1
|
Yang G, Liu Y, Wen S, Chen W, Zhu X, Wang Y. DTI-MHAPR: optimized drug-target interaction prediction via PCA-enhanced features and heterogeneous graph attention networks. BMC Bioinformatics 2025; 26:11. [PMID: 39800678 PMCID: PMC11726937 DOI: 10.1186/s12859-024-06021-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 12/20/2024] [Indexed: 01/16/2025] Open
Abstract
Drug-target interactions (DTIs) are pivotal in drug discovery and development, and their accurate identification can significantly expedite the process. Numerous DTI prediction methods have emerged, yet many fail to fully harness the feature information of drugs and targets or address the issue of feature redundancy. We aim to refine DTI prediction accuracy by eliminating redundant features and capitalizing on the node topological structure to enhance feature extraction. To achieve this, we introduce a PCA-augmented multi-layer heterogeneous graph-based network that concentrates on key features throughout the encoding-decoding phase. Our approach initiates with the construction of a heterogeneous graph from various similarity metrics, which is then encoded via a graph neural network. We concatenate and integrate the resultant representation vectors to merge multi-level information. Subsequently, principal component analysis is applied to distill the most informative features, with the random forest algorithm employed for the final decoding of the integrated data. Our method outperforms six baseline models in terms of accuracy, as demonstrated by extensive experimentation. Comprehensive ablation studies, visualization of results, and in-depth case analyses further validate our framework's efficacy and interpretability, providing a novel tool for drug discovery that integrates multimodal features.
Collapse
Affiliation(s)
- Guang Yang
- School of Information and Artificial Intelligence, Anhui Agricultural University, Changjiang West Road, Hefei, 230036, Anhui, China
| | - Yinbo Liu
- School of Information and Artificial Intelligence, Anhui Agricultural University, Changjiang West Road, Hefei, 230036, Anhui, China
| | - Sijian Wen
- School of Information and Artificial Intelligence, Anhui Agricultural University, Changjiang West Road, Hefei, 230036, Anhui, China
| | - Wenxi Chen
- School of Information and Artificial Intelligence, Anhui Agricultural University, Changjiang West Road, Hefei, 230036, Anhui, China
| | - Xiaolei Zhu
- School of Information and Artificial Intelligence, Anhui Agricultural University, Changjiang West Road, Hefei, 230036, Anhui, China
| | - Yongmei Wang
- School of Information and Artificial Intelligence, Anhui Agricultural University, Changjiang West Road, Hefei, 230036, Anhui, China.
| |
Collapse
|
2
|
Guo X, Song Y, Xu D, Jin X, Shang X. Genotype and Phenotype Association Analysis Based on Multi-omics Statistical Data. Curr Bioinform 2024; 19:933-942. [DOI: 10.2174/0115748936276861240109045208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/29/2023] [Accepted: 12/07/2023] [Indexed: 01/03/2025]
Abstract
Background:
When using clinical data for multi-omics analysis, there are issues such as
the insufficient number of omics data types and relatively small sample size due to the protection of
patients' privacy, the requirements of data management by various institutions, and the relatively
large number of features of each omics data. This paper describes the analysis of multi-omics pathway
relationships using statistical data in the absence of clinical data.
Methods:
We proposed a novel approach to exploit easily accessible statistics in public databases.
This approach introduces phenotypic associations that are not included in the clinical data and uses
these data to build a three-layer heterogeneous network. To simplify the analysis, we decomposed
the three-layer network into double two-layer networks to predict the weights of the inter-layer associations.
By adding a hyperparameter β, the weights of the two layers of the network were
merged, and then k-fold cross-validation was used to evaluate the accuracy of this method. In calculating
the weights of the two-layer networks, the RWR with fixed restart probability was combined
with PBMDA and CIPHER to generate the PCRWR with biased weights and improved accuracy.
Results:
The area under the receiver operating characteristic curve was increased by approximately
7% in the case of the RWR with initial weights.
Conclusion:
Multi-omics statistical data were used to establish genotype and phenotype correlation
networks for analysis, which was similar to the effect of clinical multi-omics analysis.
Collapse
Affiliation(s)
- Xinpeng Guo
- School of Air and Missile Defense, Air Force Engineering University, Xi’an, 710051, People’s Republic of China
- School of Computer Science and Engineering, Northwestern Polytechnical University, Xi’an 710072, People’s Republic of China
| | - Yafei Song
- School of Air and Missile Defense, Air Force Engineering University, Xi’an, 710051, People’s Republic of China
| | - Dongyan Xu
- Department of Basic Sciences, Air Force Engineering University, Xi’an, 710051, People’s Republic
of China
| | - Xueping Jin
- School of Air and Missile Defense, Air Force Engineering University, Xi’an, 710051, People’s Republic of China
| | - Xuequn Shang
- School of Computer Science and Engineering, Northwestern Polytechnical University, Xi’an 710072, People’s
Republic of China
| |
Collapse
|
3
|
Yu Z, Wu Z, Wang Z, Wang Y, Zhou M, Li W, Liu G, Tang Y. Network-Based Methods and Their Applications in Drug Discovery. J Chem Inf Model 2024; 64:57-75. [PMID: 38150548 DOI: 10.1021/acs.jcim.3c01613] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Drug discovery is time-consuming, expensive, and predominantly follows the "one drug → one target → one disease" paradigm. With the rapid development of systems biology and network pharmacology, a novel drug discovery paradigm, "multidrug → multitarget → multidisease", has emerged. This new holistic paradigm of drug discovery aligns well with the essence of networks, leading to the emergence of network-based methods in the field of drug discovery. In this Perspective, we initially introduce the concept and data sources of networks and highlight classical methodologies employed in network-based methods. Subsequently, we focus on the practical applications of network-based methods across various areas of drug discovery, such as target prediction, virtual screening, prediction of drug therapeutic effects or adverse drug events, and elucidation of molecular mechanisms. In addition, we provide representative web servers for researchers to use network-based methods in specific applications. Finally, we discuss several challenges of network-based methods and the directions for future development. In a word, network-based methods could serve as powerful tools to accelerate drug discovery.
Collapse
Affiliation(s)
- Zhuohang Yu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Zengrui Wu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Ze Wang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yimeng Wang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Moran Zhou
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Weihua Li
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Guixia Liu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yun Tang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
4
|
Chen L, Chen K, Zhou B. Inferring drug-disease associations by a deep analysis on drug and disease networks. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:14136-14157. [PMID: 37679129 DOI: 10.3934/mbe.2023632] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Drugs, which treat various diseases, are essential for human health. However, developing new drugs is quite laborious, time-consuming, and expensive. Although investments into drug development have greatly increased over the years, the number of drug approvals each year remain quite low. Drug repositioning is deemed an effective means to accelerate the procedures of drug development because it can discover novel effects of existing drugs. Numerous computational methods have been proposed in drug repositioning, some of which were designed as binary classifiers that can predict drug-disease associations (DDAs). The negative sample selection was a common defect of this method. In this study, a novel reliable negative sample selection scheme, named RNSS, is presented, which can screen out reliable pairs of drugs and diseases with low probabilities of being actual DDAs. This scheme considered information from k-neighbors of one drug in a drug network, including their associations to diseases and the drug. Then, a scoring system was set up to evaluate pairs of drugs and diseases. To test the utility of the RNSS, three classic classification algorithms (random forest, bayes network and nearest neighbor algorithm) were employed to build classifiers using negative samples selected by the RNSS. The cross-validation results suggested that such classifiers provided a nearly perfect performance and were significantly superior to those using some traditional and previous negative sample selection schemes.
Collapse
Affiliation(s)
- Lei Chen
- College of Information Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Kaiyu Chen
- College of Information Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Bo Zhou
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China
| |
Collapse
|
5
|
Li J, Wang Y, Li Z, Lin H, Wu B. LM-DTI: a tool of predicting drug-target interactions using the node2vec and network path score methods. Front Genet 2023; 14:1181592. [PMID: 37229202 PMCID: PMC10203599 DOI: 10.3389/fgene.2023.1181592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 04/13/2023] [Indexed: 05/27/2023] Open
Abstract
Introduction: Drug-target interaction (DTI) prediction is a key step in drug function discovery and repositioning. The emergence of large-scale heterogeneous biological networks provides an opportunity to identify drug-related target genes, which led to the development of several computational methods for DTI prediction. Methods: Considering the limitations of conventional computational methods, a novel tool named LM-DTI based on integrated information related to lncRNAs and miRNAs was proposed, which adopted the graph embedding (node2vec) and the network path score methods. First, LM-DTI innovatively constructed a heterogeneous information network containing eight networks composed of four types of nodes (drug, target, lncRNA, and miRNA). Next, the node2vec method was used to obtain feature vectors of drug as well as target nodes, and the path score vector of each drug-target pair was calculated using the DASPfind method. Finally, the feature vectors and path score vectors were merged and input into the XGBoost classifier to predict potential drug-target interactions. Results and Discussion: The 10-fold cross validations evaluate the classification accuracies of the LM-DTI. The prediction performance of LM-DTI in AUPR reached 0.96, which showed a significant improvement compared with those of conventional tools. The validity of LM-DTI has also been verified by manually searching literature and various databases. LM-DTI is scalable and computing efficient; thus representing a powerful drug relocation tool that can be accessed for free at http://www.lirmed.com:5038/lm_dti.
Collapse
Affiliation(s)
- Jianwei Li
- School of Artificial Intelligence, Institute of Computational Medicine, Hebei University of Technology, Tianjin, China
- School of Electronic and Information Engineering, Hebei University of Technology, Tianjin, China
| | - Yinfei Wang
- School of Artificial Intelligence, Institute of Computational Medicine, Hebei University of Technology, Tianjin, China
| | - Zhiguang Li
- School of Artificial Intelligence, Institute of Computational Medicine, Hebei University of Technology, Tianjin, China
| | - Hongxin Lin
- School of Artificial Intelligence, Institute of Computational Medicine, Hebei University of Technology, Tianjin, China
| | - Baoqin Wu
- School of Artificial Intelligence, Institute of Computational Medicine, Hebei University of Technology, Tianjin, China
| |
Collapse
|
6
|
Ren ZH, You ZH, Zou Q, Yu CQ, Ma YF, Guan YJ, You HR, Wang XF, Pan J. DeepMPF: deep learning framework for predicting drug-target interactions based on multi-modal representation with meta-path semantic analysis. J Transl Med 2023; 21:48. [PMID: 36698208 PMCID: PMC9876420 DOI: 10.1186/s12967-023-03876-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 01/05/2023] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Drug-target interaction (DTI) prediction has become a crucial prerequisite in drug design and drug discovery. However, the traditional biological experiment is time-consuming and expensive, as there are abundant complex interactions present in the large size of genomic and chemical spaces. For alleviating this phenomenon, plenty of computational methods are conducted to effectively complement biological experiments and narrow the search spaces into a preferred candidate domain. Whereas, most of the previous approaches cannot fully consider association behavior semantic information based on several schemas to represent complex the structure of heterogeneous biological networks. Additionally, the prediction of DTI based on single modalities cannot satisfy the demand for prediction accuracy. METHODS We propose a multi-modal representation framework of 'DeepMPF' based on meta-path semantic analysis, which effectively utilizes heterogeneous information to predict DTI. Specifically, we first construct protein-drug-disease heterogeneous networks composed of three entities. Then the feature information is obtained under three views, containing sequence modality, heterogeneous structure modality and similarity modality. We proposed six representative schemas of meta-path to preserve the high-order nonlinear structure and catch hidden structural information of the heterogeneous network. Finally, DeepMPF generates highly representative comprehensive feature descriptors and calculates the probability of interaction through joint learning. RESULTS To evaluate the predictive performance of DeepMPF, comparison experiments are conducted on four gold datasets. Our method can obtain competitive performance in all datasets. We also explore the influence of the different feature embedding dimensions, learning strategies and classification methods. Meaningfully, the drug repositioning experiments on COVID-19 and HIV demonstrate DeepMPF can be applied to solve problems in reality and help drug discovery. The further analysis of molecular docking experiments enhances the credibility of the drug candidates predicted by DeepMPF. CONCLUSIONS All the results demonstrate the effectively predictive capability of DeepMPF for drug-target interactions. It can be utilized as a useful tool to prescreen the most potential drug candidates for the protein. The web server of the DeepMPF predictor is freely available at http://120.77.11.78/DeepMPF/ , which can help relevant researchers to further study.
Collapse
Affiliation(s)
- Zhong-Hao Ren
- grid.460132.20000 0004 1758 0275School of Information Engineering, Xijing University, Xi’an, 710100 China
| | - Zhu-Hong You
- grid.440588.50000 0001 0307 1240School of Computer Science, Northwestern Polytechnical University, Xi’an, 710129 China
| | - Quan Zou
- grid.54549.390000 0004 0369 4060Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054 China
| | - Chang-Qing Yu
- grid.460132.20000 0004 1758 0275School of Information Engineering, Xijing University, Xi’an, 710100 China
| | - Yan-Fang Ma
- grid.417234.70000 0004 1808 3203Department of Galactophore, The Third People’s Hospital of Gansu Province, Lanzhou, 730020 China
| | - Yong-Jian Guan
- grid.460132.20000 0004 1758 0275School of Information Engineering, Xijing University, Xi’an, 710100 China
| | - Hai-Ru You
- grid.440588.50000 0001 0307 1240School of Computer Science, Northwestern Polytechnical University, Xi’an, 710129 China
| | - Xin-Fei Wang
- grid.460132.20000 0004 1758 0275School of Information Engineering, Xijing University, Xi’an, 710100 China
| | - Jie Pan
- grid.460132.20000 0004 1758 0275School of Information Engineering, Xijing University, Xi’an, 710100 China
| |
Collapse
|
7
|
Johnson TO, Akinsanmi AO, Ejembi SA, Adeyemi OE, Oche JR, Johnson GI, Adegboyega AE. Modern drug discovery for inflammatory bowel disease: The role of computational methods. World J Gastroenterol 2023; 29:310-331. [PMID: 36687123 PMCID: PMC9846937 DOI: 10.3748/wjg.v29.i2.310] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/02/2022] [Accepted: 12/21/2022] [Indexed: 01/06/2023] Open
Abstract
Inflammatory bowel diseases (IBDs) comprising ulcerative colitis, Crohn’s disease and microscopic colitis are characterized by chronic inflammation of the gastrointestinal tract. IBD has spread around the world and is becoming more prevalent at an alarming rate in developing countries whose societies have become more westernized. Cell therapy, intestinal microecology, apheresis therapy, exosome therapy and small molecules are emerging therapeutic options for IBD. Currently, it is thought that low-molecular-mass substances with good oral bio-availability and the ability to permeate the cell membrane to regulate the action of elements of the inflammatory signaling pathway are effective therapeutic options for the treatment of IBD. Several small molecule inhibitors are being developed as a promising alternative for IBD therapy. The use of highly efficient and time-saving techniques, such as computational methods, is still a viable option for the development of these small molecule drugs. The computer-aided (in silico) discovery approach is one drug development technique that has mostly proven efficacy. Computational approaches when combined with traditional drug development methodology dramatically boost the likelihood of drug discovery in a sustainable and cost-effective manner. This review focuses on the modern drug discovery approaches for the design of novel IBD drugs with an emphasis on the role of computational methods. Some computational approaches to IBD genomic studies, target identification, and virtual screening for the discovery of new drugs and in the repurposing of existing drugs are discussed.
Collapse
Affiliation(s)
| | | | | | | | - Jane-Rose Oche
- Department of Biochemistry, University of Jos, Jos 930222, Plateau, Nigeria
| | - Grace Inioluwa Johnson
- Faculty of Clinical Sciences, College of Health Sciences, University of Jos, Jos 930222, Plateau, Nigeria
| | | |
Collapse
|
8
|
Vigil-Vásquez C, Schüller A. De Novo Prediction of Drug Targets and Candidates by Chemical Similarity-Guided Network-Based Inference. Int J Mol Sci 2022; 23:ijms23179666. [PMID: 36077062 PMCID: PMC9455815 DOI: 10.3390/ijms23179666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/12/2022] [Accepted: 08/21/2022] [Indexed: 12/01/2022] Open
Abstract
Identifying drug–target interactions is a crucial step in discovering novel drugs and for drug repositioning. Network-based methods have shown great potential thanks to the straightforward integration of information from different sources and the possibility of extracting novel information from the graph topology. However, despite recent advances, there is still an urgent need for efficient and robust prediction methods. Here, we present SimSpread, a novel method that combines network-based inference with chemical similarity. This method employs a tripartite drug–drug–target network constructed from protein–ligand interaction annotations and drug–drug chemical similarity on which a resource-spreading algorithm predicts potential biological targets for both known or failed drugs and novel compounds. We describe small molecules as vectors of similarity indices to other compounds, thereby providing a flexible means to explore diverse molecular representations. We show that our proposed method achieves high prediction performance through multiple cross-validation and time-split validation procedures over a series of datasets. In addition, we demonstrate that our method performed a balanced exploration of both chemical ligand space (scaffold hopping) and biological target space (target hopping). Our results suggest robust and balanced performance, and our method may be useful for predicting drug targets, virtual screening, and drug repositioning.
Collapse
Affiliation(s)
- Carlos Vigil-Vásquez
- Department of Molecular Genetics and Microbiology, School of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Andreas Schüller
- Department of Molecular Genetics and Microbiology, School of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- Correspondence:
| |
Collapse
|
9
|
Wang S, Li J, Wang Y, Juan L. A Neighborhood-Based Global Network Model to Predict Drug-Target Interactions. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022; 19:2017-2025. [PMID: 33687846 DOI: 10.1109/tcbb.2021.3064614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The detection of drug-target interactions (DTIs) plays an important role in drug discovery and development, making DTI prediction urgent to be solved. Existing computational methods usually utilize drug similarity, target similarity and DTI information to make prediction, providing the convenience of fast time and low cost. However, they usually learn features for drugs and targets separately, lacking of a global consideration. In this study, we proposed a novel neighborhood-based global network model, named as NGN, to accurately predict DTIs from the global perspective. We designed a distance constraint for features of all entities (drugs and targets) in the latent space to ensure the close distance between adjacent entities, and defined a global probability matrix to compute the predicted DTI scores on our constructed neighborhood-based global network. Results showed that NGN obtained advantageous performance compared with other state-of-the-art methods, especially surpassing them by 4.2-9.1 percent on AUPR values in the biggest dataset. Furthermore, several novel high-ranked DTIs were successfully predicted with confirmations by public sources, demonstrating the effectiveness of our method.
Collapse
|
10
|
DTIP-TC2A: An analytical framework for drug-target interactions prediction methods. Comput Biol Chem 2022; 99:107707. [DOI: 10.1016/j.compbiolchem.2022.107707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 05/01/2022] [Accepted: 05/26/2022] [Indexed: 11/18/2022]
|
11
|
Jiang M, Zhou B, Chen L. Identification of drug side effects with a path-based method. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2022; 19:5754-5771. [PMID: 35603377 DOI: 10.3934/mbe.2022269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The study of drug side effects is a significant task in drug discovery. Candidate drugs with unaccepted side effects must be eliminated to prevent risks for both patients and pharmaceutical companies. Thus, all side effects for any candidate drug should be determined. However, this task, which is carried out through traditional experiments, is time-consuming and expensive. Building computational methods has been increasingly used for the identification of drug side effects. In the present study, a new path-based method was proposed to determine drug side effects. A heterogeneous network was built to perform such method, which defined drugs and side effects as nodes. For any drug and side effect, the proposed path-based method determined all paths with limited length that connects them and further evaluated the association between them based on these paths. The strong association indicates that the drug has a side effect with a high probability. By using two types of jackknife test, the method yielded good performance and was superior to some other network-based methods. Furthermore, the effects of one parameter in the method and heterogeneous network was analyzed.
Collapse
Affiliation(s)
- Meng Jiang
- College of Information Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Bo Zhou
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China
| | - Lei Chen
- College of Information Engineering, Shanghai Maritime University, Shanghai 201306, China
| |
Collapse
|
12
|
Computational Methods for Drug Repurposing. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1361:119-141. [PMID: 35230686 DOI: 10.1007/978-3-030-91836-1_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The wealth of knowledge and multi-omics data available in drug research has allowed the rise of several computational methods in the drug discovery field, resulting in a novel and exciting strategy called drug repurposing. Drug repurposing consists in finding new applications for existing drugs. Numerous computational methods perform a high-level integration of different knowledge sources to facilitate the discovery of unknown mechanisms. In this chapter, we present a survey of data resources and computational tools available for drug repositioning.
Collapse
|
13
|
Drug-target interaction prediction via an ensemble of weighted nearest neighbors with interaction recovery. APPL INTELL 2022. [DOI: 10.1007/s10489-021-02495-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
14
|
A novel graph mining approach to predict and evaluate food-drug interactions. Sci Rep 2022; 12:1061. [PMID: 35058561 PMCID: PMC8776972 DOI: 10.1038/s41598-022-05132-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 01/05/2022] [Indexed: 12/26/2022] Open
Abstract
Food-drug interactions (FDIs) arise when nutritional dietary consumption regulates biochemical mechanisms involved in drug metabolism. This study proposes FDMine, a novel systematic framework that models the FDI problem as a homogenous graph. Our dataset consists of 788 unique approved small molecule drugs with metabolism-related drug-drug interactions and 320 unique food items, composed of 563 unique compounds. The potential number of interactions is 87,192 and 92,143 for disjoint and joint versions of the graph. We defined several similarity subnetworks comprising food-drug similarity, drug-drug similarity, and food-food similarity networks. A unique part of the graph involves encoding the food composition as a set of nodes and calculating a content contribution score. To predict new FDIs, we considered several link prediction algorithms and various performance metrics, including the precision@top (top 1%, 2%, and 5%) of the newly predicted links. The shortest path-based method has achieved a precision of 84%, 60% and 40% for the top 1%, 2% and 5% of FDIs identified, respectively. We validated the top FDIs predicted using FDMine to demonstrate its applicability, and we relate therapeutic anti-inflammatory effects of food items informed by FDIs. FDMine is publicly available to support clinicians and researchers.
Collapse
|
15
|
The Discovery of New Drug-Target Interactions for Breast Cancer Treatment. Molecules 2021; 26:molecules26247474. [PMID: 34946556 PMCID: PMC8704452 DOI: 10.3390/molecules26247474] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/07/2021] [Accepted: 12/07/2021] [Indexed: 01/09/2023] Open
Abstract
Drug–target interaction (DTIs) prediction plays a vital role in probing new targets for breast cancer research. Considering the multifaceted challenges associated with experimental methods identifying DTIs, the in silico prediction of such interactions merits exploration. In this study, we develop a feature-based method to infer unknown DTIs, called PsePDC-DTIs, which fuses information regarding protein sequences extracted by pseudo-position specific scoring matrix (PsePSSM), detrended cross-correlation analysis coefficient (DCCA coefficient), and an FP2 format molecular fingerprint descriptor of drug compounds. In addition, the synthetic minority oversampling technique (SMOTE) is employed for dealing with the imbalanced data after Lasso dimensionality reduction. Then, the processed feature vectors are put into a random forest classifier to perform DTIs predictions on four gold standard datasets, including nuclear receptors (NR), G-protein-coupled receptors (GPCR), ion channels (IC), and enzymes (E). Furthermore, we explore new targets for breast cancer treatment using its risk genes identified from large-scale genome-wide genetic studies using PsePDC-DTIs. Through five-fold cross-validation, the average values of accuracy in NR, GPCR, IC, and E datasets are 95.28%, 96.19%, 96.74%, and 98.22%, respectively. The PsePDC-DTIs model provides us with 10 potential DTIs for breast cancer treatment, among which erlotinib (DB00530) and FGFR2 (hsa2263), caffeine (DB00201) and KCNN4 (hsa3783), as well as afatinib (DB08916) and FGFR2 (hsa2263) are found with direct or inferred evidence. The PsePDC-DTIs model has achieved good prediction results, establishing the validity and superiority of the proposed method.
Collapse
|
16
|
Jung YS, Kim Y, Cho YR. Comparative analysis of network-based approaches and machine learning algorithms for predicting drug-target interactions. Methods 2021; 198:19-31. [PMID: 34737033 DOI: 10.1016/j.ymeth.2021.10.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 01/06/2023] Open
Abstract
Computational prediction of drug-target interactions (DTIs) is of particular importance in the process of drug repositioning because of its efficiency in selecting potential candidates for DTIs. A variety of computational methods for predicting DTIs have been proposed over the past decade. Our interest is which methods or techniques are the most advantageous for increasing prediction accuracy. This article provides a comprehensive overview of network-based, machine learning, and integrated DTI prediction methods. The network-based methods handle a DTI network along with drug and target similarities in a matrix form and apply graph-theoretic algorithms to identify new DTIs. Machine learning methods use known DTIs and the features of drugs and target proteins as training data to build a predictive model. Integrated methods combine these two techniques. We assessed the prediction performance of the selected state-of-the-art methods using two different benchmark datasets. Our experimental results demonstrate that the integrated methods outperform the others in general. Some previous methods showed low accuracy on predicting interactions of unknown drugs which do not exist in the training dataset. Combining similarity matrices from multiple features by data fusion was not beneficial in increasing prediction accuracy. Finally, we analyzed future directions for further improvements in DTI predictions.
Collapse
Affiliation(s)
- Yi-Sue Jung
- Division of Software, Yonsei University - Mirae Campus, Republic of Korea
| | - Yoonbee Kim
- Division of Software, Yonsei University - Mirae Campus, Republic of Korea
| | - Young-Rae Cho
- Division of Software, Yonsei University - Mirae Campus, Republic of Korea; Division of Digital Healthcare, Yonsei University - Mirae Campus, Republic of Korea.
| |
Collapse
|
17
|
Thafar MA, Olayan RS, Albaradei S, Bajic VB, Gojobori T, Essack M, Gao X. DTi2Vec: Drug-target interaction prediction using network embedding and ensemble learning. J Cheminform 2021; 13:71. [PMID: 34551818 PMCID: PMC8459562 DOI: 10.1186/s13321-021-00552-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 09/05/2021] [Indexed: 11/21/2022] Open
Abstract
Drug-target interaction (DTI) prediction is a crucial step in drug discovery and repositioning as it reduces experimental validation costs if done right. Thus, developing in-silico methods to predict potential DTI has become a competitive research niche, with one of its main focuses being improving the prediction accuracy. Using machine learning (ML) models for this task, specifically network-based approaches, is effective and has shown great advantages over the other computational methods. However, ML model development involves upstream hand-crafted feature extraction and other processes that impact prediction accuracy. Thus, network-based representation learning techniques that provide automated feature extraction combined with traditional ML classifiers dealing with downstream link prediction tasks may be better-suited paradigms. Here, we present such a method, DTi2Vec, which identifies DTIs using network representation learning and ensemble learning techniques. DTi2Vec constructs the heterogeneous network, and then it automatically generates features for each drug and target using the nodes embedding technique. DTi2Vec demonstrated its ability in drug-target link prediction compared to several state-of-the-art network-based methods, using four benchmark datasets and large-scale data compiled from DrugBank. DTi2Vec showed a statistically significant increase in the prediction performances in terms of AUPR. We verified the "novel" predicted DTIs using several databases and scientific literature. DTi2Vec is a simple yet effective method that provides high DTI prediction performance while being scalable and efficient in computation, translating into a powerful drug repositioning tool.
Collapse
Affiliation(s)
- Maha A Thafar
- Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center, Computer (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
- College of Computers and Information Technology, Computer Science Department, Taif University, Taif, Kingdom of Saudi Arabia
| | - Rawan S Olayan
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Somayah Albaradei
- Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center, Computer (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
- Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Vladimir B Bajic
- Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center, Computer (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Takashi Gojobori
- Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center, Computer (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Magbubah Essack
- Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center, Computer (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia.
| | - Xin Gao
- Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center, Computer (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia.
| |
Collapse
|
18
|
Prediction of Drug-Target Interactions by Combining Dual-Tree Complex Wavelet Transform with Ensemble Learning Method. Molecules 2021; 26:molecules26175359. [PMID: 34500792 PMCID: PMC8433937 DOI: 10.3390/molecules26175359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 11/17/2022] Open
Abstract
Identification of drug–target interactions (DTIs) is vital for drug discovery. However, traditional biological approaches have some unavoidable shortcomings, such as being time consuming and expensive. Therefore, there is an urgent need to develop novel and effective computational methods to predict DTIs in order to shorten the development cycles of new drugs. In this study, we present a novel computational approach to identify DTIs, which uses protein sequence information and the dual-tree complex wavelet transform (DTCWT). More specifically, a position-specific scoring matrix (PSSM) was performed on the target protein sequence to obtain its evolutionary information. Then, DTCWT was used to extract representative features from the PSSM, which were then combined with the drug fingerprint features to form the feature descriptors. Finally, these descriptors were sent to the Rotation Forest (RoF) model for classification. A 5-fold cross validation (CV) was adopted on four datasets (Enzyme, Ion Channel, GPCRs (G-protein-coupled receptors), and NRs (Nuclear Receptors)) to validate the proposed model; our method yielded high average accuracies of 89.21%, 85.49%, 81.02%, and 74.44%, respectively. To further verify the performance of our model, we compared the RoF classifier with two state-of-the-art algorithms: the support vector machine (SVM) and the k-nearest neighbor (KNN) classifier. We also compared it with some other published methods. Moreover, the prediction results for the independent dataset further indicated that our method is effective for predicting potential DTIs. Thus, we believe that our method is suitable for facilitating drug discovery and development.
Collapse
|
19
|
Huang ZA, Zhu Z, Yau CH, Tan KC. Identifying Autism Spectrum Disorder From Resting-State fMRI Using Deep Belief Network. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2021; 32:2847-2861. [PMID: 32692687 DOI: 10.1109/tnnls.2020.3007943] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
With the increasing prevalence of autism spectrum disorder (ASD), it is important to identify ASD patients for effective treatment and intervention, especially in early childhood. Neuroimaging techniques have been used to characterize the complex biomarkers based on the functional connectivity anomalies in the ASD. However, the diagnosis of ASD still adopts the symptom-based criteria by clinical observation. The existing computational models tend to achieve unreliable diagnostic classification on the large-scale aggregated data sets. In this work, we propose a novel graph-based classification model using the deep belief network (DBN) and the Autism Brain Imaging Data Exchange (ABIDE) database, which is a worldwide multisite functional and structural brain imaging data aggregation. The remarkable connectivity features are selected through a graph extension of K -nearest neighbors and then refined by a restricted path-based depth-first search algorithm. Thanks to the feature reduction, lower computational complexity could contribute to the shortening of the training time. The automatic hyperparameter-tuning technique is introduced to optimize the hyperparameters of the DBN by exploring the potential parameter space. The simulation experiments demonstrate the superior performance of our model, which is 6.4% higher than the best result reported on the ABIDE database. We also propose to use the data augmentation and the oversampling technique to identify further the possible subtypes within the ASD. The interpretability of our model enables the identification of the most remarkable autistic neural correlation patterns from the data-driven outcomes.
Collapse
|
20
|
Abstract
INTRODUCTION Knowledge graphs have proven to be promising systems of information storage and retrieval. Due to the recent explosion of heterogeneous multimodal data sources generated in the biomedical domain, and an industry shift toward a systems biology approach, knowledge graphs have emerged as attractive methods of data storage and hypothesis generation. AREAS COVERED In this review, the author summarizes the applications of knowledge graphs in drug discovery. They evaluate their utility; differentiating between academic exercises in graph theory, and useful tools to derive novel insights, highlighting target identification and drug repurposing as two areas showing particular promise. They provide a case study on COVID-19, summarizing the research that used knowledge graphs to identify repurposable drug candidates. They describe the dangers of degree and literature bias, and discuss mitigation strategies. EXPERT OPINION Whilst knowledge graphs and graph-based machine learning have certainly shown promise, they remain relatively immature technologies. Many popular link prediction algorithms fail to address strong biases in biomedical data, and only highlight biological associations, failing to model causal relationships in complex dynamic biological systems. These problems need to be addressed before knowledge graphs reach their true potential in drug discovery.
Collapse
Affiliation(s)
- Finlay MacLean
- Target Identification., BenevolentAI, United Kingdom of Great Britain and Northern Ireland
| |
Collapse
|
21
|
Wang C, Kurgan L. Survey of Similarity-Based Prediction of Drug-Protein Interactions. Curr Med Chem 2021; 27:5856-5886. [PMID: 31393241 DOI: 10.2174/0929867326666190808154841] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 04/16/2018] [Accepted: 10/23/2018] [Indexed: 12/20/2022]
Abstract
Therapeutic activity of a significant majority of drugs is determined by their interactions with proteins. Databases of drug-protein interactions (DPIs) primarily focus on the therapeutic protein targets while the knowledge of the off-targets is fragmented and partial. One way to bridge this knowledge gap is to employ computational methods to predict protein targets for a given drug molecule, or interacting drugs for given protein targets. We survey a comprehensive set of 35 methods that were published in high-impact venues and that predict DPIs based on similarity between drugs and similarity between protein targets. We analyze the internal databases of known PDIs that these methods utilize to compute similarities, and investigate how they are linked to the 12 publicly available source databases. We discuss contents, impact and relationships between these internal and source databases, and well as the timeline of their releases and publications. The 35 predictors exploit and often combine three types of similarities that consider drug structures, drug profiles, and target sequences. We review the predictive architectures of these methods, their impact, and we explain how their internal DPIs databases are linked to the source databases. We also include a detailed timeline of the development of these predictors and discuss the underlying limitations of the current resources and predictive tools. Finally, we provide several recommendations concerning the future development of the related databases and methods.
Collapse
Affiliation(s)
- Chen Wang
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA 23284, United States
| | - Lukasz Kurgan
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA 23284, United States
| |
Collapse
|
22
|
Eslami Manoochehri H, Nourani M. Drug-target interaction prediction using semi-bipartite graph model and deep learning. BMC Bioinformatics 2020; 21:248. [PMID: 32631230 PMCID: PMC7336396 DOI: 10.1186/s12859-020-3518-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Identifying drug-target interaction is a key element in drug discovery. In silico prediction of drug-target interaction can speed up the process of identifying unknown interactions between drugs and target proteins. In recent studies, handcrafted features, similarity metrics and machine learning methods have been proposed for predicting drug-target interactions. However, these methods cannot fully learn the underlying relations between drugs and targets. In this paper, we propose anew framework for drug-target interaction prediction that learns latent features from drug-target interaction network. RESULTS We present a framework to utilize the network topology and identify interacting and non-interacting drug-target pairs. We model the problem as a semi-bipartite graph in which we are able to use drug-drug and protein-protein similarity in a drug-protein network. We have then used a graph labeling method for vertex ordering in our graph embedding process. Finally, we employed deep neural network to learn the complex pattern of interacting pairs from embedded graphs. We show our approach is able to learn sophisticated drug-target topological features and outperforms other state-of-the-art approaches. CONCLUSIONS The proposed learning model on semi-bipartite graph model, can integrate drug-drug and protein-protein similarities which are semantically different than drug-protein information in a drug-target interaction network. We show our model can determine interaction likelihood for each drug-target pair and outperform other heuristics.
Collapse
Affiliation(s)
- Hafez Eslami Manoochehri
- Department of Electrical and Computer Engineering, The University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX, 75080, USA
| | - Mehrdad Nourani
- Department of Electrical and Computer Engineering, The University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX, 75080, USA.
| |
Collapse
|
23
|
Thafar MA, Olayan RS, Ashoor H, Albaradei S, Bajic VB, Gao X, Gojobori T, Essack M. DTiGEMS+: drug-target interaction prediction using graph embedding, graph mining, and similarity-based techniques. J Cheminform 2020; 12:44. [PMID: 33431036 PMCID: PMC7325230 DOI: 10.1186/s13321-020-00447-2] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 06/16/2020] [Indexed: 12/14/2022] Open
Abstract
In silico prediction of drug–target interactions is a critical phase in the sustainable drug development process, especially when the research focus is to capitalize on the repositioning of existing drugs. However, developing such computational methods is not an easy task, but is much needed, as current methods that predict potential drug–target interactions suffer from high false-positive rates. Here we introduce DTiGEMS+, a computational method that predicts Drug–Target interactions using Graph Embedding, graph Mining, and Similarity-based techniques. DTiGEMS+ combines similarity-based as well as feature-based approaches, and models the identification of novel drug–target interactions as a link prediction problem in a heterogeneous network. DTiGEMS+ constructs the heterogeneous network by augmenting the known drug–target interactions graph with two other complementary graphs namely: drug–drug similarity, target–target similarity. DTiGEMS+ combines different computational techniques to provide the final drug target prediction, these techniques include graph embeddings, graph mining, and machine learning. DTiGEMS+ integrates multiple drug–drug similarities and target–target similarities into the final heterogeneous graph construction after applying a similarity selection procedure as well as a similarity fusion algorithm. Using four benchmark datasets, we show DTiGEMS+ substantially improves prediction performance compared to other state-of-the-art in silico methods developed to predict of drug-target interactions by achieving the highest average AUPR across all datasets (0.92), which reduces the error rate by 33.3% relative to the second-best performing model in the state-of-the-art methods comparison.
Collapse
Affiliation(s)
- Maha A Thafar
- Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia.,Collage of Computers and Information Technology, Taif University, Taif, Kingdom of Saudi Arabia
| | - Rawan S Olayan
- Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia.,The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Haitham Ashoor
- Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia.,The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Somayah Albaradei
- Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia.,Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Vladimir B Bajic
- Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Xin Gao
- Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Takashi Gojobori
- Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia.,Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Magbubah Essack
- Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia.
| |
Collapse
|
24
|
Kaushik AC, Mehmood A, Dai X, Wei DQ. A comparative chemogenic analysis for predicting Drug-Target Pair via Machine Learning Approaches. Sci Rep 2020; 10:6870. [PMID: 32322011 PMCID: PMC7176722 DOI: 10.1038/s41598-020-63842-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 04/04/2020] [Indexed: 12/26/2022] Open
Abstract
A computational technique for predicting the DTIs has now turned out to be an indispensable job during the process of drug finding. It tapers the exploration room for interactions by propounding possible interaction contenders for authentication through experiments of wet-lab which are known for their expensiveness and time consumption. Chemogenomics, an emerging research area focused on the systematic examination of the biological impact of a broad series of minute molecular-weighting ligands on a broad raiment of macromolecular target spots. Additionally, with the advancement in time, the complexity of the algorithms is increasing which may result in the entry of big data technologies like Spark in this field soon. In the presented work, we intend to offer an inclusive idea and realistic evaluation of the computational Drug Target Interaction projection approaches, to perform as a guide and reference for researchers who are carrying out work in a similar direction. Precisely, we first explain the data utilized in computational Drug Target Interaction prediction attempts like this. We then sort and explain the best and most modern techniques for the prediction of DTIs. Then, a realistic assessment is executed to show the projection performance of several illustrative approaches in various situations. Ultimately, we underline possible opportunities for additional improvement of Drug Target Interaction projection enactment and also linked study objectives.
Collapse
Affiliation(s)
- Aman Chandra Kaushik
- Wuxi School of Medicine, Jiangnan University, Wuxi, China.
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Aamir Mehmood
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Xiaofeng Dai
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Dong-Qing Wei
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| |
Collapse
|
25
|
Rayhan F, Ahmed S, Mousavian Z, Farid DM, Shatabda S. FRnet-DTI: Deep convolutional neural network for drug-target interaction prediction. Heliyon 2020; 6:e03444. [PMID: 32154410 PMCID: PMC7052404 DOI: 10.1016/j.heliyon.2020.e03444] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 06/16/2019] [Accepted: 02/14/2020] [Indexed: 01/09/2023] Open
Abstract
The task of drug-target interaction prediction holds significant importance in pharmacology and therapeutic drug design. In this paper, we present FRnet-DTI, an auto-encoder based feature manipulation and a convolutional neural network based classifier for drug target interaction prediction. Two convolutional neural networks are proposed: FRnet-Encode and FRnet-Predict. Here, one model is used for feature manipulation and the other one for classification. Using the first method FRnet-Encode, we generate 4096 features for each of the instances in each of the datasets and use the second method, FRnet-Predict, to identify interaction probability employing those features. We have tested our method on four gold standard datasets extensively used by other researchers. Experimental results shows that our method significantly improves over the state-of-the-art method on three out of four drug-target interaction gold standard datasets on both area under curve for Receiver Operating Characteristic (auROC) and area under Precision Recall curve (auPR) metric. We also introduce twenty new potential drug-target pairs for interaction based on high prediction scores. The source codes and implementation details of our methods are available from https://github.com/farshidrayhanuiu/FRnet-DTI/ and also readily available to use as an web application from http://farshidrayhan.pythonanywhere.com/FRnet-DTI/.
Collapse
Affiliation(s)
- Farshid Rayhan
- Department of Computer Science and Engineering, United International University, Plot 2, United City, Madani Avenue, Satarkul, Badda, Dhaka-1212, Bangladesh
| | - Sajid Ahmed
- Department of Computer Science and Engineering, United International University, Plot 2, United City, Madani Avenue, Satarkul, Badda, Dhaka-1212, Bangladesh
| | - Zaynab Mousavian
- School of Mathematics, Statistics, and Computer Science, College of Science, University of Tehran, Tehran, Iran
| | - Dewan Md Farid
- Department of Computer Science and Engineering, United International University, Plot 2, United City, Madani Avenue, Satarkul, Badda, Dhaka-1212, Bangladesh
| | - Swakkhar Shatabda
- Department of Computer Science and Engineering, United International University, Plot 2, United City, Madani Avenue, Satarkul, Badda, Dhaka-1212, Bangladesh
| |
Collapse
|
26
|
Luo H, Li M, Yang M, Wu FX, Li Y, Wang J. Biomedical data and computational models for drug repositioning: a comprehensive review. Brief Bioinform 2020; 22:1604-1619. [PMID: 32043521 DOI: 10.1093/bib/bbz176] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/07/2019] [Accepted: 12/26/2019] [Indexed: 12/16/2022] Open
Abstract
Drug repositioning can drastically decrease the cost and duration taken by traditional drug research and development while avoiding the occurrence of unforeseen adverse events. With the rapid advancement of high-throughput technologies and the explosion of various biological data and medical data, computational drug repositioning methods have been appealing and powerful techniques to systematically identify potential drug-target interactions and drug-disease interactions. In this review, we first summarize the available biomedical data and public databases related to drugs, diseases and targets. Then, we discuss existing drug repositioning approaches and group them based on their underlying computational models consisting of classical machine learning, network propagation, matrix factorization and completion, and deep learning based models. We also comprehensively analyze common standard data sets and evaluation metrics used in drug repositioning, and give a brief comparison of various prediction methods on the gold standard data sets. Finally, we conclude our review with a brief discussion on challenges in computational drug repositioning, which includes the problem of reducing the noise and incompleteness of biomedical data, the ensemble of various computation drug repositioning methods, the importance of designing reliable negative samples selection methods, new techniques dealing with the data sparseness problem, the construction of large-scale and comprehensive benchmark data sets and the analysis and explanation of the underlying mechanisms of predicted interactions.
Collapse
Affiliation(s)
- Huimin Luo
- School of Computer Science and Engineering at Central South University
| | - Min Li
- School of Computer Science and Engineering at Central South University
| | - Mengyun Yang
- School of Computer Science and Engineering at Central South University
| | - Fang-Xiang Wu
- College of Engineering and the Department of Computer Science at University of Saskatchewan, Saskatoon, Canada
| | - Yaohang Li
- Department of Computer Science at Old Dominion University, Norfolk, USA
| | - Jianxin Wang
- School of Computer Science and Engineering at Central South University
| |
Collapse
|
27
|
Abstract
Background:
Identifying Drug-Target Interactions (DTIs) is a major challenge for
current drug discovery and drug repositioning. Compared to traditional experimental approaches,
in silico methods are fast and inexpensive. With the increase in open-access experimental data,
numerous computational methods have been applied to predict DTIs.
Methods:
In this study, we propose an end-to-end learning model of Factorization Machine and
Deep Neural Network (FM-DNN), which emphasizes both low-order (first or second order) and
high-order (higher than second order) feature interactions without any feature engineering other
than raw features. This approach combines the power of FM and DNN learning for feature
learning in a new neural network architecture.
Results:
The experimental DTI basic features include drug characteristics (609), target
characteristics (1819), plus drug ID, target ID, total 2430. We compare 8 models such as SVM,
GBDT, WIDE-DEEP etc, the FM-DNN algorithm model obtains the best results of AUC(0.8866)
and AUPR(0.8281).
Conclusion:
Feature engineering is a job that requires expert knowledge, it is often difficult and
time-consuming to achieve good results. FM-DNN can auto learn a lower-order expression by FM
and a high-order expression by DNN.FM-DNN model has outstanding advantages over other
commonly used models.
Collapse
Affiliation(s)
- Jihong Wang
- School of Data and Computer Science, Sun Yat-Sen University, No.132 Waihuan East Road, 510000 Guangzhou, China
| | - Hao Wang
- School of Data and Computer Science, Sun Yat-Sen University, No.132 Waihuan East Road, 510000 Guangzhou, China
| | - Xiaodan Wang
- School of Pharmaceutical Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, No. 9- 13 Wuguishan Avenue of Life Street, 528458, Zhongshan, China
| | - Huiyou Chang
- School of Data and Computer Science, Sun Yat-Sen University, No.132 Waihuan East Road, 510000 Guangzhou, China
| |
Collapse
|
28
|
Wang H, Wang J, Dong C, Lian Y, Liu D, Yan Z. A Novel Approach for Drug-Target Interactions Prediction Based on Multimodal Deep Autoencoder. Front Pharmacol 2020; 10:1592. [PMID: 32047432 PMCID: PMC6997437 DOI: 10.3389/fphar.2019.01592] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 12/09/2019] [Indexed: 01/09/2023] Open
Abstract
Drug targets are biomacromolecules or biomolecular structures that bind to specific drugs and produce therapeutic effects. Therefore, the prediction of drug-target interactions (DTIs) is important for disease therapy. Incorporating multiple similarity measures for drugs and targets is of essence for improving the accuracy of prediction of DTIs. However, existing studies with multiple similarity measures ignored the global structure information of similarity measures, and required manual extraction features of drug-target pairs, ignoring the non-linear relationship among features. In this paper, we proposed a novel approach MDADTI for DTIs prediction based on MDA. MDADTI applied random walk with restart method and positive pointwise mutual information to calculate the topological similarity matrices of drugs and targets, capturing the global structure information of similarity measures. Then, MDADTI applied multimodal deep autoencoder to fuse multiple topological similarity matrices of drugs and targets, automatically learned the low-dimensional features of drugs and targets, and applied deep neural network to predict DTIs. The results of 5-repeats of 10-fold cross-validation under three different cross-validation settings indicated that MDADTI is superior to the other four baseline methods. In addition, we validated the predictions of the MDADTI in six drug-target interactions reference databases, and the results showed that MDADTI can effectively identify unknown DTIs.
Collapse
Affiliation(s)
- Huiqing Wang
- College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
| | - Jingjing Wang
- College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
| | - Chunlin Dong
- Dryland Agriculture Research Center, Shanxi Academy of Agricultural Sciences, Taiyuan, China
| | - Yuanyuan Lian
- College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
| | - Dan Liu
- College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
| | - Zhiliang Yan
- College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
| |
Collapse
|
29
|
Bagherian M, Sabeti E, Wang K, Sartor MA, Nikolovska-Coleska Z, Najarian K. Machine learning approaches and databases for prediction of drug-target interaction: a survey paper. Brief Bioinform 2020; 22:247-269. [PMID: 31950972 PMCID: PMC7820849 DOI: 10.1093/bib/bbz157] [Citation(s) in RCA: 201] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/01/2019] [Accepted: 11/07/2019] [Indexed: 12/12/2022] Open
Abstract
The task of predicting the interactions between drugs and targets plays a key role in the process of drug discovery. There is a need to develop novel and efficient prediction approaches in order to avoid costly and laborious yet not-always-deterministic experiments to determine drug–target interactions (DTIs) by experiments alone. These approaches should be capable of identifying the potential DTIs in a timely manner. In this article, we describe the data required for the task of DTI prediction followed by a comprehensive catalog consisting of machine learning methods and databases, which have been proposed and utilized to predict DTIs. The advantages and disadvantages of each set of methods are also briefly discussed. Lastly, the challenges one may face in prediction of DTI using machine learning approaches are highlighted and we conclude by shedding some lights on important future research directions.
Collapse
Affiliation(s)
- Maryam Bagherian
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Elyas Sabeti
- Michigan Institute for Data Science, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Kai Wang
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Maureen A Sartor
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | | | - Kayvan Najarian
- Department of Electrical Engineering and Computer Science, College of Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
30
|
Chu Y, Kaushik AC, Wang X, Wang W, Zhang Y, Shan X, Salahub DR, Xiong Y, Wei DQ. DTI-CDF: a cascade deep forest model towards the prediction of drug-target interactions based on hybrid features. Brief Bioinform 2019; 22:451-462. [PMID: 31885041 DOI: 10.1093/bib/bbz152] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 11/01/2019] [Accepted: 11/04/2019] [Indexed: 12/18/2022] Open
Abstract
Drug-target interactions (DTIs) play a crucial role in target-based drug discovery and development. Computational prediction of DTIs can effectively complement experimental wet-lab techniques for the identification of DTIs, which are typically time- and resource-consuming. However, the performances of the current DTI prediction approaches suffer from a problem of low precision and high false-positive rate. In this study, we aim to develop a novel DTI prediction method for improving the prediction performance based on a cascade deep forest (CDF) model, named DTI-CDF, with multiple similarity-based features between drugs and the similarity-based features between target proteins extracted from the heterogeneous graph, which contains known DTIs. In the experiments, we built five replicates of 10-fold cross-validation under three different experimental settings of data sets, namely, corresponding DTI values of certain drugs (SD), targets (ST), or drug-target pairs (SP) in the training sets are missed but existed in the test sets. The experimental results demonstrate that our proposed approach DTI-CDF achieves a significantly higher performance than that of the traditional ensemble learning-based methods such as random forest and XGBoost, deep neural network, and the state-of-the-art methods such as DDR. Furthermore, there are 1352 newly predicted DTIs which are proved to be correct by KEGG and DrugBank databases. The data sets and source code are freely available at https://github.com//a96123155/DTI-CDF.
Collapse
Affiliation(s)
- Yanyi Chu
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University
| | | | - Xiangeng Wang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University
| | - Wei Wang
- Mathematical Sciences, Shanghai Jiao Tong University
| | - Yufang Zhang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University
| | | | | | - Yi Xiong
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University
| | - Dong-Qing Wei
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University
| |
Collapse
|
31
|
Liu W, Du Y, Fang G, Kou Z, Wang X, Han H. Efficient Gaussian sample specific network marker discovery and drug enrichment analysis validation. Comput Biol Chem 2019; 83:107139. [PMID: 31751888 DOI: 10.1016/j.compbiolchem.2019.107139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 09/07/2019] [Accepted: 10/01/2019] [Indexed: 10/25/2022]
Abstract
Identifying stable gene markers at an individual level can help to understand the genetic mechanisms of each individual patient and accomplish personalized medicine. In this paper, we propose an efficient framework to identify sample-specific markers. Gene expression data first is transformed to a corresponding likelihood matrix to alleviate inherent noise besides adding population information to each sample. Then those significantly differential genes or gene pairs are further mapped to a STRING network for analysis by assuming that the likelihood of each gene or gene pairs in the control group follows a Gaussian distribution. The proposed method is applied to three benchmark datasets including lung adenocarcinoma, kidney renal clear cell carcinoma, and uterine corpus endometrial carcinoma. It is found that disease gene markers identified by the proposed methods outperform the previous sample-specific network (SSN) method in both subtyping and survival analysis. Furthermore, we exploit the application of the subtype markers in following drug selection. The difference of the enriched drug set may reflect some underlying mechanisms of the subtypes and shed light on selecting appropriate drugs for each cancer subtype.
Collapse
Affiliation(s)
- Wenbin Liu
- Institute of Computational Science and Technology, Guangzhou University, Guangzhou, 510006, China; Department of Physics and Electronic information engineering, Wenzhou University, Wenzhou, 325000, Zhejiang, China.
| | - Yugai Du
- Department of Physics and Electronic information engineering, Wenzhou University, Wenzhou, 325000, Zhejiang, China
| | - Gang Fang
- Institute of Computational Science and Technology, Guangzhou University, Guangzhou, 510006, China
| | - Zheng Kou
- Institute of Computational Science and Technology, Guangzhou University, Guangzhou, 510006, China
| | - Xianghong Wang
- College of Information engineering, Wenzhou Vocational & Technology College, Wenzhou, 325000, Zhejiang, China
| | - Henry Han
- Department of Computer and Information Science, Fordham University, New York, NY, 10023, USA.
| |
Collapse
|
32
|
Thafar M, Raies AB, Albaradei S, Essack M, Bajic VB. Comparison Study of Computational Prediction Tools for Drug-Target Binding Affinities. Front Chem 2019; 7:782. [PMID: 31824921 PMCID: PMC6879652 DOI: 10.3389/fchem.2019.00782] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 10/30/2019] [Indexed: 12/30/2022] Open
Abstract
The drug development is generally arduous, costly, and success rates are low. Thus, the identification of drug-target interactions (DTIs) has become a crucial step in early stages of drug discovery. Consequently, developing computational approaches capable of identifying potential DTIs with minimum error rate are increasingly being pursued. These computational approaches aim to narrow down the search space for novel DTIs and shed light on drug functioning context. Most methods developed to date use binary classification to predict if the interaction between a drug and its target exists or not. However, it is more informative but also more challenging to predict the strength of the binding between a drug and its target. If that strength is not sufficiently strong, such DTI may not be useful. Therefore, the methods developed to predict drug-target binding affinities (DTBA) are of great value. In this study, we provide a comprehensive overview of the existing methods that predict DTBA. We focus on the methods developed using artificial intelligence (AI), machine learning (ML), and deep learning (DL) approaches, as well as related benchmark datasets and databases. Furthermore, guidance and recommendations are provided that cover the gaps and directions of the upcoming work in this research area. To the best of our knowledge, this is the first comprehensive comparison analysis of tools focused on DTBA with reference to AI/ML/DL.
Collapse
Affiliation(s)
- Maha Thafar
- Computer, Electrical and Mathematical Science and Engineering (CEMSE) Division, Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- College of Computers and Information Technology, Taif University, Taif, Saudi Arabia
| | - Arwa Bin Raies
- Computer, Electrical and Mathematical Science and Engineering (CEMSE) Division, Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Somayah Albaradei
- Computer, Electrical and Mathematical Science and Engineering (CEMSE) Division, Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Magbubah Essack
- Computer, Electrical and Mathematical Science and Engineering (CEMSE) Division, Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Vladimir B. Bajic
- Computer, Electrical and Mathematical Science and Engineering (CEMSE) Division, Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|
33
|
Jiang HJ, You ZH, Huang YA. Predicting drug-disease associations via sigmoid kernel-based convolutional neural networks. J Transl Med 2019; 17:382. [PMID: 31747915 PMCID: PMC6868698 DOI: 10.1186/s12967-019-2127-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 11/05/2019] [Indexed: 12/02/2022] Open
Abstract
Background In the process of drug development, computational drug repositioning is effective and resource-saving with regards to its important functions on identifying new drug–disease associations. Recent years have witnessed a great progression in the field of data mining with the advent of deep learning. An increasing number of deep learning-based techniques have been proposed to develop computational tools in bioinformatics. Methods Along this promising direction, we here propose a drug repositioning computational method combining the techniques of Sigmoid Kernel and Convolutional Neural Network (SKCNN) which is able to learn new features effectively representing drug–disease associations via its hidden layers. Specifically, we first construct similarity metric of drugs using drug sigmoid similarity and drug structural similarity, and that of disease using disease sigmoid similarity and disease semantic similarity. Based on the combined similarities of drugs and diseases, we then use SKCNN to learn hidden representations for each drug-disease pair whose labels are finally predicted by a classifier based on random forest. Results A series of experiments were implemented for performance evaluation and their results show that the proposed SKCNN improves the prediction accuracy compared with other state-of-the-art approaches. Case studies of two selected disease are also conducted through which we prove the superior performance of our method in terms of the actual discovery of potential drug indications. Conclusion The aim of this study was to establish an effective predictive model for finding new drug–disease associations. These experimental results show that SKCNN can effectively predict the association between drugs and diseases.
Collapse
Affiliation(s)
- Han-Jing Jiang
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Science, Ürümqi, 830011, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,Xinjiang Laboratory of Minority Speech and Language Information Processing, Urumqi, China
| | - Zhu-Hong You
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Science, Ürümqi, 830011, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China. .,Xinjiang Laboratory of Minority Speech and Language Information Processing, Urumqi, China.
| | - Yu-An Huang
- Department of Computing, Hong Kong Polytechnic University, HungHom, Hong Kong.
| |
Collapse
|
34
|
Mahmud SMH, Chen W, Meng H, Jahan H, Liu Y, Hasan SMM. Prediction of drug-target interaction based on protein features using undersampling and feature selection techniques with boosting. Anal Biochem 2019; 589:113507. [PMID: 31734254 DOI: 10.1016/j.ab.2019.113507] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 11/05/2019] [Accepted: 11/08/2019] [Indexed: 12/29/2022]
Abstract
Accurate identification of drug-target interaction (DTI) is a crucial and challenging task in the drug discovery process, having enormous benefit to the patients and pharmaceutical company. The traditional wet-lab experiments of DTI is expensive, time-consuming, and labor-intensive. Therefore, many computational techniques have been established for this purpose; although a huge number of interactions are still undiscovered. Here, we present pdti-EssB, a new computational model for identification of DTI using protein sequence and drug molecular structure. More specifically, each drug molecule is transformed as the molecular substructure fingerprint. For a protein sequence, different descriptors are utilized to represent its evolutionary, sequence, and structural information. Besides, our proposed method uses data balancing techniques to handle the imbalance problem and applies a novel feature eliminator to extract the best optimal features for accurate prediction. In this paper, four classes of DTI benchmark datasets are used to construct a predictive model with XGBoost. Here, the auROC is utilized as an evaluation metric to compare the performance of pdti-EssB method with recent methods, applying five-fold cross-validation. Finally, the experimental results indicate that our proposed method is able to outperform other approaches in predicting DTI, and introduces new drug-target interaction samples based on prediction probability scores. pdti-EssB webserver is available online at http://pdtiessb-uestc.com/.
Collapse
Affiliation(s)
- S M Hasan Mahmud
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China.
| | - Wenyu Chen
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China.
| | - Han Meng
- School of Political Science and Public Administration, University of Electronic Science and Technology of China, Chengdu, 611731, China.
| | - Hosney Jahan
- College of Computer Science, Sichuan University, Chengdu, 610065, China.
| | - Yongsheng Liu
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China.
| | - S M Mamun Hasan
- Department of Internal Medicine, Rangpur Medical College, Rangpur, 5400, Bangladesh.
| |
Collapse
|
35
|
Rifaioglu AS, Atas H, Martin MJ, Cetin-Atalay R, Atalay V, Doğan T. Recent applications of deep learning and machine intelligence on in silico drug discovery: methods, tools and databases. Brief Bioinform 2019; 20:1878-1912. [PMID: 30084866 PMCID: PMC6917215 DOI: 10.1093/bib/bby061] [Citation(s) in RCA: 267] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 05/25/2018] [Indexed: 01/16/2023] Open
Abstract
The identification of interactions between drugs/compounds and their targets is crucial for the development of new drugs. In vitro screening experiments (i.e. bioassays) are frequently used for this purpose; however, experimental approaches are insufficient to explore novel drug-target interactions, mainly because of feasibility problems, as they are labour intensive, costly and time consuming. A computational field known as 'virtual screening' (VS) has emerged in the past decades to aid experimental drug discovery studies by statistically estimating unknown bio-interactions between compounds and biological targets. These methods use the physico-chemical and structural properties of compounds and/or target proteins along with the experimentally verified bio-interaction information to generate predictive models. Lately, sophisticated machine learning techniques are applied in VS to elevate the predictive performance. The objective of this study is to examine and discuss the recent applications of machine learning techniques in VS, including deep learning, which became highly popular after giving rise to epochal developments in the fields of computer vision and natural language processing. The past 3 years have witnessed an unprecedented amount of research studies considering the application of deep learning in biomedicine, including computational drug discovery. In this review, we first describe the main instruments of VS methods, including compound and protein features (i.e. representations and descriptors), frequently used libraries and toolkits for VS, bioactivity databases and gold-standard data sets for system training and benchmarking. We subsequently review recent VS studies with a strong emphasis on deep learning applications. Finally, we discuss the present state of the field, including the current challenges and suggest future directions. We believe that this survey will provide insight to the researchers working in the field of computational drug discovery in terms of comprehending and developing novel bio-prediction methods.
Collapse
Affiliation(s)
- Ahmet Sureyya Rifaioglu
- Department of Computer Engineering, Middle East Technical University, Ankara, Turkey
- Department of Computer Engineering, İskenderun Technical University, Hatay, Turkey
| | - Heval Atas
- Cancer System Biology Laboratory (CanSyL), Graduate School of Informatics, Middle East Technical University, Ankara, Turkey
| | - Maria Jesus Martin
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL–EBI), Cambridge, Hinxton, UK
| | - Rengul Cetin-Atalay
- Department of Computer Engineering, Middle East Technical University, Ankara, Turkey
| | - Volkan Atalay
- Department of Computer Engineering, Middle East Technical University, Ankara, Turkey
| | - Tunca Doğan
- Cancer System Biology Laboratory (CanSyL), Graduate School of Informatics, Middle East Technical University, Ankara, Turkey and European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL–EBI), Cambridge, Hinxton, UK
| |
Collapse
|
36
|
Li W, Wang S, Xu J, Mao G, Tian G, Yang J. Inferring Latent Disease-lncRNA Associations by Faster Matrix Completion on a Heterogeneous Network. Front Genet 2019; 10:769. [PMID: 31572428 PMCID: PMC6749816 DOI: 10.3389/fgene.2019.00769] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 07/19/2019] [Indexed: 11/26/2022] Open
Abstract
Current studies have shown that long non-coding RNAs (lncRNAs) play a crucial role in a variety of fundamental biological processes related to complex human diseases. The prediction of latent disease-lncRNA associations can help to understand the pathogenesis of complex human diseases at the level of lncRNA, which also contributes to the detection of disease biomarkers, and the diagnosis, treatment, prognosis and prevention of disease. Nevertheless, it is still a challenging and urgent task to accurately identify latent disease-lncRNA association. Discovering latent links on the basis of biological experiments is time-consuming and wasteful, necessitating the development of computational prediction models. In this study, a computational prediction model has been remodeled as a matrix completion framework of the recommendation system by completing the unknown items in the rating matrix. A novel method named faster randomized matrix completion for latent disease-lncRNA association prediction (FRMCLDA) has been proposed by virtue of improved randomized partial SVD (rSVD-BKI) on a heterogeneous bilayer network. First, the correlated data source and experimentally validated information of diseases and lncRNAs are integrated to construct a heterogeneous bilayer network. Next, the integrated heterogeneous bilayer network can be formalized as a comprehensive adjacency matrix which includes lncRNA similarity matrix, disease similarity matrix, and disease-lncRNA association matrix where the uncertain disease-lncRNA associations are referred to as blank items. Then, a matrix approximate to the original adjacency matrix has been designed with predicted scores to retrieve the blank items. The construction of the approximate matrix could be equivalently resolved by the nuclear norm minimization. Finally, a faster singular value thresholding algorithm with a randomized partial SVD combing a new sub-space reuse technique has been utilized to complete the adjacency matrix. The results of leave-one-out cross-validation (LOOCV) experiments and 5-fold cross-validation (5-fold CV) experiments on three different benchmark databases have confirmed the availability and adaptability of FRMCLDA in inferring latent relationships of disease-lncRNA pairs, and in inferring lncRNAs correlated with novel diseases without any prior interaction information. Additionally, case studies have shown that FRMCLDA is able to effectively predict latent lncRNAs correlated with three widespread malignancies: prostate cancer, colon cancer, and gastric cancer.
Collapse
Affiliation(s)
- Wen Li
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, China
| | - Shulin Wang
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, China
| | - Junlin Xu
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, China
| | - Guo Mao
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, China
| | - Geng Tian
- Geneis Beijing Co., Ltd., Beijing, China
| | | |
Collapse
|
37
|
Durán C, Daminelli S, Thomas JM, Haupt VJ, Schroeder M, Cannistraci CV. Pioneering topological methods for network-based drug-target prediction by exploiting a brain-network self-organization theory. Brief Bioinform 2019; 19:1183-1202. [PMID: 28453640 PMCID: PMC6291778 DOI: 10.1093/bib/bbx041] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Indexed: 01/03/2023] Open
Abstract
The bipartite network representation of the drug–target interactions (DTIs) in a biosystem enhances understanding of the drugs’ multifaceted action modes, suggests therapeutic switching for approved drugs and unveils possible side effects. As experimental testing of DTIs is costly and time-consuming, computational predictors are of great aid. Here, for the first time, state-of-the-art DTI supervised predictors custom-made in network biology were compared—using standard and innovative validation frameworks—with unsupervised pure topological-based models designed for general-purpose link prediction in bipartite networks. Surprisingly, our results show that the bipartite topology alone, if adequately exploited by means of the recently proposed local-community-paradigm (LCP) theory—initially detected in brain-network topological self-organization and afterwards generalized to any complex network—is able to suggest highly reliable predictions, with comparable performance with the state-of-the-art-supervised methods that exploit additional (non-topological, for instance biochemical) DTI knowledge. Furthermore, a detailed analysis of the novel predictions revealed that each class of methods prioritizes distinct true interactions; hence, combining methodologies based on diverse principles represents a promising strategy to improve drug–target discovery. To conclude, this study promotes the power of bio-inspired computing, demonstrating that simple unsupervised rules inspired by principles of topological self-organization and adaptiveness arising during learning in living intelligent systems (like the brain) can efficiently equal perform complicated algorithms based on advanced, supervised and knowledge-based engineering.
Collapse
Affiliation(s)
| | - Simone Daminelli
- Corresponding authors: Carlo Cannistraci, Biomedical Cybernetics Group at Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering (CMCB), Department of Physics, Technische Universität Dresden (TUD), Tatzberg 47-49, 01307 Dresden, Germany, Tel.: +49 (0)351 463 40080; E-mail: ; Simone Daminelli, Bioinformatics Group at Biotechnology Center (BIOTEC), Center of Molecular Cellular Bioengineering (CMCB), TUD, Tatzberg 47-49, 01307 Dresden, Germany, Tel.: +49 (0)351 463 40060; E-mail: ; Michael Schroeder, Bioinformatics Group at Biotechnology Center (BIOTEC), Center of Molecular and Cellular Bioengineering (CMCB), TUD Tatzberg 47-49, 01307 Dresden, Germany, Tel.: +49 (0)351 463 40062; E-mail:
| | | | | | - Michael Schroeder
- Corresponding authors: Carlo Cannistraci, Biomedical Cybernetics Group at Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering (CMCB), Department of Physics, Technische Universität Dresden (TUD), Tatzberg 47-49, 01307 Dresden, Germany, Tel.: +49 (0)351 463 40080; E-mail: ; Simone Daminelli, Bioinformatics Group at Biotechnology Center (BIOTEC), Center of Molecular Cellular Bioengineering (CMCB), TUD, Tatzberg 47-49, 01307 Dresden, Germany, Tel.: +49 (0)351 463 40060; E-mail: ; Michael Schroeder, Bioinformatics Group at Biotechnology Center (BIOTEC), Center of Molecular and Cellular Bioengineering (CMCB), TUD Tatzberg 47-49, 01307 Dresden, Germany, Tel.: +49 (0)351 463 40062; E-mail:
| | - Carlo Vittorio Cannistraci
- Corresponding authors: Carlo Cannistraci, Biomedical Cybernetics Group at Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering (CMCB), Department of Physics, Technische Universität Dresden (TUD), Tatzberg 47-49, 01307 Dresden, Germany, Tel.: +49 (0)351 463 40080; E-mail: ; Simone Daminelli, Bioinformatics Group at Biotechnology Center (BIOTEC), Center of Molecular Cellular Bioengineering (CMCB), TUD, Tatzberg 47-49, 01307 Dresden, Germany, Tel.: +49 (0)351 463 40060; E-mail: ; Michael Schroeder, Bioinformatics Group at Biotechnology Center (BIOTEC), Center of Molecular and Cellular Bioengineering (CMCB), TUD Tatzberg 47-49, 01307 Dresden, Germany, Tel.: +49 (0)351 463 40062; E-mail:
| |
Collapse
|
38
|
CFSBoost: Cumulative feature subspace boosting for drug-target interaction prediction. J Theor Biol 2019; 464:1-8. [DOI: 10.1016/j.jtbi.2018.12.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 12/13/2018] [Accepted: 12/18/2018] [Indexed: 01/12/2023]
|
39
|
Ezzat A, Wu M, Li X, Kwoh CK. Computational Prediction of Drug-Target Interactions via Ensemble Learning. Methods Mol Biol 2019; 1903:239-254. [PMID: 30547446 DOI: 10.1007/978-1-4939-8955-3_14] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Therapeutic effects of drugs are mediated via interactions between them and their intended targets. As such, prediction of drug-target interactions is of great importance. Drug-target interaction prediction is especially relevant in the case of drug repositioning where attempts are made to repurpose old drugs for new indications. While experimental wet-lab techniques exist for predicting such interactions, they are tedious and time-consuming. On the other hand, computational methods also exist for predicting interactions, and they do so with reasonable accuracy. In addition, computational methods can help guide their wet-lab counterparts by recommending interactions for further validation. In this chapter, a computational method for predicting drug-target interactions is presented. Specifically, we describe a machine learning method that utilizes ensemble learning to perform predictions. We also mention details pertaining to the preparation of the data required for the prediction effort and demonstrate how to evaluate and improve prediction performance.
Collapse
Affiliation(s)
- Ali Ezzat
- Biomedical Informatics Lab, School of Computer Science and Engineering, Nanyang Technological University, Singapore, Singapore.
| | - Min Wu
- Data Analytics Department, Institute for Infocomm Research, A-Star, Singapore, Singapore
| | - Xiaoli Li
- Data Analytics Department, Institute for Infocomm Research, A-Star, Singapore, Singapore
| | - Chee-Keong Kwoh
- Division of Software and Information Systems, School of Computer Science and Engineering, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
40
|
Olayan RS, Ashoor H, Bajic VB. DDR: efficient computational method to predict drug-target interactions using graph mining and machine learning approaches. Bioinformatics 2018; 34:1164-1173. [PMID: 29186331 PMCID: PMC5998943 DOI: 10.1093/bioinformatics/btx731] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 11/23/2017] [Indexed: 02/06/2023] Open
Abstract
Motivation Finding computationally drug–target interactions (DTIs) is a convenient strategy to identify new DTIs at low cost with reasonable accuracy. However, the current DTI prediction methods suffer the high false positive prediction rate. Results We developed DDR, a novel method that improves the DTI prediction accuracy. DDR is based on the use of a heterogeneous graph that contains known DTIs with multiple similarities between drugs and multiple similarities between target proteins. DDR applies non-linear similarity fusion method to combine different similarities. Before fusion, DDR performs a pre-processing step where a subset of similarities is selected in a heuristic process to obtain an optimized combination of similarities. Then, DDR applies a random forest model using different graph-based features extracted from the DTI heterogeneous graph. Using 5-repeats of 10-fold cross-validation, three testing setups, and the weighted average of area under the precision-recall curve (AUPR) scores, we show that DDR significantly reduces the AUPR score error relative to the next best start-of-the-art method for predicting DTIs by 31% when the drugs are new, by 23% when targets are new and by 34% when the drugs and the targets are known but not all DTIs between them are not known. Using independent sources of evidence, we verify as correct 22 out of the top 25 DDR novel predictions. This suggests that DDR can be used as an efficient method to identify correct DTIs. Availability and implementation The data and code are provided at https://bitbucket.org/RSO24/ddr/. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Rawan S Olayan
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, Thuwal, Saudi Arabia
| | - Haitham Ashoor
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut 06032, USA
| | - Vladimir B Bajic
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, Thuwal, Saudi Arabia
| |
Collapse
|
41
|
Alberga D, Trisciuzzi D, Montaruli M, Leonetti F, Mangiatordi GF, Nicolotti O. A New Approach for Drug Target and Bioactivity Prediction: The Multifingerprint Similarity Search Algorithm (MuSSeL). J Chem Inf Model 2018; 59:586-596. [PMID: 30485097 DOI: 10.1021/acs.jcim.8b00698] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
We present MuSSeL, a multifingerprint similarity search algorithm, able to predict putative drug targets for a given query small molecule as well as to return a quantitative assessment of its bioactivity in terms of Ki or IC50 values. Predictions are automatically made exploiting a large collection of high quality experimental bioactivity data available from ChEMBL (version 22.1) combining, in a consensus-like approach, predictions resulting from a similarity search performed using 13 different fingerprint definitions. Importantly, the herein proposed algorithm is also effective in detecting and handling activity cliffs. A calibration set including small molecules present in the last updated version of ChEMBL (version 23) was employed to properly tune the algorithm parameters. Three randomly built external sets were instead challenged for model performances. The potential use of MuSSeL was also challenged by a prospective exercise for the prediction of five bioactive compounds taken from articles published in the Journal of Medicinal Chemistry just few months ago. The paper emphasizes the importance of implementing multifingerprint consensus strategies to increase the confidence in prediction of similarity search algorithms and provides a fast and easy-to-run tool for drug target and bioactivity prediction.
Collapse
Affiliation(s)
- Domenico Alberga
- Dipartimento di Farmacia-Scienze del Farmaco , Università degli Studi di Bari "Aldo Moro" , Via E. Orabona, 4 , I-70126 Bari , Italy
| | - Daniela Trisciuzzi
- Dipartimento di Farmacia-Scienze del Farmaco , Università degli Studi di Bari "Aldo Moro" , Via E. Orabona, 4 , I-70126 Bari , Italy
| | - Michele Montaruli
- Dipartimento di Farmacia-Scienze del Farmaco , Università degli Studi di Bari "Aldo Moro" , Via E. Orabona, 4 , I-70126 Bari , Italy
| | - Francesco Leonetti
- Dipartimento di Farmacia-Scienze del Farmaco , Università degli Studi di Bari "Aldo Moro" , Via E. Orabona, 4 , I-70126 Bari , Italy
| | - Giuseppe Felice Mangiatordi
- Dipartimento di Farmacia-Scienze del Farmaco , Università degli Studi di Bari "Aldo Moro" , Via E. Orabona, 4 , I-70126 Bari , Italy
| | - Orazio Nicolotti
- Dipartimento di Farmacia-Scienze del Farmaco , Università degli Studi di Bari "Aldo Moro" , Via E. Orabona, 4 , I-70126 Bari , Italy
| |
Collapse
|
42
|
Shi H, Liu S, Chen J, Li X, Ma Q, Yu B. Predicting drug-target interactions using Lasso with random forest based on evolutionary information and chemical structure. Genomics 2018; 111:1839-1852. [PMID: 30550813 DOI: 10.1016/j.ygeno.2018.12.007] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 12/06/2018] [Accepted: 12/07/2018] [Indexed: 01/01/2023]
Abstract
The identification of drug-target interactions has great significance for pharmaceutical scientific research. Since traditional experimental methods identifying drug-target interactions is costly and time-consuming, the use of machine learning methods to predict potential drug-target interactions has attracted widespread attention. This paper presents a novel drug-target interactions prediction method called LRF-DTIs. Firstly, the pseudo-position specific scoring matrix (PsePSSM) and FP2 molecular fingerprinting were used to extract the features of drug-target. Secondly, using Lasso to reduce the dimension of the extracted feature information and then the Synthetic Minority Oversampling Technique (SMOTE) method was used to deal with unbalanced data. Finally, the processed feature vectors were input into a random forest (RF) classifier to predict drug-target interactions. Through 10 trials of 5-fold cross-validation, the overall prediction accuracies on the enzyme, ion channel (IC), G-protein-coupled receptor (GPCR) and nuclear receptor (NR) datasets reached 98.09%, 97.32%, 95.69%, and 94.88%, respectively, and compared with other prediction methods. In addition, we have tested and verified that our method not only could be applied to predict the new interactions but also could obtain a satisfactory result on the new dataset. All the experimental results indicate that our method can significantly improve the prediction accuracy of drug-target interactions and play a vital role in the new drug research and target protein development. The source code and all datasets are available at https://github.com/QUST-AIBBDRC/LRF-DTIs/ for academic use.
Collapse
Affiliation(s)
- Han Shi
- College of Mathematics and Physics, Qingdao University of Science and Technology, Qingdao 266061, China; Artificial Intelligence and Biomedical Big Data Research Center, Qingdao University of Science and Technology, Qingdao 266061, China; Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Simin Liu
- College of Mathematics and Physics, Qingdao University of Science and Technology, Qingdao 266061, China; Artificial Intelligence and Biomedical Big Data Research Center, Qingdao University of Science and Technology, Qingdao 266061, China; Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Junqi Chen
- College of Mathematics and Physics, Qingdao University of Science and Technology, Qingdao 266061, China; Artificial Intelligence and Biomedical Big Data Research Center, Qingdao University of Science and Technology, Qingdao 266061, China; Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xuan Li
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Qin Ma
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Bin Yu
- College of Mathematics and Physics, Qingdao University of Science and Technology, Qingdao 266061, China; Artificial Intelligence and Biomedical Big Data Research Center, Qingdao University of Science and Technology, Qingdao 266061, China; School of Life Sciences, University of Science and Technology of China, Hefei 230027, China.
| |
Collapse
|
43
|
PWCDA: Path Weighted Method for Predicting circRNA-Disease Associations. Int J Mol Sci 2018; 19:ijms19113410. [PMID: 30384427 PMCID: PMC6274797 DOI: 10.3390/ijms19113410] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 10/25/2018] [Accepted: 10/26/2018] [Indexed: 12/22/2022] Open
Abstract
CircRNAs have particular biological structure and have proven to play important roles in diseases. It is time-consuming and costly to identify circRNA-disease associations by biological experiments. Therefore, it is appealing to develop computational methods for predicting circRNA-disease associations. In this study, we propose a new computational path weighted method for predicting circRNA-disease associations. Firstly, we calculate the functional similarity scores of diseases based on disease-related gene annotations and the semantic similarity scores of circRNAs based on circRNA-related gene ontology, respectively. To address missing similarity scores of diseases and circRNAs, we calculate the Gaussian Interaction Profile (GIP) kernel similarity scores for diseases and circRNAs, respectively, based on the circRNA-disease associations downloaded from circR2Disease database (http://bioinfo.snnu.edu.cn/CircR2Disease/). Then, we integrate disease functional similarity scores and circRNA semantic similarity scores with their related GIP kernel similarity scores to construct a heterogeneous network made up of three sub-networks: disease similarity network, circRNA similarity network and circRNA-disease association network. Finally, we compute an association score for each circRNA-disease pair based on paths connecting them in the heterogeneous network to determine whether this circRNA-disease pair is associated. We adopt leave one out cross validation (LOOCV) and five-fold cross validations to evaluate the performance of our proposed method. In addition, three common diseases, Breast Cancer, Gastric Cancer and Colorectal Cancer, are used for case studies. Experimental results illustrate the reliability and usefulness of our computational method in terms of different validation measures, which indicates PWCDA can effectively predict potential circRNA-disease associations.
Collapse
|
44
|
Xiao X, Zhu W, Liao B, Xu J, Gu C, Ji B, Yao Y, Peng L, Yang J. BPLLDA: Predicting lncRNA-Disease Associations Based on Simple Paths With Limited Lengths in a Heterogeneous Network. Front Genet 2018; 9:411. [PMID: 30459803 PMCID: PMC6232683 DOI: 10.3389/fgene.2018.00411] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 09/05/2018] [Indexed: 12/31/2022] Open
Abstract
In recent years, it has been increasingly clear that long noncoding RNAs (lncRNAs) play critical roles in many biological processes associated with human diseases. Inferring potential lncRNA-disease associations is essential to reveal the secrets behind diseases, develop novel drugs, and optimize personalized treatments. However, biological experiments to validate lncRNA-disease associations are very time-consuming and costly. Thus, it is critical to develop effective computational models. In this study, we have proposed a method called BPLLDA to predict lncRNA-disease associations based on paths of fixed lengths in a heterogeneous lncRNA-disease association network. Specifically, BPLLDA first constructs a heterogeneous lncRNA-disease network by integrating the lncRNA-disease association network, the lncRNA functional similarity network, and the disease semantic similarity network. It then infers the probability of an lncRNA-disease association based on paths connecting them and their lengths in the network. Compared to existing methods, BPLLDA has a few advantages, including not demanding negative samples and the ability to predict associations related to novel lncRNAs or novel diseases. BPLLDA was applied to a canonical lncRNA-disease association database called LncRNADisease, together with two popular methods LRLSLDA and GrwLDA. The leave-one-out cross-validation areas under the receiver operating characteristic curve of BPLLDA are 0.87117, 0.82403, and 0.78528, respectively, for predicting overall associations, associations related to novel lncRNAs, and associations related to novel diseases, higher than those of the two compared methods. In addition, cervical cancer, glioma, and non-small-cell lung cancer were selected as case studies, for which the predicted top five lncRNA-disease associations were verified by recently published literature. In summary, BPLLDA exhibits good performances in predicting novel lncRNA-disease associations and associations related to novel lncRNAs and diseases. It may contribute to the understanding of lncRNA-associated diseases like certain cancers.
Collapse
Affiliation(s)
- Xiaofang Xiao
- College of Information Science and Engineering, Hunan University, Changsha, China
| | - Wen Zhu
- School of Mathematics and Statistics, Hainan Normal University, Haikou, China
| | - Bo Liao
- College of Information Science and Engineering, Hunan University, Changsha, China.,School of Mathematics and Statistics, Hainan Normal University, Haikou, China
| | - Junlin Xu
- College of Information Science and Engineering, Hunan University, Changsha, China
| | - Changlong Gu
- College of Information Science and Engineering, Hunan University, Changsha, China
| | - Binbin Ji
- School of Mathematics and Statistics, Hainan Normal University, Haikou, China
| | - Yuhua Yao
- School of Mathematics and Statistics, Hainan Normal University, Haikou, China
| | - Lihong Peng
- School of Computer Science, Hunan University of Technology, Zhuzhou, China
| | - Jialiang Yang
- School of Mathematics and Statistics, Hainan Normal University, Haikou, China.,Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
45
|
Wu Z, Li W, Liu G, Tang Y. Network-Based Methods for Prediction of Drug-Target Interactions. Front Pharmacol 2018; 9:1134. [PMID: 30356768 PMCID: PMC6189482 DOI: 10.3389/fphar.2018.01134] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 09/18/2018] [Indexed: 01/10/2023] Open
Abstract
Drug-target interaction (DTI) is the basis of drug discovery. However, it is time-consuming and costly to determine DTIs experimentally. Over the past decade, various computational methods were proposed to predict potential DTIs with high efficiency and low costs. These methods can be roughly divided into several categories, such as molecular docking-based, pharmacophore-based, similarity-based, machine learning-based, and network-based methods. Among them, network-based methods, which do not rely on three-dimensional structures of targets and negative samples, have shown great advantages over the others. In this article, we focused on network-based methods for DTI prediction, in particular our network-based inference (NBI) methods that were derived from recommendation algorithms. We first introduced the methodologies and evaluation of network-based methods, and then the emphasis was put on their applications in a wide range of fields, including target prediction and elucidation of molecular mechanisms of therapeutic effects or safety problems. Finally, limitations and perspectives of network-based methods were discussed. In a word, network-based methods provide alternative tools for studies in drug repurposing, new drug discovery, systems pharmacology and systems toxicology.
Collapse
Affiliation(s)
| | | | | | - Yun Tang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
46
|
Ibrahim SJA, Thangamani M. Prediction of Novel Drugs and Diseases for Hepatocellular Carcinoma Based on Multi-Source Simulated Annealing Based Random Walk. J Med Syst 2018; 42:188. [PMID: 30173379 DOI: 10.1007/s10916-018-1038-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 08/20/2018] [Indexed: 01/09/2023]
Abstract
Computational techniques for foreseeing drug-disease associations by means of incorporating gene expression as well as biological network give high intuitions to the composite associations amongst targets, drugs, disease genes in addition to the diseases at a system level. Hepatocellular Carcinoma (HCC) is a malevolent tumor containing a greater rate of sickness as well as mortality. In the present work, an Integrative framework is presented with the aim of resolving this problem, for identifying new Drugs for HCC dependent upon Multi-Source Random Walk (PD-MRW), in which score the complete drugs by means of building the drug-drug similarity network. On the other hand, the collection of clinical phenotypes as well as drug side effects in combination with patient-specific genetic info. As a result, the formation of disease-drug networks that denotes the prescriptions, which are allotted to treat those diseases that are not concentrated by means of PD-MRW model. With the aim of overcoming this issue, this research offers an integrative framework for foreseeing new drugs as well as diseases for HCC dependent upon Multi-Source Simulated Annealing based Random Walk (PDD-MSSARW). Primarily, build a Gene-Gene Weighted Interaction Network (GWIN), dependent upon the gene expression as well as protein interaction network. After that, construct a drug-drug similarity network, dependent upon multi-source random walk in GWIN, disease-drug similarity network with the help of Similarity Weighted Bipartite Graph Network (SWBGN) that is build up in which the nodes are drugs as well as association among one node to another node that explains the disease diagnoses. Lastly, dependent upon the known drugs for HCC, score the entire drugs in the similarity networks. The sturdiness of the likelihoods, their overlap with those stated in Comparative Toxicogenomics Database (CTD) as well as kinds of literature, and their enhanced KEGG pathway illustrate PDD-MSSARW method be capable of efficiently find out novel drug signs.
Collapse
Affiliation(s)
| | - M Thangamani
- Kongu Engineering College, Perundurai, Tamilnadu, India
| |
Collapse
|
47
|
Wang C, Kurgan L. Review and comparative assessment of similarity-based methods for prediction of drug–protein interactions in the druggable human proteome. Brief Bioinform 2018; 20:2066-2087. [DOI: 10.1093/bib/bby069] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 06/26/2018] [Accepted: 07/10/2018] [Indexed: 12/18/2022] Open
Abstract
AbstractDrug–protein interactions (DPIs) underlie the desired therapeutic actions and the adverse side effects of a significant majority of drugs. Computational prediction of DPIs facilitates research in drug discovery, characterization and repurposing. Similarity-based methods that do not require knowledge of protein structures are particularly suitable for druggable genome-wide predictions of DPIs. We review 35 high-impact similarity-based predictors that were published in the past decade. We group them based on three types of similarities and their combinations that they use. We discuss and compare key aspects of these methods including source databases, internal databases and their predictive models. Using our novel benchmark database, we perform comparative empirical analysis of predictive performance of seven types of representative predictors that utilize each type of similarity individually and all possible combinations of similarities. We assess predictive quality at the database-wide DPI level and we are the first to also include evaluation over individual drugs. Our comprehensive analysis shows that predictors that use more similarity types outperform methods that employ fewer similarities, and that the model combining all three types of similarities secures area under the receiver operating characteristic curve of 0.93. We offer a comprehensive analysis of sensitivity of predictive performance to intrinsic and extrinsic characteristics of the considered predictors. We find that predictive performance is sensitive to low levels of similarities between sequences of the drug targets and several extrinsic properties of the input drug structures, drug profiles and drug targets. The benchmark database and a webserver for the seven predictors are freely available at http://biomine.cs.vcu.edu/servers/CONNECTOR/.
Collapse
Affiliation(s)
- Chen Wang
- Computer Science Department, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Lukasz Kurgan
- Computer Science Department, Virginia Commonwealth University, Richmond, VA 23284, USA
| |
Collapse
|
48
|
Soufan O, Ba-Alawi W, Magana-Mora A, Essack M, Bajic VB. DPubChem: a web tool for QSAR modeling and high-throughput virtual screening. Sci Rep 2018; 8:9110. [PMID: 29904147 PMCID: PMC6002400 DOI: 10.1038/s41598-018-27495-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 05/31/2018] [Indexed: 01/01/2023] Open
Abstract
High-throughput screening (HTS) performs the experimental testing of a large number of chemical compounds aiming to identify those active in the considered assay. Alternatively, faster and cheaper methods of large-scale virtual screening are performed computationally through quantitative structure-activity relationship (QSAR) models. However, the vast amount of available HTS heterogeneous data and the imbalanced ratio of active to inactive compounds in an assay make this a challenging problem. Although different QSAR models have been proposed, they have certain limitations, e.g., high false positive rates, complicated user interface, and limited utilization options. Therefore, we developed DPubChem, a novel web tool for deriving QSAR models that implement the state-of-the-art machine-learning techniques to enhance the precision of the models and enable efficient analyses of experiments from PubChem BioAssay database. DPubChem also has a simple interface that provides various options to users. DPubChem predicted active compounds for 300 datasets with an average geometric mean and F1 score of 76.68% and 76.53%, respectively. Furthermore, DPubChem builds interaction networks that highlight novel predicted links between chemical compounds and biological assays. Using such a network, DPubChem successfully suggested a novel drug for the Niemann-Pick type C disease. DPubChem is freely available at www.cbrc.kaust.edu.sa/dpubchem .
Collapse
Affiliation(s)
- Othman Soufan
- Institute of Parasitology, McGill University, Montreal, QC, H9X 3V9, Canada
| | - Wail Ba-Alawi
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 1L7, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, M5G 1L7, Canada
| | - Arturo Magana-Mora
- Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, 135-0064, Japan
| | - Magbubah Essack
- Computational Bioscience Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Vladimir B Bajic
- Computational Bioscience Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
| |
Collapse
|
49
|
Ezzat A, Wu M, Li XL, Kwoh CK. Computational prediction of drug–target interactions using chemogenomic approaches: an empirical survey. Brief Bioinform 2018; 20:1337-1357. [DOI: 10.1093/bib/bby002] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 12/21/2017] [Indexed: 01/18/2023] Open
Abstract
Abstract
Computational prediction of drug–target interactions (DTIs) has become an essential task in the drug discovery process. It narrows down the search space for interactions by suggesting potential interaction candidates for validation via wet-lab experiments that are well known to be expensive and time-consuming. In this article, we aim to provide a comprehensive overview and empirical evaluation on the computational DTI prediction techniques, to act as a guide and reference for our fellow researchers. Specifically, we first describe the data used in such computational DTI prediction efforts. We then categorize and elaborate the state-of-the-art methods for predicting DTIs. Next, an empirical comparison is performed to demonstrate the prediction performance of some representative methods under different scenarios. We also present interesting findings from our evaluation study, discussing the advantages and disadvantages of each method. Finally, we highlight potential avenues for further enhancement of DTI prediction performance as well as related research directions.
Collapse
|
50
|
iDTI-ESBoost: Identification of Drug Target Interaction Using Evolutionary and Structural Features with Boosting. Sci Rep 2017; 7:17731. [PMID: 29255285 PMCID: PMC5735173 DOI: 10.1038/s41598-017-18025-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 12/05/2017] [Indexed: 02/07/2023] Open
Abstract
Prediction of new drug-target interactions is critically important as it can lead the researchers to find new uses for old drugs and to disclose their therapeutic profiles or side effects. However, experimental prediction of drug-target interactions is expensive and time-consuming. As a result, computational methods for predictioning new drug-target interactions have gained a tremendous interest in recent times. Here we present iDTI-ESBoost, a prediction model for identification of drug-target interactions using evolutionary and structural features. Our proposed method uses a novel data balancing and boosting technique to predict drug-target interaction. On four benchmark datasets taken from a gold standard data, iDTI-ESBoost outperforms the state-of-the-art methods in terms of area under receiver operating characteristic (auROC) curve. iDTI-ESBoost also outperforms the latest and the best-performing method found in the literature in terms of area under precision recall (auPR) curve. This is significant as auPR curves are argued as suitable metric for comparison for imbalanced datasets similar to the one studied here. Our reported results show the effectiveness of the classifier, balancing methods and the novel features incorporated in iDTI-ESBoost. iDTI-ESBoost is a novel prediction method that has for the first time exploited the structural features along with the evolutionary features to predict drug-protein interactions. We believe the excellent performance of iDTI-ESBoost both in terms of auROC and auPR would motivate the researchers and practitioners to use it to predict drug-target interactions. To facilitate that, iDTI-ESBoost is implemented and made publicly available at: http://farshidrayhan.pythonanywhere.com/iDTI-ESBoost/.
Collapse
|