BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Chakrabarti G, Moore ZR, Luo X, Ilcheva M, Ali A, Padanad M, Zhou Y, Xie Y, Burma S, Scaglioni PP, Cantley LC, DeBerardinis RJ, Kimmelman AC, Lyssiotis CA, Boothman DA. Targeting glutamine metabolism sensitizes pancreatic cancer to PARP-driven metabolic catastrophe induced by ß-lapachone. Cancer Metab 2015;3:12. [PMID: 26462257 DOI: 10.1186/s40170-015-0137-1] [Cited by in Crossref: 75] [Cited by in F6Publishing: 70] [Article Influence: 10.7] [Reference Citation Analysis]
Number Citing Articles
1 Matés JM, Campos-sandoval JA, Márquez J. Glutaminase isoenzymes in the metabolic therapy of cancer. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer 2018;1870:158-64. [DOI: 10.1016/j.bbcan.2018.07.007] [Cited by in Crossref: 32] [Cited by in F6Publishing: 32] [Article Influence: 8.0] [Reference Citation Analysis]
2 Cluntun AA, Lukey MJ, Cerione RA, Locasale JW. Glutamine Metabolism in Cancer: Understanding the Heterogeneity. Trends Cancer 2017;3:169-80. [PMID: 28393116 DOI: 10.1016/j.trecan.2017.01.005] [Cited by in Crossref: 190] [Cited by in F6Publishing: 182] [Article Influence: 47.5] [Reference Citation Analysis]
3 Carbone D, Vestuto V, Ferraro MR, Ciaglia T, Pecoraro C, Sommella E, Cascioferro S, Salviati E, Novi S, Tecce MF, Amodio G, Iraci N, Cirrincione G, Campiglia P, Diana P, Bertamino A, Parrino B, Ostacolo C. Metabolomics-assisted discovery of a new anticancer GLS-1 inhibitor chemotype from a nortopsentin-inspired library: From phenotype screening to target identification. European Journal of Medicinal Chemistry 2022. [DOI: 10.1016/j.ejmech.2022.114233] [Reference Citation Analysis]
4 Valter K, Chen L, Kruspig B, Maximchik P, Cui H, Zhivotovsky B, Gogvadze V. Contrasting effects of glutamine deprivation on apoptosis induced by conventionally used anticancer drugs. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 2017;1864:498-506. [DOI: 10.1016/j.bbamcr.2016.12.016] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 2.0] [Reference Citation Analysis]
5 Galan-Cobo A, Sitthideatphaiboon P, Qu X, Poteete A, Pisegna MA, Tong P, Chen PH, Boroughs LK, Rodriguez MLM, Zhang W, Parlati F, Wang J, Gandhi V, Skoulidis F, DeBerardinis RJ, Minna JD, Heymach JV. LKB1 and KEAP1/NRF2 Pathways Cooperatively Promote Metabolic Reprogramming with Enhanced Glutamine Dependence in KRAS-Mutant Lung Adenocarcinoma. Cancer Res 2019;79:3251-67. [PMID: 31040157 DOI: 10.1158/0008-5472.CAN-18-3527] [Cited by in Crossref: 65] [Cited by in F6Publishing: 41] [Article Influence: 21.7] [Reference Citation Analysis]
6 Qin C, Yang G, Yang J, Ren B, Wang H, Chen G, Zhao F, You L, Wang W, Zhao Y. Metabolism of pancreatic cancer: paving the way to better anticancer strategies. Mol Cancer 2020;19:50. [PMID: 32122374 DOI: 10.1186/s12943-020-01169-7] [Cited by in Crossref: 29] [Cited by in F6Publishing: 27] [Article Influence: 14.5] [Reference Citation Analysis]
7 Thompson RM, Dytfeld D, Reyes L, Robinson RM, Smith B, Manevich Y, Jakubowiak A, Komarnicki M, Przybylowicz-Chalecka A, Szczepaniak T, Mitra AK, Van Ness BG, Luczak M, Dolloff NG. Glutaminase inhibitor CB-839 synergizes with carfilzomib in resistant multiple myeloma cells. Oncotarget 2017;8:35863-76. [PMID: 28415782 DOI: 10.18632/oncotarget.16262] [Cited by in Crossref: 50] [Cited by in F6Publishing: 45] [Article Influence: 12.5] [Reference Citation Analysis]
8 Reis LMD, Adamoski D, Ornitz Oliveira Souza R, Rodrigues Ascenção CF, Sousa de Oliveira KR, Corrêa-da-Silva F, Malta de Sá Patroni F, Meira Dias M, Consonni SR, Mendes de Moraes-Vieira PM, Silber AM, Dias SMG. Dual inhibition of glutaminase and carnitine palmitoyltransferase decreases growth and migration of glutaminase inhibition-resistant triple-negative breast cancer cells. J Biol Chem 2019;294:9342-57. [PMID: 31040181 DOI: 10.1074/jbc.RA119.008180] [Cited by in Crossref: 21] [Cited by in F6Publishing: 12] [Article Influence: 7.0] [Reference Citation Analysis]
9 Seshacharyulu P, Baine MJ, Souchek JJ, Menning M, Kaur S, Yan Y, Ouellette MM, Jain M, Lin C, Batra SK. Biological determinants of radioresistance and their remediation in pancreatic cancer. Biochim Biophys Acta Rev Cancer 2017;1868:69-92. [PMID: 28249796 DOI: 10.1016/j.bbcan.2017.02.003] [Cited by in Crossref: 27] [Cited by in F6Publishing: 31] [Article Influence: 5.4] [Reference Citation Analysis]
10 Ramachandran S, Pan CQ, Zimmermann SC, Duvall B, Tsukamoto T, Low BC, Sivaraman J. Structural basis for exploring the allosteric inhibition of human kidney type glutaminase. Oncotarget 2016;7:57943-54. [PMID: 27462863 DOI: 10.18632/oncotarget.10791] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 5.0] [Reference Citation Analysis]
11 Lewis JE, Singh N, Holmila RJ, Sumer BD, Williams NS, Furdui CM, Kemp ML, Boothman DA. Targeting NAD+ Metabolism to Enhance Radiation Therapy Responses. Semin Radiat Oncol 2019;29:6-15. [PMID: 30573185 DOI: 10.1016/j.semradonc.2018.10.009] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 3.7] [Reference Citation Analysis]
12 Suzuki T, Otsuka M, Seimiya T, Iwata T, Kishikawa T, Koike K. The biological role of metabolic reprogramming in pancreatic cancer. MedComm (2020) 2020;1:302-10. [PMID: 34766124 DOI: 10.1002/mco2.37] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
13 Hosein AN, Beg MS. Pancreatic Cancer Metabolism: Molecular Mechanisms and Clinical Applications. Curr Oncol Rep 2018;20:56. [PMID: 29752600 DOI: 10.1007/s11912-018-0699-5] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 2.8] [Reference Citation Analysis]
14 Seo JW, Choi J, Lee SY, Sung S, Yoo HJ, Kang MJ, Cheong H, Son J. Autophagy is required for PDAC glutamine metabolism. Sci Rep 2016;6:37594. [PMID: 27892481 DOI: 10.1038/srep37594] [Cited by in Crossref: 33] [Cited by in F6Publishing: 38] [Article Influence: 5.5] [Reference Citation Analysis]
15 Rashmi R, Jayachandran K, Zhang J, Menon V, Muhammad N, Zahner M, Ruiz F, Zhang S, Cho K, Wang Y, Huang X, Huang Y, McCormick ML, Rogers BE, Spitz DR, Patti GJ, Schwarz JK. Glutaminase Inhibitors Induce Thiol-Mediated Oxidative Stress and Radiosensitization in Treatment-Resistant Cervical Cancers. Mol Cancer Ther 2020;19:2465-75. [PMID: 33087507 DOI: 10.1158/1535-7163.MCT-20-0271] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
16 Bermejo M, Mangas-sanjuan V, Gonzalez-alvarez I, Gonzalez-alvarez M. Enhancing Oral Absorption of β-Lapachone: Progress Till Date. Eur J Drug Metab Pharmacokinet 2017;42:1-10. [DOI: 10.1007/s13318-016-0369-7] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.7] [Reference Citation Analysis]
17 Gouirand V, Gicquel T, Lien EC, Jaune-Pons E, Da Costa Q, Finetti P, Metay E, Duluc C, Mayers JR, Audebert S, Camoin L, Borge L, Rubis M, Leca J, Nigri J, Bertucci F, Dusetti N, Lucio Iovanna J, Tomasini R, Bidaut G, Guillaumond F, Vander Heiden MG, Vasseur S. Ketogenic HMG-CoA lyase and its product β-hydroxybutyrate promote pancreatic cancer progression. EMBO J 2022;:e110466. [PMID: 35307861 DOI: 10.15252/embj.2021110466] [Reference Citation Analysis]
18 Raho S, Capobianco L, Malivindi R, Vozza A, Piazzolla C, De Leonardis F, Gorgoglione R, Scarcia P, Pezzuto F, Agrimi G, Barile SN, Pisano I, Reshkin SJ, Greco MR, Cardone RA, Rago V, Li Y, Marobbio CMT, Sommergruber W, Riley CL, Lasorsa FM, Mills E, Vegliante MC, De Benedetto GE, Fratantonio D, Palmieri L, Dolce V, Fiermonte G. KRAS-regulated glutamine metabolism requires UCP2-mediated aspartate transport to support pancreatic cancer growth. Nat Metab 2020;2:1373-81. [PMID: 33230296 DOI: 10.1038/s42255-020-00315-1] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
19 Xiong D, Pan J, Zhang Q, Szabo E, Miller MS, Lubet RA, Wang Y, You M. Pioglitazone-mediated reversal of elevated glucose metabolism in the airway epithelium of mouse lung adenocarcinomas. JCI Insight 2017;2:94220. [PMID: 28679956 DOI: 10.1172/jci.insight.94220] [Reference Citation Analysis]
20 Reyes-Castellanos G, Masoud R, Carrier A. Mitochondrial Metabolism in PDAC: From Better Knowledge to New Targeting Strategies. Biomedicines 2020;8:E270. [PMID: 32756381 DOI: 10.3390/biomedicines8080270] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
21 Serkova NJ, Eckhardt SG. Metabolic Imaging to Assess Treatment Response to Cytotoxic and Cytostatic Agents. Front Oncol 2016;6:152. [PMID: 27471678 DOI: 10.3389/fonc.2016.00152] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 2.2] [Reference Citation Analysis]
22 Kanarek N, Petrova B, Sabatini DM. Dietary modifications for enhanced cancer therapy. Nature 2020;579:507-17. [DOI: 10.1038/s41586-020-2124-0] [Cited by in Crossref: 65] [Cited by in F6Publishing: 52] [Article Influence: 32.5] [Reference Citation Analysis]
23 Motea EA, Huang X, Singh N, Kilgore JA, Williams NS, Xie XJ, Gerber DE, Beg MS, Bey EA, Boothman DA. NQO1-dependent, Tumor-selective Radiosensitization of Non-small Cell Lung Cancers. Clin Cancer Res 2019;25:2601-9. [PMID: 30617135 DOI: 10.1158/1078-0432.CCR-18-2560] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 4.3] [Reference Citation Analysis]
24 Grillo E, Corsini M, Ravelli C, Zammataro L, Bacci M, Morandi A, Monti E, Presta M, Mitola S. Expression of activated VEGFR2 by R1051Q mutation alters the energy metabolism of Sk-Mel-31 melanoma cells by increasing glutamine dependence. Cancer Lett 2021;507:80-8. [PMID: 33744390 DOI: 10.1016/j.canlet.2021.03.007] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
25 Srivastava S, Widmann S, Ho C, Nguyen D, Nguyen A, Premaratne A, Gustafsson JÅ, Lin CY. Novel Liver X Receptor Ligand GAC0001E5 Disrupts Glutamine Metabolism and Induces Oxidative Stress in Pancreatic Cancer Cells. Int J Mol Sci 2020;21:E9622. [PMID: 33348693 DOI: 10.3390/ijms21249622] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
26 Matés JM, Campos-sandoval JA, Santos-jiménez JDL, Márquez J. Dysregulation of glutaminase and glutamine synthetase in cancer. Cancer Letters 2019;467:29-39. [DOI: 10.1016/j.canlet.2019.09.011] [Cited by in Crossref: 37] [Cited by in F6Publishing: 35] [Article Influence: 12.3] [Reference Citation Analysis]
27 Ryan MB, Corcoran RB. Therapeutic strategies to target RAS-mutant cancers. Nat Rev Clin Oncol 2018;15:709-20. [PMID: 30275515 DOI: 10.1038/s41571-018-0105-0] [Cited by in Crossref: 88] [Cited by in F6Publishing: 82] [Article Influence: 29.3] [Reference Citation Analysis]
28 Goodwin JM, Rana H, Ndungu J, Chakrabarti G, Moomaw EW. Hydrogen peroxide inhibition of bicupin oxalate oxidase. PLoS One 2017;12:e0177164. [PMID: 28486485 DOI: 10.1371/journal.pone.0177164] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
29 Mann KM, Ying H, Juan J, Jenkins NA, Copeland NG. KRAS-related proteins in pancreatic cancer. Pharmacol Ther 2016;168:29-42. [PMID: 27595930 DOI: 10.1016/j.pharmthera.2016.09.003] [Cited by in Crossref: 69] [Cited by in F6Publishing: 68] [Article Influence: 11.5] [Reference Citation Analysis]
30 Ruiz-Rodado V, Lita A, Dowdy T, Celiku O, Saldana AC, Wang H, Yang CZ, Chari R, Li A, Zhang W, Song H, Zhang M, Ahn S, Davis D, Chen X, Zhuang Z, Herold-Mende C, Walters KJ, Gilbert MR, Larion M. Metabolic plasticity of IDH1-mutant glioma cell lines is responsible for low sensitivity to glutaminase inhibition. Cancer Metab 2020;8:23. [PMID: 33101674 DOI: 10.1186/s40170-020-00229-2] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
31 Fu Y, Liu S, Zeng S, Shen H. The critical roles of activated stellate cells-mediated paracrine signaling, metabolism and onco-immunology in pancreatic ductal adenocarcinoma. Mol Cancer 2018;17:62. [PMID: 29458370 DOI: 10.1186/s12943-018-0815-z] [Cited by in Crossref: 43] [Cited by in F6Publishing: 50] [Article Influence: 10.8] [Reference Citation Analysis]
32 Matés JM, Campos-Sandoval JA, de Los Santos-Jiménez J, Márquez J. Glutaminases regulate glutathione and oxidative stress in cancer. Arch Toxicol 2020;94:2603-23. [PMID: 32681190 DOI: 10.1007/s00204-020-02838-8] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
33 Lee B, Mahmud I, Marchica J, Dereziński P, Qi F, Wang F, Joshi P, Valerio F, Rivera I, Patel V, Pavlovich CP, Garrett TJ, Schroth GP, Sun Y, Perera RJ. Integrated RNA and metabolite profiling of urine liquid biopsies for prostate cancer biomarker discovery. Sci Rep 2020;10:3716. [PMID: 32111915 DOI: 10.1038/s41598-020-60616-z] [Cited by in Crossref: 10] [Cited by in F6Publishing: 14] [Article Influence: 5.0] [Reference Citation Analysis]
34 Zhang K, Chen D, Ma K, Wu X, Hao H, Jiang S. NAD(P)H:Quinone Oxidoreductase 1 (NQO1) as a Therapeutic and Diagnostic Target in Cancer. J Med Chem 2018;61:6983-7003. [DOI: 10.1021/acs.jmedchem.8b00124] [Cited by in Crossref: 54] [Cited by in F6Publishing: 49] [Article Influence: 13.5] [Reference Citation Analysis]
35 Yang S, Hwang S, Kim M, Seo SB, Lee JH, Jeong SM. Mitochondrial glutamine metabolism via GOT2 supports pancreatic cancer growth through senescence inhibition. Cell Death Dis 2018;9:55. [PMID: 29352139 DOI: 10.1038/s41419-017-0089-1] [Cited by in Crossref: 24] [Cited by in F6Publishing: 22] [Article Influence: 6.0] [Reference Citation Analysis]
36 Seyfried TN, Yu G, Maroon JC, D'Agostino DP. Press-pulse: a novel therapeutic strategy for the metabolic management of cancer. Nutr Metab (Lond) 2017;14:19. [PMID: 28250801 DOI: 10.1186/s12986-017-0178-2] [Cited by in Crossref: 40] [Cited by in F6Publishing: 36] [Article Influence: 8.0] [Reference Citation Analysis]
37 Talukdar S, Emdad L, Gogna R, Das SK, Fisher PB. Metabolic control of cancer progression as novel targets for therapy. Adv Cancer Res 2021;152:103-77. [PMID: 34353436 DOI: 10.1016/bs.acr.2021.06.002] [Reference Citation Analysis]
38 Ferraz da Costa DC, Pereira Rangel L, Martins-Dinis MMDDC, Ferretti GDDS, Ferreira VF, Silva JL. Anticancer Potential of Resveratrol, β-Lapachone and Their Analogues. Molecules 2020;25:E893. [PMID: 32085381 DOI: 10.3390/molecules25040893] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 8.0] [Reference Citation Analysis]
39 Kremer DM, Lyssiotis CA. Targeting allosteric regulation of cancer metabolism. Nat Chem Biol 2022;18:441-50. [PMID: 35484254 DOI: 10.1038/s41589-022-00997-6] [Reference Citation Analysis]
40 Guo L, Zhou B, Liu Z, Xu Y, Lu H, Xia M, Guo E, Shan W, Chen G, Wang C. Blockage of glutaminolysis enhances the sensitivity of ovarian cancer cells to PI3K/mTOR inhibition involvement of STAT3 signaling. Tumour Biol 2016;37:11007-15. [PMID: 26894601 DOI: 10.1007/s13277-016-4984-3] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 3.5] [Reference Citation Analysis]
41 Biancur DE, Kimmelman AC. The plasticity of pancreatic cancer metabolism in tumor progression and therapeutic resistance. Biochim Biophys Acta Rev Cancer 2018;1870:67-75. [PMID: 29702208 DOI: 10.1016/j.bbcan.2018.04.011] [Cited by in Crossref: 54] [Cited by in F6Publishing: 46] [Article Influence: 13.5] [Reference Citation Analysis]
42 Lewis JE, Costantini F, Mims J, Chen X, Furdui CM, Boothman DA, Kemp ML. Genome-Scale Modeling of NADPH-Driven β-Lapachone Sensitization in Head and Neck Squamous Cell Carcinoma. Antioxid Redox Signal 2018;29:937-52. [PMID: 28762750 DOI: 10.1089/ars.2017.7048] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
43 Jain P, Dvorkin-Gheva A, Mollen E, Malbeteau L, Xie M, Jessa F, Dhavarasa P, Chung S, Brown KR, Jang GH, Vora P, Notta F, Moffat J, Hedley D, Boutros PC, Wouters BG, Koritzinsky M. NOX4 links metabolic regulation in pancreatic cancer to endoplasmic reticulum redox vulnerability and dependence on PRDX4. Sci Adv 2021;7:eabf7114. [PMID: 33962950 DOI: 10.1126/sciadv.abf7114] [Reference Citation Analysis]
44 Silvers MA, Deja S, Singh N, Egnatchik RA, Sudderth J, Luo X, Beg MS, Burgess SC, DeBerardinis RJ, Boothman DA, Merritt ME. The NQO1 bioactivatable drug, β-lapachone, alters the redox state of NQO1+ pancreatic cancer cells, causing perturbation in central carbon metabolism. J Biol Chem 2017;292:18203-16. [PMID: 28916726 DOI: 10.1074/jbc.M117.813923] [Cited by in Crossref: 41] [Cited by in F6Publishing: 23] [Article Influence: 8.2] [Reference Citation Analysis]
45 Słotwiński R, Słotwińska SM. Dysregulation of signaling pathways associated with innate antibacterial immunity in patients with pancreatic cancer. Cent Eur J Immunol 2016;41:404-18. [PMID: 28450804 DOI: 10.5114/ceji.2016.65140] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.2] [Reference Citation Analysis]
46 Okazaki A, Gameiro PA, Christodoulou D, Laviollette L, Schneider M, Chaves F, Stemmer-Rachamimov A, Yazinski SA, Lee R, Stephanopoulos G, Zou L, Iliopoulos O. Glutaminase and poly(ADP-ribose) polymerase inhibitors suppress pyrimidine synthesis and VHL-deficient renal cancers. J Clin Invest 2017;127:1631-45. [PMID: 28346230 DOI: 10.1172/JCI87800] [Cited by in Crossref: 43] [Cited by in F6Publishing: 29] [Article Influence: 8.6] [Reference Citation Analysis]
47 Zhou X, Curbo S, Li F, Krishnan S, Karlsson A. Inhibition of glutamate oxaloacetate transaminase 1 in cancer cell lines results in altered metabolism with increased dependency of glucose. BMC Cancer 2018;18:559. [PMID: 29751795 DOI: 10.1186/s12885-018-4443-1] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 4.5] [Reference Citation Analysis]
48 Matés JM, Campos-Sandoval JA, de Los Santos-Jiménez J, Segura JA, Alonso FJ, Márquez J. Metabolic Reprogramming of Cancer by Chemicals that Target Glutaminase Isoenzymes. Curr Med Chem 2020;27:5317-39. [PMID: 31038055 DOI: 10.2174/0929867326666190416165004] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 5.0] [Reference Citation Analysis]
49 Zhao W, Jiang L, Fang T, Fang F, Liu Y, Zhao Y, You Y, Zhou H, Su X, Wang J, Liu S, Chen Y, Wan J, Huang X. β-Lapachone Selectively Kills Hepatocellular Carcinoma Cells by Targeting NQO1 to Induce Extensive DNA Damage and PARP1 Hyperactivation. Front Oncol 2021;11:747282. [PMID: 34676172 DOI: 10.3389/fonc.2021.747282] [Reference Citation Analysis]
50 Purohit V, Simeone DM, Lyssiotis CA. Metabolic Regulation of Redox Balance in Cancer. Cancers (Basel) 2019;11:E955. [PMID: 31288436 DOI: 10.3390/cancers11070955] [Cited by in Crossref: 37] [Cited by in F6Publishing: 31] [Article Influence: 12.3] [Reference Citation Analysis]
51 Altman BJ, Stine ZE, Dang CV. From Krebs to clinic: glutamine metabolism to cancer therapy. Nat Rev Cancer. 2016;16:619-634. [PMID: 27492215 DOI: 10.1038/nrc.2016.71] [Cited by in Crossref: 656] [Cited by in F6Publishing: 604] [Article Influence: 109.3] [Reference Citation Analysis]
52 Halbrook CJ, Lyssiotis CA. Employing Metabolism to Improve the Diagnosis and Treatment of Pancreatic Cancer. Cancer Cell. 2017;31:5-19. [PMID: 28073003 DOI: 10.1016/j.ccell.2016.12.006] [Cited by in Crossref: 158] [Cited by in F6Publishing: 137] [Article Influence: 31.6] [Reference Citation Analysis]
53 Song Z, Yang Y, Wu Y, Zheng M, Sun D, Li H, Chen L. Glutamic oxaloacetic transaminase 1 as a potential target in human cancer. Eur J Pharmacol 2022;917:174754. [PMID: 35007521 DOI: 10.1016/j.ejphar.2022.174754] [Reference Citation Analysis]
54 Wettersten HI, Aboud OA, Lara PN Jr, Weiss RH. Metabolic reprogramming in clear cell renal cell carcinoma. Nat Rev Nephrol 2017;13:410-9. [PMID: 28480903 DOI: 10.1038/nrneph.2017.59] [Cited by in Crossref: 108] [Cited by in F6Publishing: 109] [Article Influence: 21.6] [Reference Citation Analysis]
55 Anglin J, Zavareh RB, Sander PN, Haldar D, Mullarky E, Cantley LC, Kimmelman AC, Lyssiotis CA, Lairson LL. Discovery and optimization of aspartate aminotransferase 1 inhibitors to target redox balance in pancreatic ductal adenocarcinoma. Bioorg Med Chem Lett 2018;28:2675-8. [PMID: 29731362 DOI: 10.1016/j.bmcl.2018.04.061] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 4.5] [Reference Citation Analysis]
56 Matschke J, Riffkin H, Klein D, Handrick R, Lüdemann L, Metzen E, Shlomi T, Stuschke M, Jendrossek V. Targeted Inhibition of Glutamine-Dependent Glutathione Metabolism Overcomes Death Resistance Induced by Chronic Cycling Hypoxia. Antioxidants & Redox Signaling 2016;25:89-107. [DOI: 10.1089/ars.2015.6589] [Cited by in Crossref: 32] [Cited by in F6Publishing: 32] [Article Influence: 5.3] [Reference Citation Analysis]
57 Biancur DE, Paulo JA, Małachowska B, Quiles Del Rey M, Sousa CM, Wang X, Sohn ASW, Chu GC, Gygi SP, Harper JW, Fendler W, Mancias JD, Kimmelman AC. Compensatory metabolic networks in pancreatic cancers upon perturbation of glutamine metabolism. Nat Commun 2017;8:15965. [PMID: 28671190 DOI: 10.1038/ncomms15965] [Cited by in Crossref: 134] [Cited by in F6Publishing: 117] [Article Influence: 26.8] [Reference Citation Analysis]
58 Gerber DE, Beg MS, Fattah F, Frankel AE, Fatunde O, Arriaga Y, Dowell JE, Bisen A, Leff RD, Meek CC, Putnam WC, Kallem RR, Subramaniyan I, Dong Y, Bolluyt J, Sarode V, Luo X, Xie Y, Schwartz B, Boothman DA. Phase 1 study of ARQ 761, a β-lapachone analogue that promotes NQO1-mediated programmed cancer cell necrosis. Br J Cancer 2018;119:928-36. [PMID: 30318513 DOI: 10.1038/s41416-018-0278-4] [Cited by in Crossref: 24] [Cited by in F6Publishing: 27] [Article Influence: 6.0] [Reference Citation Analysis]
59 Grondman I, Arts RJW, Koch RM, Leijte GP, Gerretsen J, Bruse N, Kempkes RWM, Ter Horst R, Kox M, Pickkers P, Netea MG, Gresnigt MS. Frontline Science: Endotoxin-induced immunotolerance is associated with loss of monocyte metabolic plasticity and reduction of oxidative burst. J Leukoc Biol 2019;106:11-25. [PMID: 31169935 DOI: 10.1002/JLB.5HI0119-018R] [Cited by in Crossref: 19] [Cited by in F6Publishing: 15] [Article Influence: 6.3] [Reference Citation Analysis]
60 Wang J, Wang B, Ren H, Chen W. miR-9-5p inhibits pancreatic cancer cell proliferation, invasion and glutamine metabolism by targeting GOT1. Biochem Biophys Res Commun 2019;509:241-8. [PMID: 30591220 DOI: 10.1016/j.bbrc.2018.12.114] [Cited by in Crossref: 29] [Cited by in F6Publishing: 31] [Article Influence: 7.3] [Reference Citation Analysis]
61 Lee P, Malik D, Perkons N, Huangyang P, Khare S, Rhoades S, Gong YY, Burrows M, Finan JM, Nissim I, Gade TPF, Weljie AM, Simon MC. Targeting glutamine metabolism slows soft tissue sarcoma growth. Nat Commun 2020;11:498. [PMID: 31980651 DOI: 10.1038/s41467-020-14374-1] [Cited by in Crossref: 26] [Cited by in F6Publishing: 25] [Article Influence: 13.0] [Reference Citation Analysis]
62 Xu R, Yang J, Ren B, Wang H, Yang G, Chen Y, You L, Zhao Y. Reprogramming of Amino Acid Metabolism in Pancreatic Cancer: Recent Advances and Therapeutic Strategies. Front Oncol 2020;10:572722. [PMID: 33117704 DOI: 10.3389/fonc.2020.572722] [Cited by in Crossref: 4] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
63 Tran TQ, Lowman XH, Reid MA, Mendez-Dorantes C, Pan M, Yang Y, Kong M. Tumor-associated mutant p53 promotes cancer cell survival upon glutamine deprivation through p21 induction. Oncogene 2017;36:1991-2001. [PMID: 27721412 DOI: 10.1038/onc.2016.360] [Cited by in Crossref: 33] [Cited by in F6Publishing: 32] [Article Influence: 5.5] [Reference Citation Analysis]
64 Wang Q, Zhang Q, Luan S, Yang K, Zheng M, Li K, Chen L, Li H. Adapalene inhibits ovarian cancer ES-2 cells growth by targeting glutamic-oxaloacetic transaminase 1. Bioorganic Chemistry 2019;93:103315. [DOI: 10.1016/j.bioorg.2019.103315] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
65 Jain A, Bhardwaj V. Therapeutic resistance in pancreatic ductal adenocarcinoma: Current challenges and future opportunities. World J Gastroenterol 2021; 27(39): 6527-6550 [PMID: 34754151 DOI: 10.3748/wjg.v27.i39.6527] [Reference Citation Analysis]
66 Hou Z, Cui Y, Xing H, Mu X. Down-expression of poly(ADP-ribose) polymerase in p53-regulated pancreatic cancer cells. Oncol Lett 2018;15:1943-8. [PMID: 29434894 DOI: 10.3892/ol.2017.7500] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
67 Roy M, Finley SD. Computational Model Predicts the Effects of Targeting Cellular Metabolism in Pancreatic Cancer. Front Physiol 2017;8:217. [PMID: 28446878 DOI: 10.3389/fphys.2017.00217] [Cited by in Crossref: 19] [Cited by in F6Publishing: 16] [Article Influence: 3.8] [Reference Citation Analysis]
68 De Vitto H, Pérez-Valencia J, Radosevich JA. Glutamine at focus: versatile roles in cancer. Tumour Biol 2016;37:1541-58. [PMID: 26700676 DOI: 10.1007/s13277-015-4671-9] [Cited by in Crossref: 33] [Cited by in F6Publishing: 32] [Article Influence: 4.7] [Reference Citation Analysis]
69 Torrente L, Prieto-Farigua N, Falzone A, Elkins CM, Boothman DA, Haura EB, DeNicola GM. Inhibition of TXNRD or SOD1 overcomes NRF2-mediated resistance to β-lapachone. Redox Biol 2020;30:101440. [PMID: 32007910 DOI: 10.1016/j.redox.2020.101440] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
70 Chen X, Mims J, Huang X, Singh N, Motea E, Planchon SM, Beg M, Tsang AW, Porosnicu M, Kemp ML, Boothman DA, Furdui CM. Modulators of Redox Metabolism in Head and Neck Cancer. Antioxid Redox Signal 2018;29:1660-90. [PMID: 29113454 DOI: 10.1089/ars.2017.7423] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.6] [Reference Citation Analysis]
71 Dujardin P, Baginska AK, Urban S, Grüner BM. Unraveling Tumor Heterogeneity by Using DNA Barcoding Technologies to Develop Personalized Treatment Strategies in Advanced-Stage PDAC. Cancers (Basel) 2021;13:4187. [PMID: 34439341 DOI: 10.3390/cancers13164187] [Reference Citation Analysis]
72 Carter-Cooper BA, Fletcher S, Ferraris D, Choi EY, Kronfli D, Dash S, Truong P, Sausville EA, Lapidus RG, Emadi A. Synthesis, characterization and antineoplastic activity of bis-aziridinyl dimeric naphthoquinone - A novel class of compounds with potent activity against acute myeloid leukemia cells. Bioorg Med Chem Lett 2017;27:6-10. [PMID: 27890379 DOI: 10.1016/j.bmcl.2016.11.045] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.2] [Reference Citation Analysis]
73 Cheng Z, Dai Y, Zeng T, Liu Y, Cui L, Qian T, Si C, Huang W, Pang Y, Ye X, Shi J, Fu L. Upregulation of Glutamic-Oxaloacetic Transaminase 1 Predicts Poor Prognosis in Acute Myeloid Leukemia. Front Oncol 2020;10:379. [PMID: 32266153 DOI: 10.3389/fonc.2020.00379] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
74 Shen YA, Hong J, Asaka R, Asaka S, Hsu FC, Suryo Rahmanto Y, Jung JG, Chen YW, Yen TT, Tomaszewski A, Zhang C, Attarwala N, DeMarzo AM, Davidson B, Chuang CM, Chen X, Gaillard S, Le A, Shih IM, Wang TL. Inhibition of the MYC-Regulated Glutaminase Metabolic Axis Is an Effective Synthetic Lethal Approach for Treating Chemoresistant Ovarian Cancers. Cancer Res 2020;80:4514-26. [PMID: 32859605 DOI: 10.1158/0008-5472.CAN-19-3971] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
75 Pelosi E, Castelli G, Testa U. Pancreatic Cancer: Molecular Characterization, Clonal Evolution and Cancer Stem Cells. Biomedicines. 2017;5. [PMID: 29156578 DOI: 10.3390/biomedicines5040065] [Cited by in Crossref: 32] [Cited by in F6Publishing: 41] [Article Influence: 6.4] [Reference Citation Analysis]