1
|
Thongyoo P, Chindaprasirt J, Aphivatanasiri C, Intarawichian P, Kunprom W, Kongpetch S, Techasen A, Loilome W, Namwat N, Titapun A, Jusakul A. KRAS Mutations in Cholangiocarcinoma: Prevalence, Prognostic Value, and KRAS G12/G13 Detection in Cell-Free DNA. Cancer Genomics Proteomics 2025; 22:112-126. [PMID: 39730186 PMCID: PMC11696325 DOI: 10.21873/cgp.20492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/23/2024] [Accepted: 10/01/2024] [Indexed: 12/29/2024] Open
Abstract
BACKGROUND/AIM Cholangiocarcinoma (CCA) is an aggressive hepatobiliary malignancy characterized by genomic heterogeneity. KRAS mutations play a significant role in influencing patient prognosis and guiding therapeutic decision-making. This study aimed to determine the prevalence and prognostic significance of KRAS mutations in CCA, asses the detection of KRAS G12/G13 mutations in plasma cell-free DNA (cfDNA), and evaluate the prognostic value of KRAS G12/G13 mutant allele frequency (MAF) in cfDNA in relation to clinicopathological data and patient survival. MATERIALS AND METHODS A retrospective analysis of 937 CCA patients was performed using data from cBioPortal to examine KRAS mutation profiles and their association with survival. Plasma from 101 CCA patients was analyzed for KRAS G12/G13 mutations in the cfDNA using droplet digital PCR, and the results were compared with tissue-based sequencing from 78 matched samples. RESULTS KRAS driver mutations were found in 15.6% of patients, with common variants being G12D (37.0%), G12V (24.0%) and Q61H (8.2%). Patients harboring KRAS mutations exhibited decreased overall and recurrence-free survival. KRAS G12/G13 mutations were detected in 14.9% of cfDNA samples, showing moderate concordance with tissue sequencing, and achieving 80% sensitivity and 93% specificity. Elevated KRAS G12/G13 MAF in cfDNA, combined with high CA19-9 levels, correlated with poorer survival outcomes. CONCLUSION The presence of KRAS mutations was associated with poor survival in CCA, underscoring the importance of KRAS mutations as prognostic markers. The detection of KRAS mutations in cfDNA demonstrated potential as a promising non-invasive alternative for mutation detection and, when combined with CA19-9 levels, may improve prognostic efficacy in CCA.
Collapse
Affiliation(s)
- Pitchasak Thongyoo
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Jarin Chindaprasirt
- Medical Oncology Program, Department of Internal Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | | | | | - Waritta Kunprom
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Sarinya Kongpetch
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Anchalee Techasen
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Watcharin Loilome
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
- Department of Systems Biosciences and Computational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Nisana Namwat
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
- Department of Systems Biosciences and Computational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Attapol Titapun
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
- Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Apinya Jusakul
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand;
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
2
|
Areewong S, Suppramote O, Prasopporn S, Jirawatnotai S. Exploiting acquired vulnerability to develop novel treatments for cholangiocarcinoma. Cancer Cell Int 2024; 24:362. [PMID: 39501277 PMCID: PMC11539612 DOI: 10.1186/s12935-024-03548-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 10/26/2024] [Indexed: 11/08/2024] Open
Abstract
Cholangiocarcinoma (CCA) presents a formidable therapeutic challenge due to its extensive heterogeneity and plasticity, which inevitably lead to acquired resistance to current treatments. However, recent evidence suggests that acquired drug resistance is associated with a fitness cost resulting from the myriad of acquired alterations under the selective pressure of the primary treatment. Consequently, CCA patients with acquired resistance are more susceptible to alternative therapies that are ineffective as monotherapies. This phenomenon, termed "acquired vulnerability," has garnered significant interest in drug development, as the acquired alterations could potentially be exploited therapeutically. This review elucidates the modes of acquired vulnerability, methods for identifying and exploiting acquired vulnerabilities in cancer (particularly in CCA), and strategies to enhance the clinical efficacy of drug combinations by leveraging the principle of acquired vulnerability. Identifying acquired vulnerabilities may pave the way for novel drug combinations to effectively treat highly heterogeneous and adaptable malignancies such as CCA.
Collapse
Affiliation(s)
- Sirayot Areewong
- Siriraj Center of Research Excellence (SiCORE) for Systems Pharmacology, Department of Pharmacology, Faculty of Medicine, Siriraj Hospital, Mahidol University, 2 Wanglang Rd., 11th Floor Srisavarindhira Building, Bangkok Noi, 10700, Bangkok, Thailand
| | - Orawan Suppramote
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, 906 Kampangpetch 6 Rd., Talat Bang Khen, Lak Si, 10210, Bangkok, Thailand
| | - Sunisa Prasopporn
- Siriraj Center of Research Excellence (SiCORE) for Systems Pharmacology, Department of Pharmacology, Faculty of Medicine, Siriraj Hospital, Mahidol University, 2 Wanglang Rd., 11th Floor Srisavarindhira Building, Bangkok Noi, 10700, Bangkok, Thailand
| | - Siwanon Jirawatnotai
- Siriraj Center of Research Excellence (SiCORE) for Systems Pharmacology, Department of Pharmacology, Faculty of Medicine, Siriraj Hospital, Mahidol University, 2 Wanglang Rd., 11th Floor Srisavarindhira Building, Bangkok Noi, 10700, Bangkok, Thailand.
- Faculty of Pharmacy, Silpakorn University, 6 Ratchamankanai Road., Phra Pathom Chedi Sub-district, Mueang District, 73000, Nakhon Pathom, Thailand.
| |
Collapse
|
3
|
Tenekeci AK, Unal AA, Ceylan F, Nahit Sendur MA. An updated overview of K-RAS G12C inhibitors in advanced stage non-small cell lung cancer. Future Oncol 2024; 20:3019-3038. [PMID: 39360933 PMCID: PMC11572139 DOI: 10.1080/14796694.2024.2407280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 09/18/2024] [Indexed: 11/16/2024] Open
Abstract
The discovery of KRAS mutations, particularly the KRASG12C variant, has been a milestone in understanding the molecular underpinnings of non-small cell lung cancer (NSCLC). These mutations are associated with aggressive tumor behavior and resistance to conventional therapies, highlighting the urgent need for targeted interventions. In this comprehensive review, we analyze the advancements in KRAS G12C inhibitors for the treatment of non-small cell lung cancer. Literature search is made from PubMed, Medline ASCO and ESMO Annual Meetings abstracts by using the following search keywords: "sotorasib", "adagrasib", "divarasib" and "KRAS G12C inhibitors." The last search was on 5 June 2024. This review highlights the importance of pharmacokinetics, pharmacodynamics and potential adverse effects for treating individual patients and ensuring the best outcomes. Additionally, the review discusses research identifying biomarkers that can predict therapy responses and mentions the combination strategies to overcome resistance. Results of the studies and ongoing clinical trials are also briefly summarized in this review. KRASG12C inhibitors sotorasib, adagrasib and the newer divarasib, has revolutionized treating patients harboring this mutation. Ongoing studies and future clinical trials will refine our understandings with the ultimate goal of improving survival and quality of life for patients with this challenging disease.
Collapse
Affiliation(s)
| | | | - Furkan Ceylan
- Ankara Bilkent City Hospital, Department of Medical Oncology, Ankara, Turkey
| | - Mehmet Ali Nahit Sendur
- Ankara Yildirim Beyazit University Faculty of Medicine and Ankara Bilkent City Hospital, Department of Medical Oncology, Ankara, Turkey
| |
Collapse
|
4
|
Choi Y, Dharia NV, Jun T, Chang J, Royer-Joo S, Yau KK, Assaf ZJ, Aimi J, Sivakumar S, Montesion M, Sacher A, LoRusso P, Desai J, Schutzman JL, Shi Z, and the GO42144 study group. Circulating Tumor DNA Dynamics Reveal KRAS G12C Mutation Heterogeneity and Response to Treatment with the KRAS G12C Inhibitor Divarasib in Solid Tumors. Clin Cancer Res 2024; 30:3788-3797. [PMID: 38995268 PMCID: PMC11369623 DOI: 10.1158/1078-0432.ccr-24-0255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/26/2024] [Accepted: 07/10/2024] [Indexed: 07/13/2024]
Abstract
PURPOSE To inform prognosis, treatment response, disease biology, and KRAS G12C mutation heterogeneity, we conducted exploratory circulating tumor DNA (ctDNA) profiling on 134 patients with solid tumors harboring a KRAS G12C mutation treated with single-agent divarasib (GDC-6036) in a phase 1 study. EXPERIMENTAL DESIGN Plasma samples were collected for serial ctDNA profiling at baseline (cycle 1 day 1 prior to treatment) and multiple on-treatment time points (cycle 1 day 15 and cycle 3 day 1). RESULTS KRAS G12C ctDNA was detectable from plasma samples in 72.9% (43/59) and 92.6% (50/54) of patients with non-small cell lung cancer and colorectal cancer, respectively, the majority of whom were eligible for study participation based on a local test detecting the KRAS G12C mutation in tumor tissue. Baseline ctDNA tumor fraction was associated with tumor type, disease burden, and metastatic sites. A decline in ctDNA level was observed as early as cycle 1 day 15. Serial assessment showed a decline in ctDNA tumor fraction associated with response and progression-free survival. Except for a few cases of KRAS G12C sub-clonality, on-treatment changes in KRAS G12C variant allele frequency mirrored changes in the overall ctDNA tumor fraction. CONCLUSIONS Across tumor types, the KRAS G12C mutation likely represents a truncal mutation in the majority of patients. Rapid and deep decline in ctDNA tumor fraction was observed in patients responding to divarasib treatment. Early on-treatment dynamics of ctDNA were associated with patient outcomes and tumor response to divarasib treatment.
Collapse
Affiliation(s)
- Yoonha Choi
- Genentech, Inc., South San Francisco, California.
| | | | - Tomi Jun
- Genentech, Inc., South San Francisco, California.
| | - Julie Chang
- Genentech, Inc., South San Francisco, California.
| | | | | | - Zoe J. Assaf
- Genentech, Inc., South San Francisco, California.
| | - Junko Aimi
- Genentech, Inc., South San Francisco, California.
| | | | | | - Adrian Sacher
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada.
- Department of Medicine, University of Toronto, Toronto, Canada.
- Department of Immunology, University of Toronto, Toronto, Canada.
| | | | - Jayesh Desai
- Peter MacCallum Cancer Centre, Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia.
| | | | - Zhen Shi
- Genentech, Inc., South San Francisco, California.
| | | |
Collapse
|
5
|
Heumann P, Albert A, Gülow K, Tümen D, Müller M, Kandulski A. Current and Future Therapeutic Targets for Directed Molecular Therapies in Cholangiocarcinoma. Cancers (Basel) 2024; 16:1690. [PMID: 38730642 PMCID: PMC11083102 DOI: 10.3390/cancers16091690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/17/2024] [Accepted: 04/21/2024] [Indexed: 05/13/2024] Open
Abstract
We conducted a comprehensive review of the current literature of published data, clinical trials (MEDLINE; ncbi.pubmed.com), congress contributions (asco.org; esmo.org), and active recruiting clinical trains (clinicaltrial.gov) on targeted therapies in cholangiocarcinoma. Palliative treatment regimens were analyzed as well as preoperative and perioperative treatment options. We summarized the current knowledge for each mutation and molecular pathway that is or has been under clinical evaluation and discussed the results on the background of current treatment guidelines. We established and recommended targeted treatment options that already exist for second-line settings, including IDH-, BRAF-, and NTRK-mutated tumors, as well as for FGFR2 fusion, HER2/neu-overexpression, and microsatellite instable tumors. Other options for targeted treatment include EGFR- or VEGF-dependent pathways, which are known to be overexpressed or dysregulated in this cancer type and are currently under clinical investigation. Targeted therapy in CCA is a hallmark of individualized medicine as these therapies aim to specifically block pathways that promote cancer cell growth and survival, leading to tumor shrinkage and improved patient outcomes based on the molecular profile of the tumor.
Collapse
Affiliation(s)
- Philipp Heumann
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases University Hospital Regensburg Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany
| | | | | | | | | | - Arne Kandulski
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases University Hospital Regensburg Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany
| |
Collapse
|
6
|
Huang Y, Zheng D, Zhou Z, Wang H, Li Y, Zheng H, Tan J, Wu J, Yang Q, Tian H, Lin L, Li Z, Li T. The research advances in Kirsten rat sarcoma viral oncogene homolog (KRAS)-related cancer during 2013 to 2022: a scientometric analysis. Front Oncol 2024; 14:1345737. [PMID: 38706597 PMCID: PMC11066287 DOI: 10.3389/fonc.2024.1345737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/08/2024] [Indexed: 05/07/2024] Open
Abstract
Introduction Cancer represents a significant global public health concern. In recent years, the incidence of cancer has been on the rise worldwide due to various factors, including diet, environment, and an aging population. Simultaneously, advancements in tumor molecular biology and genomics have led to a shift from systemic chemotherapy focused on disease sites and morphopathology towards precise targeted therapy for driver gene mutations. Therefore, we propose a comprehensive review aimed at exploring the research hotspots and directions in the field of Kirsten rat sarcoma viral oncogene homolog (KRAS)-mutant cancers over the past decade, providing valuable insights for cancer treatment strategies. Specifically, we aim to present an intellectual landscape using data obtained from the Web of Science (WoS) regarding KRAS mutation. Methods Bibliometrix, VOSviewer, CiteSpace, and HistCite were employed to conduct scientometric analyses on national publications, influential authors, highly cited articles, frequent keywords, etc. Results A total of 16,609 publications met the screening criteria and exhibited a consistent annual growth trend overall. Among 102 countries/regions, the United States occupied the vast majority share of the published volume. The journal Oncotarget had the highest circulation among all scientific publications. Moreover, the most seminal articles in this field primarily focus on biology and targeted therapies, with overcoming drug resistance being identified as a future research direction. Conclusion The findings of the thematic analysis indicate that KRAS mutation in lung cancer, the prognosis following B-Raf proto-oncogene, serine/threonine kinase (BRAF) or rat sarcoma (RAS) mutations, and anti-epidermal growth factor receptor (EGFR)-related lung cancer are the significant hotspots in the given field. Considering the significant advancements made in direct targeting drugs like sotorasib, it is anticipated that interest in cancers associated with KRAS mutations will remain steadfast.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Zhiyang Li
- Department of Thyroid, Breast and Hernia Surgery, General Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Tianyu Li
- Department of Thyroid, Breast and Hernia Surgery, General Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| |
Collapse
|
7
|
Patelli G, Mauri G, Tosi F, Amatu A, Bencardino K, Bonazzina E, Pizzutilo EG, Villa F, Calvanese G, Agostara AG, Stabile S, Ghezzi S, Crisafulli G, Di Nicolantonio F, Marsoni S, Bardelli A, Siena S, Sartore-Bianchi A. Circulating Tumor DNA to Drive Treatment in Metastatic Colorectal Cancer. Clin Cancer Res 2023; 29:4530-4539. [PMID: 37436743 PMCID: PMC10643999 DOI: 10.1158/1078-0432.ccr-23-0079] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/28/2023] [Accepted: 06/23/2023] [Indexed: 07/13/2023]
Abstract
In the evolving molecular treatment landscape of metastatic colorectal cancer (mCRC), the identification of druggable alterations is pivotal to achieve the best therapeutic opportunity for each patient. Because the number of actionable targets is expanding, there is the need to timely detect their presence or emergence to guide the choice of different available treatment options. Liquid biopsy, through the analysis of circulating tumor DNA (ctDNA), has proven safe and effective as a complementary method to address cancer evolution while overcoming the limitations of tissue biopsy. Even though data are accumulating regarding the potential for ctDNA-guided treatments applied to targeted agents, still major gaps in knowledge exist as for their application to different areas of the continuum of care. In this review, we recapitulate how ctDNA information could be exploited to drive different targeted treatment strategies in mCRC patients, by refining molecular selection before treatment by addressing tumor heterogeneity beyond tumor tissue biopsy; longitudinally monitoring early-tumor response and resistance mechanisms to targeted agents, potentially leading to tailored, molecular-driven, therapeutic options; guiding the molecular triage towards rechallenge strategies with anti-EGFR agents, suggesting the best time for retreatment; and providing opportunities for an "enhanced rechallenge" through additional treatments or combos aimed at overcoming acquired resistance. Besides, we discuss future perspectives concerning the potential role of ctDNA to fine-tune investigational strategies such as immuno-oncology.
Collapse
Affiliation(s)
- Giorgio Patelli
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
- Department of Hematology, Oncology, and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, Milan, Italy
- IFOM ETS – The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Gianluca Mauri
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
- Department of Hematology, Oncology, and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, Milan, Italy
- IFOM ETS – The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Federica Tosi
- Department of Hematology, Oncology, and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Alessio Amatu
- Department of Hematology, Oncology, and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Katia Bencardino
- Department of Hematology, Oncology, and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Erica Bonazzina
- Department of Hematology, Oncology, and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Elio Gregory Pizzutilo
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
- Department of Hematology, Oncology, and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Federica Villa
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
- Department of Hematology, Oncology, and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Gabriele Calvanese
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
- Department of Hematology, Oncology, and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Alberto Giuseppe Agostara
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
- Department of Hematology, Oncology, and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Stefano Stabile
- Department of Hematology, Oncology, and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Silvia Ghezzi
- Department of Hematology, Oncology, and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | | | - Federica Di Nicolantonio
- Candiolo Cancer Institute, Fondazione del Piemonte per l'Oncologia-IRCCS, Candiolo, Italy
- Department of Oncology, University of Torino, Candiolo, Italy
| | - Silvia Marsoni
- IFOM ETS – The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Alberto Bardelli
- Candiolo Cancer Institute, Fondazione del Piemonte per l'Oncologia-IRCCS, Candiolo, Italy
- Department of Oncology, University of Torino, Candiolo, Italy
| | - Salvatore Siena
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
- Department of Hematology, Oncology, and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Andrea Sartore-Bianchi
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
- Department of Hematology, Oncology, and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, Milan, Italy
- Division of Clinical Research and Innovation, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| |
Collapse
|
8
|
Ooki A, Osumi H, Fukuda K, Yamaguchi K. Potent molecular-targeted therapies for gastro-entero-pancreatic neuroendocrine carcinoma. Cancer Metastasis Rev 2023; 42:1021-1054. [PMID: 37422534 PMCID: PMC10584733 DOI: 10.1007/s10555-023-10121-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 06/16/2023] [Indexed: 07/10/2023]
Abstract
Neuroendocrine neoplasms (NENs), which are characterized by neuroendocrine differentiation, can arise in various organs. NENs have been divided into well-differentiated neuroendocrine tumors (NETs) and poorly differentiated neuroendocrine carcinomas (NECs) based on morphological differentiation, each of which has a distinct etiology, molecular profile, and clinicopathological features. While the majority of NECs originate in the pulmonary organs, extrapulmonary NECs occur most predominantly in the gastro-entero-pancreatic (GEP) system. Although platinum-based chemotherapy is the main therapeutic option for recurrent or metastatic GEP-NEC patients, the clinical benefits are limited and associated with a poor prognosis, indicating the clinically urgent need for effective therapeutic agents. The clinical development of molecular-targeted therapies has been hampered due to the rarity of GEP-NECs and the paucity of knowledge on their biology. In this review, we summarize the biology, current treatments, and molecular profiles of GEP-NECs based on the findings of pivotal comprehensive molecular analyses; we also highlight potent therapeutic targets for future precision medicine based on the most recent results of clinical trials.
Collapse
Affiliation(s)
- Akira Ooki
- Department of Gastroenterological Chemotherapy, Cancer Institute Hospital of the Japanese Foundation for Cancer Research, Tokyo, Japan.
| | - Hiroki Osumi
- Department of Gastroenterological Chemotherapy, Cancer Institute Hospital of the Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Koshiro Fukuda
- Department of Gastroenterological Chemotherapy, Cancer Institute Hospital of the Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Kensei Yamaguchi
- Department of Gastroenterological Chemotherapy, Cancer Institute Hospital of the Japanese Foundation for Cancer Research, Tokyo, Japan
| |
Collapse
|
9
|
Lee MS, Kaseb AO, Pant S. The Emerging Role of Circulating Tumor DNA in Non-Colorectal Gastrointestinal Cancers. Clin Cancer Res 2023; 29:3267-3274. [PMID: 37092904 DOI: 10.1158/1078-0432.ccr-22-3626] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/09/2023] [Accepted: 03/31/2023] [Indexed: 04/25/2023]
Abstract
Assays to detect circulating tumor DNA (ctDNA) have multiple clinically important applications in management of multiple types of gastrointestinal cancers. Different methodologies of ctDNA detection have varying sensitivities and potential applications in different contexts. For patients with localized cancers treated for curative intent, ctDNA detection is associated with prognosis in multiple cancer types, and persistent detection of ctDNA after surgical resection is highly concerning for minimal residual disease (MRD) and forebodes impending radiographic and clinical recurrence. CtDNA assays for comprehensive genomic profiling enable genotyping of cancers in the absence of tumor tissue data, and longitudinal testing can also characterize clonal evolution and emergence of putative resistance mechanisms upon treatment with targeted agents. These applications have proven instructive in patients with HER2-amplified gastric and esophageal cancers and in patients with FGFR2 fusion cholangiocarcinomas. In this review, we summarize data supporting the role of ctDNA as a novel predictive and prognostic biomarker and potential impacts on current management of patients with pancreatic, gastroesophageal, and hepatobiliary cancers.
Collapse
Affiliation(s)
- Michael S Lee
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ahmed O Kaseb
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Shubham Pant
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
10
|
Springfeld C, Ferrone CR, Katz MHG, Philip PA, Hong TS, Hackert T, Büchler MW, Neoptolemos J. Neoadjuvant therapy for pancreatic cancer. Nat Rev Clin Oncol 2023; 20:318-337. [PMID: 36932224 DOI: 10.1038/s41571-023-00746-1] [Citation(s) in RCA: 180] [Impact Index Per Article: 90.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2023] [Indexed: 03/19/2023]
Abstract
Patients with localized pancreatic ductal adenocarcinoma (PDAC) are best treated with surgical resection of the primary tumour and systemic chemotherapy, which provides considerably longer overall survival (OS) durations than either modality alone. Regardless, most patients will have disease relapse owing to micrometastatic disease. Although currently a matter of some debate, considerable research interest has been focused on the role of neoadjuvant therapy for all forms of resectable PDAC. Whilst adjuvant combination chemotherapy remains the standard of care for patients with resectable PDAC, neoadjuvant chemotherapy seems to improve OS without necessarily increasing the resection rate in those with borderline-resectable disease. Furthermore, around 20% of patients with unresectable non-metastatic PDAC might undergo resection following 4-6 months of induction combination chemotherapy with or without radiotherapy, even in the absence of a clear radiological response, leading to improved OS outcomes in this group. Distinct molecular and biological responses to different types of therapies need to be better understood in order to enable the optimal sequencing of specific treatment modalities to further improve OS. In this Review, we describe current treatment strategies for the various clinical stages of PDAC and discuss developments that are likely to determine the optimal sequence of multimodality therapies by integrating the fundamental clinical and molecular features of the cancer.
Collapse
Affiliation(s)
- Christoph Springfeld
- Department of Medical Oncology, National Center for Tumour Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Matthew H G Katz
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Philip A Philip
- Wayne State University School of Medicine, Department of Oncology, Henry Ford Cancer Institute, Detroit, MI, USA
| | - Theodore S Hong
- Research and Scientific Affairs, Gastrointestinal Service Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Thilo Hackert
- Department of General, Visceral and Thoracic Surgery, University hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Markus W Büchler
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - John Neoptolemos
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany.
| |
Collapse
|
11
|
Santarpia M, Ciappina G, Spagnolo CC, Squeri A, Passalacqua MI, Aguilar A, Gonzalez-Cao M, Giovannetti E, Silvestris N, Rosell R. Targeted therapies for KRAS-mutant non-small cell lung cancer: from preclinical studies to clinical development-a narrative review. Transl Lung Cancer Res 2023; 12:346-368. [PMID: 36895930 PMCID: PMC9989806 DOI: 10.21037/tlcr-22-639] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 02/03/2023] [Indexed: 02/25/2023]
Abstract
Background and Objective Non-small cell lung cancer (NSCLC) with Kirsten rat sarcoma viral oncogene homolog (KRAS) driver alterations harbors a poor prognosis with standard therapies, including chemotherapy and/or immunotherapy with anti-programmed cell death protein 1 (anti-PD-1) or anti-programmed death ligand-1 (anti-PD-L1) antibodies. Selective KRAS G12C inhibitors have been shown to provide significant clinical benefit in pretreated NSCLC patients with KRAS G12C mutation. Methods In this review, we describe KRAS and the biology of KRAS-mutant tumors and review data from preclinical studies and clinical trials on KRAS-targeted therapies in NSCLC patients with KRAS G12C mutation. Key Content and Findings KRAS is the most frequently mutated oncogene in human cancer. The G12C is the most common KRAS mutation found in NSCLC. Sotorasib is the first, selective KRAS G12C inhibitor to receive approval based on demonstration of significant clinical benefit and tolerable safety profile in previously treated, KRAS G12C-mutated NSCLC. Adagrasib, a highly selective covalent inhibitor of KRAS G12C, has also shown efficacy in pretreated patients and other novel KRAS inhibitors are being under evaluation in early-phase studies. Similarly to other oncogene-directed therapies, mechanisms of intrinsic and acquired resistance limiting the activity of these agents have been described. Conclusions The discovery of selective KRAS G12C inhibitors has changed the therapeutic scenario of KRAS G12C-mutant NSCLC. Various studies testing KRAS inhibitors in different settings of disease, as single-agent or in combination with targeted agents for synthetic lethality and immunotherapy, are currently ongoing in this molecularly-defined subgroup of patients to further improve clinical outcomes.
Collapse
Affiliation(s)
- Mariacarmela Santarpia
- Department of Human Pathology "G. Barresi", Medical Oncology Unit, University of Messina, Messina, Italy
| | - Giuliana Ciappina
- Department of Human Pathology "G. Barresi", Medical Oncology Unit, University of Messina, Messina, Italy
| | - Calogera Claudia Spagnolo
- Department of Human Pathology "G. Barresi", Medical Oncology Unit, University of Messina, Messina, Italy
| | - Andrea Squeri
- Department of Human Pathology "G. Barresi", Medical Oncology Unit, University of Messina, Messina, Italy
| | - Maria Ilenia Passalacqua
- Department of Human Pathology "G. Barresi", Medical Oncology Unit, University of Messina, Messina, Italy
| | - Andrés Aguilar
- Oncology Institute Dr. Rosell, IOR, Dexeus University Hospital, Barcelona, Spain
| | - Maria Gonzalez-Cao
- Oncology Institute Dr. Rosell, IOR, Dexeus University Hospital, Barcelona, Spain
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands.,Cancer Pharmacology Lab, Fondazione Pisana per La Scienza, San Giuliano, Italy
| | - Nicola Silvestris
- Department of Human Pathology "G. Barresi", Medical Oncology Unit, University of Messina, Messina, Italy
| | - Rafael Rosell
- Oncology Institute Dr. Rosell, IOR, Dexeus University Hospital, Barcelona, Spain.,Catalan Institute of Oncology, ICO, Badalona, Spain
| |
Collapse
|
12
|
Roth GS, Neuzillet C, Sarabi M, Edeline J, Malka D, Lièvre A. Cholangiocarcinoma: what are the options in all comers and how has the advent of molecular profiling opened the way to personalised medicine ? Eur J Cancer 2023; 179:1-14. [PMID: 36463640 DOI: 10.1016/j.ejca.2022.11.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/31/2022] [Accepted: 11/05/2022] [Indexed: 11/13/2022]
Abstract
Cholangiocarcinoma is a deadly cancer comprising very heterogenous subtypes with a limited therapeutic arsenal in all comers. However, recent significant advances were made with immunotherapy in the first-line treatment of advanced cholangiocarcinoma, with the addition of durvalumab to cisplatin-gemcitabine chemotherapy showing a survival benefit. In the second line setting, only FOLFOX (5FU/folinic acid-oxaliplatin) is validated by a phase 3 trial, yet with a very modest benefit on survival; new options using 5FU with nanoliposomal-irinotecan may emerge in the next few years. The advent of molecular profiling in advanced cholangiocarcinoma in the last decade revealed frequent targetable alterations such as IDH1 mutations, FGFR2 fusions or rearrangements, HER2 amplification, BRAF V600E mutation and others. This strategy opened the way to personalised medicine for patients which are still fit after first-line treatment and the use of targeted inhibitors in first line constitutes a huge challenge with many ongoing trials to improve patients' care. This review exposes the recent clinical trial findings in non-molecularly selected advanced cholangiocarcinoma, offers a focus on how systematic molecular screening should be structured to allow patients to access to personalised medicine, and details which are the therapeutic options accessible in case of actionable alteration.
Collapse
Affiliation(s)
- Gael S Roth
- Univ. Grenoble Alpes / Hepato-Gastroenterology and Digestive Oncology Department, CHU Grenoble Alpes / Institute for Advanced Biosciences, CNRS UMR 5309-INSERM U1209, Grenoble, France.
| | - Cindy Neuzillet
- Institut Curie, Versailles Saint-Quentin University - Paris Saclay University, Saint-Cloud, France
| | - Matthieu Sarabi
- Medical Oncology Department, Centre Léon Bérard, 28 Rue Laennec, Lyon 69008, France; Tumor Escape, Resistance and Immunity Department, Centre de Recherche en Cancérologie de Lyon, INSERM 1052, CNRS 5286, Lyon, France
| | | | - David Malka
- Medical Oncology, Institut Mutualiste Montsouris, Paris, France
| | - Astrid Lièvre
- Department of Gastroenterology, Rennes University Hospital, University of Rennes 1, INSERM Unité 1242, Rennes, France
| |
Collapse
|
13
|
Buszka K, Ntzifa A, Owecka B, Kamińska P, Kolecka-Bednarczyk A, Zabel M, Nowicki M, Lianidou E, Budna-Tukan J. Liquid Biopsy Analysis as a Tool for TKI-Based Treatment in Non-Small Cell Lung Cancer. Cells 2022; 11:2871. [PMID: 36139444 PMCID: PMC9497234 DOI: 10.3390/cells11182871] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 12/03/2022] Open
Abstract
The treatment of non-small cell lung cancer (NSCLC) has recently evolved with the introduction of targeted therapy based on the use of tyrosine kinase inhibitors (TKIs) in patients with certain gene alterations, including EGFR, ALK, ROS1, BRAF, and MET genes. Molecular targeted therapy based on TKIs has improved clinical outcomes in a large number of NSCLC patients with advanced disease, enabling significantly longer progression-free survival (PFS). Liquid biopsy is an increasingly popular diagnostic tool for treating TKI-based NSCLC. The studies presented in this article show that detection and analysis based on liquid biopsy elements such as circulating tumor cells (CTCs), cell-free DNA (cfDNA), exosomes, and/or tumor-educated platelets (TEPs) can contribute to the appropriate selection and monitoring of targeted therapy in NSCLC patients as complementary to invasive tissue biopsy. The detection of these elements, combined with their molecular analysis (using, e.g., digital PCR (dPCR), next generation sequencing (NGS), shallow whole genome sequencing (sWGS)), enables the detection of mutations, which are required for the TKI treatment. Despite such promising results obtained by many research teams, it is still necessary to carry out prospective studies on a larger group of patients in order to validate these methods before their application in clinical practice.
Collapse
Affiliation(s)
- Karolina Buszka
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland
- Doctoral School, Poznan University of Medical Sciences, 60-812 Poznan, Poland
| | - Aliki Ntzifa
- Analysis of Circulating Tumor Cells Lab, Lab of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Barbara Owecka
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland
| | - Paula Kamińska
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland
- Doctoral School, Poznan University of Medical Sciences, 60-812 Poznan, Poland
| | - Agata Kolecka-Bednarczyk
- Department of Immunology, Chair of Pathomorphology and Clinical Immunology, Poznan University of Medical Sciences, 60-806 Poznan, Poland
| | - Maciej Zabel
- Division of Anatomy and Histology, University of Zielona Góra, 65-046 Zielona Góra, Poland
| | - Michał Nowicki
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland
| | - Evi Lianidou
- Analysis of Circulating Tumor Cells Lab, Lab of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Joanna Budna-Tukan
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland
| |
Collapse
|