1
|
Yang A, Zhou M, Gao Y, Zhang Y. Mechanisms of CD8 + T cell exhaustion and its clinical significance in prognosis of anti-tumor therapies: A review. Int Immunopharmacol 2025; 159:114843. [PMID: 40394796 DOI: 10.1016/j.intimp.2025.114843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 05/05/2025] [Accepted: 05/08/2025] [Indexed: 05/22/2025]
Abstract
In recent years, immunotherapy has gradually become one of the main strategies for cancer treatment, with immune checkpoint inhibitors (ICIs) offering new possibilities for tumor therapy. However, some cancer patients exhibit low responses and resistance to ICIs treatment. T cell exhaustion, a process associated with tumor progression, refers to a subset of T cells that progressively lose effector functions and exhibit increased expression of inhibitory receptors. These exhausted T cells are considered key players in the therapeutic efficacy of immune checkpoint inhibitors. Therefore, understanding the impact of T cell exhaustion on tumor immunotherapy and the underlying mechanisms is critical for improving clinical treatment outcomes. Several elegant studies have provided insights into the prognostic value of exhausted T cells in cancers. In this review, we highlight the process of exhausted T cells and its predictive value in various cancers, as well as the relevant mechanisms behind it, providing new insights into the immunotherapy of cancer.
Collapse
Affiliation(s)
- Anrui Yang
- Department of Gynecological Minimal Invasive Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Meng Zhou
- Department of Gynecological Minimal Invasive Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Yixuan Gao
- Department of Gynecological Minimal Invasive Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Ying Zhang
- Department of Gynecological Minimal Invasive Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
2
|
Kwak JW, Houghton AM. Targeting neutrophils for cancer therapy. Nat Rev Drug Discov 2025:10.1038/s41573-025-01210-8. [PMID: 40374764 DOI: 10.1038/s41573-025-01210-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2025] [Indexed: 05/18/2025]
Abstract
Neutrophils are among the most abundant immune cell types in the tumour microenvironment and have been associated with poor outcomes across multiple cancer types. Yet despite mounting evidence of their role in tumour progression, therapeutic strategies targeting neutrophils have only recently gained attention and remain limited in scope. This is probably due to the increasing number of distinct neutrophil subtypes identified in cancer and the limited understanding of the mechanisms by which these subsets influence tumour progression and immune evasion. In this Review, we discuss the spectrum of neutrophil subtypes - including those with antitumour activity - and their potential to polarize towards tumour-suppressive phenotypes. We explore the molecular pathways and effector functions by which neutrophils modulate cancer progression, with an emphasis on identifying tractable therapeutic targets. Finally, we examine emerging clinical trials aimed at modulating neutrophil lineages and consider their implications for patient outcomes.
Collapse
Affiliation(s)
- Jeff W Kwak
- Translational Science and Therapeutics Division and Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - A McGarry Houghton
- Translational Science and Therapeutics Division and Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Washington, Seattle, WA, USA.
| |
Collapse
|
3
|
Rys RN, Calcinotto A. Senescent neutrophils: a hidden role in cancer progression. Trends Cell Biol 2025; 35:399-411. [PMID: 39362804 DOI: 10.1016/j.tcb.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/05/2024] [Accepted: 09/10/2024] [Indexed: 10/05/2024]
Abstract
Neutrophils have recently received increased attention in cancer because they contribute to all stages of cancer. Neutrophils are so far considered to have a short half-life. However, a growing body of literature has shown that tumor-associated neutrophils (TANs) acquire a prolonged lifespan. This review discusses recent work surrounding the mechanisms by which neutrophils can persist in the tumor microenvironment (TME). It also highlights different scenarios for therapeutic targeting of protumorigenic neutrophils, supporting the idea that, in tumors, inhibition of neutrophil recruitment is not sufficient because these cells can persist and remain hidden from current interventions. Hence, the elimination of long-lived neutrophils should be pursued to increase the efficacy of standard therapy.
Collapse
Affiliation(s)
- Ryan N Rys
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland; Università della Svizzera Italiana, Faculty of Biomedical Sciences, 6900 Lugano, Switzerland
| | - Arianna Calcinotto
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland; Università della Svizzera Italiana, Faculty of Biomedical Sciences, 6900 Lugano, Switzerland.
| |
Collapse
|
4
|
Cai W, Fan T, Xiao C, Deng Z, Liu Y, Li C, He J. Neutrophils in cancer: At the crucial crossroads of anti-tumor and pro-tumor. Cancer Commun (Lond) 2025. [PMID: 40296668 DOI: 10.1002/cac2.70027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 04/02/2025] [Accepted: 04/09/2025] [Indexed: 04/30/2025] Open
Abstract
Neutrophils are important components of the immune system and play a key role in defending against pathogenic infections and responding to inflammatory cues, including cancer. Their dysregulation indicates potential disease risk factors. However, their functional importance in disease progression has often been underestimated due to their short half-life, especially as there is limited information on the role of intratumoral neutrophils. Recent studies on their prominent role in cancer have led to a paradigm shift in our understanding of the functional diversity of neutrophils. These studies highlight that neutrophils have emerged as key components of the tumor microenvironment, where they can play a dual role in promoting and suppressing cancer. Moreover, several approaches to therapeutically target neutrophils have emerged, and clinical trials are investigating their efficacy. In this review, we discussed the involvement of neutrophils in cancer initiation and progression. We summarized recent advances in therapeutic strategies targeting neutrophils and, most importantly, suggested future research directions that could facilitate the manipulation of neutrophils for therapeutic purposes in cancer patients.
Collapse
Affiliation(s)
- Wenpeng Cai
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Tao Fan
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Chu Xiao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Ziqin Deng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Yixiao Liu
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Chunxiang Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| |
Collapse
|
5
|
Hou R, Wu X, Wang C, Fan H, Zhang Y, Wu H, Wang H, Ding J, Jiang H, Xu J. Tumor‑associated neutrophils: Critical regulators in cancer progression and therapeutic resistance (Review). Int J Oncol 2025; 66:28. [PMID: 40017131 PMCID: PMC11900975 DOI: 10.3892/ijo.2025.5734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 02/11/2025] [Indexed: 03/01/2025] Open
Abstract
Cancer is the second leading cause of death among humans worldwide. Despite remarkable improvements in cancer therapies, drug resistance remains a significant challenge. The tumor microenvironment (TME) is intimately associated with therapeutic resistance. Tumor‑associated neutrophils (TANs) are a crucial component of the TME, which, along with other immune cells, play a role in tumorigenesis, development and metastasis. In the current review, the roles of TANs in the TME, as well as the mechanisms of neutrophil‑mediated resistance to cancer therapy, including immunotherapy, chemotherapy, radiotherapy and targeted therapy, were summarized. Furthermore, strategies for neutrophil therapy were discussed and TANs were explored as potential targets for cancer treatment. In conclusion, the need to explore the precise roles, recruitment pathways and mechanisms of action of TANs was highlighted for the purpose of developing therapies that precisely target TANs and reverse drug resistance.
Collapse
Affiliation(s)
- Rui Hou
- Department of Oncology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Nanjing 214023, P.R. China
| | - Xi Wu
- Department of Oncology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Nanjing 214023, P.R. China
| | - Cenzhu Wang
- Department of Oncology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Nanjing 214023, P.R. China
| | - Hanfang Fan
- Department of Oncology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Nanjing 214023, P.R. China
| | - Yuhan Zhang
- Department of Oncology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Nanjing 214023, P.R. China
| | - Hanchi Wu
- Department of Oncology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Nanjing 214023, P.R. China
| | - Huiyu Wang
- Department of Oncology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Nanjing 214023, P.R. China
| | - Junli Ding
- Department of Oncology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Nanjing 214023, P.R. China
| | - Huning Jiang
- Department of Oncology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Nanjing 214023, P.R. China
| | - Junying Xu
- Department of Oncology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Nanjing 214023, P.R. China
| |
Collapse
|
6
|
Tao X, Wang Y, Xiang B, Hu D, Xiong W, Liao W, Zhang S, Liu C, Wang X, Zhao Y. Sex bias in tumor immunity: insights from immune cells. Theranostics 2025; 15:5045-5072. [PMID: 40303343 PMCID: PMC12036885 DOI: 10.7150/thno.106465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 03/08/2025] [Indexed: 05/02/2025] Open
Abstract
Significant sex disparities have been observed in cancer incidence, treatment response to immunotherapy, and susceptibility to adverse effects, affecting both reproductive and non-reproductive organ cancers. While lifestyle factors, carcinogenic exposure, and healthcare access contribute to these disparities, they do not fully explain the observed male-female variation in anti-tumor immunity. Despite the preferential expression of sex hormone receptors in immune cells, X chromosome also contains numerous genes involved in immune function, and its incomplete inactivation may enhance anti-tumor immune responses in females. In contrast, loss or downregulation of Y-linked genes in males has been associated with an increased cancer risk. Additionally, estrogen, progesterone and androgen signaling pathways influence both innate and adaptive immune responses, contributing to sex-specific outcomes in cancer progression and therapy. Sex-biased differences are also evident in the epigenetic regulation of gene expression, cellular senescence, microbiota composition, metabolism, and DNA damage response, all of which impact anti-tumor immunity and immunotherapy treatment efficacy. In general, the combination of sex chromosomes, sex hormones, and hormone receptors orchestrates the phenotype and function of various immune cells involved in tumor immunity. However, sex disparity in each specific immune cell are context and environment dependent, considering the preferential expression of hormone receptor in immune cell and sex hormone levels fluctuate significantly across different life stages. This review aims to outline the molecular, cellular, and epigenetic changes in T cells, B cells, NK cells, DCs, neutrophils, and macrophages driven by sex chromosomes and sex hormone signaling. These insights may inform the design of sex-specific targeted therapies and leading to more individualized cancer treatment strategies.
Collapse
Affiliation(s)
- Xuerui Tao
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yiling Wang
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Binghua Xiang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Dongmei Hu
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Wei Xiong
- Department of Urology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Wenjun Liao
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Shichuan Zhang
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Chi Liu
- Department of Nephrology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaoxiao Wang
- Department of Organ Transplantation, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yue Zhao
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
7
|
Wang C, Yang M, Zhong Y, Cao K, Wang X, Zhang C, Wang Y, He M, Lu J, Zhang G, Huang Y, Liu H. Immunosuppressive JAG2 + tumor-associated neutrophils hamper PD-1 blockade response in ovarian cancer by mediating the differentiation of effector regulatory T cells. Cancer Commun (Lond) 2025. [PMID: 40120139 DOI: 10.1002/cac2.70021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 03/10/2025] [Accepted: 03/11/2025] [Indexed: 03/25/2025] Open
Abstract
BACKGROUND Tumor-associated neutrophils (TANs) play a critical role in modulating immune responses and exhibit significant heterogeneity. Our previous study demonstrated that jagged canonical Notch ligand 2 (JAG2)+ TANs were associated with an immunosuppressive microenvironment in high-grade serous ovarian cancer (HGSOC), but the underlying mechanism remains unclear. This study aimed to elucidate the role of JAG2+ TANs in tumor immunosuppressive microenvironment in HGSOC. METHODS HGSOC samples were collected, with 274 samples constituting two independent cohorts (training and validation cohorts) and an additional 30 samples utilized to establish patient-derived tumor organoids (PDTOs). We characterized the number and phenotype of JAG2+ TANs by multiplex immunohistochemistry, flow cytometry, and single-cell RNA sequencing (scRNA-seq). We investigated the biological functions of JAG2 in immune evasion using in vitro co-culture systems, flow cytometry, tumor-bearing mouse models, and PDTOs. RESULTS JAG2+ TANs expressed elevated levels of immunosuppressive molecules, including programmed cell death ligand 1 and CD14, and had independent prognostic value for the overall survival of patients with HGSOC. scRNA-seq analysis revealed that JAG2+ TANs exhibited a terminally mature phenotype. The infiltration of JAG2+ TANs was positively correlated with the abundance of effector regulatory T cells (eTregs). Interaction with JAG2+ TANs skewed CD4+ T cells towards an eTreg phenotype, a process that was suppressed by the Notch inhibitor LY3039478 and induced by recombinant Jagged2. Furthermore, we demonstrated that JAG2+ TANs enhanced Notch signaling activation, ultimately promoting recombination signal binding protein for immunoglobulin kappa J region (RBPJ)-induced differentiation of naïve CD4+ T cells into eTregs. Clinically, JAG2+ TANs could serve as a biomarker for assessing immunotherapy resistance in various solid tumors. Pharmacological targeting of Notch signaling with LY3039478 or JAG2 neutralization antibodies enhanced the efficacy of programmed cell death protein 1 (PD-1) monoclonal antibodies (mAbs) in both xenograft and PDTO models. CONCLUSIONS The emergence of JAG2+ TANs is crucial for the differentiation of eTregs, which triggers immune evasion and resistance to anti-PD-1 therapy. Inhibiting Notch signaling with LY3039478 or JAG2 neutralization antibodies may overcome this anti-PD-1 resistance in HGSOC.
Collapse
Affiliation(s)
- Chenyang Wang
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, P. R. China
| | - Moran Yang
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, P. R. China
- Department of Gynecologic Oncology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, P. R. China
| | - Yujing Zhong
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, P. R. China
| | - Kankan Cao
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, P. R. China
| | - Xueling Wang
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, P. R. China
| | - Chen Zhang
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, P. R. China
| | - Yiying Wang
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, P. R. China
| | - Mengdi He
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, P. R. China
| | - Jiaqi Lu
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, P. R. China
- Department of Gynecologic Oncology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, P. R. China
| | - Guodong Zhang
- Department of Gynecologic Oncology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, P. R. China
| | - Yan Huang
- Department of Gynecologic Oncology, Shanghai Cancer Center, Fudan University, Shanghai, P. R. China
| | - Haiou Liu
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, P. R. China
| |
Collapse
|
8
|
Jiang M, Zhang R, Huang M, Yang J, Liu Q, Zhao Z, Ma Y, Zhao H, Zhang M. The Prognostic Value of Tumor-Associated Neutrophils in Colorectal Cancer: A Systematic Review and Meta-Analysis. Cancer Med 2025; 14:e70614. [PMID: 40013340 PMCID: PMC11865885 DOI: 10.1002/cam4.70614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 06/23/2024] [Accepted: 01/06/2025] [Indexed: 02/28/2025] Open
Abstract
BACKGROUND Tumor-associated neutrophils (TANs) are important components of the colorectal cancer (CRC) microenvironment. However, their role in CRC remains controversial. This study aimed to assess the prognostic value of TANs in patients with CRC. METHODS We searched the PubMed, EMBASE, and Cochrane Library databases for eligible studies published until January 9, 2023. The pooled hazard ratios (HRs) and odds ratios (ORs) with their 95% confidence intervals (95% CI) were calculated with a random-effects model to assess survival outcomes and clinicopathological features. Subgroup analyses were further conducted to identify potential sources of heterogeneity. Funnel plots and Egger's test were used to measure publication bias. RESULTS A total of 19 studies with 7721 patients were included in this meta-analysis. The pooled analysis indicated that high peritumoral TAN infiltration in CRC tissue was significantly associated with favorable cancer-specific survival (HR = 0.57; 95% CI: 0.38-0.86; p = 0.007), but not with overall survival or disease-free survival. No association between high intratumoral or unclear compartment TAN infiltration and CRC prognosis was found. Subgroup analyses showed that the association between TANs and the prognosis of CRC patients differed according to antibody types, tumor stage, quantitative methods, and follow-up time. High intratumoral TAN infiltration was significantly associated with histology type, whereas high TAN infiltration in an unclear compartment was significantly associated with gender, tumor location, and the primary tumor site. CONCLUSIONS High TAN infiltration, especially in the peritumoral compartment, could be a potential prognostic marker in CRC. More high-quality studies are required to explore its specific prognostic value in CRC.
Collapse
Affiliation(s)
- Mengyuan Jiang
- Department of PathologyTaicang Loujiang New City HospitalTaicangJiangsuChina
- Department of PathologyGansu Provincial HospitalLanzhouGansuChina
- The First School of Clinical MedicineGansu University of Traditional Chinese MedicineLanzhouGansuChina
- Department of PathologyThe 940th Hospital of Joint Logistics Support Force of Chinese People´s Liberation ArmyLanzhouGansuChina
| | - Rui Zhang
- The First School of Clinical MedicineGansu University of Traditional Chinese MedicineLanzhouGansuChina
- Department of PathologyThe 940th Hospital of Joint Logistics Support Force of Chinese People´s Liberation ArmyLanzhouGansuChina
- Department of PathologyGansu Provincial Cancer HospitalLanzhouGansuChina
| | - Min Huang
- The First School of Clinical MedicineGansu University of Traditional Chinese MedicineLanzhouGansuChina
- Department of PathologyThe 940th Hospital of Joint Logistics Support Force of Chinese People´s Liberation ArmyLanzhouGansuChina
| | - Jing Yang
- The First School of Clinical MedicineGansu University of Traditional Chinese MedicineLanzhouGansuChina
- Department of PathologyChengdu First People's HospitalChengduSichuanChina
| | - Qianqian Liu
- The First School of Clinical MedicineGansu University of Traditional Chinese MedicineLanzhouGansuChina
| | - Ziru Zhao
- The First School of Clinical MedicineGansu University of Traditional Chinese MedicineLanzhouGansuChina
| | - Ya Ma
- Department of PathologyGansu Provincial HospitalLanzhouGansuChina
- The First School of Clinical MedicineGansu University of Traditional Chinese MedicineLanzhouGansuChina
| | - Hongfan Zhao
- Department of PathologyGansu Provincial HospitalLanzhouGansuChina
- The First School of Clinical MedicineLanzhou UniversityLanzhouGansuChina
| | - Min Zhang
- Department of PathologyGansu Provincial HospitalLanzhouGansuChina
- The First School of Clinical MedicineGansu University of Traditional Chinese MedicineLanzhouGansuChina
- Clinical Research Centre, Department of Science and TechnologySichuan Provincial People's Hospital, University of Electronic Science and Technology of ChinaChengduSichuanChina
| |
Collapse
|
9
|
Wang X, He S, Gong X, Lei S, Zhang Q, Xiong J, Liu Y. Neutrophils in colorectal cancer: mechanisms, prognostic value, and therapeutic implications. Front Immunol 2025; 16:1538635. [PMID: 40092983 PMCID: PMC11906667 DOI: 10.3389/fimmu.2025.1538635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 02/04/2025] [Indexed: 03/19/2025] Open
Abstract
Neutrophils, the most abundant myeloid cells in human peripheral blood, serve as the first defense line against infection and are also significantly involved in the initiation and progression of cancer. In colorectal cancer (CRC), neutrophils exhibit a dual function by promoting tumor events and exerting antitumor activity, which is related to the heterogeneity of neutrophils. The neutrophil extracellular traps (NETs), gut microbiota, and various cells within the tumor microenvironment (TME) are involved in shaping the heterogeneous function of neutrophils. This article provides an updated overview of the complex functions and underlying mechanisms of neutrophils in CRC and their pivotal role in guiding prognosis assessment and therapeutic strategies, aiming to offer novel insights into neutrophil-associated treatment approaches for CRC.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yang Liu
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
10
|
Bi W, Li X, Jiang Y, Gao T, Zhao H, Han Q, Zhang J. Tumor-derived exosomes induce neutrophil infiltration and reprogramming to promote T-cell exhaustion in hepatocellular carcinoma. Theranostics 2025; 15:2852-2869. [PMID: 40083930 PMCID: PMC11898284 DOI: 10.7150/thno.104557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 01/22/2025] [Indexed: 03/16/2025] Open
Abstract
Rationale: High neutrophil infiltration in hepatocellular carcinoma (HCC) is associated with a poor prognosis in patients with HCC. Tumor-derived exosomes (TDEs) have been proven to be important in the reprogramming of tumor-associated neutrophils (TANs), but the roles and mechanisms have not been fully clarified. Methods: The roles of HCC-exosome-reprogrammed neutrophils on tumor progression were evaluated in the DEN/CCl4-induced HCC mouse model by blocking neutrophil infiltration, depleting neutrophil, and neutrophil adoptive transfer. Transcriptome sequencing and flow cytometry were performed to investigate the effects of HCC exosomes on the phenotype and function of neutrophils. The mobilization and apoptosis of neutrophils were evaluated by the Transwell experiment and Annexin V/7-AAD staining, respectively. Moreover, we detected the effects of HCC-exosome-reprogrammed neutrophils on T cells by flow cytometry. Next, we used the NF-κB pathway inhibitor JSH-23 and miR-362-5p inhibitor or mimic to determine the molecular mechanisms. Lastly, we constructed the miR-362-5p sponge to validate its targeted therapeutic potential. Results: We found that HCC exosomes induced neutrophil infiltration and T-cell exhaustion in the livers of DEN/CCl4-induced HCC mice and promoted tumor progression. Blocking neutrophil infiltration and depleting neutrophils diminished these promotive effects of HCC exosomes. In addition, HCC exosome-reprogrammed neutrophils display proinflammatory and protumor phenotypes, and can directly induce T-cell exhaustion in vitro. The transfer of HCC exosome-reprogrammed neutrophils exacerbated tumor progression and induced T-cell exhaustion, as evidenced by the downregulation of IFN-γ and TNF-α, and the upregulation of PD-1 and Tim3 in T cells. Mechanistically, we found that HCC exosomes upregulate the expression of miR-362-5p in neutrophils and activate the NF-κB signaling pathway by targeting CYLD, promoting the survival and recruitment of neutrophils. In HCC mice, blocking miR-362-5p suppressed neutrophil infiltration, attenuated T-cell exhaustion, and suppressed HCC progression. Conclusions: This study clarified the roles of HCC exosomes on neutrophil infiltration and reprogramming and identified a potential target miR-362-5p for HCC treatment.
Collapse
Affiliation(s)
- Wenchao Bi
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Xue Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Yu Jiang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Tongtong Gao
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Huajun Zhao
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Qiuju Han
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Jian Zhang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| |
Collapse
|
11
|
Foerster Y, Mayer K, Wasserer S, Dechant M, Verkhoturova V, Heyer S, Biedermann T, Persa O. Elevated Neutrophil-to-Lymphocyte Ratio Correlates With Liver Metastases and Poor Immunotherapy Response in Stage IV Melanoma. Cancer Med 2025; 14:e70631. [PMID: 39931836 PMCID: PMC11811709 DOI: 10.1002/cam4.70631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 01/02/2025] [Accepted: 01/16/2025] [Indexed: 02/13/2025] Open
Abstract
BACKGROUND AND OBJECTIVES Immune checkpoint inhibition (ICI) has revolutionized treatment for metastasized melanoma, but many patients remain unresponsive. Concerning potential adverse events, reliable biomarkers to predict ICI response are needed. In this context, neutrophil-to-lymphocyte ratio (NLR) and derived NLR (dNLR) have emerged. Liver metastases also limit ICI efficacy, correlating with diminished overall survival (OS) and progression-free survival (PFS) and may siphon activated T cells from the systemic circulation, creating an 'immune desert state'. We evaluated the predictive role of NLR and dNLR for ICI response and the impact of liver metastases on systemic immunity and treatment efficacy. PATIENTS AND METHODS In this single-center retrospective study, we included 141 stage IV melanoma patients undergoing ICI. NLR and dNLR were calculated from absolute neutrophil count, absolute lymphocyte count, and white blood cell count. RESULTS Elevated NLR and dNLR were associated with poor response to ICI and inferior PFS. Patients with liver metastases exhibited higher NLR and dNLR levels and showed diminished response to ICI. CONCLUSIONS Elevated baseline NLR and dNLR predict poor response to ICI and PFS in stage IV melanoma. Liver metastases are negative predictors for ICI response, with associated higher NLR and dNLR levels potentially contributing to therapy resistance.
Collapse
Affiliation(s)
- Yannick Foerster
- Department of DermatologyTUM School of Medicine and HealthMünchenGermany
| | - Kristine Mayer
- Department of DermatologyTUM School of Medicine and HealthMünchenGermany
| | - Sophia Wasserer
- Department of DermatologyTUM School of Medicine and HealthMünchenGermany
| | - Marta Dechant
- Department of DermatologyTUM School of Medicine and HealthMünchenGermany
| | | | - Sarah Heyer
- Department of DermatologyTUM School of Medicine and HealthMünchenGermany
| | - Tilo Biedermann
- Department of DermatologyTUM School of Medicine and HealthMünchenGermany
| | - Oana‐Diana Persa
- Department of DermatologyTUM School of Medicine and HealthMünchenGermany
| |
Collapse
|
12
|
Li J, Zhang Y, Hu L, Ye H, Yan X, Li X, Li Y, Ye S, Wu B, Li Z. T-cell Receptor Repertoire Analysis in the Context of Transarterial Chemoembolization Synergy with Systemic Therapy for Hepatocellular Carcinoma. J Clin Transl Hepatol 2025; 13:69-83. [PMID: 39801788 PMCID: PMC11712086 DOI: 10.14218/jcth.2024.00238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/03/2024] [Accepted: 10/25/2024] [Indexed: 01/16/2025] Open
Abstract
T-cell receptor (TCR) sequencing provides a novel platform for insight into and characterization of intricate T-cell profiles, advancing the understanding of tumor immune heterogeneity. Recently, transarterial chemoembolization (TACE) combined with systemic therapy has become the recommended regimen for advanced hepatocellular carcinoma. The regulation of the immune microenvironment after TACE and its impact on tumor progression and recurrence has been a focus of research. By examining and tracking fluctuations in the TCR repertoire following combination treatment, novel perspectives on the modulation of the tumor microenvironment post-TACE and the underlying mechanisms governing tumor progression and recurrence can be gained. Clarifying the distinctive metrics and dynamic alterations of the TCR repertoire within the context of combination therapy is imperative for understanding the mechanisms of anti-tumor immunity, assessing efficacy, exploiting novel treatments, and further advancing precision oncology in the treatment of hepatocellular carcinoma. In this review, we initially summarized the fundamental characteristics of TCR repertoire and depicted immune microenvironment remodeling after TACE. Ultimately, we illustrated the prospective applications of TCR repertoires in TACE combined with systemic therapy.
Collapse
Affiliation(s)
- Jie Li
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Engineering Technology Research Center for Minimally Invasive Interventional Tumors of Henan Province, Zhengzhou, Henan, China
| | - Yuyuan Zhang
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Engineering Technology Research Center for Minimally Invasive Interventional Tumors of Henan Province, Zhengzhou, Henan, China
| | - Luqi Hu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Engineering Technology Research Center for Minimally Invasive Interventional Tumors of Henan Province, Zhengzhou, Henan, China
| | - Heqing Ye
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Engineering Technology Research Center for Minimally Invasive Interventional Tumors of Henan Province, Zhengzhou, Henan, China
| | - Xingli Yan
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Engineering Technology Research Center for Minimally Invasive Interventional Tumors of Henan Province, Zhengzhou, Henan, China
| | - Xin Li
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Engineering Technology Research Center for Minimally Invasive Interventional Tumors of Henan Province, Zhengzhou, Henan, China
| | - Yifan Li
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Engineering Technology Research Center for Minimally Invasive Interventional Tumors of Henan Province, Zhengzhou, Henan, China
| | - Shuwen Ye
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Engineering Technology Research Center for Minimally Invasive Interventional Tumors of Henan Province, Zhengzhou, Henan, China
| | - Bailu Wu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Engineering Technology Research Center for Minimally Invasive Interventional Tumors of Henan Province, Zhengzhou, Henan, China
| | - Zhen Li
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Engineering Technology Research Center for Minimally Invasive Interventional Tumors of Henan Province, Zhengzhou, Henan, China
| |
Collapse
|
13
|
Lu T, Li W. Neutrophil Engulfment in Cancer: Friend or Foe? Cancers (Basel) 2025; 17:384. [PMID: 39941753 PMCID: PMC11816126 DOI: 10.3390/cancers17030384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/17/2025] [Accepted: 01/23/2025] [Indexed: 02/16/2025] Open
Abstract
Neutrophils, the most abundant circulating white blood cells, are essential for the initial immune response to infection and injury. Emerging research reveals a dualistic function of neutrophils in cancer, where they can promote or inhibit tumor progression. This dichotomy is influenced by the tumor microenvironment, with neutrophils capable of remodeling the extracellular matrix, promoting angiogenesis, or alternatively inducing cancer cell death and enhancing immune responses. An intriguing yet poorly understood aspect of neutrophil-cancer interactions is the phenomenon of neutrophil engulfment by cancer cells, which has been observed across various cancers. This process, potentially mediated by LC3-associated phagocytosis (LAP), raises questions about whether it serves as a mechanism for immune evasion or contributes to tumor cell death through pathways like ferroptosis. This review examines current knowledge on neutrophil development, their roles in cancer, and the mechanisms of LAP in neutrophil engulfment by tumor cells. We discuss how manipulating LAP impacts cancer progression and may represent a therapeutic strategy. We also explore neutrophils' potential as delivery vehicles for cancer therapeutic agents. Understanding the complex functions of tumor-associated neutrophils (TANs) and the molecular mechanisms underlying LAP in cancer may open new avenues for effective therapeutic interventions and mitigate potential risks.
Collapse
Affiliation(s)
- Tong Lu
- Division of Hematology and Oncology, Department of Pediatrics, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Wei Li
- Division of Hematology and Oncology, Department of Pediatrics, Penn State College of Medicine, Hershey, PA 17033, USA
- Penn State Cancer Institute, Penn State College of Medicine, Hershey, PA 17033, USA
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
14
|
Teo JMN, Chen Z, Chen W, Tan RJY, Cao Q, Chu Y, Ma D, Chen L, Yu H, Lam KH, Lee TKW, Chakarov S, Becher B, Zhang N, Li Z, Ma S, Xue R, Ling GS. Tumor-associated neutrophils attenuate the immunosensitivity of hepatocellular carcinoma. J Exp Med 2025; 222:e20241442. [PMID: 39636298 PMCID: PMC11619716 DOI: 10.1084/jem.20241442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/11/2024] [Accepted: 11/01/2024] [Indexed: 12/07/2024] Open
Abstract
Tumor-associated neutrophils (TANs) are heterogeneous; thus, their roles in tumor development could vary depending on the cancer type. Here, we showed that TANs affect metabolic dysfunction-associated steatohepatitis hepatocellular carcinoma (MASH-related HCC) more than viral-associated HCC. We attributed this difference to the predominance of SiglecFhi TANs in MASH-related HCC tumors. Linoleic acid and GM-CSF, which are commonly elevated in the MASH-related HCC microenvironment, fostered the development of this c-Myc-driven TAN subset. Through TGFβ secretion, SiglecFhi TANs promoted HCC stemness, proliferation, and migration. Importantly, SiglecFhi TANs supported immune evasion by directly suppressing the antigen presentation machinery of tumor cells. SiglecFhi TAN removal increased the immunogenicity of a MASH-related HCC model and sensitized it to immunotherapy. Likewise, a high SiglecFhi TAN signature was associated with poor prognosis and immunotherapy resistance in HCC patients. Overall, our study highlights the importance of understanding TAN heterogeneity in cancer to improve therapeutic development.
Collapse
Affiliation(s)
- Jia Ming Nickolas Teo
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Zhulin Chen
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Weixin Chen
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Rachael Julia Yuenyinn Tan
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Qi Cao
- Yunnan Baiyao International Medical Research Center, Peking University, Beijing, China
- Translational Cancer Research Center, Peking University First Hospital, Beijing, China
| | - Yingming Chu
- Yunnan Baiyao International Medical Research Center, Peking University, Beijing, China
- Translational Cancer Research Center, Peking University First Hospital, Beijing, China
| | - Delin Ma
- Department of Hepatobiliary Surgery, Peking University People’s Hospital, Beijing Key Surgical Basic Research Laboratory of Liver Cirrhosis and Liver Cancer, Beijing, China
| | - Liting Chen
- Yunnan Baiyao International Medical Research Center, Peking University, Beijing, China
- Translational Cancer Research Center, Peking University First Hospital, Beijing, China
| | - Huajian Yu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Ka-Hei Lam
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Terence Kin Wah Lee
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
- State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hong Kong, China
| | - Svetoslav Chakarov
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Burkhard Becher
- Institue of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Ning Zhang
- Yunnan Baiyao International Medical Research Center, Peking University, Beijing, China
- Translational Cancer Research Center, Peking University First Hospital, Beijing, China
| | - Zhao Li
- Department of Hepatobiliary Surgery, Peking University People’s Hospital, Beijing Key Surgical Basic Research Laboratory of Liver Cirrhosis and Liver Cancer, Beijing, China
| | - Stephanie Ma
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China
- The University of Hong Kong – Shenzhen Hospital, Shenzhen, China
| | - Ruidong Xue
- Yunnan Baiyao International Medical Research Center, Peking University, Beijing, China
- Translational Cancer Research Center, Peking University First Hospital, Beijing, China
- International Cancer Institute and State Key Laboratory of Molecular Oncology, Peking University, Beijing, China
- MOE Frontiers Science Center for Cancer Integrative Omics, Peking University, Beijing, China
| | - Guang Sheng Ling
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China
- The University of Hong Kong – Shenzhen Hospital, Shenzhen, China
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
15
|
Li R, Hu JC, Rong L, He Y, Wang X, Lin X, Li W, Wu Y, Kuwentrai C, Su C, Yau T, Hung IFN, Gao X, Huang JD. The guided fire from within: intratumoral administration of mRNA-based vaccines to mobilize memory immunity and direct immune responses against pathogen to target solid tumors. Cell Discov 2025; 10:127. [PMID: 39743545 DOI: 10.1038/s41421-024-00743-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 09/30/2024] [Indexed: 01/04/2025] Open
Abstract
We investigated a novel cancer immunotherapy strategy that effectively suppresses tumor growth in multiple solid tumor models and significantly extends the lifespan of tumor-bearing mice by introducing pathogen antigens into tumors via mRNA-lipid nanoparticles. The pre-existing immunity against the pathogen antigen can significantly enhance the efficacy of this approach. In mice previously immunized with BNT162b2, an mRNA-based COVID-19 vaccine encoding the spike protein of the SARS-CoV-2 virus, intratumoral injections of the same vaccine efficiently tagged the tumor cells with mRNA-expressed spike protein. This action rapidly mobilized the pre-existing memory immunity against SARS-CoV-2 to kill the cancer cells displaying the spike protein, while concurrently reprogramming the tumor microenvironment (TME) by attracting immune cells. The partial elimination of tumor cells in a normalized TME further triggered extensive tumor antigen-specific T cell responses through antigen spreading, eventually resulting in potent and systemic tumor-targeting immune responses. Moreover, combining BNT162b2 treatment with anti-PD-L1 therapy yielded a more substantial therapeutic impact, even in "cold tumor" types that are typically less responsive to treatment. Given that the majority of the global population has acquired memory immunity against various pathogens through infection or vaccination, we believe that, in addition to utilizing the widely held immune memory against SARS-CoV-2 via COVID-19 vaccine, mRNA vaccines against other pathogens, such as Hepatitis B Virus (HBV), Common Human Coronaviruses (HCoVs), and the influenza virus, could be rapidly transitioned into clinical use and holds great promise in treating different types of cancer. The extensive selection of pathogen antigens expands therapeutic opportunities and may also overcome potential drug resistance.
Collapse
Affiliation(s)
- Renhao Li
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Jing-Chu Hu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Li Rong
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Yige He
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Xiaolei Wang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Shenzhen Key Laboratory for Cancer Metastasis and Personalized Therapy Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Xuansheng Lin
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Wenjun Li
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Yangfan Wu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Chaiyaporn Kuwentrai
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Canhui Su
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Thomas Yau
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Ivan Fan-Ngai Hung
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| | | | - Jian-Dong Huang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
- Shenzhen Key Laboratory for Cancer Metastasis and Personalized Therapy Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, China.
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China.
- Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen University, Guangzhou, China.
- Materials Innovation Institute for Life Sciences and Energy (MILES), HKU-SIRI, Shenzhen, Guangdong, China.
| |
Collapse
|
16
|
Yao J, Ji L, Wang G, Ding J. Effect of neutrophils on tumor immunity and immunotherapy resistance with underlying mechanisms. Cancer Commun (Lond) 2025; 45:15-42. [PMID: 39485719 PMCID: PMC11758154 DOI: 10.1002/cac2.12613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 09/08/2024] [Accepted: 09/17/2024] [Indexed: 11/03/2024] Open
Abstract
Neutrophils are key mediators of the immune response and play essential roles in the development of tumors and immune evasion. Emerging studies indicate that neutrophils also play a critical role in the immunotherapy resistance in cancer. In this review, firstly, we summarize the novel classification and phenotypes of neutrophils and describe the regulatory relationships between neutrophils and tumor metabolism, flora microecology, neuroendocrine and tumor therapy from a new perspective. Secondly, we review the mechanisms by which neutrophils affect drug resistance in tumor immunotherapy from the aspects of the immune microenvironment, tumor antigens, and epigenetics. Finally, we propose several promising strategies for overcoming tumor immunotherapy resistance by targeting neutrophils and provide new research ideas in this area.
Collapse
Affiliation(s)
- Jiali Yao
- Clinical Cancer InstituteCenter for Translational MedicineNaval Medical UniversityShanghaiChina
| | - Linlin Ji
- Clinical Cancer InstituteCenter for Translational MedicineNaval Medical UniversityShanghaiChina
| | - Guang Wang
- Clinical Cancer InstituteCenter for Translational MedicineNaval Medical UniversityShanghaiChina
| | - Jin Ding
- Clinical Cancer InstituteCenter for Translational MedicineNaval Medical UniversityShanghaiChina
| |
Collapse
|
17
|
Zhai Y, Liang X, Deng M. Myeloid cells meet CD8 + T cell exhaustion in cancer: What, why and how. Chin J Cancer Res 2024; 36:616-651. [PMID: 39802897 PMCID: PMC11724180 DOI: 10.21147/j.issn.1000-9604.2024.06.04] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 12/16/2024] [Indexed: 01/16/2025] Open
Abstract
Exhausted T cell (Tex) is a specific state of T cell dysfunction, in which these T cells gradually lose their effector function and change their phenotype during chronic antigen stimulation. The enrichment of exhausted CD8+ T cell (CD8+ Tex) in the tumor microenvironment is one of the important reasons leading to the poor efficacy of immunotherapy. Recent studies have reported many reasons leading to the CD8+ T cell exhaustion. In addition to cancer cells, myeloid cells can also contribute to T cell exhaustion via many ways. In this review, we discuss the history of the concept of exhaustion, CD8+ T cell dysfunction states, the heterogeneity, origin, and characteristics of CD8+ Tex. We then focus on the effects of myeloid cells on CD8+ Tex, including tumor-associated macrophages (TAMs), dendritic cells (DCs) and neutrophils. Finally, we systematically summarize current strategies and recent advancements in therapies reversing and CD8+ T cell exhaustion.
Collapse
Affiliation(s)
- Yijie Zhai
- School of Basic Medical Sciences, Health Science Center, Peking University, Beijing 100191, China
- State Key Laboratory of Molecular Oncology, Peking University International Cancer Institute, Health Science Center, Peking University, Beijing 100191, China
| | - Xiaoting Liang
- School of Basic Medical Sciences, Health Science Center, Peking University, Beijing 100191, China
- State Key Laboratory of Molecular Oncology, Peking University International Cancer Institute, Health Science Center, Peking University, Beijing 100191, China
| | - Mi Deng
- School of Basic Medical Sciences, Health Science Center, Peking University, Beijing 100191, China
- State Key Laboratory of Molecular Oncology, Peking University International Cancer Institute, Health Science Center, Peking University, Beijing 100191, China
- Peking University Cancer Hospital & Institute, Beijing 100142, China
| |
Collapse
|
18
|
Liu H, Zhao H, Zhou M, Zhao X, Lu Y. Neutrophils in cancer drug resistance: Roles and therapeutic opportunities. Cancer Lett 2024; 611:217417. [PMID: 39722405 DOI: 10.1016/j.canlet.2024.217417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/09/2024] [Accepted: 12/22/2024] [Indexed: 12/28/2024]
Abstract
The tumor microenvironment (TME) is closely associated with the therapeutic response and clinical outcome of cancer drug therapies, which mainly include immunotherapy, chemotherapy and targeted therapy. Neutrophils that infiltrate tumors, also known as tumor-associated neutrophils (TANs), constitute a primary part of the TME. However, the functional importance of TANs in cancer drug therapy has long been overlooked because of their relatively short life span. Recent studies have shown that TANs play crucial protumoral or antitumoral roles in cancer drug treatment, largely because of their diversity and plasticity. This review describes the development, heterogeneity and recruitment of neutrophils in the context of cancer and emphasizes the role and mechanisms of TANs in cancer drug resistance. Additionally, several potential neutrophil-targeted strategies are discussed.
Collapse
Affiliation(s)
- Hao Liu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, National Clinical Research Center for Digestive Diseases, Xijing Hospital, Fourth Military Medical University, 710032, Xi'an, Shaanxi, China
| | - Hongyu Zhao
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, National Clinical Research Center for Digestive Diseases, Xijing Hospital, Fourth Military Medical University, 710032, Xi'an, Shaanxi, China
| | - Mingzhen Zhou
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, National Clinical Research Center for Digestive Diseases, Xijing Hospital, Fourth Military Medical University, 710032, Xi'an, Shaanxi, China
| | - Xiaodi Zhao
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, National Clinical Research Center for Digestive Diseases, Xijing Hospital, Fourth Military Medical University, 710032, Xi'an, Shaanxi, China.
| | - Yuanyuan Lu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, National Clinical Research Center for Digestive Diseases, Xijing Hospital, Fourth Military Medical University, 710032, Xi'an, Shaanxi, China.
| |
Collapse
|
19
|
Pan X, Wang Q, Sun B. Multifaceted roles of neutrophils in tumor microenvironment. Biochim Biophys Acta Rev Cancer 2024; 1879:189231. [PMID: 39615862 DOI: 10.1016/j.bbcan.2024.189231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 11/20/2024] [Accepted: 11/24/2024] [Indexed: 12/14/2024]
Abstract
Neutrophils, the most abundant leukocyte population in circulation, play a crucial role in detecting and responding to foreign cells, such as pathogens and tumor cells. However, the impact of neutrophils on cancer pathogenesis has been overlooked because of their short lifespan, terminal differentiation, and limited transcriptional activity. Within the tumor microenvironment (TME), neutrophils can be influenced by tumor cells or other stromal cells to acquire either protumor or antitumor properties via the cytokine environment. Despite progress in neutrophil-related research, a comprehensive understanding of tissue-specific neutrophil diversity and adaptability in the TME is still lacking, which poses a significant obstacle to the development of neutrophil-based cancer therapies. This review evaluated the current studies on the dual roles of neutrophils in cancer progression, emphasizing their importance in predicting clinical outcomes, and explored various approaches for targeting neutrophils in cancer treatment, including their potential synergy with cancer immunotherapy.
Collapse
Affiliation(s)
- Xueyin Pan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China; Innovative Institute of Tumor Immunity and Medicine (ITIM), Anhui Provincial Innovation Institute for Pharmaceutical Basic Research, Hefei, Anhui, China; Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, Hefei, Anhui, China
| | - Qiang Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China; Innovative Institute of Tumor Immunity and Medicine (ITIM), Anhui Provincial Innovation Institute for Pharmaceutical Basic Research, Hefei, Anhui, China; Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, Hefei, Anhui, China.
| | - Beicheng Sun
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China; Innovative Institute of Tumor Immunity and Medicine (ITIM), Anhui Provincial Innovation Institute for Pharmaceutical Basic Research, Hefei, Anhui, China; Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, Hefei, Anhui, China.
| |
Collapse
|
20
|
Redenti A, Im J, Redenti B, Li F, Rouanne M, Sheng Z, Sun W, Gurbatri CR, Huang S, Komaranchath M, Jang Y, Hahn J, Ballister ER, Vincent RL, Vardoshivilli A, Danino T, Arpaia N. Probiotic neoantigen delivery vectors for precision cancer immunotherapy. Nature 2024; 635:453-461. [PMID: 39415001 PMCID: PMC11560847 DOI: 10.1038/s41586-024-08033-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 09/06/2024] [Indexed: 10/18/2024]
Abstract
Microbial systems have been synthetically engineered to deploy therapeutic payloads in vivo1,2. With emerging evidence that bacteria naturally home in on tumours3,4 and modulate antitumour immunity5,6, one promising application is the development of bacterial vectors as precision cancer vaccines2,7. Here we engineered probiotic Escherichia coli Nissle 1917 as an antitumour vaccination platform optimized for enhanced production and cytosolic delivery of neoepitope-containing peptide arrays, with increased susceptibility to blood clearance and phagocytosis. These features enhance both safety and immunogenicity, achieving a system that drives potent and specific T cell-mediated anticancer immunity that effectively controls or eliminates tumour growth and extends survival in advanced murine primary and metastatic solid tumours. We demonstrate that the elicited antitumour immune response involves recruitment and activation of dendritic cells, extensive priming and activation of neoantigen-specific CD4+ and CD8+ T cells, broader activation of both T and natural killer cells, and a reduction of tumour-infiltrating immunosuppressive myeloid and regulatory T and B cell populations. Taken together, this work leverages the advantages of living medicines to deliver arrays of tumour-specific neoantigen-derived epitopes within the optimal context to induce specific, effective and durable systemic antitumour immunity.
Collapse
Affiliation(s)
- Andrew Redenti
- Department of Microbiology & Immunology, Vagelos College of Physicians and Surgeons of Columbia University, New York, NY, USA
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Jongwon Im
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Benjamin Redenti
- Department of Microbiology & Immunology, Vagelos College of Physicians and Surgeons of Columbia University, New York, NY, USA
| | - Fangda Li
- Department of Microbiology & Immunology, Vagelos College of Physicians and Surgeons of Columbia University, New York, NY, USA
| | - Mathieu Rouanne
- Department of Microbiology & Immunology, Vagelos College of Physicians and Surgeons of Columbia University, New York, NY, USA
| | - Zeren Sheng
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - William Sun
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Candice R Gurbatri
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Shunyu Huang
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Meghna Komaranchath
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - YoungUk Jang
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Jaeseung Hahn
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Edward R Ballister
- Department of Microbiology & Immunology, Vagelos College of Physicians and Surgeons of Columbia University, New York, NY, USA
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Rosa L Vincent
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Ana Vardoshivilli
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Tal Danino
- Department of Biomedical Engineering, Columbia University, New York, NY, USA.
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA.
- Data Science Institute, Columbia University, New York, NY, USA.
| | - Nicholas Arpaia
- Department of Microbiology & Immunology, Vagelos College of Physicians and Surgeons of Columbia University, New York, NY, USA.
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA.
| |
Collapse
|
21
|
Wang HW, Lai HC, Su WP, Kao JT, Hsu WF, Chen HY, Chang CW, Huang GT, Peng CY. Real-world experience of lenvatinib-based therapy in patients with advanced hepatocellular carcinoma. J Gastrointest Oncol 2024; 15:2216-2229. [PMID: 39554567 PMCID: PMC11565097 DOI: 10.21037/jgo-24-351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/05/2024] [Indexed: 11/19/2024] Open
Abstract
BACKGROUND Given the significant advancements in the management of hepatocellular carcinoma (HCC) and the emergence of novel treatment approaches, establishing reliable predictors has become crucial for optimizing patient selection and therapeutic sequencing in HCC. In this study, we aimed to investigate the prognostic factors and treatment efficacy associated with lenvatinib-based therapy. METHODS We retrospectively enrolled 53 patients receiving lenvatinib monotherapy, and 19 patients receiving lenvatinib plus immune checkpoint inhibitor combination therapy as their first-line systemic treatment for unresectable HCC at a single medical center. We employed univariate and multivariate Cox regression analyses to ascertain the factors influencing survival in these cohorts. RESULTS For lenvatinib monotherapy and the combination therapy, the objective response rates were 30.2% and 63.2%, respectively (P=0.03); the median progression-free survival (PFS) durations were 7 months [95% confidence interval (CI): 4.5-9.5] and 12 months (95% CI: 6.4-17.6), respectively (P=0.74); and the median overall survival (OS) was not reached in either group (P=0.93). Although patients receiving the combination therapy had a greater treatment response, no significant survival differences were observed between the lenvatinib monotherapy and combination therapy subgroups, even after inverse probability of treatment weighting (IPTW). Patients who received lenvatinib monotherapy could be stratified based on a combination of albumin-bilirubin (ALBI) grade (either grade 1 or 2a) and a neutrophil-lymphocyte ratio (NLR) of ≤5.8. Compared to the other subgroups combined, those who met both of these criteria exhibited PFS with a hazard ratio (HR) of 0.382 (95% CI: 0.168-0.871; P=0.02), corresponding to 11 and 5 months, respectively; and an OS (HR: 0.198, 95% CI: 0.043-0.920; P=0.04) of not reached versus 12 months, respectively, according to multivariate Cox regression analysis. CONCLUSIONS In our study cohort, there were no statistically significant differences observed in the survival rates between patients treated with lenvatinib monotherapy and those treated with a combination of lenvatinib and immunotherapy. The incorporation of ALBI grade and NLR facilitates the stratification of survival outcomes in patients with unresectable HCC undergoing lenvatinib monotherapy.
Collapse
Affiliation(s)
- Hung-Wei Wang
- Center for Digestive Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung
- School of Medicine, China Medical University, Taichung
- Graduate Institute of Biomedical Science, China Medical University, Taichung
| | - Hsueh-Chou Lai
- Center for Digestive Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung
- School of Chinese Medicine, China Medical University, Taichung
| | - Wen-Pang Su
- Center for Digestive Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung
| | - Jung-Ta Kao
- Center for Digestive Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung
- School of Medicine, China Medical University, Taichung
| | - Wei-Fan Hsu
- Center for Digestive Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung
- Graduate Institute of Biomedical Science, China Medical University, Taichung
- School of Chinese Medicine, China Medical University, Taichung
| | - Hung-Yao Chen
- Center for Digestive Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung
| | - Che-Wei Chang
- Center for Digestive Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung
| | - Guan-Tarn Huang
- Center for Digestive Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung
- School of Medicine, China Medical University, Taichung
| | - Cheng-Yuan Peng
- Center for Digestive Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung
- School of Medicine, China Medical University, Taichung
| |
Collapse
|
22
|
Xiao C, Feng X, Aini W, Zhao Z, Ding G, Gao Y. Knowledge landscape of tumor-associated neutrophil: a bibliometric and visual analysis from 2000-2024. Front Immunol 2024; 15:1448818. [PMID: 39430756 PMCID: PMC11486681 DOI: 10.3389/fimmu.2024.1448818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/20/2024] [Indexed: 10/22/2024] Open
Abstract
Background Neutrophils have long been consistently adjudged to hold a dominant position in acute inflammation, which once led people to undervalue their role in chronic malignancy. It is now acknowledged that neutrophils also infiltrate into the tumor microenvironment in substantial quantities and form a highly abundant immune population within the tumor, known as tumor-associated neutrophils (TANs). There has been a surge of interest in researching the eminent heterogeneity and plasticity of TANs in recent years, and scholars increasingly cotton on to the multifaceted functions of TANs so that strenuous endeavors have been devoted to enunciating their potential as therapeutic targets. Yet it remains much left to translate TAN-targeted immunotherapies into clinical practice. Therefore, there is great significance to comprehensively appraise the research status, focal point, and evolution trend of TAN by using bibliometric analysis. Methods Publications related to TAN research from 2000 to 2024 are extracted from the Web of Science Core Collection. Bibliometric analysis and visualization were performed by tools encompassing Microsoft Excel, VOSviewer, CiteSpace, R-bibliometrix, and so on. Results The bibliometric analysis included a total of 788 publications authored by 5291 scholars affiliated with 1000 institutions across 58 countries/regions, with relevant articles published in 324 journals. Despite China's maximum quantity of publications and top 10 institutions, the United States is the leading country with the most high-quality publications and is also the global cooperation center. FRONTIERS IN IMMUNOLOGY published the most papers, whereas CANCER RESEARCH is the highest co-cited journal. Israeli professor Fridlender, Zvi G. is the founder, pioneer, and cultivator with the highest citation counts and H-index in the TAN area. Our analysis prefigures the future trajectories: TAN heterogeneity, neutrophil extracellular trap, the crosstalk between TANs and immunocytes, and immunotherapy will likely be the focus of future research. Conclusion A comprehensive bibliometric and visual analysis is first performed to map the current landscape and intellectual structure of TAN, which proffers fresh perspectives for further research. The accurate identification of distinct TAN subpopulations and the precise targeting of key pro-tumor/anti-tumor subpopulations hold immense potential to develop into a TAN-targeted immunotherapy.
Collapse
Affiliation(s)
- Chaoyue Xiao
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiang Feng
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Wufuer Aini
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Endocrinology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Zengyi Zhao
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Gouping Ding
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yawen Gao
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
23
|
Sun X, Gui Y, Yang T, Chen L, Zhang Y, Yan L, Chen W, Wang B. PD-L1 + neutrophils induced NETs in malignant ascites is a potential biomarker in HCC. Cancer Immunol Immunother 2024; 73:254. [PMID: 39358478 PMCID: PMC11447185 DOI: 10.1007/s00262-024-03833-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 09/06/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND Since differentiating malignant ascites from benign ascites has always been a clinical difficult, recognition of novel biomarkers in malignant ascites of hepatocellular carcinoma (HCC) patients could be helpful for establishing a diagnosis for HCC patients with ascitic fluids. METHODS Thirty-five HCC patients with malignant ascites and chronic liver diseases patients with benign ascites were enrolled. Serum and ascites specimens were collected to determine TAN subpopulations and NETs concentration. Then, the correlation between ascitic NETs levels and clinical features were analyzed, and ROC curves were generated to evaluate the diagnostic value of NETs. For in vitro study, fresh neutrophils were employed to explore the underlying mechanism of TAN polarization and NETs formation using RNAseq analysis. RESULTS Significantly increased pro-tumor PD-L1+ TANs and higher lactate levels were measured in HCC ascites. RNAseq data showed that lactate regulated genes expression involving PD-L1 expression and NETs formation, suggesting that ascitic lactate might be responsible for tumor progression in TME. Then, NETs-related markers including calprotectin, dsDNA, CitH3, MPO and MPO-DNA were found dramatically elevated in malignant ascites. Next, correlation analysis revealed that ascitic NETs levels positively correlated with LDH, a classic ascitic biochemical indicator. Furthermore, we identified the diagnostic values of NETs in discriminating malignant ascites from benign ascites. CONCLUSIONS Our findings highlighted that elevated ascitic NETs served as a biomarker in HCC patients with malignant ascites, which provided useful insights for both clinical and basic research for malignant ascites diagnosis and management.
Collapse
Affiliation(s)
- Xiaoyu Sun
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Yaoqi Gui
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
- Department of Radiological Medicine, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Tai Yang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Lingbing Chen
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Yi Zhang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Ling Yan
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Weixian Chen
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Bo Wang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China.
| |
Collapse
|
24
|
Fay M, Clavijo PE, Allen CT. Heterogeneous characterization of neutrophilic cells in head and neck cancers. Head Neck 2024; 46:2591-2599. [PMID: 38622975 PMCID: PMC11473716 DOI: 10.1002/hed.27774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/14/2024] [Accepted: 04/07/2024] [Indexed: 04/17/2024] Open
Abstract
BACKGROUND Neutrophilic cells are among the most abundant immune populations within the head and neck tumor microenvironment (TME) and harbor multiple mechanisms of immunosuppression. Despite these important features, neutrophilic cells may be underrepresented in contemporary studies that aim to comprehensively characterize the immune landscape of the TME due to discrepancies in tissue processing and analysis techniques. Here, we review the role of pathologically activated neutrophilic cells within the TME and pitfalls of various approaches used to study their frequency and function in clinical samples. METHODS The literature was identified by searching PubMed for "immune landscape" and "tumor immune microenvironment" in combination with keywords describing solid tumor malignancies. Key publications that assessed the immune composition of solid tumors derived from human specimens were included. The tumor and blood processing methodologies in each study were reviewed in depth and correlated with the reported abundance of neutrophilic cells. RESULTS Neutrophilic cells do not survive cryopreservation, and many studies fail to identify and study neutrophilic cell populations due to cryopreservation of clinical samples for practical reasons. Additional single-cell transcriptomic studies filter out neutrophilic cells due to low transcriptional counts. CONCLUSIONS This report can help readers critically interpret studies aiming to comprehensively study the immune TME that fail to identify and characterize neutrophilic cells.
Collapse
Affiliation(s)
- Magdalena Fay
- Surgical Oncology Program, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Paul E. Clavijo
- Surgical Oncology Program, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Clint T. Allen
- Surgical Oncology Program, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
25
|
Mou Z, Chen Y, Hu J, Hu Y, Zou L, Chen X, Liu S, Yin Q, Gong J, Li S, Mao S, Xu C, Jiang H. Icaritin inhibits the progression of urothelial cancer by suppressing PADI2-mediated neutrophil infiltration and neutrophil extracellular trap formation. Acta Pharm Sin B 2024; 14:3916-3930. [PMID: 39309483 PMCID: PMC11413672 DOI: 10.1016/j.apsb.2024.06.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/05/2024] [Accepted: 06/17/2024] [Indexed: 09/25/2024] Open
Abstract
Tumor relapse and metastasis are the major causes of mortality associated with urothelial cancer. In the tumor microenvironment, negative regulatory molecules and various immune cell subtypes suppress antitumor immunity. The inflammatory microenvironment, associated with neutrophils and neutrophil extracellular traps (NETs), promotes tumor metastasis. However, no drugs are currently available to specifically inhibit neutrophils and NETs. In this study, we first demonstrated that icaritin (ICT), a Chinese herbal remedy that is a first-line treatment for advanced and incurable hepatocellular carcinoma, reduces NETs caused by suicidal NETosis and prevents neutrophil infiltration in the tumor microenvironment. Mechanistically, ICT binds to and inhibits the expression of PADI2 in neutrophils, thereby suppressing PADI2-mediated histone citrullination. Moreover, ICT inhibits ROS generation, suppresses the MAPK signaling pathway, and inhibits NET-induced tumor metastasis. Simultaneously, ICT inhibits tumoral PADI2-mediated histone citrullination, which consequently suppresses the transcription of neutrophil-recruiting genes such as GM-CSF and IL-6. The downregulation of IL-6 expression, in turn, forms a regulatory feedback loop through the JAK2/STAT3/IL-6 axis. Through a retrospective study of clinical samples, we found a correlation between neutrophils, NETs, UCa prognosis, and immune evasion. Combining ICT with immune checkpoint inhibitors may have synergistic effects. In summary, our study demonstrated that ICT could be a novel inhibitor of NETs and a novel UCa treatment.
Collapse
Affiliation(s)
- Zezhong Mou
- Department of Urology, Huashan Hospital, Fudan University, Shanghai 200040, China
- Fudan Institute of Urology, Fudan University, Shanghai 200040, China
| | - Yiling Chen
- Department of Urology, Huashan Hospital, Fudan University, Shanghai 200040, China
- Fudan Institute of Urology, Fudan University, Shanghai 200040, China
| | - Jinzhong Hu
- Department of Urology, Huashan Hospital, Fudan University, Shanghai 200040, China
- Fudan Institute of Urology, Fudan University, Shanghai 200040, China
| | - Yun Hu
- Department of Urology, Huashan Hospital, Fudan University, Shanghai 200040, China
- Fudan Institute of Urology, Fudan University, Shanghai 200040, China
| | - Lujia Zou
- Department of Urology, Huashan Hospital, Fudan University, Shanghai 200040, China
- Fudan Institute of Urology, Fudan University, Shanghai 200040, China
| | - Xinan Chen
- Department of Urology, Huashan Hospital, Fudan University, Shanghai 200040, China
- Fudan Institute of Urology, Fudan University, Shanghai 200040, China
| | - Shenghua Liu
- Department of Urology, Huashan Hospital, Fudan University, Shanghai 200040, China
- Fudan Institute of Urology, Fudan University, Shanghai 200040, China
| | - Qiuping Yin
- Department of Urology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jian Gong
- Department of Urology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Shuchen Li
- Department of Urology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Shanhua Mao
- Department of Urology, Huashan Hospital, Fudan University, Shanghai 200040, China
- Fudan Institute of Urology, Fudan University, Shanghai 200040, China
| | - Chenyang Xu
- Department of Urology, Huashan Hospital, Fudan University, Shanghai 200040, China
- Fudan Institute of Urology, Fudan University, Shanghai 200040, China
| | - Haowen Jiang
- Department of Urology, Huashan Hospital, Fudan University, Shanghai 200040, China
- Fudan Institute of Urology, Fudan University, Shanghai 200040, China
- National Clinical Research Center for Aging and Medicine, Fudan University, Shanghai 200040, China
| |
Collapse
|
26
|
Castenmiller SM, Kanagasabesan N, Guislain A, Nicolet BP, van Loenen MM, Monkhorst K, Veenhof AA, Smit EF, Hartemink KJ, Haanen JB, de Groot R, Wolkers MC. Tertiary lymphoid structure-related immune infiltrates in NSCLC tumor lesions correlate with low tumor-reactivity of TIL products. Oncoimmunology 2024; 13:2392898. [PMID: 39188755 PMCID: PMC11346574 DOI: 10.1080/2162402x.2024.2392898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/23/2024] [Accepted: 08/12/2024] [Indexed: 08/28/2024] Open
Abstract
Adoptive transfer of tumor infiltrating lymphocytes (TIL therapy) has proven highly effective for treating solid cancers, including non-small cell lung cancer (NSCLC). However, not all patients benefit from this therapy for yet unknown reasons. Defining markers that correlate with high tumor-reactivity of the autologous TIL products is thus key for achieving better tailored immunotherapies. We questioned whether the composition of immune cell infiltrates correlated with the tumor-reactivity of expanded TIL products. Unbiased flow cytometry analysis of immune cell infiltrates of 26 early-stage and 20 late-stage NSCLC tumor lesions was used for correlations with the T cell differentiation and activation status, and with the expansion rate and anti-tumor response of generated TIL products. The composition of tumor immune infiltrates was highly variable between patients. Spearman's Rank Correlation revealed that high B cell infiltration negatively correlated with the tumor-reactivity of the patient's expanded TIL products, as defined by cytokine production upon exposure to autologous tumor digest. In-depth analysis revealed that tumor lesions with high B cell infiltrates contained tertiary lymphoid structure (TLS)-related immune infiltrates, including BCL6+ antibody-secreting B cells, IgD+BCL6+ B cells and CXCR5+BLC6+ CD4+ T cells, and higher percentages of naïve CD8+ T cells. In conclusion, the composition of immune cell infiltrates in NSCLC tumors associates with the functionality of the expanded TIL product. Our findings may thus help improve patient selection for TIL therapy.
Collapse
Affiliation(s)
- Suzanne M. Castenmiller
- Sanquin Blood Supply, Division Research Immunotherapy, and Landsteiner Laboratory and Department of Experimental Immunology, Amsterdam University Medical Center, Amsterdam, Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Nandhini Kanagasabesan
- Sanquin Blood Supply, Division Research Immunotherapy, and Landsteiner Laboratory and Department of Experimental Immunology, Amsterdam University Medical Center, Amsterdam, Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Aurélie Guislain
- Sanquin Blood Supply, Division Research Immunotherapy, and Landsteiner Laboratory and Department of Experimental Immunology, Amsterdam University Medical Center, Amsterdam, Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Benoît P. Nicolet
- Sanquin Blood Supply, Division Research Immunotherapy, and Landsteiner Laboratory and Department of Experimental Immunology, Amsterdam University Medical Center, Amsterdam, Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Marleen M. van Loenen
- Sanquin Blood Supply, Division Research Immunotherapy, and Landsteiner Laboratory and Department of Experimental Immunology, Amsterdam University Medical Center, Amsterdam, Netherlands
| | - Kim Monkhorst
- Department of Pathology, Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital (NKI-AvL), Amsterdam, The Netherlands
| | - Alexander A.F.A. Veenhof
- Department of Surgery, Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital (NKI-AvL), Amsterdam, The Netherlands
| | - Egbert F. Smit
- Department of Thoracic Oncology, Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital (NKI-AvL), Amsterdam, The Netherlands
- Department of Pulmonology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Koen J. Hartemink
- Department of Surgery, Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital (NKI-AvL), Amsterdam, The Netherlands
| | - John B.A.G. Haanen
- Division of Medical Oncology and Division of Molecular Oncology and Immunology, Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital (NKI-AvL), Amsterdam, The Netherlands
- Department of Medical Oncology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
- Head of Melanoma Clinic, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Rosa de Groot
- Sanquin Blood Supply, Division Research Immunotherapy, and Landsteiner Laboratory and Department of Experimental Immunology, Amsterdam University Medical Center, Amsterdam, Netherlands
- Department of Hematology, LUMC, Leiden, The Netherlands
| | - Monika C. Wolkers
- Sanquin Blood Supply, Division Research Immunotherapy, and Landsteiner Laboratory and Department of Experimental Immunology, Amsterdam University Medical Center, Amsterdam, Netherlands
- Oncode Institute, Utrecht, The Netherlands
| |
Collapse
|
27
|
Zheng X, Yang L, Shen X, Pan J, Chen Y, Chen J, Wang H, Meng J, Chen Z, Xie S, Li Y, Zhu B, Zhu W, Qin L, Lu L. Targeting Gsk3a reverses immune evasion to enhance immunotherapy in hepatocellular carcinoma. J Immunother Cancer 2024; 12:e009642. [PMID: 39174053 PMCID: PMC11340705 DOI: 10.1136/jitc-2024-009642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2024] [Indexed: 08/24/2024] Open
Abstract
BACKGROUND Immune escape is an important feature of hepatocellular carcinoma (HCC). The overall response rate of immune checkpoint inhibitors (ICIs) in HCC is still limited. Revealing the immune regulation mechanisms and finding new immune targets are expected to further improve the efficacy of immunotherapy. Our study aims to use CRISPR screening mice models to identify potential targets that play a critical role in HCC immune evasion and further explore their value in improving immunotherapy. METHODS We performed CRISPR screening in two mice models with different immune backgrounds (C57BL/6 and NPG mice) and identified the immunosuppressive gene Gsk3a as a candidate for further investigation. Flow cytometry was used to analyze the impact of Gsk3a on immune cell infiltration and T-cell function. RNA sequencing was used to identify the changes in neutrophil gene expression induced by Gsk3a and alterations in downstream molecules. The therapeutic value of the combination of Gsk3a inhibitors and anti-programmed cell death protein-1 (PD-1) antibody was also explored. RESULTS Gsk3a, as an immune inhibitory target, significantly promoted tumor growth in immunocompetent mice rather than immune-deficient mice. Gsk3a inhibited cytotoxic T lymphocytes (CTLs) function by inducing neutrophil chemotaxis. Gsk3a promoted self-chemotaxis of neutrophil expression profiles and neutrophil extracellular traps (NETs) formation to block T-cell activity through leucine-rich α-2-glycoprotein 1 (LRG1). A significant synergistic effect was observed when Gsk3a inhibitor was in combination with anti-PD-1 antibody. CONCLUSIONS We identified a potential HCC immune evasion target, Gsk3a, through CRISPR screening. Gsk3a induces neutrophil recruitment and NETs formation through the intermediate molecule LRG1, leading to the inhibition of CTLs function. Targeting Gsk3a can enhance CTLs function and improve the efficacy of ICIs.
Collapse
Affiliation(s)
- Xin Zheng
- Department of General Surgery, Hepatobiliary Surgery Center, Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Luyu Yang
- Department of General Surgery, Hepatobiliary Surgery Center, Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Xiaotian Shen
- Department of General Surgery, Hepatobiliary Surgery Center, Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Junjie Pan
- Department of General Surgery, Hepatobiliary Surgery Center, Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Yiran Chen
- Department of General Surgery, Hepatobiliary Surgery Center, Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Jixuan Chen
- Department of General Surgery, Hepatobiliary Surgery Center, Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Hao Wang
- Department of General Surgery, Hepatobiliary Surgery Center, Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Jiaqi Meng
- Third Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Zhenchao Chen
- Department of General Surgery, Hepatobiliary Surgery Center, Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Sunzhe Xie
- Department of General Surgery, Hepatobiliary Surgery Center, Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Yitong Li
- Department of General Surgery, Hepatobiliary Surgery Center, Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Bolun Zhu
- Department of General Surgery, Hepatobiliary Surgery Center, Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Wenwei Zhu
- Department of General Surgery, Hepatobiliary Surgery Center, Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Lunxiu Qin
- Department of General Surgery, Hepatobiliary Surgery Center, Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Lu Lu
- Department of General Surgery, Hepatobiliary Surgery Center, Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, China
| |
Collapse
|
28
|
Yin Y, Feng W, Chen J, Chen X, Wang G, Wang S, Xu X, Nie Y, Fan D, Wu K, Xia L. Immunosuppressive tumor microenvironment in the progression, metastasis, and therapy of hepatocellular carcinoma: from bench to bedside. Exp Hematol Oncol 2024; 13:72. [PMID: 39085965 PMCID: PMC11292955 DOI: 10.1186/s40164-024-00539-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/10/2024] [Indexed: 08/02/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a highly heterogeneous malignancy with high incidence, recurrence, and metastasis rates. The emergence of immunotherapy has improved the treatment of advanced HCC, but problems such as drug resistance and immune-related adverse events still exist in clinical practice. The immunosuppressive tumor microenvironment (TME) of HCC restricts the efficacy of immunotherapy and is essential for HCC progression and metastasis. Therefore, it is necessary to elucidate the mechanisms behind immunosuppressive TME to develop and apply immunotherapy. This review systematically summarizes the pathogenesis of HCC, the formation of the highly heterogeneous TME, and the mechanisms by which the immunosuppressive TME accelerates HCC progression and metastasis. We also review the status of HCC immunotherapy and further discuss the existing challenges and potential therapeutic strategies targeting immunosuppressive TME. We hope to inspire optimizing and innovating immunotherapeutic strategies by comprehensively understanding the structure and function of immunosuppressive TME in HCC.
Collapse
Affiliation(s)
- Yue Yin
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Weibo Feng
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Jie Chen
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Xilang Chen
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Guodong Wang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Shuai Wang
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Xiao Xu
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Yongzhan Nie
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China.
| | - Daiming Fan
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China.
| | - Kaichun Wu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China.
| | - Limin Xia
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China.
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China.
| |
Collapse
|
29
|
Zhang Y, Wang Z, Lu Y, Sanchez DJ, Li J, Wang L, Meng X, Chen J, Kien TT, Zhong M, Gao W, Ding X. Region-Specific CD16 + Neutrophils Promote Colorectal Cancer Progression by Inhibiting Natural Killer Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403414. [PMID: 38790136 PMCID: PMC11304263 DOI: 10.1002/advs.202403414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/30/2024] [Indexed: 05/26/2024]
Abstract
The colon is the largest compartment of the immune system, with innate immune cells exposed to antigens in the environment. However, the mechanisms by which the innate immune system is instigated are poorly defined in colorectal cancer (CRC). Here, a population of CD16+ neutrophils that specifically accumulate in CRC tumor tissues by imaging mass cytometry (IMC), immune fluorescence, and flow cytometry, which demonstrated pro-tumor activity by disturbing natural killer (NK) cells are identified. It is found that these CD16+ neutrophils possess abnormal cholesterol accumulation due to activation of the CD16/TAK1/NF-κB axis, which upregulates scavenger receptors for cholesterol intake including CD36 and LRP1. Consequently, these region-specific CD16+ neutrophils not only competitively inhibit cholesterol intake of NK cells, which interrupts NK lipid raft formation and blocks their antitumor signaling but also release neutrophil extracellular traps (NETs) to induce the death of NK cells. Furthermore, CD16-knockout reverses the pro-tumor activity of neutrophils and restored NK cell cytotoxicity. Collectively, the findings suggest that CRC region-specific CD16+ neutrophils can be a diagnostic marker and potential therapeutic target for CRC.
Collapse
Affiliation(s)
- Yan Zhang
- State Key Laboratory of Systems Medicine for CancerRenji HospitalSchool of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030China
- Med‐X Research Institute & School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030China
| | - Zien Wang
- State Key Laboratory of Systems Medicine for CancerRenji HospitalSchool of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030China
- Med‐X Research Institute & School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030China
| | - Yu Lu
- State Key Laboratory of Systems Medicine for CancerRenji HospitalSchool of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030China
| | - David J. Sanchez
- Pharmaceutical Sciences DepartmentCollege of PharmacyWestern University of Health Sciences309 East 2nd StreetHPC 225PomonaCA90025USA
| | - Jiaojiao Li
- School of Biomedical EngineeringFaculty of Engineering and ITUniversity of Technology SydneySydneyNSW2007Australia
| | - Linghao Wang
- Med‐X Research Institute & School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030China
| | - Xiaoxue Meng
- Med‐X Research Institute & School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030China
| | - Jianjun Chen
- Department of Gastrointestinal SurgeryRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Tran Trung Kien
- Oncology departmentUniversity Medical Shing Mark Hospital1054 Highway 51, Long Binh Tan Ward, Bien Hoa CityDong Nai76000Vietnam
| | - Ming Zhong
- Department of Gastrointestinal SurgeryRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Wei‐Qiang Gao
- State Key Laboratory of Systems Medicine for CancerRenji HospitalSchool of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030China
- Med‐X Research Institute & School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030China
| | - Xianting Ding
- State Key Laboratory of Oncogenes and Related GenesInstitute for Personalized MedicineSchool of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030China
| |
Collapse
|
30
|
Jin Y, Christenson ES, Zheng L, Li K. Neutrophils in pancreatic ductal adenocarcinoma: bridging preclinical insights to clinical prospects for improved therapeutic strategies. Expert Rev Clin Immunol 2024; 20:945-958. [PMID: 38690749 DOI: 10.1080/1744666x.2024.2348605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024]
Abstract
INTRODUCTION Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive malignancy characterized by a dismal five-year survival rate of less than 10%. Neutrophils are key components of the innate immune system, playing a pivotal role in the PDAC immune microenvironment. AREAS COVERED This review provides a comprehensive survey of the pivotal involvement of neutrophils in the tumorigenesis and progression of PDAC. Furthermore, it synthesizes preclinical and clinical explorations aimed at targeting neutrophils within the milieu of PDAC, subsequently proposing a conceptual framework to propel further inquiry focused on enhancing the therapeutic efficacy of PDAC through neutrophil-targeted strategies. PubMed and Web of Science databases were utilized for researching neutrophils in pancreatic cancer publications prior to 2024. EXPERT OPINION Neutrophils play roles in promoting tumor growth and metastasis in PDAC and are associated with poor prognosis. However, the heterogeneity and plasticity of neutrophils and their complex relationships with other immune cells and extracellular matrix also provide new insights for immunotherapy targeting neutrophils to achieve a better prognosis for PDAC.
Collapse
Affiliation(s)
- Yi Jin
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Eric S Christenson
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lei Zheng
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Skip Viragh Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Cancer Convergence Institute at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Keyu Li
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Skip Viragh Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
31
|
Miao S, Rodriguez BL, Gibbons DL. The Multifaceted Role of Neutrophils in NSCLC in the Era of Immune Checkpoint Inhibitors. Cancers (Basel) 2024; 16:2507. [PMID: 39061147 PMCID: PMC11274601 DOI: 10.3390/cancers16142507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/29/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
Lung cancer is the most common cause of cancer-related death in both males and females in the U.S. and non-small-cell lung cancer (NSCLC) accounts for 85%. Although the use of first- or second-line immune checkpoint inhibitors (ICIs) exhibits remarkable clinical benefits, resistance to ICIs develops over time and dampens the efficacy of ICIs in patients. Tumor-associated neutrophils (TANs) have an important role in modulating the tumor microenvironment (TME) and tumor immune response. The major challenge in the field is to characterize the TANs in NSCLC TME and understand the link between TAN-related immunosuppression with ICI treatment response. In this review, we summarize the current studies of neutrophil interaction with malignant cells, T-cells, and other components in the TME. Ongoing clinical trials are aimed at utilizing reagents that have putative effects on tumor-associated neutrophils, in combination with ICI. Elevated neutrophil populations and neutrophil-associated factors could be potential therapeutic targets to enhance anti-PD1 treatment in NSCLC.
Collapse
Affiliation(s)
- Shucheng Miao
- Department of Thoracic Head & Neck Medical Oncology, MD Anderson Cancer Center, Houston, TX 77030, USA; (S.M.); (B.L.R.)
- The University of Texas MD Anderson Cancer Center, UTHealth at Houston Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Bertha Leticia Rodriguez
- Department of Thoracic Head & Neck Medical Oncology, MD Anderson Cancer Center, Houston, TX 77030, USA; (S.M.); (B.L.R.)
| | - Don L. Gibbons
- Department of Thoracic Head & Neck Medical Oncology, MD Anderson Cancer Center, Houston, TX 77030, USA; (S.M.); (B.L.R.)
- The University of Texas MD Anderson Cancer Center, UTHealth at Houston Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|
32
|
Rodríguez-Bejarano OH, Parra-López C, Patarroyo MA. A review concerning the breast cancer-related tumour microenvironment. Crit Rev Oncol Hematol 2024; 199:104389. [PMID: 38734280 DOI: 10.1016/j.critrevonc.2024.104389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/29/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024] Open
Abstract
Breast cancer (BC) is currently the most common malignant tumour in women and one of the leading causes of their death around the world. New and increasingly personalised diagnostic and therapeutic tools have been introduced over the last few decades, along with significant advances regarding the study and knowledge related to BC. The tumour microenvironment (TME) refers to the tumour cell-associated cellular and molecular environment which can influence conditions affecting tumour development and progression. The TME is composed of immune cells, stromal cells, extracellular matrix (ECM) and signalling molecules secreted by these different cell types. Ever deeper understanding of TME composition changes during tumour development and progression will enable new and more innovative therapeutic strategies to become developed for targeting tumours during specific stages of its evolution. This review summarises the role of BC-related TME components and their influence on tumour progression and the development of resistance to therapy. In addition, an account on the modifications in BC-related TME components associated with therapy is given, and the completed or ongoing clinical trials related to this topic are presented.
Collapse
Affiliation(s)
- Oscar Hernán Rodríguez-Bejarano
- Health Sciences Faculty, Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A), Calle 222#55-37, Bogotá 111166, Colombia; Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50#26-20, Bogotá 111321, Colombia; PhD Programme in Biotechnology, Faculty of Sciences, Universidad Nacional de Colombia, Carrera 45#26-85, Bogotá 111321, Colombia
| | - Carlos Parra-López
- Microbiology Department, Faculty of Medicine, Universidad Nacional de Colombia, Carrera 45#26-85, Bogotá 111321, Colombia.
| | - Manuel Alfonso Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50#26-20, Bogotá 111321, Colombia; Microbiology Department, Faculty of Medicine, Universidad Nacional de Colombia, Carrera 45#26-85, Bogotá 111321, Colombia.
| |
Collapse
|
33
|
Wu Q, Mao H, Jiang Z, Tang D. Tumour-associated neutrophils: Potential therapeutic targets in pancreatic cancer immunotherapy. Immunology 2024; 172:343-361. [PMID: 38402904 DOI: 10.1111/imm.13765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/31/2024] [Indexed: 02/27/2024] Open
Abstract
Pancreatic cancer (PC) is a highly malignant tumour of the digestive system with poor therapeutic response and low survival rates. Immunotherapy has rapidly developed in recent years and has achieved significant outcomes in numerous malignant neoplasms. However, responses to immunotherapy in PC are rare, and the immunosuppressive and desmoplastic tumour microenvironment (TME) significantly hinders their efficacy in PC. Tumour-associated neutrophils (TANs) play a crucial role in the PC microenvironment and exert a profound influence on PC immunotherapy by establishing a robust stromal shelter and restraining immune cells to assist PC cells in immune escape, which may subvert the current status of PC immunotherapy. The present review aims to offer a comprehensive summary of the latest progress in understanding the involvement of TANs in PC desmoplastic and immunosuppressive functions and to emphasise the potential therapeutic implications of focusing on TANs in the immunotherapy of this deleterious disease. Finally, we provide an outlook for the future use of TANs in PC immunotherapy.
Collapse
Affiliation(s)
- Qihang Wu
- Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Han Mao
- Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Zhengting Jiang
- Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Dong Tang
- Department of General Surgery, Institute of General Surgery, Clinical Medical College, Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou, China
| |
Collapse
|
34
|
Doz-Deblauwe E, Bounab B, Carreras F, Fahel JS, Oliveira SC, Lamkanfi M, Le Vern Y, Germon P, Pichon J, Kempf F, Paget C, Remot A, Winter N. Dual neutrophil subsets exacerbate or suppress inflammation in tuberculosis via IL-1β or PD-L1. Life Sci Alliance 2024; 7:e202402623. [PMID: 38803236 PMCID: PMC11109925 DOI: 10.26508/lsa.202402623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/26/2024] [Accepted: 04/26/2024] [Indexed: 05/29/2024] Open
Abstract
Neutrophils can be beneficial or deleterious during tuberculosis (TB). Based on the expression of MHC-II and programmed death ligand 1 (PD-L1), we distinguished two functionally and transcriptionally distinct neutrophil subsets in the lungs of mice infected with mycobacteria. Inflammatory [MHC-II-, PD-L1lo] neutrophils produced inflammasome-dependent IL-1β in the lungs in response to virulent mycobacteria and "accelerated" deleterious inflammation, which was highly exacerbated in IFN-γR-/- mice. Regulatory [MHC-II+, PD-L1hi] neutrophils "brake" inflammation by suppressing T-cell proliferation and IFN-γ production. Such beneficial regulation, which depends on PD-L1, is controlled by IFN-γR signaling in neutrophils. The hypervirulent HN878 strain from the Beijing genotype curbed PD-L1 expression by regulatory neutrophils, abolishing the braking function and driving deleterious hyperinflammation in the lungs. These findings add a layer of complexity to the roles played by neutrophils in TB and may explain the reactivation of this disease observed in cancer patients treated with anti-PD-L1.
Collapse
Affiliation(s)
| | | | | | - Julia S Fahel
- INRAE, Université de Tours, Nouzilly, France
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Sergio C Oliveira
- Department of Immunology, University of Sao Paolo, Sao Paulo, Brazil
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Mohamed Lamkanfi
- Laboratory of Medical Immunology, Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | | | | | | | | | - Christophe Paget
- INSERM, U1100, Centre d'Étude des Pathologies Respiratoires, Tours, France
- Faculté de Médecine, Université de Tours, Tours, France
| | - Aude Remot
- INRAE, Université de Tours, Nouzilly, France
| | | |
Collapse
|
35
|
Yang Y, Yu S, Lv C, Tian Y. NETosis in tumour microenvironment of liver: From primary to metastatic hepatic carcinoma. Ageing Res Rev 2024; 97:102297. [PMID: 38599524 DOI: 10.1016/j.arr.2024.102297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/23/2024] [Accepted: 04/03/2024] [Indexed: 04/12/2024]
Abstract
BACKGROUND Hepatocellular carcinoma is a common and highly lethal tumour. The tumour microenvironment (TME) plays an important role in the progression and metastasis of hepatocellular carcinoma (HCC). A cell death mechanism, termed NETosis, has been found to play an important role in the TME of HCC. SUMMARY This review article focuses on the role of NETosis in the TME of HCC, a novel form of cell death in which neutrophils capture and kill microorganisms by releasing a type of DNA meshwork fibres called "NETs". This process is associated with neutrophil activation, local inflammation and cytokines. The study suggests that NETs play a multifaceted role in the development and metastasis of HCC. The article also discusses the role of NETs in tumour proliferation and metastasis, epithelial-mesenchymal transition (EMT), and surgical stress. In addition, the article discusses the interaction of NETosis with other immune cells in the TME and related therapeutic strategies. A deeper understanding of NETosis can help us better understand the complexity of the immune system and provide a new therapeutic basis for the treatment and prevention of HCC. KEY INFORMATION In conclusion, NETosis is important in the TME of liver. NETs have been shown to contribute to the progression and metastasis of liver cancer. The interaction between NETosis and immune cells in the TME, as well as related therapies, are important areas of research.
Collapse
Affiliation(s)
- Yi Yang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Siyue Yu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Chao Lv
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Yu Tian
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China.
| |
Collapse
|
36
|
Zhu D, Lu Y, Yan Z, Deng Q, Hu B, Wang Y, Wang W, Wang Y, Wang Y. A β-Carboline Derivate PAD4 Inhibitor Reshapes Neutrophil Phenotype and Improves the Tumor Immune Microenvironment against Triple-Negative Breast Cancer. J Med Chem 2024; 67:7973-7994. [PMID: 38728549 DOI: 10.1021/acs.jmedchem.4c00030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
Triple-negative breast cancer is a highly aggressive and heterogeneous breast cancer subtype characterized by early metastasis, poor prognosis, and high recurrence. Targeting histone citrullination-mediated chromatin dysregulation to induce epigenetic alterations shows great promise in TNBC therapy. We report the synthesis, optimization, and evaluation of a novel series of β-carboline-derived peptidyl arginine deiminase 4 inhibitors that exhibited potent inhibition of TNBC cell proliferation. The most outstanding PAD4 inhibitor, compound 28, hindered the PAD4-H3cit-NET signaling pathway and inhibited the growth of solid tumors and pulmonary metastatic nodules in the 4T1 in situ mouse model. Furthermore, 28 improved the tumor immune microenvironment by reshaping neutrophil phenotype, upregulating the proportions of dendritic cells and M1 macrophages, and reducing the amount of myeloid-derived suppressor cells. In conclusion, our work offered 28 as an efficacious PAD4 inhibitor that exerts a combination of conventional chemotherapy and immune-boosting effects, which represents a potential therapy strategy for TNBC.
Collapse
Affiliation(s)
- Di Zhu
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing 100069, P. R. China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing 100069, P. R. China
| | - Yu Lu
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing 100069, P. R. China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing 100069, P. R. China
| | - Zhanchao Yan
- The First Affiliated Hospital of Henan University, Center for Clinical Research and Translational Medicine, Laboratory of Epigenetics, Henan University, Kaifeng 475004, P. R. China
| | - Qian Deng
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing 100069, P. R. China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing 100069, P. R. China
| | - Bo Hu
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing 100069, P. R. China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing 100069, P. R. China
| | - Yinsong Wang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China
| | - Wenjing Wang
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, P. R. China
| | - Yanming Wang
- The First Affiliated Hospital of Henan University, Center for Clinical Research and Translational Medicine, Laboratory of Epigenetics, Henan University, Kaifeng 475004, P. R. China
| | - Yuji Wang
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing 100069, P. R. China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing 100069, P. R. China
- Beijing Laboratory of Oral Health, Capital Medical University, Beijing 100069, P. R. China
| |
Collapse
|
37
|
Huang X, Nepovimova E, Adam V, Sivak L, Heger Z, Valko M, Wu Q, Kuca K. Neutrophils in Cancer immunotherapy: friends or foes? Mol Cancer 2024; 23:107. [PMID: 38760815 PMCID: PMC11102125 DOI: 10.1186/s12943-024-02004-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/16/2024] [Indexed: 05/19/2024] Open
Abstract
Neutrophils play a Janus-faced role in the complex landscape of cancer pathogenesis and immunotherapy. As immune defense cells, neutrophils release toxic substances, including reactive oxygen species and matrix metalloproteinase 9, within the tumor microenvironment. They also modulate the expression of tumor necrosis factor-related apoptosis-inducing ligand and Fas ligand, augmenting their capacity to induce tumor cell apoptosis. Their involvement in antitumor immune regulation synergistically activates a network of immune cells, bolstering anticancer effects. Paradoxically, neutrophils can succumb to the influence of tumors, triggering signaling cascades such as JAK/STAT, which deactivate the immune system network, thereby promoting immune evasion by malignant cells. Additionally, neutrophil granular constituents, such as neutrophil elastase and vascular endothelial growth factor, intricately fuel tumor cell proliferation, metastasis, and angiogenesis. Understanding the mechanisms that guide neutrophils to collaborate with other immune cells for comprehensive tumor eradication is crucial to enhancing the efficacy of cancer therapeutics. In this review, we illuminate the underlying mechanisms governing neutrophil-mediated support or inhibition of tumor progression, with a particular focus on elucidating the internal and external factors that influence neutrophil polarization. We provide an overview of recent advances in clinical research regarding the involvement of neutrophils in cancer therapy. Moreover, the future prospects and limitations of neutrophil research are discussed, aiming to provide fresh insights for the development of innovative cancer treatment strategies targeting neutrophils.
Collapse
Affiliation(s)
- Xueqin Huang
- College of Life Science, Yangtze University, Jingzhou, 434025, China
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Králové, 500 03, Hradec Králové, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, 613 00, Brno, Czech Republic
| | - Ladislav Sivak
- Department of Chemistry and Biochemistry, Mendel University in Brno, 613 00, Brno, Czech Republic
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, 613 00, Brno, Czech Republic
| | - Marian Valko
- Faculty of Chemical and Food Technology, Slovak University of Technology, 812 37, Bratislava, Slovakia
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou, 434025, China.
- Department of Chemistry, Faculty of Science, University of Hradec Králové, 500 03, Hradec Králové, Czech Republic.
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Králové, 500 03, Hradec Králové, Czech Republic.
- Biomedical Research Center, University Hospital Hradec Kralove, 500 05, Hradec Kralove, Czech Republic.
- Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI), University of Granada, Granada, Spain.
| |
Collapse
|
38
|
Wendlinger S, Wohlfarth J, Siedel C, Kreft S, Kilian T, Junker S, Schmid L, Sinnberg T, Dischinger U, Heppt MV, Wistuba-Hamprecht K, Meier F, Erpenbeck L, Neubert E, Goebeler M, Gesierich A, Schrama D, Kosnopfel C, Schilling B. Susceptibility of Melanoma Cells to Targeted Therapy Correlates with Protection by Blood Neutrophils. Cancers (Basel) 2024; 16:1767. [PMID: 38730718 PMCID: PMC11083732 DOI: 10.3390/cancers16091767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/25/2024] [Accepted: 04/28/2024] [Indexed: 05/13/2024] Open
Abstract
Elevated levels of peripheral blood and tumor tissue neutrophils are associated with poorer clinical response and therapy resistance in melanoma. The underlying mechanism and the role of neutrophils in targeted therapy is still not fully understood. Serum samples of patients with advanced melanoma were collected and neutrophil-associated serum markers were measured and correlated with response to targeted therapy. Blood neutrophils from healthy donors and patients with advanced melanoma were isolated, and their phenotypes, as well as their in vitro functions, were compared. In vitro functional tests were conducted through nonadherent cocultures with melanoma cells. Protection of melanoma cell lines by neutrophils was assessed under MAPK inhibition. Blood neutrophils from advanced melanoma patients exhibited lower CD16 expression compared to healthy donors. In vitro, both healthy-donor- and patient-derived neutrophils prevented melanoma cell apoptosis upon dual MAPK inhibition. The effect depended on cell-cell contact and melanoma cell susceptibility to treatment. Interference with protease activity of neutrophils prevented melanoma cell protection during treatment in cocultures. The negative correlation between neutrophils and melanoma outcomes seems to be linked to a protumoral function of neutrophils. In vitro, neutrophils exert a direct protective effect on melanoma cells during dual MAPK inhibition. This study further hints at a crucial role of neutrophil-related protease activity in protection.
Collapse
Affiliation(s)
- Simone Wendlinger
- Department of Dermatology, University Hospital Würzburg, 97080 Würzburg, Germany
- Mildred Scheel Early Career Center Wuerzburg, University Hospital Wuerzburg, 97080 Würzburg, Germany
| | - Jonas Wohlfarth
- Department of Dermatology, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Claudia Siedel
- Department of Dermatology, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Sophia Kreft
- Department of Dermatology, University Hospital Würzburg, 97080 Würzburg, Germany
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester M20 4BX, UK
| | - Teresa Kilian
- Department of Dermatology, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Sarah Junker
- Department of Dermatology, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Luisa Schmid
- Department of Dermatology, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Tobias Sinnberg
- Division of Dermatooncology, Department of Dermatology, University of Tübingen, 72076 Tübingen, Germany
- Department of Dermatology, Venereology and Allergology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Ulrich Dischinger
- Department of Endocrinology and Diabetology, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Markus V. Heppt
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Kilian Wistuba-Hamprecht
- Skin Cancer Unit, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, 68167 Mannheim, Germany
| | - Friedegund Meier
- Department of Dermatology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- Skin Cancer Center at the University Cancer Centre Dresden and National Center for Tumor Diseases, 01307 Dresden, Germany
| | - Luise Erpenbeck
- Department of Dermatology, University of Münster, 48149 Münster, Germany
| | - Elsa Neubert
- Leiden Academic Centre for Drug Research, Leiden University, 2333 Leiden, The Netherlands
- Department of Dermatology, Venereology and Allergology, University Medical Center, Göttingen University, 37075 Göttingen, Germany
| | - Matthias Goebeler
- Department of Dermatology, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Anja Gesierich
- Department of Dermatology, University Hospital Würzburg, 97080 Würzburg, Germany
| | - David Schrama
- Department of Dermatology, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Corinna Kosnopfel
- Department of Dermatology, University Hospital Würzburg, 97080 Würzburg, Germany
- Mildred Scheel Early Career Center Wuerzburg, University Hospital Wuerzburg, 97080 Würzburg, Germany
- Department of Hematology, Oncology and Pneumology, University Hospital Münster, 48149 Münster, Germany
| | - Bastian Schilling
- Department of Dermatology, University Hospital Würzburg, 97080 Würzburg, Germany
| |
Collapse
|
39
|
Hu Z, Yuan L, Yang X, Yi C, Lu J. The roles of long non-coding RNAs in ovarian cancer: from functions to therapeutic implications. Front Oncol 2024; 14:1332528. [PMID: 38725621 PMCID: PMC11079149 DOI: 10.3389/fonc.2024.1332528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/27/2024] [Indexed: 05/12/2024] Open
Abstract
Long non-coding RNAs (lncRNAs) are multifunctional and participate in a variety of biological processes and gene regulatory networks. The deregulation of lncRNAs has been extensively implicated in diverse human diseases, especially in cancers. Overwhelming evidence demonstrates that lncRNAs are essential to the pathophysiological processes of ovarian cancer (OC), acting as regulators involved in metastasis, cell death, chemoresistance, and tumor immunity. In this review, we illustrate the expanded functions of lncRNAs in the initiation and progression of OC and elaborate on the signaling pathways in which they pitch. Additionally, the potential clinical applications of lncRNAs as biomarkers in the diagnosis and treatment of OC were emphasized, cementing the bridge of communication between clinical practice and basic research.
Collapse
Affiliation(s)
- Zhong Hu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
| | - Lijin Yuan
- Department of Obstetrics and Gynecology, Huangshi Puren Hospital, Huangshi, Hubei, China
| | - Xiu Yang
- Department of Obstetrics and Gynecology, Huangshi Central Hospital, Huangshi, Hubei, China
| | - Cunjian Yi
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
| | - Jinzhi Lu
- Department of Laboratory Medicine, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
| |
Collapse
|
40
|
Zhang S, Tang Z. Prognostic and clinicopathological significance of systemic inflammation response index in patients with hepatocellular carcinoma: a systematic review and meta-analysis. Front Immunol 2024; 15:1291840. [PMID: 38469315 PMCID: PMC10925676 DOI: 10.3389/fimmu.2024.1291840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 02/05/2024] [Indexed: 03/13/2024] Open
Abstract
Background It is unclear whether the systemic inflammation response index (SIRI) can predict the prognosis of patients with hepatocellular carcinoma (HCC). Consequently, the present study focused on systematically identifying the relationship between SIRI and the prognosis of patients with HCC through a meta-analysis. Methods Systematic and comprehensive studies were retrieved from PubMed, Web of Science, Embase, and the Cochrane Library from their inception to August 10, 2023. The role of SIRI in predicting overall survival (OS) and progression-free survival (PFS) in HCC was determined using pooled hazard ratios (HRs) and 95% confidence intervals (CIs). Odds ratios (ORs) and 95% CIs were pooled to analyze the correlations between SIRI and the clinicopathological features of HCC. Results Ten articles involving 2,439 patients were included. An elevated SIRI was significantly associated with dismal OS (HR=1.75, 95% CI=1.52-2.01, p<0.001) and inferior PFS (HR=1.66, 95% CI=1.34-2.05, p<0.001) in patients with HCC. Additionally, according to the combined results, the increased SIRI was significantly related to multiple tumor numbers (OR=1.42, 95% CI=1.09-1.85, p=0.009) and maximum tumor diameter >5 cm (OR=3.06, 95% CI=1.76-5.30, p<0.001). However, the SIRI did not show any significant relationship with sex, alpha-fetoprotein content, Child-Pugh class, or hepatitis B virus infection. Conclusion According to our results, elevated SIRI significantly predicted OS and PFS in patients with HCC. Moreover, the SIRI was significantly associated with tumor aggressiveness. Systematic review registration https://inplasy.com/inplasy-2023-9-0003/, identifier INPLASY202390003.
Collapse
Affiliation(s)
| | - Zhining Tang
- Clinical Laboratory, Huzhou Central Hospital, Affiliated Central Hospital of Huzhou University, The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, Zhejiang, China
| |
Collapse
|
41
|
Di Ceglie I, Carnevale S, Rigatelli A, Grieco G, Molisso P, Jaillon S. Immune cell networking in solid tumors: focus on macrophages and neutrophils. Front Immunol 2024; 15:1341390. [PMID: 38426089 PMCID: PMC10903099 DOI: 10.3389/fimmu.2024.1341390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/29/2024] [Indexed: 03/02/2024] Open
Abstract
The tumor microenvironment is composed of tumor cells, stromal cells and leukocytes, including innate and adaptive immune cells, and represents an ecological niche that regulates tumor development and progression. In general, inflammatory cells are considered to contribute to tumor progression through various mechanisms, including the formation of an immunosuppressive microenvironment. Macrophages and neutrophils are important components of the tumor microenvironment and can act as a double-edged sword, promoting or inhibiting the development of the tumor. Targeting of the immune system is emerging as an important therapeutic strategy for cancer patients. However, the efficacy of the various immunotherapies available is still limited. Given the crucial importance of the crosstalk between macrophages and neutrophils and other immune cells in the formation of the anti-tumor immune response, targeting these interactions may represent a promising therapeutic approach against cancer. Here we will review the current knowledge of the role played by macrophages and neutrophils in cancer, focusing on their interaction with other immune cells.
Collapse
Affiliation(s)
| | | | | | - Giovanna Grieco
- IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Piera Molisso
- IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Sebastien Jaillon
- IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| |
Collapse
|
42
|
Chen D, Mao P, Sun C, Fan X, Zhu Q, Chen Z, He Z, Lou Y, Sun H. Prognostic Value of Combined Neutrophil-to-Lymphocyte Ratio and Imaging Tumor Capsule in Solitary Hepatocellular Carcinoma Patients after Narrow-Margin Hepatectomy. J Clin Med 2024; 13:351. [PMID: 38256485 PMCID: PMC10816149 DOI: 10.3390/jcm13020351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/15/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND The study aimed to investigate the clinical value and prognostic patterns of the neutrophil-to-lymphocyte ratio (NLR) and imaging tumor capsule (ITC) in solitary hepatocellular carcinoma (HCC) patients undergoing narrow-margin hepatectomy. METHODS Data for solitary HCC patients treated with narrow-margin surgery were extracted from Shanghai General Hospital. Clinical features of recurrence-free survival (RFS), overall survival (OS), and early recurrence were investigated by Cox/logistic regression. The significant variables were subsequently incorporated into the nomogram pattern. Survival analysis stratified by NLR and ITC was also performed. RESULTS The study included a cohort of 222 patients, with median RFS and OS of 24.083 and 32.283 months, respectively. Both an NLR ≥ 2.80 and incomplete ITC had a significant impact on prognosis. NLR and ITC independently affected RFS and OS, whereas alpha-fetoprotein (AFP) and ITC were identified as independent factors for early relapse. The RFS and OS nomogram, generated based on the Cox model, demonstrated good performance in validation. The combination of NLR and ITC showed greater predictive accuracy for 5-year RFS and OS. Subgroups with an NLR ≥ 2.80 and incomplete ITC had the worst prognosis. CONCLUSIONS Both NLR and ITC significantly affected RFS, OS, and early recurrence among solitary HCC patients who underwent narrow-margin hepatectomy. The combination of NLR and ITC has the potential to guide rational clinical treatment and determine the prognosis.
Collapse
Affiliation(s)
- Desheng Chen
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China; (D.C.); (Q.Z.); (Z.C.); (Z.H.); (Y.L.)
| | - Pengjuan Mao
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China;
| | - Chen Sun
- Clinical Research Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China;
| | - Xuhui Fan
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China;
| | - Qi Zhu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China; (D.C.); (Q.Z.); (Z.C.); (Z.H.); (Y.L.)
| | - Zeping Chen
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China; (D.C.); (Q.Z.); (Z.C.); (Z.H.); (Y.L.)
| | - Zeping He
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China; (D.C.); (Q.Z.); (Z.C.); (Z.H.); (Y.L.)
| | - Yichao Lou
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China; (D.C.); (Q.Z.); (Z.C.); (Z.H.); (Y.L.)
| | - Hongcheng Sun
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China; (D.C.); (Q.Z.); (Z.C.); (Z.H.); (Y.L.)
| |
Collapse
|
43
|
Manuel G, Coleman M, Orvis AS, Munson J, Li A, Kapur RP, Li M, Li E, Armistead B, Rajagopal L, Adams Waldorf KM. Spatial profiling of the placental chorioamniotic membranes reveals upregulation of immune checkpoint proteins during Group B Streptococcus infection in a nonhuman primate model. Front Cell Infect Microbiol 2024; 13:1299644. [PMID: 38239507 PMCID: PMC10794649 DOI: 10.3389/fcimb.2023.1299644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/05/2023] [Indexed: 01/22/2024] Open
Abstract
Background Preterm birth is a leading cause of neonatal mortality, which is often complicated by intrauterine infection and inflammation. We have established a nonhuman primate model of Group B Streptococcus (GBS, Streptococcus agalactiae) infection-associated preterm birth. Immune checkpoints are modulators of the immune response by activating or suppressing leukocyte function and are understudied in preterm birth. The objective of this study was to spatially profile changes in immune protein expression at the maternal-fetal interface during a GBS infection with a focus on immune checkpoints. Methods Twelve nonhuman primates (pigtail macaques, Macaca nemestrina) received a choriodecidual inoculation of either: 1) 1-5 X 108 colony forming units (CFU) of hyperhemolytic/hypervirulent GBS (GBSΔcovR, N=4); 2) an isogenic/nonpigmented strain (GBS ΔcovRΔcylE, N=4); or, 3) saline (N=4). A Cesarean section was performed at preterm labor or 3 days after GBS infection or 7 days after saline inoculation. Nanostring GeoMx® Digital Spatial Profiling technology was used to segment protein expression within the amnion, chorion, and maternal decidua at the inoculation site using an immuno-oncology panel targeting 56 immunoproteins enriched in stimulatory and inhibitory immune checkpoint proteins or their protein ligands. Statistical analysis included R studio, Kruskal-Wallis, Pearson and Spearman tests. Results Both inhibitory and stimulatory immune checkpoint proteins were significantly upregulated within the chorioamniotic membranes and decidua (VISTA, LAG3, PD-1, CD40, GITR), as well as their ligands (PD-L1, PD-L2, CD40L; all p<0.05). Immunostaining for VISTA revealed positive (VISTA+) cells, predominantly in the chorion and decidua. There were strong correlations between VISTA and amniotic fluid concentrations of IL-1β, IL-6, IL-8, and TNF-α (all p<0.05), as well as maternal placental histopathology scores (p<0.05). Conclusion Differential regulation of multiple immune checkpoint proteins in the decidua at the site of a GBS infection indicates a major perturbation in immunologic homeostasis that could benefit the host by restricting immune-driven pathologies or the pathogen by limiting immune surveillance. Protein expression of VISTA, an inhibitory immune checkpoint, was upregulated in the chorion and decidua after GBS infection. Investigating the impact of innate immune cell expression of inhibitory immune checkpoints may reveal new insights into placental host-pathogen interactions at the maternal-fetal interface.
Collapse
Affiliation(s)
- Gygeria Manuel
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, United States
- Morehouse School of Medicine, Atlanta, GA, United States
| | - Michelle Coleman
- Center for Global Infectious Disease Research, Seattle Childrens Research Institute, Seattle, WA, United States
| | - Austyn S. Orvis
- Center for Global Infectious Disease Research, Seattle Childrens Research Institute, Seattle, WA, United States
| | - Jeff Munson
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, United States
| | - Amanda Li
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, United States
- Department of Biology, Case Western Reserve University, Cleveland, OH, United States
| | - Raj P. Kapur
- Department of Laboratory Medicine and Pathology, Seattle Children’s Hospital and University of Washington, Seattle, WA, United States
| | - Miranda Li
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, United States
- School of Medicine, University of Washington, Seattle, WA, United States
| | - Edmunda Li
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, United States
| | - Blair Armistead
- Center for Global Infectious Disease Research, Seattle Childrens Research Institute, Seattle, WA, United States
| | - Lakshmi Rajagopal
- Center for Global Infectious Disease Research, Seattle Childrens Research Institute, Seattle, WA, United States
- Department of Global Health, University of Washington, Seattle, WA, United States
| | - Kristina M. Adams Waldorf
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, United States
- Department of Global Health, University of Washington, Seattle, WA, United States
| |
Collapse
|
44
|
Shafqat A, Khan JA, Alkachem AY, Sabur H, Alkattan K, Yaqinuddin A, Sing GK. How Neutrophils Shape the Immune Response: Reassessing Their Multifaceted Role in Health and Disease. Int J Mol Sci 2023; 24:17583. [PMID: 38139412 PMCID: PMC10744338 DOI: 10.3390/ijms242417583] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Neutrophils are the most abundant of the circulating immune cells and are the first to be recruited to sites of inflammation. Neutrophils are a heterogeneous group of immune cells from which are derived extracellular traps (NETs), reactive oxygen species, cytokines, chemokines, immunomodulatory factors, and alarmins that regulate the recruitment and phenotypes of neutrophils, macrophages, dendritic cells, T cells, and B cells. In addition, cytokine-stimulated neutrophils can express class II major histocompatibility complex and the internal machinery necessary for successful antigen presentation to memory CD4+ T cells. This may be relevant in the context of vaccine memory. Neutrophils thus emerge as orchestrators of immune responses that play a key role in determining the outcome of infections, vaccine efficacy, and chronic diseases like autoimmunity and cancer. This review aims to provide a synthesis of current evidence as regards the role of these functions of neutrophils in homeostasis and disease.
Collapse
Affiliation(s)
- Areez Shafqat
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia (K.A.); (A.Y.); (G.K.S.)
| | | | | | | | | | | | | |
Collapse
|
45
|
Hao L, Li S, Deng J, Li N, Yu F, Jiang Z, Zhang J, Shi X, Hu X. The current status and future of PD-L1 in liver cancer. Front Immunol 2023; 14:1323581. [PMID: 38155974 PMCID: PMC10754529 DOI: 10.3389/fimmu.2023.1323581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 11/27/2023] [Indexed: 12/30/2023] Open
Abstract
The application of immunotherapy in tumor, especially immune checkpoint inhibitors (ICIs), has played an important role in the treatment of advanced unresectable liver cancer. However, the efficacy of ICIs varies greatly among different patients, which has aroused people's attention to the regulatory mechanism of programmed death ligand-1 (PD-L1) in the immune escape of liver cancer. PD-L1 is regulated by multiple levels and signaling pathways in hepatocellular carcinoma (HCC), including gene variation, epigenetic inheritance, transcriptional regulation, post-transcriptional regulation, and post-translational modification. More studies have also found that the high expression of PD-L1 may be the main factor affecting the immunotherapy of liver cancer. However, what is the difference of PD-L1 expressed by different types of cells in the microenvironment of HCC, and which type of cells expressed PD-L1 determines the effect of tumor immunotherapy remains unclear. Therefore, clarifying the regulatory mechanism of PD-L1 in liver cancer can provide more basis for liver cancer immunotherapy and combined immune treatment strategy. In addition to its well-known role in immune regulation, PD-L1 also plays a role in regulating cancer cell proliferation and promoting drug resistance of tumor cells, which will be reviewed in this paper. In addition, we also summarized the natural products and drugs that regulated the expression of PD-L1 in HCC.
Collapse
Affiliation(s)
- Liyuan Hao
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Shenghao Li
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Clinical Research Center, Shijiazhuang Fifth Hospital, Shijiazhuang, Hebei, China
| | - Jiali Deng
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Na Li
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Fei Yu
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Zhi Jiang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Junli Zhang
- Department of Infectious Diseases, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, China
| | - Xinli Shi
- Center of Experimental Management, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Xiaoyu Hu
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
46
|
Loacker L, Egger A, Fux V, Bellmann-Weiler R, Weiss G, Griesmacher A, Hoermann G, Ratzinger F, Haslacher H, Schrezenmeier H, Anliker M. Serum sPD-L1 levels are elevated in patients with viral diseases, bacterial sepsis or in patients with impaired renal function compared to healthy blood donors. Clin Chem Lab Med 2023; 61:2248-2255. [PMID: 37401452 DOI: 10.1515/cclm-2023-0232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 06/16/2023] [Indexed: 07/05/2023]
Abstract
OBJECTIVES Immune checkpoints play an important role in maintaining the balance of the immune system and in the development of autoimmune diseases. A central checkpoint molecule is the programmed cell death protein 1 (PD-1, CD279) which is typically located on the surface of T cells. Its primary ligand PD-L1 is expressed on antigen presenting cells and on cancer cells. Several variants of PD-L1 exist, among these soluble molecules (sPD-L1) present in serum at low concentrations. sPD-L1 was found elevated in cancer and several other diseases. sPD-L1 in infectious diseases has received relatively little attention so far and is therefore subject of this study. METHODS sPD-L1 serum levels were determined in 170 patients with viral infections (influenza, varicella, measles, Dengue fever, SARS-CoV2) or bacterial sepsis by ELISA and compared to the levels obtained in 11 healthy controls. RESULTS Patients with viral infections and bacterial sepsis generally show significantly higher sPD-L1 serum levels compared to healthy donors, except for varicella samples where results do not reach significance. sPD-L1 is increased in patients with impaired renal function compared to those with normal renal function, and sPD-L1 correlates significantly with serum creatinine. Among sepsis patients with normal renal function, sPD-L1 serum levels are significantly higher in Gram-negative sepsis compared to Gram-positive sepsis. In addition, in sepsis patients with impaired renal function, sPD-L1 correlates positively with ferritin and negatively with transferrin. CONCLUSIONS sPD-L1 serum levels are significantly elevated in patients with sepsis, influenza, mesasles, Dengue fever or SARS-CoV2. Highest levels are detectable in patients with measles and Dengue fever. Also impaired renal function causes an increase in levels of sPD-L1. As a consequence, renal function has to be taken into account in the interpretation of sPD-L1 levels in patients.
Collapse
Affiliation(s)
- Lorin Loacker
- Central Institute for Medical and Chemical Laboratory Diagnosis, Tirol Kliniken GmbH, Innsbruck, Austria
| | - Alexander Egger
- Central Institute for Medical and Chemical Laboratory Diagnosis, Tirol Kliniken GmbH, Innsbruck, Austria
| | - Vilmos Fux
- Central Institute for Medical and Chemical Laboratory Diagnosis, Tirol Kliniken GmbH, Innsbruck, Austria
| | - Rosa Bellmann-Weiler
- Department of Internal Medicine II, Innsbruck Medical University, Innsbruck, Austria
| | - Günter Weiss
- Department of Internal Medicine II, Innsbruck Medical University, Innsbruck, Austria
| | - Andrea Griesmacher
- Central Institute for Medical and Chemical Laboratory Diagnosis, Tirol Kliniken GmbH, Innsbruck, Austria
| | | | | | - Helmuth Haslacher
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Hubert Schrezenmeier
- Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service and University Hospital of Ulm, Ulm, Germany
| | - Markus Anliker
- Central Institute for Medical and Chemical Laboratory Diagnosis, Tirol Kliniken GmbH, Innsbruck, Austria
| |
Collapse
|
47
|
Liu S, Jia M, Dai R. Deciphering the tumour immune microenvironment of hepatocellular carcinoma. Scand J Immunol 2023; 98:e13327. [PMID: 38441331 DOI: 10.1111/sji.13327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/13/2023] [Accepted: 08/28/2023] [Indexed: 03/07/2024]
Abstract
Current treatments for hepatocellular carcinoma (HCC) are less effective and prone to recurrence after surgery, so it's needed to seek new ideas for its therapy. Tumour immune microenvironment (TME) is crucial for the pathogenesis, development and metastasis of HCC. Interactions between immune cells and tumour cells significantly impact responses to immunotherapies and patient prognosis. In recent years, immunotherapies for HCC have shown promising potential, but the response rate is still unsatisfactory. Understanding their cross-talks is helpful for selecting potential therapeutic targets, predicting immunotherapy responses, determining immunotherapy efficacy, identifying prognostic markers and selecting individualized treatment options. In this paper, we reviewed the research advances on the roles of immune cells and multi-omic research associated with HCC pathogenesis and therapy, and future perspectives on TME.
Collapse
Affiliation(s)
- Sha Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
- Department of Pain, Daping Hospital, Army Medical University, Chongqing, China
| | - Man Jia
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Rongyang Dai
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| |
Collapse
|
48
|
Goral A, Sledz M, Manda-Handzlik A, Cieloch A, Wojciechowska A, Lachota M, Mroczek A, Demkow U, Zagozdzon R, Matusik K, Wachowska M, Muchowicz A. Regulatory T cells contribute to the immunosuppressive phenotype of neutrophils in a mouse model of chronic lymphocytic leukemia. Exp Hematol Oncol 2023; 12:89. [PMID: 37817276 PMCID: PMC10563345 DOI: 10.1186/s40164-023-00452-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 09/29/2023] [Indexed: 10/12/2023] Open
Abstract
BACKGROUND Impaired neutrophil activity is an important issue in chronic lymphocytic leukemia (CLL), as it contributes to a dysfunctional immune response leading to life-threatening infections in patients. Some features typical of CLL neutrophils, e.g., the B-cell-supportive secretion profile, have already been described. However, most of these studies were performed on cells isolated from peripheral blood. It is still unclear which molecular factors and cell types are involved in shaping neutrophil function and phenotype in the CLL microenvironment. Since regulatory T cells (Treg) play an important role in CLL progression and influence the activity of neutrophils, we investigated the crosstalk between Treg and neutrophils in the spleen using a murine model of CLL. METHODS In this work, we used an Eµ-TCL1 mouse model of human CLL. For our in vivo and ex vivo experiments, we inoculated wild-type mice with TCL1 leukemic cells isolated from Eµ-TCL1 transgenic mice and then monitored disease progression by detecting leukemic cells in peripheral blood. We analyzed both the phenotype and activity of neutrophils isolated from the spleens of TCL1 leukemia-bearing mice. To investigate the interrelation between Treg and neutrophils in the leukemia microenvironment, we performed experiments using TCL1-injected DEREG mice with Treg depletion or RAG2KO mice with adoptively transferred TCL1 cells alone or together with Treg. RESULTS The obtained results underline the plasticity of the neutrophil phenotype, observed under the influence of leukemic cells alone and depending on the presence of Treg. In particular, Treg affect the expression of CD62L and IL-4 receptor in neutrophils, both of which are crucial for the function of these cells. Additionally, we show that Treg depletion and IL-10 neutralization induce changes in the leukemia microenvironment, partially restoring the "healthy" phenotype of neutrophils. CONCLUSIONS Altogether, the results indicate that the crosstalk between Treg and neutrophils in CLL may play an important role in CLL progression by interfering with the immune response.
Collapse
Affiliation(s)
- Agnieszka Goral
- Department of Immunology, Medical University of Warsaw, Warsaw, 02-097, Poland
| | - Marta Sledz
- Department of Clinical Immunology, Medical University of Warsaw, Warsaw, 02-097, Poland
- Doctoral School, Medical University of Warsaw, Warsaw, 02-091, Poland
| | - Aneta Manda-Handzlik
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Warsaw, 02-091, Poland
| | - Adrianna Cieloch
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Warsaw, 02-091, Poland
| | - Alicja Wojciechowska
- Department of Clinical Immunology, Medical University of Warsaw, Warsaw, 02-097, Poland
| | - Mieszko Lachota
- Department of Clinical Immunology, Medical University of Warsaw, Warsaw, 02-097, Poland
- Department of Ophthalmology, Children's Memorial Health Institute, Warsaw, 04-730, Poland
| | - Agnieszka Mroczek
- Doctoral School, Medical University of Warsaw, Warsaw, 02-091, Poland
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Warsaw, 02-091, Poland
| | - Urszula Demkow
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Warsaw, 02-091, Poland
| | - Radoslaw Zagozdzon
- Department of Clinical Immunology, Medical University of Warsaw, Warsaw, 02-097, Poland
| | - Katarzyna Matusik
- Doctoral School, Medical University of Warsaw, Warsaw, 02-091, Poland
| | - Malgorzata Wachowska
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Warsaw, 02-091, Poland
| | - Angelika Muchowicz
- Department of Immunology, Medical University of Warsaw, Warsaw, 02-097, Poland.
- Department of Clinical Immunology, Medical University of Warsaw, Warsaw, 02-097, Poland.
| |
Collapse
|
49
|
Liu S, Wu W, Du Y, Yin H, Chen Q, Yu W, Wang W, Yu J, Liu L, Lou W, Pu N. The evolution and heterogeneity of neutrophils in cancers: origins, subsets, functions, orchestrations and clinical applications. Mol Cancer 2023; 22:148. [PMID: 37679744 PMCID: PMC10483725 DOI: 10.1186/s12943-023-01843-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 08/14/2023] [Indexed: 09/09/2023] Open
Abstract
Neutrophils, the most prevalent innate immune cells in humans, have garnered significant attention in recent years due to their involvement in cancer progression. This comprehensive review aimed to elucidate the important roles and underlying mechanisms of neutrophils in cancer from the perspective of their whole life cycle, tracking them from development in the bone marrow to circulation and finally to the tumor microenvironment (TME). Based on an understanding of their heterogeneity, we described the relationship between abnormal neutrophils and clinical manifestations in cancer. Specifically, we explored the function, origin, and polarization of neutrophils within the TME. Furthermore, we also undertook an extensive analysis of the intricate relationship between neutrophils and clinical management, including neutrophil-based clinical treatment strategies. In conclusion, we firmly assert that directing future research endeavors towards comprehending the remarkable heterogeneity exhibited by neutrophils is of paramount importance.
Collapse
Affiliation(s)
- Siyao Liu
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, P.R. China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Wenchuan Wu
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, P.R. China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yueshan Du
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, P.R. China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Hanlin Yin
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, P.R. China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Qiangda Chen
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, P.R. China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Weisheng Yu
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, P.R. China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Wenquan Wang
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, P.R. China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jun Yu
- Departments of Medicine and Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Liang Liu
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, P.R. China.
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Wenhui Lou
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, P.R. China.
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Ning Pu
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, P.R. China.
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
50
|
Chou ML, Babamale AO, Walker TL, Cognasse F, Blum D, Burnouf T. Blood-brain crosstalk: the roles of neutrophils, platelets, and neutrophil extracellular traps in neuropathologies. Trends Neurosci 2023; 46:764-779. [PMID: 37500363 DOI: 10.1016/j.tins.2023.06.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/17/2023] [Accepted: 06/29/2023] [Indexed: 07/29/2023]
Abstract
Systemic inflammation, neurovascular dysfunction, and coagulopathy often occur concurrently in neuropathologies. Neutrophils and platelets have crucial synergistic roles in thromboinflammation and are increasingly suspected as effector cells contributing to the pathogenesis of neuroinflammatory diseases. In this review, we summarize the roles of platelet-neutrophil interactions in triggering complex pathophysiological events affecting the brain that may lead to the disruption of brain barriers, infiltration of toxic factors into the parenchyma, and amplification of neuroinflammation through the formation of neutrophil extracellular traps (NETs). We highlight the clinical significance of thromboinflammation in neurological disorders and examine the contributions of damage-associated molecular patterns (DAMPs) derived from platelets and neutrophils. These DAMPs originate from both infectious and non-infectious risk factors and contribute to the activation of inflammasomes during brain disorders. Finally, we identify knowledge gaps in the molecular mechanisms underlying neurodegenerative disease pathogenesis and emphasize the potential of interventions targeting platelets and neutrophils to treat neuroinflammatory diseases.
Collapse
Affiliation(s)
- Ming-Li Chou
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City 23561, Taiwan; INSERM UMRS 938, Centre de Recherche Saint-Antoine, Immune System and Neuroinflammation Laboratory, Hôpital Saint-Antoine, Paris 75012, France
| | - Abdulkareem Olarewaju Babamale
- Taiwan International Graduate Program in Molecular Medicine, Academia Sinica, Taipei 11266, Taiwan; Department of Zoology, Faculty of Life Sciences, University of Ilorin, Ilorin 240003, Nigeria
| | - Tara L Walker
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Fabrice Cognasse
- Etablissement Français du Sang Auvergne-Rhône-Alpes, 42023 Saint-Étienne, France; University Jean Monnet, Mines Saint-Étienne, INSERM, U 1059 Sainbiose, 42023 Saint-Etienne, France
| | - David Blum
- University of Lille, INSERM, CHU Lille, UMR-S1172 LilNCog, Lille Neuroscience and Cognition, F-59000 Lille, France; Alzheimer & Tauopathies, LabEx DISTALZ, LiCEND, Lille F-59000, France; NeuroTMULille International Laboratory, University of Lille, F-59000 Lille, France
| | - Thierry Burnouf
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City 23561, Taiwan; International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City 23561, Taiwan; NeuroTMULille International Laboratory, Taipei Medical University, Taipei 10031, Taiwan; Neuroscience Research Center, Taipei Medical University, Taipei 11031, Taiwan; Brain and Consciousness Research Centre, Taipei Medical University Shuang Ho Hospital, New Taipei City 23561, Taiwan.
| |
Collapse
|