1
|
de Lima TS, Souza Saraiva MDM, de Almeida AM, Ferreira TS, Rodrigues Alves LB, Ferreira VA, de Freitas Neto OC, Barrow PA, Berchieri Junior A. Deletion of ttrA and pduA genes in Salmonella enterica serovars induce a comparable immune response to wild-type infection in different chicken lineages. Avian Pathol 2025:1-12. [PMID: 39836065 DOI: 10.1080/03079457.2025.2457095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
RESEARCH HIGHLIGHTS ttrA and pduA double mutants in Salmonella provoke a similar immune response.SE elicited more intense immune responses than STM.The immune response in the broiler was more intense than in other lineages.
Collapse
Affiliation(s)
- Túlio Spina de Lima
- School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, SP, Brazil
| | - Mauro de Mesquita Souza Saraiva
- School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, SP, Brazil
- Department of Veterinary and Animal Sciences, University of Copenhagen (UK), Frederiksberg C., Denmark
| | - Adriana Maria de Almeida
- School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, SP, Brazil
| | - Taisa Santiago Ferreira
- School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, SP, Brazil
| | - Lucas Bocchini Rodrigues Alves
- School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, SP, Brazil
- Department of Veterinary and Animal Sciences, University of Copenhagen (UK), Frederiksberg C., Denmark
| | - Viviane Amorim Ferreira
- School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, SP, Brazil
| | - Oliveiro Caetano de Freitas Neto
- Department of Preventive Veterinary Medicine, Veterinary School, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Paul Andrew Barrow
- School of Veterinary Medicine and Science, University of Surrey, Guildford, UK
| | - Angelo Berchieri Junior
- School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, SP, Brazil
| |
Collapse
|
2
|
Sheriff O, Ahbara AM, Haile A, Alemayehu K, Han JL, Mwacharo JM. Whole-genome resequencing reveals genomic variation and dynamics in Ethiopian indigenous goats. Front Genet 2024; 15:1353026. [PMID: 38854428 PMCID: PMC11156998 DOI: 10.3389/fgene.2024.1353026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 04/16/2024] [Indexed: 06/11/2024] Open
Abstract
Ethiopia has about 52 million indigenous goats with marked phenotypic variability, which is the outcome of natural and artificial selection. Here, we obtained whole-genome sequence data of three Ethiopian indigenous goat populations (Arab, Fellata, and Oromo) from northwestern Ethiopia and analyzed their genome-wide genetic diversity, population structure, and signatures of selection. We included genotype data from four other Ethiopian goat populations (Abergelle, Keffa, Gumuz, and Woyto-Guji) and goats from Asia; Europe; and eastern, southern, western, and northern Africa to investigate the genetic predisposition of the three Ethiopian populations and performed comparative genomic analysis. Genetic diversity analysis showed that Fellata goats exhibited the lowest heterozygosity values (Ho = 0.288 ± 0.005 and He = 0.334 ± 0.0001). The highest values were observed in Arab goats (Ho = 0.310 ± 0.010 and He = 0.347 ± 4.35e-05). A higher inbreeding coefficient (FROH = 0.137 ± 0.016) was recorded for Fellata goats than the 0.105 ± 0.030 recorded for Arab and the 0.112 ± 0.034 recorded for Oromo goats. This indicates that the Fellata goat population should be prioritized in future conservation activities. The three goat populations showed the majority (∼63%) of runs of homozygosity in the shorter (100-150 Kb) length category, illustrating ancient inbreeding and/or small founder effects. Population relationship and structure analysis separated the Ethiopian indigenous goats into two distinct genetic clusters lacking phylogeographic structure. Arab, Fellata, Oromo, Abergelle, and Keffa represented one genetic cluster. Gumuz and Woyto-Guji formed a separate cluster and shared a common genetic background with the Kenyan Boran goat. Genome-wide selection signature analysis identified nine strongest regions spanning 163 genes influencing adaptation to arid and semi-arid environments (HOXC12, HOXC13, HOXC4, HOXC6, and HOXC9, MAPK8IP2), immune response (IL18, TYK2, ICAM3, ADGRG1, and ADGRG3), and production and reproduction (RARG and DNMT1). Our results provide insights into a thorough understanding of genetic architecture underlying selection signatures in Ethiopian indigenous goats in a semi-arid tropical environment and deliver valuable information for goat genetic improvement, conservation strategy, genome-wide association study, and marker-assisted breeding.
Collapse
Affiliation(s)
- Oumer Sheriff
- Department of Animal Science, Assosa University, Assosa, Ethiopia
- Department of Animal Production and Technology, Bahir Dar University, Bahir Dar, Ethiopia
- Biotechnology Research Institute, Bahir Dar University, Bahir Dar, Ethiopia
| | - Abulgasim M. Ahbara
- Department of Zoology, Faculty of Sciences, Misurata University, Misurata, Libya
- Animal and Veterinary Sciences Scotland's Rural College (SRUC) and The Centre for Tropical Livestock Genetics and Health (CTLGH), The Roslin Institute Building, Edinburgh, United Kingdom
| | - Aynalem Haile
- Resilient Agricultural Livelihood Systems Program (RALSP), International Center for Agricultural Research in the Dry Areas (ICARDA), Addis Ababa, Ethiopia
| | - Kefyalew Alemayehu
- Department of Animal Production and Technology, Bahir Dar University, Bahir Dar, Ethiopia
- Biotechnology Research Institute, Bahir Dar University, Bahir Dar, Ethiopia
- Ethiopian Agricultural Transformation Institute, Amhara Agricultural Transformation Center, Bahir Dar, Ethiopia
| | - Jian-Lin Han
- CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- Livestock Genetics Program, International Livestock Research Institute, Nairobi, Kenya
| | - Joram M. Mwacharo
- Animal and Veterinary Sciences Scotland's Rural College (SRUC) and The Centre for Tropical Livestock Genetics and Health (CTLGH), The Roslin Institute Building, Edinburgh, United Kingdom
- Resilient Agricultural Livelihood Systems Program (RALSP), International Center for Agricultural Research in the Dry Areas (ICARDA), Addis Ababa, Ethiopia
| |
Collapse
|
3
|
Cammayo-Fletcher PLT, Flores RA, Nguyen BT, Villavicencio AGM, Lee SY, Kim WH, Min W. Promotion of Th1 and Th2 responses over Th17 in Riemerella anatipestifer stimulation in chicken splenocytes: Correlation of gga-miR-456-3p and gga-miR-16-5p with NOS2 and CCL5 expression. PLoS One 2023; 18:e0294031. [PMID: 37930983 PMCID: PMC10627459 DOI: 10.1371/journal.pone.0294031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/20/2023] [Indexed: 11/08/2023] Open
Abstract
Riemerella (R.) anatipestifer poses a significant threat to ducks, resulting in mortality rates ranging from 5-75%. This disease is highly infectious and economically consequential for domestic ducks. Although other avian species, such as chickens, also display susceptibility, the impact is comparatively less severe than in ducks. IL-17A has a pronounced correlation with R. anatipestifer infection in ducks, which is less in chickens. This study performed an in vitro transcriptome analysis using chicken splenic lymphocytes collected at 4-, 8-, and 24-hour intervals following R. anatipestifer stimulation. The primary objective was to discern the differentially expressed genes, with a specific focus on IL-17A and IL-17F expression. Moreover, an association between specific miRNAs with NOS2 and CCL5 was identified. The manifestation of riemerellosis in chickens was linked to heightened expression of Th1- and Th2-associated cells, while Th17 cells exhibited minimal involvement. This study elucidated the mechanism behind the absence of a Th17 immune response, shedding light on its role throughout disease progression. Additionally, through small RNA sequencing, we identified a connection between miRNAs, specifically miR-456-3p and miR-16-5p, and their respective target genes NOS2 and CCL5. These miRNAs are potential regulators of the inflammatory process during riemerellosis in chickens.
Collapse
Affiliation(s)
| | - Rochelle A. Flores
- College of Veterinary Medicine & Institute of Animal Medicine, Gyeongsang National University, Jinju, Korea
| | - Binh T. Nguyen
- College of Veterinary Medicine & Institute of Animal Medicine, Gyeongsang National University, Jinju, Korea
| | | | - Seung Yun Lee
- College of Veterinary Medicine & Institute of Animal Medicine, Gyeongsang National University, Jinju, Korea
| | - Woo H. Kim
- College of Veterinary Medicine & Institute of Animal Medicine, Gyeongsang National University, Jinju, Korea
| | - Wongi Min
- College of Veterinary Medicine & Institute of Animal Medicine, Gyeongsang National University, Jinju, Korea
| |
Collapse
|
4
|
Amiri Ghanatsaman Z, Ayatolahi Mehrgardi A, Asadollahpour Nanaei H, Esmailizadeh A. Comparative genomic analysis uncovers candidate genes related with milk production and adaptive traits in goat breeds. Sci Rep 2023; 13:8722. [PMID: 37253766 DOI: 10.1038/s41598-023-35973-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 05/26/2023] [Indexed: 06/01/2023] Open
Abstract
During the process of animal domestication, both natural and artificial selection cause variation in allele frequencies among populations. Identifying genomic areas of selection in domestic animals may aid in the detection of genomic areas linked to ecological and economic traits. We studied genomic variation in 140 worldwide goat individuals, including 75 Asian, 30 African and 35 European goats. We further carried out comparative population genomics to detect genomic regions under selection for adaptability to harsh conditions in local Asian ecotypes and also milk production traits in European commercial breeds. In addition, we estimated the genetic distances among 140 goat individuals. The results showed that among all studied goat groups, local breeds from West and South Asia emerged as an independent group. Our search for selection signatures in local goats from West and South Asia revealed candidate genes related to adaptation to hot climate (HSPB6, HSF4, VPS13A and NBEA genes) and immune response (IL7, IL5, IL23A and LRFN5) traits. Furthermore, selection signatures in European commercial goats involved several milk production related genes, such as VPS13C, NCAM2, TMPRSS15, CSN3 and ABCG2. The identified candidate genes could be the fundamental genetic resource for enhancement of goat production and environmental-adaptive traits, and as such they should be used in goat breeding programs to select more efficient breeds.
Collapse
Affiliation(s)
- Zeinab Amiri Ghanatsaman
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, 76169-133, PB, Iran
- Animal Science Research Department, Fars Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Shiraz, Iran
| | - Ahmad Ayatolahi Mehrgardi
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, 76169-133, PB, Iran.
| | - Hojjat Asadollahpour Nanaei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Ali Esmailizadeh
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, 76169-133, PB, Iran.
| |
Collapse
|
5
|
Genetic diversity and signatures of selection for heat tolerance and immune response in Iranian native chickens. BMC Genomics 2022; 23:224. [PMID: 35317755 PMCID: PMC8939082 DOI: 10.1186/s12864-022-08434-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/02/2022] [Indexed: 12/14/2022] Open
Abstract
Background Understanding how evolutionary forces relating to climate have shaped the patterns of genetic variation within and between species is a fundamental pursuit in biology. Iranian indigenous chickens have evolved genetic adaptations to their local environmental conditions, such as hot and arid regions. In the present study, we provide a population genome landscape of genetic variations in 72 chickens representing nine Iranian indigenous ecotypes (Creeper, Isfahan, Lari, Marand, Mashhad, Naked neck, Sari, Shiraz and Yazd) and two commercial lines (White Leghorn and Arian). We further performed comparative population genomics to evaluate the genetic basis underlying variation in the adaptation to hot climate and immune response in indigenous chicken ecotypes. To detect genomic signatures of adaptation, we applied nucleotide diversity (θπ) and FST statistical measurements, and further analyzed the results to find genomic regions under selection for hot adaptation and immune response-related traits. Results By generating whole-genome data, we assessed the relationship between the genetic diversity of indigenous chicken ecotypes and their genetic distances to two different commercial lines. The results of genetic structure analysis revealed clustering of indigenous chickens in agreement with their geographic origin. Among all studied chicken groups, the highest level of linkage disequilibrium (LD) (~ 0.70) was observed in White Leghorn group at marker pairs distance of 1 Kb. The results from admixture analysis demonstrated evidence of shared ancestry between Arian individuals and indigenous chickens, especially those from the north of the country. Our search for potential genomic regions under selection in indigenous chicken ecotypes revealed several immune response and heat shock protein-related genes, such as HSP70, HSPA9, HSPH1, HSP90AB1 and PLCB4 that have been previously unknown to be involved in environmental-adaptive traits. In addition, we found some other candidate loci on different chromosomes probably related with hot adaptation and immune response-related traits. Conclusions The work provides crucial insights into the structural variation in the genome of Iranian indigenous chicken ecotypes, which up to now has not been genetically investigated. Several genes were identified as candidates for drought, heat tolerance, immune response and other phenotypic traits. These candidate genes may be helpful targets for understanding of the molecular basis of adaptation to hot environmental climate and as such they should be used in chicken breeding programs to select more efficient breeds for desert climate. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08434-7.
Collapse
|
6
|
Che KF, Tengvall S, Lindén A. Interleukin-26 in host defense and inflammatory disorders of the airways. Cytokine Growth Factor Rev 2020; 57:1-10. [PMID: 33293237 DOI: 10.1016/j.cytogfr.2020.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/06/2020] [Accepted: 10/09/2020] [Indexed: 11/16/2022]
Abstract
The dimeric cytokine interleukin (IL)-26 belongs to the IL-10 family. Whereas it was originally perceived as a T-helper (Th)17 cytokine, subsequent studies have shown that IL-26 is produced by several populations of leukocytes and structural cells. This cytokine binds to a heterodimeric receptor complex including IL-10R2 and -20R1 (IL-26R) and signals through STAT 1 and 3 to induce the release of chemokines and growth factors. Remarkably, IL-26 directly kills bacteria and inhibits viral replication. The most recent studies on human airways confirm multiple cellular sources in this critical interphase of host defense and demonstrate that stimulation of toll-like receptors (TLR) trigger the release of IL-26. Once released, it exerts a dualistic effect on cytokine production and up-regulates gene expression of IL-26R. It also potentiates chemotaxis and inhibits chemokinesis for neutrophils, thereby facilitating the accumulation of innate effector cells at the site of bacterial stimulation. The high levels of IL-26 in human airways are altered in inflammatory airway disorders such as asthma and chronic obstructive pulmonary disease. Thus, IL-26 emerges as an important mediator, providing direct and indirect actions on microbes, actions that are essential for host defense and inflammation and bears potential as a biomarker of disease.
Collapse
Affiliation(s)
- Karlhans Fru Che
- Unit for Lung and Airway Research, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, SE-17177, Sweden.
| | - Sara Tengvall
- Närhälsan, Frölunda Vårdcentral, Gothenburg, SE-421 42, Sweden
| | - Anders Lindén
- Unit for Lung and Airway Research, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, SE-17177, Sweden; Department of Respiratory Medicine and Allergy, Karolinska University Hospital Solna, Stockholm, SE-171 76, Sweden
| |
Collapse
|
7
|
de Oliveira Barbosa F, de Freitas Neto OC, Rodrigues Alves LB, Benevides VP, de Souza AIS, da Silva Rubio M, de Almeida AM, Saraiva MM, de Oliveira CJB, Olsen JE, Junior AB. Immunological and bacteriological shifts associated with a flagellin-hyperproducing Salmonella Enteritidis mutant in chickens. Braz J Microbiol 2020; 52:419-429. [PMID: 33150477 DOI: 10.1007/s42770-020-00399-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 10/27/2020] [Indexed: 11/30/2022] Open
Abstract
Salmonella Enteritidis causes infections in humans and animals which are often associated with extensive gut colonization and bacterial shedding in faeces. The natural presence of flagella in Salmonella enterica has been shown to be enough to induce pro-inflammatory responses in the gut, resulting in recruitment of polymorphonuclear cells, gut inflammation and, consequently, reducing the severity of systemic infection in chickens. On the other hand, the absence of flagellin in some Salmonella strains favours systemic infection as a result of the poor intestinal inflammatory responses elicited. The hypothesis that higher production of flagellin by certain Salmonella enterica strains could lead to an even more immunogenic and less pathogenic strain for chickens was here investigated. In the present study, a Salmonella Enteritidis mutant strain harbouring deletions in clpP and fliD genes (SE ΔclpPfliD), which lead to overexpression of flagellin, was generated, and its immunogenicity and pathogenicity were comparatively assessed to the wild type in chickens. Our results showed that SE ΔclpPfliD elicited more intense immune responses in the gut during early stages of infection than the wild type did, and that this correlated with earlier intestinal and systemic clearance of the bacterium.
Collapse
Affiliation(s)
- Fernanda de Oliveira Barbosa
- Department of Veterinary Pathology from the School of Agriculture and Veterinarian Sciences (FCAV), Jaboticabal, State University of São Paulo, Jaboticabal, Brazil
| | - Oliveiro Caetano de Freitas Neto
- Department of Preventive Veterinary Medicine, Veterinary School, Federal University of Minas Gerais (UFMG), Av. Antônio Carlos 6627, Belo Horizonte, Minas Gerais, 31270-901, Brazil.
| | - Lucas Bocchini Rodrigues Alves
- Department of Veterinary Pathology from the School of Agriculture and Veterinarian Sciences (FCAV), Jaboticabal, State University of São Paulo, Jaboticabal, Brazil
| | - Valdinete Pereira Benevides
- Department of Veterinary Pathology from the School of Agriculture and Veterinarian Sciences (FCAV), Jaboticabal, State University of São Paulo, Jaboticabal, Brazil
| | - Andrei Itajahy Secundo de Souza
- Department of Veterinary Pathology from the School of Agriculture and Veterinarian Sciences (FCAV), Jaboticabal, State University of São Paulo, Jaboticabal, Brazil
| | - Marcela da Silva Rubio
- Department of Veterinary Pathology from the School of Agriculture and Veterinarian Sciences (FCAV), Jaboticabal, State University of São Paulo, Jaboticabal, Brazil
| | - Adriana Maria de Almeida
- Department of Veterinary Pathology from the School of Agriculture and Veterinarian Sciences (FCAV), Jaboticabal, State University of São Paulo, Jaboticabal, Brazil
| | - Mauro Mesquita Saraiva
- Department of Veterinary Pathology from the School of Agriculture and Veterinarian Sciences (FCAV), Jaboticabal, State University of São Paulo, Jaboticabal, Brazil
| | - Celso José Bruno de Oliveira
- Department of Animal Science, Center for Agricultural Sciences, Federal University of Paraiba (CCA/UFPB), Areia, PB, Brazil
| | - John Elmerdahl Olsen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Stigbøjlen 4, 1870, Frederiksberg C, Denmark
| | - Angelo Berchieri Junior
- Department of Veterinary Pathology from the School of Agriculture and Veterinarian Sciences (FCAV), Jaboticabal, State University of São Paulo, Jaboticabal, Brazil
| |
Collapse
|
8
|
Immunomodulatory effects of avian β-defensin 5 in chicken macrophage cell line. Res Vet Sci 2020; 132:81-87. [DOI: 10.1016/j.rvsc.2020.06.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/12/2020] [Accepted: 06/01/2020] [Indexed: 01/05/2023]
|
9
|
Truong AD, Hong Y, Ly VD, Nguyen HT, Nguyen CT, Vu HT, Chu NT, Van Hoang T, Thanh Tran HT, Dang HV, Hong YH. Interleukin-dependent modulation of the expression of MHC class I and MHC class II genes in chicken HD11 cells. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 110:103729. [PMID: 32387556 DOI: 10.1016/j.dci.2020.103729] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/29/2020] [Accepted: 04/29/2020] [Indexed: 06/11/2023]
Abstract
Interleukins (ILs) regulate cell surface antigens known as activation markers, which have distinct functional roles. However, the regulation of major histocompatibility complex (MHC) class I, MHC class II, and related genes by cytokines in chickens is not well understood. In the present study, we evaluated the influence of certain recently discovered chicken interleukins-i.e., IL-11, IL-12B, IL-17A, IL-17B, IL-26, and IL-34-on the expression and regulation of genes related to MHC class I, MHC class II, and the associated proteins in an HD11 chicken macrophage cell line. We used quantitative reverse transcription polymerase chain reaction (qRT-PCR), immunocytochemical, and flow cytometric analyses to assess dose- and time-dependent expression in the HD11 cell line and found that the ILs induced MHC class I, MHC class II, and associated protein. As NF-κB is actively involved in cell activation and is constitutively activated in many immune cells, we also determined whether NF-κB regulates MHC class I, MHC class II, and related gene expression in the HD11 cell line. The NF-κB inhibitor sulfasalazine (Sz) dose-dependently inhibited MHC class I and MHC class II in the HD11 cell line. Sz also downregulated the expression of MHC class I, MHC class II, and the associated proteins in the IL-induced HD11 cell line. The expression of MHC class I, MHC class II, and associated genes was accompanied by the Sz-sensitive degradation of the p65 (RelA) and p50 subunits of NF-κB and IκBα. Our results indicate that the different effects of each IL on the expression of genes related to MHC class I, MHC class II, and the associated proteins are involved with the regulation of the dose and duration of antigenic peptide presentation and, thus, also influence Th1, Th2, and Th17 production.
Collapse
Affiliation(s)
- Anh Duc Truong
- Department of Animal Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea; Department of Biochemistry and Immunology, National Institute of Veterinary Research, 86 Truong Chinh, Dong Da, Hanoi, 100000, Viet Nam
| | - Yeojin Hong
- Department of Animal Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Viet Duc Ly
- Department of Biochemistry and Immunology, National Institute of Veterinary Research, 86 Truong Chinh, Dong Da, Hanoi, 100000, Viet Nam
| | - Huyen Thi Nguyen
- Department of Biochemistry and Immunology, National Institute of Veterinary Research, 86 Truong Chinh, Dong Da, Hanoi, 100000, Viet Nam
| | - Chinh Thi Nguyen
- Department of Biochemistry and Immunology, National Institute of Veterinary Research, 86 Truong Chinh, Dong Da, Hanoi, 100000, Viet Nam
| | - Hao Thi Vu
- Department of Animal Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea; Department of Biochemistry and Immunology, National Institute of Veterinary Research, 86 Truong Chinh, Dong Da, Hanoi, 100000, Viet Nam
| | - Nhu Thi Chu
- Department of Biochemistry and Immunology, National Institute of Veterinary Research, 86 Truong Chinh, Dong Da, Hanoi, 100000, Viet Nam
| | - Tuan Van Hoang
- Department of Biochemistry and Immunology, National Institute of Veterinary Research, 86 Truong Chinh, Dong Da, Hanoi, 100000, Viet Nam
| | - Ha Thi Thanh Tran
- Department of Biochemistry and Immunology, National Institute of Veterinary Research, 86 Truong Chinh, Dong Da, Hanoi, 100000, Viet Nam
| | - Hoang Vu Dang
- Department of Biochemistry and Immunology, National Institute of Veterinary Research, 86 Truong Chinh, Dong Da, Hanoi, 100000, Viet Nam
| | - Yeong Ho Hong
- Department of Animal Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea.
| |
Collapse
|
10
|
Chicken avian β-defensin 8 modulates immune response via the mitogen-activated protein kinase signaling pathways in a chicken macrophage cell line. Poult Sci 2020; 99:4174-4182. [PMID: 32867961 PMCID: PMC7598012 DOI: 10.1016/j.psj.2020.05.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/29/2020] [Accepted: 05/23/2020] [Indexed: 12/14/2022] Open
Abstract
Defensins are antimicrobial peptides composed of 3 conserved disulfide bridges, a β-sheet, and both hydrophobic and cationic amino acids. In this study, we aimed to demonstrate the immunomodulation role of avian β-defensin 8 (AvBD8) in a chicken macrophage cell line. Chicken AvBD8 stimulated the expression of proinflammatory cytokines (IL-1β, interferon gamma, and IL-12p40) and chemokines (CCL4, CXCL13, and CCL20) in macrophages. Furthermore, by Western blotting and immunocytochemistry, we confirmed that AvBD8 activated the mitogen-activated protein kinase signaling pathway via extracellular regulated kinases 1/2 and p38 signaling molecules. Overall, AvBD8 plays a crucial role in host defense as not only an antimicrobial peptide but also an immunomodulator by activating the mitogen-activated protein kinase signaling pathway and inducing the expression of proinflammatory cytokines and chemokines.
Collapse
|
11
|
Truong AD, Hong Y, Tran HTT, Dang HV, Nguyen VK, Pham TT, Lillehoj HS, Hong YH. Characterization and functional analyses of novel chicken leukocyte immunoglobulin-like receptor subfamily B members 4 and 5. Poult Sci 2020; 98:6989-7002. [PMID: 31376355 PMCID: PMC8913971 DOI: 10.3382/ps/pez442] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 07/23/2019] [Indexed: 12/16/2022] Open
Abstract
The inhibitory leukocyte immuno-globulin-like receptors (LILRBs) play an important role in innate immunity. Currently, no data exist regarding the role of LILRB4 and LILRB5 in the activation of immune signaling pathways in mammalian and avian species. Here, we report for the first time, the cloning and structural and functional analyses of chicken LILRB4–5 genes identified from 2 genetically disparate chicken lines. Comparison of LILRB4–5 amino acid sequences from lines 6.3 and 7.2 with those of mammalian proteins revealed 17 to 62% and 19 to 29% similarity, respectively. Phylogenetic analysis indicated that the chicken LILRB4–5 genes were closely associated with those of other species. LILRB4–5 could be subdivided into 2 groups having distinct immunoreceptor tyrosine-based inhibitory motifs, which bind to Src homology 2-containing tyrosine phosphatase 2 (SHP-2). Importantly, LILRB4–5 also upregulated the major histocompatibility complex (MHC) class I and β2-microglobulin gene expression as well as the expression of transporter associated with antigen processing 1–2, which play an important role in MHC class I activation. Our results indicate that LILRB4–5 are transcriptional regulators of the MHC class I pathway components and regulate innate immune responses. Furthermore, LILRB4–5 could activate the Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathway genes in macrophages and induce the expression of chemokines and T helper (Th)1, Th2, and Th17 cytokines. Our data suggest that LILRB4–5 are innate immune receptors associated with SHP-2, MHC class I, and β2-microglobulin. Additionally, they activate the JAK/STAT signaling pathway and control the expression of cytokines in macrophages.
Collapse
Affiliation(s)
- Anh Duc Truong
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea.,Department of Biochemistry and Immunology, National Institute of Veterinary Research, 86 Truong Chinh, Dong Da, Hanoi 100000, Viet Nam
| | - Yeojin Hong
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Ha Thi Thanh Tran
- Department of Biochemistry and Immunology, National Institute of Veterinary Research, 86 Truong Chinh, Dong Da, Hanoi 100000, Viet Nam
| | - Hoang Vu Dang
- Department of Biochemistry and Immunology, National Institute of Veterinary Research, 86 Truong Chinh, Dong Da, Hanoi 100000, Viet Nam
| | - Viet Khong Nguyen
- Department of Biochemistry and Immunology, National Institute of Veterinary Research, 86 Truong Chinh, Dong Da, Hanoi 100000, Viet Nam
| | - Thu Thao Pham
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Hyun S Lillehoj
- Animal Biosciences and Biotechnology Laboratory, Agricultural Research Services, United States Department of Agriculture, Beltsville, MD 20705, USA
| | - Yeong Ho Hong
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea
| |
Collapse
|
12
|
Arendt MK, Knoll LJ, Cook ME. Oral antibody to interleukin-10 receptor 2, but not interleukin-10 receptor 1, as an effective Eimeria species immunotherapy in broiler chickens. Poult Sci 2019; 98:3471-3480. [PMID: 30880340 DOI: 10.3382/ps/pez064] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 03/07/2019] [Indexed: 12/18/2022] Open
Abstract
Coccidiosis is a major gastrointestinal disease caused by several Eimeria species in floor raised chickens. Feeding an antibody to interleukin 10 (aIL-10) ameliorates the negative symptoms of coccidiosis in broilers, i.e., lack of weight gain, decreased feed conversion, and mortality. IL-10 signals by forming a ligand-receptor complex with IL-10 Receptor 1 (IL-10 R1) and IL-10 Receptor 2 (IL-10 R2). In this study, we hypothesize oral antibodies to the IL-10 receptors will neutralize the IL-10 signaling pathway equal to or better than aIL-10 to act as an oral anti-coccidiosis immunotherapy. A total of 5 sequential feed trials, set up as a 4 (diet antibody) × 2 (Eimeria challenge) factorial design, tested oral egg yolk antibodies to a total of 6 IL-10 R1 epitopes and 3 IL-10 R2 epitopes compared to a control antibody diet. A total of 10 pens of 5 chicks/pen/diet antibody/Eimeria challenge were housed for 21 d. On day 3 of age, chicks were either infected or not infected with a 10× dose of an Eimeria vaccine containing Eimeria acervulina, Eimeria tenella, and Eimeria maxima. Pen feed consumption and mean body weights were assessed weekly (d1, d7, d14, and d21); fecal oocyst shedding was assessed on day 10. Data were analyzed using a 2-way ANOVA. No significant interaction on chick weight was observed in chicks fed IL-10 R1 antibodies compared to chicks fed the control antibody was observed. In studies evaluating aIL-10 R2 oral antibodies, infected chicks fed aIL-10 R2: epitope 1 overcame the negative effects of Eimeria infection and had similar 21-d body weight to uninfected chicks (P4 = 0.07). We hypothesized that feeding oral antibodies to the IL-10 receptors would result in equivalent anti-coccidial benefits to aIL-10. However, none of the 6 antibodies to IL-10 R1 epitopes yielded any benefits during Eimeria infection compared to controls. A total of 2 oral antibodies to IL-10 R2 showed promising results equivalent to the aIL-10 immunotherapeutic. Immunofluorescence staining shows that the IL-10R2 significantly increases in abundance in response to Eimeria infection, whereas IL-10R1 does not.
Collapse
Affiliation(s)
- Maria K Arendt
- Comparative Biomedical Sciences Department, University of Wisconsin-Madison, Madison, WI 53706
| | - Laura J Knoll
- Medical Microbiology & Immunology Department, University of Wisconsin-Madison, Madison, WI 53706
| | - Mark E Cook
- Animal Science Department, University of Wisconsin-Madison, Madison, WI 53706
| |
Collapse
|
13
|
Truong AD, Hong Y, Rengaraj D, Lee J, Lee K, Hong YH. Identification and functional characterization, including cytokine production modulation, of the novel chicken Interleukin-11. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 87:51-63. [PMID: 29792901 DOI: 10.1016/j.dci.2018.05.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 04/18/2018] [Accepted: 05/20/2018] [Indexed: 06/08/2023]
Abstract
Interleukin (IL)-11 plays an important role in the immune system. However, IL-11 has not yet been characterized in avian species, including chickens. This study is the first to clone and functionally characterize chicken IL-11 (chIL-11). Multiple alignments and phylogenetic tree comparisons of chIL-11 with IL-11 proteins from other species revealed high levels of conservation and a close relationship between chicken and Japanese quail IL-11. Our results demonstrate that chIL-11 was a functional ligand of IL-11RA and IL-6ST in chicken HD11 and OU2 cell lines, as well as activated and regulated JAK-STAT, NF-κB, PI3K/AKT, and MAPK signaling pathways in chicken cell lines. In addition, chIL-11 inhibited nitric oxide production, affected proliferation of both tested cell lines, inhibited Type 1 and 17 T helper (Th) cytokine and IL-26, IL-12, and IL-17A-induced interferon-γ production, and enhanced Th2 cytokine (IL-4 and IL-10) production. Taken together, functional analysis of chIL-11 revealed it bound to IL-11RA and IL-6ST and activated the JAK-STAT, NF-κB, and MAPK signaling pathways, which resulted in modulation of Th1/Th17 and Th2 cytokine production in chicken HD11 and OU2 cell lines. Overall, this indicates chIL-11 has a role in both the innate and adaptive immune system.
Collapse
Affiliation(s)
- Anh Duc Truong
- Department of Animal Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea; Department of Biochemistry and Immunology, National Institute of Veterinary Research, 86 Truong Chinh, Dong Da, Hanoi, Viet Nam
| | - Yeojin Hong
- Department of Animal Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Deivendran Rengaraj
- Department of Animal Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Janggeun Lee
- Department of Animal Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Kyungbaek Lee
- Department of Animal Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Yeong Ho Hong
- Department of Animal Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea.
| |
Collapse
|
14
|
Leukocyte Immunoglobulin-Like Receptors A2 and A6 are Expressed in Avian Macrophages and Modulate Cytokine Production by Activating Multiple Signaling Pathways. Int J Mol Sci 2018; 19:ijms19092710. [PMID: 30208630 PMCID: PMC6163679 DOI: 10.3390/ijms19092710] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 09/03/2018] [Accepted: 09/04/2018] [Indexed: 12/18/2022] Open
Abstract
The activating leukocyte immunoglobulin-like receptors (LILRAs) play an important role in innate immunity. However, most of the LILRA members have not been characterized in avian species including chickens. The present study is the first attempt at cloning, structural analysis and functional characterization of two LILRAs (LILRA2 and LILRA6) in chickens. Multiple sequence alignments and construction of a phylogenetic tree of chicken LILRA2 and LILRA6 with mammalian proteins revealed high conservation between chicken LILRA2 and LILRA6 and a close relationship between the chicken and mammalian proteins. The mRNA expression of LILRA2 and LILRA6 was high in chicken HD11 macrophages and the small intestine compared to that in several other tissues and cells tested. To examine the function of LILRA2 and LILRA6 in chicken immunity, LILRA2 and LILRA6 were transfected into HD11 cells. Our findings indicated that LILRA2 and LILRA6 are associated with the phosphorylation of Src kinases and SHP2, which play a regulatory role in immune functions. Moreover, LILRA6 associated with and activated MHC class I, β2-microglobulin and induced the expression of transporters associated with antigen processing but LILRA2 did not. Furthermore, both LILRA2 and LILRA6 activated JAK-STAT, NF-κB, PI3K/AKT and ERK1/2 MAPK signaling pathways and induced Th1-, Th2- and Th17-type cytokines and Toll-like receptors. Collectively, this study indicates that LILRA2 and LILRA6 are essential for macrophage-mediated immune responses and they have the potential to complement the innate and adaptive immune system against pathogens.
Collapse
|
15
|
Truong AD, Hong Y, Lee J, Lee K, Kil DY, Lillehoj HS, Hong YH. Interleukin-34 Regulates Th1 and Th17 Cytokine Production by Activating Multiple Signaling Pathways through CSF-1R in Chicken Cell Lines. Int J Mol Sci 2018; 19:ijms19061665. [PMID: 29874806 PMCID: PMC6032434 DOI: 10.3390/ijms19061665] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 05/19/2018] [Accepted: 06/02/2018] [Indexed: 12/14/2022] Open
Abstract
Interleukin-34 (IL-34) is a newly recognized cytokine with functions similar to macrophage colony-stimulating factor 1. It is expressed in macrophages and fibroblasts, where it induces cytokine production; however, the mechanism of chicken IL-34 (chIL-34) signaling has not been identified to date. The aim of this study was to analyze the signal transduction pathways and specific biological functions associated with chIL-34 in chicken macrophage (HD11) and fibroblast (OU2) cell lines. We found that IL-34 is a functional ligand for the colony-stimulating factor receptor (CSF-1R) in chicken cell lines. Treatment with chIL-34 increased the expression of Th1 and Th17 cytokines through phosphorylation of tyrosine and serine residues in Janus kinase (JAK) 2, tyrosine kinase 2 (TYK2), signal transducer and activator of transcription (STAT) 1, STAT3, and Src homology 2-containing tyrosine phosphatase 2 (SHP-2), which also led to phosphorylation of NF-κB1, p-mitogen-activated protein kinase kinase kinase 7 (TAK1), MyD88, suppressor of cytokine signaling 1 (SOCS1), and extracellular signal-regulated kinase 1 and 2 (ERK1/2). Taken together, these results suggest that chIL-34 functions by binding to CSF-1R and activating the JAK/STAT, nuclear factor κ B (NF-κB), and mitogen-activated protein kinase signaling pathways; these signaling events regulate cytokine expression and suggest roles for chIL-34 in innate and adaptive immunity.
Collapse
Affiliation(s)
- Anh Duc Truong
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea.
- Department of Biochemistry and Immunology, National Institute of Veterinary Research, 86 Truong Chinh, Dong Da, Hanoi 100000, Vietnam.
| | - Yeojin Hong
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea.
| | - Janggeun Lee
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea.
| | - Kyungbaek Lee
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea.
| | - Dong Yong Kil
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea.
| | - Hyun S Lillehoj
- Animal Biosciences and Biotechnology Laboratory, Agricultural Research Services, United States Department of Agriculture, Beltsville, MD 20705, USA.
| | - Yeong Ho Hong
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea.
| |
Collapse
|
16
|
Fernandez CP, Afrin F, Flores RA, Kim WH, Jeong J, Kim S, Lillehoj HS, Min W. Identification of duck IL-4 and its inhibitory effect on IL-17A expression in R. anatipestifer- stimulated splenic lymphocytes. Mol Immunol 2018; 95:20-29. [DOI: 10.1016/j.molimm.2018.01.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 12/29/2017] [Accepted: 01/19/2018] [Indexed: 12/13/2022]
|
17
|
Wang H, Ni X, Qing X, Liu L, Lai J, Khalique A, Li G, Pan K, Jing B, Zeng D. Probiotic Enhanced Intestinal Immunity in Broilers against Subclinical Necrotic Enteritis. Front Immunol 2017; 8:1592. [PMID: 29209325 PMCID: PMC5701917 DOI: 10.3389/fimmu.2017.01592] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 11/06/2017] [Indexed: 01/25/2023] Open
Abstract
Along with banning of antibiotics, necrotic enteritis (NE), especially subclinical NE (SNE) whereby no clinical signs are present in chicks, has become one of the most threatening problems in poultry industry. Therefore, increasing attention has been focused on research and application of effective probiotic strains, as an alternative to antibiotics, to prevent SNE in broilers. In the present study, we evaluated the effects of Lactobacillus johnsonii BS15 on the prevention of SNE in broilers. Specifically, assessment determined the growth performance and indexes related to intestinal mucosal immunity in the ileum and cecal tonsil of broilers. A total of 300 1-day-old Cobb 500 chicks were randomly distributed into the following 5 groups: control group (fed with basal diet + de Man, Rogosa, and Sharpe liquid medium [normal diet]), SNE group (normal diet), BS15 group (basal diet + 1 × 106 colony-forming units BS15/g as fed [BS15 diet]), treatment group (normal diet [days 1-28] + BS15 diet [days 29-42]), and prevention group (BS15 diet [days 1-28] + normal diet [days 29-42]) throughout a 42-day experimental period. SNE infection was treated for all chicks in the SNE, BS15, treatment, and prevention groups. The present results demonstrated that BS15 supplementation of feeds in BS15 and prevention groups exerted a positive effect on preventing negative influences on growth performance; these negative influences included low body weight gain and increased feed conversion ratio caused by SNE. Although no changes were detected in all determined indexes in cecal tonsils, BS15-treated broilers were free from SNE-caused damage in villi in the ileum. BS15 inhibited SNE-caused decrease in immunoglobulins in the ileum. In the lamina propria of ileum, T cell subsets of lymphocytes influenced by SNE were also controlled by BS15. BS15 affected antioxidant abilities of the ileum and controlled SNE-induced mitochondrion-mediated apoptosis by positively changing contents and/or mRNA expression levels of apoptosis-related proteins. These findings indicate that BS15 supplementation may prevent SNE-affected growth decline mainly through enhancing intestinal immunity in broilers.
Collapse
Affiliation(s)
- Hesong Wang
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xueqin Ni
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiaodan Qing
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Lei Liu
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Jing Lai
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Abdul Khalique
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Guangyao Li
- Ya'an Agricultural Science and Technology Development Co., Ltd., Ya'an, China
| | - Kangcheng Pan
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Bo Jing
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dong Zeng
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
18
|
Truong AD, Hong Y, Hoang CT, Lee J, Hong YH. Chicken IL-26 regulates immune responses through the JAK/STAT and NF-κB signaling pathways. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 73:10-20. [PMID: 28259699 DOI: 10.1016/j.dci.2017.03.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 03/01/2017] [Accepted: 03/01/2017] [Indexed: 06/06/2023]
Abstract
Chicken interleukin 26 (ChIL-26), a member of the IL-10 family, is expressed in T cells and can induce expression of proinflammatory cytokines. We examined the response of signal transduction pathways to ChIL-26 stimulation in the chicken T (CU91), macrophage (HD11), and fibroblast (OU2) cell lines. ChIL-26 activated JAK2 and TYK2 phosphorylation, as well as activation of STAT1, STAT3, and SHP2 via tyrosine/serine residues. We also showed that ChIL-26 activates the phosphorylation of NF-κB1, TAK1, and MyD88 kinase, which are key regulators of NF-κB signaling pathways. Moreover, ChIL-26 stimulation upregulated mRNA expression of chemokines (CCL4, CCL20, and CXCL14), Th1 (IFN-α, IFN-β, IFN-γ, IL-1β, and IL-6), Th2 (IL-4 and IL-10), and Th17 (IL-12p40, IL-17A, and IL-17F), and the Treg cytokines (TGF-β4); additionally, it increased Th1 and Th17 protein levels and nitric oxide production but did not affect cell proliferation. Together, these results suggest that ChIL-26-induced activation of chemokines, Th1, Th2, and, Th17, and the Treg cytokines is mediated through JAK/STAT and NF-κB signaling pathways in chicken T, macrophage, and fibroblast cell lines. These results indicate a key role for ChIL-26-induced polarization of the immune response and could reveal new therapeutic approaches for use in combination with molecules that activate T and macrophage cells via activation JAK/STAT and NF-κB signaling pathways.
Collapse
Affiliation(s)
- Anh Duc Truong
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Yeojin Hong
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Cong Thanh Hoang
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Janggeun Lee
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Yeong Ho Hong
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea.
| |
Collapse
|