1
|
Kim J, Kim IU, Lee ZF, Han J, Ahn J, Jo Y, Kim P, Yoo H, Sim GD, Jeon JS. Detrimental effects of advanced glycation end-products (AGEs) on a 3D skeletal muscle model in microphysiological system. Biosens Bioelectron 2025; 278:117316. [PMID: 40049047 DOI: 10.1016/j.bios.2025.117316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 02/20/2025] [Accepted: 02/25/2025] [Indexed: 03/30/2025]
Abstract
Skeletal muscle is essential for maintaining body shape and supporting physiological processes. Musculoskeletal function is influenced by various factors, including nutrition, infection, injury or trauma, and advanced glycation end-products (AGEs), which are known to contribute in tissue degeneration, particularly in aging and diabetic populations. This study utilized a skeletal muscle-on-a-chip system to develop three-dimensional in vitro musculoskeletal tissue, enabling a detailed investigation of the effects of AGEs on muscle function and structure. AGEs-induced alterations on muscle were verified by assessments of musculoskeletal contractility, myotube growth, and apoptosis markers. Furthermore, metabolic changes such as modifications in collagen and NADH lifetime changes were observed using fluorescence-lifetime imaging microscopy (FLIM) in the AGEs-treated group. Our result demonstrated a significant reduction in musculoskeletal contractility and structural disruptions in response to AGEs exposure. Overall, these findings provide a robust in vitro model for elucidating the mechanisms by which AGEs impair muscle functionality and integrity, with potential implications for therapeutic strategies aimed at preserving muscle health and enhancing the quality of life in affected populations.
Collapse
Affiliation(s)
- Jaesang Kim
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - In U Kim
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Zhuo Feng Lee
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Jeongmoo Han
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Jisong Ahn
- Research Group of Traditional Food, Korea Food Research Institute, Wanju-gun, Republic of Korea
| | - Youngmin Jo
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Pilnam Kim
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Hongki Yoo
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Gi-Dong Sim
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Jessie S Jeon
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea.
| |
Collapse
|
2
|
Liu Y, Chen ZJ, Fei Y, Yu X, Chen G. Investigating the therapeutic potential of epigallocatechin gallate (EGCG) for chronic pain management: mechanisms, applications, and future perspectives. Fitoterapia 2025; 184:106646. [PMID: 40446933 DOI: 10.1016/j.fitote.2025.106646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 05/12/2025] [Accepted: 05/27/2025] [Indexed: 06/02/2025]
Abstract
Chronic pain, a widespread condition impacting a large segment of the global population, involves persistent and diverse pain types including nociceptive, neuropathic, and the more recently defined nociplastic pain. This review explores the potential of Epigallocatechin gallate (EGCG), a key bioactive compound in green tea, known for its extensive biological activities that aid in pain management. Highlighting its anti-inflammatory, antioxidant, and neuroprotective effects, EGCG is posited as a promising alternative to conventional pain medications, which are often associated with significant side effects and dependency risks. Despite its therapeutic promise, EGCG's clinical application is hampered by poor bioavailability and stability. By outlining the current state of research and identifying gaps for future investigation, this review underscores the importance of integrating EGCG into a broader pain management paradigm. It advocates for extensive clinical trials to confirm EGCG's efficacy and safety in humans, aiming to establish it as a part of an integrative strategy for treating chronic pain, thus potentially reducing the reliance on conventional pharmacotherapy.
Collapse
Affiliation(s)
- Yue Liu
- Department of Anesthesiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, PR China
| | - Zheng-Jie Chen
- Department of Anesthesiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, PR China
| | - Yue Fei
- Department of Anesthesiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, PR China
| | - Xin Yu
- Department of Anesthesiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, PR China; Provincial Key Laboratory of Precise Diagnosis and Treatment of Abdominal Infection, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, PR China.
| | - Gang Chen
- Department of Anesthesiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, PR China.
| |
Collapse
|
3
|
Hernandez-Reyes M, Oo TT. From receptor to response: dissecting the TLR4 pathway in diabetic neuropathy. Inflammopharmacology 2025:10.1007/s10787-025-01774-2. [PMID: 40347407 DOI: 10.1007/s10787-025-01774-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2025] [Accepted: 04/24/2025] [Indexed: 05/12/2025]
Abstract
Diabetic neuropathy (DNP) is a common complication of diabetes that has a significant impact on the patient's quality of life. The primary objectives of clinical treatment for DNP these days are symptomatic pain management and glycemic control. Since there is currently no cure for nerve damage, the only objective is to alleviate discomfort and slow its progression. Pre-clinical research over the last decade has increasingly linked toll-like receptor 4 (TLR4)-mediated neuroinflammation as a major contributor to DNP development. The role of TLR4-mediated neuroinflammation in the pathophysiology of DNP is covered in this review, along with different therapeutic approaches that target TLR4-mediated neuroinflammation in DNP in pre-clinical research. Despite promising pre-clinical results, translating these findings into clinical practice remains a challenge, which we also discuss how to address and overcome in this review.
Collapse
Affiliation(s)
- Monserrat Hernandez-Reyes
- College of Advanced Studies Cuautitlan, National Autonomous University of Mexico, 54740, Cuautitlan Izcalli, State of Mexico, Mexico
| | - Thura Tun Oo
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, 53792, USA.
| |
Collapse
|
4
|
Li B, Yim MM, Jin YX, Tao BK, Xie JS, Balas M, Khan H, Lam WC, Yan P, Navajas EV. Circulating Cell-Free DNA as an Epigenetic Biomarker for Early Diabetic Retinopathy: A Narrative Review. Diagnostics (Basel) 2025; 15:1161. [PMID: 40361979 PMCID: PMC12071738 DOI: 10.3390/diagnostics15091161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2025] [Revised: 04/27/2025] [Accepted: 04/30/2025] [Indexed: 05/15/2025] Open
Abstract
Diabetic retinopathy (DR), a complication of type 2 diabetes mellitus (T2DM), is typically asymptomatic in its early stages. Diagnosis typically relies on routine fundoscopy for the clinical detection of microvascular abnormalities. However, permanent retinal damage may occur well before clinical signs are appreciable. In the early stages of DR, the retina undergoes distinct epigenetic changes, including DNA methylation and histone modifications. Recent evidence supports unique epigenetic 'signatures' in patients with DR compared to non-diabetic controls. These DNA 'signature' sequences may be specific to the retina and may circulate in peripheral blood in the form of cell-free DNA (cfDNA). In this review, we explore the literature and clinical application of cfDNA sampling as an early, non-invasive, accessible assessment tool for early DR detection. First, we summarize the known epigenetic signatures of DR. Next, we review current sequencing technologies used for cfDNA detection, such as magnetic bead-based enrichment, next-generation sequencing, and bisulfite sequencing. Finally, we outline the current research limitations and emerging areas of study which aim to improve the clinical utility of cfDNA for DR evaluation.
Collapse
Affiliation(s)
- Boaz Li
- Faculty of Medicine, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada; (B.L.); (M.M.Y.); (Y.X.J.)
| | - Megan M. Yim
- Faculty of Medicine, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada; (B.L.); (M.M.Y.); (Y.X.J.)
| | - Yu Xuan Jin
- Faculty of Medicine, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada; (B.L.); (M.M.Y.); (Y.X.J.)
| | - Brendan K. Tao
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON M5S 2L9, Canada (P.Y.)
| | - Jim S. Xie
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON M5S 2L9, Canada (P.Y.)
| | - Michael Balas
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON M5S 2L9, Canada (P.Y.)
| | - Haaris Khan
- Department of Ophthalmology and Visual Sciences, The University of British Columbia, Vancouver, BC V5Z 3N9, Canada; (H.K.)
| | - Wai-Ching Lam
- Department of Ophthalmology and Visual Sciences, The University of British Columbia, Vancouver, BC V5Z 3N9, Canada; (H.K.)
| | - Peng Yan
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON M5S 2L9, Canada (P.Y.)
| | - Eduardo V. Navajas
- Department of Ophthalmology and Visual Sciences, The University of British Columbia, Vancouver, BC V5Z 3N9, Canada; (H.K.)
| |
Collapse
|
5
|
Thakur MR, Tupe RS. l-Arginine: A multifaceted regulator of diabetic cardiomyopathy. Biochem Biophys Res Commun 2025; 761:151720. [PMID: 40186920 DOI: 10.1016/j.bbrc.2025.151720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/25/2025] [Accepted: 03/27/2025] [Indexed: 04/07/2025]
Abstract
In diabetes mellitus, dysregulated glucose and lipid metabolism lead to diabetic cardiomyopathy (DCM) by imparting pathological myocardial remodeling and cellular injury. Accelerated glycation, oxidative stress, and activated inflammatory pathways culminate in cardiac fibrosis and hypertrophy in DCM. The regulatory effects of l-Arginine (L-Arg) have been elucidated in the pathological changes of DCM, including myocardial fibrosis, hypertrophy, and apoptosis, by inhibiting glycation and oxidative stress-induced inflammation. Disturbed L-Arg metabolism and decreased intracellular L-Arg pool are correlated with the progression of DCM; therefore, L-Arg supplementation has been prescribed for various cardiovascular dysfunctions. This review expands the therapeutic potential of L-Arg supplementation in DCM by elucidating its molecular mechanism of action and exploring potential clinical outcomes.
Collapse
Affiliation(s)
- Muskan R Thakur
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University) (SIU), Lavale, Pune, 412115, Maharashtra, India
| | - Rashmi S Tupe
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University) (SIU), Lavale, Pune, 412115, Maharashtra, India.
| |
Collapse
|
6
|
Xu H, Lv J, Lin F, Liu L. Combined glycated hemoglobin index and red cell distribution width predict in-hospital mortality in critically ill sepsis patients based on MIMIC-IV analysis. Sci Rep 2025; 15:12266. [PMID: 40210921 PMCID: PMC11986117 DOI: 10.1038/s41598-025-94179-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 03/12/2025] [Indexed: 04/12/2025] Open
Abstract
Red cell distribution width (RDW) and glycated hemoglobin index (HGI) is considered an important tool for assessing the prognosis of sepsis patients, closely related to the risk of mortality associated with sepsis. This study investigates the association between the HGI combined with RDW and the risk of in-hospital mortality in patients with sepsis. We analyzed data from 13,726 sepsis patients who were admitted to the intensive care unit (ICU) for more than 24 h, sourced from the American Medical Information Mart for Intensive Care (MIMIC-IV) database. Kaplan-Meier survival curves and multivariable Cox regression analyses were employed to assess the impact of various variables on patient outcomes, stratified by quartiles of HGI and RDW. Additionally, restricted cubic spline (RCS) analysis was utilized to explore how changes in HGI and RDW might influence the studied outcomes. The results indicated that the highest quartile (Q4) of the combined metrics significantly increased in-hospital mortality compared to the lowest quartile (Q1) (p < 0.0001). Multivariable Cox regression analysis revealed that patients in Q4 faced the highest risk of in-hospital mortality (hazard ratio: 1.22, 95% confidence interval: [1.10-1.36], p < 0.001). RCS analysis demonstrated a nonlinear relationship between HGI-RDW and the risk of adverse outcomes. Further analysis identified significantly elevated risks in patients over 65 years old, those who were widowed, those receiving macrolide antibiotics, and those with congestive heart failure or severe liver disease. In conclusion, elevated levels of the combined HGI and RDW metrics are independent risk factors for adverse outcomes in critically ill patients with sepsis, associated with increased mortality.
Collapse
Affiliation(s)
- Huan Xu
- Department of Infectious Diseases, Lishui People's Hospital, The First Affiliated Hospital of Lishui University, No. 1188 Liyang Street, Lishui, 323000, Zhejiang, China
| | - Jiaojian Lv
- Department of Infectious Diseases, Lishui People's Hospital, The First Affiliated Hospital of Lishui University, No. 1188 Liyang Street, Lishui, 323000, Zhejiang, China
| | - Feifei Lin
- Department of Laboratory Medicine, Lishui People'S Hospital, The First Affiliated Hospital of Lishui University, Lishui, 323000, Zhejiang, China
| | - Luxiang Liu
- Department of Infectious Diseases, Lishui People's Hospital, The First Affiliated Hospital of Lishui University, No. 1188 Liyang Street, Lishui, 323000, Zhejiang, China.
| |
Collapse
|
7
|
Wang W, Zhu Y, Sang S. Optimization for Simultaneous Determination of a Panel of Advanced Glycation End Products as Biomarkers for Metabolic Diseases. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:6970-6980. [PMID: 40063978 PMCID: PMC11926871 DOI: 10.1021/acs.jafc.4c11382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 02/25/2025] [Accepted: 03/01/2025] [Indexed: 03/20/2025]
Abstract
Both dietary and endogenous reactive carbonyl species, such as methylglyoxal (MGO) and glyoxal (GO), react with proteins to generate advanced glycation end products (AGEs), which contribute to metabolic diseases. However, accurately determining individual AGEs in biological samples remains challenging due to the lack of standardized methods. In this study, we optimized and detailed procedures for AGE digestion using enzyme cocktails and separation and detection via high-resolution LC-MS/MS. For the first time, we observed that enzyme backgrounds contained higher levels of methylglyoxal-derived hydroimidazolone 1 (MG-H1) and glucosepane than mouse plasma by 1.4-3 times (e.g., 1512.55 ± 18.89 nM in enzymes vs 496.95 ± 90.91 nM in plasma for MG-H1). Using this optimized method, we quantified fructosyl-lysine and nine AGEs in the plasma, kidneys, and urine of mice. MGO-derived AGEs increased significantly in the plasma and kidneys after MGO treatment. Additionally, both MGO- and GO-derived AGEs were elevated in high-fat-diet (HF)-fed mice compared to low-fat-diet (LF)-fed controls, with further increases in HF-fed mice supplemented with MGO (HFM). This optimized method provides accurate AGE quantification, enabling insights into their role as biomarkers for metabolic syndrome and advancing the understanding of dietary and metabolic contributions to AGE formation.
Collapse
Affiliation(s)
- Weixin Wang
- Laboratory for Functional Foods and
Human Health, Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University,
North Carolina Research Campus, 500 Laureate Way, Kannapolis, North Carolina 28081, United States
| | - Yingdong Zhu
- Laboratory for Functional Foods and
Human Health, Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University,
North Carolina Research Campus, 500 Laureate Way, Kannapolis, North Carolina 28081, United States
| | - Shengmin Sang
- Laboratory for Functional Foods and
Human Health, Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University,
North Carolina Research Campus, 500 Laureate Way, Kannapolis, North Carolina 28081, United States
| |
Collapse
|
8
|
Ranbhise JS, Ju S, Singh MK, Han S, Akter S, Ha J, Choe W, Kim SS, Kang I. Chronic Inflammation and Glycemic Control: Exploring the Bidirectional Link Between Periodontitis and Diabetes. Dent J (Basel) 2025; 13:100. [PMID: 40136728 PMCID: PMC11940948 DOI: 10.3390/dj13030100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/13/2025] [Accepted: 02/23/2025] [Indexed: 03/27/2025] Open
Abstract
Periodontitis and diabetes mellitus are two highly prevalent chronic conditions that share a bidirectional relationship, significantly impacting public health. Periodontitis, a gum inflammation caused by microbial dysbiosis, aggravates glycemic control in diabetics, while uncontrolled diabetes heightens periodontitis severity. These conditions create a vicious cycle, where inflammation and microbial dysbiosis mutually drive disease progression, exacerbating systemic health. The underlying mechanisms involve inflammation, immune dysfunction, and microbial dysbiosis, with both diseases contributing to a chain of chronic inflammation that exacerbates systemic health. This relationship is significant because managing one condition can significantly impact the other. In diabetic individuals, interventions such as periodontal therapy have shown effectiveness in improving glycemic control, underscoring the potential of integrated strategies for managing these conditions simultaneously. In this review, we highlight the importance of a deeper understanding of the molecular and immunological interactions between these diseases is essential for developing integrated therapeutic approaches, with the potential to enhance the quality of life of the patient significantly.
Collapse
Affiliation(s)
- Jyotsna Suresh Ranbhise
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (J.S.R.); (S.J.); (M.K.S.); (S.H.); (S.A.); (J.H.); (W.C.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Songhyun Ju
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (J.S.R.); (S.J.); (M.K.S.); (S.H.); (S.A.); (J.H.); (W.C.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Manish Kumar Singh
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (J.S.R.); (S.J.); (M.K.S.); (S.H.); (S.A.); (J.H.); (W.C.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sunhee Han
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (J.S.R.); (S.J.); (M.K.S.); (S.H.); (S.A.); (J.H.); (W.C.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Salima Akter
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (J.S.R.); (S.J.); (M.K.S.); (S.H.); (S.A.); (J.H.); (W.C.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Joohun Ha
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (J.S.R.); (S.J.); (M.K.S.); (S.H.); (S.A.); (J.H.); (W.C.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Wonchae Choe
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (J.S.R.); (S.J.); (M.K.S.); (S.H.); (S.A.); (J.H.); (W.C.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sung Soo Kim
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (J.S.R.); (S.J.); (M.K.S.); (S.H.); (S.A.); (J.H.); (W.C.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Insug Kang
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (J.S.R.); (S.J.); (M.K.S.); (S.H.); (S.A.); (J.H.); (W.C.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
9
|
Vangrieken P, Scheijen JLJM, Schiffers PMH, van de Waarenburg MPH, Foulquier S, Schalkwijk CCG. Modelling the effects of elevated methylglyoxal levels on vascular and metabolic complications. Sci Rep 2025; 15:6025. [PMID: 39972072 PMCID: PMC11839914 DOI: 10.1038/s41598-025-90661-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 02/14/2025] [Indexed: 02/21/2025] Open
Abstract
Methylglyoxal (MGO), a glycolysis by-product and precursor to advanced glycation endproducts (AGEs), is associated with glucose intolerance, type 2 diabetes, and vascular dysfunction. This study examined the long-term effects of elevated MGO on blood pressure, insulin sensitivity, and vascular function in healthy mice. Male C57Bl/6J mice were assigned to control (n = 16) or MGO-treated groups (50 mM in drinking water for 13 weeks, n = 16). Measurements included body weight, fasting plasma glucose, water consumption, blood pressure, and analysis of plasma/tissue for MGO, AGEs, glyoxalase activity, and inflammation markers. Endothelial function was assessed using wire myography, and the response of human placental arteries to MGO-modified insulin was evaluated. MGO treatment significantly increased plasma MGO (123.3%, p < 0.001), AGEs MG-H1 (208.6%, p < 0.001) and CEL (64.3%, p < 0.001), and AGEs in the heart, kidney, and liver, along with body weight (+ 6.4%, p = 0.032) and blood pressure (systolic + 5.0%, p = 0.046; diastolic + 6.5%, p = 0.043). Glucose sensitivity and endothelial function remained unaffected. CRP levels rose, and MGO-modified insulin enhanced vascular contraction. In conclusion, chronic MGO exposure increased plasma MGO to diabetic-like levels, raised body weight and blood pressure, and did not alter glucose sensitivity or endothelial function. Modification of insulin by MGO may contribute to MGO-related changes in blood pressure.
Collapse
Affiliation(s)
- Philippe Vangrieken
- CARIM, Cardiovascular Research Institute Maastricht, Department of Internal Medicine, School for Cardiovascular Diseases (CARIM), Maastricht University Medical Center+, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands.
- CARIM, Cardiovascular Research Institute Maastricht, Department of Pharmacology and Toxicology, CARIM, Maastricht University Medical Center+, Maastricht, The Netherlands.
| | - Jean L J M Scheijen
- CARIM, Cardiovascular Research Institute Maastricht, Department of Internal Medicine, School for Cardiovascular Diseases (CARIM), Maastricht University Medical Center+, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
| | - Paul M H Schiffers
- CARIM, Cardiovascular Research Institute Maastricht, Department of Pharmacology and Toxicology, CARIM, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Marjo P H van de Waarenburg
- CARIM, Cardiovascular Research Institute Maastricht, Department of Internal Medicine, School for Cardiovascular Diseases (CARIM), Maastricht University Medical Center+, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
| | - Sebastien Foulquier
- CARIM, Cardiovascular Research Institute Maastricht, Department of Pharmacology and Toxicology, CARIM, Maastricht University Medical Center+, Maastricht, The Netherlands
- MHeNs, Mental Health and Neuroscience Research Institute, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Casper C G Schalkwijk
- CARIM, Cardiovascular Research Institute Maastricht, Department of Internal Medicine, School for Cardiovascular Diseases (CARIM), Maastricht University Medical Center+, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
| |
Collapse
|
10
|
Puig-Jové C, Viñals C, Conget I, Quirós C, Vinagre I, Berrocal B, Blanco-Carrasco AJ, Granados M, Mesa A, Serés-Noriega T, Giménez M, Perea V, Amor AJ. Association between the GMI/HbA1c ratio and preclinical carotid atherosclerosis in type 1 diabetes: impact of the fast-glycator phenotype across age groups. Cardiovasc Diabetol 2025; 24:75. [PMID: 39953520 PMCID: PMC11829493 DOI: 10.1186/s12933-025-02637-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 02/06/2025] [Indexed: 02/17/2025] Open
Abstract
BACKGROUND Since the arrival of continuous glucose monitoring (CGM), the relationship between the glucose management indicator (GMI) and HbA1c has been a topic of considerable interest in diabetes research. This study aims to explore the association between the GMI/HbA1c ratio and the presence of preclinical carotid atherosclerosis in type 1 diabetes (T1D). METHODS Individuals with T1D and no prior history of cardiovascular disease were recruited from two centers. Carotid ultrasonography was performed using a standardized protocol and carotid plaques were defined as intima-media thickness ≥ 1.5 mm. CGM-derived data were collected from a 14-day report. A GMI/HbA1c ratio < 0.90 was selected to identify "fast-glycator" phenotype. RESULTS A total of 584 participants were included (319 women, 54.6%), with a mean age of 48.8 ± 10.7 years and a mean diabetes duration of 27.5 ± 11.4 years. Carotid plaques were present in 231 subjects (39.6%). Approximately 43.7% and 13.4% of participants showed absolute differences of ≥ 0.5 and ≥ 1.0 between 14-day GMI and HbA1c, respectively. Among patients ≥ 48 years, the fast-glycator phenotype was independently associated with presence of plaques (OR 2.27, 95%CI: 1.06-4.87), even after adjusting for non-specific and T1D-specific risk factors and statin treatment. No significant association was observed in younger subjects (p for interaction < 0.05). CONCLUSIONS Fast-glycator phenotype is independently associated with atherosclerosis in T1D individuals aged ≥ 48 years, suggesting an age-related increase in the glycation risk. These findings highlight the potential of the GMI/HbA1c ratio for cardiovascular risk stratification in this population.
Collapse
Affiliation(s)
- Carlos Puig-Jové
- Endocrinology and Nutrition Department, Hospital Universitari Mútua Terrassa, Dr Robert 5, 08221, Barcelona, Spain
| | - Clara Viñals
- Diabetes Unit, Endocrinology and Nutrition Department, Hospital Clínic de Barcelona, Villarroel 170, 08036, Barcelona, Spain
- Fundació Clínic per a la Recerca Biomèdica (FCRB)-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain
| | - Ignacio Conget
- Diabetes Unit, Endocrinology and Nutrition Department, Hospital Clínic de Barcelona, Villarroel 170, 08036, Barcelona, Spain
- Fundació Clínic per a la Recerca Biomèdica (FCRB)-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain
| | - Carmen Quirós
- Endocrinology and Nutrition Department, Hospital Universitari Mútua Terrassa, Dr Robert 5, 08221, Barcelona, Spain
| | - Irene Vinagre
- Diabetes Unit, Endocrinology and Nutrition Department, Hospital Clínic de Barcelona, Villarroel 170, 08036, Barcelona, Spain
- Fundació Clínic per a la Recerca Biomèdica (FCRB)-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain
| | - Belén Berrocal
- Endocrinology and Nutrition Department, Hospital Universitari Mútua Terrassa, Dr Robert 5, 08221, Barcelona, Spain
| | - Antonio-Jesús Blanco-Carrasco
- Diabetes Unit, Endocrinology and Nutrition Department, Hospital Clínic de Barcelona, Villarroel 170, 08036, Barcelona, Spain
- Fundació Clínic per a la Recerca Biomèdica (FCRB)-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain
| | - Montserrat Granados
- Diabetes Unit, Endocrinology and Nutrition Department, Hospital Clínic de Barcelona, Villarroel 170, 08036, Barcelona, Spain
| | - Alex Mesa
- Diabetes Unit, Endocrinology and Nutrition Department, Hospital Clínic de Barcelona, Villarroel 170, 08036, Barcelona, Spain
- Endocrinology and Nutrition Department, Hospital de la Santa Creu i Sant Pau, 08041, Barcelona, Spain
| | - Tonet Serés-Noriega
- Diabetes Unit, Endocrinology and Nutrition Department, Hospital Clínic de Barcelona, Villarroel 170, 08036, Barcelona, Spain
| | - Marga Giménez
- Diabetes Unit, Endocrinology and Nutrition Department, Hospital Clínic de Barcelona, Villarroel 170, 08036, Barcelona, Spain
- Fundació Clínic per a la Recerca Biomèdica (FCRB)-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain
| | - Verónica Perea
- Endocrinology and Nutrition Department, Hospital Universitari Mútua Terrassa, Dr Robert 5, 08221, Barcelona, Spain.
| | - Antonio J Amor
- Diabetes Unit, Endocrinology and Nutrition Department, Hospital Clínic de Barcelona, Villarroel 170, 08036, Barcelona, Spain.
- Fundació Clínic per a la Recerca Biomèdica (FCRB)-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain.
| |
Collapse
|
11
|
Martínez-García I, Saz-Lara A, Pascual-Morena C, Díez-Fernández A, Valladolid-Ayllón S, Bizzozero-Peroni B, Martínez-Cifuentes Ó, Rodríguez-Gutiérrez E, Cavero-Redondo I. Role of Advanced Glycation End Products in Mediating Glycated Haemoglobin and Pulse Wave Velocity in Healthy Adults. Biomedicines 2025; 13:137. [PMID: 39857721 PMCID: PMC11759834 DOI: 10.3390/biomedicines13010137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/05/2025] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: Poor metabolic control is associated with increased levels of advanced glycation end products (AGEs), which in turn may lead to increased arterial stiffness. The aim of this study was to estimate the association between glycated haemoglobin A1c (HbA1c) and aortic pulse wave velocity (a-PWV) in healthy subjects and to analyse the mediating effect of AGEs measured by skin autofluorescence (SAF) on this association. Methods: HbA1c, a-PWV and SAF were analysed in 390 healthy Spanish subjects from the EVasCu study (42.02 ± 13.14 years, 63.08% females). A directed acyclic graph (DAG) was generated to define the covariates to be included, and the model was confirmed via multiple linear regression analysis. Descriptive and exploratory analyses were performed to investigate the associations between variables. Finally, adjusted and unadjusted mediation analyses were performed to verify the influence of SAF on the main association between HbA1c and a-PWV. Results: Multiple linear regression analyses for a-PWV supported the validity of the structure in the DAG. Descriptive and exploratory analyses revealed that when the models were adjusted to include all covariates, the statistical significance of the main association disappeared. Mediation analysis revealed that SAF mediated 35.77% of the effect of HbA1c on a-PWV in the unadjusted model and 42.18% after adjusting for covariates. Conclusions: Our study suggests that increases in HbA1c levels are associated with increases in a-PWV and that this relationship is mediated by the SAF score in healthy adults.
Collapse
Affiliation(s)
- Irene Martínez-García
- CarVasCare Research Group, Facultad de Enfermería de Cuenca, Universidad de Castilla-La Mancha, 16071 Cuenca, Spain; (I.M.-G.); (S.V.-A.); (Ó.M.-C.); (I.C.-R.)
| | - Alicia Saz-Lara
- CarVasCare Research Group, Facultad de Enfermería de Cuenca, Universidad de Castilla-La Mancha, 16071 Cuenca, Spain; (I.M.-G.); (S.V.-A.); (Ó.M.-C.); (I.C.-R.)
| | - Carlos Pascual-Morena
- Health and Social Research Center, Universidad de Castilla-La Mancha, 16071 Cuenca, Spain; (C.P.-M.); (A.D.-F.); (B.B.-P.); (E.R.-G.)
- Facultad de Enfermería de Albacete, Universidad de Castilla-La Mancha, 02006 Albacete, Spain
| | - Ana Díez-Fernández
- Health and Social Research Center, Universidad de Castilla-La Mancha, 16071 Cuenca, Spain; (C.P.-M.); (A.D.-F.); (B.B.-P.); (E.R.-G.)
| | - Sara Valladolid-Ayllón
- CarVasCare Research Group, Facultad de Enfermería de Cuenca, Universidad de Castilla-La Mancha, 16071 Cuenca, Spain; (I.M.-G.); (S.V.-A.); (Ó.M.-C.); (I.C.-R.)
- Hospital General Universitario de Elda, 03600 Elda, Spain
| | - Bruno Bizzozero-Peroni
- Health and Social Research Center, Universidad de Castilla-La Mancha, 16071 Cuenca, Spain; (C.P.-M.); (A.D.-F.); (B.B.-P.); (E.R.-G.)
- Higher Institute of Physical Education, Universidad de la República, Rivera 40000, Uruguay
| | - Óscar Martínez-Cifuentes
- CarVasCare Research Group, Facultad de Enfermería de Cuenca, Universidad de Castilla-La Mancha, 16071 Cuenca, Spain; (I.M.-G.); (S.V.-A.); (Ó.M.-C.); (I.C.-R.)
- Hospital Universitario Mutua Terrassa, 08221 Terrassa, Spain
| | - Eva Rodríguez-Gutiérrez
- Health and Social Research Center, Universidad de Castilla-La Mancha, 16071 Cuenca, Spain; (C.P.-M.); (A.D.-F.); (B.B.-P.); (E.R.-G.)
- Research Network on Chronicity, Primary Care and Health Promotion (RICAPPS), 16071 Cuenca, Spain
| | - Iván Cavero-Redondo
- CarVasCare Research Group, Facultad de Enfermería de Cuenca, Universidad de Castilla-La Mancha, 16071 Cuenca, Spain; (I.M.-G.); (S.V.-A.); (Ó.M.-C.); (I.C.-R.)
| |
Collapse
|
12
|
Perera HKI. Analysis of Glycation-Induced Protein Cross-Linking Inhibition Using SDS-Polyacrylamide Gel Electrophoresis. Methods Mol Biol 2025; 2917:239-246. [PMID: 40347346 DOI: 10.1007/978-1-0716-4478-2_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2025]
Abstract
Protein glycation leads to the generation of advanced glycation end products (AGE). AGEs are implicated in the pathogenesis of chronic diabetic complications and age-related disorders. Some AGEs lead to protein cross-linking, affecting the protein function irreversibly. Long-lived predominantly found proteins such as collagen are primarily affected due to glycation-induced damage. Assessment of the antiglycation potential of substances requires costly equipment. A simple procedure is established to monitor glycation-induced protein cross-linking inhibitory potential of medicinal plants using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). SDS-PAGE separates proteins according to their molecular size. As the cross-linked products formed due to glycation-induced damage are stable under denaturing conditions and are of high molecular weight, such products can be separated and detected using SDS-PAGE. As the degree of high molecular weight products observed is proportionate to the extent of glycation-induced damage, SDS-PAGE can be used to monitor the potential of medicinal plants to inhibit glycation-induced protein cross-linking.
Collapse
|
13
|
Han W, Qiu P, Ge S, Wei T. Inhibition of carboxymethyllysine in walnut cookies via food additives. Food Chem X 2025; 25:102194. [PMID: 39925762 PMCID: PMC11803899 DOI: 10.1016/j.fochx.2025.102194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 01/03/2025] [Accepted: 01/14/2025] [Indexed: 02/11/2025] Open
Abstract
Carboxymethyllysine(CML) is one of advanced glycation end products(AGEs), which is associated with the occurrence and development of chronic diseases such as diabetes, cardiovascular disease, Alzheimer's disease, etc. This study focused on assessing the CML formation pattern in walnut cookies and the related impact of food additives on the CML content and sensory characteristics. The results showed that the baking conditions significantly affected the CML content in the walnut cookies, which exhibited a significant positive correlation with the sensory evaluation scores. Three food additives, namely propyl gallate (PG), theaflavins (TF), and tea polyphenols (TP), were selected based on their high CML inhibition rates. They were combined using mixture optimal design, and the optimal compounding ratios were obtained, which were X1 = 0.236, X2 = 0.400, and X3 = 0.364. These ratios were converted to the additive ratios in the walnut cookies, with PG at 0.0236 ‰, TF at 0.160 ‰, and TP at 0.146 ‰. The CML inhibition rate reached a maximum value of 40.98 %, with the sensory evaluation score also higher.
Collapse
Affiliation(s)
- Wenfeng Han
- Rice Wine College, Zhejiang Industry Polytechnic College, 151Qutun Road, Shaoxing 312000, China
| | - Po Qiu
- Shaoxing Liangshan Health Technology Co., Ltd, 368 Qutun Road, Shaoxing 312099, China
| | - Songtao Ge
- Rice Wine College, Zhejiang Industry Polytechnic College, 151Qutun Road, Shaoxing 312000, China
| | - Taoying Wei
- Rice Wine College, Zhejiang Industry Polytechnic College, 151Qutun Road, Shaoxing 312000, China
| |
Collapse
|
14
|
Sun H, Gao X, Niu J, Chen P, He S, Xu S, Ge J. AD-Like Neuropsychiatric Dysfunction in a Mice Model Induced by a Combination of High-Fat Diet and Intraperitoneal Injection of Streptozotocin. eNeuro 2024; 11:ENEURO.0310-24.2024. [PMID: 39626951 DOI: 10.1523/eneuro.0310-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 11/01/2024] [Accepted: 11/04/2024] [Indexed: 12/16/2024] Open
Abstract
Increasing data suggest a crucial relationship between glycolipid metabolic disorder and neuropsychiatric injury. The aim of this study is to investigate the behavioral performance changes and neuropathological injuries in mice challenged with high-fat diet (HFD) and streptozotocin (STZ). The glucose metabolism indicators and behavioral performance were detected. The mRNA expression of IL-1β, IL-6, TNF-α, ocln, zo-1, and clnds and protein expression of APP, p-Tau, p-IRS1, p-AKT, p-ERK, and TREM1/2 were measured. The fluorescence intensities of MAP-2, NeuN, APP, p-Tau, GFAP, and IBA-1 were observed. The results showed that combination of HFD and STZ/I.P. could induce glucose metabolic turmoil and Alzheimer's disease (AD)-like neuropsychiatric dysfunction in mice, as indicated by the increased concentrations of fasting blood glucose and impaired learning and memory ability. Moreover, the model mice presented increased levels of APP, p-Tau, p-IRS1, TREM2, IL-1β, IL-6, TNF-α, ocln, zo-1, and clnds; decreased levels of p-AKT, p-ERK, and TREM1; and neuron damage and the hyperactivation of astrocytes and microglia in the hippocampus as compared with control mice. Only male mice were used in this study. Although AD and type 2 diabetes mellitus (T2DM) are distinct pathologies, our results suggested that combination of HFD and STZ/I.P., a widely used T2DM modeling method, could successfully induce AD-like behavioral impairments and neuropathological injuries in mice; the mechanism might be involved with neuroinflammation and its associated dysfunction of IRS1/AKT/ERK signaling pathway. Our findings further support the potential overlap between T2DM and AD pathophysiology, providing insight into the mechanisms underlying the comorbidity of these diseases.
Collapse
Affiliation(s)
- Huaizhi Sun
- School of Pharmacy, Anhui Medical University, Hefei 230032, PR China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei 230032, PR China
- Anhui Provincial Laboratory of Inflammatory and Immune Disease, Anhui Institute of Innovative Drugs, Hefei 230032, PR China
| | - Xinran Gao
- School of Pharmacy, Anhui Medical University, Hefei 230032, PR China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei 230032, PR China
- Anhui Provincial Laboratory of Inflammatory and Immune Disease, Anhui Institute of Innovative Drugs, Hefei 230032, PR China
| | - Jiachun Niu
- School of Pharmacy, Anhui Medical University, Hefei 230032, PR China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei 230032, PR China
- Anhui Provincial Laboratory of Inflammatory and Immune Disease, Anhui Institute of Innovative Drugs, Hefei 230032, PR China
| | - Pengquan Chen
- School of Pharmacy, Anhui Medical University, Hefei 230032, PR China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei 230032, PR China
- Anhui Provincial Laboratory of Inflammatory and Immune Disease, Anhui Institute of Innovative Drugs, Hefei 230032, PR China
| | - Shuai He
- School of Pharmacy, Anhui Medical University, Hefei 230032, PR China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei 230032, PR China
- Anhui Provincial Laboratory of Inflammatory and Immune Disease, Anhui Institute of Innovative Drugs, Hefei 230032, PR China
| | - Songlin Xu
- School of Pharmacy, Anhui Medical University, Hefei 230032, PR China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei 230032, PR China
- Anhui Provincial Laboratory of Inflammatory and Immune Disease, Anhui Institute of Innovative Drugs, Hefei 230032, PR China
| | - Jinfang Ge
- School of Pharmacy, Anhui Medical University, Hefei 230032, PR China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei 230032, PR China
- Anhui Provincial Laboratory of Inflammatory and Immune Disease, Anhui Institute of Innovative Drugs, Hefei 230032, PR China
| |
Collapse
|
15
|
Wang Y, Hu C, Cao L, Liu Q, Li Y, Zhu T, Zhang D. Advanced glycosylation end products promote the progression of CKD-MBD in rats, and its natural inhibitor, quercetin, mitigates disease progression. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:9675-9688. [PMID: 38907848 DOI: 10.1007/s00210-024-03217-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 06/03/2024] [Indexed: 06/24/2024]
Abstract
Chronic kidney disease-mineral and bone metabolism disorder (CKD-MBD) is a common chronic kidney disease (CKD)-associated complication that increases the risk of metabolic bone diseases, fractures, osteoblastic trans-differentiation of vascular smooth muscle cells, and cardiovascular events. SD rats were randomised into five groups with six rats per group: sham, CKD, CKD + advanced glycosylation end products (AGEs), CKD + Quercetin, and CKD + AGEs + Quercetin. The protective effects of AGEs and quercetin on SD rats were assessed by renal function, renal pathology, bone metabolism, osteoblastic trans-differentiation of vascular smooth muscle cells, and the receptor for AGE (RAGE) expression. Compared with the control group, rats in the CKD and CKD + AGEs groups had significantly lower body weight, higher serum AGEs levels, impaired renal function, increased levels of oxidative stress in the kidney and bone marrow tissues, lower femoral bone mineral density (BMD), callus mineralised volume fraction (mineralised bone volume/total volume), abnormal serum bone metabolism levels, and increased renal tissue, bone tissue, and abdominal aorta RAGE expression levels, and the RAGE downstream NF-κB signalling pathway was upregulated. Quercetin significantly improved renal dysfunction, attenuated serum AGE levels, reduced oxidative stress levels in the kidney and bone marrow tissues, and downregulated RAGE expression in the kidney, bone, and abdominal aorta and the RAGE downstream NF-κB signalling pathway in rats with CKD. AGEs are involved in the pathogenesis of CKD-MBD by promoting osteoblastic trans-differentiation of vascular smooth muscle cells and abnormal bone metabolism. Quercetin plays a role in the prevention and treatment of CKD-MBD by reducing the production of AGEs.
Collapse
MESH Headings
- Animals
- Quercetin/pharmacology
- Quercetin/therapeutic use
- Glycation End Products, Advanced/metabolism
- Rats, Sprague-Dawley
- Receptor for Advanced Glycation End Products/metabolism
- Chronic Kidney Disease-Mineral and Bone Disorder/drug therapy
- Chronic Kidney Disease-Mineral and Bone Disorder/etiology
- Chronic Kidney Disease-Mineral and Bone Disorder/metabolism
- Male
- Disease Progression
- Bone Density/drug effects
- Rats
- Oxidative Stress/drug effects
- Kidney/drug effects
- Kidney/metabolism
- Kidney/pathology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Renal Insufficiency, Chronic/drug therapy
- Renal Insufficiency, Chronic/metabolism
- Osteoblasts/drug effects
- Osteoblasts/metabolism
- Antioxidants/pharmacology
- Antioxidants/therapeutic use
Collapse
Affiliation(s)
- Yujie Wang
- Department of Nephropathy, The Affiliated Hospital Of Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Sichuan Clinical Research Center for Nephropathy, Luzhou, 646000, Sichuan, China.
| | - Chenggang Hu
- The Affiliated TCM Hospital Of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Ling Cao
- Department of Nephropathy, The Affiliated Hospital Of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, 646000, Sichuan, China
| | - Qi Liu
- Department of Nephropathy, The Affiliated Hospital Of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, 646000, Sichuan, China
| | - Ying Li
- Department of Nephropathy, The Affiliated Hospital Of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, 646000, Sichuan, China
| | - Tingting Zhu
- Department of Nephropathy, The Affiliated Hospital Of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, 646000, Sichuan, China
| | - Dongmei Zhang
- Department of Nephropathy, The Affiliated Hospital Of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, 646000, Sichuan, China
| |
Collapse
|
16
|
Mani V, Arfeen M. In Vivo and Computational Studies on Sitagliptin's Neuroprotective Role in Type 2 Diabetes Mellitus: Implications for Alzheimer's Disease. Brain Sci 2024; 14:1191. [PMID: 39766390 PMCID: PMC11674309 DOI: 10.3390/brainsci14121191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND/OBJECTIVES Diabetes mellitus (DM), a widespread endocrine disorder characterized by chronic hyperglycemia, can cause nerve damage and increase the risk of neurodegenerative diseases such as Alzheimer's disease (AD). Effective blood glucose management is essential, and sitagliptin (SITG), a dipeptidyl peptidase-4 (DPP-4) inhibitor, may offer neuroprotective benefits in type 2 diabetes mellitus (T2DM). METHODS T2DM was induced in rats using nicotinamide (NICO) and streptozotocin (STZ), and biomarkers of AD and DM-linked enzymes, inflammation, oxidative stress, and apoptosis were evaluated in the brain. Computational studies supported the in vivo findings. RESULTS SITG significantly reduced the brain enzyme levels of acetylcholinesterase (AChE), beta-secretase-1 (BACE-1), DPP-4, and glycogen synthase kinase-3β (GSK-3β) in T2DM-induced rats. It also reduced inflammation by lowering cyclooxygenase-2 (COX-2), prostaglandin E2 (PGE2), tumor necrosis factor-α (TNF-α), and nuclear factor-κB (NF-κB). Additionally, SITG improved oxidative stress markers by reducing malondialdehyde (MDA) and enhancing glutathione (GSH). It increased anti-apoptotic B-cell lymphoma protein-2 (Bcl-2) while reducing pro-apoptotic markers such as Bcl-2-associated X (BAX) and Caspace-3. SITG also lowered blood glucose levels and improved plasma insulin levels. To explore potential molecular level mechanisms, docking was performed on AChE, COX-2, GSK-3β, BACE-1, and Caspace-3. The potential binding affinity of SITG for the above-mentioned target enzymes were 10.8, 8.0, 9.7, 7.7, and 7.9 kcal/mol, respectively, comparable to co-crystallized ligands. Further binding mode analysis of the lowest energy conformation revealed interactions with the critical residues. CONCLUSIONS These findings highlight SITG's neuroprotective molecular targets in T2DM-associated neurodegeneration and its potential as a therapeutic approach for AD, warranting further clinical investigations.
Collapse
Affiliation(s)
- Vasudevan Mani
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia
| | - Minhajul Arfeen
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia;
| |
Collapse
|
17
|
Wei Y, Xu S, Wu Z, Zhang M, Bao M, He B. Exploring the causal relationships between type 2 diabetes and neurological disorders using a Mendelian randomization strategy. Medicine (Baltimore) 2024; 103:e40412. [PMID: 39560586 PMCID: PMC11576012 DOI: 10.1097/md.0000000000040412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 10/17/2024] [Indexed: 11/20/2024] Open
Abstract
While there is ample evidence indicating an increased occurrence of general neurological conditions among individuals with diabetes, there has been limited exploration into the cause-and-effect connection between type 2 diabetes (T2D) and specific neurological disorders, including conditions like carpal tunnel syndrome and Bell's palsy. We used Mendelian randomization (MR) approach to investigate the causal effects of T2D on 67 neurological diseases. We primarily utilized the inverse-variance weighted method for the analysis, and also employed the weighted median and MR-Egger methods in our study. To detect and correct potential outliers, MR-PRESSO analysis was used. Heterogeneity was assessed using Cochrane Q-values. The MR analyses found a possible relationship between T2D and a risk increase of 8 diseases at suggestive level of evidence (P < .05). Notably, among the positive findings that met the false discovery rate threshold, nerve, nerve root, and plexus disorders (odds ratio [OR] = 1.11; 95% confidence interval [CI] = 1.08-1.15); neurological diseases (OR = 1.05; 95% CI = 1.03-1.07) and carpal tunnel syndrome (OR = 1.10; 95% CI = 1.05-1.16) were identified. Our findings affirm a cause-and-effect association between T2D and certain neurological disorders.
Collapse
Affiliation(s)
- Yongfang Wei
- School of Pharmaceutical Science, Changsha Medical University, Changsha, China
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, School of Pharmaceutical Science, Changsha Medical University, Changsha, China
| | - Shuling Xu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Zhaoquan Wu
- School of Pharmaceutical Science, Changsha Medical University, Changsha, China
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, School of Pharmaceutical Science, Changsha Medical University, Changsha, China
| | - Mengling Zhang
- School of Stomatology, Changsha Medical University, Changsha, China
| | - Meihua Bao
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, School of Pharmaceutical Science, Changsha Medical University, Changsha, China
- The Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha Medical University, Changsha, China
| | - Binsheng He
- The Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha Medical University, Changsha, China
| |
Collapse
|
18
|
Fatima N, Khan MI, Jawed H, Qureshi U, Ul-Haq Z, Hafizur RM, Shah TA, Dauelbait M, Bin Jardan YA, Shazly GA. Cinnamaldehyde ameliorates diabetes-induced biochemical impairments and AGEs macromolecules in a pre-clinical model of diabetic nephropathy. BMC Pharmacol Toxicol 2024; 25:85. [PMID: 39543757 PMCID: PMC11566217 DOI: 10.1186/s40360-024-00811-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 11/01/2024] [Indexed: 11/17/2024] Open
Abstract
PURPOSE Cinnamaldehyde, has various therapeutic potentials including glucose-lowering effect, and insulinotropic effect; however, its glycation inhibitory mechanism is not known yet. In this study, we explored the effects of cinnamaldehyde for its AGEs inhibitory mechanism in a streptozotocin-complete Freund's adjuvant (STZ-CFA) induced diabetic nephropathy (DN) rat model. METHODS Pre-clinical DN model was developed by the administration of multiple low doses of STZ-CFA in rats, mainly characterized by abnormal blood parameters and nephrotic damages. Diabetes-related systemic profile and histopathological hallmarks were evaluated using biochemical assays, microscopic imaging, immunoblot, and real-time PCR analyses, supported by cinnamaldehyde-albumin interaction assessed using STD-NMR and in silico site-directed interactions in the presence of glucose. RESULTS Cinnamaldehyde-treatment significantly reversed DN hallmarks, fasting blood glucose (FBG), serum insulin, glycated hemoglobin (HbA1c), urinary microalbumin, and creatinine contrasted to non-treated DN rats and aminoguanidine, a positive reference advanced glycation end products (AGEs) inhibitor. The pathological depositions of AGEs, receptor for advanced glycation end products (RAGE), and carboxymethyl lysine (CML), and transcriptional levels of AGE-RAGE targeted immunomodulatory factors (IL1β, TNF-α, NF-κB, TGF-β) were significantly improved in cinnamaldehyde treated rats as compared to aminoguanidine. Cinnamaldehyde post-treatment improved pancreatic pathology and systemic glycemic index (0.539 ± 0.01 vs. 0.040 ± 0.001, P < 0.001) in DN rats. Subsequently, in silico profiling of cinnamaldehyde defined the competitive binding inhibition with glucose in AGE and RAGE receptors that was further confirmed by in vitro STD-NMR analysis. CONCLUSION These findings suggest potential role of cinnamaldehyde in reversing STZ-induced diabetic nephropathic impairments; therefore, appears promising candidate for further pharmacological explorations towards diabetes-associated complications.
Collapse
Affiliation(s)
- Noor Fatima
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi, 75270, Pakistan.
| | - M Israr Khan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi, 75270, Pakistan
| | - Hira Jawed
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi, 75270, Pakistan
| | - Urooj Qureshi
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi, 75270, Pakistan
| | - Zaheer Ul-Haq
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi, 75270, Pakistan
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi, 75270, Pakistan
| | - Rahman M Hafizur
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi, 75270, Pakistan.
- Department of Biochemistry and Molecular Biology, Dhaka International University (DIU), Satarkul, Badda, Dhaka, 1212, Bangladesh.
- Daffodil International University, Birulia, Savar, Dhaka, 1216, Bangladesh.
| | - Tawaf Ali Shah
- College of agriculture of Agriculture Engineering and Food Science, Shandong University of Technology, Zibo, 255000, China
| | - Musaab Dauelbait
- Department of Scientific Translation, Faculty of Translation, Khartoum, 11111, Sudan.
| | - Yousef A Bin Jardan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 11451, Riyadh, Saudi Arabia
| | - Gamal A Shazly
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 11451, Riyadh, Saudi Arabia
| |
Collapse
|
19
|
Elrherabi A, Abdnim R, Loukili EH, Laftouhi A, Lafdil FZ, Bouhrim M, Mothana RA, Noman OM, Eto B, Ziyyat A, Mekhfi H, Legssyer A, Bnouham M. Antidiabetic potential of Lavandula stoechas aqueous extract: insights into pancreatic lipase inhibition, antioxidant activity, antiglycation at multiple stages and anti-inflammatory effects. Front Pharmacol 2024; 15:1443311. [PMID: 39539624 PMCID: PMC11557384 DOI: 10.3389/fphar.2024.1443311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024] Open
Abstract
Background With the increasing global prevalence of type 2 diabetes (T2D) and obesity, there is a pressing need for novel therapeutic interventions. Lavandula stoechas, a medicinal plant traditionally used for various ailments, holds promise as a potential agent for T2D management, particularly in Morocco, where it is commonly used to treat diabetes. This study aims to evaluate the pharmacological potential of L. stoechas aqueous extract (AqLs) by assessing its lipase inhibition antioxidant and anti-inflammatory activities, identifying phenolic compounds, and examining its efficacy in reducing diabetic complications. Methods The pharmacological potential of L. stoechas aqueous extract was investigated using in vitro assays. The inhibitory effect on pancreatic lipase, antioxidant power (FRAP), and anti-inflammatory activity (albumin denaturation method) was assessed. High-performance liquid chromatography (HPLC) analysis identified phenolic compounds. Additionally, albumin glycation was evaluated by estimating fructosamine, carbonyl groups, and amyloid β-structures to assess efficacy in mitigating diabetic complications. Results The extract demonstrated concentration-dependent inhibition of pancreatic lipase (IC50 = 0.132 ± 0.006 mg/mL), potent antioxidant activity (IC50 = 604.99 ± 1.01 μg/mL), and dose-dependent anti-inflammatory effects (IC50 = 207.01 ± 34.94 mg/mL). HPLC analysis revealed phenolic compounds: naringin (38.28%), syringic acid (25.72%), and cinnamic acid (15.88%) were the most abundant, with 4-hydroxybenzoic acid, hydrated catechin, and catechin ranging from 9.60% to 5.24%, and p-coumaric acid (1.73%). Furthermore, the extract inhibited albumin glycation and fructosamine production, suggesting efficacy in mitigating diabetic complications. Conclusion These findings highlight the multifaceted pharmacological potential of L. stoechas aqueous extract in T2D management, suggesting that this plant can be highly beneficial for diabetic individuals.
Collapse
Affiliation(s)
- Amal Elrherabi
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology, and Health, Faculty of Sciences Mohammed First University, Oujda, Morocco
| | - Rhizlan Abdnim
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology, and Health, Faculty of Sciences Mohammed First University, Oujda, Morocco
| | | | - Abdelouahid Laftouhi
- Laboratory of Electrochemistry, Modeling and Environment Engineering (LIEME), Sidi Mohamed Ben Abdellah University, Faculty of Sciences Fes, Fes, Morocco
| | - Fatima Zahra Lafdil
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology, and Health, Faculty of Sciences Mohammed First University, Oujda, Morocco
| | - Mohamed Bouhrim
- Biological Engineering Laboratory, Faculty of Sciences and Techniques, Sultan Moulay Slimane University, Beni Mellal, Morocco
- Laboratories TBC, Laboratory of Pharmacology, Pharmacokinetics and Clinical Pharmacy, Faculty of Pharmacy, University of Lille, Lille, France
| | - Ramzi A. Mothana
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Omar M. Noman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Bruno Eto
- Laboratories TBC, Laboratory of Pharmacology, Pharmacokinetics and Clinical Pharmacy, Faculty of Pharmacy, University of Lille, Lille, France
| | - Abderrahim Ziyyat
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology, and Health, Faculty of Sciences Mohammed First University, Oujda, Morocco
| | - Hassane Mekhfi
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology, and Health, Faculty of Sciences Mohammed First University, Oujda, Morocco
| | - Abdelkhaleq Legssyer
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology, and Health, Faculty of Sciences Mohammed First University, Oujda, Morocco
| | - Mohamed Bnouham
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology, and Health, Faculty of Sciences Mohammed First University, Oujda, Morocco
| |
Collapse
|
20
|
Sink WJ, Fling R, Yilmaz A, Nault R, Goniwiecha D, Harkema JR, Graham SF, Zacharewski T. 2,3,7,8-Tetrachlorodibenzo- p-dioxin (TCDD) elicited dose-dependent shifts in the murine urinary metabolome associated with hepatic AHR-mediated differential gene expression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.22.619714. [PMID: 39484576 PMCID: PMC11526911 DOI: 10.1101/2024.10.22.619714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Epidemiological evidence suggests an association between dioxin and dioxin-like compound (DLC) exposure and human liver disease. The prototypical DLC, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), has been shown to induce the progression of reversible hepatic steatosis to steatohepatitis with periportal fibrosis and biliary hyperplasia in mice. Although the effects of TCDD toxicity are mediated by aryl hydrocarbon receptor (AHR) activation, the underlying mechanisms of TCDD-induced hepatotoxicity are unresolved. In the present study, male C57BL/6NCrl mice were gavaged every 4 days for 28 days with 0.03 - 30 μg/kg TCDD and evaluated for liver histopathology and gene expression as well as complementary 1-dimensional proton magnetic resonance (1D- 1H NMR) urinary metabolic profiling. Urinary trimethylamine (TMA), trimethylamine N-oxide (TMAO), and 1-methylnicotinamide (1MN) levels were altered by TCDD at doses ≤ 3 μg/kg; other urinary metabolites, like glycolate, urocanate, and 3-hydroxyisovalerate, were only altered at doses that induced moderate to severe steatohepatitis. Bulk liver RNA-seq data suggested altered urinary metabolites correlated with hepatic differential gene expression corresponding to specific metabolic pathways. In addition to evaluating whether altered urinary metabolites were liver-dependent, published single-nuclear RNA-seq (snRNA-seq), AHR ChIP-seq, and AHR knockout gene expression datasets provide further support for hepatic cell-type and AHR-regulated dependency, respectively. Overall, TCDD-induced liver effects were preceded by and occurred with changes in urinary metabolite levels due to AHR-mediated changes in hepatic gene expression.
Collapse
Affiliation(s)
- Warren J Sink
- Michigan State University, Department of Biochemistry and Molecular Biology, East Lansing, MI 48823, USA
- Michigan State University, Institute for Integrative Toxicology, East Lansing, MI 48824, USA
| | - Russell Fling
- Michigan State University, Department of Biochemistry and Molecular Biology, East Lansing, MI 48823, USA
- Michigan State University, Institute for Integrative Toxicology, East Lansing, MI 48824, USA
| | - Ali Yilmaz
- Corewell Health Research Institute, Royal Oak, MI 48073, USA
| | - Rance Nault
- Michigan State University, Department of Pharmacology and Toxicology, East Lansing, MI 48824, USA
| | - Delanie Goniwiecha
- Middlebury College, Neuroscience Faculty, 14 Old Chapel Rd, Middlebury, VT 05753, USA
| | - Jack R Harkema
- Michigan State University, Pathobiology & Diagnostic Investigation, East Lansing, MI, United States of America
| | - Stewart F Graham
- Corewell Health Research Institute, Royal Oak, MI 48073, USA
- Oakland University-William Beaumont School of Medicine, Rochester, MI 48309, USA
| | - Timothy Zacharewski
- Michigan State University, Department of Biochemistry and Molecular Biology, East Lansing, MI 48823, USA
- Michigan State University, Institute for Integrative Toxicology, East Lansing, MI 48824, USA
| |
Collapse
|
21
|
Hashiesh HM, Azimullah S, Nagoor Meeran MF, Saraswathiamma D, Arunachalam S, Jha NK, Sadek B, Adeghate E, Sethi G, Albawardi A, Al Marzooqi S, Ojha S. Cannabinoid 2 Receptor Activation Protects against Diabetic Cardiomyopathy through Inhibition of AGE/RAGE-Induced Oxidative Stress, Fibrosis, and Inflammasome Activation. J Pharmacol Exp Ther 2024; 391:241-257. [PMID: 38955492 DOI: 10.1124/jpet.123.002037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 06/22/2024] [Accepted: 06/25/2024] [Indexed: 07/04/2024] Open
Abstract
Oxidative stress, fibrosis, and inflammasome activation from advanced glycation end product (AGE)-receptor of advanced glycation end product (RAGE) interaction contribute to diabetic cardiomyopathy (DCM) formation and progression. Our study revealed the impact of β-caryophyllene (BCP) on activating cannabinoid type 2 receptors (CB2Rs) against diabetic complication, mainly cardiomyopathy and investigated the underlying cell signaling pathways in mice. The murine model of DCM was developed by feeding a high-fat diet with streptozotocin injections. After the development of diabetes, the animals received a 12-week oral BCP treatment at a dose of 50 mg/kg/body weight. BCP treatment showed significant improvement in glucose tolerance and insulin resistance and enhanced serum insulin levels in diabetic animals. BCP treatment effectively reversed the heart remodeling and restored the phosphorylated troponin I and sarcoplasmic/endoplasmic reticulum Ca2+ ATPase 2a expression. Ultrastructural examination showed reduced myocardial cell injury in DCM mice treated with BCP. The preserved myocytes were found to be associated with reduced expression of AGE/RAGE in DCM mice hearts. BCP treatment mitigated oxidative stress by inhibiting expression of NADPH oxidase 4 and activating phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/nuclear factor erythroid 2-related factor 2 (Nrf2) signaling. Also, BCP suppressed cardiac fibrosis and endothelial-to-mesenchymal transition in DCM mice by inhibiting transforming growth factor β (TGF-β)/suppressor of mothers against decapentaplegic (Smad) signaling. Further, BCP treatment suppressed nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 (NLRP3) inflammasome activation in DCM mice and alleviated cellular injury to the pancreatic tissues evidenced by significant elevation of the number of insulin-positive cells. To demonstrate a CB2R-dependent mechanism of BCP, another group of DCM mice were pretreated with AM630, a CB2R antagonist. AM630 was observed to abrogate the beneficial effects of BCP in DCM mice. Taken together, BCP demonstrated the potential to protect the myocardium and pancreas of DCM mice mediating CB2R-dependent mechanisms. SIGNIFICANCE STATEMENT: BCP, a CB2R agonist, shows protection against DCM. BCP attenuates oxidative stress, inflammation, and fibrosis in DCM via activating CB2Rs. BCP mediating CB2R activation favorably modulates AGE/RAGE, PI3K/AKT/Nrf2β and TGF-β/Smad and (NLRP3) inflammasome in diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Hebaallah Mamdouh Hashiesh
- Departments of Pharmacology and Therapeutics (H.M.H., Sh.A., M.F.N.M., Se.A., B.S., S.O.), Pathology (D.S., A.A., S.A.M.), and Anatomy (E.A.), College of Medicine and Health Sciences, and Zayed Bin Sultan Center for Health Sciences (S.O.), United Arab Emirates University, Al Ain, United Arab Emirates; Department of Pharmacology and Toxicology, Helwan University, Cairo, Egypt (H.M.H.); Department of Pharmaceutical Biosciences, Research; Drug Safety and Toxicology, Uppsala Biomedicines Centrum BMC, UPPSALA, Sweden (Sh.A.); Centre of Research Impact and Outcome, Chitkara University, Rajpura, Punjab, India (N.K.J.); School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, India (N.K.J.); and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (G.S.)
| | - Sheikh Azimullah
- Departments of Pharmacology and Therapeutics (H.M.H., Sh.A., M.F.N.M., Se.A., B.S., S.O.), Pathology (D.S., A.A., S.A.M.), and Anatomy (E.A.), College of Medicine and Health Sciences, and Zayed Bin Sultan Center for Health Sciences (S.O.), United Arab Emirates University, Al Ain, United Arab Emirates; Department of Pharmacology and Toxicology, Helwan University, Cairo, Egypt (H.M.H.); Department of Pharmaceutical Biosciences, Research; Drug Safety and Toxicology, Uppsala Biomedicines Centrum BMC, UPPSALA, Sweden (Sh.A.); Centre of Research Impact and Outcome, Chitkara University, Rajpura, Punjab, India (N.K.J.); School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, India (N.K.J.); and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (G.S.)
| | - Mohamed Fizur Nagoor Meeran
- Departments of Pharmacology and Therapeutics (H.M.H., Sh.A., M.F.N.M., Se.A., B.S., S.O.), Pathology (D.S., A.A., S.A.M.), and Anatomy (E.A.), College of Medicine and Health Sciences, and Zayed Bin Sultan Center for Health Sciences (S.O.), United Arab Emirates University, Al Ain, United Arab Emirates; Department of Pharmacology and Toxicology, Helwan University, Cairo, Egypt (H.M.H.); Department of Pharmaceutical Biosciences, Research; Drug Safety and Toxicology, Uppsala Biomedicines Centrum BMC, UPPSALA, Sweden (Sh.A.); Centre of Research Impact and Outcome, Chitkara University, Rajpura, Punjab, India (N.K.J.); School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, India (N.K.J.); and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (G.S.)
| | - Dhanya Saraswathiamma
- Departments of Pharmacology and Therapeutics (H.M.H., Sh.A., M.F.N.M., Se.A., B.S., S.O.), Pathology (D.S., A.A., S.A.M.), and Anatomy (E.A.), College of Medicine and Health Sciences, and Zayed Bin Sultan Center for Health Sciences (S.O.), United Arab Emirates University, Al Ain, United Arab Emirates; Department of Pharmacology and Toxicology, Helwan University, Cairo, Egypt (H.M.H.); Department of Pharmaceutical Biosciences, Research; Drug Safety and Toxicology, Uppsala Biomedicines Centrum BMC, UPPSALA, Sweden (Sh.A.); Centre of Research Impact and Outcome, Chitkara University, Rajpura, Punjab, India (N.K.J.); School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, India (N.K.J.); and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (G.S.)
| | - Seenipandi Arunachalam
- Departments of Pharmacology and Therapeutics (H.M.H., Sh.A., M.F.N.M., Se.A., B.S., S.O.), Pathology (D.S., A.A., S.A.M.), and Anatomy (E.A.), College of Medicine and Health Sciences, and Zayed Bin Sultan Center for Health Sciences (S.O.), United Arab Emirates University, Al Ain, United Arab Emirates; Department of Pharmacology and Toxicology, Helwan University, Cairo, Egypt (H.M.H.); Department of Pharmaceutical Biosciences, Research; Drug Safety and Toxicology, Uppsala Biomedicines Centrum BMC, UPPSALA, Sweden (Sh.A.); Centre of Research Impact and Outcome, Chitkara University, Rajpura, Punjab, India (N.K.J.); School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, India (N.K.J.); and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (G.S.)
| | - Niraj Kumar Jha
- Departments of Pharmacology and Therapeutics (H.M.H., Sh.A., M.F.N.M., Se.A., B.S., S.O.), Pathology (D.S., A.A., S.A.M.), and Anatomy (E.A.), College of Medicine and Health Sciences, and Zayed Bin Sultan Center for Health Sciences (S.O.), United Arab Emirates University, Al Ain, United Arab Emirates; Department of Pharmacology and Toxicology, Helwan University, Cairo, Egypt (H.M.H.); Department of Pharmaceutical Biosciences, Research; Drug Safety and Toxicology, Uppsala Biomedicines Centrum BMC, UPPSALA, Sweden (Sh.A.); Centre of Research Impact and Outcome, Chitkara University, Rajpura, Punjab, India (N.K.J.); School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, India (N.K.J.); and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (G.S.)
| | - Bassem Sadek
- Departments of Pharmacology and Therapeutics (H.M.H., Sh.A., M.F.N.M., Se.A., B.S., S.O.), Pathology (D.S., A.A., S.A.M.), and Anatomy (E.A.), College of Medicine and Health Sciences, and Zayed Bin Sultan Center for Health Sciences (S.O.), United Arab Emirates University, Al Ain, United Arab Emirates; Department of Pharmacology and Toxicology, Helwan University, Cairo, Egypt (H.M.H.); Department of Pharmaceutical Biosciences, Research; Drug Safety and Toxicology, Uppsala Biomedicines Centrum BMC, UPPSALA, Sweden (Sh.A.); Centre of Research Impact and Outcome, Chitkara University, Rajpura, Punjab, India (N.K.J.); School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, India (N.K.J.); and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (G.S.)
| | - Ernest Adeghate
- Departments of Pharmacology and Therapeutics (H.M.H., Sh.A., M.F.N.M., Se.A., B.S., S.O.), Pathology (D.S., A.A., S.A.M.), and Anatomy (E.A.), College of Medicine and Health Sciences, and Zayed Bin Sultan Center for Health Sciences (S.O.), United Arab Emirates University, Al Ain, United Arab Emirates; Department of Pharmacology and Toxicology, Helwan University, Cairo, Egypt (H.M.H.); Department of Pharmaceutical Biosciences, Research; Drug Safety and Toxicology, Uppsala Biomedicines Centrum BMC, UPPSALA, Sweden (Sh.A.); Centre of Research Impact and Outcome, Chitkara University, Rajpura, Punjab, India (N.K.J.); School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, India (N.K.J.); and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (G.S.)
| | - Gautam Sethi
- Departments of Pharmacology and Therapeutics (H.M.H., Sh.A., M.F.N.M., Se.A., B.S., S.O.), Pathology (D.S., A.A., S.A.M.), and Anatomy (E.A.), College of Medicine and Health Sciences, and Zayed Bin Sultan Center for Health Sciences (S.O.), United Arab Emirates University, Al Ain, United Arab Emirates; Department of Pharmacology and Toxicology, Helwan University, Cairo, Egypt (H.M.H.); Department of Pharmaceutical Biosciences, Research; Drug Safety and Toxicology, Uppsala Biomedicines Centrum BMC, UPPSALA, Sweden (Sh.A.); Centre of Research Impact and Outcome, Chitkara University, Rajpura, Punjab, India (N.K.J.); School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, India (N.K.J.); and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (G.S.)
| | - Alia Albawardi
- Departments of Pharmacology and Therapeutics (H.M.H., Sh.A., M.F.N.M., Se.A., B.S., S.O.), Pathology (D.S., A.A., S.A.M.), and Anatomy (E.A.), College of Medicine and Health Sciences, and Zayed Bin Sultan Center for Health Sciences (S.O.), United Arab Emirates University, Al Ain, United Arab Emirates; Department of Pharmacology and Toxicology, Helwan University, Cairo, Egypt (H.M.H.); Department of Pharmaceutical Biosciences, Research; Drug Safety and Toxicology, Uppsala Biomedicines Centrum BMC, UPPSALA, Sweden (Sh.A.); Centre of Research Impact and Outcome, Chitkara University, Rajpura, Punjab, India (N.K.J.); School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, India (N.K.J.); and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (G.S.)
| | - Saeeda Al Marzooqi
- Departments of Pharmacology and Therapeutics (H.M.H., Sh.A., M.F.N.M., Se.A., B.S., S.O.), Pathology (D.S., A.A., S.A.M.), and Anatomy (E.A.), College of Medicine and Health Sciences, and Zayed Bin Sultan Center for Health Sciences (S.O.), United Arab Emirates University, Al Ain, United Arab Emirates; Department of Pharmacology and Toxicology, Helwan University, Cairo, Egypt (H.M.H.); Department of Pharmaceutical Biosciences, Research; Drug Safety and Toxicology, Uppsala Biomedicines Centrum BMC, UPPSALA, Sweden (Sh.A.); Centre of Research Impact and Outcome, Chitkara University, Rajpura, Punjab, India (N.K.J.); School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, India (N.K.J.); and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (G.S.)
| | - Shreesh Ojha
- Departments of Pharmacology and Therapeutics (H.M.H., Sh.A., M.F.N.M., Se.A., B.S., S.O.), Pathology (D.S., A.A., S.A.M.), and Anatomy (E.A.), College of Medicine and Health Sciences, and Zayed Bin Sultan Center for Health Sciences (S.O.), United Arab Emirates University, Al Ain, United Arab Emirates; Department of Pharmacology and Toxicology, Helwan University, Cairo, Egypt (H.M.H.); Department of Pharmaceutical Biosciences, Research; Drug Safety and Toxicology, Uppsala Biomedicines Centrum BMC, UPPSALA, Sweden (Sh.A.); Centre of Research Impact and Outcome, Chitkara University, Rajpura, Punjab, India (N.K.J.); School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, India (N.K.J.); and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (G.S.)
| |
Collapse
|
22
|
Smyk JM, Danielecka Z, Kotowska M, Zawadka M, Andruszkiewicz P, Grąt M, Główczyńska R, Grabowski M, Gąsecka A, Romejko-Wolniewicz E. Cardiovascular risks and endothelial dysfunction in reproductive-age women with endometriosis. Sci Rep 2024; 14:24127. [PMID: 39406760 PMCID: PMC11480084 DOI: 10.1038/s41598-024-73841-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024] Open
Abstract
Endometriosis is a prevalent gynecological condition, affecting around 10% of reproductive-age women. Inflammatory processes associated with endometriosis may contribute to endothelial dysfunction. Increased skin accumulation of advanced glycation end-products (AGEs), reflecting arterial stiffness, potentially links endometriosis with elevated risk of cardiovascular events. We hypothesized that patients with endometriosis have impaired endothelial function as well as increased arterial stiffness and AGE skin accumulation, compared to healthy controls. We compared endothelial function, arterial stiffness, and levels of AGEs in patients suffering from endometriosis and in healthy controls. The study included 45 women aged 20 to 40: 21 patients with endometriosis and 24 healthy controls, matched in terms of age, BMI, and blood pressure values. Endo-PAT 2000 device was used for non-invasive assessment of (i) endothelial function, expressed as Reactive Hyperemia Index (RHI), and (ii) arterial stiffness, expressed as Augmentation Index (AI) and Augmentation Index at 75 heart beats/min (AI@75). Endothelial dysfunction was defined as an RHI value ≤ 1.67. AGE Reader device was used for non-invasive evaluation of skin AGE level accumulation. Patients with endometriosis had lower mean RHI values (1.69 ± 0.54 vs. 2.02 ± 0.48, p = 0.037) and a higher prevalence of endothelial dysfunction, (52.4% vs. 20.8%, p = 0.027) compared to healthy controls. Skin AGE level was higher in patients with endometriosis, compared to controls (2.00 ± 0.57 vs. 1.70 ± 0.24, p = 0.013). There were no significant differences in AI and AI@75 between the two groups. Patients with endometriosis have impaired endothelial function and higher AGE skin accumulation, which are well-established preclinical manifestations of increased cardiovascular risk. There is a great need for comprehensive cardiovascular risk assessments in women with endometriosis to prevent the development of potential atherosclerotic-based complications.
Collapse
Affiliation(s)
- Julia M Smyk
- 1st Chair, Department of Cardiology, Medical University of Warsaw, Banacha 1a, 09-097, Warsaw, Poland.
| | - Zuzanna Danielecka
- 1st Chair, Department of Cardiology, Medical University of Warsaw, Banacha 1a, 09-097, Warsaw, Poland
| | - Maja Kotowska
- 1st Chair, Department of Cardiology, Medical University of Warsaw, Banacha 1a, 09-097, Warsaw, Poland
| | - Mateusz Zawadka
- Department of Anaesthesia and Intensive Care, Medical University of Warsaw, Warsaw, Poland
| | - Paweł Andruszkiewicz
- Department of Anaesthesia and Intensive Care, Medical University of Warsaw, Warsaw, Poland
| | - Michał Grąt
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Warsaw, Poland
| | - Renata Główczyńska
- 1st Chair, Department of Cardiology, Medical University of Warsaw, Banacha 1a, 09-097, Warsaw, Poland
| | - Marcin Grabowski
- 1st Chair, Department of Cardiology, Medical University of Warsaw, Banacha 1a, 09-097, Warsaw, Poland
| | - Aleksandra Gąsecka
- 1st Chair, Department of Cardiology, Medical University of Warsaw, Banacha 1a, 09-097, Warsaw, Poland
| | - Ewa Romejko-Wolniewicz
- 2nd Department of Obstetrics and Gynecology, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
23
|
Banerjee A, Singh P, Sheikh PA, Kumar A, Koul V, Bhattacharyya J. Simultaneous regulation of AGE/RAGE signaling and MMP-9 expression by an immunomodulating hydrogel accelerates healing in diabetic wounds. BIOMATERIALS ADVANCES 2024; 163:213937. [PMID: 38968788 DOI: 10.1016/j.bioadv.2024.213937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/10/2024] [Accepted: 06/27/2024] [Indexed: 07/07/2024]
Abstract
PURPOSE In chronic hyperglycemia, the advanced glycation end product (AGE) interacts with its receptor (RAGE) and contributes to impaired wound healing by inducing oxidative stress, generating dysfunctional macrophages, and prolonging the inflammatory response. Additionally, uncontrolled levels of proteases, including metallomatrix protease-9 (MMP-9), in the diabetic wound bed degrade the extracellular matrix (ECM) and biological cues that augment healing. A multifunctional antimicrobial hydrogel (Immuno-gel) containing RAGE and MMP-9 inhibitors can regulate the wound microenvironment and promote scar-free healing. RESULTS Immuno-gel was characterized and the wound healing efficacy was determined in vitro cell culture and in vivo diabetic Wistar rat wound model using ELISA, Western blot, and Immunofluorescence staining. The Immuno-gel exhibited a highly porous morphology with excellent in vitro cytocompatibility. AGE-stimulated macrophages treated with the Immuno-gel released higher levels of pro-healing cytokines in vitro. In the hydrogel-wound interface of diabetic Wistar rats, Immuno-gel treatment significantly reduced MMP-9 and NF-κB expression and enhanced pro-healing (M2) macrophage population and pro-healing cytokines. CONCLUSION Altogether, this study suggests that Immuno-gel simultaneously attenuates macrophage dysfunction through the inhibition of AGE/RAGE signaling and reduces MMP-9 overexpression, both of which favor scar-free healing. The combinatorial treatment with RAGE and MMP-9 inhibitors via Immuno-gel simultaneously modulates the diabetic wound microenvironment, making it a promising novel treatment to accelerate diabetic wound healing.
Collapse
Affiliation(s)
- Ahana Banerjee
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India; Department of Biomedical Engineering, All India Institute of Medical Science, Delhi, New Delhi 110029, India
| | - Prerna Singh
- Department of Biological sciences and Bioengineering, Indian Institute of Technology Kanpur, Kalyanpur, Kanpur, Uttar Pradesh 208016, India; Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kalyanpur, Kanpur, Uttar Pradesh 208016, India
| | - Parvaiz A Sheikh
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Ashok Kumar
- Department of Biological sciences and Bioengineering, Indian Institute of Technology Kanpur, Kalyanpur, Kanpur, Uttar Pradesh 208016, India; Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kalyanpur, Kanpur, Uttar Pradesh 208016, India; The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology Kanpur, Kalyanpur, Kanpur, Uttar Pradesh 208016, India; Centre of Excellence for Orthopedics and Prosthetics, Indian Institute of Technology Kanpur, Kalyanpur, Kanpur, Uttar Pradesh 208016, India; Gangwal School of Medical Sciences and Technology, Indian Institute of Technology Kanpur, Kalyanpur, Kanpur, Uttar Pradesh 208016, India
| | - Veena Koul
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India; Department of Biomedical Engineering, All India Institute of Medical Science, Delhi, New Delhi 110029, India
| | - Jayanta Bhattacharyya
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India; Department of Biomedical Engineering, All India Institute of Medical Science, Delhi, New Delhi 110029, India.
| |
Collapse
|
24
|
von Rauchhaupt E, Rodemer C, Kliemank E, Bulkescher R, Campos M, Kopf S, Fleming T, Herzig S, Nawroth PP, Szendroedi J, Zemva J, Sulaj A. Glucose Load Following Prolonged Fasting Increases Oxidative Stress- Linked Response in Individuals With Diabetic Complications. Diabetes Care 2024; 47:1584-1592. [PMID: 38905209 PMCID: PMC11362116 DOI: 10.2337/dc24-0209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/28/2024] [Indexed: 06/23/2024]
Abstract
OBJECTIVE Prolonged catabolic states in type 2 diabetes (T2D), exacerbated by excess substrate flux and hyperglycemia, can challenge metabolic flexibility and antioxidative capacity. We investigated cellular responses to glucose load after prolonged fasting in T2D. RESEARCH DESIGN AND METHODS Glucose-tolerant individuals (CON, n = 10) and individuals with T2D with (T2D+, n = 10) and without (T2D-, n = 10) diabetes complications underwent oral glucose tolerance test before and after a 5-day fasting-mimicking diet. Peripheral blood mononuclear cell (PBMC) resistance to ex vivo dicarbonyl methylglyoxal (MG) exposure after glucose load was assessed. Markers of dicarbonyl detoxification, oxidative stress, and mitochondrial biogenesis were analyzed by quantitative PCR, with mitochondrial complex protein expression assessed by Western blotting. RESULTS T2D+ exhibited decreased PBMC resistance against MG, while T2D- resistance remained unchanged, and CON improved postglucose load and fasting (-19.0% vs. -1.7% vs. 12.6%; all P = 0.017). T2D+ showed increased expression in dicarbonyl detoxification (mRNA glyoxalase-1, all P = 0.039), oxidative stress (mRNA glutathione-disulfide-reductase, all P = 0.006), and mitochondrial complex V protein (all P = 0.004) compared with T2D- and CON postglucose load and fasting. Citrate synthase activity remained unchanged, indicating no change in mitochondrial number. Mitochondrial biogenesis increased in T2D- compared with CON postglucose load and fasting (mRNA HspA9, P = 0.032). T2D-, compared with CON, exhibited increased oxidative stress postfasting, but not postglucose load, with increased mRNA expression in antioxidant defenses (mRNA forkhead box O4, P = 0.036, and glutathione-peroxidase-2, P = 0.034), and compared with T2D+ (glutathione-peroxidase-2, P = 0.04). CONCLUSIONS These findings suggest increased susceptibility to glucose-induced oxidative stress in individuals with diabetes complications after prolonged fasting and might help in diet interventions for diabetes management.
Collapse
Affiliation(s)
- Ekaterina von Rauchhaupt
- Department of Endocrinology, Diabetology, Metabolic Diseases and Clinical Chemistry (Internal Medicine I), University Hospital of Heidelberg, Heidelberg, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
| | - Claus Rodemer
- Department of Endocrinology, Diabetology, Metabolic Diseases and Clinical Chemistry (Internal Medicine I), University Hospital of Heidelberg, Heidelberg, Germany
| | - Elisabeth Kliemank
- Department of Endocrinology, Diabetology, Metabolic Diseases and Clinical Chemistry (Internal Medicine I), University Hospital of Heidelberg, Heidelberg, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
| | - Ruben Bulkescher
- Department of Endocrinology, Diabetology, Metabolic Diseases and Clinical Chemistry (Internal Medicine I), University Hospital of Heidelberg, Heidelberg, Germany
| | - Marta Campos
- Department of Endocrinology, Diabetology, Metabolic Diseases and Clinical Chemistry (Internal Medicine I), University Hospital of Heidelberg, Heidelberg, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
| | - Stefan Kopf
- Department of Endocrinology, Diabetology, Metabolic Diseases and Clinical Chemistry (Internal Medicine I), University Hospital of Heidelberg, Heidelberg, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
| | - Thomas Fleming
- Department of Endocrinology, Diabetology, Metabolic Diseases and Clinical Chemistry (Internal Medicine I), University Hospital of Heidelberg, Heidelberg, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
| | - Stephan Herzig
- German Center for Diabetes Research, München-Neuherberg, Germany
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany
- Joint Heidelberg-IDC Translational Diabetes Program, Internal Medicine I, Heidelberg University Hospital, Heidelberg, Germany
- Chair Molecular Metabolic Control, Technical University Munich, Munich, Germany
| | - Peter P. Nawroth
- Department of Endocrinology, Diabetology, Metabolic Diseases and Clinical Chemistry (Internal Medicine I), University Hospital of Heidelberg, Heidelberg, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
- Joint Heidelberg-IDC Translational Diabetes Program, Helmholtz Center Munich, Neuherberg, Germany
| | - Julia Szendroedi
- Department of Endocrinology, Diabetology, Metabolic Diseases and Clinical Chemistry (Internal Medicine I), University Hospital of Heidelberg, Heidelberg, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
- Joint Heidelberg-IDC Translational Diabetes Program, Helmholtz Center Munich, Neuherberg, Germany
| | - Johanna Zemva
- Department of Endocrinology, Diabetology, Metabolic Diseases and Clinical Chemistry (Internal Medicine I), University Hospital of Heidelberg, Heidelberg, Germany
- Joint Practice for Endocrinology, Diabetology and Nuclear Medicine Heidelberg, Heidelberg, Germany
| | - Alba Sulaj
- Department of Endocrinology, Diabetology, Metabolic Diseases and Clinical Chemistry (Internal Medicine I), University Hospital of Heidelberg, Heidelberg, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
| |
Collapse
|
25
|
Kulkarni P, Yeram PB, Vora A. Terpenes in the management of chronic kidney disease. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:6351-6368. [PMID: 38683370 DOI: 10.1007/s00210-024-03098-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/11/2024] [Indexed: 05/01/2024]
Abstract
Chronic kidney disease (CKD) is a chronic and progressive systemic condition that characterizes irreversible alterations in the kidneys' function and structure over an extended period, spanning months to years. CKD is the one of the major causes of mortality worldwide. However, very limited treatment options are available in the market for management of the CKD. Diabetes and hypertension are the key risk factors for the progression of CKD. It is majorly characterised by glomerulosclerosis, tubular atrophy, and interstitial fibrosis. Plants are considered safe and effective in treating various chronic conditions. A diverse group of phytoconstituents, including polyphenols, flavonoids, alkaloids, tannins, saponins, and terpenes, have found significant benefits in managing chronic ailments. Terpenes constitute a diverse group of plant compounds with various therapeutic benefits. Evidence-based pharmacological studies underscore the crucial role played by terpenes in preventing and managing CKD. These substances demonstrate the capacity to hinder detrimental pathways, such as oxidative stress, inflammation and fibrosis, thereby demonstrating benefit in renal dysfunction. This review offers a comprehensive overview of the roles and positive attributes of commonly occurring terpenes in managing the causes and risk factors of CKD and the associated conditions.
Collapse
Affiliation(s)
- Piyusha Kulkarni
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, Shri Vile Parle Kelavani Mandal's Narsee Monjee Institute of Management Studies, Mumbai, 400056, India
| | - Pranali B Yeram
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, Shri Vile Parle Kelavani Mandal's Narsee Monjee Institute of Management Studies, Mumbai, 400056, India
| | - Amisha Vora
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, Shri Vile Parle Kelavani Mandal's Narsee Monjee Institute of Management Studies, Mumbai, 400056, India.
| |
Collapse
|
26
|
Abstract
Significance: Aging is a complex process associated with an increased risk of many diseases, including thrombosis. This review summarizes age-related prothrombotic mechanisms in clinical settings of thromboembolism, focusing on the role of fibrin structure and function modified by oxidative stress. Recent Advances: Aging affects blood coagulation and fibrinolysis via multiple mechanisms, including enhanced oxidative stress, with an imbalance in the oxidant/antioxidant mechanisms, leading to loss of function and accumulation of oxidized proteins, including fibrinogen. Age-related prothrombotic alterations are multifactorial involving enhanced platelet activation, endothelial dysfunction, and changes in coagulation factors and inhibitors. Formation of more compact fibrin clot networks displaying impaired susceptibility to fibrinolysis represents a novel mechanism, which might contribute to atherothrombosis and venous thrombosis. Alterations to fibrin clot structure/function are at least in part modulated by post-translational modifications of fibrinogen and other proteins involved in thrombus formation, with a major impact of carbonylation. Fibrin clot properties are also involved in the efficacy and safety of therapy with oral anticoagulants, statins, and/or aspirin. Critical Issues: Since a prothrombotic state is observed in very elderly individuals free of diseases associated with thromboembolism, the actual role of activated blood coagulation in health remains elusive. It is unclear to what extent oxidative modifications of coagulation and fibrinolytic proteins, in particular fibrinogen, contribute to a prothrombotic state in healthy aging. Future Directions: Ongoing studies will show whether novel therapies that may alter oxidative stress and fibrin characteristics are beneficial to prevent atherosclerosis and thromboembolic events associated with aging.
Collapse
Affiliation(s)
- Małgorzata Konieczyńska
- Department of Thromboembolic Disorders, Institute of Cardiology, Jagiellonian University Medical College, Krakow, Poland
- The St. John Paul II Hospital, Krakow, Poland
| | - Joanna Natorska
- Department of Thromboembolic Disorders, Institute of Cardiology, Jagiellonian University Medical College, Krakow, Poland
- The St. John Paul II Hospital, Krakow, Poland
| | - Anetta Undas
- Department of Thromboembolic Disorders, Institute of Cardiology, Jagiellonian University Medical College, Krakow, Poland
- The St. John Paul II Hospital, Krakow, Poland
| |
Collapse
|
27
|
Abdnim R, Lafdil FZ, Elrherabi A, El Fadili M, Kandsi F, Benayad O, Legssyer A, Ziyyat A, Mekhfi H, Bnouham M. Fatty acids characterisation by GC-MS, antiglycation effect at multiple stages and protection of erythrocytes cells from oxidative damage induced by glycation of albumin of Opuntia ficus-indica (L.) Mill seed oil cultivated in Eastern Morocco: Experimental and computational approaches. JOURNAL OF ETHNOPHARMACOLOGY 2024; 329:118106. [PMID: 38570146 DOI: 10.1016/j.jep.2024.118106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 03/12/2024] [Accepted: 03/23/2024] [Indexed: 04/05/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Opuntia ficus-indica (L.) Mill is frequently observed in the Moroccan traditional medicinal system, where these approaches are employed to mitigate the onset of diabetes and the subsequent complications it may entail. AIM OF THE STUDY The aim of this research was to examine the effectiveness of Opuntia ficus-indica seed oil in preventing diabetic complications. Specifically, the study assessed its ability to counteract glycation at various stages, protected red blood cells from the harmful effects of glycated albumin, and inhibited pancreatic lipase digestive enzymes to understand its potential antihyperglycemic properties. Additionally, the study aimed to identify the chemical components responsible for these effects, evaluate antioxidant and anti-inflammatory properties, and conduct computational investigations such as molecular docking. MATERIALS AND METHODS The assessement of Opuntia ficus-indica seed oil antiglycation properties involved co-incubating the extract oil with a bovine serum albumin-glucose glycation model. The study investigated various stages of glycation, incorporating fructosamine (inceptive stage), protein carbonyls (intermediate stage), and AGEs (late stage). Additionally, measurement of β-amyloid aggregation of albumin was performed using Congo red, which is specific to amyloid structures. Additionally, the evaluation of oil's safeguarding effect on erythrocytes against toxicity induced by glycated albumin included the measurement of erythrocyte hemolysis, lipid peroxidation, reduced glutathione. The fatty acid of Opuntia ficus-indica seed oil were analyzed using Gas Chromatography-Mass Spectrometry (GC-MS). The in vitro evaluation of antihyperglycemic activity involved the use of pancreatic lipase enzyme, while the assessement of antioxidant capability was carried out through the utilization of the ABTS and FRAP methods. The in vitro assessement of the denaturation of albumin activity was also conducted. In conjunction with the experimental outcomes, computational investigations were undertaken, specifically employing ADMET (absorption, distribution, metabolism, excretion, and toxicity) analysis. Furthermore, molecular docking was utilized to predict antioxidant and antiglycation mechanisms based on protein targets. RESULTS In vitro glycation assays, Opuntia ficus-indica seed oil displayed targeted inhibitory effects at multiple distinct stages. Within erythrocytes, in addition to mitigating hemolysis and lipid peroxidation induced by glycated albumin. GC-MS investigation revealed a richness of fatty acids and the most abundant compounds are Linoleic acid (36.59%), Palmitic acid (20.84%) and Oleic acid (19.33%) respectively. The findings of antioxidant ability showed a remarkable activity on FRAP and ABTS radicals. This oil showed a pronounced inhibitory impact (p < 0.001) on pancreatic lipase enzyme. It also exerted a notibale inhibition of albumin denaturation, in vitro. CONCLUSION The identified results were supported by the abundant compounds of fatty acids unveiled through GC-MS analysis, along with the computational investigation and molecular docking.
Collapse
Affiliation(s)
- Rhizlan Abdnim
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology, and Health, Faculty of Sciences, Mohammed First University, Oujda, B.P. 717, Morocco.
| | - Fatima Zahra Lafdil
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology, and Health, Faculty of Sciences, Mohammed First University, Oujda, B.P. 717, Morocco
| | - Amal Elrherabi
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology, and Health, Faculty of Sciences, Mohammed First University, Oujda, B.P. 717, Morocco
| | - Mohamed El Fadili
- LIMAS Laboratory, Chemistry Department, Faculty of Sciences Dhar Mehrez, Sidi Mohamed Ben Abdellah University, Morocco
| | - Fahd Kandsi
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology, and Health, Faculty of Sciences, Mohammed First University, Oujda, B.P. 717, Morocco
| | | | - Abdelkhaleq Legssyer
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology, and Health, Faculty of Sciences, Mohammed First University, Oujda, B.P. 717, Morocco
| | - Abderrahim Ziyyat
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology, and Health, Faculty of Sciences, Mohammed First University, Oujda, B.P. 717, Morocco
| | - Hassane Mekhfi
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology, and Health, Faculty of Sciences, Mohammed First University, Oujda, B.P. 717, Morocco
| | - Mohamed Bnouham
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology, and Health, Faculty of Sciences, Mohammed First University, Oujda, B.P. 717, Morocco.
| |
Collapse
|
28
|
Liu Y, Lyons CJ, Ayu C, O’Brien T. Enhancing endothelial colony-forming cells for treating diabetic vascular complications: challenges and clinical prospects. Front Endocrinol (Lausanne) 2024; 15:1396794. [PMID: 39076517 PMCID: PMC11284052 DOI: 10.3389/fendo.2024.1396794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/14/2024] [Indexed: 07/31/2024] Open
Abstract
Diabetes mellitus (DM) is a metabolic disease characterized by hyperglycemia, leading to various vascular complications. Accumulating evidence indicates that endothelial colony-forming cells (ECFCs) have attractive prospects for repairing and restoring blood vessels. Thus, ECFCs may be a novel therapeutic option for diabetic patients with vascular complications who require revascularization therapy. However, it has been reported that the function of ECFCs is impaired in DM, which poses challenges for the autologous transplantation of ECFCs. In this review, we summarize the molecular mechanisms that may be responsible for ECFC dysfunction and discuss potential strategies for improving the therapeutic efficacy of ECFCs derived from patients with DM. Finally, we discuss barriers to the use of ECFCs in human studies in light of the fact that there are no published reports using these cells in humans.
Collapse
Affiliation(s)
| | | | | | - Timothy O’Brien
- Regenerative Medicine Institute (REMEDI), Biomedical Sciences Building, University of Galway, Galway, Ireland
| |
Collapse
|
29
|
Yao C, Zhang H, Wang L, Li J. Correlation of serum Meteorin-like (Metrnl) level with type 2 diabetic peripheral neuropathy. BMC Endocr Disord 2024; 24:83. [PMID: 38849768 PMCID: PMC11162054 DOI: 10.1186/s12902-024-01616-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/29/2024] [Indexed: 06/09/2024] Open
Abstract
OBJECTIVE Meteorin-like (Metrnl), a secreted myokine, is a newly discovered neurotrophic factor. The aim of this study was to determine if there is a correlation between the Metrnl level and diabetic peripheral neuropathy (DPN). METHODS The investigation was conducted on a sample of 80 patients with type 2 diabetes mellitus (T2DM) and 60 healthy controls. The T2DM patients were categorized into two subgroups based on skin biopsy: the DPN subgroup (n = 20) and the diabetes without neuropathy subgroup (n = 60). RESULTS The T2DM groups had higher serum Metrnl concentrations compared with the controls. The serum Metrnl concentration was significantly lower in the DPN group than in T2DM patients without neuropathy. Logistic regression analysis demonstrated a notable correlation between serum Metrnl and DPN (OR: 0.997, 95% CI: 0.995-1.000, P < 0.05). Serum Metrnl level was negatively correlated with age and SBP after a simple logistic regression analysis. CONCLUSION Serum Metrnl concentration is independently correlated with DPN.
Collapse
Affiliation(s)
- Caixia Yao
- Department of Endocrinology and Metabolism, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Endocrinology and Metabolism, Gaochun Hospital Affiliated to Jiangsu University, Nanjing, Jiangsu, China
| | - Hongman Zhang
- Department of Endocrinology and Metabolism, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Endocrinology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu, China
| | - Li Wang
- Department of Endocrinology and Metabolism, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jianbo Li
- Department of Endocrinology and Metabolism, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
30
|
Shekarchian A, Bandarian F, Hadizadeh A, Amirsardari Z, Sharifi Y, Ayati A, Varmaghani M, Shandiz AF, Sharifi F, Ghadery AH, Tayanloo A, Yavari T, Larijani B, Payab M, Ebrahimpur M. Exploring the metabolomics profile of frailty- a systematic review. J Diabetes Metab Disord 2024; 23:289-303. [PMID: 38932837 PMCID: PMC11196473 DOI: 10.1007/s40200-023-01379-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 12/19/2023] [Indexed: 06/28/2024]
Abstract
Background Frailty is a multifaceted geriatric syndrome characterized by an increased vulnerability to stressful events. metabolomics studies are valuable tool for better understanding the underlying mechanisms of pathologic conditions. This review aimed to elucidate the metabolomics profile of frailty. Method This systematic review was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) 2020 statement. A comprehensive search was conducted across multiple databases. Initially, 5027 results were retrieved, and after removing duplicates, 1838 unique studies were subjected to screening. Subsequently, 248 studies underwent full-text screening, with 21 studies ultimately included in the analysis. Data extraction was performed meticulously by two authors, and the quality of the selected studies was assessed using the Critical Appraisal Skills Program (CASP) checklist. Results The findings revealed that certain Branched-chain amino acids (BCAAs) levels were lower in frail subjects compared to robust subjects, while levels of glutamate and glutamine were higher in frail individuals. Moreover, sphingomyelins and phosphatidylcholines (PC) displayed a decreasing trend as frailty advanced. Additionally, other metabolic derivatives, such as carnitine, exhibited significant associations with frailty. These metabolites were primarily interconnected through biochemical pathways related to the tricarboxylic acid and urea cycles. Notably, frailty was associated with a decrease in metabolic derivatives, including carnitine. Conclusion This study underscores the intricate relationship between essential metabolites, including amino acids and lipids, and their varying levels in frail individuals compared to their robust counterparts. It provides a comprehensive panel of metabolites, shedding light on their potential associations with frailty and expanding our understanding of this complex syndrome.
Collapse
Affiliation(s)
- Ahmadreza Shekarchian
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular- Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Bandarian
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Hadizadeh
- Research Center for Advanced Technologies in Cardiovascular Medicine, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Amirsardari
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Yasaman Sharifi
- Department of Radiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran university of medical sciences, Tehran, Iran
| | - Aryan Ayati
- Research Center for Advanced Technologies in Cardiovascular Medicine, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Varmaghani
- Social Determinants of Health Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Farshad Sharifi
- Elderly Health Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Abdolkarim Haji Ghadery
- Department of Radiology, Advanced Diagnostic, and Interventional Radiology Research Center (ADIR), Tehran, Iran
| | - Akram Tayanloo
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Tahereh Yavari
- Department of Internal Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran university of medical sciences, Tehran, Iran
| | - Moloud Payab
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- EMRI (Endocrinology and Metabolism Research Institute), First Floor, No 10, Jalal-Al-Ahmad Street, North Kargar Avenue, Tehran, 14117-13137 Iran
| | - Mahbube Ebrahimpur
- Research Center for Advanced Technologies in Cardiovascular Medicine, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Radiology, Advanced Diagnostic, and Interventional Radiology Research Center (ADIR), Tehran, Iran
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- EMRI (Endocrinology and Metabolism Research Institute), First Floor, No 10, Jalal-Al-Ahmad Street, North Kargar Avenue, Tehran, 14117-13137 Iran
| |
Collapse
|
31
|
Xu Y, Huang M, Chen Y, Yu L, Wu M, Kang S, Lin Q, Zhang Q, Han L, Lin H, Ke P, Fu W, Tang Q, Yan J, Huang X. Development of simultaneous quantitation method for 20 free advanced glycation end products using UPLC-MS/MS and clinical application in kidney injury. J Pharm Biomed Anal 2024; 242:116035. [PMID: 38367518 DOI: 10.1016/j.jpba.2024.116035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/11/2023] [Accepted: 02/11/2024] [Indexed: 02/19/2024]
Abstract
Advanced glycation end products (AGEs), derived from the non-enzymatic glycation reaction, are defined as glycotoxins in various diseases including aging, diabetes and kidney injury. Exploring AGEs as potential biomarkers for these diseases holds paramount significance. Nevertheless, the high chemical structural similarity and great heterogeneity among AGEs present a formidable challenge when it comes to the comprehensive, simultaneous, and accurate detection of multiple AGEs in biological samples. In this study, an UPLC/MS/MS method for simultaneous quantification of 20 free AGEs in human serum was firstly established and applied to quantification of clinical samples from individuals with kidney injury. Simple sample preparation method through protein precipitation without derivatization was used. Method performances including imprecision, accuracy, sensitivity, linearity, and carryover were systematically validated. Intra- and inter- imprecision of 20 free AGEs were 1.93-5.94 % and 2.30-8.55 %, respectively. The method accuracy was confirmed with good recoveries ranging from 96.40 % to 103.25 %. The LOD and LOQ were 0.1-3.13 ng/mL and 0.5-6.25 ng/mL, respectively. Additionally, the 20 free AGEs displayed excellent linearity (R2 >0.9974) across a wide linear range (1.56-400 ng/mL). Finally, through simultaneous quantitation of 20 Free AGEs in 100 participants including kidney injury patient and healthy controls, we identified six free AGEs, including N6-carboxyethyl-L-arginine (CEA), N6-carboxymethyl-L-lysine (CML), methylglyoxal-derived hydroimidazolones (MG-H), N6-formyl-lysine, N6-carboxymethyl-L-arginine (CMA), and glyoxal-derived hydroimidazolone (G-H), could well distinguish kidney injury patients and healthy individuals. Among them, the levels of four free AGEs including CML, CEA, MG-H, and G-H strongly correlate with traditionally clinical markers of kidney disease. The high area under the curve (AUC) values (AUC=0.965) in receiver operating characteristic (ROC) curve indicated that these four free AGEs can be served as combined diagnostic biomarkers for the diagnosis of kidney disease.
Collapse
Affiliation(s)
- Yuzhu Xu
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Menghe Huang
- Affiliated Guangdong Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Nanhai 528253, China
| | - Yingting Chen
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou 510120, China; Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Lintao Yu
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Meiran Wu
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Shiyue Kang
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Qiuyu Lin
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Qiaoxuan Zhang
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou 510120, China; Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Liqiao Han
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou 510120, China; Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Haibiao Lin
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou 510120, China; Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Peifeng Ke
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou 510120, China; Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Wenjin Fu
- Department of Laboratory Medicine, Houjie Hospital of Guangdong Medical University, Dongguan 523962, China
| | - Qizhi Tang
- Affiliated Guangdong Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Nanhai 528253, China; Department of Endocrine Medicine, Guangdong Provincial Hospital of Integrated Traditional Chinese and Western Medicine, Nanhai 528253, China.
| | - Jun Yan
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou 510120, China; Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China.
| | - Xianzhang Huang
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou 510120, China; Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China.
| |
Collapse
|
32
|
Biswas B, Dogra S, Sen A, Murugan NA, Dhingra P, Jaswal K, Mondal P, Ghosh S. NIR-I emissive cyanine derived molecular probe for selective monitoring of hepatic albumin levels during hyperglycemia. J Mater Chem B 2024; 12:4441-4450. [PMID: 38639071 DOI: 10.1039/d3tb01938a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
In this study, we report a small molecule optical marker BI-CyG derived from the structural engineering of a cyanine scaffold. The developed probe offers suitable advantages over existing cyanine-based albumin specific probes in terms of its excitation and emission wavelengths, which are 760 and 830-832 nm, respectively. Structural tuning of the cyanine architecture leading to extended π-conjugation and resulting in a suitable bathochromic shift in the emission wavelength of the probe is represented in this study. The probe besides emitting in the NIR region, also possesses the desirable characteristics of being a potential target selective optical marker, as established from various biophysical studies. Molecular modelling and simulation studies provided critical insights into the binding of the probe in the protein microenvironment, which was further supported by experimental studies. The probe displayed intracellular albumin selectivity and was utilized for demonstrating alteration in albumin levels in pathological states such as hyperglycemia in hepatic cells. The present study also sheds some light on using BI-CyG as an imaging probe and on the role of metformin as a suitable drug for balancing hyperglycemia-induced reduced intra-hepatic albumin levels. The study, thus, attempts to highlight the structural derivatization of cyanine to afford a potential probe for serum albumin and its deployment to image altering albumin levels in an induced pathological condition, hyperglycemia.
Collapse
Affiliation(s)
- Bidisha Biswas
- School of Chemical Sciences, Indian Institute of Technology Mandi, Kamand-175005, Himachal Pradesh, India.
| | - Surbhi Dogra
- School of Bioscience and Bioengineering, Indian Institute of Technology Mandi, Kamand-175005, Himachal Pradesh, India
| | - Aniket Sen
- School of Bioscience and Bioengineering, Indian Institute of Technology Mandi, Kamand-175005, Himachal Pradesh, India
| | - N Arul Murugan
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, 110020, India
| | - Pooja Dhingra
- School of Chemical Sciences, Indian Institute of Technology Mandi, Kamand-175005, Himachal Pradesh, India.
| | - Kajal Jaswal
- School of Bioscience and Bioengineering, Indian Institute of Technology Mandi, Kamand-175005, Himachal Pradesh, India
| | - Prosenjit Mondal
- School of Bioscience and Bioengineering, Indian Institute of Technology Mandi, Kamand-175005, Himachal Pradesh, India
- Department of Biological Sciences, Indian Institute of Science Education and Research Berhampur, Berhampur-760010, India.
| | - Subrata Ghosh
- School of Chemical Sciences, Indian Institute of Technology Mandi, Kamand-175005, Himachal Pradesh, India.
| |
Collapse
|
33
|
Klonoff DC, Aaron RE, Tian T, DuNova AY, Pandey A, Rhee C, Fleming GA, Sacks DB, Pop-Busui R, Kerr D. Advanced Glycation Endproducts: A Marker of Long-term Exposure to Glycemia. J Diabetes Sci Technol 2024:19322968241240436. [PMID: 38525944 PMCID: PMC11572222 DOI: 10.1177/19322968241240436] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
This article examines the importance of advanced glycation endproducts (AGEs) and summarizes the structure of AGEs, pathological changes associated with AGEs, the contribution of AGEs to metabolic memory, and the value of AGEs as a predictor of diabetic complications and cardiovascular disease in people with and without diabetes. As a practical focus, skin autofluorescence (SAF) is examined as an attractive approach for estimating AGE burden. The measurement of AGEs may be of significant value to specific individuals and groups, including Black and Hispanic/Latino Americans, as they appear to have higher concentrations of hemoglobin A1c (HbA1c) than would be predicted by other metrics of mean glycemia. We hypothesize that if the amount of glycation of HbA1c is greater than expected from measured glucose levels, and if AGEs are accumulating, then this accumulation of AGEs might account for the increased rate of complications of diabetes in populations with high rates of vascular disease and other complications. Thus, identifying and modifying the burden of AGEs based on measurement of AGEs by SAF may turn out to be a worthwhile metric to determine individuals who are at high risk for the complications of diabetes as well as others without diabetes at risk of vascular disease. We conclude that available evidence supports SAF as both a clinical measurement and as a means of evaluating interventions aimed at reducing the risks of vascular disease and diabetic complications.
Collapse
Affiliation(s)
- David C. Klonoff
- Diabetes Research Institute, Mills-Peninsula Medical Center, San Mateo, CA, USA
| | | | - Tiffany Tian
- Diabetes Technology Society, Burlingame, CA, USA
| | | | - Ambarish Pandey
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Connie Rhee
- VA Greater Los Angeles Healthcare System, UCLA, Los Angeles, CA, USA
| | | | | | | | - David Kerr
- Sutter Health Center for Health Systems Research, Santa Barbara, CA, USA
| |
Collapse
|
34
|
Bronowicka-Szydełko A, Gostomska-Pampuch K, Kuzan A, Pietkiewicz J, Krzystek-Korpacka M, Gamian A. Effect of advanced glycation end-products in a wide range of medical problems including COVID-19. Adv Med Sci 2024; 69:36-50. [PMID: 38335908 DOI: 10.1016/j.advms.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/07/2023] [Accepted: 01/19/2024] [Indexed: 02/12/2024]
Abstract
Glycation is a physiological process that determines the aging of the organism, while in states of metabolic disorders it is significantly intensified. High concentrations of compounds such as reducing sugars or reactive aldehydes derived from lipid oxidation, occurring for example in diabetes, atherosclerosis, dyslipidemia, obesity or metabolic syndrome, lead to increased glycation of proteins, lipids and nucleic acids. The level of advanced glycation end-products (AGEs) in the body depends on rapidity of their production and the rate of their removal by the urinary system. AGEs, accumulated in the extracellular matrix of the blood vessels and other organs, cause irreversible changes in the biochemical and biomechanical properties of tissues. As a consequence, micro- and macroangiopathies appear in the system, and may contribute to the organ failure, like kidneys and heart. Elevated levels of AGEs also increase the risk of Alzheimer's disease and various cancers. In this paper, we propose a new classification due to modified amino acid residues: arginyl-AGEs, monolysyl-AGEs and lysyl-arginyl-AGEs and dilysyl-AGEs. Furthermore, we describe in detail the effect of AGEs on the pathogenesis of metabolic and old age diseases, such as diabetic complications, atherosclerosis and neurodegenerative diseases. We summarize the currently available data on the diagnostic value of AGEs and present the AGEs as a therapeutic goal in a wide range of medical problems, including SARS-CoV-2 infection and so-called long COVID.
Collapse
Affiliation(s)
| | | | - Aleksandra Kuzan
- Department of Medical Biochemistry, Wroclaw Medical University, Wroclaw, Poland.
| | - Jadwiga Pietkiewicz
- Department of Medical Biochemistry, Wroclaw Medical University, Wroclaw, Poland
| | | | - Andrzej Gamian
- Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| |
Collapse
|
35
|
Coll JC, Turcotte AF, Leslie WD, Michou L, Weisnagel SJ, Mac-Way F, Albert C, Berger C, Morin SN, Rabasa-Lhoret R, Gagnon C. Advanced glycation end products are not associated with bone mineral density, trabecular bone score, and bone turnover markers in adults with and without type 1 diabetes: a cross-sectional study. JBMR Plus 2024; 8:ziad018. [PMID: 38505219 PMCID: PMC10945729 DOI: 10.1093/jbmrpl/ziad018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/18/2023] [Accepted: 12/12/2023] [Indexed: 03/21/2024] Open
Abstract
It is unclear if AGEs are involved in the bone fragility of type 1 diabetes (T1D). We evaluated whether skin AGEs by skin autofluorescence and serum AGEs (pentosidine, carboxymethyl-lysine [CML]) are independently associated with BMD by DXA (lumbar spine, hip, distal radius), trabecular bone score (TBS), serum bone turnover markers (BTMs: CTX; P1NP; osteocalcin), and sclerostin in participants with and without T1D. Linear regression models were used, with interaction terms to test effect modification by T1D status. In participants with T1D, correlations between skin and serum AGEs as well as between AGEs and 3-year HbA1C were evaluated using Spearman's correlations. Data are mean ± SD or median (interquartile range). We included individuals who participated in a cross-sectional study and had BMD and TBS assessment (106 T1D/65 controls, 53.2% women, age 43 ± 15 yr, BMI 26.6 ± 5.5 kg/m2). Participants with T1D had diabetes for 27.6 ± 12.3 yr, a mean 3-yr HbA1C of 7.5 ± 0.9% and skin AGEs of 2.15 ± 0.54 arbitrary units. A subgroup of 65 T1D/57 controls had BTMs and sclerostin measurements, and those with T1D also had serum pentosidine (16.8[8.2-32.0] ng/mL) and CML [48.0 ± 16.8] ng/mL) measured. Femoral neck BMD, TBS, and BTMs were lower, while sclerostin levels were similar in participants with T1D vs controls. T1D status did not modify the associations between AGEs and bone outcomes. Skin AGEs were significantly associated with total hip and femoral neck BMD, TBS, BTMs, and sclerostin before, but not after, adjustment for confounders. Serum AGEs were not associated with any bone outcome. There were no significant correlations between skin and serum AGEs or between AGEs and 3-yr HbA1C. In conclusion, skin and serum AGEs are not independently associated with BMD, TBS, BTMs, and sclerostin in participants with relatively well-controlled T1D and participants without diabetes.
Collapse
Affiliation(s)
- Julie-Catherine Coll
- Centre de recherche, CHU de Québec-Université Laval, Quebec City, QC G1V 4G2, Canada
| | | | - William D Leslie
- Department of Medicine, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Laëtitia Michou
- Centre de recherche, CHU de Québec-Université Laval, Quebec City, QC G1V 4G2, Canada
- Department of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Stanley John Weisnagel
- Centre de recherche, CHU de Québec-Université Laval, Quebec City, QC G1V 4G2, Canada
- Department of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Fabrice Mac-Way
- Centre de recherche, CHU de Québec-Université Laval, Quebec City, QC G1V 4G2, Canada
- Department of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Caroline Albert
- Centre Hospitalier de l’Université de Montréal, Montreal, QC H2X 3E4, Canada
| | - Claudie Berger
- Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Suzanne N Morin
- Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada
| | - Rémi Rabasa-Lhoret
- Institut de recherches cliniques de Montréal, Montreal, QC H2W 1R7, Canada
| | - Claudia Gagnon
- Centre de recherche, CHU de Québec-Université Laval, Quebec City, QC G1V 4G2, Canada
- Department of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada
| |
Collapse
|
36
|
Khanam A, Alouffi S, Alyahyawi AR, Husain A, Khan S, Alharazi T, Akasha R, Khan H, Shahab U, Ahmad S. Generation of autoantibodies against glycated fibrinogen: Role in diabetic nephropathy and retinopathy. Anal Biochem 2024; 685:115393. [PMID: 37977213 DOI: 10.1016/j.ab.2023.115393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/01/2023] [Accepted: 11/11/2023] [Indexed: 11/19/2023]
Abstract
The process of glycation, characterized by the non-enzymatic reaction between sugars and free amino groups on biomolecules, is a key contributor to the development and progression of both microvascular and macrovascular complications associated with diabetes, particularly due to persistent hyperglycemia. This glycation process gives rise to advanced glycation end products (AGEs), which play a central role in the pathophysiology of diabetes complications, including nephropathy. The d-ribose-mediated glycation of fibrinogen plays a central role in the pathogenesis of diabetes nephropathy (DN) and retinopathy (DR) by the generation and accumulation of advanced glycation end products (AGEs). Glycated fibrinogen with d-ribose (Rb-gly-Fb) induces structural changes that trigger an autoimmune response by generating and exposing neoepitopes on fibrinogen molecules. The present research is designed to investigate the prevalence of autoantibodies against Rb-gly-Fb in individuals with type 2 diabetes mellitus (T2DM), DN & DR. Direct binding ELISA was used to test the binding affinity of autoantibodies from patients' sera against Rb-gly-Fb and competitive ELISA was used to confirm the direct binding findings by checking the bindings of isolated IgG against Rb-gly-Fb and its native conformer. In comparison to healthy subjects, 32% of T2DM, 67% of DN and 57.85% of DR patients' samples demonstrated a strong binding affinity towards Rb-gly-Fb. Both native and Rb-gly-Fb binding by healthy subjects (HS) sera were non-significant (p > 0.05). Furthermore, the early, intermediate, and end products of glycation have been assessed through biochemical and physicochemical analysis. The biochemical markers in the patient groups were also significant (p < 0.05) in comparison to the HS group. This study not only establishes the prevalence of autoantibodies against d-ribose glycated fibrinogen in DN but also highlights the potential of glycated fibrinogen as a biomarker for the detection of DN and/or DR. These insights may open new avenues for research into novel therapeutic strategies and the prevention of diabetes-related nephropathy and retinopathy.
Collapse
Affiliation(s)
- Afreen Khanam
- Department of Biosciences, Faculty of Sciences, Integral University, Lucknow, 226026, India; Department of Biotechnology & Life Sciences, Institute of Biomedical Education & Research, Mangalayatan University, Aligarh, 202146, India
| | - Sultan Alouffi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Hail- 2440, Saudi Arabia
| | - Amjad R Alyahyawi
- Department of Diagnostic Radiology, College of Applied Medical Science, University of Hail, Ha'il, 2440, Saudi Arabia; Centre for Nuclear and Radiation Physics, Department of Physics, University of Surrey, Guildford, GU2 7XH, United Kingdom
| | - Arbab Husain
- Department of Biosciences, Faculty of Sciences, Integral University, Lucknow, 226026, India; Department of Biotechnology & Life Sciences, Institute of Biomedical Education & Research, Mangalayatan University, Aligarh, 202146, India
| | - Saif Khan
- Department of Basic Dental and Medical Sciences, College of Dentistry, University of Hail, Saudi Arabia
| | - Talal Alharazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Hail- 2440, Saudi Arabia
| | - Rihab Akasha
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Hail- 2440, Saudi Arabia
| | - Hamda Khan
- Department of Biochemistry, Jawahar Lal Nehru Medical College, Aligarh Muslim University, Aligarh, 202002, India
| | - Uzma Shahab
- Department of Biochemistry, King George Medical University, Lucknow, 226003, India
| | - Saheem Ahmad
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Hail- 2440, Saudi Arabia.
| |
Collapse
|
37
|
Soflaei Saffar S, Nazar E, Sahranavard T, Fayedeh F, Moodi Ghalibaf A, Ebrahimi M, Alimi H, Shahri B, Izadi-Moud A, Ferns GA, Ghodsi A, Mehrabi S, Tarhimi M, Esmaily H, Moohebati M, Ghayour-Mobarhan M. Association of T-wave electrocardiogram changes and type 2 diabetes: a cross-sectional sub-analysis of the MASHAD cohort population using the Minnesota coding system. BMC Cardiovasc Disord 2024; 24:48. [PMID: 38218755 PMCID: PMC10788011 DOI: 10.1186/s12872-023-03649-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 11/30/2023] [Indexed: 01/15/2024] Open
Abstract
BACKGROUND Type 2 Diabetes Mellitus (T2DM) has become a major health concern with an increasing prevalence and is now one of the leading attributable causes of death globally. T2DM and cardiovascular disease are strongly associated and T2DM is an important independent risk factor for ischemic heart disease. T-wave abnormalities (TWA) on electrocardiogram (ECG) can indicate several pathologies including ischemia. In this study, we aimed to investigate the association between T2DM and T-wave changes using the Minnesota coding system. METHODS A cross-sectional study was conducted on the MASHAD cohort study population. All participants of the cohort population were enrolled in the study. 12-lead ECG and Minnesota coding system (codes 5-1 to 5-4) were utilized for T-wave observation and interpretation. Regression models were used for the final evaluation with a level of significance being considered at p < 0.05. RESULTS A total of 9035 participants aged 35-65 years old were included in the study, of whom 1273 were diabetic. The prevalence of code 5-2, 5-3, major and minor TWA were significantly higher in diabetics (p < 0.05). However, following adjustment for age, gender, and hypertension, the presence of TWAs was not significantly associated with T2DM (p > 0.05). Hypertension, age, and body mass index were significantly associated with T2DM (p < 0.05). CONCLUSIONS Although some T-wave abnormalities were more frequent in diabetics, they were not statistically associated with the presence of T2DM in our study.
Collapse
Affiliation(s)
- Sara Soflaei Saffar
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Eisa Nazar
- Orthopedic Research Center, Mazandaran University of Medical Sciences, Sari, Iran
- Psychiatry and Behavioral Sciences Research Center, Addiction Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Toktam Sahranavard
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzad Fayedeh
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | | | - Mahmoud Ebrahimi
- Vascular and Endovascular Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hedieh Alimi
- Vascular and Endovascular Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bahram Shahri
- Department of Cardiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Azadeh Izadi-Moud
- Department of Cardiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Brighton and Sussex Medical School, Division of Medical Education, Brighton, UK
| | - Alireza Ghodsi
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeed Mehrabi
- Department of Cardiology, Faculty of Medicine, Gonabad University of Medical Sciences, Mashhad, Iran
| | - Milad Tarhimi
- Department of Cardiology, Faculty of Medicine, Gonabad University of Medical Sciences, Mashhad, Iran
| | - Habibollah Esmaily
- Department of Biostatistics, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran
- Social Determinants of Health Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Moohebati
- Vascular and Endovascular Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Cardiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Majid Ghayour-Mobarhan
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran.
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, 99199-91766, Iran.
| |
Collapse
|
38
|
Askari VR, Khosravi K, Baradaran Rahimi V, Garzoli S. A Mechanistic Review on How Berberine Use Combats Diabetes and Related Complications: Molecular, Cellular, and Metabolic Effects. Pharmaceuticals (Basel) 2023; 17:7. [PMID: 38275993 PMCID: PMC10819502 DOI: 10.3390/ph17010007] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/08/2023] [Accepted: 12/13/2023] [Indexed: 01/27/2024] Open
Abstract
Berberine (BBR) is an isoquinoline alkaloid that can be extracted from herbs such as Coptis, Phellodendron, and Berberis. BBR has been widely used as a folk medicine to treat various disorders. It is a multi-target drug with multiple mechanisms. Studies have shown that it has antioxidant and anti-inflammatory properties and can also adjust intestinal microbial flora. This review focused on the promising antidiabetic effects of BBR in several cellular, animal, and clinical studies. Based on previous research, BBR significantly reduced levels of fasting blood glucose, hemoglobin A1C, inflammatory cytokines, and oxidative stress markers. Furthermore, BBR stimulated insulin secretion and improved insulin resistance through different pathways, including up-regulation of protein expression of proliferator-activated receptor (PPAR)-γ, glucose transporter (GLUT) 4, PI3K/AKT, and AMP-activated protein kinase (AMPK) activation. Interestingly, it was demonstrated that BBR has protective effects against diabetes complications, such as diabetic-induced hepatic damage, cardiovascular disorders, nephropathy, and neuropathy. Furthermore, multiple clinical trial studies have emphasized the ameliorative effects of BBR in type 2 diabetic patients.
Collapse
Affiliation(s)
- Vahid Reza Askari
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran;
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
| | - Kimia Khosravi
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 1696700, Iran;
| | - Vafa Baradaran Rahimi
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad 1696700, Iran;
| | - Stefania Garzoli
- Department of Chemistry and Technologies of Drug, Sapienza University, P. le Aldo Moro, 5, 00185 Rome, Italy
| |
Collapse
|
39
|
Batten L, Sathyapalan T, Palmer TM. Molecular Mechanisms Linking Diabetes with Increased Risk of Thrombosis. Int J Mol Sci 2023; 24:17465. [PMID: 38139295 PMCID: PMC10744197 DOI: 10.3390/ijms242417465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/04/2023] [Accepted: 12/10/2023] [Indexed: 12/24/2023] Open
Abstract
This review will provide an overview of what is currently known about mechanisms linking poor glycaemic control with increased thrombotic risk. The leading causes of death in people with diabetes are strokes and cardiovascular disease. Significant morbidity is associated with an increased risk of thrombosis, resulting in myocardial infarction, ischaemic stroke, and peripheral vascular disease, along with the sequelae of these events, including loss of functional ability, heart failure, and amputations. While the increased platelet activity, pro-coagulability, and endothelial dysfunction directly impact this risk, the molecular mechanisms linking poor glycaemic control with increased thrombotic risk remain unclear. This review highlights the complex mechanisms underlying thrombosis prevalence in individuals with diabetes and hyperglycaemia. Post-translational modifications, such as O-GlcNAcylation, play a crucial role in controlling protein function in diabetes. However, the role of O-GlcNAcylation remains poorly understood due to its intricate regulation and the potential involvement of multiple variables. Further research is needed to determine the precise impact of O-GlcNAcylation on specific disease processes.
Collapse
Affiliation(s)
- Lucy Batten
- Biomedical Institute for Multimorbidity, Centre for Biomedicine, Hull York Medical School, University of Hull, Hull HU6 7RX, UK;
- Clinical Sciences Centre, Hull York Medical School, University of Hull, Hull HU6 7RX, UK
| | - Thozhukat Sathyapalan
- Clinical Sciences Centre, Hull York Medical School, University of Hull, Hull HU6 7RX, UK
| | - Timothy M. Palmer
- Biomedical Institute for Multimorbidity, Centre for Biomedicine, Hull York Medical School, University of Hull, Hull HU6 7RX, UK;
| |
Collapse
|
40
|
Wang M, He Y, He Q, Di F, Zou K, Wang W, Sun X. Comparison of clinical characteristics and disease burden between early- and late-onset type 2 diabetes patients: a population-based cohort study. BMC Public Health 2023; 23:2411. [PMID: 38049796 PMCID: PMC10696789 DOI: 10.1186/s12889-023-17280-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 11/21/2023] [Indexed: 12/06/2023] Open
Abstract
BACKGROUND The clinical characteristics of early-onset type 2 diabetes (T2D) patients are not fully understood. To address this gap, we conducted a cohort study to evaluate clinical characteristics and disease burden in the new-onset T2D population, especially regarding the progression of diseases. METHODS This cohort study was conducted using a population-based database. Patients who were diagnosed with T2D were identified from the database and were classified into early- (age < 40) and late-onset (age ≥ 40) groups. A descriptive analysis was performed to compare clinical characteristics and disease burden between early- and late-onset T2D patients. The progression of disease was compared using Kaplan‒Meier analysis. RESULTS A total of 652,290 type 2 diabetic patients were included. Of those, 21,347 were early-onset patients, and 300,676 were late-onset patients. Early-onset T2D patients had poorer glycemic control than late-onset T2D patients, especially at the onset of T2D (HbA1c: 9.3 [7.5, 10.9] for early-onset vs. 7.7 [6.8, 9.2] for late-onset, P < 0.001; random blood glucose: 10.9 [8.0, 14.3] for early-onset vs. 8.8 [6.9, 11.8] for late-onset, P < 0.001). Insulin was more often prescribed for early-onset patients (15.2%) than for late-onset patients (14.8%). Hypertension (163.0 [28.0, 611.0] days) and hyperlipidemia (114.0 [19.0, 537.0] days) progressed more rapidly among early-onset patients, while more late-onset patients developed hypertension (72.7% vs. 60.1%, P < 0.001), hyperlipidemia (65.4% vs. 51.0%, P < 0.001), cardiovascular diseases (66.0% vs. 26.7%, P < 0.001) and chronic kidney diseases (5.5% vs. 2.1%, P < 0.001) than early-onset patients. CONCLUSIONS Our study results indicate that patients with newly diagnosed early-onset T2D had earlier comorbidities of hypertension and hyperlipidemia. Both clinical characteristics and treatment patterns suggest that the degree of metabolic disturbance is more severe in patients with early-onset type 2 diabetes. This highlights the importance of promoting healthy diets or lifestyles to prevent T2D onset in young adults.
Collapse
Affiliation(s)
- Mingqi Wang
- Chinese Evidence-based Medicine Center and Cochrane China Center, West China Hospital, Sichuan University, 37 Guo Xue Xiang, Chengdu, 610041, Sichuan, China
- NMPA Key Laboratory for Real World Data Research and Evaluation in Hainan, West China Hospital, Sichuan University, 37 Guo Xue Xiang, Chengdu, 610041, China
- Sichuan Center of Technology Innovation for Real World Data, Chengdu, 610041, China
| | - Yifei He
- Chinese Evidence-based Medicine Center and Cochrane China Center, West China Hospital, Sichuan University, 37 Guo Xue Xiang, Chengdu, 610041, Sichuan, China
- NMPA Key Laboratory for Real World Data Research and Evaluation in Hainan, West China Hospital, Sichuan University, 37 Guo Xue Xiang, Chengdu, 610041, China
- Sichuan Center of Technology Innovation for Real World Data, Chengdu, 610041, China
| | - Qiao He
- Chinese Evidence-based Medicine Center and Cochrane China Center, West China Hospital, Sichuan University, 37 Guo Xue Xiang, Chengdu, 610041, Sichuan, China
- NMPA Key Laboratory for Real World Data Research and Evaluation in Hainan, West China Hospital, Sichuan University, 37 Guo Xue Xiang, Chengdu, 610041, China
- Sichuan Center of Technology Innovation for Real World Data, Chengdu, 610041, China
| | - Fusheng Di
- Department of Endocrinology, Tianjin Third Central Hospital, Tianjin, 300000, China
| | - Kang Zou
- Chinese Evidence-based Medicine Center and Cochrane China Center, West China Hospital, Sichuan University, 37 Guo Xue Xiang, Chengdu, 610041, Sichuan, China
- NMPA Key Laboratory for Real World Data Research and Evaluation in Hainan, West China Hospital, Sichuan University, 37 Guo Xue Xiang, Chengdu, 610041, China
- Sichuan Center of Technology Innovation for Real World Data, Chengdu, 610041, China
| | - Wen Wang
- Chinese Evidence-based Medicine Center and Cochrane China Center, West China Hospital, Sichuan University, 37 Guo Xue Xiang, Chengdu, 610041, Sichuan, China.
- NMPA Key Laboratory for Real World Data Research and Evaluation in Hainan, West China Hospital, Sichuan University, 37 Guo Xue Xiang, Chengdu, 610041, China.
- Sichuan Center of Technology Innovation for Real World Data, Chengdu, 610041, China.
| | - Xin Sun
- Chinese Evidence-based Medicine Center and Cochrane China Center, West China Hospital, Sichuan University, 37 Guo Xue Xiang, Chengdu, 610041, Sichuan, China.
- NMPA Key Laboratory for Real World Data Research and Evaluation in Hainan, West China Hospital, Sichuan University, 37 Guo Xue Xiang, Chengdu, 610041, China.
- Sichuan Center of Technology Innovation for Real World Data, Chengdu, 610041, China.
| |
Collapse
|
41
|
Liu J, Pan S, Wang X, Liu Z, Zhang Y. Role of advanced glycation end products in diabetic vascular injury: molecular mechanisms and therapeutic perspectives. Eur J Med Res 2023; 28:553. [PMID: 38042909 PMCID: PMC10693038 DOI: 10.1186/s40001-023-01431-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/04/2023] [Indexed: 12/04/2023] Open
Abstract
BACKGROUND In diabetic metabolic disorders, advanced glycation end products (AGEs) contribute significantly to the development of cardiovascular diseases (CVD). AIMS This comprehensive review aims to elucidate the molecular mechanisms underlying AGE-mediated vascular injury. CONCLUSIONS We discuss the formation and accumulation of AGEs, their interactions with cellular receptors, and the subsequent activation of signaling pathways leading to oxidative stress, inflammation, endothelial dysfunction, smooth muscle cell proliferation, extracellular matrix remodeling, and impaired angiogenesis. Moreover, we explore potential therapeutic strategies targeting AGEs and related pathways for CVD prevention and treatment in diabetic metabolic disorders. Finally, we address current challenges and future directions in the field, emphasizing the importance of understanding the molecular links between AGEs and vascular injury to improve patient outcomes.
Collapse
Affiliation(s)
- Jing Liu
- Department of Cardiology, Shaanxi Provincial People's Hospital, 256 Youyi Xi Rd, Xi'an, 710068, China
| | - Shuo Pan
- Department of Cardiology, Shaanxi Provincial People's Hospital, 256 Youyi Xi Rd, Xi'an, 710068, China
| | - Xiqiang Wang
- Department of Cardiology, Shaanxi Provincial People's Hospital, 256 Youyi Xi Rd, Xi'an, 710068, China
| | - Zhongwei Liu
- Department of Cardiology, Shaanxi Provincial People's Hospital, 256 Youyi Xi Rd, Xi'an, 710068, China.
- Affiliated Shaanxi Provincial People's Hospital, Medical Research Institute, Northwestern Polytechnical University, Xi'an, China.
| | - Yong Zhang
- Department of Cardiology, Shaanxi Provincial People's Hospital, 256 Youyi Xi Rd, Xi'an, 710068, China.
| |
Collapse
|
42
|
Tan SK, Cooper ME. Is clinical trial data showing positive progress for the treatment of diabetic kidney disease? Expert Opin Emerg Drugs 2023; 28:217-226. [PMID: 37897430 DOI: 10.1080/14728214.2023.2277762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 10/27/2023] [Indexed: 10/30/2023]
Affiliation(s)
- Seng Kiong Tan
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Diabetes Centre, Khoo Teck Puat Hospital, Singapore, Singapore
| | - Mark E Cooper
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
43
|
Estiri H, Bhattacharya S, Buitrago JAR, Castagna R, Legzdiņa L, Casucci G, Ricci A, Parisini E, Gautieri A. Tailoring FPOX enzymes for enhanced stability and expanded substrate recognition. Sci Rep 2023; 13:18610. [PMID: 37903872 PMCID: PMC10616090 DOI: 10.1038/s41598-023-45428-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/19/2023] [Indexed: 11/01/2023] Open
Abstract
Fructosyl peptide oxidases (FPOX) are deglycating enzymes that find application as key enzymatic components in diabetes monitoring devices. Indeed, their use with blood samples can provide a measurement of the concentration of glycated hemoglobin and glycated albumin, two well-known diabetes markers. However, the FPOX currently employed in enzymatic assays cannot directly detect whole glycated proteins, making it necessary to perform a preliminary proteolytic treatment of the target protein to generate small glycated peptides that can act as viable substrates for the enzyme. This is a costly and time consuming step. In this work, we used an in silico protein engineering approach to enhance the overall thermal stability of the enzyme and to improve its catalytic activity toward large substrates. The final design shows a marked improvement in thermal stability relative to the wild type enzyme, a distinct widening of its access tunnel and significant enzymatic activity towards a range of glycated substrates.
Collapse
Affiliation(s)
- Hajar Estiri
- Department of Biotechnology, Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga, 1006, Latvia
| | - Shapla Bhattacharya
- Department of Biotechnology, Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga, 1006, Latvia
- Faculty of Materials Science and Applied Chemistry, Riga Technical University, Paula Valdena 3, Riga, 1048, Latvia
| | | | - Rossella Castagna
- Department of Biotechnology, Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga, 1006, Latvia
- Dipartimento di Chimica, Materiali e Ingegneria Chimica "Giulio Natta", Politecnico di Milano, Piazza L. da Vinci 32, 20133, Milano, Italy
| | - Linda Legzdiņa
- Department of Biotechnology, Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga, 1006, Latvia
| | - Giorgia Casucci
- Department of Biotechnology, Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga, 1006, Latvia
| | - Andrea Ricci
- Biomolecular Engineering Lab, Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milano, Italy
| | - Emilio Parisini
- Department of Biotechnology, Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga, 1006, Latvia.
- Department of Chemistry "G. Ciamician", University of Bologna, Via Selmi 2, 40126, Bologna, Italy.
| | - Alfonso Gautieri
- Biomolecular Engineering Lab, Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milano, Italy.
| |
Collapse
|
44
|
Teaney NA, Cyr NE. FoxO1 as a tissue-specific therapeutic target for type 2 diabetes. Front Endocrinol (Lausanne) 2023; 14:1286838. [PMID: 37941908 PMCID: PMC10629996 DOI: 10.3389/fendo.2023.1286838] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/06/2023] [Indexed: 11/10/2023] Open
Abstract
Forkhead box O (FoxO) proteins are transcription factors that mediate many aspects of physiology and thus have been targeted as therapeutics for several diseases including metabolic disorders such as type 2 diabetes mellitus (T2D). The role of FoxO1 in metabolism has been well studied, but recently FoxO1's potential for diabetes prevention and therapy has been debated. For example, studies have shown that increased FoxO1 activity in certain tissue types contributes to T2D pathology, symptoms, and comorbidities, yet in other tissue types elevated FoxO1 has been reported to alleviate symptoms associated with diabetes. Furthermore, studies have reported opposite effects of active FoxO1 in the same tissue type. For example, in the liver, FoxO1 contributes to T2D by increasing hepatic glucose production. However, FoxO1 has been shown to either increase or decrease hepatic lipogenesis as well as adipogenesis in white adipose tissue. In skeletal muscle, FoxO1 reduces glucose uptake and oxidation, promotes lipid uptake and oxidation, and increases muscle atrophy. While many studies show that FoxO1 lowers pancreatic insulin production and secretion, others show the opposite, especially in response to oxidative stress and inflammation. Elevated FoxO1 in the hypothalamus increases the risk of developing T2D. However, increased FoxO1 may mitigate Alzheimer's disease, a neurodegenerative disease strongly associated with T2D. Conversely, accumulating evidence implicates increased FoxO1 with Parkinson's disease pathogenesis. Here we review FoxO1's actions in T2D conditions in metabolic tissues that abundantly express FoxO1 and highlight some of the current studies targeting FoxO1 for T2D treatment.
Collapse
Affiliation(s)
- Nicole A. Teaney
- Stonehill College, Neuroscience Program, Easton, MA, United States
| | - Nicole E. Cyr
- Stonehill College, Neuroscience Program, Easton, MA, United States
- Stonehill College, Department of Biology, Easton, MA, United States
| |
Collapse
|
45
|
Apte M, Khan MS, Bangar N, Gvalani A, Naz H, Tupe RS. Crosstalk between Aldosterone and Glycation through Rac-1 Induces Diabetic Nephropathy. ACS OMEGA 2023; 8:37264-37273. [PMID: 37841153 PMCID: PMC10568578 DOI: 10.1021/acsomega.3c05085] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 09/14/2023] [Indexed: 10/17/2023]
Abstract
Background: Advanced glycation end products (AGEs) interaction with its receptor (RAGE) and aldosterone (Aldo) through the mineralocorticoid receptor (MR) activates Rac-1 and NF-κB independently in diabetic nephropathy (DN). However, the crosstalk of Aldo with AGEs-RAGE is still unresolved. Our study examined the impact of the AGEs-Aldo complex on renal cells and its effect on the RAGE-MR interaction. Methods and results: Glycation of human serum albumin (HSA) (40 mg/mL) with methylglyoxal (10 mM) in the presence of Aldo (100 nM) and aminoguanidine (AG) (100 nM) was performed. Glycation markers such as fructosamine and carbonyl groups and fluorescence of AGEs, pentosidine, and tryptophan followed by protein modification were measured. Renal (HEK-293T) cells were treated with the glycated HSA-Aldo (200 μg/mL) along with FPS-ZM1 and spironolactone antagonists for RAGE and Aldo, respectively, for 24 h. Glycation markers and esRAGE levels were measured. Protein and mRNA levels of RAGE, MR, Rac-1, and NF-κB were estimated. Glycation markers were enhanced with Aldo when albumin was only 14-16% glycated. AGEs-Aldo complex upregulated RAGE, MR, Rac-1 and NF-κB expressions. However, FPS-ZM1 action might have activated the RAGE-independent pathway, further elevating MR, Rac-1, and NF-κB levels. Conclusion: Our study concluded that the presence of Aldo has a significant impact on glycation. In the presence of AGEs-Aldo, RAGE-MR crosstalk exerts inflammatory responses through Rac-1 in DN. Insights into this molecular interplay are crucial for developing novel therapeutic strategies to alleviate DN in the future.
Collapse
Affiliation(s)
- Mayura Apte
- Symbiosis
School of Biological Sciences, Symbiosis
International (Deemed University) (SIU), Lavale, Pune, Maharashtra State 412115, India
| | - Mohd Shahnawaz Khan
- Department
of Biochemistry, College of Science, King
Saud University, Riyadh 11451, Saudi Arabia
| | - Nilima Bangar
- Symbiosis
School of Biological Sciences, Symbiosis
International (Deemed University) (SIU), Lavale, Pune, Maharashtra State 412115, India
| | - Armaan Gvalani
- Symbiosis
School of Biological Sciences, Symbiosis
International (Deemed University) (SIU), Lavale, Pune, Maharashtra State 412115, India
| | - Huma Naz
- Department
of Internal Medicine, University of Missouri, Mizzou, Columbia, Missouri65211, United States
| | - Rashmi S. Tupe
- Symbiosis
School of Biological Sciences, Symbiosis
International (Deemed University) (SIU), Lavale, Pune, Maharashtra State 412115, India
| |
Collapse
|
46
|
Schütze K, Schopp M, Fairchild TJ, Needham M. Old muscle, new tricks: a clinician perspective on sarcopenia and where to next. Curr Opin Neurol 2023; 36:441-449. [PMID: 37501556 PMCID: PMC10487352 DOI: 10.1097/wco.0000000000001185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
PURPOSE OF REVIEW This review offers a contemporary clinical approach to the recognition, prevention and management of sarcopenia, and discusses recent clinically relevant advances in the aetiopathogenesis of muscle ageing that may lead to future therapeutic targets. RECENT FINDINGS The key recent directions for sarcopenia are in the diagnosis, understanding molecular mechanisms and management. Regarding the recognition of the condition, it has become increasingly clear that different definitions hamper progress in understanding. Therefore, the Global Leadership in Sarcopenia has been established in 2022 to develop a universally accepted definition. Moreover, substantial work is occurring to understand the various roles and contribution of inflammation, oxidative stress, mitochondrial dysfunction and metabolic dysregulation on skeletal muscle function and ageing. Finally, the role of resistance-based exercise regimes has been continually emphasised. However, the role of protein supplementation and hormone replacement therapy (HRT) are still under debate, and current clinical trials are underway. SUMMARY With the global ageing of our population, there is increasing emphasis on maintaining good health. Maintenance of skeletal muscle strength and function are key to preventing frailty, morbidity and death.
Collapse
Affiliation(s)
- Katie Schütze
- School of Medicine, The University of Notre Dame Australia, Fremantle
| | - Madeline Schopp
- School of Medicine, The University of Notre Dame Australia, Fremantle
| | - Timothy J. Fairchild
- Centre for Molecular Medicine & Innovative Therapeutics
- School of Allied Health, Murdoch University
| | - Merrilee Needham
- School of Medicine, The University of Notre Dame Australia, Fremantle
- Centre for Molecular Medicine & Innovative Therapeutics
- Perron Institute of Neurological and Translational Sciences, Nedlands
- Department of Neurology, Fiona Stanley Hospital, Murdoch, Western Australia, Australia
| |
Collapse
|
47
|
Oliveira AL, Medeiros ML, Ghezzi AC, Dos Santos GA, Mello GC, Mónica FZ, Antunes E. Evidence that methylglyoxal and receptor for advanced glycation end products are implicated in bladder dysfunction of obese diabetic ob/ ob mice. Am J Physiol Renal Physiol 2023; 325:F436-F447. [PMID: 37560771 DOI: 10.1152/ajprenal.00089.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/08/2023] [Accepted: 08/08/2023] [Indexed: 08/11/2023] Open
Abstract
Glycolytic overload in diabetes causes large accumulation of the highly reactive dicarbonyl compound methylglyoxal (MGO) and overproduction of advanced glycation end products (AGEs), which interact with their receptors (RAGE), leading to diabetes-associated macrovascular complications. The bladder is an organ that stays most in contact with dicarbonyl species, but little is known about the importance of the MGO-AGEs-RAGE pathway to diabetes-associated bladder dysfunction. Here, we aimed to investigate the role of the MGO-AGEs-RAGE pathway in bladder dysfunction of diabetic male and female ob/ob mice compared with wild-type (WT) lean mice. Diabetic ob/ob mice were treated with the AGE breaker alagebrium (ALT-711, 1 mg/kg) for 8 wk in drinking water. Compared with WT animals, male and female ob/ob mice showed marked hyperglycemia and insulin resistance, whereas fluid intake remained unaltered. Levels of total AGEs, MGO-derived hydroimidazolone 1, and RAGE in bladder tissues, as well as fluorescent AGEs in serum, were significantly elevated in ob/ob mice of either sex. Collagen content was also markedly elevated in the bladders of ob/ob mice. Void spot assays in filter paper in conscious mice revealed significant increases in total void volume and volume per void in ob/ob mice with no alterations of spot number. Treatment with ALT-711 significantly reduced the levels of MGO, AGEs, RAGE, and collagen content in ob/ob mice. In addition, ALT-711 treatment normalized the volume per void and increased the number of spots in ob/ob mice. Activation of AGEs-RAGE pathways by MGO in the bladder wall may contribute to the pathogenesis of diabetes-associated bladder dysfunction.NEW & NOTEWORTHY The involvement of methylglyoxal (MGO) and advanced glycation end products (AGEs) in bladder dysfunction of diabetic ob/ob mice treated with the AGE breaker ALT-711 was investigated here. Diabetic mice exhibited high levels of MGO, AGEs, receptor for AGEs (RAGE), and collagen in serum and/or bladder tissues along with increased volume per void, all of which were reduced by ALT-711. Activation of the MGO-AGEs-RAGE pathway in the bladder wall contributes to the pathogenesis of diabetes-associated bladder dysfunction.
Collapse
Affiliation(s)
- Akila L Oliveira
- Department of Translational Medicine, Pharmacology Area, Faculty of Medical Sciences, University of Campinas, Campinas, Brazil
| | - Matheus L Medeiros
- Department of Translational Medicine, Pharmacology Area, Faculty of Medical Sciences, University of Campinas, Campinas, Brazil
| | - Ana Carolina Ghezzi
- Department of Translational Medicine, Pharmacology Area, Faculty of Medical Sciences, University of Campinas, Campinas, Brazil
| | - Gabriel Alonso Dos Santos
- Department of Translational Medicine, Pharmacology Area, Faculty of Medical Sciences, University of Campinas, Campinas, Brazil
| | - Glaucia Coelho Mello
- Department of Translational Medicine, Pharmacology Area, Faculty of Medical Sciences, University of Campinas, Campinas, Brazil
| | - Fabíola Z Mónica
- Department of Translational Medicine, Pharmacology Area, Faculty of Medical Sciences, University of Campinas, Campinas, Brazil
| | - Edson Antunes
- Department of Translational Medicine, Pharmacology Area, Faculty of Medical Sciences, University of Campinas, Campinas, Brazil
| |
Collapse
|
48
|
Feng N, Feng Y, Tan J, Zhou C, Xu J, Chen Y, Xiao J, He Y, Wang C, Zhou M, Wu Q. Inhibition of advance glycation end products formation, gastrointestinal digestion, absorption and toxicity: A comprehensive review. Int J Biol Macromol 2023; 249:125814. [PMID: 37451379 DOI: 10.1016/j.ijbiomac.2023.125814] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 06/18/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Advanced glycation end-products (AGEs) are the final products of the non-enzymatic interaction between reducing sugars and amino groups in proteins, lipids and nucleic acids. In numerous diseases, such as diabetes, neuropathy, atherosclerosis, aging, nephropathy, retinopathy, and chronic renal illness, accumulation of AGEs has been proposed as a pathogenic mechanism of inflammation, oxidative stress, and structural tissue damage leading to chronic vascular issues. Current studies on the inhibition of AGEs mainly focused on food processing. However, there are few studies on the inhibition of AGEs during digestion, absorption and metabolism although there are still plenty of AGEs in our body with our daily diet. This review comprehensively expounded AGEs inhibition mechanism based on the whole process of digestion, absorption and metabolism by polyphenols, amino acids, hydrophilic colloid, carnosine and other new anti-glycation agents. Our study will provide a ground-breaking perspective on mediation or inhibition AGEs.
Collapse
Affiliation(s)
- Nianjie Feng
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei, 430068, China
| | - Yingna Feng
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei, 430068, China
| | - Jiangying Tan
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei, 430068, China
| | - Chen Zhou
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei, 430068, China
| | - Jianhua Xu
- Pinyuan (Suizhou) Modern Agriculture Development Co., LTD., Suizhou, Hubei 441300, China
| | - Yashu Chen
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Oil crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan, China
| | - Juan Xiao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Ministry of Education, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Engineering Research Center of Utilization of Tropical Polysaccharide Resources, School of Food Science and Engineering, Hainan University, Haikou, China
| | - Yi He
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Chao Wang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei, 430068, China
| | - Mengzhou Zhou
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei, 430068, China.
| | - Qian Wu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei, 430068, China.
| |
Collapse
|
49
|
Wu CY, Lin YH, Hsieh HH, Chung YH, Hsu ST, Peng SL. The effect of estrogen therapy on cerebral metabolism in diabetic female rats. Comput Struct Biotechnol J 2023; 21:4769-4776. [PMID: 37841332 PMCID: PMC10570627 DOI: 10.1016/j.csbj.2023.09.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 09/20/2023] [Accepted: 09/24/2023] [Indexed: 10/17/2023] Open
Abstract
The impact of estrogen on brain function, especially in individuals with diabetes, remains uncertain. This study aims to compare cerebral glucose metabolism levels in intact rats, ovariectomized (OVX) rats, and 17β-estradiol (E2)-treated OVX diabetic female rats. Sixteen rats were administered a single intraperitoneal injection of 70 mg/kg streptozotocin (STZ) to induce diabetes (intact, n = 6; OVX, n = 6; OVX+E2-treated, n = 4). Additionally, 18 rats received an equivalent solvent dose via intraperitoneal injection (intact, n = 6; OVX, n = 6; OVX+E2-treated, n = 6). After 4 weeks of STZ or solvent administration, positron emission tomography scans with 18F-fluorodeoxyglucose (18F-FDG) injection were employed to assess cerebral glucose metabolism. The diabetic rats exhibited substantial reductions in 18F-FDG uptake across all brain regions (all P < 0.01), in contrast to the control rats. Moreover, intact and OVX + E2-treated diabetic female rats displayed more pronounced decreases in cerebral glucose metabolism in the amygdala and hippocampus compared to OVX diabetic female rats (P < 0.05). These findings suggest that diabetes creates an environment wherein estrogen exacerbates neuropathology and intensifies neuronal activity.
Collapse
Affiliation(s)
- Chun-Yi Wu
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei Branch, Taipei, Taiwan
| | - Yu-Hsin Lin
- Department of Pharmacy, National Yang Ming Chiao Tung University, Taipei Branch, Taipei, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Hsin-Hua Hsieh
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei Branch, Taipei, Taiwan
| | - Yi-Hsiu Chung
- Center for Advanced Molecular Imaging and Translation, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Shih-Ting Hsu
- Center for Advanced Molecular Imaging and Translation, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Shin-Lei Peng
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, Taiwan
- Neuroscience and Brain Disease Center, China Medical University, Taiwan
| |
Collapse
|
50
|
Gu MJ, Lee HW, Yoo G, Kim D, Kim Y, Choi IW, Cha YS, Ha SK. Hippophae rhamnoides L. leaf extracts alleviate diabetic nephropathy via attenuation of advanced glycation end product-induced oxidative stress in db/db mice. Food Funct 2023; 14:8396-8408. [PMID: 37614189 DOI: 10.1039/d3fo01364b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Diabetes mellitus leads to chronic complications, such as nephropathy. Diabetic complications are closely related to advanced glycation end products (AGEs). Excessive formation and accumulation of AGEs in diabetic renal diseases lead to excessive oxidative stress, resulting in chronic renal failure. The leaves of Hippophae rhamnoides L. (sea buckthorn leaves; SBL) show biological benefits, including antioxidant effects. This study aimed to evaluate the effect of SBL on kidney damage in db/db mice. The SBL extract was orally administered at 100 and 200 mg kg-1 for 12 weeks to db/db mice. Histological changes and the urine albumin/creatinine ratio were relieved, and the accumulation of AGEs in kidney glomeruli decreased following SBL treatment. Moreover, the SBL extract reduced the expression of AGEs, the receptor for AGEs, and NADPH oxidase 4, but upregulated glyoxalase 1 in the diabetic renal tissue. Urinary excretion levels and expression of 8-hydroxy-2'-deoxyguanosine as a biomarker of oxidative stress decreased after SBL treatment in the renal tissue. Furthermore, SBL attenuated oxidative stress in diabetic kidneys by reducing AGE accumulation, thereby ameliorating renal damage. Therefore, from these results, we infer that the SBL extract can act as a potential therapeutic agent for diabetic renal complications caused by AGEs.
Collapse
Affiliation(s)
- Min Ji Gu
- Food Functionality Research Division, Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
- Department of Food Science and Human Nutrition (Human Ecology), Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Hee-Weon Lee
- Food Functionality Research Division, Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
| | - Guijae Yoo
- Food Functionality Research Division, Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Donghwan Kim
- Food Functionality Research Division, Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Yoonsook Kim
- Food Functionality Research Division, Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - In-Wook Choi
- Food Functionality Research Division, Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Youn-Soo Cha
- Department of Food Science and Human Nutrition (Human Ecology), Jeonbuk National University, Jeonju 54896, Republic of Korea
- K-Food Research Center, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Sang Keun Ha
- Food Functionality Research Division, Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
- Division of Food Biotechnology, University of Science and Technology, Daejeon, 34113, Republic of Korea
| |
Collapse
|