologyViennaAustria
| | - Clarissa Campbell
- CeMM Research Centre for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| | - Klaus Schmetterer
- Medical University of Vienna, Department of Laboratory MedicineViennaAustria
| | - Michael Trauner
- Medical University of Vienna, Department of Internal Medicine III, Division of Gastroenterology and Hepatology, Hans Popper Laboratory of Molecular HepatologyViennaAustria
| | - Andreas Bergthaler
- CeMM Research Centre for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
- Medical University of Vienna, Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied ImmunologyViennaAustria
| | - Christoph Bock
- CeMM Research Centre for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
- Medical University of Vienna, Center for Medical Statistics, Informatics, and Intelligent Systems, Institute of Artificial IntelligenceViennaAustria
| | - Nicole Boucheron
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute of ImmunologyViennaAustria
| | - Wilfried Ellmeier
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute of ImmunologyViennaAustria
| |
Collapse
|
17
|
Peeters JGC, Silveria S, Ozdemir M, Ramachandran S, DuPage M. Hyperactivating EZH2 to augment H3K27me3 levels in regulatory T cells enhances immune suppression by driving early effector differentiation. Cell Rep 2024; 43:114724. [PMID: 39264807 PMCID: PMC12052300 DOI: 10.1016/j.celrep.2024.114724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/17/2024] [Accepted: 08/21/2024] [Indexed: 09/14/2024] Open
Abstract
The immunosuppressive function of regulatory T (Treg) cells is essential for maintaining immune homeostasis. Enhancer of zeste homolog 2 (EZH2), a histone H3 lysine 27 (H3K27) methyltransferase, plays a key role in maintaining Treg cell function upon CD28 co-stimulation, and Ezh2 deletion in Treg cells causes autoimmunity. Here, we assess whether increasing H3K27me3 levels, by using an Ezh2Y641F gain-of-function mutation, will improve Treg cell function. We find that Treg cells expressing Ezh2Y641F display an effector Treg phenotype, are poised for improved homing to organ tissues, and can accelerate remission from autoimmunity. The H3K27me3 landscape and transcriptome of naive Ezh2Y641F Treg cells exhibit a redistribution of H3K27me3 modifications that recapitulates the gene expression profile of activated Ezh2WT Treg cells after CD28 co-stimulation. Altogether, increased H3K27me3 levels promote the differentiation of effector Treg cells that can better suppress autoimmunity.
Collapse
Affiliation(s)
- Janneke G C Peeters
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Stephanie Silveria
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Merve Ozdemir
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Srinivas Ramachandran
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA; RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| | - Michel DuPage
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
18
|
Ichiyama K, Long J, Kobayashi Y, Horita Y, Kinoshita T, Nakamura Y, Kominami C, Georgopoulos K, Sakaguchi S. Transcription factor Ikzf1 associates with Foxp3 to repress gene expression in Treg cells and limit autoimmunity and anti-tumor immunity. Immunity 2024; 57:2043-2060.e10. [PMID: 39111316 DOI: 10.1016/j.immuni.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 02/16/2024] [Accepted: 07/15/2024] [Indexed: 09/13/2024]
Abstract
The master transcription factor of regulatory T (Treg) cells, forkhead box protein P3 (Foxp3), controls Treg cell function by targeting certain genes for activation or repression, but the specific mechanisms by which it mediates this activation or repression under different conditions remain unclear. We found that Ikzf1 associates with Foxp3 via its exon 5 (IkE5) and that IkE5-deficient Treg cells highly expressed genes that would otherwise be repressed by Foxp3 upon T cell receptor stimulation, including Ifng. Treg-specific IkE5-deletion caused interferon-γ (IFN-γ) overproduction, which destabilized Foxp3 expression and impaired Treg suppressive function, leading to systemic autoimmune disease and strong anti-tumor immunity. Pomalidomide, which degrades IKZF1 and IKZF3, induced IFN-γ overproduction in human Treg cells. Mechanistically, the Foxp3-Ikzf1-Ikzf3 complex competed with epigenetic co-activators, such as p300, for binding to target gene loci via chromatin remodeling. Therefore, the Ikzf1 association with Foxp3 is essential for the gene-repressive function of Foxp3 and could be exploited to treat autoimmune disease and cancer.
Collapse
Affiliation(s)
- Kenji Ichiyama
- Laboratory of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan.
| | - Jia Long
- Laboratory of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Yusuke Kobayashi
- Laboratory of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan; Department of Medical Innovations, Osaka Research Center for Drug Discovery, Otsuka Pharmaceutical Co., Ltd., Osaka, Japan
| | - Yuji Horita
- Joint Research Chair of Immune-therapeutic Drug Discovery, Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan; Department of Research Management, Otsuka Pharmaceutical Co., Ltd., Tokushima, Japan
| | - Takeshi Kinoshita
- Joint Research Chair of Immune-therapeutic Drug Discovery, Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan; Department of Research Management, Otsuka Pharmaceutical Co., Ltd., Tokushima, Japan
| | - Yamami Nakamura
- Laboratory of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Chizuko Kominami
- Laboratory of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Katia Georgopoulos
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Shimon Sakaguchi
- Laboratory of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan; Department of Experimental Pathology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.
| |
Collapse
|
19
|
Montaño J, Garnica J, Yamanouchi J, Moro J, Solé P, Mondal D, Serra P, Yang Y, Santamaria P. Transcriptional re-programming of liver-resident iNKT cells into T-regulatory type-1-like liver iNKT cells involves extensive gene de-methylation. Front Immunol 2024; 15:1454314. [PMID: 39315110 PMCID: PMC11416961 DOI: 10.3389/fimmu.2024.1454314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/13/2024] [Indexed: 09/25/2024] Open
Abstract
Unlike conventional CD4+ T cells, which are phenotypically and functionally plastic, invariant NKT (iNKT) cells generally exist in a terminally differentiated state. Naïve CD4+ T cells can acquire alternative epigenetic states in response to different cues, but it remains unclear whether peripheral iNKT cells are epigenetically stable or malleable. Repetitive encounters of liver-resident iNKT cells (LiNKTs) with alpha-galactosylceramide (αGalCer)/CD1d-coated nanoparticles (NPs) can trigger their differentiation into a LiNKT cell subset expressing a T regulatory type 1 (TR1)-like (LiNKTR1) transcriptional signature. Here we dissect the epigenetic underpinnings of the LiNKT-LiNKTR1 conversion as compared to those underlying the peptide-major histocompatibility complex (pMHC)-NP-induced T-follicular helper (TFH)-to-TR1 transdifferentiation process. We show that gene upregulation during the LINKT-to-LiNKTR1 cell conversion is associated with demethylation of gene bodies, inter-genic regions, promoters and distal gene regulatory elements, in the absence of major changes in chromatin exposure or deposition of expression-promoting histone marks. In contrast, the naïve CD4+ T cell-to-TFH differentiation process involves extensive remodeling of the chromatin and the acquisition of a broad repertoire of epigenetic modifications that are then largely inherited by TFH cell-derived TR1 cell progeny. These observations indicate that LiNKT cells are epigenetically malleable and particularly susceptible to gene de-methylation.
Collapse
Affiliation(s)
- Javier Montaño
- Institut D’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Josep Garnica
- Institut D’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Jun Yamanouchi
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Joel Moro
- Institut D’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Patricia Solé
- Institut D’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Debajyoti Mondal
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Pau Serra
- Institut D’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Yang Yang
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Biochemistry and Molecular Biology and Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Pere Santamaria
- Institut D’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
20
|
Yu H, Nishio H, Barbi J, Mitchell-Flack M, Vignali PDA, Zheng Y, Lebid A, Chang KY, Fu J, Higgins M, Huang CT, Zhang X, Li Z, Blosser L, Tam A, Drake CG, Pardoll DM. Neurotrophic factor Neuritin modulates T cell electrical and metabolic state for the balance of tolerance and immunity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.31.578284. [PMID: 38352414 PMCID: PMC10862906 DOI: 10.1101/2024.01.31.578284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
The adaptive T cell response is accompanied by continuous rewiring of the T cell's electric and metabolic state. Ion channels and nutrient transporters integrate bioelectric and biochemical signals from the environment, setting cellular electric and metabolic states. Divergent electric and metabolic states contribute to T cell immunity or tolerance. Here, we report that neuritin (Nrn1) contributes to tolerance development by modulating regulatory and effector T cell function. Nrn1 expression in regulatory T cells promotes its expansion and suppression function, while expression in the T effector cell dampens its inflammatory response. Nrn1 deficiency causes dysregulation of ion channel and nutrient transporter expression in Treg and effector T cells, resulting in divergent metabolic outcomes and impacting autoimmune disease progression and recovery. These findings identify a novel immune function of the neurotrophic factor Nrn1 in regulating the T cell metabolic state in a cell context-dependent manner and modulating the outcome of an immune response.
Collapse
Affiliation(s)
- Hong Yu
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Immunology and Hematopoiesis Division, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Hiroshi Nishio
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Immunology and Hematopoiesis Division, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Current address: Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Joseph Barbi
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Immunology and Hematopoiesis Division, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Current address: Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY14263, USA
| | - Marisa Mitchell-Flack
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Immunology and Hematopoiesis Division, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Paolo D A Vignali
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Immunology and Hematopoiesis Division, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Current address: University of Pittsburgh, Carnegie Mellon
| | - Ying Zheng
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Immunology and Hematopoiesis Division, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Andriana Lebid
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Immunology and Hematopoiesis Division, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Kwang-Yu Chang
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Immunology and Hematopoiesis Division, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Current address: National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
| | - Juan Fu
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Immunology and Hematopoiesis Division, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Makenzie Higgins
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Immunology and Hematopoiesis Division, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ching-Tai Huang
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Current address: Infectious Diseases, Department of Medicine, Chang Gung Memorial Hospital, Taiwan
| | - Xuehong Zhang
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian 116044, China
| | - Zhiguang Li
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian 116044, China
| | - Lee Blosser
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Immunology and Hematopoiesis Division, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ada Tam
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Immunology and Hematopoiesis Division, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Charles G Drake
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Current address: Division of Hematology and Oncology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York 10032
| | - Drew M Pardoll
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Immunology and Hematopoiesis Division, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
21
|
Christensen LM, Akimova T, Wang L, Han R, Samanta A, Di Giorgio E, Hancock WW. T-regulatory cells require Sin3a for stable expression of Foxp3. Front Immunol 2024; 15:1444937. [PMID: 39156895 PMCID: PMC11327135 DOI: 10.3389/fimmu.2024.1444937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 07/08/2024] [Indexed: 08/20/2024] Open
Abstract
Histone deacetylases 1 and 2 play a major role in the transcriptional regulation of T-regulatory (Treg) cells via interactions with a myriad of coregulatory factors. Sin3a has been well established as a Hdac1/2 cofactor, while its role within Tregs has not been established. In this study, the effects of conditional deletion of Sin3a within Foxp3+ Tregs were evaluated. Developmental deletion of Sin3a from Foxp3+ Tregs resulted in the rapid onset of fatal autoimmunity. Treg numbers were greatly reduced, while residual Tregs had impaired suppressive function. Mice also showed effector T-cell activation, autoantibody production, and widespread tissue injury. Mechanistically, Sin3a deletion resulted in decreased transcription of Foxp3 with a complete lack of CNS2 CpG demethylation. In addition, Foxp3 protein stability was impaired with an increased ex-Treg population. Thus, Sin3a plays a critical role in the maintenance of Treg identity and function and is essential for the expression and stability of Foxp3.
Collapse
Affiliation(s)
- Lanette M. Christensen
- Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Tatiana Akimova
- Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Liqing Wang
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Rongxiang Han
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Arabinda Samanta
- Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | | | - Wayne W. Hancock
- Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
22
|
Köhler A, Geiselhöringer AL, Kolland D, Kreft L, Wichmann N, Hils M, Pasztoi M, Zurkowski E, Vogt J, Kübelbeck T, Biedermann T, Schmitz I, Hansen W, Kramer D, Gaida MM, Schmidt-Weber CB, Hoevelmeyer N, Ohnmacht C. The atypical IκB family member Bcl3 determines differentiation and fate of intestinal RORγt + regulatory T-cell subsets. Mucosal Immunol 2024; 17:673-691. [PMID: 38663461 DOI: 10.1016/j.mucimm.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 04/07/2024] [Accepted: 04/16/2024] [Indexed: 05/09/2024]
Abstract
Peripherally-induced regulatory T cells (pTregs) expressing the retinoic acid receptor-related orphan-receptor gamma t (RORγt) are indispensable for intestinal immune homeostasis. Nuclear factor kappa family members regulate the differentiation of thymic Tregs and promote their survival in the periphery. However, the Treg intrinsic molecular mechanisms controlling the size of the pTregs in the intestine and associated lymphoid organs remain unclear. Here, we provide direct evidence that B-cell lymphoma 3 (Bcl3) limits the development of pTregs in a T cell-intrinsic manner. Moreover, the absence of Bcl3 allowed for the formation of an unusual intestinal Treg population co-expressing the transcription factors Helios and RORγt. The expanded RORγt+ Treg populations in the absence of Bcl3 displayed an activated phenotype and secreted high levels of the anti-inflammatory cytokines interleukin (IL)-10 and transforming growth factor beta. They were fully capable of suppressing effector T cells in a transfer colitis model despite an intrinsic bias to trans-differentiate toward T helper 17-like cells. Finally, we provide a Bcl3-dependent gene signature in pTregs including altered responsiveness to the cytokines IL-2, IL-6, and tumor necrosis factor alpha. Our results demonstrate that Bcl3 acts as a molecular switch to limit the expansion of different intestinal Treg subsets and may thus serve as a novel therapeutic target for inflammatory bowel disease by restoring intestinal immune tolerance.
Collapse
Affiliation(s)
- Amelie Köhler
- Center of Allergy and Environment (ZAUM), Technical University and Helmholtz Center Munich, Germany
| | - Anna-Lena Geiselhöringer
- Center of Allergy and Environment (ZAUM), Technical University and Helmholtz Center Munich, Germany
| | - Daphne Kolland
- Center of Allergy and Environment (ZAUM), Technical University and Helmholtz Center Munich, Germany
| | - Luisa Kreft
- Center of Allergy and Environment (ZAUM), Technical University and Helmholtz Center Munich, Germany
| | - Nina Wichmann
- Center of Allergy and Environment (ZAUM), Technical University and Helmholtz Center Munich, Germany
| | - Miriam Hils
- Department of Dermatology and Allergy Biederstein, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Maria Pasztoi
- Center of Allergy and Environment (ZAUM), Technical University and Helmholtz Center Munich, Germany
| | - Elena Zurkowski
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Johannes Vogt
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Tanja Kübelbeck
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Tilo Biedermann
- Department of Dermatology and Allergy Biederstein, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Ingo Schmitz
- Department of Molecular Immunology, Ruhr University Bochum, Bochum, Germany
| | - Wiebke Hansen
- Institute of Medical Microbiology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Daniela Kramer
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Matthias M Gaida
- Institute of Pathology, University Medical Center Mainz, JGU-Mainz, Mainz, Germany; TRON, Translational Oncology at the University Medical Center, JGU-Mainz, Mainz, Germany; Research Center for Immunotherapy, University Medical Center Mainz, JGU-Mainz, Mainz, Germany
| | - Carsten B Schmidt-Weber
- Center of Allergy and Environment (ZAUM), Technical University and Helmholtz Center Munich, Germany; Member of the German Center of Lung Research (DZL), Partner Site Munich, Munich, Germany
| | - Nadine Hoevelmeyer
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Caspar Ohnmacht
- Center of Allergy and Environment (ZAUM), Technical University and Helmholtz Center Munich, Germany.
| |
Collapse
|
23
|
Sumida TS, Cheru NT, Hafler DA. The regulation and differentiation of regulatory T cells and their dysfunction in autoimmune diseases. Nat Rev Immunol 2024; 24:503-517. [PMID: 38374298 PMCID: PMC11216899 DOI: 10.1038/s41577-024-00994-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2024] [Indexed: 02/21/2024]
Abstract
The discovery of FOXP3+ regulatory T (Treg) cells as a distinct cell lineage with a central role in regulating immune responses provided a deeper understanding of self-tolerance. The transcription factor FOXP3 serves a key role in Treg cell lineage determination and maintenance, but is not sufficient to enable the full potential of Treg cell suppression, indicating that other factors orchestrate the fine-tuning of Treg cell function. Moreover, FOXP3-independent mechanisms have recently been shown to contribute to Treg cell dysfunction. FOXP3 mutations in humans cause lethal fulminant systemic autoinflammation (IPEX syndrome). However, it remains unclear to what degree Treg cell dysfunction is contributing to the pathophysiology of common autoimmune diseases. In this Review, we discuss the origins of Treg cells in the periphery and the multilayered mechanisms by which Treg cells are induced, as well as the FOXP3-dependent and FOXP3-independent cellular programmes that maintain the suppressive function of Treg cells in humans and mice. Further, we examine evidence for Treg cell dysfunction in the context of common autoimmune diseases such as multiple sclerosis, inflammatory bowel disease, systemic lupus erythematosus and rheumatoid arthritis.
Collapse
Affiliation(s)
- Tomokazu S Sumida
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA.
| | - Nardos T Cheru
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - David A Hafler
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA.
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
24
|
Khalilollah S, Kalantari Soltanieh S, Obaid Saleh R, Ali Alzahrani A, Ghaleb Maabreh H, Mazin Al-Hamdani M, Dehghani-Ghorbi M, Shafiei Khonachaei M, Akhavan-Sigari R. LncRNAs involvement in pathogenesis of immune-related disease via regulation of T regulatory cells, an updated review. Cytokine 2024; 179:156585. [PMID: 38579428 DOI: 10.1016/j.cyto.2024.156585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 03/03/2024] [Accepted: 03/20/2024] [Indexed: 04/07/2024]
Abstract
The pathophysiology of several illnesses, including cancer and autoimmune diseasesdepends on human regulatory T cells (Tregs), and abnormalities in these cells may function as triggers for these conditions. Cancer and autoimmune, and gynecological diseases are associated with the differentiation of the proinflammatory T cell subset TH17 and its balance with the production of Treg. Recently, long non-coding RNAs (lncRNAs) have become important regulatory molecules in a wide range of illnesses. During epigenetic regulation, they can control the expression of important genes at several levels by affecting transcription, post-transcriptional actions, translation, and protein modification. They might connect with different molecules, such as proteins, DNA and RNA, and their structural composition is intricate. Because lncRNAs regulatebiological processes, including cell division, death, and growth, they are linked to severaldiseases. A notable instance of this is the lncRNA NEAT1, which has been the subject of several investigations to ascertain its function in immune cell development. In the context of immune cell development, several additional lncRNAs have been connected to Treg cell differentiation. In this work, we summarize current findings about the diverse functions of lncRNAs in Treg cell differentiation and control of the Th17/Treg homeostasis in autoimmune disorders, cancers, as well as several gynecological diseases where Tregs are key players.
Collapse
Affiliation(s)
- Shayan Khalilollah
- Department of Neurosurgery, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | | | - Raed Obaid Saleh
- Department of Pathological Analysis, College of Applied Science, University of Fallujah, Al-Anbar, Iraq.
| | | | - Hatem Ghaleb Maabreh
- Department of Dermatovenerology, Foreign Languages, RUDN University (Peoples' Friendship University of Russia named after Patrice Lumumba), Moscow, Russia.
| | | | - Mahmoud Dehghani-Ghorbi
- Hematology-Oncology Department, Imam Hossein Educational Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | | | - Reza Akhavan-Sigari
- Department of Neurosurgery, University Medical Center, Tuebingen, Germany; Department of Health Care Management and Clinical Research, Collegium Humanum Warsaw Management University Warsaw, Poland.
| |
Collapse
|
25
|
Qin Z, Hou P, Lin H, Chen M, Wang R, Xu T. Inhibition of Lck/Fyn kinase activity promotes the differentiation of induced Treg cells through AKT/mTOR pathway. Int Immunopharmacol 2024; 134:112237. [PMID: 38744170 DOI: 10.1016/j.intimp.2024.112237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/16/2024]
Abstract
Regulatory T (Treg) cells are indispensable in maintaining the immune homeostasis and preventing autoimmune diseases. Regulatory T (Treg) cells include thymus derived Treg cells (tTregs) and peripherally induced Treg cells (iTreg), which are differentiated from antigen stimulated CD4+ naïve T cells in presence of TGFβ. tTregs are quite stable, and more immune suppressive, while iTreg cells are less stable, and are prone to differentiate into inflammatory T cells. Therefore, identification of small molecules that could promote the differentiation of iTreg cells is an attractive strategy for autoimmune diseases. Inhibition of AKT/mTOR pathway promotes their differentiation. Whether inhibition of Lck/Fyn kinase activity (upstream of AKT/mTOR pathway) can be used to promote the differentiation of iTreg cells has not been determined. Here, we showed that Srci1, a small molecular inhibitor of Lck/Fyn, promoted the differentiation of FOXP3+ iTreg cells. Srci1 treatment resulted in inhibition of phosphorylation of key components of AKT/mTOR pathway, including mTOR, p70 S6K, 4EBP1, and promoted the expression of Foxp3 and its target genes, thereby promoted differentiation of in vitro iTreg cells. Srci1 treated iTreg cells showed more similar gene expression profile to that of tTreg cells. Our results thus suggest that inhibition of Lck/Fyn kinase activity can promote the differentiation of iTreg cells, and may have implication in autoimmune diseases.
Collapse
Affiliation(s)
- Zhen Qin
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Ping Hou
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Huizhen Lin
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Minghui Chen
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Ruining Wang
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Tao Xu
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
26
|
Magni S, Sawlekar R, Capelle CM, Tslaf V, Baron A, Zeng N, Mombaerts L, Yue Z, Yuan Y, Hefeng FQ, Gonçalves J. Inferring upstream regulatory genes of FOXP3 in human regulatory T cells from time-series transcriptomic data. NPJ Syst Biol Appl 2024; 10:59. [PMID: 38811598 PMCID: PMC11137136 DOI: 10.1038/s41540-024-00387-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/10/2024] [Indexed: 05/31/2024] Open
Abstract
The discovery of upstream regulatory genes of a gene of interest still remains challenging. Here we applied a scalable computational method to unbiasedly predict candidate regulatory genes of critical transcription factors by searching the whole genome. We illustrated our approach with a case study on the master regulator FOXP3 of human primary regulatory T cells (Tregs). While target genes of FOXP3 have been identified, its upstream regulatory machinery still remains elusive. Our methodology selected five top-ranked candidates that were tested via proof-of-concept experiments. Following knockdown, three out of five candidates showed significant effects on the mRNA expression of FOXP3 across multiple donors. This provides insights into the regulatory mechanisms modulating FOXP3 transcriptional expression in Tregs. Overall, at the genome level this represents a high level of accuracy in predicting upstream regulatory genes of key genes of interest.
Collapse
Affiliation(s)
- Stefano Magni
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Rucha Sawlekar
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
- Robotics and Artificial Intelligence, Department of Computer Science, Electrical and Space Engineering, Luleå University of Technology, Luleå, Sweden
| | - Christophe M Capelle
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-Sur-Alzette, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Vera Tslaf
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-Sur-Alzette, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Transversal Translational Medicine, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Alexandre Baron
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-Sur-Alzette, Luxembourg
| | - Ni Zeng
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-Sur-Alzette, Luxembourg
| | - Laurent Mombaerts
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Zuogong Yue
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Ye Yuan
- School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Q Hefeng
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-Sur-Alzette, Luxembourg.
| | - Jorge Gonçalves
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg.
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
27
|
Zhong Y, Stauss HJ. Targeted Therapy of Multiple Sclerosis: A Case for Antigen-Specific Tregs. Cells 2024; 13:797. [PMID: 38786021 PMCID: PMC11119434 DOI: 10.3390/cells13100797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/29/2024] [Accepted: 05/05/2024] [Indexed: 05/25/2024] Open
Abstract
Multiple sclerosis is an autoinflammatory condition that results in damage to myelinated neurons in affected patients. While disease-modifying treatments have been successful in slowing the progression of relapsing-remitting disease, most patients still progress to secondary progressive disease that is largely unresponsive to disease-modifying treatments. Similarly, there is currently no effective treatment for patients with primary progressive MS. Innate and adaptive immune cells in the CNS play a critical role in initiating an autoimmune attack and in maintaining the chronic inflammation that drives disease progression. In this review, we will focus on recent insights into the role of T cells with regulatory function in suppressing the progression of MS, and, more importantly, in promoting the remyelination and repair of MS lesions in the CNS. We will discuss the exciting potential to genetically reprogram regulatory T cells to achieve immune suppression and enhance repair locally at sites of tissue damage, while retaining a fully competent immune system outside the CNS. In the future, reprogramed regulatory T cells with defined specificity and function may provide life medicines that can persist in patients and achieve lasting disease suppression after one cycle of treatment.
Collapse
Affiliation(s)
| | - Hans J. Stauss
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, Royal Free Hospital, Rowland Hill Street, London NW3 2PP, UK;
| |
Collapse
|
28
|
Belyayev L, Kang J, Sadat M, Loh K, Patil D, Muralidaran V, Khan K, Kaufman S, Subramanian S, Gusev Y, Bhuvaneshwar K, Ressom H, Varghese R, Ekong U, Matsumoto CS, Robson SC, Fishbein TM, Kroemer A. Suppressor T helper type 17 cell responses in intestinal transplant recipients with allograft rejection. Hum Immunol 2024; 85:110773. [PMID: 38494386 DOI: 10.1016/j.humimm.2024.110773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/28/2024] [Accepted: 03/04/2024] [Indexed: 03/19/2024]
Abstract
BACKGROUND Intestinal transplant (ITx) rejection is associated with memory T helper type 17 cell (Th17) infiltration of grafted tissues. Modulation of Th17 effector cell response is facilitated by T regulatory (Treg) cells, but a phenotypic characterization of this process is lacking in the context of allograft rejection. METHODS Flow cytometry was performed to examine the expression of surface receptors, cytokines, and transcription factors in Th17 and Treg cells in ITx control (n = 34) and rejection patients (n = 23). To elucidate key pathways guiding the rejection biology, we utilized RNA sequencing (RNAseq) and assessed epigenetic stability through pyrosequencing of the Treg-specific demethylated region (TSDR). RESULTS We found that intestinal allograft rejection is characterized by Treg cellular infiltrates, which are polarized toward Th17-type chemokine receptor, ROR-γt transcription factor expression, and cytokine production. These Treg cell subsets have maintained epigenetic stability, as defined by FoxP3-TSDR methylation status, but displayed upregulation of functional Treg and purinergic signaling genes by RNAseq analysis such as CD39, in keeping with suppressor Th17 properties. CONCLUSION We show that ITx rejection is associated with increased polarized cells that express a Th17-like phenotype concurrent with regulatory purinergic markers.
Collapse
Affiliation(s)
- Leonid Belyayev
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, 3800 Reservoir Road NW, Washington, DC 20007, USA; Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20814, USA
| | - Jiman Kang
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, 3800 Reservoir Road NW, Washington, DC 20007, USA; Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC 20007, USA
| | - Mohammed Sadat
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, 3800 Reservoir Road NW, Washington, DC 20007, USA
| | - Katrina Loh
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, 3800 Reservoir Road NW, Washington, DC 20007, USA
| | - Digvijay Patil
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, 3800 Reservoir Road NW, Washington, DC 20007, USA
| | - Vinona Muralidaran
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, 3800 Reservoir Road NW, Washington, DC 20007, USA
| | - Khalid Khan
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, 3800 Reservoir Road NW, Washington, DC 20007, USA
| | - Stuart Kaufman
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, 3800 Reservoir Road NW, Washington, DC 20007, USA
| | - Sukanya Subramanian
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, 3800 Reservoir Road NW, Washington, DC 20007, USA
| | - Yuriy Gusev
- Innovation Center for Biomedical Informatics (ICBI), Georgetown University Medical Center, 2115 Wisconsin Ave NW, Suite 110, Washington, DC 20075, USA
| | - Krithika Bhuvaneshwar
- Innovation Center for Biomedical Informatics (ICBI), Georgetown University Medical Center, 2115 Wisconsin Ave NW, Suite 110, Washington, DC 20075, USA
| | - Habtom Ressom
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20008, USA
| | - Rency Varghese
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20008, USA
| | - Udeme Ekong
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, 3800 Reservoir Road NW, Washington, DC 20007, USA
| | - Cal S Matsumoto
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, 3800 Reservoir Road NW, Washington, DC 20007, USA
| | - Simon C Robson
- Center for Inflammation Research, Department of Anesthesiology, Beth Israel Deaconess Medical Center, Harvard Medical School, 25 Shattuck St, Boston, MA 02115, USA
| | - Thomas M Fishbein
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, 3800 Reservoir Road NW, Washington, DC 20007, USA
| | - Alexander Kroemer
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, 3800 Reservoir Road NW, Washington, DC 20007, USA.
| |
Collapse
|
29
|
Huang S, Liu D, Han L, Deng J, Wang Z, Jiang J, Zeng L. Decoding the potential role of regulatory T cells in sepsis-induced immunosuppression. Eur J Immunol 2024; 54:e2350730. [PMID: 38430202 DOI: 10.1002/eji.202350730] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 03/03/2024]
Abstract
Sepsis, a multiorgan dysfunction with high incidence and mortality, is caused by an imbalanced host-to-infection immune response. Organ-support therapy improves the early survival rate of sepsis patients. In the long term, those who survive the "cytokine storm" and its secondary damage usually show higher susceptibility to secondary infections and sepsis-induced immunosuppression, in which regulatory T cells (Tregs) are evidenced to play an essential role. However, the potential role and mechanism of Tregs in sepsis-induced immunosuppression remains elusive. In this review, we elucidate the role of different functional subpopulations of Tregs during sepsis and then review the mechanism of sepsis-induced immunosuppression from the aspects of regulatory characteristics, epigenetic modification, and immunometabolism of Tregs. Thoroughly understanding how Tregs impact the immune system during sepsis may shed light on preclinical research and help improve the translational value of sepsis immunotherapy.
Collapse
Affiliation(s)
- Siyuan Huang
- Department of Trauma Medical Center, Daping Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, China
| | - Di Liu
- Department of Trauma Medical Center, Daping Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, China
| | - Lei Han
- Department of Trauma Medical Center, Daping Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, China
| | - Jin Deng
- Department of Emergency, the Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Guiyang, China
| | - Zhen Wang
- Department of Trauma Medical Center, Daping Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, China
| | - Jianxin Jiang
- Department of Trauma Medical Center, Daping Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, China
| | - Ling Zeng
- Department of Trauma Medical Center, Daping Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, China
| |
Collapse
|
30
|
Thomas RM, Pahl MC, Wang L, Grant SFA, Hancock WW, Wells AD. Foxp3 depends on Ikaros for control of regulatory T cell gene expression and function. eLife 2024; 12:RP91392. [PMID: 38655862 PMCID: PMC11042806 DOI: 10.7554/elife.91392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024] Open
Abstract
Ikaros is a transcriptional factor required for conventional T cell development, differentiation, and anergy. While the related factors Helios and Eos have defined roles in regulatory T cells (Treg), a role for Ikaros has not been established. To determine the function of Ikaros in the Treg lineage, we generated mice with Treg-specific deletion of the Ikaros gene (Ikzf1). We find that Ikaros cooperates with Foxp3 to establish a major portion of the Treg epigenome and transcriptome. Ikaros-deficient Treg exhibit Th1-like gene expression with abnormal production of IL-2, IFNg, TNFa, and factors involved in Wnt and Notch signaling. While Ikzf1-Treg-cko mice do not develop spontaneous autoimmunity, Ikaros-deficient Treg are unable to control conventional T cell-mediated immune pathology in response to TCR and inflammatory stimuli in models of IBD and organ transplantation. These studies establish Ikaros as a core factor required in Treg for tolerance and the control of inflammatory immune responses.
Collapse
Affiliation(s)
- Rajan M Thomas
- Center for Spatial and Functional Genomics, The Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
| | - Matthew C Pahl
- Center for Spatial and Functional Genomics, The Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
| | - Liqing Wang
- Department of Pathology, Perelman School of Medicine at the University of Pennsylvania and The Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
| | - Struan FA Grant
- Center for Spatial and Functional Genomics, The Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania and The Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
| | - Wayne W Hancock
- Department of Pathology, Perelman School of Medicine at the University of Pennsylvania and The Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
| | - Andrew D Wells
- Center for Spatial and Functional Genomics, The Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
- Department of Pathology, Perelman School of Medicine at the University of Pennsylvania and The Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
| |
Collapse
|
31
|
Peeters JGC, Silveria S, Ozdemir M, Ramachandran S, DuPage M. Increased EZH2 function in regulatory T cells promotes their capacity to suppress autoimmunity by driving effector differentiation prior to activation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.05.588284. [PMID: 38645261 PMCID: PMC11030251 DOI: 10.1101/2024.04.05.588284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
The immunosuppressive function of regulatory T (Treg) cells is essential for maintaining immune homeostasis. Enhancer of zeste homolog 2 (EZH2), a histone H3 lysine 27 (H3K27) methyltransferase, plays a key role in maintaining Treg cell function upon CD28 co-stimulation, and Ezh2 deletion in Treg cells causes autoimmunity. Here we assessed whether increased EZH2 activity in Treg cells would improve Treg cell function. Using an Ezh2 gain-of-function mutation, Ezh2 Y641F , we found that Treg cells expressing Ezh2 Y641F displayed an increased effector Treg phenotype and were poised for improved homing to organ tissues. Expression of Ezh2 Y641F in Treg cells led to more rapid remission from autoimmunity. H3K27me3 profiling and transcriptomic analysis revealed a redistribution of H3K27me3, which prompted a gene expression profile in naïve Ezh2 Y641F Treg cells that recapitulated aspects of CD28-activated Ezh2 WT Treg cells. Altogether, increased EZH2 activity promotes the differentiation of effector Treg cells that can better suppress autoimmunity. Highlights EZH2 function promotes effector differentiation of Treg cells.EZH2 function promotes Treg cell migration to organ tissues.EZH2 function in Treg cells improves remission from autoimmunity.EZH2 function poises naïve Treg cells to adopt a CD28-activated phenotype.
Collapse
|
32
|
Ghanim HY, Porteus MH. Gene regulation in inborn errors of immunity: Implications for gene therapy design and efficacy. Immunol Rev 2024; 322:157-177. [PMID: 38233996 DOI: 10.1111/imr.13305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/28/2023] [Accepted: 01/02/2024] [Indexed: 01/19/2024]
Abstract
Inborn errors of immunity (IEI) present a unique paradigm in the realm of gene therapy, emphasizing the need for precision in therapeutic design. As gene therapy transitions from broad-spectrum gene addition to careful modification of specific genes, the enduring safety and effectiveness of these therapies in clinical settings have become crucial. This review discusses the significance of IEIs as foundational models for pioneering and refining precision medicine. We explore the capabilities of gene addition and gene correction platforms in modifying the DNA sequence of primary cells tailored for IEIs. The review uses four specific IEIs to highlight key issues in gene therapy strategies: X-linked agammaglobulinemia (XLA), X-linked chronic granulomatous disease (X-CGD), X-linked hyper IgM syndrome (XHIGM), and immune dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX). We detail the regulatory intricacies and therapeutic innovations for each disorder, incorporating insights from relevant clinical trials. For most IEIs, regulated expression is a vital aspect of the underlying biology, and we discuss the importance of endogenous regulation in developing gene therapy strategies.
Collapse
Affiliation(s)
- Hana Y Ghanim
- Division of Pediatrics, Division of Oncology, Hematology, Stem Cell Transplantation, Stanford University, Stanford, California, USA
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Matthew H Porteus
- Division of Pediatrics, Division of Oncology, Hematology, Stem Cell Transplantation, Stanford University, Stanford, California, USA
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
- Center for Definitive and Curative Medicine, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
33
|
Borna S, Meffre E, Bacchetta R. FOXP3 deficiency, from the mechanisms of the disease to curative strategies. Immunol Rev 2024; 322:244-258. [PMID: 37994657 DOI: 10.1111/imr.13289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
FOXP3 gene is a key transcription factor driving immune tolerance and its deficiency causes immune dysregulation, polyendocrinopathy, enteropathy X-linked syndrome (IPEX), a prototypic primary immune regulatory disorder (PIRD) with defective regulatory T (Treg) cells. Although life-threatening, the increased awareness and early diagnosis have contributed to improved control of the disease. IPEX currently comprises a broad spectrum of clinical autoimmune manifestations from severe early onset organ involvement to moderate, recurrent manifestations. This review focuses on the mechanistic advancements that, since the IPEX discovery in early 2000, have informed the role of the human FOXP3+ Treg cells in controlling peripheral tolerance and shaping the overall immune landscape of IPEX patients and carrier mothers, contributing to defining new treatments.
Collapse
Affiliation(s)
- Simon Borna
- Department of Pediatrics, Division of Hematology, Oncology Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Eric Meffre
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, California, USA
| | - Rosa Bacchetta
- Department of Pediatrics, Division of Hematology, Oncology Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
- Center for Definitive and Curative Medicine (CDCM), Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
34
|
Delshad M, Davoodi-Moghaddam Z, Pourbagheri-Sigaroodi A, Faranoush M, Abolghasemi H, Bashash D. Translating mechanisms into therapeutic strategies for immune thrombocytopenia (ITP): Lessons from clinical trials. Thromb Res 2024; 235:125-147. [PMID: 38335568 DOI: 10.1016/j.thromres.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/30/2024] [Accepted: 02/05/2024] [Indexed: 02/12/2024]
Abstract
Immune thrombocytopenia (ITP) is an autoimmune disorder that causes a significant reduction in peripheral blood platelet count. Fortunately, due to an increased understanding of ITP, there have been significant improvements in the diagnosis and treatment of these patients. Over the past decade, there have been a variety of proven therapeutic options available for ITP patients, including intravenous immunoglobulins (IVIG), Rituximab, corticosteroids, and thrombopoietin receptor agonists (TPO-RAs). Although the effectiveness of current therapies in treating more than two-thirds of patients, still some patients do not respond well to conventional therapies or fail to achieve long-term remission. Recently, a significant advancement has been made in identifying various mechanisms involved in the pathogenesis of ITP, leading to the development of novel treatments targeting these pathways. It seems that new agents that target plasma cells, Bruton tyrosine kinase, FcRn, platelet desialylation, splenic tyrosine kinase, and classical complement pathways are opening new ways to treat ITP. In this study, we reviewed the pathophysiology of ITP and summarized updates in this population's management and treatment options. We also took a closer look at the 315 ongoing trials to investigate their progress status and compare the effectiveness of interventions. May our comprehensive view of ongoing clinical trials serve as a guiding beacon, illuminating the path towards future trials of different drugs in the treatment of ITP patients.
Collapse
Affiliation(s)
- Mahda Delshad
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Laboratory Sciences, School of Allied Medical Sciences, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Zeinab Davoodi-Moghaddam
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atieh Pourbagheri-Sigaroodi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Faranoush
- Pediatric Growth and Development Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Hassan Abolghasemi
- Pediatric Congenital Hematologic Disorders Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
35
|
Yahsi B, Palaz F, Dincer P. Applications of CRISPR Epigenome Editors in Tumor Immunology and Autoimmunity. ACS Synth Biol 2024; 13:413-427. [PMID: 38298016 DOI: 10.1021/acssynbio.3c00524] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Over the past decade, CRISPR-Cas systems have become indispensable tools for genetic engineering and have been used in clinical trials for various diseases. Beyond genome editing, CRISPR-Cas systems can also be used for performing programmable epigenetic modifications. Recent efforts in enhancing CRISPR-based epigenome modifiers have yielded potent tools enabling targeted DNA methylation/demethylation capable of sustaining epigenetic memory through numerous cell divisions. Moreover, it has been understood that during chronic inflammatory states, including cancer, T cells encounter a state called T cell exhaustion that involves elevated inhibitory receptors (e.g., LAG-3, TIM3, PD-1, CD39) and reduced effector T cell-related protein levels (IFN-γ, granzyme B, and perforin). Importantly, epigenetic dysregulation has been identified as one of the key drivers of T cell exhaustion, and it remains one of the biggest obstacles in the field of immunotherapy and decreases the efficiency of chimeric antigen receptor T (CAR-T) cell therapy. Similarly, autoimmune diseases exhibit epigenetically dysfunctional regulatory T (Treg) cells. For instance, FOXP3 intronic regions, known as conserved noncoding sequences, display hypomethylation in healthy states but hypermethylation in pathological contexts. Therefore, the reversal of epigenetic dysregulation in cancer and autoimmune diseases using CRISPR-based epigenome modifiers has important therapeutic implications. In this review, we outline the progressive refinement of CRISPR-based epigenome modifiers and explore their potential therapeutic applications in tumor immunology and autoimmunity.
Collapse
Affiliation(s)
- Berkay Yahsi
- Hacettepe University School of Medicine, Ankara 06100, Turkey
| | - Fahreddin Palaz
- Faculty of Medicine, Hacettepe University, Ankara 06100, Turkey
| | - Pervin Dincer
- Department of Medical Biology, Faculty of Medicine, Hacettepe University, Ankara 06100, Turkey
| |
Collapse
|
36
|
Swarnkar G, Semenkovich NP, Arra M, Mims DK, Naqvi SK, Peterson T, Mbalaviele G, Wu CL, Abu-Amer Y. DNA hypomethylation ameliorates erosive inflammatory arthritis by modulating interferon regulatory factor-8. Proc Natl Acad Sci U S A 2024; 121:e2310264121. [PMID: 38319963 PMCID: PMC10873594 DOI: 10.1073/pnas.2310264121] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 01/08/2024] [Indexed: 02/08/2024] Open
Abstract
Epigenetic regulation plays a crucial role in the pathogenesis of autoimmune diseases such as inflammatory arthritis. DNA hypomethylating agents, such as decitabine (DAC), have been shown to dampen inflammation and restore immune homeostasis. In the present study, we demonstrate that DAC elicits potent anti-inflammatory effects and attenuates disease symptoms in several animal models of arthritis. Transcriptomic and epigenomic profiling show that DAC-mediated hypomethylation regulates a wide range of cell types in arthritis, altering the differentiation trajectories of anti-inflammatory macrophage populations, regulatory T cells, and tissue-protective synovial fibroblasts (SFs). Mechanistically, DAC-mediated demethylation of intragenic 5'-Cytosine phosphate Guanine-3' (CpG) islands of the transcription factor Irf8 (interferon regulatory factor 8) induced its re-expression and promoted its repressor activity. As a result, DAC restored joint homeostasis by resetting the transcriptomic signature of negative regulators of inflammation in synovial macrophages (MerTK, Trem2, and Cx3cr1), TREGs (Foxp3), and SFs (Pdpn and Fapα). In conclusion, we found that Irf8 is necessary for the inhibitory effect of DAC in murine arthritis and that direct expression of Irf8 is sufficient to significantly mitigate arthritis.
Collapse
Affiliation(s)
- Gaurav Swarnkar
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, MO63110
| | | | - Manoj Arra
- Department of Emergency Medicine, Washington University School of Medicine, St. Louis, MO63110
| | - Dorothy K. Mims
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, MO63110
| | - Syeda Kanwal Naqvi
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, MO63110
| | - Timothy Peterson
- Department of Medicine, Washington University School of Medicine, St. Louis, MO63110
- HealthSpan Technologies, Inc, St. Louis, MO63110
| | - Gabriel Mbalaviele
- Department of Medicine, Washington University School of Medicine, St. Louis, MO63110
| | - Chia-Lung Wu
- Department of Orthopedics and Physical Performance, University of Rochester, Rochester, NY14642
| | - Yousef Abu-Amer
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, MO63110
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO63110
- Shriners Hospital for Children, St. Louis, MO63110
| |
Collapse
|
37
|
Eggenhuizen PJ, Cheong RMY, Lo C, Chang J, Ng BH, Ting YT, Monk JA, Loh KL, Broury A, Tay ESV, Shen C, Zhong Y, Lim S, Chung JX, Kandane-Rathnayake R, Koelmeyer R, Hoi A, Chaudhry A, Manzanillo P, Snelgrove SL, Morand EF, Ooi JD. Smith-specific regulatory T cells halt the progression of lupus nephritis. Nat Commun 2024; 15:899. [PMID: 38321013 PMCID: PMC10847119 DOI: 10.1038/s41467-024-45056-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 01/12/2024] [Indexed: 02/08/2024] Open
Abstract
Antigen-specific regulatory T cells (Tregs) suppress pathogenic autoreactivity and are potential therapeutic candidates for autoimmune diseases such as systemic lupus erythematosus (SLE). Lupus nephritis is associated with autoreactivity to the Smith (Sm) autoantigen and the human leucocyte antigen (HLA)-DR15 haplotype; hence, we investigated the potential of Sm-specific Tregs (Sm-Tregs) to suppress disease. Here we identify a HLA-DR15 restricted immunodominant Sm T cell epitope using biophysical affinity binding assays, then identify high-affinity Sm-specific T cell receptors (TCRs) using high-throughput single-cell sequencing. Using lentiviral vectors, we transduce our lead Sm-specific TCR into Tregs derived from patients with SLE who are anti-Sm and HLA-DR15 positive. Compared with polyclonal mock-transduced Tregs, Sm-Tregs potently suppress Sm-specific pro-inflammatory responses in vitro and suppress disease progression in a humanized mouse model of lupus nephritis. These results show that Sm-Tregs are a promising therapy for SLE.
Collapse
Affiliation(s)
- Peter J Eggenhuizen
- Centre for Inflammatory Diseases, Department of Medicine, School of Clinical Sciences, Monash University, Clayton, VIC, Australia
| | - Rachel M Y Cheong
- Centre for Inflammatory Diseases, Department of Medicine, School of Clinical Sciences, Monash University, Clayton, VIC, Australia
| | - Cecilia Lo
- Centre for Inflammatory Diseases, Department of Medicine, School of Clinical Sciences, Monash University, Clayton, VIC, Australia
| | - Janet Chang
- Centre for Inflammatory Diseases, Department of Medicine, School of Clinical Sciences, Monash University, Clayton, VIC, Australia
| | - Boaz H Ng
- Centre for Inflammatory Diseases, Department of Medicine, School of Clinical Sciences, Monash University, Clayton, VIC, Australia
| | - Yi Tian Ting
- Centre for Inflammatory Diseases, Department of Medicine, School of Clinical Sciences, Monash University, Clayton, VIC, Australia
| | - Julie A Monk
- Centre for Inflammatory Diseases, Department of Medicine, School of Clinical Sciences, Monash University, Clayton, VIC, Australia
| | - Khai L Loh
- Centre for Inflammatory Diseases, Department of Medicine, School of Clinical Sciences, Monash University, Clayton, VIC, Australia
| | - Ashraf Broury
- Centre for Inflammatory Diseases, Department of Medicine, School of Clinical Sciences, Monash University, Clayton, VIC, Australia
| | - Elean S V Tay
- Centre for Inflammatory Diseases, Department of Medicine, School of Clinical Sciences, Monash University, Clayton, VIC, Australia
| | - Chanjuan Shen
- Department of Hematology, The Affiliated Zhuzhou Hospital of Xiangya Medical College, Central South University, Zhuzhou, China
| | - Yong Zhong
- Centre for Inflammatory Diseases, Department of Medicine, School of Clinical Sciences, Monash University, Clayton, VIC, Australia
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Steven Lim
- Alfred Research Alliance Flow Cytometry Core Facility, Melbourne, VIC, Australia
| | - Jia Xi Chung
- Centre for Inflammatory Diseases, Department of Medicine, School of Clinical Sciences, Monash University, Clayton, VIC, Australia
| | - Rangi Kandane-Rathnayake
- Centre for Inflammatory Diseases, Department of Medicine, School of Clinical Sciences, Monash University, Clayton, VIC, Australia
| | - Rachel Koelmeyer
- Centre for Inflammatory Diseases, Department of Medicine, School of Clinical Sciences, Monash University, Clayton, VIC, Australia
| | - Alberta Hoi
- Centre for Inflammatory Diseases, Department of Medicine, School of Clinical Sciences, Monash University, Clayton, VIC, Australia
- Department of Rheumatology, Monash Health, Clayton, VIC, Australia
| | | | | | - Sarah L Snelgrove
- Centre for Inflammatory Diseases, Department of Medicine, School of Clinical Sciences, Monash University, Clayton, VIC, Australia
| | - Eric F Morand
- Centre for Inflammatory Diseases, Department of Medicine, School of Clinical Sciences, Monash University, Clayton, VIC, Australia
- Department of Rheumatology, Monash Health, Clayton, VIC, Australia
| | - Joshua D Ooi
- Centre for Inflammatory Diseases, Department of Medicine, School of Clinical Sciences, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
38
|
Zhang J, Liu H, Chen Y, Liu H, Zhang S, Yin G, Xie Q. Augmenting regulatory T cells: new therapeutic strategy for rheumatoid arthritis. Front Immunol 2024; 15:1312919. [PMID: 38322264 PMCID: PMC10844451 DOI: 10.3389/fimmu.2024.1312919] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/08/2024] [Indexed: 02/08/2024] Open
Abstract
Rheumatoid arthritis (RA) is a chronic, systemic autoimmune condition marked by inflammation of the joints, degradation of the articular cartilage, and bone resorption. Recent studies found the absolute and relative decreases in circulating regulatory T cells (Tregs) in RA patients. Tregs are a unique type of cells exhibiting immunosuppressive functions, known for expressing the Foxp3 gene. They are instrumental in maintaining immunological tolerance and preventing autoimmunity. Increasing the absolute number and/or enhancing the function of Tregs are effective strategies for treating RA. This article reviews the studies on the mechanisms and targeted therapies related to Tregs in RA, with a view to provide better ideas for the treatment of RA.
Collapse
Affiliation(s)
- Jiaqian Zhang
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Hongjiang Liu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Yuehong Chen
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Huan Liu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Shengxiao Zhang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Geng Yin
- Department of General Practice, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, China
| | - Qibing Xie
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
39
|
Kennedy-Batalla R, Acevedo D, Luo Y, Esteve-Solé A, Vlagea A, Correa-Rocha R, Seoane-Reula ME, Alsina L. Treg in inborn errors of immunity: gaps, knowns and future perspectives. Front Immunol 2024; 14:1278759. [PMID: 38259469 PMCID: PMC10800401 DOI: 10.3389/fimmu.2023.1278759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 12/13/2023] [Indexed: 01/24/2024] Open
Abstract
Regulatory T cells (Treg) are essential for immune balance, preventing overreactive responses and autoimmunity. Although traditionally characterized as CD4+CD25+CD127lowFoxP3hi, recent research has revealed diverse Treg subsets such as Tr1, Tr1-like, and CD8 Treg. Treg dysfunction leads to severe autoimmune diseases and immune-mediated inflammatory disorders. Inborn errors of immunity (IEI) are a group of disorders that affect correct functioning of the immune system. IEI include Tregopathies caused by genetic mutations affecting Treg development or function. In addition, Treg dysfunction is also observed in other IEIs, whose underlying mechanisms are largely unknown, thus requiring further research. This review provides a comprehensive overview and discussion of Treg in IEI focused on: A) advances and controversies in the evaluation of Treg extended subphenotypes and function; B) current knowledge and gaps in Treg disturbances in Tregopathies and other IEI including Treg subpopulation changes, genotype-phenotype correlation, Treg changes with disease activity, and available therapies, and C) the potential of Treg cell-based therapies for IEI with immune dysregulation. The aim is to improve both the diagnostic and the therapeutic approaches to IEI when there is involvement of Treg. We performed a non-systematic targeted literature review with a knowledgeable selection of current, high-quality original and review articles on Treg and IEI available since 2003 (with 58% of the articles within the last 6 years) in the PubMed database.
Collapse
Affiliation(s)
- Rebeca Kennedy-Batalla
- Laboratory of Immune-Regulation, Gregorio Marañón Health Research Institute (IISGM), Madrid, Spain
| | - Daniel Acevedo
- Clinical Immunology and Primary Immunodeficiencies Unit, Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain
- Clinical Immunology Unit, Hospital Sant Joan de Déu-Hospital Clínic, Barcelona, Spain
- Study Group for Immune Dysfunction Diseases in Children (GEMDIP), Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Yiyi Luo
- Clinical Immunology and Primary Immunodeficiencies Unit, Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain
- Clinical Immunology Unit, Hospital Sant Joan de Déu-Hospital Clínic, Barcelona, Spain
- Study Group for Immune Dysfunction Diseases in Children (GEMDIP), Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Ana Esteve-Solé
- Clinical Immunology and Primary Immunodeficiencies Unit, Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain
- Clinical Immunology Unit, Hospital Sant Joan de Déu-Hospital Clínic, Barcelona, Spain
- Study Group for Immune Dysfunction Diseases in Children (GEMDIP), Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Alexandru Vlagea
- Clinical Immunology Unit, Hospital Sant Joan de Déu-Hospital Clínic, Barcelona, Spain
- Immunology Department, Biomedic Diagnostic Center (CDB), Hospital Clínic of Barcelona, Clinical Immunology Unit Hospital Sant Joan de Déu-Hospital Clínic de Barcelona, Barcelona, Spain
| | - Rafael Correa-Rocha
- Laboratory of Immune-Regulation, Gregorio Marañón Health Research Institute (IISGM), Madrid, Spain
| | - Ma Elena Seoane-Reula
- Laboratory of Immune-Regulation, Gregorio Marañón Health Research Institute (IISGM), Madrid, Spain
- Pediatric Immuno-Allergy Unit, Allergy Department, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Primary Immunodeficiencies Unit, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Laia Alsina
- Clinical Immunology and Primary Immunodeficiencies Unit, Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain
- Clinical Immunology Unit, Hospital Sant Joan de Déu-Hospital Clínic, Barcelona, Spain
- Study Group for Immune Dysfunction Diseases in Children (GEMDIP), Institut de Recerca Sant Joan de Déu, Barcelona, Spain
- Department of Surgery and Surgical Specializations, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
40
|
Kawakami R, Sakaguchi S. Regulatory T Cells for Control of Autoimmunity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1444:67-82. [PMID: 38467973 DOI: 10.1007/978-981-99-9781-7_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Regulatory T (Treg) cells, which specifically express the master transcription factor FoxP3, are indispensable for the maintenance of immunological self-tolerance and homeostasis. Their functional or numerical anomalies can be causative of autoimmune and other inflammatory diseases. Recent advances in the research of the cellular and molecular basis of how Treg cells develop, exert suppression, and maintain their function have enabled devising various ways for controlling physiological and pathological immune responses by targeting Treg cells. It is now envisaged that Treg cells as a "living drug" are able to achieve antigen-specific immune suppression of various immune responses and reestablish immunological self-tolerance in the clinic.
Collapse
Affiliation(s)
- Ryoji Kawakami
- Kyoto University, Kyoto, Japan
- Osaka University, Osaka, Japan
| | | |
Collapse
|
41
|
Georgiev P, Benamar M, Han S, Haigis MC, Sharpe AH, Chatila TA. Regulatory T cells in dominant immunologic tolerance. J Allergy Clin Immunol 2024; 153:28-41. [PMID: 37778472 PMCID: PMC10842646 DOI: 10.1016/j.jaci.2023.09.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/18/2023] [Accepted: 09/22/2023] [Indexed: 10/03/2023]
Abstract
Regulatory T cells expressing the transcription factor forkhead box protein 3 mediate peripheral immune tolerance both to self-antigens and to the commensal flora. Their defective function due to inborn errors of immunity or acquired insults is associated with a broad range of autoimmune and immune dysregulatory diseases. Although their function in suppressing autoimmunity and enforcing commensalism is established, a broader role for regulatory T cells in tissue repair and metabolic regulation has emerged, enabled by unique programs of tissue adaptability and specialization. In this review, we focus on the myriad roles played by regulatory T cells in immunologic tolerance and host homeostasis and the potential to harness these cells in novel therapeutic approaches to human diseases.
Collapse
Affiliation(s)
- Peter Georgiev
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, Mass; Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, Mass
| | - Mehdi Benamar
- Division of Immunology, Boston Children's Hospital, Boston, Mass; Department of Pediatrics, Harvard Medical School, Boston, Mass
| | - SeongJun Han
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, Mass; Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, Mass
| | - Marcia C Haigis
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, Mass
| | - Arlene H Sharpe
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, Mass
| | - Talal A Chatila
- Division of Immunology, Boston Children's Hospital, Boston, Mass; Department of Pediatrics, Harvard Medical School, Boston, Mass.
| |
Collapse
|
42
|
Hayes CE, Astier AL, Lincoln MR. Vitamin D mechanisms of protection in multiple sclerosis. FELDMAN AND PIKE'S VITAMIN D 2024:1129-1166. [DOI: 10.1016/b978-0-323-91338-6.00051-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
43
|
Aru N, Yang C, Chen Y, Liu J. Causal association of immune cells and polycystic ovarian syndrome: a Mendelian randomization study. Front Endocrinol (Lausanne) 2023; 14:1326344. [PMID: 38189053 PMCID: PMC10770856 DOI: 10.3389/fendo.2023.1326344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/06/2023] [Indexed: 01/09/2024] Open
Abstract
Background Polycystic ovarian syndrome (PCOS) is a common reproductive disorder that affects a considerable number of women worldwide. It is accompanied by irregular menstruation, hyperandrogenism, metabolic abnormalities, reproductive disorders and other clinical symptoms, which seriously endangers women's physical and mental health. The etiology and pathogenesis of PCOS are not completely clear, but it is hypothesized that immune system may play a key role in it. However, previous studies investigating the connection between immune cells and PCOS have produced conflicting results. Methods Mendelian randomization (MR) is a powerful study design that uses genetic variants as instrumental variables to enable examination of the causal effect of an exposure on an outcome in observational data. In this study, we utilized a comprehensive two-sample MR analysis to examine the causal link between 731 immune cells and PCOS. We employed complementary MR methods, such as the inverse-variance weighted (IVW) method, and conducted sensitivity analyses to evaluate the reliability of the outcomes. Results Four immunophenotypes were identified to be significantly associated with PCOS risk: Memory B cell AC (IVW: OR [95%]: 1.123[1.040 to 1.213], p = 0.003), CD39+ CD4+ %CD4+ (IVW: OR [95%]: 0.869[0.784 to 0.963], p = 0.008), CD20 on CD20- CD38-(IVW: OR [95%]:1.297[1.088 to 1.546], p = 0.004), and HLA DR on CD14- CD16+ monocyte (IVW: OR [95%]:1.225[1.074 to 1.397], p = 0.003). The results of the sensitivity analyses were consistent with the main findings. Conclusions Our MR analysis provides strong evidence supporting a causal association between immune cells and the susceptibility of PCOS. This discovery can assist in clinical decision-making regarding disease prognosis and treatment options, and also provides a new direction for drug development.
Collapse
Affiliation(s)
- Na Aru
- Department of Reproductive Endocrinology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Congyu Yang
- Department of Reproductive Endocrinology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yuntian Chen
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Jiaming Liu
- Department of Urology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
44
|
Christofi P, Pantazi C, Psatha N, Sakellari I, Yannaki E, Papadopoulou A. Promises and Pitfalls of Next-Generation Treg Adoptive Immunotherapy. Cancers (Basel) 2023; 15:5877. [PMID: 38136421 PMCID: PMC10742252 DOI: 10.3390/cancers15245877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Regulatory T cells (Tregs) are fundamental to maintaining immune homeostasis by inhibiting immune responses to self-antigens and preventing the excessive activation of the immune system. Their functions extend beyond immune surveillance and subpopulations of tissue-resident Treg cells can also facilitate tissue repair and homeostasis. The unique ability to regulate aberrant immune responses has generated the concept of harnessing Tregs as a new cellular immunotherapy approach for reshaping undesired immune reactions in autoimmune diseases and allo-responses in transplantation to ultimately re-establish tolerance. However, a number of issues limit the broad clinical applicability of Treg adoptive immunotherapy, including the lack of antigen specificity, heterogeneity within the Treg population, poor persistence, functional Treg impairment in disease states, and in vivo plasticity that results in the loss of suppressive function. Although the early-phase clinical trials of Treg cell therapy have shown the feasibility and tolerability of the approach in several conditions, its efficacy has remained questionable. Leveraging the smart tools and platforms that have been successfully developed for primary T cell engineering in cancer, the field has now shifted towards "next-generation" adoptive Treg immunotherapy, where genetically modified Treg products with improved characteristics are being generated, as regards antigen specificity, function, persistence, and immunogenicity. Here, we review the state of the art on Treg adoptive immunotherapy and progress beyond it, while critically evaluating the hurdles and opportunities towards the materialization of Tregs as a living drug therapy for various inflammation states and the broad clinical translation of Treg therapeutics.
Collapse
Affiliation(s)
- Panayiota Christofi
- Gene and Cell Therapy Center, Hematopoietic Cell Transplantation Unit, Hematology Department, George Papanikolaou Hospital, 57010 Thessaloniki, Greece; (P.C.); (C.P.); (I.S.); (E.Y.)
- University General Hospital of Patras, 26504 Rio, Greece
| | - Chrysoula Pantazi
- Gene and Cell Therapy Center, Hematopoietic Cell Transplantation Unit, Hematology Department, George Papanikolaou Hospital, 57010 Thessaloniki, Greece; (P.C.); (C.P.); (I.S.); (E.Y.)
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
- Institute of Applied Biosciences (INAB), Centre for Research and Technology Hellas (CERTH), 57001 Thessaloniki, Greece
| | - Nikoleta Psatha
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Ioanna Sakellari
- Gene and Cell Therapy Center, Hematopoietic Cell Transplantation Unit, Hematology Department, George Papanikolaou Hospital, 57010 Thessaloniki, Greece; (P.C.); (C.P.); (I.S.); (E.Y.)
| | - Evangelia Yannaki
- Gene and Cell Therapy Center, Hematopoietic Cell Transplantation Unit, Hematology Department, George Papanikolaou Hospital, 57010 Thessaloniki, Greece; (P.C.); (C.P.); (I.S.); (E.Y.)
- Department of Medicine, University of Washington, Seattle, WA 98195-7710, USA
| | - Anastasia Papadopoulou
- Gene and Cell Therapy Center, Hematopoietic Cell Transplantation Unit, Hematology Department, George Papanikolaou Hospital, 57010 Thessaloniki, Greece; (P.C.); (C.P.); (I.S.); (E.Y.)
| |
Collapse
|
45
|
Han A, Peng T, Xie Y, Zhang W, Sun W, Xie Y, Ma Y, Wang C, Xie N. Mitochondrial-regulated Tregs: potential therapeutic targets for autoimmune diseases of the central nervous system. Front Immunol 2023; 14:1301074. [PMID: 38149252 PMCID: PMC10749924 DOI: 10.3389/fimmu.2023.1301074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 11/30/2023] [Indexed: 12/28/2023] Open
Abstract
Regulatory T cells (Tregs) can eliminate autoreactive lymphocytes, induce self-tolerance, and suppress the inflammatory response. Mitochondria, as the energy factories of cells, are essential for regulating the survival, differentiation, and function of Tregs. Studies have shown that patients with autoimmune diseases of the central nervous system, such as multiple sclerosis, neuromyelitis optica spectrum disorder, and autoimmune encephalitis, have aberrant Tregs and mitochondrial damage. However, the role of mitochondrial-regulated Tregs in autoimmune diseases of the central nervous system remains inconclusive. Therefore, this study reviews the mitochondrial regulation of Tregs in autoimmune diseases of the central nervous system and investigates the possible mitochondrial therapeutic targets.
Collapse
Affiliation(s)
- Aoya Han
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Tingting Peng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yinyin Xie
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wanwan Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wenlin Sun
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yi Xie
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yunqing Ma
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Cui Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Nanchang Xie
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
46
|
Lyu H, Yuan G, Liu X, Wang X, Geng S, Xia T, Zhou X, Li Y, Hu X, Shi Y. Sustained store-operated calcium entry utilizing activated chromatin state leads to instability in iTregs. eLife 2023; 12:RP88874. [PMID: 38055613 PMCID: PMC10699804 DOI: 10.7554/elife.88874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023] Open
Abstract
Thymus-originated tTregs and in vitro induced iTregs are subsets of regulatory T cells. While they share the capacity of immune suppression, their stabilities are different, with iTregs losing their phenotype upon stimulation or under inflammatory milieu. Epigenetic differences, particularly methylation state of Foxp3 CNS2 region, provide an explanation for this shift. Whether additional regulations, including cellular signaling, could directly lead phenotypical instability requires further analysis. Here, we show that upon TCR (T cell receptor) triggering, SOCE (store-operated calcium entry) and NFAT (nuclear factor of activated T cells) nuclear translocation are blunted in tTregs, yet fully operational in iTregs, similar to Tconvs. On the other hand, tTregs show minimal changes in their chromatin accessibility upon activation, in contrast to iTregs that demonstrate an activated chromatin state with highly accessible T cell activation and inflammation related genes. Assisted by several cofactors, NFAT driven by strong SOCE signaling in iTregs preferentially binds to primed-opened T helper (TH) genes, resulting in their activation normally observed only in Tconv activation, ultimately leads to instability. Conversely, suppression of SOCE in iTregs can partially rescue their phenotype. Thus, our study adds two new layers, cellular signaling and chromatin accessibility, of understanding in Treg stability, and may provide a path for better clinical applications of Treg cell therapy.
Collapse
Affiliation(s)
- Huiyun Lyu
- Institute for Immunology, Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua UniversityBeijingChina
- Tsinghua-Peking Center for Life Sciences, Tsinghua UniversityBeijingChina
| | - Guohua Yuan
- IDG/McGovern Institute for Brain Research and School of Pharmaceutical Sciences, Tsinghua UniversityBeijingChina
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Pharmaceutical Sciences, Tsinghua UniversityBeijingChina
| | - Xinyi Liu
- Institute for Immunology, Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua UniversityBeijingChina
- Department of Basic Medical Sciences, School of Medicine, Tsinghua UniversityBeijingChina
| | - Xiaobo Wang
- Institute for Immunology, Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua UniversityBeijingChina
- Department of Basic Medical Sciences, School of Medicine, Tsinghua UniversityBeijingChina
| | - Shuang Geng
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute, University of CalgaryCalgaryCanada
| | - Tie Xia
- Institute for Immunology, Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua UniversityBeijingChina
- Department of Basic Medical Sciences, School of Medicine, Tsinghua UniversityBeijingChina
| | - Xuyu Zhou
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yinqing Li
- IDG/McGovern Institute for Brain Research and School of Pharmaceutical Sciences, Tsinghua UniversityBeijingChina
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Pharmaceutical Sciences, Tsinghua UniversityBeijingChina
| | - Xiaoyu Hu
- Institute for Immunology, Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua UniversityBeijingChina
- Tsinghua-Peking Center for Life Sciences, Tsinghua UniversityBeijingChina
- Department of Basic Medical Sciences, School of Medicine, Tsinghua UniversityBeijingChina
| | - Yan Shi
- Institute for Immunology, Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua UniversityBeijingChina
- Tsinghua-Peking Center for Life Sciences, Tsinghua UniversityBeijingChina
- Department of Basic Medical Sciences, School of Medicine, Tsinghua UniversityBeijingChina
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute, University of CalgaryCalgaryCanada
| |
Collapse
|
47
|
Trujillo-Ochoa JL, Kazemian M, Afzali B. The role of transcription factors in shaping regulatory T cell identity. Nat Rev Immunol 2023; 23:842-856. [PMID: 37336954 PMCID: PMC10893967 DOI: 10.1038/s41577-023-00893-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2023] [Indexed: 06/21/2023]
Abstract
Forkhead box protein 3-expressing (FOXP3+) regulatory T cells (Treg cells) suppress conventional T cells and are essential for immunological tolerance. FOXP3, the master transcription factor of Treg cells, controls the expression of multiples genes to guide Treg cell differentiation and function. However, only a small fraction (<10%) of Treg cell-associated genes are directly bound by FOXP3, and FOXP3 alone is insufficient to fully specify the Treg cell programme, indicating a role for other accessory transcription factors operating upstream, downstream and/or concurrently with FOXP3 to direct Treg cell specification and specialized functions. Indeed, the heterogeneity of Treg cells can be at least partially attributed to differential expression of transcription factors that fine-tune their trafficking, survival and functional properties, some of which are niche-specific. In this Review, we discuss the emerging roles of accessory transcription factors in controlling Treg cell identity. We specifically focus on members of the basic helix-loop-helix family (AHR), basic leucine zipper family (BACH2, NFIL3 and BATF), CUT homeobox family (SATB1), zinc-finger domain family (BLIMP1, Ikaros and BCL-11B) and interferon regulatory factor family (IRF4), as well as lineage-defining transcription factors (T-bet, GATA3, RORγt and BCL-6). Understanding the imprinting of Treg cell identity and specialized function will be key to unravelling basic mechanisms of autoimmunity and identifying novel targets for drug development.
Collapse
Affiliation(s)
- Jorge L Trujillo-Ochoa
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD, USA
| | - Majid Kazemian
- Departments of Biochemistry and Computer Science, Purdue University, West Lafayette, IN, USA
| | - Behdad Afzali
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD, USA.
| |
Collapse
|
48
|
Wobma H, Janssen E. Expanding IPEX: Inborn Errors of Regulatory T Cells. Rheum Dis Clin North Am 2023; 49:825-840. [PMID: 37821198 DOI: 10.1016/j.rdc.2023.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Regulatory T cells (Tregs) are critical for enforcing peripheral tolerance. Monogenic "Tregopathies" affecting Treg development, stability, and/or function commonly present with polyautoimmunity, atopic disease, and infection. While autoimmune manifestations may present in early childhood, as more disorders are characterized, conditions with later onset have been identified. Treg numbers in the blood may be decreased in Tregopathies, but this is not always the case, and genetic testing should be pursued when there is high clinical suspicion. Currently, hematopoietic cell transplantation is the only curative treatment, but gene therapies are in development, and small molecule inhibitors/biologics may also be used.
Collapse
Affiliation(s)
- Holly Wobma
- Division of Immunology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Erin Janssen
- Department of Pediatrics, Division of Pediatric Rheumatology, Michigan Medicine, C.S. Mott Children's Hospital, 1500 East Medical Center Drive, SPC 5718, Ann Arbor, MI 48109, USA.
| |
Collapse
|
49
|
Lao P, Chen J, Tang L, Zhang J, Chen Y, Fang Y, Fan X. Regulatory T cells in lung disease and transplantation. Biosci Rep 2023; 43:BSR20231331. [PMID: 37795866 PMCID: PMC10611924 DOI: 10.1042/bsr20231331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/28/2023] [Accepted: 10/04/2023] [Indexed: 10/06/2023] Open
Abstract
Pulmonary disease can refer to the disease of the lung itself or the pulmonary manifestations of systemic diseases, which are often connected to the malfunction of the immune system. Regulatory T (Treg) cells have been shown to be important in maintaining immune homeostasis and preventing inflammatory damage, including lung diseases. Given the increasing amount of evidence linking Treg cells to various pulmonary conditions, Treg cells might serve as a therapeutic strategy for the treatment of lung diseases and potentially promote lung transplant tolerance. The most potent and well-defined Treg cells are Foxp3-expressing CD4+ Treg cells, which contribute to the prevention of autoimmune lung diseases and the promotion of lung transplant rejection. The protective mechanisms of Treg cells in lung disease and transplantation involve multiple immune suppression mechanisms. This review summarizes the development, phenotype and function of CD4+Foxp3+ Treg cells. Then, we focus on the therapeutic potential of Treg cells in preventing lung disease and limiting lung transplant rejection. Furthermore, we discussed the possibility of Treg cell utilization in clinical applications. This will provide an overview of current research advances in Treg cells and their relevant application in clinics.
Collapse
Affiliation(s)
- Peizhen Lao
- Institute of Biological and Food Engineering, Guangdong University of Education, 351 Xingang Middle Road, Guangzhou 510303, PR China
| | - Jingyi Chen
- Institute of Biological and Food Engineering, Guangdong University of Education, 351 Xingang Middle Road, Guangzhou 510303, PR China
| | - Longqian Tang
- Institute of Biological and Food Engineering, Guangdong University of Education, 351 Xingang Middle Road, Guangzhou 510303, PR China
| | - Jiwen Zhang
- Institute of Biological and Food Engineering, Guangdong University of Education, 351 Xingang Middle Road, Guangzhou 510303, PR China
| | - Yuxi Chen
- Institute of Biological and Food Engineering, Guangdong University of Education, 351 Xingang Middle Road, Guangzhou 510303, PR China
| | - Yuyin Fang
- Institute of Biological and Food Engineering, Guangdong University of Education, 351 Xingang Middle Road, Guangzhou 510303, PR China
| | - Xingliang Fan
- Institute of Biological and Food Engineering, Guangdong University of Education, 351 Xingang Middle Road, Guangzhou 510303, PR China
| |
Collapse
|
50
|
Hervé PL, Dioszeghy V, Matthews K, Bee KJ, Campbell DE, Sampson HA. Recent advances in epicutaneous immunotherapy and potential applications in food allergy. FRONTIERS IN ALLERGY 2023; 4:1290003. [PMID: 37965375 PMCID: PMC10641725 DOI: 10.3389/falgy.2023.1290003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/06/2023] [Indexed: 11/16/2023] Open
Abstract
Given the potent immunological properties of the skin, epicutaneous immunotherapy (EPIT) emerges as a promising treatment approach for inducing immune tolerance, particularly for food allergies. Targeting the highly immunocompetent, non-vascularized epidermis allows for the application of microgram amounts of allergen while significantly reducing the risk of allergen passage into the bloodstream, thus limiting systemic allergen exposure and distribution. This makes EPIT highly suitable for the treatment of potentially life-threatening allergies such as food allergies. Multiple approaches to EPIT are currently under investigation for the treatment of food allergy, and these include the use of allergen-coated microneedles, application of allergen on the skin pretreated by tape stripping, abrasion or laser-mediated microperforation, or the application of allergen on the intact skin using an occlusive epicutaneous system. To date, the most clinically advanced approach to EPIT is the Viaskin technology platform. Viaskin is an occlusive epicutaneous system (patch) containing dried native allergen extracts, without adjuvants, which relies on frequent application for the progressive passage of small amounts of allergen to the epidermis through occlusion of the intact skin. Numerous preclinical studies of Viaskin have demonstrated that this particular approach to EPIT can induce potent and long-lasting T-regulatory cells with broad homing capabilities, which can exert their suppressive effects in multiple organs and ameliorate immune responses from different routes of allergen exposure. Clinical trials of the Viaskin patch have studied the efficacy and safety for the treatment of life-threatening allergies in younger patients, at an age when allergic diseases start to occur. Moreover, this treatment approach is designed to provide a non-invasive therapy with no restrictions on daily activities. Taken together, the preclinical and clinical data on the use of EPIT support the continued investigation of this therapeutic approach to provide improved treatment options for patients with allergic disorders in the near future.
Collapse
Affiliation(s)
| | | | | | | | - Dianne E. Campbell
- DBV Technologies, Montrouge, France
- Department of Allergy and Immunology, University of Sydney, Sydney, NSW, Australia
| | - Hugh A. Sampson
- Division of Allergy and Immunology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|