1
|
Gaspar BS, Roşu OA, Enache RM, Manciulea Profir M, Pavelescu LA, Creţoiu SM. Gut Mycobiome: Latest Findings and Current Knowledge Regarding Its Significance in Human Health and Disease. J Fungi (Basel) 2025; 11:333. [PMID: 40422666 DOI: 10.3390/jof11050333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/16/2025] [Accepted: 04/21/2025] [Indexed: 05/28/2025] Open
Abstract
The gut mycobiome, the fungal component of the gut microbiota, plays a crucial role in health and disease. Although fungi represent a small fraction of the gut ecosystem, they influence immune responses, gut homeostasis, and disease progression. The mycobiome's composition varies with age, diet, and host factors, and its imbalance has been linked to conditions such as inflammatory bowel disease (IBD) and metabolic disorders. Advances in sequencing have expanded our understanding of gut fungi, but challenges remain due to methodological limitations and high variability between individuals. Emerging therapeutic strategies, including antifungals, probiotics, fecal microbiota transplantation, and dietary interventions, show promise but require further study. This review highlights recent discoveries on the gut mycobiome, its interactions with bacteria, its role in disease, and potential clinical applications. A deeper understanding of fungal contributions to gut health will help develop targeted microbiome-based therapies.
Collapse
Affiliation(s)
- Bogdan Severus Gaspar
- Department of Surgery, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Surgery Clinic, Bucharest Emergency Clinical Hospital, 014461 Bucharest, Romania
| | - Oana Alexandra Roşu
- Department of Morphological Sciences, Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Oncology, Elias University Emergency Hospital, 011461 Bucharest, Romania
| | - Robert-Mihai Enache
- Department of Radiology and Medical Imaging, Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Monica Manciulea Profir
- Department of Morphological Sciences, Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Oncology, Elias University Emergency Hospital, 011461 Bucharest, Romania
| | - Luciana Alexandra Pavelescu
- Department of Morphological Sciences, Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Sanda Maria Creţoiu
- Department of Morphological Sciences, Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| |
Collapse
|
2
|
Schille TB, Sprague JL, Naglik JR, Brunke S, Hube B. Commensalism and pathogenesis of Candida albicans at the mucosal interface. Nat Rev Microbiol 2025:10.1038/s41579-025-01174-x. [PMID: 40247134 DOI: 10.1038/s41579-025-01174-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2025] [Indexed: 04/19/2025]
Abstract
Fungi are important and often underestimated human pathogens. Infections with fungi mostly originate from the environment, from soil or airborne spores. By contrast, Candida albicans, one of the most common and clinically important fungal pathogens, permanently exists in the vast majority of healthy individuals as a member of the human mucosal microbiota. Only under certain circumstances will these commensals cause infections. However, although the pathogenic behaviour and disease manifestation of C. albicans have been at the centre of research for many years, its asymptomatic colonization of mucosal surfaces remains surprisingly understudied. In this Review, we discuss the interplay of the fungus, the host and the microbiome on the dualism of commensal and pathogenic life of C. albicans, and how commensal growth is controlled and permitted. We explore hypotheses that could explain how the mucosal environment shapes C. albicans adaptations to its commensal lifestyle, while still maintaining or even increasing its pathogenic potential.
Collapse
Affiliation(s)
- Tim B Schille
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (HKI), Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany
| | - Jakob L Sprague
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (HKI), Jena, Germany
| | - Julian R Naglik
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, UK
| | - Sascha Brunke
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (HKI), Jena, Germany.
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (HKI), Jena, Germany.
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany.
- Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany.
| |
Collapse
|
3
|
Zhang Y, Wang L, Peng L. The Role of Intestinal Fungi in the Pathogenesis and Treatment of Ulcerative Colitis. Microorganisms 2025; 13:794. [PMID: 40284630 PMCID: PMC12029736 DOI: 10.3390/microorganisms13040794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 03/27/2025] [Accepted: 03/28/2025] [Indexed: 04/29/2025] Open
Abstract
Ulcerative colitis (UC) is a chronic inflammatory bowel disease closely associated with dysbiosis of the gut microbiome, encompassing not only bacterial communities but also fungal populations. Despite the growing recognition of the gut microbiome's role in UC pathogenesis, the contribution of intestinal fungi has only recently garnered significant attention. In this review, we comprehensively examine the characteristics of intestinal fungi in both healthy individuals and UC patients, elucidating their role in disease pathogenesis and their interactions with bacterial communities. Additionally, we explore the impact of intestinal fungi on disease severity and therapeutic responses in UC. Furthermore, we evaluate the therapeutic potential of antifungal agents, probiotics, and fecal microbiota transplantation (FMT) in UC management, emphasizing the critical role of fungi in these treatment modalities. Future research should prioritize elucidating the multifunctional roles of fungi in UC pathogenesis and their implications for treatment strategies. Moreover, the identification of fungal biomarkers associated with FMT efficacy could pave the way for precision medicine approaches in FMT, offering novel insights into personalized therapeutic interventions for UC.
Collapse
Affiliation(s)
- Yujing Zhang
- Microbiota Laboratory, Clinical Division of Microbiota, Department of Gastroenterology and Hepatology, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China; (Y.Z.); (L.W.)
- Medical School of Chinese PLA, Beijing 100853, China
| | - Lin Wang
- Microbiota Laboratory, Clinical Division of Microbiota, Department of Gastroenterology and Hepatology, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China; (Y.Z.); (L.W.)
- Medical School of Chinese PLA, Beijing 100853, China
| | - Lihua Peng
- Microbiota Laboratory, Clinical Division of Microbiota, Department of Gastroenterology and Hepatology, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China; (Y.Z.); (L.W.)
| |
Collapse
|
4
|
Guo X, Shao Y. Role of the oral-gut microbiota axis in pancreatic cancer: a new perspective on tumor pathophysiology, diagnosis, and treatment. Mol Med 2025; 31:103. [PMID: 40102723 PMCID: PMC11917121 DOI: 10.1186/s10020-025-01166-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 03/11/2025] [Indexed: 03/20/2025] Open
Abstract
Pancreatic cancer, one of the most lethal malignancies, remains challenging due to late diagnosis, aggressive progression, and therapeutic resistance. Recent advances have revealed the presence of intratumoral microbiota, predominantly originating from the oral and gut microbiomes, which play pivotal roles in pancreatic cancer pathogenesis. The dynamic interplay between oral and gut microbial communities, termed the "oral-gut microbiota axis," contributes multifacetedly to pancreatic ductal adenocarcinoma (PDAC). Microbial translocation via anatomical or circulatory routes establishes tumor-resident microbiota, driving oncogenesis through metabolic reprogramming, immune regulation, inhibition of apoptosis, chronic inflammation, and dysregulation of the cell cycle. Additionally, intratumoral microbiota promote chemoresistance and immune evasion, further complicating treatment outcomes. Emerging evidence highlights microbial signatures in saliva and fecal samples as promising non-invasive diagnostic biomarkers, while microbial diversity correlates with prognosis. Therapeutic strategies targeting this axis-such as antibiotics, probiotics, and engineered bacteria-demonstrate potential to enhance treatment efficacy. By integrating mechanisms of microbial influence on tumor biology, drug resistance, and therapeutic applications, the oral-gut microbiota axis emerges as a critical regulator of PDAC, offering novel perspectives for early detection, prognostic assessment, and microbiome-based therapeutic interventions.
Collapse
Affiliation(s)
- Xuanchi Guo
- School of Stomatology, Shandong University, No. 44-1 Wenhua West Road, Jinan City, Shandong Province, China.
| | - Yuhan Shao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
5
|
Krivonos DV, Fedorov DE, Klimina KM, Veselovsky VA, Kovalchuk SN, Pavlenko AV, Yanushevich OO, Andreev DN, Sokolov FS, Fomenko AK, Devkota MK, Andreev NG, Zaborovsky AV, Tsaregorodtsev SV, Evdokimov VV, Krikheli NI, Bely PA, Levchenko OV, Maev IV, Govorun VM, Ilina EN. Gut Mycobiome Changes During COVID-19 Disease. J Fungi (Basel) 2025; 11:194. [PMID: 40137232 PMCID: PMC11943151 DOI: 10.3390/jof11030194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/07/2025] [Accepted: 02/28/2025] [Indexed: 03/27/2025] Open
Abstract
The majority of metagenomic studies are based on the study of bacterial biota. At the same time, the COVID-19 pandemic has prompted interest in the study of both individual fungal pathogens and fungal communities (i.e., the mycobiome) as a whole. Here, in this work, we investigated the human gut mycobiome during COVID-19. Stool samples were collected from patients at two time points: at the time of admission to the hospital (the first time point) and at the time of discharge from the hospital (the second time point). The results of this study revealed that Geotrichum sp. is more represented in a group of patients with COVID-19. Therefore, Geotrichum sp. is elevated in patients at the time of admission to the hospital and underestimated at the time of discharge. Additionally, the influence of factors associated with the diversity of fungal gut microbiota was separately studied, including disease severity and age factors.
Collapse
Affiliation(s)
- Danil V. Krivonos
- Research Institute for Systems Biology and Medicine (RISBM), 18, Nauchniy Proezd, 117246 Moscow, Russia
- Department of Molecular and Translational Medicine, Moscow Institute of Physics and Technology, State University, 141700 Dolgoprudny, Russia
| | - Dmitry E. Fedorov
- Research Institute for Systems Biology and Medicine (RISBM), 18, Nauchniy Proezd, 117246 Moscow, Russia
| | - Ksenia M. Klimina
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, ul. Malaya Pirogovskaya, 1s3, 119435 Moscow, Russia
| | - Vladimir A. Veselovsky
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, ul. Malaya Pirogovskaya, 1s3, 119435 Moscow, Russia
| | - Svetlana N. Kovalchuk
- Research Institute for Systems Biology and Medicine (RISBM), 18, Nauchniy Proezd, 117246 Moscow, Russia
| | - Alexander V. Pavlenko
- Research Institute for Systems Biology and Medicine (RISBM), 18, Nauchniy Proezd, 117246 Moscow, Russia
| | - Oleg O. Yanushevich
- Federal State Budgetary Educational Institution of Higher Education “Russian University of Medicine” of the Ministry of Health of the Russian Federation, 127006 Moscow, Russia (F.S.S.); (A.K.F.); (S.V.T.)
| | - Dmitry N. Andreev
- Federal State Budgetary Educational Institution of Higher Education “Russian University of Medicine” of the Ministry of Health of the Russian Federation, 127006 Moscow, Russia (F.S.S.); (A.K.F.); (S.V.T.)
| | - Filipp S. Sokolov
- Federal State Budgetary Educational Institution of Higher Education “Russian University of Medicine” of the Ministry of Health of the Russian Federation, 127006 Moscow, Russia (F.S.S.); (A.K.F.); (S.V.T.)
| | - Aleksey K. Fomenko
- Federal State Budgetary Educational Institution of Higher Education “Russian University of Medicine” of the Ministry of Health of the Russian Federation, 127006 Moscow, Russia (F.S.S.); (A.K.F.); (S.V.T.)
| | - Mikhail K. Devkota
- Federal State Budgetary Educational Institution of Higher Education “Russian University of Medicine” of the Ministry of Health of the Russian Federation, 127006 Moscow, Russia (F.S.S.); (A.K.F.); (S.V.T.)
| | - Nikolai G. Andreev
- Federal State Budgetary Educational Institution of Higher Education “Russian University of Medicine” of the Ministry of Health of the Russian Federation, 127006 Moscow, Russia (F.S.S.); (A.K.F.); (S.V.T.)
| | - Andrey V. Zaborovsky
- Federal State Budgetary Educational Institution of Higher Education “Russian University of Medicine” of the Ministry of Health of the Russian Federation, 127006 Moscow, Russia (F.S.S.); (A.K.F.); (S.V.T.)
| | - Sergei V. Tsaregorodtsev
- Federal State Budgetary Educational Institution of Higher Education “Russian University of Medicine” of the Ministry of Health of the Russian Federation, 127006 Moscow, Russia (F.S.S.); (A.K.F.); (S.V.T.)
| | - Vladimir V. Evdokimov
- Federal State Budgetary Educational Institution of Higher Education “Russian University of Medicine” of the Ministry of Health of the Russian Federation, 127006 Moscow, Russia (F.S.S.); (A.K.F.); (S.V.T.)
| | - Natella I. Krikheli
- Federal State Budgetary Educational Institution of Higher Education “Russian University of Medicine” of the Ministry of Health of the Russian Federation, 127006 Moscow, Russia (F.S.S.); (A.K.F.); (S.V.T.)
| | - Petr A. Bely
- Federal State Budgetary Educational Institution of Higher Education “Russian University of Medicine” of the Ministry of Health of the Russian Federation, 127006 Moscow, Russia (F.S.S.); (A.K.F.); (S.V.T.)
| | - Oleg V. Levchenko
- Federal State Budgetary Educational Institution of Higher Education “Russian University of Medicine” of the Ministry of Health of the Russian Federation, 127006 Moscow, Russia (F.S.S.); (A.K.F.); (S.V.T.)
| | - Igor V. Maev
- Federal State Budgetary Educational Institution of Higher Education “Russian University of Medicine” of the Ministry of Health of the Russian Federation, 127006 Moscow, Russia (F.S.S.); (A.K.F.); (S.V.T.)
| | - Vadim M. Govorun
- Research Institute for Systems Biology and Medicine (RISBM), 18, Nauchniy Proezd, 117246 Moscow, Russia
| | - Elena N. Ilina
- Research Institute for Systems Biology and Medicine (RISBM), 18, Nauchniy Proezd, 117246 Moscow, Russia
| |
Collapse
|
6
|
Niu T, Fan T, Wang Y, Gao K, Zhao J, Wang R, Chen X, Xing J, Qiu J, Zou B, Fan S, Zhang S, Wu Q, Yang G, Wang N, Zeng Y, Cao X, Jiang Y, Wang J, Huang H, Yang W, Shi C, Li Z, Wang C. Lactobacillus plantae Expressing Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) Single-Chain Antibody Can Inhibit PRRSV Replication and Change the Intestinal Flora Structure of Piglets. Int J Mol Sci 2025; 26:2257. [PMID: 40076879 PMCID: PMC11901011 DOI: 10.3390/ijms26052257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/11/2025] [Accepted: 02/20/2025] [Indexed: 03/14/2025] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is an infectious disease that can cause reproductive disorders in sows and affect the breathing of piglets, seriously endangering pig breeding worldwide. In this study, Lactobacillus plantarum NC8 was used as the expression delivery vector of foreign proteins, and a single-chain antibody was designed based on an mAb-PN9cx3 sequence. Three recombinant strains of Lactobacillus plantarum, namely, NC8/pSIP409-pgsA'-PN9cx3-scFV(E), NC8/pSIP409-pgsA'-PN9cx3-HC(E), and NC8/pSIP409-pgsA'-PN9cx3-LC(E), were successfully constructed. In an in vitro test, the viral load of each experimental group was significantly lower than that of the control group (p < 0.01). In the piglet challenge protection test, the percentage of CD3+CD8+T cells in the blood of piglets given complex lactic acid bacteria was significantly increased before and after the challenge (p < 0.01); the body temperature of piglets in this group was normal, the viral load of each organ was reduced, and the obvious pathological changes in each tissue were alleviated. At the same time, the abundance of Bacteroides, Fusobacterium, and other bacteria in the intestinal tracts of the piglets changed, affecting the metabolism of carbohydrates and amino acids and the differentiation of Th1 and Th2 cells. This experiment provides a feasible strategy and method for the design of a PRRSV vaccine.
Collapse
Affiliation(s)
- Tianming Niu
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130012, China; (T.N.)
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun 130000, China
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun 130000, China
| | - Tianqi Fan
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130012, China; (T.N.)
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun 130000, China
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun 130000, China
| | - Yingjie Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130012, China; (T.N.)
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun 130000, China
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun 130000, China
| | - Kuipeng Gao
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130012, China; (T.N.)
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun 130000, China
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun 130000, China
| | - Jinhui Zhao
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130012, China; (T.N.)
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun 130000, China
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun 130000, China
| | - Ruyu Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130012, China; (T.N.)
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun 130000, China
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun 130000, China
| | - Xiaolei Chen
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130012, China; (T.N.)
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun 130000, China
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun 130000, China
| | - Junhong Xing
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130012, China; (T.N.)
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun 130000, China
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun 130000, China
| | - Jingjing Qiu
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130012, China; (T.N.)
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun 130000, China
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun 130000, China
| | - Boshi Zou
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130012, China; (T.N.)
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun 130000, China
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun 130000, China
| | - Shuhui Fan
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130012, China; (T.N.)
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun 130000, China
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun 130000, China
| | - Shi Zhang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130012, China; (T.N.)
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun 130000, China
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun 130000, China
| | - Qiong Wu
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130012, China; (T.N.)
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun 130000, China
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun 130000, China
| | - Guilian Yang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130012, China; (T.N.)
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun 130000, China
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun 130000, China
| | - Nan Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130012, China; (T.N.)
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun 130000, China
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun 130000, China
| | - Yan Zeng
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130012, China; (T.N.)
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun 130000, China
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun 130000, China
| | - Xin Cao
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130012, China; (T.N.)
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun 130000, China
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun 130000, China
| | - Yanlong Jiang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130012, China; (T.N.)
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun 130000, China
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun 130000, China
| | - Jianzhong Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130012, China; (T.N.)
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun 130000, China
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun 130000, China
| | - Haibin Huang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130012, China; (T.N.)
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun 130000, China
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun 130000, China
| | - Wentao Yang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130012, China; (T.N.)
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun 130000, China
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun 130000, China
| | - Chunwei Shi
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130012, China; (T.N.)
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun 130000, China
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun 130000, China
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130000, China
| | - Zhipeng Li
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130012, China; (T.N.)
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun 130000, China
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun 130000, China
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130000, China
| | - Chunfeng Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130012, China; (T.N.)
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun 130000, China
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun 130000, China
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130000, China
| |
Collapse
|
7
|
Deng X, Li H, Wu A, He J, Mao X, Dai Z, Tian G, Cai J, Tang J, Luo Y. Composition, Influencing Factors, and Effects on Host Nutrient Metabolism of Fungi in Gastrointestinal Tract of Monogastric Animals. Animals (Basel) 2025; 15:710. [PMID: 40075993 PMCID: PMC11898470 DOI: 10.3390/ani15050710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/26/2025] [Accepted: 02/28/2025] [Indexed: 03/14/2025] Open
Abstract
Intestinal fungi, collectively referred to as mycobiota, constitute a small (0.01-2%) but crucial component of the overall intestinal microbiota. While fungi are far less abundant than bacteria in the gut, the volume of an average fungal cell is roughly 100-fold greater than that of an average bacterial cell. They play a vital role in nutrient metabolism and maintaining intestinal health. The composition and spatial organization of mycobiota vary across different animal species and are influenced by a multitude of factors, including age, diet, and the host's physiological state. At present, quantitative research on the composition of mycobiota in monogastric animals remains scarce, and investigations into the mechanisms underlying their metabolic functions are also relatively restricted. This review delves into the distribution characteristics of mycobiota, including Candida albicans, Saccharomyces cerevisiae, Kazachstania slooffiae, in monogastric animals, the factors influencing their composition, and the consequent impacts on host metabolism and health. The objective is to offer insights for a deeper understanding of the nutritional significance of intestinal fungi in monogastric animals and to explore the mechanisms by which they affect host health in relation to inflammatory bowel disease (IBD), diarrhea, and obesity. Through a systematic evaluation of their functional contributions, this review shifts our perception of intestinal fungi from overlooked commensals to key components in gut ecosystem dynamics, emphasizing their potential in personalized metabolic control regulation and the enhancement of disease prevention and treatment strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Yuheng Luo
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education of China, Key Laboratory for Animal Disease-Resistance Nutrition and Feed of Ministry of Agriculture of China, Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Engineering Research Center of Animal Disease-Resistance Nutrition Biotechnology of Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (X.D.); (H.L.); (A.W.); (J.H.); (X.M.); (Z.D.); (G.T.); (J.C.); (J.T.)
| |
Collapse
|
8
|
Szajewska H, Scott KP, de Meij T, Forslund-Startceva SK, Knight R, Koren O, Little P, Johnston BC, Łukasik J, Suez J, Tancredi DJ, Sanders ME. Antibiotic-perturbed microbiota and the role of probiotics. Nat Rev Gastroenterol Hepatol 2025; 22:155-172. [PMID: 39663462 DOI: 10.1038/s41575-024-01023-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/08/2024] [Indexed: 12/13/2024]
Abstract
The disruptive effect of antibiotics on the composition and function of the human microbiota is well established. However, the hypothesis that probiotics can help restore the antibiotic-disrupted microbiota has been advanced, with little consideration of the strength of evidence supporting it. Some clinical data suggest that probiotics can reduce antibiotic-related side effects, including Clostridioides difficile-associated diarrhoea, but there are no data that causally link these clinical effects to microbiota protection or recovery. Substantial challenges hinder attempts to address this hypothesis, including the absence of consensus on the composition of a 'normal' microbiota, non-standardized and evolving microbiome measurement methods, and substantial inter-individual microbiota variation. In this Review, we explore these complexities. First, we review the known benefits and risks of antibiotics, the effect of antibiotics on the human microbiota, the resilience and adaptability of the microbiota, and how microbiota restoration might be defined and measured. Subsequently, we explore the evidence for the efficacy of probiotics in preventing disruption or aiding microbiota recovery post-antibiotic treatment. Finally, we offer insights into the current state of research and suggest directions for future research.
Collapse
Affiliation(s)
- Hania Szajewska
- Department of Paediatrics, The Medical University of Warsaw, Warsaw, Poland
| | - Karen P Scott
- Rowett Institute, University of Aberdeen, Aberdeen, UK
| | - Tim de Meij
- Department of Paediatric Gastroenterology, Emma Children's Hospital, Amsterdam UMC, Academic Medical Centre, Amsterdam, The Netherlands
| | - Sofia K Forslund-Startceva
- Experimental and Clinical Research Center, a joint cooperation of Max Delbruck Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max Delbruck Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| | - Rob Knight
- Department of Pediatrics, University of California San Diego, San Diego, CA, USA
- Department of Computer Science & Engineering, University of California San Diego, San Diego, CA, USA
- Shu Chien - Gene Lay Department of Bioengineering, University of California San Diego, San Diego, CA, USA
- Halıcıoğlu Data Science Institute, University of California San Diego, San Diego, CA, USA
- Center for Microbiome Innovation, University of California San Diego, San Diego, CA, USA
| | - Omry Koren
- Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel
| | - Paul Little
- Primary Care Research Centre, University of Southampton, Southampton, UK
| | - Bradley C Johnston
- Department of Nutrition, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX, USA
- Department of Epidemiology and Biostatistics, School of Public Health, Texas A&M University, College Station, TX, USA
| | - Jan Łukasik
- Department of Paediatrics, The Medical University of Warsaw, Warsaw, Poland
| | - Jotham Suez
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Daniel J Tancredi
- Department of Pediatrics, School of Medicine, University of California Davis, Sacramento, CA, USA
| | - Mary Ellen Sanders
- International Scientific Association for Probiotics and Prebiotics, Consulting Scientific Advisor, Centennial, CO, USA.
| |
Collapse
|
9
|
Kong J, Liu X, Li H, Yang C, Jiang T, Yan Y, Miao N, Mu S, Zhan Y. Exploring the causal relationship between inflammatory cytokines, metabolites, and Behcet's syndrome: Mendelian randomization. Cytokine 2025; 186:156849. [PMID: 39756125 DOI: 10.1016/j.cyto.2024.156849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/02/2024] [Accepted: 12/26/2024] [Indexed: 01/07/2025]
Abstract
INTRODUCTION Behcet's syndrome, as a vasculitic disease involving multiple systems, often induces oral mucosal ulcers. However, levels of inflammatory cytokines and metabolites are unknown for the probability of developing the disease. This study aims to reveal the causal relationship between the cytokines and metabolites and Behcet's syndrome through Mendelian randomization analysis. MATERIALS AND METHODS The instrumental variable single nucleotide polymorphisms (SNPs) were used in the study, which showed associations between 91 cytokines and 553 metabolites, respectively. To explore the causal relationship between these exposure factors and Behcet's syndrome, the random effects inverse variance weighting method was adopted. In addition, sensitivity analysis was carried out using Cochran's Q test, heterogeneity test, horizontal pleotropy test and MR-Egger intercept test to evaluate the robustness and validity of our research results. RESULTS A total of five substances were identified as causally related to Behcet's syndrome, namely, the cellular factors Interleukin 12 subunit beta(IL-12B) and Interleukin-33(IL-33), the metabolite mannitol, X-12728, and Ratio of Bisallylic groups to double bonds. Furthermore, no significant evidence suggesting heterogeneity or pleiotropy was observed. CONCLUSION Our study adds to current knowledge on the role of specific inflammatory cytokines and metabolites in aetiology of Behcet's syndrome. The identified cytokines and metabolites might be used as markers for clinical screening and prevention of Behcet's syndrome, as well as candidate molecules for future mechanism exploration and drug target selection. Further validation is needed to assess the potential of these cytokines and metabolites as pharmacological targets for Behcet's syndrome prevention.
Collapse
Affiliation(s)
- Jiaqi Kong
- Department of Periodontology and Oral Mucosa, The Second Affiliated Hospital of Harbin Medical University, Harbin, China; Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xinpeng Liu
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Huishu Li
- Department of Periodontology and Oral Mucosa, The Second Affiliated Hospital of Harbin Medical University, Harbin, China; Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chubo Yang
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Tao Jiang
- Department of Anesthesiology (Hei Long Jiang Province Key Lab of Research on Anesthesiology and Critical Care Medicine), The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Ying Yan
- Department of Periodontology and Oral Mucosa, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Nan Miao
- Department of Periodontology and Oral Mucosa, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Sen Mu
- Department of Periodontology and Oral Mucosa, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yuanbo Zhan
- Department of Periodontology and Oral Mucosa, The Second Affiliated Hospital of Harbin Medical University, Harbin, China; Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
10
|
Qiao T, Wen XH. Exploring gut microbiota as a novel therapeutic target in Crohn's disease: Insights and emerging strategies. World J Gastroenterol 2025; 31:100827. [PMID: 39811502 PMCID: PMC11684203 DOI: 10.3748/wjg.v31.i2.100827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/30/2024] [Accepted: 11/15/2024] [Indexed: 12/18/2024] Open
Abstract
Extensive research has investigated the etiology of Crohn's disease (CD), encompassing genetic predisposition, lifestyle factors, and environmental triggers. Recently, the gut microbiome, recognized as the human body's second-largest gene pool, has garnered significant attention for its crucial role in the pathogenesis of CD. This paper investigates the mechanisms underlying CD, focusing on the role of 'creeping fat' in disease progression and exploring emerging therapeutic strategies, including fecal microbiota transplantation, enteral nutrition, and therapeutic diets. Creeping fat has been identified as a unique pathological feature of CD and has recently been found to be associated with dysbiosis of the gut microbiome. We characterize this dysbiotic state by identifying key microbiome-bacteria, fungi, viruses, and archaea, and their contributions to CD pathogenesis. Additionally, this paper reviews contemporary therapies, emphasizing the potential of biological therapies like fecal microbiota transplantation and dietary interventions. By elucidating the complex interactions between host-microbiome dynamics and CD pathology, this article aims to advance our understanding of the disease and guide the development of more effective therapeutic strategies for managing CD.
Collapse
Affiliation(s)
- Tong Qiao
- Department of Clinical Medicine, Jinan University, Guangzhou 510632, Guangdong Province, China
| | - Xian-Hui Wen
- College of Life Science and Technology, Jinan University, Guangzhou 510632, Guangdong Province, China
| |
Collapse
|
11
|
Liu HY, Li S, Ogamune KJ, Ahmed AA, Kim IH, Zhang Y, Cai D. Fungi in the Gut Microbiota: Interactions, Homeostasis, and Host Physiology. Microorganisms 2025; 13:70. [PMID: 39858841 PMCID: PMC11767893 DOI: 10.3390/microorganisms13010070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 12/25/2024] [Accepted: 12/30/2024] [Indexed: 01/27/2025] Open
Abstract
The mammalian gastrointestinal tract is a stage for dynamic inter-kingdom interactions among bacteria, fungi, viruses, and protozoa, which collectively shape the gut micro-ecology and influence host physiology. Despite being a modest fraction, the fungal community, also referred to as mycobiota, represents a critical component of the gut microbiota. Emerging evidence suggests that fungi act as early colonizers of the intestine, exerting a lasting influence on gut development. Meanwhile, the composition of the mycobiota is influenced by multiple factors, with diet, nutrition, drug use (e.g., antimicrobials), and physical condition standing as primary drivers. During its establishment, the mycobiota forms both antagonistic and synergistic relationships with bacterial communities within the host. For instance, intestinal fungi can inhibit bacterial colonization by producing alcohol, while certain bacterial pathogens exploit fungal iron carriers to enhance their growth. However, the regulatory mechanisms governing these complex interactions remain poorly understood. In this review, we first introduce the methodologies for studying the microbiota, then address the significance of the mycobiota in the mammalian intestine, especially during weaning when all 'primary drivers' change, and, finally, discuss interactions between fungi and bacteria under various influencing factors. Our review aims to shed light on the complex inter-kingdom dynamics between fungi and bacteria in gut homeostasis and provide insights into how they can be better understood and managed to improve host health and disease outcomes.
Collapse
Affiliation(s)
- Hao-Yu Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (H.-Y.L.); (S.L.); (K.J.O.)
- Jiangsu Key Laboratory of Animal Genetic Breeding and Molecular Design, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agricultural & Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Shicheng Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (H.-Y.L.); (S.L.); (K.J.O.)
- Jiangsu Key Laboratory of Animal Genetic Breeding and Molecular Design, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agricultural & Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Kennedy Jerry Ogamune
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (H.-Y.L.); (S.L.); (K.J.O.)
- Jiangsu Key Laboratory of Animal Genetic Breeding and Molecular Design, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agricultural & Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Abdelkareem A. Ahmed
- Department of Veterinary Science, Botswana University of Agriculture and Natural Resources, Private Bag 0027, Gaborone P.O. Box 100, Botswana;
| | - In Ho Kim
- Department of Animal Resource & Science, Dankook University, 119 Dandero, Donnamgu Cheonan, Cheonan-si 31116, Republic of Korea;
| | - Yunzeng Zhang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China;
| | - Demin Cai
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (H.-Y.L.); (S.L.); (K.J.O.)
- Jiangsu Key Laboratory of Animal Genetic Breeding and Molecular Design, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agricultural & Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
12
|
Li P, Chen CZ, Wang JX, Liu L, Li ZH. Ecological influences of sulfadiazine on rhizosphere soil microbial communities in ryegrass (Lolium perenne L.)-soil potting systems: Perspectives on diversity, co-occurrence networks, and assembly processes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177324. [PMID: 39486546 DOI: 10.1016/j.scitotenv.2024.177324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
Microorganisms in the soil are crucial constituents of land ecosystems, significantly influencing their structure and functionality. However, the accumulation of antibiotics in agricultural practices may negatively affect these microbial communities. The objective of this study was to explore the ecological effects of the sulfonamide drug sulfadiazine (SDZ) on the rhizosphere soil microbial communities of ryegrass (Lolium perenne L.). A potting system experiment was constructed by exposing for 45 days after treatments with different initial concentrations of SDZ (0, 1, 10, and 30 mg/kg) to assess the effects of SDZ on soil microbial diversity, bacterial-fungal co-occurrence networks, and community assembly processes. The findings indicated that SDZ treatment significantly altered the community composition, especially for bacteria in the phylum Proteobacteria and Gemmatimonadota and fungi in the phylum Mortierellomycota and Aphelidiomycota. Network analysis revealed that SDZ stress caused alterations in microbial interaction patterns, especially at high treatment concentrations, and reduced network connectivity. In addition, SDZ significantly affected microbial community assembly processes, where stochastic processes were enhanced in bacterial communities, while fungal communities showed a balance of stochastic and deterministic processes. Analysis of environmental variables revealed that the presence of SDZ may disrupt the link between soil microorganisms and soil nitrogen compounds. The results provide new perspectives for understanding the ecological impacts of antibiotic residues in agroecosystems and provide a scientific basis for soil health management.
Collapse
Affiliation(s)
- Ping Li
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | | | - Jin-Xin Wang
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Ling Liu
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Zhi-Hua Li
- Marine College, Shandong University, Weihai, Shandong 264209, China.
| |
Collapse
|
13
|
Zhang H, Song D, Luo Q, Yu J, Wei Y, Chen D, Wu G, Zhang Z, Li Z, Jiang H, Gan J, Deng D, Li H, Yuan W. Multi-omics analysis reveals indicator features of microbe-host interactions during Candida albicans colonization and subsequent infection. Front Microbiol 2024; 15:1476429. [PMID: 39664059 PMCID: PMC11632224 DOI: 10.3389/fmicb.2024.1476429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 11/11/2024] [Indexed: 12/13/2024] Open
Abstract
Introduction Candida albicans gastrointestinal (GI) colonization is crucial for the onset of invasive disease. This research encompassed 31 patients diagnosed with Candida spp. bloodstream infections during their admission to a university hospital in China. Methods We explored risk factors associated with C. albicans GI colonization and ensuing translocated infection. Animal models were established via gavage with clinical isolates of C. albicans to induce GI tract colonization and subsequent kidney translocation infection. Our analysis is focused on 16S rRNA gene sequencing, metabolomics of colon contents, and transcriptomics of colon tissues, examining the intestinal barrier, inflammatory responses, and immune cell infiltration. Results This study observed that down-regulation of programmed cell death 1 (PD-1) in colon tissues is likely linked to the progression from C. albicans colonization to translocated infection. Notably, reductions in Dubosiella abundance and Short-chain fatty acids (SCFA) levels, coupled with increases in Mucispirillum and D-erythro-imidazolylglycerol phosphate, were indicator features during the advancement to translocated invasive infection in hosts with rectal colonization by C. albicans and lower serum protein levels. Conclusion Given the similarity in intestinal bacterial communities and metabolome profiles, antifungal treatment may not be necessary for patients with nonpathogenic C. albicans colonization. The reduced expression of PD-1 in colon tissues may contribute to the transition from colonized C. albicans to subsequent translocated infection. The indicator features of decreased Dubosiella abundance and SCFA levels, coupled with increased Mucispirillum and D-erythro-imidazolylglycerol phosphate, are likely linked to the development of translocated invasive infection in hosts colonized rectally by C. albicans with lower serum protein levels. Importance Candida albicans invasive infections pose a significant challenge to contemporary medicine, with mortality rates from such fungal infections remaining high despite antifungal treatment. Gastrointestinal colonization by potential pathogens is a critical precursor to the development of translocated infections. Consequently, there is an increasing demand to identify clinical risk factors, multi-omics profiles, and key indicators to prevent the progression to translocated invasive infections in patients colonized rectally by C. albicans.
Collapse
Affiliation(s)
- Huan Zhang
- Department of Clinical Laboratory, The Affiliated Hospital of Yunnan University (The Second People's Hospital of Yunnan Province), Kunming, China
| | - Daoyuan Song
- Department of Neurology, The Affiliated Hospital of Yunnan University (The Second People's Hospital of Yunnan Province), Kunming, China
| | - Qiulin Luo
- Department of Clinical Laboratory, The Affiliated Hospital of Yunnan University (The Second People's Hospital of Yunnan Province), Kunming, China
| | - Jiangkun Yu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| | - Yingpu Wei
- Department of Clinical Laboratory, The Affiliated Hospital of Yunnan University (The Second People's Hospital of Yunnan Province), Kunming, China
| | - Di Chen
- Department of Clinical Laboratory, The Affiliated Hospital of Yunnan University (The Second People's Hospital of Yunnan Province), Kunming, China
| | - Guangjuan Wu
- Department of Clinical Laboratory, The Affiliated Hospital of Yunnan University (The Second People's Hospital of Yunnan Province), Kunming, China
| | - Zhi Zhang
- Department of Clinical Laboratory, The Affiliated Hospital of Yunnan University (The Second People's Hospital of Yunnan Province), Kunming, China
| | - Zhao Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| | | | - Jingquan Gan
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| | - Deyao Deng
- Department of Clinical Laboratory, The Affiliated Hospital of Yunnan University (The Second People's Hospital of Yunnan Province), Kunming, China
| | - Hui Li
- Department of Infectious Disease, The Affiliated Hospital of Yunnan University (The Second People's Hospital of Yunnan Province), Kunming, China
| | - Wenli Yuan
- Department of Clinical Laboratory, The Affiliated Hospital of Yunnan University (The Second People's Hospital of Yunnan Province), Kunming, China
| |
Collapse
|
14
|
Li L, Cai F, Guo C, Liu Z, Qin J, Huang J. Gut microbiome and NAFLD: impact and therapeutic potential. Front Microbiol 2024; 15:1500453. [PMID: 39664063 PMCID: PMC11632136 DOI: 10.3389/fmicb.2024.1500453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/13/2024] [Indexed: 12/13/2024] Open
Abstract
Non-Alcoholic Fatty Liver Disease (NAFLD) affects approximately 32.4% of the global population and poses a significant health concern. Emerging evidence underscores the pivotal role of the gut microbiota-including bacteria, viruses, fungi, and parasites-in the development and progression of NAFLD. Dysbiosis among gut bacteria alters key biological pathways that contribute to liver fat accumulation and inflammation. The gut virome, comprising bacteriophages and eukaryotic viruses, significantly shapes microbial community dynamics and impacts host metabolism through complex interactions. Similarly, gut fungi maintain a symbiotic relationship with bacteria; the relationship between gut fungi and bacteria is crucial for overall host health, with certain fungal species such as Candida in NAFLD patients showing detrimental associations with metabolic markers and liver function. Additionally, the "hygiene hypothesis" suggests that reduced exposure to gut parasites may affect immune regulation and metabolic processes, potentially influencing conditions like obesity and insulin resistance. This review synthesizes current knowledge on the intricate interactions within the gut microbiota and their associations with NAFLD. We highlight the therapeutic potential of targeting these microbial communities through interventions such as probiotics, prebiotics, and fecal microbiota transplantation. Addressing the complexities of NAFLD requires comprehensive strategies that consider the multifaceted roles of gut microorganisms in disease pathology.
Collapse
Affiliation(s)
| | | | | | | | | | - Jiean Huang
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
15
|
Liu X, Yu Y, Yu H, Sarkar B, Zhang Y, Yang Y, Qin S. Nonbiodegradable microplastic types determine the diversity and structure of soil microbial communities: A meta-analysis. ENVIRONMENTAL RESEARCH 2024; 260:119663. [PMID: 39043354 DOI: 10.1016/j.envres.2024.119663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/07/2024] [Accepted: 07/20/2024] [Indexed: 07/25/2024]
Abstract
As an emerging contaminant, microplastics (MPs) have received considerable attention for their potential threat to the soil environment. However, the response of soil bacterial and fungal communities to MPs exposure remains unclear. In this study, we conducted a global meta-analysis of 95 publications and 2317 observations to assess the effects of nonbiodegradable MP properties and exposure conditions on soil microbial biomass, alpha and beta diversity, and community structure. Our results indicate that MPs increased (p < 0.05) soil active microbial biomass by 42%, with the effect varying with MPs type, exposure concentration, exposure time and soil pH. MPs concentration was identified as the most important factor controlling the response of soil microbial biomass to MPs. MPs addition decreased (p < 0.05) the soil bacterial Shannon and Chao1 indices by 2% and 3%, respectively, but had limited effects (p > 0.05) on soil fungal Shannon and Chao1 indices. The type of MPs and exposure time determined the effects of MPs on bacterial Shannon and Chao1 indices, while the type of MPs and soil pH controlled the response ratios of fungal Shannon and Chao1 indices to MPs. Specifically, soil organic carbon (SOC) was the major factor regulating the response ratio of bacterial alpha diversity index to MPs. The presence of MPs did not affect soil bacterial community structure and beta diversity. Our results highlight that MPs reduced bacterial diversity and richness but increased the soil active microbial biomass, suggesting that MPs could disrupt biogeochemical cycles by promoting the growth of specific microorganisms.
Collapse
Affiliation(s)
- Xinhui Liu
- Hebei Provincial Key Laboratory of Soil Ecology, Hebei Provincial Key Laboratory of Agricultural Water Resources, Center for Agricultural Resources Research, Institute of Genetic and Developmental Biology, The Chinese Academy of Sciences, 286 Huaizhong Road, Shijiazhuang, 050021, Hebei, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongxiang Yu
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China.
| | - Haiyang Yu
- College of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Binoy Sarkar
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Yanyan Zhang
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yuyi Yang
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Shuping Qin
- Hebei Provincial Key Laboratory of Soil Ecology, Hebei Provincial Key Laboratory of Agricultural Water Resources, Center for Agricultural Resources Research, Institute of Genetic and Developmental Biology, The Chinese Academy of Sciences, 286 Huaizhong Road, Shijiazhuang, 050021, Hebei, China.
| |
Collapse
|
16
|
McCrory C, Lenardon M, Traven A. Bacteria-derived short-chain fatty acids as potential regulators of fungal commensalism and pathogenesis. Trends Microbiol 2024; 32:1106-1118. [PMID: 38729839 DOI: 10.1016/j.tim.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/08/2024] [Accepted: 04/16/2024] [Indexed: 05/12/2024]
Abstract
The human gastrointestinal microbiome encompasses bacteria, fungi, and viruses forming complex bionetworks which, for organismal health, must be in a state of homeostasis. An important homeostatic mechanism derives from microbial competition, which maintains the relative abundance of microbial species in a healthy balance. Microbes compete for nutrients and secrete metabolites that inhibit other microbes. Short-chain fatty acids (SCFAs) are one such class of metabolites made by gut bacteria to very high levels. SCFAs are metabolised by microbes and host cells and have multiple roles in regulating cell physiology. Here, we review the mechanisms by which SCFAs regulate the fungal gut commensal Candida albicans. We discuss SCFA's ability to inhibit fungal growth, limit invasive behaviours and modulate cell surface antigens recognised by immune cells. We review the mechanisms underlying these roles: regulation of gene expression, metabolism, signalling and SCFA-driven post-translational protein modifications by acylation, which contribute to changes in acylome dynamics of C. albicans with potentially large consequences for cell physiology. Given that the gut mycobiome is a reservoir for systemic disease and has also been implicated in inflammatory bowel disease, understanding the mechanisms by which bacterial metabolites, such as SCFAs, control the mycobiome might provide therapeutic avenues.
Collapse
Affiliation(s)
- Christopher McCrory
- Department of Biochemistry and Molecular Biology, Infection Program, Biomedicine Discovery Institute, Monash University, Clayton 3800, Victoria, Australia; Centre to Impact AMR, Monash University, Clayton 3800, Victoria, Australia
| | - Megan Lenardon
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, 2052, New South Wales, Australia
| | - Ana Traven
- Department of Biochemistry and Molecular Biology, Infection Program, Biomedicine Discovery Institute, Monash University, Clayton 3800, Victoria, Australia; Centre to Impact AMR, Monash University, Clayton 3800, Victoria, Australia.
| |
Collapse
|
17
|
Hill JH, Round JL. Intestinal fungal-host interactions in promoting and maintaining health. Cell Host Microbe 2024; 32:1668-1680. [PMID: 39389031 DOI: 10.1016/j.chom.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/05/2024] [Accepted: 09/14/2024] [Indexed: 10/12/2024]
Abstract
The resident microbiota are a key component of a healthy organism. The vast majority of microbiome studies have focused on bacterial members, which constitute a significant portion of resident microbial biomass. Recent studies have demonstrated how the fungal component of the microbiota, or the mycobiome, influences mammalian biology despite its low abundance compared to other microbes. Fungi are known for their pathogenic potential, yet fungi are also prominent colonizers in healthy states, highlighting their duality. We summarize the characteristics that define the gut mycobiome across life, the factors that can impact its composition, and studies that identify mechanisms of how fungi confer health benefits. The goal of this review is to synthesize our knowledge regarding the composition and function of a healthy mycobiome with a view to inspiring future therapeutic advances.
Collapse
Affiliation(s)
- Jennifer H Hill
- University of Colorado Boulder, BioFrontiers Institute, Department of Molecular, Cellular & Developmental Biology, Boulder, CO 80303, USA.
| | - June L Round
- University of Utah, School of Medicine, Department of Pathology, Huntsman Cancer Institute, Salt Lake City, UT 84112, USA.
| |
Collapse
|
18
|
Pu L, Pang S, Mu W, Chen X, Zou Y, Wang Y, Ding Y, Yan Q, Huang Y, Chen X, Peng T, Luo W, Wang S. The gut mycobiome signatures in long-lived populations. iScience 2024; 27:110412. [PMID: 39081291 PMCID: PMC11284699 DOI: 10.1016/j.isci.2024.110412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/22/2024] [Accepted: 06/26/2024] [Indexed: 08/02/2024] Open
Abstract
Long-lived individuals have been extensively studied as a model to investigate the role of the gut microbiota in aging, but their gut fungi remain almost unexplored. Here, we recruited a community-dwelling cohort of 251 participants (24-108 years, including 47 centenarians) from Guangxi in China to characterize the gut mycobiome signatures. We found gut mycobiome markedly varied during aging and determined aging as a predominant factor driving these variations. For long-lived individuals, core taxa, including Penicillium and Aspergillus, were maintained and Candida enterotype was enriched when compared with old counterparts. Individuals with this enterotype were more likely to possess Bacteroides enterotype enriched in young and centenarians. Moreover, the drivers from Candida enterotype were positively linked with the bacteria components dominated in Bacteroides enterotype. We also identified potentially beneficial yeasts-enriched features to differentiate long-lived individuals from others. Our findings suggest that the gut mycobiome develops with aging, and long-lived individuals possess unique fungal signatures.
Collapse
Affiliation(s)
- Lixia Pu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Shifu Pang
- AIage Life Science Corporation Ltd., Guangxi Free Trade Zone Aisheng Biotechnology Corporation Ltd., Nanning, Guangxi, China
| | - Wenjie Mu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Xiaodong Chen
- AIage Life Science Corporation Ltd., Guangxi Free Trade Zone Aisheng Biotechnology Corporation Ltd., Nanning, Guangxi, China
- Guangxi Key Laboratory of Longevity Science and Technology, AIage Life Science Corporation Ltd., Nanning, Guangxi, China
| | - Yang Zou
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Yugui Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Yingying Ding
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Qi Yan
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Yu Huang
- AIage Life Science Corporation Ltd., Guangxi Free Trade Zone Aisheng Biotechnology Corporation Ltd., Nanning, Guangxi, China
| | - Xiaochun Chen
- AIage Life Science Corporation Ltd., Guangxi Free Trade Zone Aisheng Biotechnology Corporation Ltd., Nanning, Guangxi, China
- Guangxi Key Laboratory of Longevity Science and Technology, AIage Life Science Corporation Ltd., Nanning, Guangxi, China
| | - Tao Peng
- Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer, Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Weifei Luo
- AIage Life Science Corporation Ltd., Guangxi Free Trade Zone Aisheng Biotechnology Corporation Ltd., Nanning, Guangxi, China
- Guangxi Key Laboratory of Longevity Science and Technology, AIage Life Science Corporation Ltd., Nanning, Guangxi, China
| | - Shuai Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| |
Collapse
|
19
|
Marsaux B, Moens F, Vandevijver G, Marzorati M, van de Wiele T. Candida species-specific colonization in the healthy and impaired human gastrointestinal tract as simulated using the Mucosal Ileum-SHIME® model. FEMS Microbiol Ecol 2024; 100:fiae113. [PMID: 39169462 DOI: 10.1093/femsec/fiae113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 06/14/2024] [Accepted: 08/20/2024] [Indexed: 08/23/2024] Open
Abstract
Candida species primarily exist as harmless commensals in the gastrointestinal tract of warm-blooded animals. However, they can also cause life-threatening infections, which are often associated with gut microbial dysbiosis. Identifying the microbial actors that restrict Candida to commensalism remains a significant challenge. In vitro models could enable a mechanistic study of the interactions between Candida and simulated colon microbiomes. Therefore, this study aimed to elucidate the spatial and temporal colonization kinetics of specific Candida, including C. albicans, C. tropicalis, and C. parapsilosis, and their relative Nakaseomyces glabratus, by using an adapted SHIME® model, simulating the ileum, and proximal and distal colons. We monitored fungal and bacterial colonization kinetics under conditions of eubiosis (commensal lifestyle) and antibiotic-induced dysbiosis (pathogenic lifestyle). Our findings highlighted the variability in the colonization potential of Candida species across different intestinal regions. The ileum compartment proved to be the most favourable environment for C. albicans and C. parapsilosis under conditions of eubiosis. Antibiotic-induced dysbiosis resulted in resurgence of opportunistic Candida species, especially C. tropicalis and C. albicans. Future research should focus on identifying specific bacterial species influencing Candida colonization resistance and explore the long-term effects of antibiotics on the mycobiome and bacteriome.
Collapse
Affiliation(s)
- Benoît Marsaux
- ProDigest B.V., 9052 Ghent, Belgium
- CMET, Ghent University, 9000 Ghent, Belgium
| | | | | | - Massimo Marzorati
- ProDigest B.V., 9052 Ghent, Belgium
- CMET, Ghent University, 9000 Ghent, Belgium
| | - Tom van de Wiele
- ProDigest B.V., 9052 Ghent, Belgium
- CMET, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
20
|
Sey EA, Warris A. The gut-lung axis: the impact of the gut mycobiome on pulmonary diseases and infections. OXFORD OPEN IMMUNOLOGY 2024; 5:iqae008. [PMID: 39193472 PMCID: PMC11316619 DOI: 10.1093/oxfimm/iqae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 08/29/2024] Open
Abstract
The gastrointestinal tract contains a diverse microbiome consisting of bacteria, fungi, viruses and archaea. Although these microbes usually reside as commensal organisms, it is now well established that higher abundance of specific bacterial or fungal species, or loss of diversity in the microbiome can significantly affect development, progression and outcomes in disease. Studies have mainly focused on the effects of bacteria, however, the impact of other microbes, such as fungi, has received increased attention in the last few years. Fungi only represent around 0.1% of the total gut microbial population. However, key fungal taxa such as Candida, Aspergillus and Wallemia have been shown to significantly impact health and disease. The composition of the gut mycobiome has been shown to affect immunity at distal sites, such as the heart, lung, brain, pancreas, and liver. In the case of the lung this phenomenon is referred to as the 'gut-lung axis'. Recent studies have begun to explore and unveil the relationship between gut fungi and lung immunity in diseases such as asthma and lung cancer, and lung infections caused by viruses, bacteria and fungi. In this review we will summarize the current, rapidly growing, literature describing the impact of the gut mycobiome on respiratory disease and infection.
Collapse
Affiliation(s)
- Emily A Sey
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, EX4 4QD, UK
| | - Adilia Warris
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, EX4 4QD, UK
| |
Collapse
|
21
|
Tian X, Li S, Wang C, Zhang Y, Feng X, Yan Q, Guo R, Wu F, Wu C, Wang Y, Huo X, Ma X. Gut virome-wide association analysis identifies cross-population viral signatures for inflammatory bowel disease. MICROBIOME 2024; 12:130. [PMID: 39026313 PMCID: PMC11256409 DOI: 10.1186/s40168-024-01832-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 05/08/2024] [Indexed: 07/20/2024]
Abstract
BACKGROUND The gut virome has been implicated in inflammatory bowel disease (IBD), yet a full understanding of the gut virome in IBD patients, especially across diverse geographic populations, is lacking. RESULTS In this study, we conducted a comprehensive gut virome-wide association study in a Chinese cohort of 71 IBD patients (15 with Crohn's disease and 56 with ulcerative colitis) and 77 healthy controls via viral-like particle (VLP) and bulk virome sequencing of their feces. By utilizing an integrated gut virus catalog tailored to the IBD virome, we revealed fundamental alterations in the gut virome in IBD patients. These characterized 139 differentially abundant viral signatures, including elevated phages predicted to infect Escherichia, Klebsiella, Enterococcus_B, Streptococcus, and Veillonella species, as well as IBD-depleted phages targeting Prevotella, Ruminococcus_E, Bifidobacterium, and Blautia species. Remarkably, these viral signatures demonstrated high consistency across diverse populations such as those in Europe and the USA, emphasizing their significance and broad relevance in the disease context. Furthermore, fecal virome transplantation experiments verified that the colonization of these IBD-characterized viruses can modulate experimental colitis in mouse models. CONCLUSIONS Building upon these insights into the IBD gut virome, we identified potential biomarkers for prognosis and therapy in IBD patients, laying the foundation for further exploration of viromes in related conditions. Video Abstract.
Collapse
Affiliation(s)
- Xiangge Tian
- Second Affiliated Hospital, Dalian Medical University, Dalian, 116023, China
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Shenghui Li
- Puensum Genetech Institute, Wuhan, 430076, China
| | - Chao Wang
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Yanyan Zhang
- Second Affiliated Hospital, Dalian Medical University, Dalian, 116023, China
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Xiaoying Feng
- Second Affiliated Hospital, Dalian Medical University, Dalian, 116023, China
| | - Qiulong Yan
- Second Affiliated Hospital, Dalian Medical University, Dalian, 116023, China.
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China.
| | - Ruochun Guo
- Puensum Genetech Institute, Wuhan, 430076, China
| | - Fan Wu
- Second Affiliated Hospital, Dalian Medical University, Dalian, 116023, China
| | - Chunxue Wu
- Second Affiliated Hospital, Dalian Medical University, Dalian, 116023, China
| | - Yan Wang
- Second Affiliated Hospital, Dalian Medical University, Dalian, 116023, China
| | - Xiaokui Huo
- Second Affiliated Hospital, Dalian Medical University, Dalian, 116023, China.
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China.
| | - Xiaochi Ma
- Second Affiliated Hospital, Dalian Medical University, Dalian, 116023, China.
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China.
| |
Collapse
|
22
|
Nguyen TA, Kim HY, Stocker S, Kidd S, Alastruey-Izquierdo A, Dao A, Harrison T, Wahyuningsih R, Rickerts V, Perfect J, Denning DW, Nucci M, Cassini A, Beardsley J, Gigante V, Sati H, Morrissey CO, Alffenaar JW. Pichia kudriavzevii (Candida krusei): A systematic review to inform the World Health Organisation priority list of fungal pathogens. Med Mycol 2024; 62:myad132. [PMID: 38935911 PMCID: PMC11210618 DOI: 10.1093/mmy/myad132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/26/2023] [Accepted: 12/11/2023] [Indexed: 06/29/2024] Open
Abstract
In response to the growing global threat of fungal infections, in 2020 the World Health Organisation (WHO) established an Expert Group to identify priority fungi and develop the first WHO fungal priority pathogen list (FPPL). The aim of this systematic review was to evaluate the features and global impact of invasive infections caused by Pichia kudriavzevii (formerly known as Candida krusei). PubMed and Web of Science were used to identify studies published between 1 January 2011 and 18 February 2021 reporting on the criteria of mortality, morbidity (defined as hospitalisation and length of stay), drug resistance, preventability, yearly incidence, and distribution/emergence. Overall, 33 studies were evaluated. Mortality rates of up to 67% in adults were reported. Despite the intrinsic resistance of P. kudriavzevii to fluconazole with decreased susceptibility to amphotericin B, resistance (or non-wild-type rate) to other azoles and echinocandins was low, ranging between 0 and 5%. Risk factors for developing P. kudriavzevii infections included low birth weight, prior use of antibiotics/antifungals, and an underlying diagnosis of gastrointestinal disease or cancer. The incidence of infections caused by P. kudriavzevii is generally low (∼5% of all Candida-like blood isolates) and stable over the 10-year timeframe, although additional surveillance data are needed. Strategies targeting the identified risk factors for developing P. kudriavzevii infections should be developed and tested for effectiveness and feasibility of implementation. Studies presenting data on epidemiology and susceptibility of P. kudriavzevii were scarce, especially in low- and middle-income countries (LMICs). Thus, global surveillance systems are required to monitor the incidence, susceptibility, and morbidity of P. kudriavzevii invasive infections to inform diagnosis and treatment. Timely species-level identification and susceptibility testing should be conducted to reduce the high mortality and limit the spread of P. kudriavzevii in healthcare facilities.
Collapse
Affiliation(s)
- Thi Anh Nguyen
- Faculty of Medicine and Health, School of Pharmacy, The University of Sydney, Sydney, NSW, Australia
- Sydney Infectious Diseases Institute, The University of Sydney, Sydney, NSW, Australia
| | - Hannah Yejin Kim
- Faculty of Medicine and Health, School of Pharmacy, The University of Sydney, Sydney, NSW, Australia
- Sydney Infectious Diseases Institute, The University of Sydney, Sydney, NSW, Australia
- Department of Pharmacy, Westmead Hospital, Sydney, NSW, Australia
| | - Sophie Stocker
- Faculty of Medicine and Health, School of Pharmacy, The University of Sydney, Sydney, NSW, Australia
- Sydney Infectious Diseases Institute, The University of Sydney, Sydney, NSW, Australia
- Department of Clinical Pharmacology and Toxicology, St Vincent's Hospital, Sydney, NSW, Australia
| | - Sarah Kidd
- National Mycology Reference Centre, Microbiology and Infectious Diseases, SA Pathology, Adelaide, SA, Australia
| | - Ana Alastruey-Izquierdo
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Aiken Dao
- Sydney Infectious Diseases Institute, The University of Sydney, Sydney, NSW, Australia
- Westmead Institute for Medical Research, Sydney, NSW, Australia
| | - Thomas Harrison
- Institute of Infection and Immunity, St George's University London, London, UK
- MRC Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Retno Wahyuningsih
- Department of Parasitology, Faculty of Medicine, Universitas Kristen Indonesia, Jakarta, Indonesia
| | | | - John Perfect
- Division of Infectious Diseases and International Health, Duke University School of Medicine, Durham, NC, USA
| | - David W Denning
- Manchester Fungal Infection Group (MFIG), Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Marcio Nucci
- Department of Internal Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alessandro Cassini
- Cantonal Doctor Office, Public Health Department, Canton of Vaud, Lausanne, Switzerland
| | - Justin Beardsley
- Sydney Infectious Diseases Institute, The University of Sydney, Sydney, NSW, Australia
- Westmead Institute for Medical Research, Sydney, NSW, Australia
| | - Valeria Gigante
- AMR Division, World Health Organisation, Geneva, Switzerland
| | - Hatim Sati
- AMR Division, World Health Organisation, Geneva, Switzerland
| | - C Orla Morrissey
- Department of Infectious Diseases, Alfred Health, Melbourne, VIC, Australia
- Department of Infectious Diseases, Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| | - Jan-Willem Alffenaar
- Faculty of Medicine and Health, School of Pharmacy, The University of Sydney, Sydney, NSW, Australia
- Sydney Infectious Diseases Institute, The University of Sydney, Sydney, NSW, Australia
- Department of Pharmacy, Westmead Hospital, Sydney, NSW, Australia
| |
Collapse
|
23
|
Choi Y, Kim HJ, Park J, Lee M, Kim S, Koyanagi A, Smith L, Kim MS, Rahmati M, Lee H, Kang J, Yon DK. Acute and post-acute respiratory complications of SARS-CoV-2 infection: population-based cohort study in South Korea and Japan. Nat Commun 2024; 15:4499. [PMID: 38802352 PMCID: PMC11130304 DOI: 10.1038/s41467-024-48825-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 05/13/2024] [Indexed: 05/29/2024] Open
Abstract
Considering the significant burden of post-acute COVID-19 conditions among patients infected with SARS-CoV-2, we aimed to identify the risk of acute respiratory complications or post-acute respiratory sequelae. A binational population-based cohort study was conducted to analyze the risk of acute respiratory complications or post-acute respiratory sequelae after SARS-CoV-2 infection. We used a Korean nationwide claim-based cohort (K-COV-N; n = 2,312,748; main cohort) and a Japanese claim-based cohort (JMDC; n = 3,115,606; replication cohort) after multi-to-one propensity score matching. Among 2,312,748 Korean participants (mean age, 47.2 years [SD, 15.6]; 1,109,708 [48.0%] female), 17.1% (394,598/2,312,748) were infected with SARS-CoV-2. The risk of acute respiratory complications or post-acute respiratory sequelae is significantly increased in people with SARS-CoV-2 infection compared to the general population (acute respiratory complications: HR, 8.06 [95% CI, 6.92-9.38]; post-acute respiratory sequelae: 1.68 [1.62-1.75]), and the risk increased with increasing COVID-19 severity. We identified COVID-19 vaccination as an attenuating factor, showing a protective association against acute or post-acute respiratory conditions. Furthermore, while the excess post-acute risk diminished with time following SARS-CoV-2 infection, it persisted beyond 6 months post-infection. The replication cohort showed a similar pattern in the association. Our study comprehensively evaluates respiratory complications in post-COVID-19 conditions, considering attenuating factors such as vaccination status, post-infection duration, COVID-19 severity, and specific respiratory conditions.
Collapse
Affiliation(s)
- Yujin Choi
- Center for Digital Health, Medical Science research Institute, Kyung Hee University College of Medicine, Seoul, South Korea
- Department of Korean Medicine, Kyung Hee University College of Korean Medicine, Seoul, South Korea
| | - Hyeon Jin Kim
- Center for Digital Health, Medical Science research Institute, Kyung Hee University College of Medicine, Seoul, South Korea
- Department of Regulatory Science, Kyung Hee University, Seoul, South Korea
| | - Jaeyu Park
- Center for Digital Health, Medical Science research Institute, Kyung Hee University College of Medicine, Seoul, South Korea
- Department of Regulatory Science, Kyung Hee University, Seoul, South Korea
| | - Myeongcheol Lee
- Center for Digital Health, Medical Science research Institute, Kyung Hee University College of Medicine, Seoul, South Korea
- Department of Regulatory Science, Kyung Hee University, Seoul, South Korea
| | - Sunyoung Kim
- Department of Family Medicine, Kyung Hee University Medical Center, Kyung Hee University College of Medicine, Seoul, South Korea
| | - Ai Koyanagi
- Research and Development Unit, Parc Sanitari Sant Joan de Deu, Barcelona, Spain
| | - Lee Smith
- Centre for Health, Performance and Wellbeing, Anglia Ruskin University, Cambridge, UK
| | - Min Seo Kim
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Masoud Rahmati
- CEReSS Health Service Research and Quality of Life Center, Assistance Publique-Hôpitaux de Marseille, Aix-Marseille University, Marseille, France
- Department of Physical Education and Sport Sciences, Faculty of Literature and Humanities, Vali-E-Asr University of Rafsanjan, Rafsanjan, Iran
- Department of Physical Education and Sport Sciences, Faculty of Literature and Human Sciences, Lorestan University, Khoramabad, Iran
| | - Hayeon Lee
- Center for Digital Health, Medical Science research Institute, Kyung Hee University College of Medicine, Seoul, South Korea.
| | - Jiseung Kang
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA.
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA.
| | - Dong Keon Yon
- Center for Digital Health, Medical Science research Institute, Kyung Hee University College of Medicine, Seoul, South Korea.
- Department of Regulatory Science, Kyung Hee University, Seoul, South Korea.
- Department of Pediatrics, Kyung Hee University Medical Center, Kyung Hee University College of Medicine, Seoul, South Korea.
| |
Collapse
|
24
|
Cheng W, Li F, Gao Y, Yang R. Fungi and tumors: The role of fungi in tumorigenesis (Review). Int J Oncol 2024; 64:52. [PMID: 38551162 PMCID: PMC10997370 DOI: 10.3892/ijo.2024.5640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/15/2024] [Indexed: 04/02/2024] Open
Abstract
Fungi inhabit different anatomic sites in the human body. Advances in omics analyses of host‑microbiome interactions have tremendously improved our understanding of the effects of fungi on human health and diseases such as tumors. Due to the significant enrichment of specific fungi in patients with malignant tumors, the associations between fungi and human cancer have attracted an increasing attention in recent years. Indeed, cancer type‑specific fungal profiles have been found in different tumor tissues. Importantly, fungi also influence tumorigenesis through multiple factors, such as host immunity and bioactive metabolites. Microbiome interactions, host factors and fungal genetic and epigenetic factors could be involved in fungal enrichment in tumor tissues and/or in the conversion from a commensal fungus to a pathogenic fungus. Exploration of the interactions of fungi with the bacterial microbiome and the host may enable them to be a target for cancer diagnosis and treatment. In the present review, the associations between fungi and human cancer, cancer type‑specific fungal profiles and the mechanisms by which fungi cause tumorigenesis were discussed. In addition, possible factors that can lead to the enrichment of fungi in tumor tissues and/or the conversion of commensal fungi to pathogenic fungi, as well as potential therapeutic and preventive strategies for tumors based on intratumoral fungi were summarized.
Collapse
Affiliation(s)
- Wenyue Cheng
- Department of Immunology, Nankai University School of Medicine, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin 300071, P.R. China
| | - Fan Li
- Department of Immunology, Nankai University School of Medicine, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin 300071, P.R. China
| | - Yunhuan Gao
- Department of Immunology, Nankai University School of Medicine, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin 300071, P.R. China
| | - Rongcun Yang
- Department of Immunology, Nankai University School of Medicine, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin 300071, P.R. China
- State Key Laboratory of Medicinal Chemical Biology, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin 300071, P.R. China
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin 300071, P.R. China
| |
Collapse
|
25
|
Zhu K, Jin Y, Zhao Y, He A, Wang R, Cao C. Proteomic scrutiny of nasal microbiomes: implications for the clinic. Expert Rev Proteomics 2024; 21:169-179. [PMID: 38420723 DOI: 10.1080/14789450.2024.2323983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 02/21/2024] [Indexed: 03/02/2024]
Abstract
INTRODUCTION The nasal cavity is the initial site of the human respiratory tract and is one of the habitats where microorganisms colonize. The findings from a growing number of studies have shown that the nasal microbiome is an important factor for human disease and health. 16S rRNA sequencing and metagenomic next-generation sequencing (mNGS) are the most commonly used means of microbiome evaluation. Among them, 16S rRNA sequencing is the primary method used in previous studies of nasal microbiomes. However, neither 16S rRNA sequencing nor mNGS can be used to analyze the genes specifically expressed by nasal microorganisms and their functions. This problem can be addressed by proteomic analysis of the nasal microbiome. AREAS COVERED In this review, we summarize current advances in research on the nasal microbiome, introduce the methods for proteomic evaluation of the nasal microbiome, and focus on the important roles of proteomic evaluation of the nasal microbiome in the diagnosis and treatment of related diseases. EXPERT OPINION The detection method for microbiome-expressed proteins is known as metaproteomics. Metaproteomic analysis can help us dig deeper into the nasal microbiomes and provide new targets and ideas for clinical diagnosis and treatment of many nasal dysbiosis-related diseases.
Collapse
Affiliation(s)
- Ke Zhu
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Ningbo, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Yan Jin
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Ningbo, The First Affiliated Hospital of Ningbo University, Ningbo, China
- Department of Respiratory and Critical Care Medicine, Municipal Hospital Affiliated to Taizhou University, Taizhou, China
| | - Yun Zhao
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Ningbo, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Andong He
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Ningbo, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Ran Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Chao Cao
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Ningbo, The First Affiliated Hospital of Ningbo University, Ningbo, China
| |
Collapse
|
26
|
Arunan B, Talukdar D, Swain S, Varadarajan A, Sarda R, Singh G, Nischal N, Soneja M, Bakshi S, Jana P, Tanwar S, Sikka K, Verma H, Subramanian A, Xess I, Wig N, Das B, Ray A. Metagenomic insights into fungal community composition of the nasopharyngeal region of COVID-19 associated mucormycosis patients from India. J Med Virol 2024; 96:e29601. [PMID: 38597375 DOI: 10.1002/jmv.29601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/22/2024] [Accepted: 04/01/2024] [Indexed: 04/11/2024]
Abstract
Coronavirus disease 2019 (COVID-19) associated mucormycosis (CAM) was reported predominantly from India during the second wave of COVID-19 and has a high mortality rate. The present study aims to understand the fungal community composition of the nasopharyngeal region of CAM-infected individuals and compare it with severe COVID-19 patients and healthy controls. The fungal community composition was decoded by analyzing the sequence homology of the internal transcribed spacer-2-(ITS-2) region of metagenomic DNA extracted from the upper respiratory samples. The alpha-diversity indices were found to be significantly altered in CAM patients (p < 0.05). Interestingly, a higher abundance of Candida africana, Candida haemuloni, Starmerella floris, and Starmerella lactiscondensi was observed exclusively in CAM patients. The interindividual changes in mycobiome composition were well supported by beta-diversity analysis (p < 0.05). The current study provides insights into the dysbiosis of the nasal mycobiome during CAM infection. In conclusion, our study shows that severe COVID-19 and CAM are associated with alteration in mycobiome as compared to healthy controls. However, the sequential alteration in the fungal flora which ultimately leads to the development of CAM needs to be addressed by future studies.
Collapse
Affiliation(s)
| | - Daizee Talukdar
- Functional Genomics Laboratory, BRIC-THSTI, Faridabad, Haryana, India
| | - Satish Swain
- Department of Medicine, AIIMS, New Delhi, Delhi, India
| | | | - Radhika Sarda
- Department of Medicine, AIIMS, New Delhi, Delhi, India
| | | | | | - Manish Soneja
- Department of Medicine, AIIMS, New Delhi, Delhi, India
| | - Susmita Bakshi
- Functional Genomics Laboratory, BRIC-THSTI, Faridabad, Haryana, India
| | - Pradipta Jana
- Functional Genomics Laboratory, BRIC-THSTI, Faridabad, Haryana, India
| | - Subhash Tanwar
- Functional Genomics Laboratory, BRIC-THSTI, Faridabad, Haryana, India
| | - Kapil Sikka
- Department of Otorhinolaryngology, AIIMS, New Delhi, Delhi, India
| | - Hitesh Verma
- Department of Otorhinolaryngology, AIIMS, New Delhi, Delhi, India
| | | | | | - Naveet Wig
- Department of Medicine, AIIMS, New Delhi, Delhi, India
| | - Bhabatosh Das
- Functional Genomics Laboratory, BRIC-THSTI, Faridabad, Haryana, India
| | - Animesh Ray
- Department of Medicine, AIIMS, New Delhi, Delhi, India
| |
Collapse
|
27
|
Chai Z, Zhang H, Ji X, Hu X, He Y, Zhao F, Song C, Zhou Y, Li T, He C, Zhou D, Zhang X. The disparate effects of omega-3 PUFAs on intestinal microbial homeostasis in experimental rodents under physiological condition. Prostaglandins Leukot Essent Fatty Acids 2024; 203:102643. [PMID: 39317024 DOI: 10.1016/j.plefa.2024.102643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/25/2024] [Accepted: 08/27/2024] [Indexed: 09/26/2024]
Abstract
The health benefits of omega-3 polyunsaturated fatty acids (omega-3 PUFAs), primarily eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are linked to their regulatory effects on the composition of the gut microbiota. However, there is a lack of direct evidence on whether omega-3 PUFAs regulate the gut microbial homeostasis under physiological conditions. This study investigated the impact of equivalent doses of EPA, DHA, and fish oil (FO) with a DHA to EPA ratio of approximately 1:1 on the bacterial and fungal composition of normal young mice. This study also analyzed changes in key components of the gut microenvironment, including the colonic mucus barrier and short-chain fatty acids, to address the prebiotic potential of omega-3 PUFAs. The results showed that all three omega-3 PUFAs interventions induced significant fluctuations in the gut bacteria and fungi, leading to an increase in the abundance of some probiotics. Notably, DHA, EPA, and FO interventions significantly increased the abundance of the probiotic Lactobacillus, Bifidobacterium, and Akkermansia, respectively. Both DHA and fish oil interventions also significantly reduced the abundance of potentially pathogenic fungi, such as Aspergillus and Penicillium. Association analysis of the top 19 differential fungal and bacterial genera in abundance revealed a much more bacteria-bacteria and bacteria-fungi connections, but fewer fungi-fungi connections. This highlights the importance of bacteria in the gut microecological network. Furthermore, the levels of butyric acid and valeric acid in the colonic contents of DHA intervention group were significantly increased, and the colonic mucus layer thickness was increased in three treatment groups. In summary, DHA, EPA and FO interventions showed targeted enhancement of different probiotics and enhanced colon defense barrier (mucus barrier), showing potential prebiotic effects.
Collapse
Affiliation(s)
- Zhenglong Chai
- School of Public Health, Health Science Center, Ningbo University, Zhejiang Key Laboratory of Pathophysiology, Ningbo, Zhejiang, 315211, China
| | - Hui Zhang
- School of Public Health, Health Science Center, Ningbo University, Zhejiang Key Laboratory of Pathophysiology, Ningbo, Zhejiang, 315211, China; Academy of Integrative Medicine Institute, The First Donguan Affiliated Hospital, Guangdong Medical University, Donguan, Guangdong, 523000, China
| | - Xinyue Ji
- School of Public Health, Health Science Center, Ningbo University, Zhejiang Key Laboratory of Pathophysiology, Ningbo, Zhejiang, 315211, China
| | - Xinyi Hu
- School of Public Health, Health Science Center, Ningbo University, Zhejiang Key Laboratory of Pathophysiology, Ningbo, Zhejiang, 315211, China
| | - Yannan He
- OmegaBandz. Inc Shanghai, 1180 Xingxian Road, Shanghai, 201815, China; Institute of Nutrition and Health of Qingdao University, Qingdao, Shandong, 266021, China
| | - Feng Zhao
- Xi'an University, Xi'an, Shanxi, 710065, China
| | - Chunyan Song
- School of Public Health, Health Science Center, Ningbo University, Zhejiang Key Laboratory of Pathophysiology, Ningbo, Zhejiang, 315211, China
| | - Yiqiu Zhou
- The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315020, China
| | - Tao Li
- HEALTH BioMed Research & Development Center, Health BioMed Co. Ltd., Ningbo, Zhejiang 315801, China
| | - Canxia He
- School of Public Health, Health Science Center, Ningbo University, Zhejiang Key Laboratory of Pathophysiology, Ningbo, Zhejiang, 315211, China
| | - Dezheng Zhou
- School of Public Health, Health Science Center, Ningbo University, Zhejiang Key Laboratory of Pathophysiology, Ningbo, Zhejiang, 315211, China
| | - Xiaohong Zhang
- School of Public Health, Health Science Center, Ningbo University, Zhejiang Key Laboratory of Pathophysiology, Ningbo, Zhejiang, 315211, China.
| |
Collapse
|
28
|
Nooij S, Vendrik KEW, Zwittink RD, Ducarmon QR, Keller JJ, Kuijper EJ, Terveer EM. Long-term beneficial effect of faecal microbiota transplantation on colonisation of multidrug-resistant bacteria and resistome abundance in patients with recurrent Clostridioides difficile infection. Genome Med 2024; 16:37. [PMID: 38419010 PMCID: PMC10902993 DOI: 10.1186/s13073-024-01306-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 02/13/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND Multidrug-resistant (MDR) bacteria are a growing global threat, especially in healthcare facilities. Faecal microbiota transplantation (FMT) is an effective prevention strategy for recurrences of Clostridioides difficile infections and can also be useful for other microbiota-related diseases. METHODS We study the effect of FMT in patients with multiple recurrent C. difficile infections on colonisation with MDR bacteria and antibiotic resistance genes (ARG) on the short (3 weeks) and long term (1-3 years), combining culture methods and faecal metagenomics. RESULTS Based on MDR culture (n = 87 patients), we notice a decrease of 11.5% in the colonisation rate of MDR bacteria after FMT (20/87 before FMT = 23%, 10/87 3 weeks after FMT). Metagenomic sequencing of patient stool samples (n = 63) shows a reduction in relative abundances of ARGs in faeces, while the number of different resistance genes in patients remained higher compared to stools of their corresponding healthy donors (n = 11). Furthermore, plasmid predictions in metagenomic data indicate that patients harboured increased levels of resistance plasmids, which appear unaffected by FMT. In the long term (n = 22 patients), the recipients' resistomes are still donor-like, suggesting the effect of FMT may last for years. CONCLUSIONS Taken together, we hypothesise that FMT restores the gut microbiota to a composition that is closer to the composition of healthy donors, and potential pathogens are either lost or decreased to very low abundances. This process, however, does not end in the days following FMT. It may take months for the gut microbiome to re-establish a balanced state. Even though a reservoir of resistance genes remains, a notable part of which on plasmids, FMT decreases the total load of resistance genes.
Collapse
Affiliation(s)
- Sam Nooij
- Netherlands Donor Feces Bank, Leiden University Center of Infectious Diseases (LUCID) Medical Microbiology and Infection Prevention, Leiden University Medical Center, PO Box 9600, Postzone E4-P, Leiden, 2300RC, Netherlands.
- Center for Microbiome Analyses and Therapeutics, LUCID Research, Leiden University Medical Center, Leiden, Netherlands.
| | - Karuna E W Vendrik
- Netherlands Donor Feces Bank, Leiden University Center of Infectious Diseases (LUCID) Medical Microbiology and Infection Prevention, Leiden University Medical Center, PO Box 9600, Postzone E4-P, Leiden, 2300RC, Netherlands
- Center for Microbiome Analyses and Therapeutics, LUCID Research, Leiden University Medical Center, Leiden, Netherlands
- Present address: Centre for Infectious Disease Control, Netherlands Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Romy D Zwittink
- Center for Microbiome Analyses and Therapeutics, LUCID Research, Leiden University Medical Center, Leiden, Netherlands
- Present address: Centre for Infectious Disease Control, Netherlands Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Quinten R Ducarmon
- Center for Microbiome Analyses and Therapeutics, LUCID Research, Leiden University Medical Center, Leiden, Netherlands
| | - Josbert J Keller
- Netherlands Donor Feces Bank, Leiden University Center of Infectious Diseases (LUCID) Medical Microbiology and Infection Prevention, Leiden University Medical Center, PO Box 9600, Postzone E4-P, Leiden, 2300RC, Netherlands
- Department of Gastroenterology, Haaglanden Medical Center, The Hague, Netherlands
| | - Ed J Kuijper
- Center for Microbiome Analyses and Therapeutics, LUCID Research, Leiden University Medical Center, Leiden, Netherlands
| | - Elisabeth M Terveer
- Netherlands Donor Feces Bank, Leiden University Center of Infectious Diseases (LUCID) Medical Microbiology and Infection Prevention, Leiden University Medical Center, PO Box 9600, Postzone E4-P, Leiden, 2300RC, Netherlands
- Center for Microbiome Analyses and Therapeutics, LUCID Research, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
29
|
Rhoades NS, Cinco IR, Hendrickson SM, Prongay K, Haertel AJ, Flores GE, Slifka MK, Messaoudi I. Infant diarrheal disease in rhesus macaques impedes microbiome maturation and is linked to uncultured Campylobacter species. Commun Biol 2024; 7:37. [PMID: 38182754 PMCID: PMC10770169 DOI: 10.1038/s42003-023-05695-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 12/12/2023] [Indexed: 01/07/2024] Open
Abstract
Diarrheal diseases remain one of the leading causes of death for children under 5 globally, disproportionately impacting those living in low- and middle-income countries (LMIC). Campylobacter spp., a zoonotic pathogen, is one of the leading causes of food-borne infection in humans. Yet to be cultured Campylobacter spp. contribute to the total burden in diarrheal disease in children living in LMIC thus hampering interventions. We performed microbiome profiling and metagenomic genome assembly on samples collected from over 100 infant rhesus macaques longitudinally and during cases of clinical diarrhea within the first year of life. Acute diarrhea was associated with long-lasting taxonomic and functional shifts of the infant gut microbiome indicative of microbiome immaturity. We constructed 36 Campylobacter metagenomic assembled genomes (MAGs), many of which fell within 4 yet to be cultured species. Finally, we compared the uncultured Campylobacter MAGs assembled from infant macaques with publicly available human metagenomes to show that these uncultured species are also found in human fecal samples from LMIC. These data highlight the importance of unculturable Campylobacter spp. as an important target for reducing disease burden in LMIC children.
Collapse
Affiliation(s)
- Nicholas S Rhoades
- Department of Molecular biology and Biochemistry, University of California Irvine, Irvine, CA, USA
- Department of Microbiology, Immunology and Molecular Genetics, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Isaac R Cinco
- Department of Microbiology, Immunology and Molecular Genetics, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Sara M Hendrickson
- Division of Neuroscience, Oregon National Primate Research Center, Portland, OR, USA
| | - Kamm Prongay
- Division of Animal Resources and Research Support, Oregon National Primate Research Center, Oregon Health and Science University West Campus, Portland, OR, USA
| | - Andrew J Haertel
- Division of Animal Resources and Research Support, Oregon National Primate Research Center, Oregon Health and Science University West Campus, Portland, OR, USA
| | - Gilberto E Flores
- Department of Biology, California State University, Northridge, Northridge, CA, USA
| | - Mark K Slifka
- Division of Neuroscience, Oregon National Primate Research Center, Portland, OR, USA
| | - Ilhem Messaoudi
- Department of Microbiology, Immunology and Molecular Genetics, College of Medicine, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
30
|
Huang H, Wang Q, Yang Y, Zhong W, He F, Li J. The mycobiome as integral part of the gut microbiome: crucial role of symbiotic fungi in health and disease. Gut Microbes 2024; 16:2440111. [PMID: 39676474 PMCID: PMC11651280 DOI: 10.1080/19490976.2024.2440111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/27/2024] [Accepted: 12/04/2024] [Indexed: 12/17/2024] Open
Abstract
The gut mycobiome significantly affects host health and immunity. However, most studies have focused on symbiotic bacteria in the gut microbiome, whereas less attention has been given to symbiotic fungi. Although fungi constitute only 0.01%-0.1% of the gut microbiome, their larger size and unique immunoregulatory functions make them significant. Factors like diet, antimicrobials use, and age can disrupt the fungal community, leading to dysbiosis. Fungal-bacterial-host immune interactions are critical in maintaining gut homeostasis, with fungi playing a role in mediating immune responses such as Th17 cell activation. This review highlights methods for studying gut fungi, the composition and influencing factors of the gut mycobiome, and its potential in therapeutic interventions for intestinal and hepatic diseases. We aim to provide new insights into the underexplored role of gut fungi in human health.
Collapse
Affiliation(s)
- Hui Huang
- Department of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan, P. R. China
- Department of Gastroenterology, First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, P. R. China
| | - Qiurong Wang
- Department of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan, P. R. China
- Department of Gastroenterology, First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, P. R. China
| | - Ying Yang
- Department of Gastroenterology, Sichuan Fifth People’s Hospital, Chengdu, China
| | - Wei Zhong
- Department of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan, P. R. China
| | - Feng He
- Department of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan, P. R. China
- Department of Gastroenterology, First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, P. R. China
| | - Jun Li
- Department of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan, P. R. China
- Department of Gastroenterology, First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, P. R. China
| |
Collapse
|
31
|
Li L, Huang X, Chen H. Unveiling the hidden players: exploring the role of gut mycobiome in cancer development and treatment dynamics. Gut Microbes 2024; 16:2328868. [PMID: 38485702 PMCID: PMC10950292 DOI: 10.1080/19490976.2024.2328868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/06/2024] [Indexed: 03/19/2024] Open
Abstract
The role of gut fungal species in tumor-related processes remains largely unexplored, with most studies still focusing on fungal infections. This review examines the accumulating evidence suggesting the involvement of commensal and pathogenic fungi in cancer biological process, including oncogenesis, progression, and treatment response. Mechanisms explored include fungal influence on host immunity, secretion of bioactive toxins/metabolites, interaction with bacterial commensals, and migration to other tissues in certain types of cancers. Attempts to utilize fungal molecular signatures for cancer diagnosis and fungal-derived products for treatment are discussed. A few studies highlight fungi's impact on the responsiveness and sensitivity to chemotherapy, radiotherapy, immunotherapy, and fecal microbiota transplant. Given the limited understanding and techniques in fungal research, the studies on gut fungi are still facing great challenges, despite having great potentials.
Collapse
Affiliation(s)
- Lingxi Li
- State Key Laboratory of Systems Medicine for Cancer, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai Cancer Institute, Shanghai, China
| | - Xiaowen Huang
- State Key Laboratory of Systems Medicine for Cancer, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai Cancer Institute, Shanghai, China
| | - Haoyan Chen
- State Key Laboratory of Systems Medicine for Cancer, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai Cancer Institute, Shanghai, China
| |
Collapse
|
32
|
Jiang T, Liu K, Li J, Zhang Y, Zhang W, Doherty M, Yang Z, Yang T, Yang Y, Weng Q, Luo X, Xie H, Li C, Ai K, Wei J, Lei G, Zeng C. Gut-joint axis in knee synovitis: gut fungal dysbiosis and altered fungi-bacteria correlation network identified in a community-based study. RMD Open 2023; 9:e003529. [PMID: 38114197 DOI: 10.1136/rmdopen-2023-003529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/24/2023] [Indexed: 12/21/2023] Open
Abstract
OBJECTIVES Knee synovitis is a highly prevalent and potentially curable condition for knee pain; however, its pathogenesis remains unclear. We sought to assess the associations of the gut fungal microbiota and the fungi-bacteria correlation network with knee synovitis. METHODS Participants were derived from a community-based cross-sectional study. We performed an ultrasound examination of both knees. A knee was defined as having synovitis if its synovium was ≥4 mm and/or Power Doppler (PD) signal was within the knee synovium area (PD synovitis). We collected faecal specimens from each participant and assessed gut fungal and bacterial microbiota using internal transcribed spacer 2 and shotgun metagenomic sequencing. We examined the relation of α-diversity, β-diversity, the relative abundance of taxa and the interkingdom correlations to knee synovitis. RESULTS Among 977 participants (mean age: 63.2 years; women: 58.8%), 191 (19.5%) had knee synovitis. β-diversity of the gut fungal microbiota, but not α-diversity, was significantly associated with prevalent knee synovitis. The fungal genus Schizophyllum was inversely correlated with the prevalence and activity (ie, control, synovitis without PD signal and PD synovitis) of knee synovitis. Compared with those without synovitis, the fungi-bacteria correlation network in patients with knee synovitis was smaller (nodes: 93 vs 153; edges: 107 vs 244), and the average number of neighbours was fewer (2.3 vs 3.2). CONCLUSION Alterations of gut fungal microbiota and the fungi-bacteria correlation network are associated with knee synovitis. These novel findings may help understand the mechanisms of the gut-joint axis in knee synovitis and suggest potential targets for future treatment.
Collapse
Affiliation(s)
- Ting Jiang
- Department of Orthopaedics, Xiangya Hospital Central South University, Changsha, China
- Department of Ultrasonography, Xiangya Hospital Central South University, Changsha, China
- Academic Rheumatology, University of Nottingham School of Medicine, Nottingham, UK
- Pain Centre Versus Arthritis, Nottingham, UK
| | - Ke Liu
- Department of Orthopaedics, Xiangya Hospital Central South University, Changsha, China
| | - Jiatian Li
- Department of Orthopaedics, Xiangya Hospital Central South University, Changsha, China
| | - Yuqing Zhang
- Division of Rheumatology, Allergy, and Immunology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- The Mongan Institute, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Weiya Zhang
- Academic Rheumatology, University of Nottingham School of Medicine, Nottingham, UK
- Pain Centre Versus Arthritis, Nottingham, UK
| | - Michael Doherty
- Academic Rheumatology, University of Nottingham School of Medicine, Nottingham, UK
- Pain Centre Versus Arthritis, Nottingham, UK
| | - Zidan Yang
- Hunan Key Laboratory of Joint Degeneration and Injury, Xiangya Hospital Central South University, Changsha, China
| | - Tuo Yang
- Academic Rheumatology, University of Nottingham School of Medicine, Nottingham, UK
- Pain Centre Versus Arthritis, Nottingham, UK
- Health Management Center, Xiangya Hospital Central South University, Changsha, China
| | - Yuanheng Yang
- Department of Orthopaedics, Xiangya Hospital Central South University, Changsha, China
- Hunan Key Laboratory of Joint Degeneration and Injury, Xiangya Hospital Central South University, Changsha, China
| | - Qianlin Weng
- Department of Orthopaedics, Xiangya Hospital Central South University, Changsha, China
| | - Xianghang Luo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, China
- Key Laboratory of Aging-Related Bone and Joint Diseases Prevention and Treatment, Ministry of Education, Xiangya Hospital Central South University, Changsha, China
| | - Hui Xie
- Department of Orthopaedics, Xiangya Hospital Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, China
- Key Laboratory of Aging-Related Bone and Joint Diseases Prevention and Treatment, Ministry of Education, Xiangya Hospital Central South University, Changsha, China
| | - Changjun Li
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, China
- Key Laboratory of Aging-Related Bone and Joint Diseases Prevention and Treatment, Ministry of Education, Xiangya Hospital Central South University, Changsha, China
| | - Kelong Ai
- Key Laboratory of Aging-Related Bone and Joint Diseases Prevention and Treatment, Ministry of Education, Xiangya Hospital Central South University, Changsha, China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Jie Wei
- Department of Orthopaedics, Xiangya Hospital Central South University, Changsha, China
- Hunan Key Laboratory of Joint Degeneration and Injury, Xiangya Hospital Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, China
- Key Laboratory of Aging-Related Bone and Joint Diseases Prevention and Treatment, Ministry of Education, Xiangya Hospital Central South University, Changsha, China
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
| | - Guanghua Lei
- Department of Orthopaedics, Xiangya Hospital Central South University, Changsha, China
- Hunan Key Laboratory of Joint Degeneration and Injury, Xiangya Hospital Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, China
- Key Laboratory of Aging-Related Bone and Joint Diseases Prevention and Treatment, Ministry of Education, Xiangya Hospital Central South University, Changsha, China
| | - Chao Zeng
- Department of Orthopaedics, Xiangya Hospital Central South University, Changsha, China
- Hunan Key Laboratory of Joint Degeneration and Injury, Xiangya Hospital Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, China
- Key Laboratory of Aging-Related Bone and Joint Diseases Prevention and Treatment, Ministry of Education, Xiangya Hospital Central South University, Changsha, China
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
| |
Collapse
|
33
|
Griem-Krey H, Petersen C, Hamerich IK, Schulenburg H. The intricate triangular interaction between protective microbe, pathogen and host determines fitness of the metaorganism. Proc Biol Sci 2023; 290:20232193. [PMID: 38052248 PMCID: PMC10697802 DOI: 10.1098/rspb.2023.2193] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/07/2023] [Indexed: 12/07/2023] Open
Abstract
The microbiota shapes host biology in numerous ways. One example is protection against pathogens, which is likely critical for host fitness in consideration of the ubiquity of pathogens. The host itself can affect abundance of microbiota or pathogens, which has usually been characterized in separate studies. To date, however, it is unclear how the host influences the interaction with both simultaneously and how this triangular interaction determines fitness of the host-microbe assemblage, the so-called metaorganism. To address this current knowledge gap, we focused on a triangular model interaction, consisting of the nematode Caenorhabditis elegans, its protective symbiont Pseudomonas lurida MYb11 and its pathogen Bacillus thuringiensis Bt679. We combined the two microbes with C. elegans mutants with altered immunity and/or microbial colonization, and found that (i) under pathogen stress, immunocompetence has a larger influence on metaorganism fitness than colonization with the protective microbe; (ii) in almost all cases, MYb11 still improves fitness; and (iii) disruption of p38 MAPK signalling, which contributes centrally to immunity against Bt679, completely reverses the protective effect of MYb11, which further reduces nematode survival and fitness upon infection with Bt679. Our study highlights the complex interplay between host, protective microbe and pathogen in shaping metaorganism biology.
Collapse
Affiliation(s)
- Hanne Griem-Krey
- Department of Evolutionary Ecology and Genetics, Kiel University, Kiel 24118, Germany
| | - Carola Petersen
- Department of Evolutionary Ecology and Genetics, Kiel University, Kiel 24118, Germany
| | - Inga K. Hamerich
- Department of Evolutionary Ecology and Genetics, Kiel University, Kiel 24118, Germany
| | - Hinrich Schulenburg
- Department of Evolutionary Ecology and Genetics, Kiel University, Kiel 24118, Germany
- Antibiotic resistance group, Max-Planck-Institute for Evolutionary Biology, Plön, Germany
| |
Collapse
|
34
|
Henderickx JG, Crobach MJ, Terveer EM, Smits WK, Kuijper EJ, Zwittink RD. Fungal and bacterial gut microbiota differ between Clostridioides difficile colonization and infection. MICROBIOME RESEARCH REPORTS 2023; 3:8. [PMID: 38455084 PMCID: PMC10917615 DOI: 10.20517/mrr.2023.52] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/21/2023] [Accepted: 11/30/2023] [Indexed: 03/09/2024]
Abstract
Aim: The bacterial microbiota is well-recognized for its role in Clostridioides difficile colonization and infection, while fungi and yeasts remain understudied. The aim of this study was to analyze the predictive value of the mycobiota and its interactions with the bacterial microbiota in light of C. difficile colonization and infection. Methods: The mycobiota was profiled by ITS2 sequencing of fecal DNA from C. difficile infection (CDI) patients (n = 29), asymptomatically C. difficile colonization (CDC) patients (n = 38), and hospitalized controls with C. difficile negative stool culture (controls; n = 38). Previously published 16S rRNA gene sequencing data of the same cohort were used additionally for machine learning and fungal-bacterial network analysis. Results: CDI patients were characterized by a significantly higher abundance of Candida spp. (MD 0.270 ± 0.089, P = 0.002) and Candida albicans (MD 0.165 ± 0.082, P = 0.023) compared to controls. Additionally, they were deprived of Aspergillus spp. (MD -0.067 ± 0.026, P = 0.000) and Penicillium spp. (MD -0.118 ± 0.043, P = 0.000) compared to CDC patients. Network analysis revealed a positive association between several fungi and bacteria in CDI and CDC, although the analysis did not reveal a direct association between Clostridioides spp. and fungi. Furthermore, the microbiota machine learning model outperformed the models based on the mycobiota and the joint microbiota-mycobiota model. The microbiota classifier successfully distinguished CDI from CDC [Area Under the Receiver Operating Characteristic (AUROC) = 0.884] and CDI from controls (AUROC = 0.905). Blautia and Bifidobacterium were marker genera associated with CDC patients and controls. Conclusion: The gut mycobiota differs between CDI, CDC, and controls and may affect Clostridioides spp. through indirect interactions. The mycobiota data alone could not successfully discriminate CDC from controls or CDI patients and did not have additional predictive value to the bacterial microbiota data. The identification of bacterial marker genera associated with CDC and controls warrants further investigation.
Collapse
Affiliation(s)
- Jannie G.E. Henderickx
- Center for Microbiome Analyses and Therapeutics, Department of Medical Microbiology, Leiden University Medical Center, Leiden 2333 ZA, the Netherlands
- Department of Medical Microbiology and Leiden University Center of Infectious Diseases (LU-CID), Leiden University Medical Center, Leiden 2333 ZA, the Netherlands
| | - Monique J.T. Crobach
- Department of Medical Microbiology and Leiden University Center of Infectious Diseases (LU-CID), Leiden University Medical Center, Leiden 2333 ZA, the Netherlands
| | - Elisabeth M. Terveer
- Department of Medical Microbiology and Leiden University Center of Infectious Diseases (LU-CID), Leiden University Medical Center, Leiden 2333 ZA, the Netherlands
- Netherlands Donor Feces Bank, Department of Medical Microbiology, Leiden University Medical Center, Leiden 2333 ZA, the Netherlands
| | - Wiep Klaas Smits
- Center for Microbiome Analyses and Therapeutics, Department of Medical Microbiology, Leiden University Medical Center, Leiden 2333 ZA, the Netherlands
- Department of Medical Microbiology and Leiden University Center of Infectious Diseases (LU-CID), Leiden University Medical Center, Leiden 2333 ZA, the Netherlands
| | - Ed J. Kuijper
- Center for Microbiome Analyses and Therapeutics, Department of Medical Microbiology, Leiden University Medical Center, Leiden 2333 ZA, the Netherlands
- Department of Medical Microbiology and Leiden University Center of Infectious Diseases (LU-CID), Leiden University Medical Center, Leiden 2333 ZA, the Netherlands
- Netherlands Donor Feces Bank, Department of Medical Microbiology, Leiden University Medical Center, Leiden 2333 ZA, the Netherlands
| | - Romy D. Zwittink
- Center for Microbiome Analyses and Therapeutics, Department of Medical Microbiology, Leiden University Medical Center, Leiden 2333 ZA, the Netherlands
- Department of Medical Microbiology and Leiden University Center of Infectious Diseases (LU-CID), Leiden University Medical Center, Leiden 2333 ZA, the Netherlands
| |
Collapse
|
35
|
Delavy M, Sertour N, d'Enfert C, Bougnoux ME. Metagenomics and metabolomics approaches in the study of Candida albicans colonization of host niches: a framework for finding microbiome-based antifungal strategies. Trends Microbiol 2023; 31:1276-1286. [PMID: 37652786 DOI: 10.1016/j.tim.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/16/2023] [Accepted: 08/02/2023] [Indexed: 09/02/2023]
Abstract
In silico and experimental approaches have allowed an ever-growing understanding of the interactions within the microbiota. For instance, recently acquired data have increased knowledge of the mechanisms that support, in the gut and vaginal microbiota, the resistance to colonization by Candida albicans, an opportunistic fungal pathogen whose overgrowth can initiate severe infections in immunocompromised patients. Here, we review how bacteria from the microbiota interact with C. albicans. We show how recent OMICs-based pipelines, using metagenomics and/or metabolomics, have identified bacterial species and metabolites modulating C. albicans growth. We finally discuss how the combined use of cutting-edge OMICs-based and experimental approaches could provide new means to control C. albicans overgrowth within the microbiota and prevent its consequences.
Collapse
Affiliation(s)
- Margot Delavy
- Institut Pasteur, Université Paris Cité, INRAE USC2019, Unité Biologie et Pathogénicité Fongiques, Paris, France
| | - Natacha Sertour
- Institut Pasteur, Université Paris Cité, INRAE USC2019, Unité Biologie et Pathogénicité Fongiques, Paris, France
| | - Christophe d'Enfert
- Institut Pasteur, Université Paris Cité, INRAE USC2019, Unité Biologie et Pathogénicité Fongiques, Paris, France
| | - Marie-Elisabeth Bougnoux
- Institut Pasteur, Université Paris Cité, INRAE USC2019, Unité Biologie et Pathogénicité Fongiques, Paris, France; Assistance Publique des Hôpitaux de Paris (APHP), Hôpital Necker-Enfants-Malades, Unité de Parasitologie-Mycologie, Service de Microbiologie Clinique, Paris, France.
| |
Collapse
|
36
|
Liu W, Li Z, Li X, Cao H, Jiang H, Niu Q, Hu B. Influence of tumor mycobiome on cancer pathogenesis (Review). Oncol Lett 2023; 26:541. [PMID: 38020300 PMCID: PMC10660446 DOI: 10.3892/ol.2023.14128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Cancer tissues harbor a large microbiome. There is growing evidence that the tumor microbiome is significantly correlated with the prognosis of cancer patients, but the exact underlying mechanisms have remained elusive. Although the tumor mycobiome is less abundant than the biome of bacteria, it is prevalent in most cancers in humans. The present review describes in detail the impact of the tumor mycobiome on cancer pathogenesis. The tumor mycobiome promotes tumor progression and metastasis by affecting the human immune system, maintaining a pro-inflammatory environment, producing aflatoxins, attenuating cell adhesion mechanisms and fungal-bacterial interactions. Furthermore, the tumor mycobiome likewise has great potential for cancer prevention, diagnosis and treatment.
Collapse
Affiliation(s)
- Weipeng Liu
- Department of Gastrointestinal Surgery, Binzhou Medical University Hospital, Binzhou, Shandong 256603, P.R. China
| | - Zongrui Li
- Department of Gastrointestinal Surgery, Binzhou Medical University Hospital, Binzhou, Shandong 256603, P.R. China
| | - Xiaopeng Li
- Department of Gastrointestinal Surgery, Binzhou Medical University Hospital, Binzhou, Shandong 256603, P.R. China
| | - Haiyang Cao
- Department of Gastrointestinal Surgery, Binzhou Medical University Hospital, Binzhou, Shandong 256603, P.R. China
| | - He Jiang
- Breast Treatment Center, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong 271000, P.R. China
| | - Qingbin Niu
- Department of Gastrointestinal Surgery, Dongying People's Hospital, Dongying, Shandong 257091, P.R. China
| | - Baoguang Hu
- Department of Gastrointestinal Surgery, Binzhou Medical University Hospital, Binzhou, Shandong 256603, P.R. China
| |
Collapse
|
37
|
Eichelberger KR, Paul S, Peters BM, Cassat JE. Candida-bacterial cross-kingdom interactions. Trends Microbiol 2023; 31:1287-1299. [PMID: 37640601 PMCID: PMC10843858 DOI: 10.1016/j.tim.2023.08.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/14/2023] [Accepted: 08/02/2023] [Indexed: 08/31/2023]
Abstract
While the fungus Candida albicans is a common colonizer of healthy humans, it is also responsible for mucosal infections and severe invasive disease. Understanding the mechanisms that allow C. albicans to exist as both a benign commensal and as an invasive pathogen have been the focus of numerous studies, and recent findings indicate an important role for cross-kingdom interactions on C. albicans biology. This review highlights how C. albicans-bacteria interactions influence healthy polymicrobial community structure, host immune responses, microbial pathogenesis, and how dysbiosis may lead to C. albicans infection. Finally, we discuss how cross-kingdom interactions represent an opportunity to identify new antivirulence compounds that target fungal infections.
Collapse
Affiliation(s)
- Kara R Eichelberger
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Saikat Paul
- Department of Clinical Pharmacy and Translational Science, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Brian M Peters
- Department of Clinical Pharmacy and Translational Science, University of Tennessee Health Science Center, Memphis, TN, USA; Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA
| | - James E Cassat
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA; Vanderbilt Institute for Infection, Immunology, and Inflammation (VI4), Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
38
|
Delavy M, Sertour N, Patin E, Le Chatelier E, Cole N, Dubois F, Xie Z, Saint-André V, Manichanh C, Walker AW, Quintana-Murci L, Duffy D, d’Enfert C, Bougnoux ME, Consortium MI. Unveiling Candida albicans intestinal carriage in healthy volunteers: the role of micro- and mycobiota, diet, host genetics and immune response. Gut Microbes 2023; 15:2287618. [PMID: 38017705 PMCID: PMC10732203 DOI: 10.1080/19490976.2023.2287618] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/21/2023] [Indexed: 11/30/2023] Open
Abstract
Candida albicans is a commensal yeast present in the gut of most healthy individuals but with highly variable concentrations. However, little is known about the host factors that influence colonization densities. We investigated how microbiota, host lifestyle factors, and genetics could shape C. albicans intestinal carriage in 695 healthy individuals from the Milieu Intérieur cohort. C. albicans intestinal carriage was detected in 82.9% of the subjects using quantitative PCR. Using linear mixed models and multiway-ANOVA, we explored C. albicans intestinal levels with regard to gut microbiota composition and lifestyle factors including diet. By analyzing shotgun metagenomics data and C. albicans qPCR data, we showed that Intestinimonas butyriciproducens was the only gut microbiota species whose relative abundance was negatively correlated with C. albicans concentration. Diet is also linked to C. albicans growth, with eating between meals and a low-sodium diet being associated with higher C. albicans levels. Furthermore, by Genome-Wide Association Study, we identified 26 single nucleotide polymorphisms suggestively associated with C. albicans colonization. In addition, we found that the intestinal levels of C. albicans might influence the host immune response, specifically in response to fungal challenge. We analyzed the transcriptional levels of 546 immune genes and the concentration of 13 cytokines after whole blood stimulation with C. albicans cells and showed positive associations between the extent of C. albicans intestinal levels and NLRP3 expression, as well as secreted IL-2 and CXCL5 concentrations. Taken together, these findings open the way for potential new interventional strategies to curb C. albicans intestinal overgrowth.
Collapse
Affiliation(s)
- Margot Delavy
- Unité Biologie et Pathogénicité Fongiques, Institut Pasteur, Université Paris Cité INRAE, Paris, France
| | - Natacha Sertour
- Unité Biologie et Pathogénicité Fongiques, Institut Pasteur, Université Paris Cité INRAE, Paris, France
| | - Etienne Patin
- Human Evolutionary Genetics Unit, Institut Pasteur, Université Paris Cité, CNRS UMR2000, Paris, France
| | | | - Nathaniel Cole
- The Rowett Institute, University of Aberdeen, Aberdeen, UK
| | - Florian Dubois
- Translational Immunology Unit, Institut Pasteur, Université Paris Cité, Paris, France
- Institut Pasteur, Université Paris Cité, CBUTechS, Paris, France
| | - Zixuan Xie
- Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Gut Microbiome Group, Barcelona, Spain
| | - Violaine Saint-André
- Translational Immunology Unit, Institut Pasteur, Université Paris Cité, Paris, France
- Bioinformatics and Biostatistics HUB, Department of Computational Biology, Institut Pasteur, Université Paris Cité, Paris, France
| | - Chaysavanh Manichanh
- Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Gut Microbiome Group, Barcelona, Spain
| | - Alan W. Walker
- The Rowett Institute, University of Aberdeen, Aberdeen, UK
| | - Lluis Quintana-Murci
- Human Evolutionary Genetics Unit, Institut Pasteur, Université Paris Cité, CNRS UMR2000, Paris, France
| | - Darragh Duffy
- Translational Immunology Unit, Institut Pasteur, Université Paris Cité, Paris, France
- Institut Pasteur, Université Paris Cité, CBUTechS, Paris, France
| | - Christophe d’Enfert
- Unité Biologie et Pathogénicité Fongiques, Institut Pasteur, Université Paris Cité INRAE, Paris, France
| | - Marie-Elisabeth Bougnoux
- Unité Biologie et Pathogénicité Fongiques, Institut Pasteur, Université Paris Cité INRAE, Paris, France
- APHP, Hôpital Necker-Enfants-Malades, Service de Microbiologie Clinique, Unité de Parasitologie-Mycologie, Paris, France
| | - Milieu Intérieur Consortium
- Unité Biologie et Pathogénicité Fongiques, Institut Pasteur, Université Paris Cité INRAE, Paris, France
- Human Evolutionary Genetics Unit, Institut Pasteur, Université Paris Cité, CNRS UMR2000, Paris, France
- MGP MetaGénoPolis, INRA, Université Paris-Saclay, Jouy-en-Josas, France
- The Rowett Institute, University of Aberdeen, Aberdeen, UK
- Translational Immunology Unit, Institut Pasteur, Université Paris Cité, Paris, France
- Institut Pasteur, Université Paris Cité, CBUTechS, Paris, France
- Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Gut Microbiome Group, Barcelona, Spain
- Bioinformatics and Biostatistics HUB, Department of Computational Biology, Institut Pasteur, Université Paris Cité, Paris, France
- APHP, Hôpital Necker-Enfants-Malades, Service de Microbiologie Clinique, Unité de Parasitologie-Mycologie, Paris, France
| |
Collapse
|
39
|
Thavamani A, Sankararaman S, Al-Shakhshir H, Retuerto M, Velayuthan S, Sferra TJ, Ghannoum M. Impact of Erythromycin as a Prokinetic on the Gut Microbiome in Children with Feeding Intolerance-A Pilot Study. Antibiotics (Basel) 2023; 12:1606. [PMID: 37998808 PMCID: PMC10668753 DOI: 10.3390/antibiotics12111606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/27/2023] [Accepted: 11/01/2023] [Indexed: 11/25/2023] Open
Abstract
BACKGROUND Studies have demonstrated that the gut microbiome changes upon exposure to systemic antibiotics. There is a paucity of literature regarding impact on the gut microbiome by long-term usage of erythromycin ethyl succinate (EES) when utilized as a prokinetic. METHODS Stool samples from pediatric patients with feeding intolerance who received EES (N = 8) as a prokinetic were analyzed for both bacteriome and mycobiome. Age-matched children with similar clinical characteristics but without EES therapy were included as controls (N = 20). RESULTS In both groups, Proteobacteria, Firmicutes, and Bacteroidetes were the most abundant bacterial phyla. Ascomycota was the most abundant fungal phyla, followed by Basidiomycota. There were no significant differences in richness between the groups for both bacterial and fungal microbiome. Alpha diversity (at genus and species levels) and beta diversity (at the genus level) were not significantly different between the groups for both bacterial and fungal microbiome. At the species level, there was a significant difference between the groups for fungal microbiota, with a p-value of 0.029. We also noted that many fungal microorganisms had significantly higher p-values in the EES group than controls at both genera and species levels. CONCLUSIONS In this observational case-control study, the prokinetic use of EES was associated with changes in beta diversity between the groups for mycobiome at the species level. Many fungal microorganisms were significantly higher in the EES group when compared to the controls. Confirmation of these results in larger trials will provide further evidence regarding the impact of EES on gut microbiota when utilized as a prokinetic agent.
Collapse
Affiliation(s)
- Aravind Thavamani
- Division of Pediatric Gastroenterology, Hepatology & Nutrition, Department of Pediatrics, UH Rainbow Babies and Children’s Hospital, Cleveland, OH 44106, USA; (A.T.); (S.V.); (T.J.S.)
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Senthilkumar Sankararaman
- Division of Pediatric Gastroenterology, Hepatology & Nutrition, Department of Pediatrics, UH Rainbow Babies and Children’s Hospital, Cleveland, OH 44106, USA; (A.T.); (S.V.); (T.J.S.)
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Hilmi Al-Shakhshir
- Department of Radiology and Imaging Sciences, Emory School of Medicine, Atlanta, GA 30307, USA;
- Department of Radiology and Imaging Sciences Atlanta VA Medical Center, Decatur, GA 30033, USA
| | - Mauricio Retuerto
- Center for Medical Mycology, Department of Dermatology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; (M.R.); (M.G.)
| | - Sujithra Velayuthan
- Division of Pediatric Gastroenterology, Hepatology & Nutrition, Department of Pediatrics, UH Rainbow Babies and Children’s Hospital, Cleveland, OH 44106, USA; (A.T.); (S.V.); (T.J.S.)
- Division of Pediatric Neurogastroenterology and Motility, Department of Pediatrics, Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Thomas J. Sferra
- Division of Pediatric Gastroenterology, Hepatology & Nutrition, Department of Pediatrics, UH Rainbow Babies and Children’s Hospital, Cleveland, OH 44106, USA; (A.T.); (S.V.); (T.J.S.)
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Mahmoud Ghannoum
- Center for Medical Mycology, Department of Dermatology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; (M.R.); (M.G.)
- Department of Dermatology, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| |
Collapse
|
40
|
Huang X, Hu M, Sun T, Li J, Zhou Y, Yan Y, Xuan B, Wang J, Xiong H, Ji L, Zhu X, Tong T, Ning L, Ma Y, Zhao Y, Ding J, Guo Z, Zhang Y, Fang JY, Hong J, Chen H. Multi-kingdom gut microbiota analyses define bacterial-fungal interplay and microbial markers of pan-cancer immunotherapy across cohorts. Cell Host Microbe 2023; 31:1930-1943.e4. [PMID: 37944495 DOI: 10.1016/j.chom.2023.10.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/11/2023] [Accepted: 10/05/2023] [Indexed: 11/12/2023]
Abstract
The effect of gut bacteria on the response to immune checkpoint inhibitors (ICIs) has been studied, but the relationship between fungi and ICI responses is not fully understood. Herein, 862 fecal metagenomes from 9 different cohorts were integrated for the identification of differentially abundant fungi and subsequent construction of random forest (RF) models to predict ICI responses. Fungal markers demonstrate excellent performance, with an average area under the curve (AUC) of 0.87. Their performance improves even further, reaching an average AUC of 0.89 when combined with bacterial markers. Higher enrichment of exhausted T cells is detected in responders, as predicted by fungal markers. Multi-kingdom network and functional analysis reveal that the fungus Schizosaccharomyces octosporus may ferment starch into short-chain fatty acids in responders. This study provides a fungal profile of the ICI response and the identification of multi-kingdom microbial markers with good performance that may improve the overall applicability of ICI therapy.
Collapse
Affiliation(s)
- Xiaowen Huang
- State Key Laboratory of Systems Medicine for Cancer, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Muni Hu
- State Key Laboratory of Systems Medicine for Cancer, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Tiantian Sun
- State Key Laboratory of Systems Medicine for Cancer, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Jiantao Li
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yilu Zhou
- State Key Laboratory of Systems Medicine for Cancer, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Yuqing Yan
- State Key Laboratory of Systems Medicine for Cancer, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Baoqin Xuan
- State Key Laboratory of Systems Medicine for Cancer, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Jilin Wang
- State Key Laboratory of Systems Medicine for Cancer, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Hua Xiong
- State Key Laboratory of Systems Medicine for Cancer, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Linhua Ji
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Xiaoqiang Zhu
- State Key Laboratory of Systems Medicine for Cancer, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Tianying Tong
- State Key Laboratory of Systems Medicine for Cancer, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Lijun Ning
- State Key Laboratory of Systems Medicine for Cancer, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Yanru Ma
- State Key Laboratory of Systems Medicine for Cancer, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Ying Zhao
- State Key Laboratory of Systems Medicine for Cancer, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Jinmei Ding
- State Key Laboratory of Systems Medicine for Cancer, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Zhigang Guo
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Youwei Zhang
- Department of Medical Oncology, Xuzhou Central Hospital, Clinical School of Xuzhou Medical University, Xuzhou, China
| | - Jing-Yuan Fang
- State Key Laboratory of Systems Medicine for Cancer, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Jie Hong
- State Key Laboratory of Systems Medicine for Cancer, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai, China.
| | - Haoyan Chen
- State Key Laboratory of Systems Medicine for Cancer, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai, China.
| |
Collapse
|
41
|
Abstract
The microbiota is known to influence several facets of mammalian development, digestion and disease. Most studies of the microbiota have focused on the bacterial component, but the importance of commensal fungi in health and disease is becoming increasingly clear. Although fungi account for a smaller proportion of the microbiota than bacteria by number, they are much larger and therefore account for a substantial proportion of the biomass. Moreover, as fungi are eukaryotes, their metabolic pathways are complex and unique. In this Review, we discuss the evidence for involvement of specific members of the mycobiota in intestinal diseases, including inflammatory bowel disease, colorectal cancer and pancreatic cancer. We also highlight the importance of fungal interactions with intestinal bacteria and with the immune system. Although most studies of commensal fungi have focused on their role in disease, we also consider the beneficial effects of fungal colonies in the gut. The evidence highlights potential opportunities to target fungi and their interactions for therapeutic purposes.
Collapse
Affiliation(s)
- Kyla S Ost
- Department of Immunology and Microbiology, University of Colorado Anschutz School of Medicine, Aurora, CO, USA.
| | - June L Round
- Department of Pathology, School of Medicine, University of Utah, Salt Lake City, UT, USA.
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
42
|
R A, Das S, Theresa M, K S S, Mathew J, E K R. 9-Tricosene Containing Blend of Volatiles Produced by Serratia sp. NhPB1 Isolated from the Pitcher Plant Provide Plant Protection Against Pythium aphanidermatum. Appl Biochem Biotechnol 2023; 195:6098-6112. [PMID: 36809430 DOI: 10.1007/s12010-023-04352-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2023] [Indexed: 02/23/2023]
Abstract
Plant-associated bacteria exhibit diverse chemical means to protect plants from the pathogens. The present study has been conducted to evaluate the volatile-mediated antifungal activity of Serratia sp. NhPB1 isolated from the pitcher plant against the notorious pathogen Pythium aphanidermatum. The study has also evaluated the protective effect of NhPB1 on Solanum lycopersicum and Capsicum annuum leaves and fruits against P. aphanidermatum. From the results, NhPB1 was found to have remarkable activity against the tested pathogen. The isolate was also found to impart disease protection in selected plants as evidenced by the morphological changes. Here, the leaves and fruits of S. lycopersicum and C. annuum control which were treated with the uninoculated LB and distilled water were found to have the presence of P. aphanidermatum growth with lesions and decaying of tissues. However, the NhPB1-treated plants did not show any symptoms of fungal infection. This could further be confirmed by the microscopical examination of tissues by propidium iodide staining. Here, the normal architecture of leaf and fruit tissues could be observed in the NhPB1-treated group, but the tissue invasion by P. aphanidermatum was observed in the control group which further confirms the promises of selected bacteria for biocontrol applications.
Collapse
Affiliation(s)
- Aswani R
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala, India, 686560
| | - Soumya Das
- Department of Zoology, KE College, Mannanam, Kottayam, India, 686561
| | - Mary Theresa
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala, India, 686560
| | - Sebastian K S
- Department of Zoology, Government College, Kottayam, India, 686013
| | - Jyothis Mathew
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala, India, 686560
| | - Radhakrishnan E K
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala, India, 686560.
| |
Collapse
|
43
|
Zhou F, Zhang GD, Tan Y, Hu SA, Tang Q, Pei G. NOD-like receptors mediate homeostatic intestinal epithelial barrier function: promising therapeutic targets for inflammatory bowel disease. Therap Adv Gastroenterol 2023; 16:17562848231176889. [PMID: 37701792 PMCID: PMC10493068 DOI: 10.1177/17562848231176889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 05/01/2023] [Indexed: 09/14/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic gastrointestinal inflammatory disease that involves host genetics, the microbiome, and inflammatory responses. The current consensus is that the disruption of the intestinal mucosal barrier is the core pathogenesis of IBD, including intestinal microbial factors, abnormal immune responses, and impaired intestinal mucosal barrier. Cumulative data show that nucleotide-binding and oligomerization domain (NOD)-like receptors (NLRs) are dominant mediators in maintaining the homeostasis of the intestinal mucosal barrier, which play critical roles in sensing the commensal microbiota, maintaining homeostasis, and regulating intestinal inflammation. Blocking NLRs inflammasome activation by botanicals may be a promising way to prevent IBD progression. In this review, we systematically introduce the multiple roles of NLRs in regulating intestinal mucosal barrier homeostasis and focus on summarizing the activities and potential mechanisms of natural products against IBD. Aiming to propose new directions on the pathogenesis and precise treatment of IBD.
Collapse
Affiliation(s)
- Feng Zhou
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
- Key Laboratory of Modern Research of TCM, Education Department of Hunan Province, Changsha, China
| | | | - Yang Tan
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
- Science and Technology Innovation Center/State Key Laboratory Breeding Base of Chinese Medicine Powder and Innovative Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Shi An Hu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
- Hunan Provincial Key Laboratory of TCM Prevention and Treatment of Depression Diseases, Changsha, China
| | - Qun Tang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
- Medical School, Hunan University of Chinese Medicine, Changsha, China
| | - Gang Pei
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
- Key Laboratory of Modern Research of TCM, Education Department of Hunan Province, Changsha, China
| |
Collapse
|
44
|
Fujihara H, Matsunaga M, Ueda E, Kajiwara T, Takeda AK, Watanabe S, Baba K, Hagihara K, Myowa M. Altered Gut Microbiota Composition Is Associated with Difficulty in Explicit Emotion Regulation in Young Children. Microorganisms 2023; 11:2245. [PMID: 37764088 PMCID: PMC10535925 DOI: 10.3390/microorganisms11092245] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/15/2023] [Accepted: 08/27/2023] [Indexed: 09/29/2023] Open
Abstract
Executive function (EF) consists of explicit emotion regulation (EER) and cognitive control (CC). Childhood EER in particular predicts mental and physical health in adulthood. Identifying factors affecting EER development has implications for lifelong physical and mental health. Gut microbiota (GM) has attracted attention as a potential biomarker for risk of physical and mental problems in adulthood. Furthermore, GM is related to brain function/structure, which plays a crucial role in emotional processing. However, little is known about how GM compositions are associated with the development of emotion regulation in early childhood. Therefore, in this study, we examined 257 children aged 3-4 to investigate links between GM and risk to EF. EF was measured using the Mother-Reported Behavior Rating Inventory of Executive Function-Preschool version. GM composition (alpha/beta diversity and genus abundance) was evaluated using 16S rRNA gene sequencing and compared between EF-risk and non-risk groups. Our results show that children with EER-risk (an index of inhibitory self-control) had a higher abundance of the genera Actinomyces and Sutterella. Although we have not established a direct link between GM and CC risk, our findings indicate that GM of preschoolers is closely associated with emotional processing and that EERrisk children have more inflammation-related bacteria.
Collapse
Affiliation(s)
- Hideaki Fujihara
- Graduate School of Education, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501, Japan; (H.F.)
- Japan Society for the Promotion of Science, Chiyoda-ku, Tokyo 102-0083, Japan
| | - Michiko Matsunaga
- Graduate School of Education, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501, Japan; (H.F.)
- Japan Society for the Promotion of Science, Chiyoda-ku, Tokyo 102-0083, Japan
- Department of Advanced Hybrid Medicine, Graduate School of Medicine, Osaka University, 2 Chome-2 Yamadaoka, Suita 565-0871, Japan
| | - Eriko Ueda
- Graduate School of Education, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501, Japan; (H.F.)
- Japan Society for the Promotion of Science, Chiyoda-ku, Tokyo 102-0083, Japan
| | - Takamasa Kajiwara
- Graduate School of Education, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501, Japan; (H.F.)
| | - Aya K. Takeda
- Cykinso, Inc., 1-36-1 Yoyogi, Shibuya-ku, Tokyo 151-0053, Japan
| | | | - Kairi Baba
- Cykinso, Inc., 1-36-1 Yoyogi, Shibuya-ku, Tokyo 151-0053, Japan
| | - Keisuke Hagihara
- Department of Advanced Hybrid Medicine, Graduate School of Medicine, Osaka University, 2 Chome-2 Yamadaoka, Suita 565-0871, Japan
| | - Masako Myowa
- Graduate School of Education, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501, Japan; (H.F.)
| |
Collapse
|
45
|
Erdem H, Kocoglu E, Ankarali H, El-Sokkary R, Hakamifard A, Karaali R, Kulzhanova S, El-Kholy A, Tehrani HA, Khedr R, Kaya-Kalem A, Pandak N, Cagla-Sonmezer M, Nizamuddin S, Berk-Cam H, Guner R, Elkholy JA, Llopis F, Marino A, Stebel R, Szabo BG, Belitova M, Fadel E, Yetisyigit T, Cag Y, Alkan S, Kayaaslan B, Oncu S, Ozdemir M, Yilmaz M, Isik AC, Başkol D, Sincan G, Cascio A, Ozer-Balin S, Korkmaz N, Ripon RK, Abbas S, Dumitru IM, Eser-Karlidag G, Lanzafame M, Rafey A, Raza A, Sipahi OR, Darazam IA, Elbahr U, Erdem I, Ergen P, Bilir C, Caskurlu H, Erdem A, Makek MJ, Altindis M, Lakatos B, Luca CM, Yilmaz EM, Nsutebu E, Cakmak R, Sirmatel F. Prospective analysis of febrile neutropenia patients with bacteraemia: the results of an international ID-IRI study. Int J Antimicrob Agents 2023; 62:106919. [PMID: 37423582 DOI: 10.1016/j.ijantimicag.2023.106919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 06/06/2023] [Accepted: 07/04/2023] [Indexed: 07/11/2023]
Abstract
OBJECTIVES Bacteraemia during the course of neutropenia is often fatal. We aimed to identify factors predicting mortality to have an insight into better clinical management. METHODS The study has a prospective, observational design using pooled data from febrile neutropenia patients with bacteraemia in 41 centres in 16 countries. Polymicrobial bacteraemias were excluded. It was performed through the Infectious Diseases-International Research Initiative platform between 17 March 2021 and June 2021. Univariate analysis followed by a multivariate binary logistic regression model was used to determine independent predictors of 30-d in-hospital mortality (sensitivity, 81.2%; specificity, 65%). RESULTS A total of 431 patients were enrolled, and 85 (19.7%) died. Haematological malignancies were detected in 361 (83.7%) patients. Escherichia coli (n = 117, 27.1%), Klebsiellae (n = 95, 22% %), Pseudomonadaceae (n = 63, 14.6%), Coagulase-negative Staphylococci (n = 57, 13.2%), Staphylococcus aureus (n = 30, 7%), and Enterococci (n = 21, 4.9%) were the common pathogens. Meropenem and piperacillin-tazobactam susceptibility, among the isolated pathogens, were only 66.1% and 53.6%, respectively. Pulse rate (odds ratio [OR], 1.018; 95% confidence interval [CI], 1.002-1.034), quick SOFA score (OR, 2.857; 95% CI, 2.120-3.851), inappropriate antimicrobial treatment (OR, 1.774; 95% CI, 1.011-3.851), Gram-negative bacteraemia (OR, 2.894; 95% CI, 1.437-5.825), bacteraemia of non-urinary origin (OR, 11.262; 95% CI, 1.368-92.720), and advancing age (OR, 1.017; 95% CI, 1.001-1.034) were independent predictors of mortality. Bacteraemia in our neutropenic patient population had distinctive characteristics. The severity of infection and the way to control it with appropriate antimicrobials, and local epidemiological data, came forward. CONCLUSIONS Local antibiotic susceptibility profiles should be integrated into therapeutic recommendations, and infection control and prevention measures should be prioritised in this era of rapidly increasing antibiotic resistance.
Collapse
Affiliation(s)
- Hakan Erdem
- Department of Infectious Diseases, Bahrain Oncology Centre, King Hamad University Hospital, Al Sayh, Bahrain; Department of Infectious Diseases & Clinical Microbiology, Gulhane School of Medicine, Turkish Health Sciences University, Ankara, Türkiye.
| | - Esra Kocoglu
- Department of Microbiology and Clinical Microbiology, Istanbul Medeniyet University Faculty of Medicine, Istanbul, Türkiye
| | - Handan Ankarali
- Department of Biostatistics and Medical Informatics, Istanbul Medeniyet University Faculty of Medicine, Istanbul, Türkiye
| | - Rehab El-Sokkary
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Atousa Hakamifard
- Infectious Diseases and Tropical Medicine Research Centre, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Infectious Diseases, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ridvan Karaali
- Department of Infectious Diseases & Clinical Microbiology, Cerrahpaşa School of Medicine, Istanbul, Türkiye
| | - Sholpan Kulzhanova
- Department of Infectious Diseases, Astana Medical University, Nur-Sultan, Kazakhstan
| | - Amani El-Kholy
- Department of Clinical Pathology, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Hamed Azhdari Tehrani
- Department of Haematology and Medical Oncology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reham Khedr
- Department of Paediatric Oncology, National Cancer Institute-Cairo University, Children Cancer Hospital Egypt, Cairo, Egypt
| | - Ayşe Kaya-Kalem
- Department of Infectious Diseases & Clinical Microbiology, Ankara City Hospital, Ankara, Türkiye
| | | | - Meliha Cagla-Sonmezer
- Department of Infectious Diseases & Clinical Microbiology, Hacettepe School of Medicine, Hacettepe University, Ankara, Türkiye
| | - Summiya Nizamuddin
- Section of Microbiology, Department of Pathology, Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, Pakistan
| | - Hande Berk-Cam
- Department of Infectious Diseases and Clinical Microbiology, Antalya Education and Research Hospital, Antalya, Türkiye
| | - Rahmet Guner
- Department of Infectious Diseases & Clinical Microbiology, Ankara City Hospital, Ankara, Türkiye
| | - Jehan Ali Elkholy
- Department of Anaesthesia, Pain Management, Cairo University Hospital, Cairo, Egypt
| | - Ferran Llopis
- Emergency Department, Bellvitge University Hospital, l'Hospitalet de Llobregat, Barcelona, Spain
| | - Andrea Marino
- Department of Clinical and Experimental Medicine, Unit of Infectious Diseases, ARNAS Garibaldi Hospital, University of Catania, Catania, Italy
| | - Roman Stebel
- Department of Infectious Diseases, University Hospital Brno and Faculty of Medicine, Masaryk University, Czech Republic
| | - Balint Gergely Szabo
- South Pest Central Hospital, National Institute of Haematology and Infectious Diseases, Budapest, Hungary
| | - Maya Belitova
- Medical University-Sofia, Department of Anaesthesiology and Intensive Care, University Hospital 'Queen Giovanna' ISUL, EAD, Sofia, Bulgaria
| | - Elias Fadel
- Department of Oncology, Bahrain Oncology Centre, King Hamad University Hospital, Busaiteen, Bahrain
| | - Tarkan Yetisyigit
- Department of Oncology, Bahrain Oncology Centre, King Hamad University Hospital, Busaiteen, Bahrain
| | - Yasemin Cag
- Department of Infectious Diseases and Clinical Microbiology, Istanbul Medeniyet University Faculty of Medicine, Istanbul, Türkiye.
| | - Sevil Alkan
- Department of Infectious Diseases and Clinical Microbiology, Onsekiz Mart University School of Medicine, Canakkale, Türkiye
| | - Bircan Kayaaslan
- Department of Infectious Diseases & Clinical Microbiology, Ankara City Hospital, Ankara, Türkiye
| | - Serkan Oncu
- Department of Infectious Diseases & Clinical Microbiology, School of Medicine, Adnan Menderes University, Aydin, Türkiye
| | - Mehmet Ozdemir
- Department of Medical Microbiology, Necmettin Erbakan University, Konya, Türkiye
| | - Mesut Yilmaz
- Department of Infectious Diseases and Clinical Microbiology, Istanbul Medipol University, School of Medicine, Türkiye
| | - Arzu Cennet Isik
- Department of Internal Medicine, Dr. Lutfi Kirdar City Hospital, Istanbul, Türkiye
| | - Dilşah Başkol
- Department of Infectious Diseases & Clinical Microbiology, Ege School of Medicine, Izmir, Türkiye
| | - Gulden Sincan
- Department of Haematology, School of Medicine, Ataturk University, Erzurum, Türkiye
| | - Antonio Cascio
- Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE), Infectious Disease Unit, Policlinico 'P. Giaccone', University of Palermo, Italy
| | - Safak Ozer-Balin
- Department of Infectious Diseases and Clinical Microbiology, Firat University, School of Medicine, Elazig, Türkiye
| | - Nesibe Korkmaz
- Department of Infectious Diseases and Clinical Microbiology, Diskapi Yıldirim Beyazit Education and Research Hospital, Ankara, Türkiye
| | - Rezaul Karim Ripon
- Department of Public Health and Informatics, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | - Salma Abbas
- Department of Medicine, Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, Pakistan
| | | | - Gulden Eser-Karlidag
- Department of Infectious Diseases and Clinical Microbiology, University of Health Sciences, Elazig Fethi Sekin City Hospital, Elazig, Türkiye
| | | | - Abdur Rafey
- Department of Medicine, Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, Pakistan
| | - Aun Raza
- Department of Medicine, Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, Pakistan
| | - Oguz Resat Sipahi
- Department of Infectious Diseases & Clinical Microbiology, Ege School of Medicine, Izmir, Türkiye
| | - Ilad Alavi Darazam
- Infectious Diseases and Tropical Medicine, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Umran Elbahr
- Department of Infectious Diseases, Bahrain Oncology Centre, King Hamad University Hospital, Al Sayh, Bahrain
| | - Ilknur Erdem
- Namık Kemal University, Faculty of Medicine, Department of Infectious Diseases and Clinical Microbiology, Tekirdağ, Türkiye
| | - Pinar Ergen
- Department of Infectious Diseases and Clinical Microbiology, Istanbul Medeniyet University Faculty of Medicine, Istanbul, Türkiye
| | - Cemil Bilir
- Department of Oncology, Istinye University, VMMedical Park Pendik Hospital, Istanbul, Türkiye; Sakarya University Faculty of Medicine Department of Medical Oncology, Sakarya, Türkiye
| | - Hulya Caskurlu
- Department of Infectious Diseases and Clinical Microbiology, Istanbul Medeniyet University Faculty of Medicine, Istanbul, Türkiye
| | - Aysegul Erdem
- Department of Pathology, Ataturk Sanatoryum Training and Research Hospital, Ankara, Türkiye
| | - Mateja Jankovic Makek
- University of Zagreb School of Medicine, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Mustafa Altindis
- Department of Microbiology, Sakarya University Faculty of Medicine, Sakarya, Türkiye
| | - Botond Lakatos
- South Pest Central Hospital, National Institute of Haematology and Infectious Diseases, Budapest, Hungary
| | | | - Esmeray Mutlu Yilmaz
- Department of Infectious Diseases & Clinical Microbiology, Samsun Training and Research Hospital, Samsun, Türkiye
| | - Emmanuel Nsutebu
- Tropical and Infectious Diseases Division, Sheikh Shakhbout Medical City, Abu Dhabi, The United Arab Emirates
| | - Rumeysa Cakmak
- Department of Infectious Diseases and Clinical Microbiology, Istanbul Medipol University, School of Medicine, Türkiye
| | - Fatma Sirmatel
- Department of Infectious Diseases & Clinical Microbiology, School of Medicine, Abant Izzet Baysal University, Bolu, Türkiye
| |
Collapse
|
46
|
Zhao X, Hu X, Han J, Yin R, Zhang S, Liu H. Gut mycobiome: A "black box" of gut microbiome-host interactions. WIREs Mech Dis 2023; 15:e1611. [PMID: 37157158 DOI: 10.1002/wsbm.1611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/01/2023] [Accepted: 04/12/2023] [Indexed: 05/10/2023]
Abstract
Fungi, being a necessary component of the gut microbiome, potentially have direct or indirect effects on the health and illness status of the host. The gut mycobiome is an inducer of the host's immunity, maintaining intestinal homeostasis, and protecting against infections, as well as a reservoir of opportunistic microorganisms and a potential cofactor when the host is immunocompromised. In addition, gut fungi interact with a diverse range of microbes in the intestinal niches. In this article, we reviewed the composition of gut mycobiome, their association with host health and illness, and summarized the specific Candida albicans-host interactions, in order to provide insights and directions for the ongoing study of fungi. This article is categorized under: Infectious Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Xinyue Zhao
- State Key Laboratory of Complex Severe and Rare Diseases, Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Xiaomin Hu
- Department of Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Junjie Han
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Ruopeng Yin
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Shuyang Zhang
- State Key Laboratory of Complex Severe and Rare Diseases, Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Hongwei Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
47
|
Ballash GA, Diaz-Campos D, van Balen JC, Mollenkopf DF, Wittum TE. Previous Antibiotic Exposure Reshapes the Population Structure of Infecting Uropathogenic Escherichia coli Strains by Selecting for Antibiotic Resistance over Urovirulence. Microbiol Spectr 2023; 11:e0524222. [PMID: 37338386 PMCID: PMC10433818 DOI: 10.1128/spectrum.05242-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 05/28/2023] [Indexed: 06/21/2023] Open
Abstract
Antibiotic therapy is the standard of care for urinary tract infections (UTIs) caused by uropathogenic Escherichia coli (UPEC). However, previous antibiotic therapy may impart a selective pressure that influences the population structure and pathogenic potential of infecting UPEC strains. Here, we conducted a 3-year study using whole-genome-sequencing analysis and retrospective medical record review to characterize how antibiotic exposure influenced the phenotypic antibiotic resistance, acquired resistome, virulome, and population structure of 88 UTI-causing E. coli strains from dogs. A majority of UTI-associated E. coli strains were from phylogroup B2 and clustered within sequence type 372. Previous antibiotic exposure was associated with a population shift toward UPEC from phylogroups other than the typical urovirulent phylogroup B2. The specific virulence profiles within the accessory virulome that were associated with antibiotic use were elicited by the effect of antibiotics on UPEC phylogenetic structure. Among phylogroup B2, antibiotic exposure increased the quantity of genes within the resistome and the odds of developing reduced susceptibility to at least one antibiotic. Non-B2 UPEC strains harbored a more diverse and greater resistome that conferred reduced susceptibility to multiple antibiotic classes following antibiotic exposure. Collectively, these data suggest that previous antibiotic exposure establishes an environment that provides a selective edge to non-B2 UPEC strains through their diverse and abundant antibiotic resistance genes, despite their lack of urovirulence genes. Our findings highlight the necessity for judicious use of antibiotics as we uncover another mechanism by which antibiotic exposure and resistance can influence the dynamics of bacterial infectious disease. IMPORTANCE Urinary tract infections (UTIs) are one of the most common infections of dogs and humans. While antibiotic therapy is the standard of care for UTIs and other infections, antibiotic exposure may influence the pathogenic profile of subsequent infections. We used whole-genome sequencing and retrospective medical record review to characterize the effect of systemic antibiotic therapy on the resistance, virulence, and population structure of 88 UTI-causing UPEC strains isolated from dogs. Our results indicate that antibiotic exposure alters the population structure of infecting UPEC strains, providing a selective edge for non-B2 phylogroups that harbor diverse and abundant resistance gene catalogues but fewer urovirulence genes. These findings highlight how antibiotic resistance can influence pathogen infection dynamics and have clinical implications for the judicious use of antibiotics for bacterial infections.
Collapse
Affiliation(s)
- Gregory A. Ballash
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Dubraska Diaz-Campos
- Department of Veterinary Clinical Sciences, The Ohio State University, Columbus, Ohio, USA
| | - Joany C. van Balen
- Department of Veterinary Clinical Sciences, The Ohio State University, Columbus, Ohio, USA
| | - Dixie F. Mollenkopf
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Thomas E. Wittum
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
48
|
Li F, Gao Y, Cheng W, Su X, Yang R. Gut fungal mycobiome: A significant factor of tumor occurrence and development. Cancer Lett 2023; 569:216302. [PMID: 37451425 DOI: 10.1016/j.canlet.2023.216302] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/28/2023] [Accepted: 07/01/2023] [Indexed: 07/18/2023]
Abstract
A variety of bacteria, viruses, fungi, protists, archaea and protozoa coexists within the mammalian gastrointestinal (GI) tract such as that fungi are detectable in all intestinal and colon segments in almost all healthy adults. Although fungi can cause infectious diseases, they are also related to gut and systemic homeostasis. Importantly, through transformation of different forms such as from yeast to hyphae, interaction among gut microbiota such as fungal and bacterial interaction, host factors such as immune and host derived factors, and fungus genetic and epigenetic factors, fungi can be transformed from commensal into pathogenic lifestyles. Recent studies have shown that fungi play a significant role in the occurrence and development of tumors such as colorectal cancer. Indeed, evidences have shown that multiple species of different fungi exist in different tumors. Studies have also demonstrated that fungi are related to the occurrence and development of tumors, and also survival of patients. Here we summarize recent advances in the transformation of fungi from commensal into pathogenic lifestyles, and the effects of gut pathogenic fungi on the occurrence and development of tumors such as colorectal and pancreatic cancers.
Collapse
Affiliation(s)
- Fan Li
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin, 300071, China; Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, 300071, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Yunhuan Gao
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin, 300071, China; Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, 300071, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Wenyue Cheng
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin, 300071, China; Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, 300071, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Xiaomin Su
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin, 300071, China; Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, 300071, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Rongcun Yang
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin, 300071, China; Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, 300071, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
49
|
Hu X, Wang H, Yu B, Yu J, Lu H, Sun J, Sun Y, Zou Y, Luo H, Zeng Z, Liu S, Jiang Y, Wu Z, Ren Z. Oral Fungal Alterations in Patients with COVID-19 and Recovered Patients. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205058. [PMID: 37119437 PMCID: PMC10323652 DOI: 10.1002/advs.202205058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 03/15/2023] [Indexed: 06/19/2023]
Abstract
The oral bacteriome, gut bacteriome, and gut mycobiome are associated with coronavirus disease 2019 (COVID-19). However, the oral fungal microbiota in COVID-19 remains unclear. This article aims to characterize the oral mycobiome in COVID-19 and recovered patients. Tongue coating specimens of 71 COVID-19 patients, 36 suspected cases (SCs), 22 recovered COVID-19 patients, 36 SCs who recovered, and 132 controls from Henan are collected and analyzed using internal transcribed spacer sequencing. The richness of oral fungi is increased in COVID-19 versus controls, and beta diversity analysis reveals separate fungal communities for COVID-19 and control. The ratio of Ascomycota and Basidiomycota is higher in COVID-19, and the opportunistic pathogens, including the genera Candida, Saccharomyces, and Simplicillium, are increased in COVID-19. The classifier based on two fungal biomarkers is constructed and can distinguish COVID-19 patients from controls in the training, testing, and independent cohorts. Importantly, the classifier successfully diagnoses SCs with positive specific severe acute respiratory syndrome coronavirus 2 immunoglobulin G antibodies as COVID-19 patients. The correlation between distinct fungi and bacteria in COVID-19 and control groups is depicted. These data suggest that the oral mycobiome may play a role in COVID-19.
Collapse
Affiliation(s)
- Xiaobo Hu
- Department of Infectious Diseasesthe First Affiliated Hospital of Zhengzhou University#1 Jianshe East RoadZhengzhou450052P. R. China
- Gene Hospital of Henan ProvincePrecision Medicine Centerthe First Affiliated Hospital of Zhengzhou UniversityZhengzhou450052P. R. China
| | - Haiyu Wang
- Department of Infectious Diseasesthe First Affiliated Hospital of Zhengzhou University#1 Jianshe East RoadZhengzhou450052P. R. China
- Gene Hospital of Henan ProvincePrecision Medicine Centerthe First Affiliated Hospital of Zhengzhou UniversityZhengzhou450052P. R. China
- Jinan Microecological Biomedicine Shandong LaboratoryJinan250000P. R. China
| | - Bo Yu
- Henan Key Laboratory of Ion‐beam BioengineeringSchool of Agricultural SciencesZhengzhou UniversityZhengzhou455004P. R. China
| | - Jia Yu
- Department of Infectious Diseasesthe First Affiliated Hospital of Zhengzhou University#1 Jianshe East RoadZhengzhou450052P. R. China
- Gene Hospital of Henan ProvincePrecision Medicine Centerthe First Affiliated Hospital of Zhengzhou UniversityZhengzhou450052P. R. China
- Jinan Microecological Biomedicine Shandong LaboratoryJinan250000P. R. China
| | - Haifeng Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseaseNational Clinical Research Center for Infectious DiseasesDepartment of Infectious Diseasesthe First Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhou310003P. R. China
| | - Junyi Sun
- Department of Infectious Diseasesthe First Affiliated Hospital of Zhengzhou University#1 Jianshe East RoadZhengzhou450052P. R. China
- Gene Hospital of Henan ProvincePrecision Medicine Centerthe First Affiliated Hospital of Zhengzhou UniversityZhengzhou450052P. R. China
- Jinan Microecological Biomedicine Shandong LaboratoryJinan250000P. R. China
| | - Ying Sun
- Department of Infectious Diseasesthe First Affiliated Hospital of Zhengzhou University#1 Jianshe East RoadZhengzhou450052P. R. China
- Gene Hospital of Henan ProvincePrecision Medicine Centerthe First Affiliated Hospital of Zhengzhou UniversityZhengzhou450052P. R. China
- Jinan Microecological Biomedicine Shandong LaboratoryJinan250000P. R. China
| | - Yawen Zou
- Department of Infectious Diseasesthe First Affiliated Hospital of Zhengzhou University#1 Jianshe East RoadZhengzhou450052P. R. China
- Gene Hospital of Henan ProvincePrecision Medicine Centerthe First Affiliated Hospital of Zhengzhou UniversityZhengzhou450052P. R. China
- Jinan Microecological Biomedicine Shandong LaboratoryJinan250000P. R. China
| | - Hong Luo
- Department of Infectious DiseasesGuangshan County People's HospitalGuangshan CountyXinyangHenan465450P. R. China
| | - Zhaohai Zeng
- Department of Infectious DiseasesGuangshan County People's HospitalGuangshan CountyXinyangHenan465450P. R. China
| | - Shanshuo Liu
- Department of Infectious Diseasesthe First Affiliated Hospital of Zhengzhou University#1 Jianshe East RoadZhengzhou450052P. R. China
- Gene Hospital of Henan ProvincePrecision Medicine Centerthe First Affiliated Hospital of Zhengzhou UniversityZhengzhou450052P. R. China
- Jinan Microecological Biomedicine Shandong LaboratoryJinan250000P. R. China
| | - Yan Jiang
- Department of Neurologythe First Affiliated Hospital of Zhengzhou UniversityZhengzhou450052P. R. China
| | - Zhongwen Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseaseNational Clinical Research Center for Infectious DiseasesDepartment of Infectious Diseasesthe First Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhou310003P. R. China
| | - Zhigang Ren
- Department of Infectious Diseasesthe First Affiliated Hospital of Zhengzhou University#1 Jianshe East RoadZhengzhou450052P. R. China
- Gene Hospital of Henan ProvincePrecision Medicine Centerthe First Affiliated Hospital of Zhengzhou UniversityZhengzhou450052P. R. China
- Jinan Microecological Biomedicine Shandong LaboratoryJinan250000P. R. China
| |
Collapse
|
50
|
Guan SW, Lin Q, Yu HB. Intratumour microbiome of pancreatic cancer. World J Gastrointest Oncol 2023; 15:713-730. [PMID: 37275446 PMCID: PMC10237023 DOI: 10.4251/wjgo.v15.i5.713] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/26/2023] [Accepted: 04/04/2023] [Indexed: 05/12/2023] Open
Abstract
Pancreatic cancer is a high mortality malignancy with almost equal mortality and morbidity rates. Both normal and tumour tissues of the pancreas were previously considered sterile. In recent years, with the development of technologies for high-throughput sequencing, a variety of studies have revealed that pancreatic cancer tissues contain small amounts of bacteria and fungi. The intratumour microbiome is being revealed as an influential contributor to carcinogenesis. The intratumour microbiome has been identified as a crucial factor for pancreatic cancer progression, diagnosis, and treatment, chemotherapy resistance, and immune response. A better understanding of the biology of the intratumour microbiome of pancreatic cancer contributes to the establishment of better early cancer screening and treatment strategies. This review focuses on the possible origins of the intratumour microbiome in pancreatic cancer, the intratumour localization, the interaction with the tumour microenvironment, and strategies for improving the outcome of pancreatic cancer treatment. Thus, this review offers new perspectives for improving the prognosis of pancreatic cancer.
Collapse
Affiliation(s)
- Shi-Wei Guan
- Department of Surgery, Wenzhou Central Hospital, The Dingli Clinical Institute of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Quan Lin
- Department of Surgery, Wenzhou Central Hospital, The Dingli Clinical Institute of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Hai-Bo Yu
- Department of Surgery, Wenzhou Central Hospital, The Dingli Clinical Institute of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| |
Collapse
|