1
|
Chang YH, Wang YC, Liu YC, Chiu CH. Protein disulphide isomerase A4 as a potential biomarker for coronavirus disease 2019: Correlation with cytokine profiles and disease progression. Virulence 2025:2508815. [PMID: 40391685 DOI: 10.1080/21505594.2025.2508815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 05/02/2025] [Accepted: 05/13/2025] [Indexed: 05/22/2025] Open
Abstract
This study investigated the role of protein disulphide isomerase A4 (PDIA4) in the pathogenesis of coronavirus disease 2019 (COVID-19), focusing on its relationship with disease severity and potential as a biomarker. We analysed a cohort of adult COVID-19 patients with varying disease severity, grouped by vaccination status. Serum levels of PDIA4 and cytokines (interleukin [IL]-6, interferon gamma inducible protein-10 [IP-10], IL-16, monocyte chemoattractant protein-1 [MCP-1], and platelet-derived growth factor-BB [PDGF-BB]) were measured using enzyme-linked immunosorbent assay and compared among patients with different disease severities. Statistical analyses were performed to assess the correlation between PDIA4 levels, disease severity, and inflammatory markers. Unvaccinated COVID-19 patients with pneumonia had significantly higher PDIA4 levels than those without pneumonia (517.94 ± 264 vs. 284.86 ± 2.24; p = 0.0022). Although unvaccinated patients requiring oxygen support exhibited higher PDIA4 levels than those not requiring oxygen (519.30 ± 269.67 vs. 420.89 ± 240.49; p = 0.4825), the difference was not statistically significant. No significant difference was observed in the PDIA4 levels between unvaccinated patients with and without respiratory failure. Levels of PDIA4 were positively correlated with the levels of IL-16, MCP-1, IP-10, and IL-6 (correlation coefficients: 0.28-0.62), although this correlation was weaker or absent in vaccinated patients. Our findings suggest that PDIA4 is associated with COVID-19 severity and may serve as a potential biomarker of disease progression. Further studies are needed to elucidate the mechanisms by which PDIA4 influences the immune response and assess its potential for therapeutic exploration in COVID-19.
Collapse
Affiliation(s)
- Yu-Hsiu Chang
- Institute of Preventive Medicine, National Defense Medical Center, New Taipei City, Taiwan
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei City, Taiwan
| | - Ying-Chuan Wang
- Department of Family Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei City, Taiwan
| | - Yun-Chen Liu
- Institute of Health Data Analytics and Statistics, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Chun-Hsiang Chiu
- Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei City, Taiwan
| |
Collapse
|
2
|
Fatoke B, Hui AL, Saqib M, Vashisth M, Aremu SO, Aremu DO, Aremu DB. Type 2 diabetes mellitus as a predictor of severe outcomes in COVID-19 - a systematic review and meta-analyses. BMC Infect Dis 2025; 25:719. [PMID: 40389865 PMCID: PMC12090609 DOI: 10.1186/s12879-025-11089-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 05/07/2025] [Indexed: 05/21/2025] Open
Abstract
BACKGROUND The COVID-19 pandemic has posed significant challenges to global health, with type 2 diabetes mellitus (T2DM) emerging as a key risk factor for adverse outcomes. This study systematically reviews and quantifies the association between T2DM and COVID-19 outcomes, including mortality, severity, and need for mechanical ventilation. METHODS A systematic review and meta-analysis were conducted that adhered to PRISMA guidelines. We searched PubMed, Scopus, Web of Science and Embase for studies published from december 2019 to march 2024. Eligible studies reported on the impact of T2DM on COVID-19 outcomes in the adult population. Data were extracted and analyzed using a random-effects model, and heterogeneity was assessed using the I2 statistic. Publication bias was assessed using Egger regression, Kendall's Tau, and the Fail-safe N calculation. RESULTS Eighteen studies were included in the meta-analysis for mortality, six for severity and five for mechanical ventilation. T2DM was significantly associated with higher mortality (OR = 3.66, 95% CI: 2.20-5.11, p < 0.001), higher severity (OR = 1.97, 95% CI: 1.02-2.92, p < 0.001), and higher need for mechanical ventilation (OR = 2.34, 95% CI: 1.18-3.49, p < 0.001). Heterogeneity was high for mortality (I2 = 83.83%) but low for severity and mechanical ventilation (I2 = 0%). No significant publication bias was found. CONCLUSIONS T2DM is associated with significantly worse outcomes in COVID-19 patients, including higher mortality, higher severity and a greater likelihood of needing mechanical ventilation. These findings emphasize the need for targeted interventions and management strategies for individuals with T2DM during the ongoing pandemic. Future research should focus on understanding the underlying mechanisms and exploring strategies to mitigate these risks.
Collapse
Affiliation(s)
- Babatunde Fatoke
- General Hospital Lagos, Odan, Lagos Island, Lagos State, Nigeria
- Faculty of General Medicine, Siberian State Medical University, Tomsk, 634050, Russia
| | - Amrit Lal Hui
- Department of Psychology, National Research Tomsk State University, Tomsk, 634050, Russia
| | - Muhammad Saqib
- National Research Tomsk Polytechnic University, Tomsk, 634050, Russia
| | - Mrinal Vashisth
- Department of Psychology, National Research Tomsk State University, Tomsk, 634050, Russia
| | - Stephen Olaide Aremu
- Faculty of General Medicine, Siberian State Medical University, Tomsk, 634050, Russia.
- Global Health and Infectious Disease Control Institute, Nasarawa State University, Keffi, Nasarawa State, PMB 1022, Nigeria.
| | | | | |
Collapse
|
3
|
Pius-Sadowska E, Kulig P, Niedźwiedź A, Baumert B, Rogińska D, Łuczkowska K, Sobuś A, Parczewski M, Kawa M, Paczkowska E, Machaliński B. The micro-RNA expression profile predicts the severity of SARS-CoV-2 infection. Sci Rep 2025; 15:17139. [PMID: 40382351 DOI: 10.1038/s41598-025-01229-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 05/05/2025] [Indexed: 05/20/2025] Open
Abstract
Although much is known about the pathophysiology of severe COVID-19, there are still areas that remain to be determined. It is well established that the pivotal molecular event is a hyperinflammatory response also referred to as a cytokine storm. The aim of this retrospective cohort study was to determine miRNAs which might be predictive for the admission to the intensive care unit (ICU). We analyzed blood samples from 210 COVID-19 patients and the control group consisted of 80 healthy individuals. Results revealed the miRNA expression pattern has the potential to predict the severity of COVID-19, reflecting the clinical symptoms of the infection, such as the need for oxygen therapy and concomitant pneumonia. In particular, low expression of miRNAs miR106a-5p, miR17-5p, miR181a-5p, miR191-5p, miR20a-5p and miR451a, especially in the initial phase of the disease, is associated with an unfavorable clinical course of SARS-CoV-2 infection (admission to the ICU).
Collapse
Affiliation(s)
- Ewa Pius-Sadowska
- Department of General Pathology, Pomeranian Medical University in Szczecin, Al. Powstańców Wielkopolskich 72, 70-111, Szczecin, Poland
| | - Piotr Kulig
- Department of General Pathology, Pomeranian Medical University in Szczecin, Al. Powstańców Wielkopolskich 72, 70-111, Szczecin, Poland
| | - Anna Niedźwiedź
- Department of General Pathology, Pomeranian Medical University in Szczecin, Al. Powstańców Wielkopolskich 72, 70-111, Szczecin, Poland
| | - Bartłomiej Baumert
- Department of General Pathology, Pomeranian Medical University in Szczecin, Al. Powstańców Wielkopolskich 72, 70-111, Szczecin, Poland
| | - Dorota Rogińska
- Department of General Pathology, Pomeranian Medical University in Szczecin, Al. Powstańców Wielkopolskich 72, 70-111, Szczecin, Poland
| | - Karolina Łuczkowska
- Department of General Pathology, Pomeranian Medical University in Szczecin, Al. Powstańców Wielkopolskich 72, 70-111, Szczecin, Poland
| | - Anna Sobuś
- Department of General Pathology, Pomeranian Medical University in Szczecin, Al. Powstańców Wielkopolskich 72, 70-111, Szczecin, Poland
| | - Miłosz Parczewski
- Department of Infectious, Tropical Diseases and Immune Deficiency, Pomeranian Medical University in Szczecin, Arkońska 4 Street, 71-455, Szczecin, Poland
| | - Miłosz Kawa
- Department of General Pathology, Pomeranian Medical University in Szczecin, Al. Powstańców Wielkopolskich 72, 70-111, Szczecin, Poland
| | - Edyta Paczkowska
- Department of General Pathology, Pomeranian Medical University in Szczecin, Al. Powstańców Wielkopolskich 72, 70-111, Szczecin, Poland
| | - Bogusław Machaliński
- Department of General Pathology, Pomeranian Medical University in Szczecin, Al. Powstańców Wielkopolskich 72, 70-111, Szczecin, Poland.
| |
Collapse
|
4
|
Tomalka JA, Owings A, Galeas-Pena M, Ziegler CGK, Robinson TO, Wichman TG, Laird H, Williams HB, Ghaliwal NS, Everman S, Zafar Y, Walsh JML, Shalek AK, Horwitz BH, Ordovas-Montanes J, Glover SC, Gibert Y. Enhanced Production of Lipid Mediators in Plasma and Activation of DNA Damage Pathways in PBMCs Are Correlated With the Severity of Ancestral SARS-CoV-2 Infection. FASEB J 2025; 39:e70600. [PMID: 40322970 DOI: 10.1096/fj.202403195r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/28/2025] [Accepted: 04/24/2025] [Indexed: 05/14/2025]
Abstract
Many questions remain unanswered regarding the implication of genetics and lipid metabolites with severe SARS-CoV-2 infections. We performed bulk RNA-seq and a total fatty acid panel analysis on PBMCs and plasma collected from 10 infected and 10 uninfected patients. Univariate comparison of lipid metabolites using the Mann-Whitney U-test revealed that six lipid metabolites were significantly increased in COVID-19 patients, including the lipid mediators arachidonic acid (AA) and eicosapentaenoic acid (EPA), which both give rise to eicosanoids. Key lipids implicated in inflammation, including AA and EPA, along with the fatty acids DHA and DPA, were significantly and positively correlated to the WHO disease severity score. Analysis of our bulk RNA-seq dataset demonstrated distinct transcriptional profiles leading to a segregation of COVID-19 patients based on the WHO score. Ontology, KEGG, and Reactome analysis identified several key pathways and nodes that were enriched for genes related to innate immunity, interactions between lymphoid and nonlymphoid cells, interleukin signaling, and subsequent DNA damage pathways. EPA levels correlated with heightened cell cycling and DNA damage pathways observed in patients with a high WHO score. We studied gene expression in nasopharyngeal swabs from 58 healthy and COVID-19 participants and identified that genes implicated in eicosanoid synthesis, such as alox5, alox12, and alox15B, were specifically up-regulated in high WHO score patients in several cell types of the nasopharynx, especially goblet cells across different viral variants (Deta and Omicron). Using published nasal scRNA-seq datasets from COVID-19 patients, we evaluated the expression of genes implicated in eicosanoid synthesis, such as ALOX5, ALOX15, and ALOX15B, across nasal cell types and COVID-19 severity groups. Altogether, our study highlights the fact that the increase in specific lipids implicated in inflammation and the genes required for their synthesis correlated with the severity of the SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Jeffrey A Tomalka
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Anna Owings
- Department of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Michelle Galeas-Pena
- Department of Medicine, Section of Gastroenterology and Hepatology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Carly G K Ziegler
- Program in Health Sciences & Technology, Harvard Medical School & MIT, Boston, Massachusetts, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Harvard Graduate Program in Biophysics, Harvard University, Cambridge, Massachusetts, USA
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Tanya O Robinson
- Department of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Thomas G Wichman
- Department of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Hannah Laird
- Department of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Haley B Williams
- Department of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Neha S Ghaliwal
- Department of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Steven Everman
- Department of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Yousaf Zafar
- Department of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Jaclyn M L Walsh
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Immunology, Harvard Medical School, Boston, Massachusetts, USA
- Division of Gastroenterology, Hepatology, and Nutrition, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Alex K Shalek
- Program in Health Sciences & Technology, Harvard Medical School & MIT, Boston, Massachusetts, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Harvard Graduate Program in Biophysics, Harvard University, Cambridge, Massachusetts, USA
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Immunology, Harvard Medical School, Boston, Massachusetts, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| | - Bruce H Horwitz
- Department of Immunology, Harvard Medical School, Boston, Massachusetts, USA
- Division of Gastroenterology, Hepatology, and Nutrition, Boston Children's Hospital, Boston, Massachusetts, USA
- Division of Emergency Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Jose Ordovas-Montanes
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Immunology, Harvard Medical School, Boston, Massachusetts, USA
- Division of Gastroenterology, Hepatology, and Nutrition, Boston Children's Hospital, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| | - Sarah C Glover
- Department of Medicine, Section of Gastroenterology and Hepatology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Yann Gibert
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi, USA
- Cancer Center and Research Institute, University of Mississippi Medical Center, Jackson, Mississippi, USA
| |
Collapse
|
5
|
Yin L, Zhang H, Shang Y, Wu S, Jin T. NLRP3 inflammasome: From drug target to drug discovery. Drug Discov Today 2025; 30:104375. [PMID: 40345614 DOI: 10.1016/j.drudis.2025.104375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 04/20/2025] [Accepted: 05/02/2025] [Indexed: 05/11/2025]
Abstract
The immune system employs innate and adaptive immunity to combat pathogens and stress stimuli. Innate immunity rapidly detects pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs) via pattern recognition receptors (PRRs), whereas adaptive immunity mediates antigen-specific T/B cell responses. The NLRP3 inflammasome, a key cytoplasmic PRR, consists of leucine-rich repeat, nucleotide-binding, and pyrin domains. Its activation requires priming (signal 1: Toll-like receptors/NOD-like receptors/cytokine receptors) and activation (signal 2: PAMPs/DAMPs/particulates). NLRP3 triggers cytokine storms and neuroinflammation, contributing to inflammatory diseases. Emerging therapies target NLRP3 via nuclear receptors (transcriptional regulation), adeno-associated virus (AAV) vectors (gene delivery), and microRNAs (post-transcriptional modulation). This review highlights NLRP3's signaling cascade, pathological roles, and combinatorial treatments leveraging nuclear receptors, AAVs, and microRNAs for immunomodulation.
Collapse
Affiliation(s)
- Ling Yin
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui 323000, China; College of Medicine, University of Florida, Gainesville, FL 32608, USA; Division of Infectious Diseases and Geographic Medicine, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Laboratory of Structural Immunology, Key Laboratory of Immune Response and Immunotherapy, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027 China; Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, Anhui, China
| | - Hongliang Zhang
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui 323000, China
| | - Yuhua Shang
- Anhui Genebiol Biotech. Ltd., Hefei 230000, China
| | - Songquan Wu
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui 323000, China.
| | - Tengchuan Jin
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui 323000, China; Anhui Genebiol Biotech. Ltd., Hefei 230000, China; Laboratory of Structural Immunology, Key Laboratory of Immune Response and Immunotherapy, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027 China; Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, Anhui, China; Biomedical Sciences and Health Laboratory of Anhui Province, University of Science & Technology of China, Hefei 230027, China; Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei 230001, China.
| |
Collapse
|
6
|
Zhang B, Li S, Ding J, Guo J, Ma Z, Duan H. Rho-GTPases subfamily: cellular defectors orchestrating viral infection. Cell Mol Biol Lett 2025; 30:55. [PMID: 40316910 PMCID: PMC12049043 DOI: 10.1186/s11658-025-00722-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 03/27/2025] [Indexed: 05/04/2025] Open
Abstract
Ras homolog gene family-guanosine triphosphatases (Rho-GTPases), key molecular switches regulating cytoskeletal dynamics and cellular signaling, play a pivotal role in viral infections by modulating critical processes such as viral entry, replication, and release. This review elucidates the intricate mechanisms through which Rho-GTPases, via interactions with guanine nucleotide exchange factors (GEFs), GTPase-activating proteins (GAPs), and other signaling pathways, including the phosphoinositide 3-kinase/protein kinase B (PI3K/Akt), rat sarcoma (Ras), and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathways, facilitate viral pathogenesis. Specific viruses, such as influenza A virus (IAV), herpesviruses, human immunodeficiency virus (HIV), and respiratory syncytial virus (RSV), exploit Rho-GTPase-mediated cytoskeletal reorganization to enhance infectivity. For example, Rho-GTPases promote actin remodeling and membrane fusion, which are essential for viral entry and intracellular transport. Furthermore, Rho-GTPases modulate immune responses, often suppressing antiviral defenses to favor viral replication. Despite these insights, the molecular mechanisms underlying Rho-GTPase regulation during viral infections remain incompletely understood. Future research should focus on delineating the precise roles of Rho-GTPases in distinct viral life cycles, uncovering novel regulatory mechanisms, and developing targeted antiviral therapies that selectively inhibit Rho-GTPase signaling without compromising host cell functions. Such advancements could pave the way for broad-spectrum antiviral strategies, particularly against viruses that heavily rely on cytoskeletal manipulation for infection.
Collapse
Affiliation(s)
- Beibei Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, China
| | - Shuli Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, China
| | - Juntao Ding
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, China
| | - Jingxia Guo
- Disease Prevention and Control Center of Xinjiang Production and Construction Corps, Urumqi, Xinjiang, China
| | - Zhenghai Ma
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, China
| | - Hong Duan
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China.
| |
Collapse
|
7
|
Tang J, Wang L, Fang W, Su CM, Kim J, Du Y, Yoo D. Coinfection with bacterial pathogens and genetic modification of PRRSV-2 for suppression of NF-κB and attenuation of proinflammatory responses. Virology 2025; 606:110484. [PMID: 40086205 DOI: 10.1016/j.virol.2025.110484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 02/17/2025] [Accepted: 03/05/2025] [Indexed: 03/16/2025]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) infects pulmonary alveolar macrophages and induces inflammation in the respiratory system. In swine farms, coinfection with PRRSV and bacterial pathogens is common and can result in clinically complicated outcomes, including porcine respiratory disease complex. Coinfection can cause excessive expressions of proinflammatory mediators and may lead to cytokine-storm-like syndrome. An immunological hallmark of PRRSV-2 is the bidirectional regulation of NF-κB with the nucleocapsid (N) protein identified as the NF-κB activator. We generated an NF-κB-silencing mutant PRRSV-2 by mutating the N gene to block its binding to PIAS1 [protein inhibitor of activated STAT-1 (signal transducer and activator of transcription 1)]. PIAS1 functions as an NF-κB repressor, and thus, the PIAS1-binding modified N-mutant PRRSV-2 became NF-κB activation-resistant in its phenotype. During coinfection of pigs with PRRSV-2 and Streptococcus suis, the N-mutant PRRSV-2 decreased the expression of proinflammatory cytokines and showed clinical attenuation. This review describes the coinfection of pigs with various pathogens, the generation of mutant PRRSV for NF-κB suppression, inflammatory profiles during bacterial coinfection, and the potential application of these findings to designing a new vaccine candidate for PRRSV-2.
Collapse
Affiliation(s)
- Junyu Tang
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Leyi Wang
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Weihuan Fang
- Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chia-Ming Su
- Department of Biochemistry and Cell Biology, School of Medicine, Boston University, Boston, MA, USA
| | - Jineui Kim
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Yijun Du
- Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Dongwan Yoo
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
8
|
Fong KM, Ng GWY, Leung AKH, Lai KY. High-dose Intravenous N-Acetylcysteine in Mechanically Ventilated Patients with COVID-19 Pneumonia: A Propensity-Score Matched Cohort Study. J Intensive Care Med 2025; 40:476-485. [PMID: 39574249 DOI: 10.1177/08850666241299391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
Background: Current therapies for severe COVID-19, such as steroids and immunomodulators are associated with various side effects. N-acetylcysteine (NAC) has emerged as a potential adjunctive therapy with minimal side effects for patients with cytokine storm due to COVID-19. However, evidence supporting high-dose intravenous NAC in severe COVID-19 pneumonia requiring mechanical ventilation is limited. Methods: We conducted a retrospective analysis of consecutive patients aged ≥ 18 who were admitted for acute respiratory failure (PaO2/FiO2 ratio <300) with SARS-CoV-2 infection to the Intensive Care Unit (ICU) of Queen Elizabeth Hospital from fifth July 2020 to 31st October 2022. Inclusion was limited to patients who required mechanical ventilation. High-dose NAC refers to a dosage of 10 g per day. The primary outcome was all-cause mortality within 28 days. Propensity-score matched analysis using logistic regression was performed. Results: Among the 136 patients analyzed, 42 (40.3%) patients received NAC. The unmatched NAC patients displayed a higher day-28 mortality (12 (28.6%) versus 4 (6.5%), p = 0.005) and fewer ventilator-free days (18.5 (0-23.0) versus 22.0 (18.3-24.0), p = 0.015). No significant differences were observed in ICU and hospital length of stays among survivors. In patients who were not treated with tocilizumab, those receiving NAC exhibited a trend toward a quicker reduction in C-reactive protein compared to those who did not receive NAC.After propensity score matching which included 64 patients with 33 (51.6%) receiving NAC, no significant differences were found in 28-day mortality, ventilator-free days, or ICU and hospital length of stay. After adjusting for potential confounders, logistic regression of the propensity score-matched population did not demonstrate that the use of NAC independently affected 28-day mortality. Conclusions: In patients with COVID-19 pneumonia requiring mechanical ventilation and receiving standard COVID-19 treatment, the addition of high-dose NAC did not lead to improved clinical outcomes.
Collapse
Affiliation(s)
- Ka Man Fong
- Intensive Care Unit, Queen Elizabeth Hospital, 30 Gascoigne Road, Kowloon, Hong Kong
| | - George Wing Yiu Ng
- Intensive Care Unit, Queen Elizabeth Hospital, 30 Gascoigne Road, Kowloon, Hong Kong
| | - Anne Kit Hung Leung
- Intensive Care Unit, Queen Elizabeth Hospital, 30 Gascoigne Road, Kowloon, Hong Kong
| | - Kang Yiu Lai
- Intensive Care Unit, Queen Elizabeth Hospital, 30 Gascoigne Road, Kowloon, Hong Kong
| |
Collapse
|
9
|
Nejabat M, Motamedifar M, Hashempour A, Heydari M, Foroozanfar Z, Davarpanah MA, Daryabor G. Investigating the relationship between the IL-17 rs2275913, IL-17 rs763780, and the IL-6 rs1800795 genotypes in HIV-positive patients with COVID-19. Mol Biol Rep 2025; 52:420. [PMID: 40268781 DOI: 10.1007/s11033-025-10502-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Accepted: 04/09/2025] [Indexed: 04/25/2025]
Abstract
INTRODUCTION The people living with HIV with abnormal immune responses have been identified as a population that is particularly susceptibility to contracting COVID-19. We explored the correlation between gene polymorphisms of IL-17A, IL-17F, and IL-6, and the susceptibility to COVID-19 in individuals with HIV infection. METHODS In this cross-sectional study, 337 HIV-positive patients were included. Serological and molecular tests were done using ELISA and PCR-RFLP methods. Allelic frequency, haplotype analyses, linkage disequilibrium were calculated. A linear regression model was used to analyze the interleukin SNP genotypes in HIV patients with and without COVID-19. RESULTS A total of 337 PLWH were recruited for this study, with 170 having COVID-19 and 167 not having it. The mean age and laboratory indicators showed no significant differences between the two groups (P > 0.05). The allele frequency analysis found no significant difference in the IL-17A rs2275913 polymorphism between case and control groups. However, the IL-17F rs763780 and IL-6 rs1800795 had significantly greater frequencies of specific alleles in the case group compared to the control group. The A-A haplotype of IL-17 in SNPs-rs 2,275,913 and rs763780 rising the risk of COVID-19 infection in PLWH by up to 2.398 times compared with the other haplotypes, and the A-G and G-A haplotypes have a protective role against the incidence of COVID-19 infection. CONCLUSION This study is the first to show a significant correlation between the prevalence of COVID-19 and variety polymorphism at IL-17 and IL-6, which suggests that genetic changes in interleukin genes may relate to COVID-19 distribution.
Collapse
Affiliation(s)
- Maryam Nejabat
- HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Motamedifar
- Department of Bacteriology and Virology, Shiraz Medical School, Shiraz University Medical Science, Shiraz, Iran.
| | - Ava Hashempour
- HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammadreza Heydari
- HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zohre Foroozanfar
- HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Ali Davarpanah
- HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Gholamreza Daryabor
- Autoimmune Disease Research Center, Faculty of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
10
|
Toner YC, Munitz J, Prevot G, Morla-Folch J, Wang W, van Elsas Y, Priem B, Deckers J, Anbergen T, Beldman TJ, Brechbühl EE, Aksu MD, Ziogas A, Sarlea SA, Ozturk M, Zhang Z, Li W, Li Y, Maier A, Fernandes JC, Cremers GA, van Genabeek B, Kreijtz JH, Lutgens E, Riksen NP, Janssen HM, Söntjens SH, Hoeben FJ, Kluza E, Singh G, Giamarellos-Bourboulis EJ, Schotsaert M, Duivenvoorden R, van der Meel R, Joosten LA, Cai L, Temel RE, Fayad ZA, Mhlanga MM, van Leent MM, Teunissen AJ, Netea MG, Mulder WJ. Targeting mTOR in myeloid cells prevents infection-associated inflammation. iScience 2025; 28:112163. [PMID: 40177636 PMCID: PMC11964677 DOI: 10.1016/j.isci.2025.112163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 12/13/2024] [Accepted: 02/28/2025] [Indexed: 04/05/2025] Open
Abstract
Infections, cancer, and trauma can cause life-threatening hyperinflammation. In the present study, using single-cell RNA sequencing of circulating immune cells, we found that the mammalian target of rapamycin (mTOR) pathway plays a critical role in myeloid cell regulation in COVID-19 patients. Previously, we developed an mTOR-inhibiting nanobiologic (mTORi-nanobiologic) that efficiently targets myeloid cells and their progenitors in the bone marrow. In vitro, we demonstrated that mTORi-nanobiologics potently inhibit infection-associated inflammation in human primary immune cells. Next, we investigated the in vivo effect of mTORi-nanobiologics in mouse models of hyperinflammation and acute respiratory distress syndrome. Using 18F-FDG uptake and flow cytometry readouts, we found mTORi-nanobiologic therapy to efficiently reduce hematopoietic organ metabolic activity and inflammation to levels comparable to those of healthy control animals. Together, we show that regulating myelopoiesis with mTORi-nanobiologics is a compelling therapeutic strategy to prevent deleterious organ inflammation in infection-related complications.
Collapse
Affiliation(s)
- Yohana C. Toner
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Jazz Munitz
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Geoffrey Prevot
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Judit Morla-Folch
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - William Wang
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yuri van Elsas
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Bram Priem
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Jeroen Deckers
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Tom Anbergen
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Thijs J. Beldman
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Eliane E.S. Brechbühl
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK
| | - Muhammed D. Aksu
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Athanasios Ziogas
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Sebastian A. Sarlea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Mumin Ozturk
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
- Epigenomics & Single Cell Biophysics Group, Department of Cell Biology, FNWI, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University, 6525 GA Nijmegen, the Netherlands
| | - Zhenhua Zhang
- Department of Computational Biology of Individualised Medicine, Centre for Individualised Infection Medicine (CiiM), a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, 30625 Hannover, Germany
- TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, 30625 Hannover, Germany
| | - Wenchao Li
- Department of Computational Biology of Individualised Medicine, Centre for Individualised Infection Medicine (CiiM), a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, 30625 Hannover, Germany
- TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, 30625 Hannover, Germany
| | - Yang Li
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
- Department of Computational Biology of Individualised Medicine, Centre for Individualised Infection Medicine (CiiM), a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, 30625 Hannover, Germany
- TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, 30625 Hannover, Germany
| | - Alexander Maier
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Cardiology and Angiology, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Jessica C. Fernandes
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - Bas van Genabeek
- Trained Therapeutix Discovery, 5349 AB Oss, the Netherlands
- SyMO-Chem B.V., 5612 AZ Eindhoven, the Netherlands
| | | | - Esther Lutgens
- Department of Cardiovascular Medicine, Experimental Cardiovascular Immunology Laboratory, Mayo Clinic, Rochester, MN 55905, USA
| | - Niels P. Riksen
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | | | | | | | - Ewelina Kluza
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, 5612 AZ Eindhoven, the Netherlands
| | - Gagandeep Singh
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - Michael Schotsaert
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Raphaël Duivenvoorden
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
- Department of Nephrology, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Roy van der Meel
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, 5612 AZ Eindhoven, the Netherlands
| | - Leo A.B. Joosten
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
- Department of Medical Genetics, Iuliu Hatieganu University of Medicine and Pharmacy, 400 349 Cluj-Napoca, Romania
| | - Lei Cai
- Department of Physiology, Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY 40536, USA
| | - Ryan E. Temel
- Department of Physiology, Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY 40536, USA
| | - Zahi A. Fayad
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Musa M. Mhlanga
- Epigenomics & Single Cell Biophysics Group, Department of Cell Biology, FNWI, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University, 6525 GA Nijmegen, the Netherlands
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Mandy M.T. van Leent
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Abraham J.P. Teunissen
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Mihai G. Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
- Department of Immunology and Metabolism, Life and Medical Sciences Institute, University of Bonn, 53115 Bonn, Germany
| | - Willem J.M. Mulder
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, 5612 AZ Eindhoven, the Netherlands
| |
Collapse
|
11
|
Singh YJ, Singh S, Kaur M, Jain A, Sehrawat S. Galectin-3 modulates cellular infectivity and inflammatory response mediated by spike protein of SARS-CoV2. Int J Biol Macromol 2025; 310:143182. [PMID: 40253029 DOI: 10.1016/j.ijbiomac.2025.143182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 03/12/2025] [Accepted: 04/14/2025] [Indexed: 04/21/2025]
Abstract
We report that the recombinantly produced galectin-3 (Gal-3) not only reduces the infectivity of a pseudotyped lentivirus expressing SARS-CoV2-S protein i.e., LV(CoV2-S) in the susceptible cells but also dampens the inflammatory response of innate immune cells. Glycan moieties of the CoV2-S protein promote cellular infectivity of LV(CoV2-S). Exogenously added Gal-3, acting via its carbohydrate recognition domain (CRD), prevents LV(CoV2-S) infection of the susceptible cells. Accordingly, Gal-3 mediated LV(CoV2-S) neutralization is inhibited when Gal-3 is pre-incubated with either α-lactose or a single domain antibody specific to the CRD of Gal-3. BMDCs from Gal-3KO as compared to those from WT mice generate significantly higher cytokine response and the exogenously added Gal-3 reduces cytokine levels following stimulation with the derivates of CoV2-S protein. Therefore, modifying the interaction of Gal-3 and glycans of the viral CoV2-S protein might represent a strategy that reduces the infectivity of SARS-CoV2 and mitigates immunopathology caused by the virus infection.
Collapse
Affiliation(s)
- Yuviana J Singh
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar Knowledge City, PO, Manauli Mohali 140306, Punjab, India
| | - Sudhakar Singh
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar Knowledge City, PO, Manauli Mohali 140306, Punjab, India
| | - Manpreet Kaur
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar Knowledge City, PO, Manauli Mohali 140306, Punjab, India
| | - Ayush Jain
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar Knowledge City, PO, Manauli Mohali 140306, Punjab, India
| | - Sharvan Sehrawat
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar Knowledge City, PO, Manauli Mohali 140306, Punjab, India.
| |
Collapse
|
12
|
Taha MS, Akram A, Abdelbary GA. Unlocking the potential of remdesivir: innovative approaches to drug delivery. Drug Deliv Transl Res 2025:10.1007/s13346-025-01843-7. [PMID: 40244526 DOI: 10.1007/s13346-025-01843-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2025] [Indexed: 04/18/2025]
Abstract
Given the recurrent waves of COVID-19 and the emergence of new viral infections, optimizing the potential of remdesivir as an antiviral agent is critical. While several reviews have explored the efficacy of remdesivir, few have comprehensively addressed its challenges, such as the necessity for intravenous infusion, suboptimal lung accumulation, and safety concerns related to its formulation. This review critically examines these challenges while proposing innovative solutions and effective combinations with other antiviral agents and repurposed drugs. By highlighting the role of complex generics, we aim to enhance therapeutic efficacy in ways not previously discussed in existing literature. Furthermore, we address the development of novel drug delivery systems which specifically aim to improve remdesivir's pharmacological profile. By analyzing recent findings, we assess both the successes and limitations of current approaches, providing insights into ongoing challenges and strategies for further optimization. This review uniquely focuses on targeted drug delivery systems and innovative formulations, thereby maximizing remdesivir's therapeutic benefits and broadening its application in combating emerging viral threats. In doing so, we fill a critical gap in literature, offering a comprehensive overview that informs future research and clinical strategies.
Collapse
Affiliation(s)
- Maie S Taha
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| | - Alaa Akram
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Ghada A Abdelbary
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| |
Collapse
|
13
|
Gryka-Marton M, Grabowska AD, Szukiewicz D. Breaking the Barrier: The Role of Proinflammatory Cytokines in BBB Dysfunction. Int J Mol Sci 2025; 26:3532. [PMID: 40331982 PMCID: PMC12026921 DOI: 10.3390/ijms26083532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/02/2025] [Accepted: 04/08/2025] [Indexed: 05/08/2025] Open
Abstract
The BBB is created by a special system of brain microvascular endothelial cells (BMECs), pericytes (PCs), the capillary basement membrane, and the terminal branches ("end-feet") of astrocytes (ACs). The key function of the BBB is to protect the central nervous system (CNS) from potentially harmful/toxic substances in the bloodstream by selectively controlling the entry of cells and molecules, including nutrients and components of the immune system. The loss of BBB integrity in response to neuroinflammation, as manifested by an increase in permeability, depends predominantly on the activity of proinflammatory cytokines. However, the pathomechanism of structural and functional changes in the BBB under the influence of individual cytokines is still poorly understood. This review summarizes the current state of knowledge on this topic, which is important from both pathophysiological and therapeutic points of view. The structures and functions of all components of the BBB are reviewed, with emphasis given to differences between this and other locations of the circulatory system. The protein composition of the interendothelial tight junctions in the context of regulating BBB permeability is presented, as is the role of pericyte-BMEC interactions in the exchange of metabolites, ions, and nucleic acids. Finally, the documented actions of proinflammatory cytokines within the BBB are discussed.
Collapse
Affiliation(s)
| | | | - Dariusz Szukiewicz
- Laboratory of the Blood–Brain Barrier, Department of Biophysics, Physiology & Pathophysiology, Faculty of Health Sciences, Medical University of Warsaw, Chalubinskiego 5, 02-004 Warsaw, Poland; (M.G.-M.); (A.D.G.)
| |
Collapse
|
14
|
Xu R, Hong HA, Khandaker S, Baltazar M, Allehyani N, Beentjes D, Prince T, Ho YL, Nguyen LH, Hynes D, Love W, Cutting SM, Kadioglu A. Nasal delivery of killed Bacillus subtilis spores protects against influenza, RSV and SARS-CoV-2. Front Immunol 2025; 16:1501907. [PMID: 40242757 PMCID: PMC12000887 DOI: 10.3389/fimmu.2025.1501907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 03/10/2025] [Indexed: 04/18/2025] Open
Abstract
Introduction Spores of the bacterium Bacillus subtilis (B. subtilis) have been shown to carry a number of properties potentially beneficial for vaccination. Firstly, as vehicles enabling mucosal delivery of heterologous antigens and secondly, as stimulators of innate immunity. Here, we have examined the specificity of protection conferred by the spore-induced innate response, focusing on influenza H1N1, respiratory syncytial virus (RSV), and coronavirus-2 (SARS-CoV-2) infections. Methods In vivo viral challenge murine models were used to assess the prophylactic anti-viral effects of B. subtilis spores delivered by intranasal instilling, using an optimised three-dose regimen. Multiple nasal boosting doses following intramuscular priming with SARS-CoV-2 spike protein was also tested for the capability of spores on enhancing the efficacy of parenteral vaccination. To determine the impact of spores on immune cell trafficking to lungs, we used intravascular staining to characterise cellular participants in spore-dosed pulmonary compartments (airway and lung parenchyma) before and after viral challenge. Results We found that mice pre-treated with spores developed resistance to all three pathogens and, in each case, exhibited a significant improvement in both survival rate and disease severity. Intranasal spore dosing expanded alveolar macrophages and induced recruitment of leukocyte populations, providing a cellular mechanism for the protection. Most importantly, virus-induced inflammatory leukocyte infiltration was attenuated in spore-treated lungs, which may alleviate the associated collateral tissue damage that leads to the development of severe conditions. Remarkably, spores were able to promote the induction of tissue-resident memory T cells, and, when administered following an intramuscular prime with SARS-CoV-2 spike protein, increased the levels of anti-spike IgA and IgG in the lung and serum. Conclusions Taken together, our results show that Bacillus spores are able to regulate both innate and adaptive immunity, providing heterologous protection against a variety of important respiratory viruses of high global disease burden.
Collapse
Affiliation(s)
- Rong Xu
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, United Kingdom
| | - Huynh A. Hong
- SporeGen Ltd., London Bioscience Innovation Centre, London, United Kingdom
| | - Shadia Khandaker
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, United Kingdom
| | - Murielle Baltazar
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, United Kingdom
| | - Noor Allehyani
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, United Kingdom
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Riyadh, Saudi Arabia
| | - Daan Beentjes
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, United Kingdom
| | - Tessa Prince
- Department of Infection Biology and Microbiomes, University of Liverpool, Liverpool, United Kingdom
| | - Yen-Linh Ho
- Huro Biotech Joint Stock Company, Ho Chi Minh, Vietnam
| | | | - Daniel Hynes
- Destiny Pharma Plc., Sussex Innovation Centre, Brighton, United Kingdom
| | - William Love
- Destiny Pharma Plc., Sussex Innovation Centre, Brighton, United Kingdom
| | - Simon M. Cutting
- SporeGen Ltd., London Bioscience Innovation Centre, London, United Kingdom
| | - Aras Kadioglu
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
15
|
Dhawan M, Thakur N, Sharma M, Rabaan AA. The comprehensive insights into the B-cells-mediated immune response against COVID-19 infection amid the ongoing evolution of SARS-CoV-2. Biomed Pharmacother 2025; 185:117936. [PMID: 40056829 DOI: 10.1016/j.biopha.2025.117936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 02/08/2025] [Accepted: 02/20/2025] [Indexed: 03/10/2025] Open
Abstract
The antibody-mediated immune response is crucial for the development of protective immunity against SARS-CoV-2, the virus responsible for the COVID-19 pandemic. Understanding the interaction between SARS-CoV-2 and the immune system is critical because new variants emerge as a result of the virus's ongoing evolution. Understanding the function of B cells in the SARS-CoV-2 infection process is critical for developing effective and long-lasting vaccines against this virus. Triggered by the innate immune response, B cells transform into memory B cells (MBCs). It is fascinating to observe how MBCs provide enduring immune defence, not only eradicating the infection but also safeguarding against future reinfection. If there is a lack of B cell activation or if the B cells are not functioning properly, it can lead to a serious manifestation of the disease and make immunisation less effective. Individuals with disruptions in the B cells have shown increased production of cytokines and chemokines, resulting in a poor prognosis for the disease. Therefore, we have developed an updated review article to gain insight into the involvement of B cells in SARS-CoV-2 infection. The discussion has covered the generation, functioning, and dynamics of neutralising antibodies (nAbs). Furthermore, we have emphasised immunotherapeutics that rely on nAbs.
Collapse
Affiliation(s)
- Manish Dhawan
- Department of Microbiology, Punjab Agricultural University, Ludhiana, Punjab 141004, India; Trafford College, Altrincham, Altrincham, Manchester WA14 5PQ, UK.
| | - Nanamika Thakur
- University Institute of Biotechnology, Department of Biotechnology, Chandigarh University, Mohali 140413, India
| | - Manish Sharma
- University Institute of Biotechnology, Department of Biotechnology, Chandigarh University, Mohali 140413, India
| | - Ali A Rabaan
- Research Center, Dr. Sulaiman Alhabib Medical Group, Riyadh 13328, Saudi Arabia; Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia; Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan.
| |
Collapse
|
16
|
Anshori I, Marcius D, Syaifie PH, Siregar KAAK, Syakuran LA, Jauhar MM, Arda AG, Shalannanda W, Mardliyati E. Therapeutic Potential of Propolis Extract in Managing Hyperinflammation and Long COVID-19: A Bioinformatics Study. Chem Biodivers 2025; 22:e202401947. [PMID: 39576127 DOI: 10.1002/cbdv.202401947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 12/06/2024]
Abstract
Hyperinflammation is a significant factor in long COVID, impacting over 65 million post-COVID-19 individuals globally. Herbal remedies, including propolis, show promise in reducing severity and pro-inflammatory cytokines. However, the natural pharmacological role of propolis in COVID-19 management remains underexplored. Employing network pharmacology and in silico techniques, we assessed propolis extract's potential in countering SARS-CoV-2-induced inflammation. We identified 80 flavonoids via LC-MS/MS QTOF and employed 11 anti-inflammatory drugs as references for inflammation target fishing. Utilizing in silico techniques encompassing target fishing, molecular docking, and dynamics, we examined propolis' effects. We identified 1105 gene targets connected to inflammation through multiple validated target predictors. By integrating SARS-CoV-2 DEGs from GSE147507 with these targets, we identify 25 inflammation-COVID-19-associated propolis targets, including STAT1, NOS2, CFB, EIF2K2, NPY5R, and BTK. Enrichment analyses highlighted primary pharmacological pathways related to Epstein-Barr virus infection and COVID-19. Molecular docking validated isokaempferide, iristectorigenin B, 3'-methoxypuerarin, cosmosiin, and baicalein-7-O-β-d-glucopyranoside, which exhibited strong binding affinity and stability with relevant genes. Moreover, our findings indicate that propolis ligands could potentially suppress reactivation of Epstein-Barr Virus infections in post-COVID-19 cases. However, this study has a limitation in that the concentration of each propolis compound has not been quantified. Therefore, further exploration of propolis compounds quantification and experimental validation are needed to support these findings.
Collapse
Affiliation(s)
- Isa Anshori
- School of Electrical Engineering and Informatics, Bandung Institute of Technology, Bandung, Indonesia
- Research Center for Nanosciences and Nanotechnology (RCNN), Bandung Institute of Technology, Bandung, Indonesia
| | - Donny Marcius
- School of Electrical Engineering and Informatics, Bandung Institute of Technology, Bandung, Indonesia
| | - Putri Hawa Syaifie
- Nano Center Indonesia, Jl. PUSPIPTEK, South Tangerang, Banten, Indonesia
| | - Khalish Arsy Al Khairy Siregar
- Nano Center Indonesia, Jl. PUSPIPTEK, South Tangerang, Banten, Indonesia
- Faculty of Pharmacy, Universitas Muhammadiyah Kalimantan Timur, Samarinda, East Borneo, Indonesia
| | | | | | | | - Wervyan Shalannanda
- School of Electrical Engineering and Informatics, Bandung Institute of Technology, Bandung, Indonesia
| | - Etik Mardliyati
- Nano Center Indonesia, Jl. PUSPIPTEK, South Tangerang, Banten, Indonesia
- Research Center for Vaccine and Drugs, National Research and Innovation Agency (BRIN), Cibinong, Indonesia
| |
Collapse
|
17
|
Reus P, Torbica E, Rothenburger T, Bechtel M, Kandler J, Ciesek S, Gribbon P, Kannt A, Cinatl J, Bojkova D. Papaverine Targets STAT Signaling: A Dual-Action Therapy Option Against SARS-CoV-2. J Med Virol 2025; 97:e70319. [PMID: 40171981 PMCID: PMC11963225 DOI: 10.1002/jmv.70319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 02/27/2025] [Accepted: 03/16/2025] [Indexed: 04/04/2025]
Abstract
Papaverine (PV) has been previously identified as a promising candidate in SARS-CoV-2 repurposing screens. In this study, we further investigated both its antiviral and immunomodulatory properties. PV displayed antiviral efficacy against SARS-CoV-2 and influenza A viruses H1N1 and H5N1 in single infection as well as in co-infection. We demonstrated PV's activity against various SARS-CoV-2 variants and identified its action at the post-entry stage of the viral life cycle. Notably, treatment of air-liquid interface (ALI) cultures of primary bronchial epithelial cells with PV significantly inhibited SARS-CoV-2 levels. Additionally, PV was found to attenuate interferon (IFN) signaling independently of viral infection. Mechanistically, PV decreased the activation of the IFN-stimulated response element following stimulation with all three IFN types by suppressing STAT1 and STAT2 phosphorylation and nuclear translocation. Furthermore, the combination of PV with approved COVID-19 therapeutics molnupiravir and remdesivir demonstrated synergistic effects. Given its immunomodulatory effects and clinical availability, PV shows promising potential as a component for combination therapy against COVID-19.
Collapse
Affiliation(s)
- Philipp Reus
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, ScreeningPortHamburgGermany
- Institute for Medical Virology, University Hospital, Goethe University FrankfurtFrankfurtGermany
| | - Emma Torbica
- Institute for Medical Virology, University Hospital, Goethe University FrankfurtFrankfurtGermany
| | - Tamara Rothenburger
- Institute for Medical Virology, University Hospital, Goethe University FrankfurtFrankfurtGermany
| | - Marco Bechtel
- Institute for Medical Virology, University Hospital, Goethe University FrankfurtFrankfurtGermany
| | - Joshua Kandler
- Institute for Medical Virology, University Hospital, Goethe University FrankfurtFrankfurtGermany
| | - Sandra Ciesek
- Institute for Medical Virology, University Hospital, Goethe University FrankfurtFrankfurtGermany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMPFrankfurtGermany
| | - Philip Gribbon
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, ScreeningPortHamburgGermany
| | - Aimo Kannt
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMPFrankfurtGermany
| | - Jindrich Cinatl
- Institute for Medical Virology, University Hospital, Goethe University FrankfurtFrankfurtGermany
- Dr. Petra Joh Research InstituteFrankfurtGermany
| | - Denisa Bojkova
- Institute for Medical Virology, University Hospital, Goethe University FrankfurtFrankfurtGermany
| |
Collapse
|
18
|
Razo-Blanco-Hernández DM, Hernández-Mariano JÁ, Díaz-Cureño MA, Navarrete-Martínez L, Bravata-Alcántara JC, Rivera-Sanchez R, Fernandez-Sánchez V. Association between SARS-CoV-2 viral load and serum biomarkers with mortality in Mexican patients. JOURNAL OF EDUCATION AND HEALTH PROMOTION 2025; 14:133. [PMID: 40271273 PMCID: PMC12017452 DOI: 10.4103/jehp.jehp_1481_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 11/05/2024] [Indexed: 04/25/2025]
Abstract
BACKGROUND The coronavirus disease 2019 (COVID-19) pandemic has resulted in high mortality among hospitalized patients; thus, identifying mortality markers in treating these patients is essential. To evaluate the association between viral load and serum biomarkers with mortality among hospitalized patients with COVID-19. MATERIALS AND METHODS A retrospective cohort study was conducted among 198 inpatient records from a tertiary hospital in Mexico City between January and April 2021. The association between severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral load and serum biomarkers with death due to COVID-19 was assessed using Cox regression models. RESULTS The median age was 54.9 years, and 61.6% were males. The mortality rate was 43.4%. After adjusting for potential confounders, patients with higher viral load [adjusted hazard ratio (aHR) = 1.56; 95% confidence interval (95% CI) = 1.01, 2.42; P value = 0.041]; and higher concentrations of BUN (aHR = 4.87;95% CI = 2.70, 8.79; P value = 0.001), creatinine (aHR = 1.60;95% CI = 1.01, 2.54; P value = 0.043), osmolality (aHR = 4.37;95% CI = 2.34, 8.14; P value = 0.001), and glucose (aHR = 2.41;95% CI = 1.40, 4.18; P value = 0.001) were more likely to have a fatal prognosis. Conversely, mortality risk was lower among patients with high concentrations of lymphocytes (aHR = 0.47;95% CI = 0.30, 0.72; P value = 0.001). CONCLUSION SARS-CoV-2 viral load and serum biomarkers such as BUN, creatinine, glucose, osmolarity, and lymphocytes could help physicians identify individuals who require closer monitoring.
Collapse
Affiliation(s)
| | | | - Mónica A. Díaz-Cureño
- Department of Medical Research and Teaching, Hospital Juárez de México, CDMX, Mexico
| | | | | | | | - Verónica Fernandez-Sánchez
- Department of Research, Hospital Juárez de México, CDMX, Mexico
- Faculty of Superior Studies Iztacala, UNAM, State of Mexico, Mexico
| |
Collapse
|
19
|
Pujadas V, Chin C, Sankpal NV, Buhrmaster J, Arjuna A, Walia R, Smith MA, Eickelberg O, Bremner RM, Mohanakumar T, Sureshbabu A. Alveolar epithelial type 2 cell specific loss of IGFBP2 activates inflammation in COVID-19. Respir Res 2025; 26:111. [PMID: 40121473 PMCID: PMC11929192 DOI: 10.1186/s12931-025-03187-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 03/10/2025] [Indexed: 03/25/2025] Open
Abstract
The coronavirus disease 2019 (COVID-19) global pandemic is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, our understanding of SARS-CoV-2-induced inflammation in alveolar epithelial cells remains very limited. The contributions of intracellular insulin-like growth factor binding protein-2 (IGFBP2) to SARS-CoV-2 pathogenesis are also unclear. In this study, we have uncovered a critical role for IGFBP2, specifically in alveolar epithelial type 2 cells (AEC2), in the immunopathogenesis of COVID-19. Using bulk RNA sequencing, we show that IGFBP2 mRNA expression is significantly downregulated in primary AEC2 cells isolated from fibrotic lung regions from patients with COVID-19-acute respiratory distress syndrome (ARDS) compared to those with idiopathic pulmonary fibrosis (IPF) alone or IPF with a history of COVID-19. Using multicolor immunohistochemistry, we demonstrated that IGFBP2 and its selective ligands IGF1 and IGF2 were significantly reduced in AEC2 cells from patients with COVID-ARDS, IPF alone, or IPF with COVID history than in those from age-matched donor controls. Further, we demonstrated that lentiviral expression of Igfbp2 significantly reduced mRNA expression of proinflammatory cytokines-Tnf-α, Il1β, Il6, Stat3, Stat6 and chemokine receptors-Ccr2 and Ccr5-in mouse lung epithelial cells challenged with SARS-CoV-2 spike protein injury (S2; 500 ng/mL). Finally, we demonstrated higher levels of cytokines-TNF-α; IL-6 and chemokine receptor-CCR5 in AEC2 cells from COVID-ARDS patients compared to the IPF alone and the IPF with COVID history patients. Altogether, these data suggest that anti-inflammatory properties of IGFBP2 in AEC2 cells and its localized delivery may serve as potential therapeutic strategy for patients with COVID-19.
Collapse
Affiliation(s)
- Valentina Pujadas
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, 124 W. Thomas Road, Ste. 100, Phoenix, AZ, 85013, USA
- Creighton University School of Medicine - Phoenix Regional Campus, Phoenix, AZ, USA
| | - Chiahsuan Chin
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, 124 W. Thomas Road, Ste. 100, Phoenix, AZ, 85013, USA
- Creighton University School of Medicine - Phoenix Regional Campus, Phoenix, AZ, USA
| | - Narendra V Sankpal
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, 124 W. Thomas Road, Ste. 100, Phoenix, AZ, 85013, USA
- Creighton University School of Medicine - Phoenix Regional Campus, Phoenix, AZ, USA
| | - James Buhrmaster
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, 124 W. Thomas Road, Ste. 100, Phoenix, AZ, 85013, USA
- Creighton University School of Medicine - Phoenix Regional Campus, Phoenix, AZ, USA
| | - Ashwini Arjuna
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, 124 W. Thomas Road, Ste. 100, Phoenix, AZ, 85013, USA
- Creighton University School of Medicine - Phoenix Regional Campus, Phoenix, AZ, USA
| | - Rajat Walia
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, 124 W. Thomas Road, Ste. 100, Phoenix, AZ, 85013, USA
- Creighton University School of Medicine - Phoenix Regional Campus, Phoenix, AZ, USA
| | - Michael A Smith
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, 124 W. Thomas Road, Ste. 100, Phoenix, AZ, 85013, USA
- Creighton University School of Medicine - Phoenix Regional Campus, Phoenix, AZ, USA
| | - Oliver Eickelberg
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Ross M Bremner
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, 124 W. Thomas Road, Ste. 100, Phoenix, AZ, 85013, USA
- Creighton University School of Medicine - Phoenix Regional Campus, Phoenix, AZ, USA
| | - Thalachallour Mohanakumar
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, 124 W. Thomas Road, Ste. 100, Phoenix, AZ, 85013, USA
- Creighton University School of Medicine - Phoenix Regional Campus, Phoenix, AZ, USA
| | - Angara Sureshbabu
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, 124 W. Thomas Road, Ste. 100, Phoenix, AZ, 85013, USA.
- Creighton University School of Medicine - Phoenix Regional Campus, Phoenix, AZ, USA.
| |
Collapse
|
20
|
Deepthi V, Sasikumar A, Mohanakumar KP, Rajamma U. Computationally designed multi-epitope vaccine construct targeting the SARS-CoV-2 spike protein elicits robust immune responses in silico. Sci Rep 2025; 15:9562. [PMID: 40108271 PMCID: PMC11923050 DOI: 10.1038/s41598-025-92956-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 03/04/2025] [Indexed: 03/22/2025] Open
Abstract
Our research is driven by the need to design an advanced multi-epitope vaccine construct (MEVC) using the S-protein of SARS-CoV-2 to combat the emergence of new variants. Through rigorous computational screening, we have identified linear and discontinuous B-cell epitopes, CD8 + and CD4 + T-cell epitopes, ensuring extensive MEVC coverage across 90.03% of the global population. The MEVC, featuring four CD4 + and four CD8 + T-cell epitopes connected linearly with two adjuvant proteins on both ends, has been carefully designed to elicit robust immune response. Our in-silico analysis has confirmed the construct's antigenicity, non-allergenicity, and non-toxicity with optimized codon sequences for enhanced expression in E. coli K12. Furthermore, molecular docking and dynamics analyses have demonstrated its strong binding affinity with TLR-3 and TLR 4, and in-silico immune simulation yielded promising results on heightened B-cell and T-cell-mediated immunity. However, wet lab experiments are essential to validate computational findings to revolutionize the development of vaccines against SARS-CoV-2.
Collapse
Affiliation(s)
- Varughese Deepthi
- Centre for Development and Aging Research, Inter University Centre for Biomedical Research & Super Speciality Hospital, Mahatma Gandhi University Campus at Thalappady, Rubber Board P.O, Kottayam, 686009, Kerala, India
| | - Aswathy Sasikumar
- Centre for Development and Aging Research, Inter University Centre for Biomedical Research & Super Speciality Hospital, Mahatma Gandhi University Campus at Thalappady, Rubber Board P.O, Kottayam, 686009, Kerala, India
- Virus Research and Diagnostic Centre, Inter University Centre for Biomedical Research & Super Speciality Hospital, Mahatma Gandhi University Campus at Thalappady, Rubber Board P.O, Kottayam, 686009, Kerala, India
| | - Kochupurackal P Mohanakumar
- Centre for Development and Aging Research, Inter University Centre for Biomedical Research & Super Speciality Hospital, Mahatma Gandhi University Campus at Thalappady, Rubber Board P.O, Kottayam, 686009, Kerala, India
- Virus Research and Diagnostic Centre, Inter University Centre for Biomedical Research & Super Speciality Hospital, Mahatma Gandhi University Campus at Thalappady, Rubber Board P.O, Kottayam, 686009, Kerala, India
| | - Usha Rajamma
- Centre for Development and Aging Research, Inter University Centre for Biomedical Research & Super Speciality Hospital, Mahatma Gandhi University Campus at Thalappady, Rubber Board P.O, Kottayam, 686009, Kerala, India.
| |
Collapse
|
21
|
Henriques-Pons A, Castro MCS, Silva VS, Costa MOC, Silva HSIL, Walter MEMT, Carvalho ACC, Melo ACMA, Ocaña K, dos Santos MT, Nicolas MF, Silva FAB. Pulmonary Myeloid Cells in Mild Cases of COVID-19 Upregulate the Intracellular Fc Receptor TRIM21 and Transcribe Proteasome-Associated Molecules. Int J Mol Sci 2025; 26:2769. [PMID: 40141410 PMCID: PMC11943277 DOI: 10.3390/ijms26062769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/17/2025] [Accepted: 02/17/2025] [Indexed: 03/28/2025] Open
Abstract
Much remains to be understood about COVID-19, but the protective role of antibodies (Igs) is widely accepted in SARS-CoV-2 infection. Igs' functions are mainly carried out by receptors that bind to their Fc portion (FcR), and less attention has been dedicated to the cytoplasmic members of this family. In this work, we used single-cell RNA sequencing (scRNA-seq) data to discern cell populations in bronchoalveolar lavage fluid obtained from healthy individuals and patients with mild or severe COVID-19. Then, we evaluated the transcription of neonatal FcR (FcRn, FCGRT gene) and tripartite motif-containing protein 21 (TRIM21) and its downstream signaling components. The TRIM21 pathway is vital for virus infections as it has a dual function, leading opsonized viruses to degradation by proteasomes and the activation of innate inflammatory anti-virus response. The transcriptional level of FCGRT showed no statistical differences in any cell population comparing the three groups of patients. On the other hand, TRIM21 transcription was significantly higher in myeloid cells collected from patients with mild COVID-19. When comparing mild with severe cases, there was no statistical difference in TRIM21 transcription in lung adaptive lymphoid cells and innate lymphoid cells (ILC). Yet, we analyzed the transcription of all downstream signaling molecules in myeloid and, as most cells expressed the receptor, in adaptive lymphoid cells. Moreover, ILCs from mild cases and all cell populations from severe cases were missing most downstream components of the pathway. We observed that members of the ubiquitin-proteasome system (UPS) and other components associated with TRIM21 proteasomal degradation were transcribed in mild cases. Despite the transcription of the danger sensors DDX58 and IFIH1, the transcriptional level of inflammatory IL1B and IL18 was generally very low, along with the NLRP3 danger sensor, members of the NF-κB pathway, and TNF. Therefore, our data suggest that TRIM21 may contribute to SARS-CoV-2 protection by reducing the viral load, while the inflammatory branch of the pathway would be silenced, leading to no pathogenic cytokine production.
Collapse
Affiliation(s)
- Andrea Henriques-Pons
- Laboratory of Innovations in Therapies, Education and Bioproducts, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil;
| | - Maria Clicia S. Castro
- Department of Informatics and Computer Science, State University of Rio de Janeiro, Rio de Janeiro 20550-900, Brazil;
| | - Vanessa S. Silva
- Scientific Computing Program, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil;
| | - Maiana O. C. Costa
- Computational Modeling Department, National Laboratory for Scientific Computing, Petropolis 15651-075, Brazil; (M.O.C.C.); (K.O.); (M.T.d.S.); (M.F.N.)
| | - Helena S. I. L. Silva
- Department of Computer Science, University of Brasilia, Campus Universitário Darcy Ribeiro, Brasilia 70910-900, Brazil; (H.S.I.L.S.); (M.E.M.T.W.); (A.C.M.A.M.)
| | - Maria Emilia M. T. Walter
- Department of Computer Science, University of Brasilia, Campus Universitário Darcy Ribeiro, Brasilia 70910-900, Brazil; (H.S.I.L.S.); (M.E.M.T.W.); (A.C.M.A.M.)
| | - Anna Cristina C. Carvalho
- Laboratory of Innovations in Therapies, Education and Bioproducts, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil;
| | - Alba C. M. A. Melo
- Department of Computer Science, University of Brasilia, Campus Universitário Darcy Ribeiro, Brasilia 70910-900, Brazil; (H.S.I.L.S.); (M.E.M.T.W.); (A.C.M.A.M.)
| | - Kary Ocaña
- Computational Modeling Department, National Laboratory for Scientific Computing, Petropolis 15651-075, Brazil; (M.O.C.C.); (K.O.); (M.T.d.S.); (M.F.N.)
| | - Marcelo T. dos Santos
- Computational Modeling Department, National Laboratory for Scientific Computing, Petropolis 15651-075, Brazil; (M.O.C.C.); (K.O.); (M.T.d.S.); (M.F.N.)
| | - Marisa F. Nicolas
- Computational Modeling Department, National Laboratory for Scientific Computing, Petropolis 15651-075, Brazil; (M.O.C.C.); (K.O.); (M.T.d.S.); (M.F.N.)
| | - Fabrício A. B. Silva
- Scientific Computing Program, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil;
| |
Collapse
|
22
|
Araújo R, Ramalhete L, Von Rekowski CP, Fonseca TAH, Calado CRC, Bento L. Cytokine-Based Insights into Bloodstream Infections and Bacterial Gram Typing in ICU COVID-19 Patients. Metabolites 2025; 15:204. [PMID: 40137168 PMCID: PMC11944015 DOI: 10.3390/metabo15030204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/03/2025] [Accepted: 03/14/2025] [Indexed: 03/27/2025] Open
Abstract
Background: Timely and accurate identification of bloodstream infections (BSIs) in intensive care unit (ICU) patients remains a key challenge, particularly in COVID-19 settings, where immune dysregulation can obscure early clinical signs. Methods: Cytokine profiling was evaluated to discriminate between ICU patients with and without BSIs, and, among those with confirmed BSIs, to further stratify bacterial infections by Gram type. Serum samples from 45 ICU COVID-19 patients were analyzed using a 21-cytokine panel, with feature selection applied to identify candidate markers. Results: A machine learning workflow identified key features, achieving robust performance metrics with AUC values up to 0.97 for BSI classification and 0.98 for Gram typing. Conclusions: In contrast to traditional approaches that focus on individual cytokines or simple ratios, the present analysis employed programmatically generated ratios between pro-inflammatory and anti-inflammatory cytokines, refined through feature selection. Although further validation in larger and more diverse cohorts is warranted, these findings underscore the potential of advanced cytokine-based diagnostics to enhance precision medicine in infection management.
Collapse
Affiliation(s)
- Rúben Araújo
- NMS—NOVA Medical School, FCM—Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria 130, 1169-056 Lisbon, Portugal; (R.A.)
- CHRC—Comprehensive Health Research Centre, Universidade NOVA de Lisboa, 1150-082 Lisbon, Portugal
- ISEL—Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, Rua Conselheiro Emídio Navarro 1, 1959-007 Lisbon, Portugal
| | - Luís Ramalhete
- NMS—NOVA Medical School, FCM—Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria 130, 1169-056 Lisbon, Portugal; (R.A.)
- IPST—Instituto Português do Sangue e da Transplantação, Alameda das Linhas de Torres 117, 1769-001 Lisbon, Portugal
- iNOVA4Health—Advancing Precision Medicine, RG11: Reno-Vascular Diseases Group, NMS—NOVA Medical School, FCM—Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
| | - Cristiana P. Von Rekowski
- NMS—NOVA Medical School, FCM—Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria 130, 1169-056 Lisbon, Portugal; (R.A.)
- CHRC—Comprehensive Health Research Centre, Universidade NOVA de Lisboa, 1150-082 Lisbon, Portugal
- ISEL—Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, Rua Conselheiro Emídio Navarro 1, 1959-007 Lisbon, Portugal
| | - Tiago A. H. Fonseca
- NMS—NOVA Medical School, FCM—Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria 130, 1169-056 Lisbon, Portugal; (R.A.)
- CHRC—Comprehensive Health Research Centre, Universidade NOVA de Lisboa, 1150-082 Lisbon, Portugal
- ISEL—Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, Rua Conselheiro Emídio Navarro 1, 1959-007 Lisbon, Portugal
| | - Cecília R. C. Calado
- ISEL—Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, Rua Conselheiro Emídio Navarro 1, 1959-007 Lisbon, Portugal
- Institute for Bioengineering and Biosciences (iBB), The Associate Laboratory Institute for Health and Bioeconomy-i4HB, Instituto Superior Técnico (IST), Universidade de Lisboa (UL), Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Luís Bento
- NMS—NOVA Medical School, FCM—Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria 130, 1169-056 Lisbon, Portugal; (R.A.)
- CHRC—Comprehensive Health Research Centre, Universidade NOVA de Lisboa, 1150-082 Lisbon, Portugal
- Intensive Care Department, ULSSJ—Unidade Local de Saúde São José, Rua José António Serrano, 1150-199 Lisbon, Portugal
- Integrated Pathophysiological Mechanisms, CHRC—Comprehensive Health Research Centre, NMS—NOVA Medical School, FCM—Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo Mártires da Pátria 130, 1169-056 Lisbon, Portugal
| |
Collapse
|
23
|
Graciliano NG, Goulart MOF, de Oliveira ACM. Impact of Maternal Exposure to SARS-CoV-2 on Immunological Components of Breast Milk. Int J Mol Sci 2025; 26:2600. [PMID: 40141241 PMCID: PMC11942142 DOI: 10.3390/ijms26062600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 03/07/2025] [Accepted: 03/09/2025] [Indexed: 03/28/2025] Open
Abstract
COVID-19, caused by SARS-CoV-2, has become a global public health threat. Although no replication-competent virus has been found in breast milk samples, breastfeeding practices during the pandemic were impacted. It is well known that breast milk is adapted to meet the needs of infants, providing the appropriate amounts of nutrients and various bioactive compounds that contribute to the maturation of the immune system and antioxidant protection, safeguarding infants against diseases. While its composition is variable, breast milk contains immune cells, antibodies, and cytokines, which have anti-inflammatory, pro-inflammatory, antiviral, and antibacterial properties that strengthen infant immunity. Since COVID-19 vaccines have not yet been approved for infants under six months of age, newborns rely on the passive transfer of antibodies via the placenta and breast milk to protect them against severe SARS-CoV-2 infection. Several studies that analyzed breast milk samples in the context of COVID-19 have demonstrated that a strong antibody response is induced following maternal infection with SARS-CoV-2. Therefore, this review aims to provide a comprehensive overview of the impact of maternal exposure to SARS-CoV-2 through natural infection and/or vaccination on the immunological composition of breast milk based on the studies conducted on this topic.
Collapse
Affiliation(s)
- Nayara Gomes Graciliano
- Institute of Biological and Health Sciences, Federal University of Alagoas, Maceió 57072-900, Alagoas, Brazil
| | - Marília Oliveira Fonseca Goulart
- Institute of Biological and Health Sciences, Federal University of Alagoas, Maceió 57072-900, Alagoas, Brazil
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió 57072-900, Alagoas, Brazil
| | - Alane Cabral Menezes de Oliveira
- Institute of Biological and Health Sciences, Federal University of Alagoas, Maceió 57072-900, Alagoas, Brazil
- College of Nutrition, Federal University of Alagoas, Maceió 57072-900, Alagoas, Brazil
| |
Collapse
|
24
|
Chavda VP, Bezbaruah R, Ahmed N, Alom S, Bhattacharjee B, Nalla LV, Rynjah D, Gadanec LK, Apostolopoulos V. Proinflammatory Cytokines in Chronic Respiratory Diseases and Their Management. Cells 2025; 14:400. [PMID: 40136649 PMCID: PMC11941495 DOI: 10.3390/cells14060400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 03/04/2025] [Accepted: 03/04/2025] [Indexed: 03/27/2025] Open
Abstract
Pulmonary homeostasis can be agitated either by external environmental insults or endogenous factors produced during respiratory/pulmonary diseases. The lungs counter these insults by initiating mechanisms of inflammation as a localized, non-specific first-line defense response. Cytokines are small signaling glycoprotein molecules that control the immune response. They are formed by numerous categories of cell types and induce the movement, growth, differentiation, and death of cells. During respiratory diseases, multiple proinflammatory cytokines play a crucial role in orchestrating chronic inflammation and structural changes in the respiratory tract by recruiting inflammatory cells and maintaining the release of growth factors to maintain inflammation. The issue aggravates when the inflammatory response is exaggerated and/or cytokine production becomes dysregulated. In such instances, unresolving and chronic inflammatory reactions and cytokine production accelerate airway remodeling and maladaptive outcomes. Pro-inflammatory cytokines generate these deleterious consequences through interactions with receptors, which in turn initiate a signal in the cell, triggering a response. The cytokine profile and inflammatory cascade seen in different pulmonary diseases vary and have become fundamental targets for advancement in new therapeutic strategies for lung diseases. There are considerable therapeutic approaches that target cytokine-mediated inflammation in pulmonary diseases; however, blocking specific cytokines may not contribute to clinical benefit. Alternatively, broad-spectrum anti-inflammatory approaches are more likely to be clinically effective. Herein, this comprehensive review of the literature identifies various cytokines (e.g., interleukins, chemokines, and growth factors) involved in pulmonary inflammation and the pathogenesis of respiratory diseases (e.g., asthma, chronic obstructive pulmonary, lung cancer, pneumonia, and pulmonary fibrosis) and investigates targeted therapeutic treatment approaches.
Collapse
Affiliation(s)
- Vivek P. Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L.M. College of Pharmacy, Ahmedabad 380009, Gujarat, India
| | - Rajashri Bezbaruah
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh 786004, Assam, India; (R.B.); (N.A.); (S.A.)
- Institute of Pharmacy, Assam Medical College and Hospital, Dibrugarh 786002, Assam, India
| | - Nasima Ahmed
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh 786004, Assam, India; (R.B.); (N.A.); (S.A.)
| | - Shahnaz Alom
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh 786004, Assam, India; (R.B.); (N.A.); (S.A.)
- Girijananda Chowdhury Institute of Pharmaceutical Science-Tezpur, Sonitpur 784501, Assam, India; (B.B.); (D.R.)
| | - Bedanta Bhattacharjee
- Girijananda Chowdhury Institute of Pharmaceutical Science-Tezpur, Sonitpur 784501, Assam, India; (B.B.); (D.R.)
| | - Lakshmi Vineela Nalla
- Department of Pharmacology, GITAM School of Pharmacy, GITAM (Deemed to be University), Rushikonda, Visakhapatnam 530045, Andhra Pradesh, India;
| | - Damanbhalang Rynjah
- Girijananda Chowdhury Institute of Pharmaceutical Science-Tezpur, Sonitpur 784501, Assam, India; (B.B.); (D.R.)
| | - Laura Kate Gadanec
- Institute for Health and Sport, Immunology and Translational Research Group, Victoria University, Werribee, VIC 3030, Australia;
| | - Vasso Apostolopoulos
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC 3083, Australia;
| |
Collapse
|
25
|
Chagas JPS, de Oliveira JR, Brandão VA, Bellucio APB, Dutra JVDA, Dutra JR, Cerutti C. Evaluating imatinib in severe COVID-19: a systematic review and meta-analysis. Trans R Soc Trop Med Hyg 2025; 119:203-209. [PMID: 39587918 DOI: 10.1093/trstmh/trae095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/09/2024] [Accepted: 10/17/2024] [Indexed: 11/27/2024] Open
Abstract
BACKGROUND Considering the potential antiviral and immunomodulatory properties of imatinib, this drug has been investigated in several studies as a potential treatment option for severe cases of COVID-19, given that treatment modalities available remain limited. OBJECTIVES To evaluate the benefits or otherwise of imatinib for COVID-19 in severely ill patients, we performed a systematic review of studies that tested the efficacy and the safety of imatinib for COVID-19 and executed a meta-analysis. METHODS We searched Medline, Embase and Cochrane with the following search terms: 'coronavirus', 'SARS-Cov2', 'covid', 'covid-19' and 'imatinib'. The latest search date was November 2023. We used Cochrane Collaboration's tool to assess bias in randomized trials. RESULTS We included three randomized controlled trials with 561 participants. A total of 276 patients received imatinib and 285 received placebo. The mortality results showed no statistically significant differences between imatinib and controls (RR 0.61; 95% CI 0.37 to 1.01; p=0.06). There was no significant difference in length of hospital stay or severe adverse events occurring between groups. CONCLUSIONS Current evidence suggests that the potential benefits of imatinib should be further evaluated in randomized controlled trials in patients hospitalized for COVID-19.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Crispim Cerutti
- Departamento de Medicina Social, Universidade Federal do Espírito Santo, Vitória 29090-040, Brazil
| |
Collapse
|
26
|
Lin MW, Lin CH, Chang JR, Chiang HH, Wu TH, Lin CS. The influence of PM2.5 exposure on SARS-CoV-2 infection via modulating the expression of angiotensin converting enzyme II. JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136887. [PMID: 39700942 DOI: 10.1016/j.jhazmat.2024.136887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/22/2024] [Accepted: 12/13/2024] [Indexed: 12/21/2024]
Abstract
Particulate matter 2.5 (PM2.5) pollution and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic are the greatest environmental health issues worldwide. Several statistics revealed the significant positive correlation between the morbidity of coronavirus disease-19 (COVID-19) and the levels of air pollution. Nevertheless, there is no direct experimental evidence to indicate the effect of PM2.5 exposure on SARS-CoV-2 infection. The objective of this study was to evaluate whether the infection of SARS-CoV-2 affected by PM2.5 through angiotensin-converting enzyme II (ACE2) expression enhances and investigate the function of ACE2 in lung injury induced by PM2.5. An animal model of PM2.5-induced lung injury was established using wild-type (WT, C57BL/6), human ACE2 transgenic (K18-hACE2 TG), and murine ACE2 gene knockout (mACE2 KO) mice. The results indicate that PM2.5 exposure facilitates SARS-CoV-2 infection through inducing ACE2 expression in vitro (10 μg/mL) and in vivo (6.25 mg/kg/day in 50 μL saline). The levels of ACE, inflammatory cytokines, and mitogen-activated protein kinase (MAPK) proteins in WT, K18-hACE TG and mACE2 KO mice were significantly increased after PM2.5 instillation. The severest PM2.5-induced lung damage was observed in mACE2 KO mice. In summary, ACE2 plays a double-edged sword role in lung injury, PM2.5 exposure contributed to SARS-CoV-2 infection through inducing ACE2 expression, but ACE2 also protected pulmonary inflammation from PM2.5 challenge.
Collapse
Affiliation(s)
- Meng-Wei Lin
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan.
| | - Cheng-Han Lin
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan.
| | - Jia-Rong Chang
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan.
| | - Hua-Hsin Chiang
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan.
| | - Ting-Hsuan Wu
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan.
| | - Chih-Sheng Lin
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan; Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan.
| |
Collapse
|
27
|
de la Poza JFD, Parés AR, Aparicio-Calvente I, Blanco IB, Masmitjà JG, Berenguer-Llergo A, Fontova JC. Frequency of IgE antibody response to SARS-CoV-2 RBD protein across different disease severity COVID19 groups. Virol J 2025; 22:58. [PMID: 40038712 PMCID: PMC11877796 DOI: 10.1186/s12985-025-02677-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 02/20/2025] [Indexed: 03/06/2025] Open
Abstract
BACKGROUND COVID-19 appears to have a progression of three stages. The latter stage is characterized by a high level of cytokine release, which in turn triggers an uncontrolled reaction known as cytokine storm where mast cells are involved. The presence of anti-IgE antibodies against SARS-CoV-2 in this phase has been previously reported, suggesting an association with the severity of the disease. Our study aims to assess the prognostic significance of IgE antibodies against SARS-CoV-2 across a spectrum of clinical presentations, including individual with mild symptoms, hospitalized patients, and those who presented a critical progression. METHODS The study included 64 patients distributed into the following groups: 22 critically ill hospitalized individuals (Critical); 21 non-critical hospitalized patients (Severe); 21 mild symptomatic non-hospitalized cases (Mild); and 22 healthy blood donors with samples collected in October 2019. Anti-IgE antibodies against Spike (S) protein were detected using a homemade ELISA, where the plate was sensitized with the RBD of recombinant S protein. RESULTS Among 64 SARS-CoV-2 infected patients, 28.1% tested positive for IgE isotype antibodies against S protein RBD, whose prevalence was similar across severity groups: Mild 23.8%, Severe 28.6%, and Critical 31.8% (p = 0.842). Patients with IgE response exhibited higher levels of LDH compared to non-IgE responders, with a 40% increase (p = 0.037), and a non-significantly higher tendency in other inflammatory markers. CONCLUSION In SARS-CoV-2 infection, roughly a fourth of patients presented an IgE isotype response, regardless of disease severity, which is associated with higher levels of LDH.
Collapse
Affiliation(s)
- Juan Francisco Delgado de la Poza
- Immunology Laboratory, Clinic Laboratories Service, Departament de Medicina, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT-CERCA), Universitat Autònoma de Barcelona, Sabadell, Spain.
| | - Albert Rodrigo Parés
- Inflammatory Joint Diseases, Bone Metabolism, and Systemic Autoimmune Diseases Research Group, Consorci Corporació Sanitària Parc Taulí, Institut d'Investigació i Innovació Parc Taulí (I3PT-CERCA), Sabadell, Spain
| | - Isabel Aparicio-Calvente
- Immunology Laboratory, Clinic Laboratories Service, Departament de Medicina, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT-CERCA), Universitat Autònoma de Barcelona, Sabadell, Spain
| | - Indira Bhambi Blanco
- Immunology Laboratory, Clinic Laboratories Service, Departament de Medicina, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT-CERCA), Universitat Autònoma de Barcelona, Sabadell, Spain
| | - Jordi Gratacòs Masmitjà
- Rheumatology Service, Departament de Medicina, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT-CERCA), Universitat Autònoma de Barcelona, Sabadell, Spain
| | - Antoni Berenguer-Llergo
- Inflammatory Joint Diseases, Bone Metabolism, and Systemic Autoimmune Diseases Research Group, Consorci Corporació Sanitària Parc Taulí, Institut d'Investigació i Innovació Parc Taulí (I3PT-CERCA), Sabadell, Spain
| | - Joan Calvet Fontova
- Rheumatology Service, Departament de Medicina, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT-CERCA), Universitat Autònoma de Barcelona, Sabadell, Spain
| |
Collapse
|
28
|
Mirzababaei A, Shiraseb F, Mohamadi A, Mehri Hajmir M, Ebrahimi S, Zarrinvafa Z, Kazemian E, Mehrvar A, Mirzaei K. The association between nutrient patterns and hospital stay duration and symptoms in COVID-19 in Iranian patients: cross-sectional study. Front Nutr 2025; 12:1542449. [PMID: 40098737 PMCID: PMC11911187 DOI: 10.3389/fnut.2025.1542449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 02/07/2025] [Indexed: 03/19/2025] Open
Abstract
Background An excessively reactive immune system results in the cytokine storm COVID-19. A healthy diet is essential to maintain the balance between the immune system and inflammatory and oxidative stress. Associations between single foods and nutrients and COVID-19 have been examined. However, no prior study has examined associations between nutrient patterns and COVID-19. This study assessed the link between nutrient patterns and the COVID-19 severity and length of hospital stay in Iranian adults. Methods This cross-sectional study included 107 Iranian adults aged 20-60 years, who were admitted to Amir Alam Hospital in Tehran, Iran, due to COVID-19. Data on their symptoms were collected through a demographic questionnaire and verified against their hospital records. Three non-consecutive 24-h dietary recalls were used to collect participants' food and beverage intake. Principal component analysis (PCA) was used to derive nutrient patterns. Result A total of 95 Covid patients with a mean age of 46.2 years were included. Four major dietary patterns were identified using the Scree Plot chart, including high carbohydrate and high minerals pattern; high protein and high vitamins pattern; high fat pattern; and poor nutrient pattern. Adherence to the poor nutrient patterns was associated with a higher number of hospitalization days and lower appetite (p < 0.05). The poor dietary patterns were associated with an increased likelihood of headache, fever, and respiratory distress syndrome (RDS). Also, headaches were more common with adherence to the high-fat pattern (p < 0.05). Conclusion The findings of this study show that a poor nutrient pattern is related to longer hospital stays and reduced appetite. It also connected to an increased likelihood of symptoms including headaches, fever, and respiratory distress syndrome. A strong association was found between respiratory distress syndrome, headaches, and a high-fat diet was found. Further studies with prospective designs are needed to better understand and validate these findings.
Collapse
Affiliation(s)
- Atieh Mirzababaei
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Farideh Shiraseb
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Azam Mohamadi
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
- Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahya Mehri Hajmir
- Department of Exercise and Nutrition Sciences, Milken Institute School of Public Health, The George Washington University, Washington, DC, United States
| | - Sara Ebrahimi
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC, Australia
| | - Zeinab Zarrinvafa
- Department of Nutrition, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Elham Kazemian
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Amir Mehrvar
- Department of Orthopedics, Taleghani Hospital Research Development Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Khadijeh Mirzaei
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
29
|
Ushigome E, Imai D, Hamaguchi M, Hashimoto S, Fukui M. Maximum insulin dose in patients admitted to the intensive care units with severe COVID-19 in the "Cross ICU Searchable Information System" study: A multicenter retrospective cohort study. J Diabetes Investig 2025; 16:555-560. [PMID: 39658883 PMCID: PMC11871387 DOI: 10.1111/jdi.14380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 11/07/2024] [Accepted: 11/28/2024] [Indexed: 12/12/2024] Open
Abstract
AIMS This study aimed to determine the maximum daily insulin dose (MDI) and associated factors in critically ill patients with coronavirus disease 2019 (COVID-19) receiving insulin therapy, under ventilator and/or extracorporeal membrane oxygenation (ECMO) management. MATERIALS AND METHODS This cross-sectional analysis used the Cross ICU Searchable Information System data from a Japanese multicenter retrospective observational cohort study of critically ill patients with COVID-19 receiving ventilation and/or ECMO, from February 2020 to March 2022. Maximum daily insulin dose was determined, and factors associated with it and maximum daily insulin dose per body weight were assessed using linear regression analysis. RESULTS The analysis included 788 patients. Their mean age, glycated hemoglobin level, maximum daily insulin dose, and time from admission to the maximum daily insulin dose were 65.2 ± 13.0 years, 7.0 ± 1.5% (53.0 ± 7.1 mmol/mol), 46.0 ± 43.6 U/day, and 7.3 ± 7.0 days, respectively. Male sex (β = 6.902, P = 0.034), body mass index (β = 1.020, P = 0.001), glycated hemoglobin (β = 12.272, P < 0.001), and having renal failure (β = 20.637, P = 0.003) were independent determinants of maximum daily insulin dose. Age (β = 0.004, P = 0.035), glycated hemoglobin (β = 0.154, P < 0.001), and having renal failure (β = 0.282, P = 0.004) were independent determinants of maximum daily insulin dose per body weight. CONCLUSIONS In patients with COVID-19 on ventilator and/or ECMO management, the maximum daily insulin dose reached after about 1 week of hospitalization was approximately 46.0 U/day. Glycated hemoglobin and renal failure were both associated with the maximum daily insulin dose and maximum daily insulin dose per body weight.
Collapse
Affiliation(s)
- Emi Ushigome
- Department of Endocrinology and Metabolism, Graduate School of Medical ScienceKyoto Prefectural University of MedicineKyotoJapan
| | - Dan Imai
- Department of Endocrinology and Metabolism, Graduate School of Medical ScienceKyoto Prefectural University of MedicineKyotoJapan
| | - Masahide Hamaguchi
- Department of Endocrinology and Metabolism, Graduate School of Medical ScienceKyoto Prefectural University of MedicineKyotoJapan
| | | | - Michiaki Fukui
- Department of Endocrinology and Metabolism, Graduate School of Medical ScienceKyoto Prefectural University of MedicineKyotoJapan
| |
Collapse
|
30
|
Lemos FFB, Lopes LW, Brito GC, Viana AIS, de Castro CT, Luz MS, Gonçalves AP, Dórea RSDM, da Silva FAF, de Brito BB, Santos MLC, Júnior GMS, de Lorenzo Barcia MTA, de Amorim Marques R, Botelho AB, Dantas ACS, Pinheiro FD, Teixeira AF, Souza CL, Oliveira MV, de Magalhães Queiroz DM, de Melo FF. Prognostic significance of cytokine dysregulation in critically ill COVID-19 patients. Cytokine 2025; 187:156867. [PMID: 39874939 DOI: 10.1016/j.cyto.2025.156867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 12/26/2024] [Accepted: 01/15/2025] [Indexed: 01/30/2025]
Abstract
BACKGROUND Understanding the immunopathogenesis of COVID-19 has yielded valuable insights into predicting adverse outcomes-particularly mortality. However, significant gaps persist in our comprehension of the complex interplay among the proposed pathophysiological mechanisms. Here, we aim to investigate the immunological factors associated with mortality in critically ill, unvaccinated COVID-19 patients admitted to the intensive care unit (ICU). METHODS We conducted a single-center, prospective study involving 56 unvaccinated COVID-19 patients admitted to the ICU. Plasma cytokine levels at admission were quantified using enzyme-linked immunosorbent assay (ELISA). Continuous variables were presented as median (IQR), and categorical variables as frequencies and percentages. Non-parametric tests assessed group differences. Logistic regression and receiver operating characteristic (ROC) curve analyses identified predictors of mortality, with bootstrapping (1000 re-samplings; 95 % BCa CI) applied for model validation. RESULTS Deceased patients exhibited significantly higher levels of interleukin (IL)-1β, IL-2, IL-6, transforming growth factor (TGF)-β, and interferon (IFN)-γ compared to survivors. Conversely, IL-10 and IL-27 were associated with favorable outcomes. Logistic regression modeling identified elevated IL-2 and IFN-γ levels as significant predictors of mortality. Notably, individual ROC curve analyses demonstrated that IL-1β and TGF-β had excellent discriminatory ability for mortality, while IFN-γ, IL-2, and IL-27 showed very good to excellent discriminatory capacity. CONCLUSION Our results indicate that distinct cytokine profiles differentiate survivors from non-survivors in critically ill, unvaccinated COVID-19 patients. These findings highlight the importance of cytokine dysregulation in severe COVID-19 cases and suggest potential targets for prognostic approaches. Further research is warranted to validate these results and translate them into effective clinical management strategies.
Collapse
Affiliation(s)
- Fabian Fellipe Bueno Lemos
- Multidisciplinary Health Institute, Federal University of Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Luana Weber Lopes
- Multidisciplinary Health Institute, Federal University of Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Gabriel Carvalho Brito
- Multidisciplinary Health Institute, Federal University of Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Airton Idalecio Sousa Viana
- Multidisciplinary Health Institute, Federal University of Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | | | - Marcel Silva Luz
- Multidisciplinary Health Institute, Federal University of Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - André Pereira Gonçalves
- Multidisciplinary Health Institute, Federal University of Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | | | | | - Breno Bittencourt de Brito
- Multidisciplinary Health Institute, Federal University of Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Maria Luísa Cordeiro Santos
- Multidisciplinary Health Institute, Federal University of Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | | | | | | | - André Bezerra Botelho
- Multidisciplinary Health Institute, Federal University of Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Anna Carolina Saúde Dantas
- Multidisciplinary Health Institute, Federal University of Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Fillipe Dantas Pinheiro
- Multidisciplinary Health Institute, Federal University of Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Adriano Fernandes Teixeira
- Multidisciplinary Health Institute, Federal University of Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Cláudio Lima Souza
- Multidisciplinary Health Institute, Federal University of Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Márcio Vasconcelos Oliveira
- Multidisciplinary Health Institute, Federal University of Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | | | - Fabrício Freire de Melo
- Multidisciplinary Health Institute, Federal University of Bahia, Vitória da Conquista 45029-094, Bahia, Brazil.
| |
Collapse
|
31
|
Nawa H, Murakami M. Neurobiology of COVID-19-Associated Psychosis/Schizophrenia: Implication of Epidermal Growth Factor Receptor Signaling. Neuropsychopharmacol Rep 2025; 45:e12520. [PMID: 39754403 PMCID: PMC11702486 DOI: 10.1002/npr2.12520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/16/2024] [Accepted: 12/19/2024] [Indexed: 01/06/2025] Open
Abstract
COVID-19 exhibits not only respiratory symptoms but also neurological/psychiatric symptoms rarely including delirium/psychosis. Pathological studies on COVID-19 provide evidence that the cytokine storm, in particular (epidermal growth factor) EGF receptor (EGFR, ErbB1, Her1) activation, plays a central role in the progression of viral replication and lung fibrosis. Of note, SARS-CoV-2 virus (specifically, S1 spike domain) mimics EGF and directly transactivates EGFR, preceding the inflammatory process. In agreement, the anticancer drugs targeting EGFR such as Nimotuzumab and tyrosine kinase inhibitors are markedly effective on COVID-19. However, these data might raise a provisional caution regarding implication of psychiatric disorder such as schizophrenia. The author's group has been investigating the etiologic and neuropathologic associations of EGFR signaling with schizophrenia. There are significant molecular associations between schizophrenia and EGFR ligand levels in blood as well as in the brain. In addition, perinatal challenges of EGFR ligands and intraventricular administration of EGF to rodents and monkeys both resulted in severe behavioral and/or electroencephalographic endophenotypes relevant to this disorder. These animal models also display postpubertal abnormality in soliloquy-like self-vocalization as well as in intercortical functional connectivity. Here, we discuss neuropsychiatric implication of coronavirus infection and its interaction with the EGFR system, by searching related literatures in PubMed database as of the end of 2023.
Collapse
Affiliation(s)
- Hiroyuki Nawa
- Department of Physiological Sciences, School of Pharmaceutical SciencesWakayama Medical UniversityWakayamaJapan
| | - Masaaki Murakami
- Molecular Psychoneuroimmunology, Institute for Genetic MedicineHokkaido UniversitySapporoHokkaidoJapan
| |
Collapse
|
32
|
de Oliveira Silva Pinto M, de Paula Pereira L, de Mendonça Angelo ALP, Xavier MAP, de Magalhães Vieira Machado A, Russo RC. Dissecting the COVID-19 Immune Response: Unraveling the Pathways of Innate Sensing and Response to SARS-CoV-2 Structural Proteins. J Mol Recognit 2025; 38:e70002. [PMID: 39905998 DOI: 10.1002/jmr.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/15/2025] [Accepted: 01/22/2025] [Indexed: 02/06/2025]
Abstract
Severe acute respiratory syndrome coronavirus (SARS-CoV), the virus responsible for COVID-19, interacts with the host immune system through complex mechanisms that significantly influence disease outcomes, affecting both innate and adaptive immunity. These interactions are crucial in determining the disease's severity and the host's ability to clear the virus. Given the virus's substantial socioeconomic impact, high morbidity and mortality rates, and public health importance, understanding these mechanisms is essential. This article examines the diverse innate immune responses triggered by SARS-CoV-2's structural proteins, including the spike (S), membrane (M), envelope (E), and nucleocapsid (N) proteins, along with nonstructural proteins (NSPs) and open reading frames. These proteins play pivotal roles in immune modulation, facilitating viral replication, evading immune detection, and contributing to severe inflammatory responses such as cytokine storms and acute respiratory distress syndrome (ARDS). The virus employs strategies like suppressing type I interferon production and disrupting key antiviral pathways, including MAVS, OAS-RNase-L, and PKR. This study also explores the immune pathways that govern the activation and suppression of immune responses throughout COVID-19. By analyzing immune sensing receptors and the responses initiated upon recognizing SARS-CoV-2 structural proteins, this review elucidates the complex pathways associated with the innate immune response in COVID-19. Understanding these mechanisms offers valuable insights for therapeutic interventions and informs public health strategies, contributing to a deeper understanding of COVID-19 immunopathogenesis.
Collapse
Affiliation(s)
- Matheus de Oliveira Silva Pinto
- Laboratory of Pulmonary Immunology and Mechanics, Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
- Viral Disease Immunology Group, Fundação Osvaldo Cruz, Instituto René Rachou, Belo Horizonte, Minas Gerais, Brazil
| | - Leonardo de Paula Pereira
- Laboratory of Pulmonary Immunology and Mechanics, Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
- Viral Disease Immunology Group, Fundação Osvaldo Cruz, Instituto René Rachou, Belo Horizonte, Minas Gerais, Brazil
| | | | | | | | - Remo Castro Russo
- Laboratory of Pulmonary Immunology and Mechanics, Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
33
|
Liang KH, Chen YC, Hsu CY, Kao ZK, Tsai PH, Huang HY, Chu YC, Ho HL, Liao YC, Lee YC, Huang CC, Wei TC, Liao YJ, Lu YH, Kuo CT, Chiou SH. Predictive biosignatures for hospitalization in patients with virologically confirmed COVID-19. J Chin Med Assoc 2025; 88:246-252. [PMID: 39730204 DOI: 10.1097/jcma.0000000000001203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2024] Open
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus, presents with varying severity among individuals. Both viral and host factors can influence the severity of acute and chronic COVID-19, with chronic COVID-19 commonly referred to as long COVID. SARS-CoV-2 infection can be properly diagnosed by performing real-time reverse transcription polymerase chain reaction analysis of nasal swab samples. Pulse oximetry, chest X-ray, and complete blood count (CBC) analysis can be used to assess the condition of the patient to ensure that the appropriate medical care is delivered. This study aimed to develop biosignatures that can be used to distinguish between patients who are likely to develop severe disease and require hospitalization from patients who can be safely monitored in less intensive settings. METHODS A retrospective investigation was conducted on 7897 adult patients with virologically confirmed SARS-CoV-2 infection between January 26, 2020, and November 30, 2023; all patients underwent comprehensive CBC testing at Taipei Veterans General Hospital. Among them, 1867 patients were independently recruited for a population study involving genome-wide genotyping of approximately 424 000 genomic variants. Therefore, the participants were divided into two patient cohorts, one with genomic data (n = 1867) and one without (n = 6030) for model validation and training, respectively. RESULTS We constructed and validated a biosignature model by using a combination of CBC measurements to predict subsequent hospitalization events (hazard ratio = 3.38, 95% confidence interval: 3.07-3.73 for the training cohort and 3.03 [2.46-3.73] for the validation cohort; both p < 10 -8 ). The obtained scores were used to identify the top quartile of patients, who formed the "very high risk" group with a significantly higher cumulative incidence of hospitalization (log-rank p < 10 -8 in both the training and validation cohorts). The "very high risk" group exhibited a cumulative hospitalization rate of >60%, whereas the rate for the other patients was approximately 30% over a 1.5-year period, providing a binary classification of patients with distinct hospitalization risks. To investigate the genetic factors mediating this risk, we conducted a genome-wide association study. Specific regions in chromosomes 7 and 10 and the mitochondrial chromosome (M), harboring IKAROS family zinc finger 1 ( IKZF1 ), actin binding LIM protein 1 ( ABLIM1 ), and mitochondrially encoded NADH:ubiquinone oxidoreductase core subunit 3 ( MT-ND3 ), exhibited prominent associations with binary risk classification. The identified exonic variants of IKZF1 are linked to several autoimmune diseases. Notably, people with different genotypes of the leading variants (rs4132601, rs141492519, and Affx-120744614) exhibited varying cumulative hospitalization rates after infection. CONCLUSION We successfully developed and validated a biosignature model of COVID-19 severe disease in virologically confirmed patients. The identified genomic variants provide new insights for infectious disease research and medical care.
Collapse
Affiliation(s)
- Kung-Hao Liang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Biosafety Level 3 Laboratory, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- College of Medicine, Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- School of Pharmaceutical Sciences, Institute of Food Safety and Health Risk Assessment, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Yu-Chun Chen
- Department of Family Medicine, Taipei Veterans General Hospital, Yuli Branch, Hualien, Taiwan, ROC
- Department of Medical Research, Big Data Center, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Chun-Yi Hsu
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Department of Medical Research, Big Data Center, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Zih-Kai Kao
- Department of Medical Research, Big Data Center, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Department of Information Management, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Ping-Hsing Tsai
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Department of Medical Research, Big Data Center, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Hsin-Yi Huang
- Department of Medical Research, Big Data Center, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Department of Information Management, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Yuan-Chia Chu
- Department of Medical Research, Big Data Center, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Department of Information Management, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Department of Information Management, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan, ROC
| | - Hsiang-Ling Ho
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Yi-Chu Liao
- Departments of Neurology, Taipei Veterans General Hospital, Taiwan, ROC
- Department of Neurology, School of Medicine, National Yang Ming Chao Tung University, Taipei, Taiwan, ROC
- College of Medicine, Brain Research Center, National Yang Ming Chao Tung University School of Medicine, Taipei, Taiwan, ROC
| | - Yi-Chung Lee
- Departments of Neurology, Taipei Veterans General Hospital, Taiwan, ROC
- Department of Neurology, School of Medicine, National Yang Ming Chao Tung University, Taipei, Taiwan, ROC
- College of Medicine, Brain Research Center, National Yang Ming Chao Tung University School of Medicine, Taipei, Taiwan, ROC
| | - Chi-Cheng Huang
- Department of Surgery, Comprehensive Breast Health Center, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Division of Breast Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- College of Public Health, Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei, Taiwan, ROC
| | - Tzu-Chun Wei
- Department of Urology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Department of Urology, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- College of Medicine, Shu-Tien Urological Institute, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Yi-Jia Liao
- Departments of Neurology, Taipei Veterans General Hospital, Taiwan, ROC
| | - Yung-Hsiu Lu
- Department of Pediatrics, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Chen-Tsung Kuo
- Department of Information Management, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Shih-Hwa Chiou
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| |
Collapse
|
34
|
Herdiana Y. Nanoparticles of natural product-derived medicines: Beyond the pandemic. Heliyon 2025; 11:e42739. [PMID: 40083991 PMCID: PMC11904502 DOI: 10.1016/j.heliyon.2025.e42739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 02/12/2025] [Accepted: 02/14/2025] [Indexed: 03/16/2025] Open
Abstract
This review explores the synergistic potential of natural products and nanotechnology for viral infections, highlighting key antiviral, immunomodulatory, and antioxidant properties to combat pandemics caused by highly infectious viruses. These pandemics often result in severe public health crises, particularly affecting vulnerable populations due to respiratory complications and increased mortality rates. A cytokine storm is initiated when an overload of pro-inflammatory cytokines and chemokines is released, leading to a systemic inflammatory response. Viral mutations and the limited availability of effective drugs, vaccines, and therapies contribute to the continuous transmission of the virus. The coronavirus disease-19 (COVID-19) pandemic has sparked renewed interest in natural product-derived antivirals. The efficacy of traditional medicines against pandemic viral infections is examined. Their antiviral, immunomodulatory, anti-inflammatory, and antioxidant properties are highlighted. This review discusses how nanotechnology enhances the efficacy of herbal medicines in combating viral infections.
Collapse
Affiliation(s)
- Yedi Herdiana
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia
| |
Collapse
|
35
|
Barzin Tond S, Abolghasemi S, Khatami SH, Ehtiati S, Zarei T, Shateri S, Mahmoodi Baram S, Yarahmadi S, Fallah S, Salmani F, Shahmohammadi MR, Khajavirad N, Tafakhori A, Riazi A, Karima S. Boswellic Acids Reduce Systemic Inflammation in Patients with Moderate COVID-19 Through Modulation of NF-κB Pathway. J Diet Suppl 2025; 22:365-381. [PMID: 40012185 DOI: 10.1080/19390211.2025.2468484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Prevention and/or management of the dysregulated immune response in patients with COVID-19 is expected to help in the treatment of COVID-19. Boswellic acids (BAs) have great therapeutic potential because they have anti-inflammatory and immunomodulatory effects. Here, we aimed to investigate the mechanism of action of a BA formulation, Inflawell syrup, which was previously shown to be effective in reducing disease symptoms in patients who suffer from mild to moderate COVID-19. Patients with mild to moderate COVID-19 were treated with either Inflawell containing boswellic acids or a placebo for 14 days. The serum levels of inflammatory cytokines, including tumor necrosis factor-alpha (TNF-α), interleukin (IL)-8, IL-1α, IL-17, IL-1Ra, and Monocyte Chemoattractant Protein-1 (MCP-1), were measured both at study onset and on day 14 after treatment started. In addition, to further investigate the signaling pathway(s) underlying the changes in cytokine levels, we evaluated the expression of tumor necrosis factor receptor 1 (TNFR1), tumor necrosis factor receptor 2 (TNFR2), and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) p65 mRNAs and phospho-inhibitor of nuclear factor kappa B (IκB) and IκB proteins. In our study, a significant decrease in the serum levels of IL-1α (p < .009), IL-8 (p < .04), TNF-α (p < .0001), and MCP-1 (p < .007) was detected in patients treated with Inflawell. Additionally, our data revealed a decrease in phospho-IκB protein levels (p < .02) and NF-κB p65 mRNA levels (p < .002), whereas the amount of IκB protein (p < .01) in the Inflawell group was significantly greater than that in the placebo group. Furthermore, despite the decreasing trend in the expression of TNFR1 and TNFR2 in the Inflawell group, there was no statistically significant difference compared with that in the placebo group. In general, treatment with Inflawell syrup led to a lower level of proinflammatory cytokines and a decrease in the activity of the TNF-α/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Sepideh Barzin Tond
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran
| | - Sara Abolghasemi
- Infectious Diseases and Tropical Medicine Research Center, Shahid Beheshti University of Medial Sciences (SBMU), Tehran, Iran
| | - Seyyed Hossein Khatami
- Student Research Committee, Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sajad Ehtiati
- Student Research Committee, Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tayebe Zarei
- Clinical Trial Department, Behbalin Co., Ltd, Tehran, Iran
| | - Somayyeh Shateri
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran
| | | | - Sahar Yarahmadi
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Soudabeh Fallah
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farzaneh Salmani
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran
| | - Mohammad Reza Shahmohammadi
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran
| | - Nasim Khajavirad
- Internal Medicine Department, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Abbas Tafakhori
- Iranian Center of Neurological Research, Neuroscience Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Saeed Karima
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran
| |
Collapse
|
36
|
Pang J, Huang J, Yu J, Li B, Wei S, Cen W, Xuan Y, Yang J, Yu Y, Mo J, Lu J, Zheng X, Zhang J. Immune dysregulation in COVID-19 induced ARDS in kidney transplant recipients revealed by single-cell RNA sequencing. Sci Rep 2025; 15:6895. [PMID: 40011702 PMCID: PMC11865448 DOI: 10.1038/s41598-025-91439-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 02/20/2025] [Indexed: 02/28/2025] Open
Abstract
BACKGROUND Since the emergence of COVID-19 at the end of 2019, the disease has led to widespread acute respiratory distress syndrome (ARDS), particularly among kidney transplant recipients (KTRs), who are at increased risk due to long-term immunosuppressive therapy. This study aims to explore the differences in immune responses between kidney transplant recipients and non-kidney transplant recipients in COVID-19-induced ARDS to identify potential therapeutic targets for improving outcomes. Single-cell RNA sequencing was performed on 108,320 cells derived from peripheral blood samples to construct a global single-cell map of COVID-19 induced ARDS in kidney transplant recipients(ARDSKT), COVID-19 induced ARDS in non transplant recipients(ARDSNKT), and healthy controls. Subsequently, using cellular clustering analysis, we obtained single-cell maps of different cell types. We employed enrichment analysis to determine the pathways involved in different subpopulations and focused on the role of key immune cells such as monocytes, megakaryocytes, B cells, and CD8+ T cells in the pathogenesis of ARDS. Significant immune differences were observed between ARDSKT and ARDSNKT. In ARDSKT, the S100A9+ MK subpopulation, which activates the NF-κB signaling pathway, was elevated, promoting inflammation. In contrast, the S100A12+ monocyte subpopulation that activates the chemokine signaling pathway was more abundant in ARDSNKT, reflecting a stronger inflammatory response, while its abundance was reduced in ARDSKT due to immunosuppression. The CXCR4+ B subpopulation, crucial for adaptive immunity, was significantly reduced in ARDSKT. Additionally, the XAF1+ Teff subpopulation, associated with apoptosis, was more abundant in ARDSKT, potentially impairing immune recovery. This study highlights the immune differences between ARDSKT and ARDSNKT, revealing the impact of immunosuppression on immune dysregulation. These findings suggest that targeting specific immune pathways can improve therapeutic strategies for ARDSKT.
Collapse
Affiliation(s)
- Jielong Pang
- Department of Emergency Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, China
- Guangxi Health Commission key Laboratory of Emergency and Critical Medicine, Nanning, 530007, China
| | - Jingyu Huang
- Department of General Practice, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, China
| | - Jianing Yu
- Department of Emergency Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, China
| | - Binbin Li
- Department of Emergency Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, China
| | - Shanshan Wei
- Department of Emergency Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, China
| | - Weiluan Cen
- Department of Emergency Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, China
| | - Yixuan Xuan
- Department of Emergency Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, China
| | - Junzhi Yang
- Department of General Practice, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, China
| | - Yongbing Yu
- Department of Emergency Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, China
| | - Jingjia Mo
- Department of General Practice, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, China
| | - Junyu Lu
- Guangxi Health Commission key Laboratory of Emergency and Critical Medicine, Nanning, 530007, China.
- Intensive Care Unit, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, China.
- The Second Affiliated Hospital of Guangxi Medical University, No 166 Daxuedong Road, Nanning, 530007, Guangxi, China.
| | - Xiaowen Zheng
- Department of Emergency Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, China.
- Guangxi Health Commission key Laboratory of Emergency and Critical Medicine, Nanning, 530007, China.
- The Second Affiliated Hospital of Guangxi Medical University, No 166 Daxuedong Road, Nanning, 530007, Guangxi, China.
| | - Jianfeng Zhang
- Department of Emergency Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, China.
- Guangxi Health Commission key Laboratory of Emergency and Critical Medicine, Nanning, 530007, China.
- Department of General Practice, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, China.
- The Second Affiliated Hospital of Guangxi Medical University, No 166 Daxuedong Road, Nanning, 530007, Guangxi, China.
| |
Collapse
|
37
|
Gadilgereyeva B, Kunushpayeva Z, Abdrakhmanova M, Khassenova A, Minigulov N, Burster T, Filchakova O. Nucleocapsid Protein of SARS-CoV-2 Upregulates RANTES Expression in A172 Glioblastoma Cells. Molecules 2025; 30:1066. [PMID: 40076291 PMCID: PMC11902235 DOI: 10.3390/molecules30051066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/28/2024] [Accepted: 01/08/2025] [Indexed: 03/14/2025] Open
Abstract
SARS-CoV-2, the pathogenic virus that induces COVID-19 disease, contains four structural proteins in its virion. The nucleocapsid (N) protein is one of the four structural proteins that play a crucial role in the assembly of viral RNA into ribonucleoprotein. In addition, the N protein contributes to viral pathogenesis. One of the functions attributed to the N protein is the triggering of cytokine release by lung epithelial cells, macrophages, and monocytes. This study addresses the cellular effects of the N protein of SARS-CoV-2 on cells of glial origin. We report the upregulation of the RANTES chemokine in A172 glioblastoma cells at both the mRNA and protein levels in response to exposure to SARS-CoV-2 nucleocapsid protein. The N protein did not have an effect on cell viability and cell migration.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Olena Filchakova
- Biology Department, School of Sciences and Humanities, Nazarbayev University, Kabanbay Batyr ave., 53, Astana 010000, Kazakhstan (M.A.); (A.K.); (N.M.); (T.B.)
| |
Collapse
|
38
|
Hromić-Jahjefendić A, Sezer A, Mahmuljin I. The impact of COVID-19 on autoimmune diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2025; 213:315-345. [PMID: 40246348 DOI: 10.1016/bs.pmbts.2025.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Abstract
Various autoantibodies, such as antinuclear antibodies (ANA), anti-Ro/SSA, rheumatoid factor, lupus anticoagulant, and antibodies against interferon type I (IFN-I), have been frequently detected in COVID-19 patients, indicating a significant prevalence of autoimmune reactions following viral exposure. Additionally, the identification of human proteins with structural similarities to SARS-CoV-2 peptides as potential autoantigens underscores the complex interplay between the virus and the immune system in triggering autoimmunity. The chapter discusses probable pathways contributing to COVID-19-related autoimmunity, including bystander activation due to hyperinflammatory states, viral persistence, and the formation of neutrophil extracellular traps. These mechanisms illuminate a spectrum of autoimmune-related symptoms that can manifest, ranging from organ-specific to systemic autoimmune and inflammatory diseases. Importantly, there is emerging evidence of de novo autoimmunity arising after COVID-19 infection or vaccination, where new autoimmune conditions develop in previously healthy individuals. While various COVID-19 vaccines have received emergency use authorization, concerns regarding potential autoimmune side effects persist. Ongoing research is crucial to clarify these relationships and enhance our understanding of the risks associated with COVID-19 infections and vaccinations.
Collapse
Affiliation(s)
- Altijana Hromić-Jahjefendić
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Sarajevo, Bosnia and Herzegovina.
| | - Abas Sezer
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Irma Mahmuljin
- Association of Biologists in Bosnia and Herzegovina, Sarajevo, Bosnia and Herzegovina
| |
Collapse
|
39
|
Serra-Llovich A, Cullell N, Maroñas O, José Herrero M, Cruz R, Almoguera B, Ayuso C, López-Rodríguez R, Domínguez-Garrido E, Ortiz-Lopez R, Barreda-Sánchez M, Corton M, Dalmau D, Calbo E, Boix-Palop L, Dietl B, Sangil A, Gil-Rodriguez A, Guillén-Navarro E, Mancebo E, Lira-Albarrán S, Minguez P, Paz-Artal E, Olivera GG, Recarey-Rama S, Sendra L, Zucchet EG, López de Heredia M, Flores C, Riancho JA, Rojas-Martinez A, Lapunzina P, Carracedo Á, Arranz MJ. Pharmacogenomic Study of SARS-CoV-2 Treatments: Identifying Polymorphisms Associated with Treatment Response in COVID-19 Patients. Biomedicines 2025; 13:553. [PMID: 40149530 PMCID: PMC11940783 DOI: 10.3390/biomedicines13030553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/10/2025] [Accepted: 01/14/2025] [Indexed: 03/29/2025] Open
Abstract
Background/Objectives: The COVID-19 pandemic resulted in 675 million cases and 6.9 million deaths by 2022. Despite substantial declines in case fatalities following widespread vaccination campaigns, the threat of future coronavirus outbreaks remains a concern. Current treatments for COVID-19 have been repurposed from existing therapies for other infectious and non-infectious diseases. Emerging evidence suggests a role for genetic factors in both susceptibility to SARS-CoV-2 infection and response to treatment. However, comprehensive studies correlating clinical outcomes with genetic variants are lacking. The main aim of our study is the identification of host genetic biomarkers that predict the clinical outcome of COVID-19 pharmacological treatments. Methods: In this study, we present findings from GWAS and candidate gene and pathway enrichment analyses leveraging diverse patient samples from the Spanish Coalition to Unlock Research of Host Genetics on COVID-19 (SCOURGE), representing patients treated with immunomodulators (n = 849), corticoids (n = 2202), and the combined cohort of both treatments (n = 2487) who developed different outcomes. We assessed various phenotypes as indicators of treatment response, including survival at 90 days, admission to the intensive care unit (ICU), radiological affectation, and type of ventilation. Results: We identified significant polymorphisms in 16 genes from the GWAS and candidate gene studies (TLR1, TLR6, TLR10, CYP2C19, ACE2, UGT1A1, IL-1α, ZMAT3, TLR4, MIR924HG, IFNG-AS1, ABCG1, RBFOX1, ABCB11, TLR5, and ANK3) that may modulate the response to corticoid and immunomodulator therapies in COVID-19 patients. Enrichment analyses revealed overrepresentation of genes involved in the innate immune system, drug ADME, viral infection, and the programmed cell death pathways associated with the response phenotypes. Conclusions: Our study provides an initial framework for understanding the genetic determinants of treatment response in COVID-19 patients, offering insights that could inform precision medicine approaches for future epidemics.
Collapse
Affiliation(s)
| | - Natalia Cullell
- Fundació Docència i Recerca Mutua Terrassa, 08221 Terrassa, Spain;
- Hospital Universitario Mutua Terrassa, 08221 Terrassa, Spain
| | - Olalla Maroñas
- Fundación Pública Galega de Medicina Genómica (FPGMX), Centro Nacional de Genotipado (CEGEN), Servicio Gallego de Salud (SERGAS), 15706 Santiago de Compostela, Spain
- Grupo de Farmacogenómica y Descubrimiento de Medicamentos (GenDeM), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (A.G.-R.); (S.R.-R.)
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - María José Herrero
- IIS La Fe, Plataforma de Farmacogenética, 43026 Valencia, Spain
- Departamento de Farmacología, Universidad de Valencia, 46010 Valencia, Spain
| | - Raquel Cruz
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Centro Nacional de Genotipado (CEGEN), Universidad de Santiago de Compostela, 15706 Santiago de Compostela, Spain
- Instituto de Investigación Sanitaria de Santiago (IDIS), 15706 Santiago de Compostela, Spain
- Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Berta Almoguera
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Genetics and Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital-Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain
| | - Carmen Ayuso
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Genetics and Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital-Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain
| | - Rosario López-Rodríguez
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Genetics and Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital-Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain
| | | | - Rocio Ortiz-Lopez
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud and Hospital San Jose TecSalud, Monterrey 64718, Mexico
| | - María Barreda-Sánchez
- Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), 30120 Murcia, Spain
- Departamento de Ciencias de la Salud, Universidad Católica San Antonio de Murcia (UCAM), 30120 Murcia, Spain
| | - Marta Corton
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Genetics and Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital-Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain
| | - David Dalmau
- Fundació Docència i Recerca Mutua Terrassa, 08221 Terrassa, Spain;
- Hospital Universitario Mutua Terrassa, 08221 Terrassa, Spain
| | - Esther Calbo
- Hospital Universitario Mutua Terrassa, 08221 Terrassa, Spain
- Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, 08017 Barcelona, Spain
| | | | - Beatriz Dietl
- Hospital Universitario Mutua Terrassa, 08221 Terrassa, Spain
| | - Anna Sangil
- Hospital Universitario Mutua Terrassa, 08221 Terrassa, Spain
| | - Almudena Gil-Rodriguez
- Grupo de Farmacogenómica y Descubrimiento de Medicamentos (GenDeM), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (A.G.-R.); (S.R.-R.)
- Grupo de Medicina Genómica, CIMUS, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Encarna Guillén-Navarro
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), 30120 Murcia, Spain
- Sección Genética Médica-Servicio de Pediatría, Hospital Clínico Universitario Virgen de la Arrixaca, Servicio Murciano de Salud, 30120 Murcia, Spain
- Departamento Cirugía, Pediatría, Obstetricia y Ginecología, Facultad de Medicina, Universidad de Murcia (UMU), 30120 Murcia, Spain
| | - Esther Mancebo
- Department of Immunology, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
- Transplant Immunology and Immunodeficiencies Group, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
| | | | - Pablo Minguez
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Genetics and Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital-Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain
| | - Estela Paz-Artal
- Department of Immunology, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
- Transplant Immunology and Immunodeficiencies Group, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Gladys G. Olivera
- IIS La Fe, Plataforma de Farmacogenética, 43026 Valencia, Spain
- Departamento de Farmacología, Universidad de Valencia, 46010 Valencia, Spain
| | - Sheila Recarey-Rama
- Grupo de Farmacogenómica y Descubrimiento de Medicamentos (GenDeM), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (A.G.-R.); (S.R.-R.)
- Grupo de Medicina Genómica, CIMUS, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Luis Sendra
- IIS La Fe, Plataforma de Farmacogenética, 43026 Valencia, Spain
- Departamento de Farmacología, Universidad de Valencia, 46010 Valencia, Spain
| | - Enrique G. Zucchet
- IIS La Fe, Plataforma de Farmacogenética, 43026 Valencia, Spain
- Departamento de Farmacología, Universidad de Valencia, 46010 Valencia, Spain
| | - Miguel López de Heredia
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Carlos Flores
- Genomics Division, Instituto Tecnológico y de Energías Renovables, 38600 Santa Cruz de Tenerife, Spain;
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Instituto de Investigación Sanitaria de Canarias, 38010 Santa Cruz de Tenerife, Spain
- Centre for Biomedical Network Research on Respiratory Diseases (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Facultad de Ciencias de la Salud, Universidad Fernando Pessoa Canarias, 35450 Las Palmas de Gran Canaria, Spain
| | - José A. Riancho
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Servicio de Medicina Interna, Hospital U.M. Valdecilla, Universidad de Cantabria, IDIVAL, 39008 Santander, Spain
| | - Augusto Rojas-Martinez
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud and Hospital San Jose TecSalud, Monterrey 64718, Mexico
| | - Pablo Lapunzina
- Fundación Pública Galega de Medicina Genómica (FPGMX), Centro Nacional de Genotipado (CEGEN), Servicio Gallego de Salud (SERGAS), 15706 Santiago de Compostela, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria de Santiago (IDIS), 15706 Santiago de Compostela, Spain
| | - Ángel Carracedo
- Fundación Pública Galega de Medicina Genómica (FPGMX), Centro Nacional de Genotipado (CEGEN), Servicio Gallego de Salud (SERGAS), 15706 Santiago de Compostela, Spain
- Grupo de Medicina Genómica, CIMUS, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Grupo de Genética, Instituto de Investigación Sanitaria de Santiago (IDIS), 15706 Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - María J. Arranz
- Fundació Docència i Recerca Mutua Terrassa, 08221 Terrassa, Spain;
| | | |
Collapse
|
40
|
Naiditch H, Betts MR, Larman HB, Levi M, Rosenberg AZ. Immunologic and inflammatory consequences of SARS-CoV-2 infection and its implications in renal disease. Front Immunol 2025; 15:1376654. [PMID: 40012912 PMCID: PMC11861071 DOI: 10.3389/fimmu.2024.1376654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 12/23/2024] [Indexed: 02/28/2025] Open
Abstract
The emergence of the COVID-19 pandemic made it critical to understand the immune and inflammatory responses to the SARS-CoV-2 virus. It became increasingly recognized that the immune response was a key mediator of illness severity and that its mechanisms needed to be better understood. Early infection of both tissue and immune cells, such as macrophages, leading to pyroptosis-mediated inflammasome production in an organ system critical for systemic oxygenation likely plays a central role in the morbidity wrought by SARS-CoV-2. Delayed transcription of Type I and Type III interferons by SARS-CoV-2 may lead to early disinhibition of viral replication. Cytokines such as interleukin-1 (IL-1), IL-6, IL-12, and tumor necrosis factor α (TNFα), some of which may be produced through mechanisms involving nuclear factor kappa B (NF-κB), likely contribute to the hyperinflammatory state in patients with severe COVID-19. Lymphopenia, more apparent among natural killer (NK) cells, CD8+ T-cells, and B-cells, can contribute to disease severity and may reflect direct cytopathic effects of SARS-CoV-2 or end-organ sequestration. Direct infection and immune activation of endothelial cells by SARS-CoV-2 may be a critical mechanism through which end-organ systems are impacted. In this context, endovascular neutrophil extracellular trap (NET) formation and microthrombi development can be seen in the lungs and other critical organs throughout the body, such as the heart, gut, and brain. The kidney may be among the most impacted extrapulmonary organ by SARS-CoV-2 infection owing to a high concentration of ACE2 and exposure to systemic SARS-CoV-2. In the kidney, acute tubular injury, early myofibroblast activation, and collapsing glomerulopathy in select populations likely account for COVID-19-related AKI and CKD development. The development of COVID-19-associated nephropathy (COVAN), in particular, may be mediated through IL-6 and signal transducer and activator of transcription 3 (STAT3) signaling, suggesting a direct connection between the COVID-19-related immune response and the development of chronic disease. Chronic manifestations of COVID-19 also include systemic conditions like Multisystem Inflammatory Syndrome in Children (MIS-C) and Adults (MIS-A) and post-acute sequelae of COVID-19 (PASC), which may reflect a spectrum of clinical presentations of persistent immune dysregulation. The lessons learned and those undergoing continued study likely have broad implications for understanding viral infections' immunologic and inflammatory consequences beyond coronaviruses.
Collapse
Affiliation(s)
- Hiam Naiditch
- Department of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Michael R. Betts
- Department of Microbiology and Institute of Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - H. Benjamin Larman
- Institute for Cell Engineering, Division of Immunology, Department of Pathology, Johns Hopkins University, Baltimore, MD, United States
| | - Moshe Levi
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC, United States
| | - Avi Z. Rosenberg
- Department of Pathology, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
41
|
Liu Y, Yu H, He J, Li J, Peng D. The recombinant spike S1 protein induces injury and inflammation in co-cultures of human alveolar epithelial cells and macrophages. PLoS One 2025; 20:e0318881. [PMID: 39928621 PMCID: PMC11809858 DOI: 10.1371/journal.pone.0318881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 01/23/2025] [Indexed: 02/12/2025] Open
Abstract
The current lack of a straightforward and convenient modeling approach to simulate the onset of acute lung injury (ALI) has impeded fundamental research and hindered the screening of therapeutic drugs in coronavirus disease 2019 (COVID-19). The co-cultured human pulmonary alveolar epithelial cells (HPAEpics) and alveolar macrophages (AMs) were exposed to the complete medium, three concentrations of recombinant spike S1 protein (0.1, 1, and 10 μg/mL), or lipopolysaccharide (LPS) (10 μg/mL). The cells were harvested at 1, 2, and 3 days post-exposure. Lactate dehydrogenase (LDH) release, and IL-6, TNF-ɑ, and malondialdehyde (MDA) production were quantified and compared. Compared to those exposed to medium, co-cultures of HPAEpics and AMs exposed to a concentration of S1 protein at 10 μg/mL demonstrated significantly increased levels of LDH release (22.9% vs. 9.1%, and 25.7%), IL-6 (129 vs. 74, and 110 pg/mg of protein), and TNF-ɑ (75 vs. 51, and 86 pg/mg of protein) production, and similar to those exposed to LPS. However, no statistically significant differences were observed in MDA production. Compared to those harvested at 1 or 2 days post-exposure, co-cultured cells harvested at 3 days post-exposure exhibited increased levels of LDH release (23.4% vs. 14.9%, or 16.7%), IL-6 (127 vs. 81, or 97 pg/mg of protein) and MDA (5.6 vs. 3.2, or 3.8 nmol/mg of protein) production, but exhibited lower TNF-ɑ (58 vs. 79 pg/mg of protein) production than those harvested at 2 days post-exposure. After 3 days of exposure, co-cultures of HPAEpics and AMs showed significantly increased levels of LDH release (25.3% vs. 18.4%), and MDA production (5.5 vs. 4.3 nmol/mg of protein) compared to HPAEpics monocultures, and increased levels of LDH release (25.3% vs. 13.8%), IL-6 (139 vs. 98 pg/mg of protein) and MDA (5.5 vs. 4.7 nmol/mg of protein) production, and decreased TNF-ɑ (59 vs. 95 pg/mg of protein) production compared to AMs monocultures. Conclusions: The exposure to a concentration of S1 protein at 10 μg/mL in co-cultures of HPAEpics and AMs induced significant injury and inflammation three days post-exposure. This methodology for establishing a COVID-19-associated ALI model may have promising potential applications and value.
Collapse
Affiliation(s)
- Yanru Liu
- Department of Emergency Medicine, Shenzhen Third People’s Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Hong Yu
- Department of Pathology, Shenzhen Third People’s Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Jia He
- Department of Emergency Medicine, Shenzhen Third People’s Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Jianyin Li
- Department of Internal Medicine, Shenzhen Third People’s Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Denggao Peng
- Department of Emergency Medicine, Shenzhen Third People’s Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| |
Collapse
|
42
|
Linder R, Peltner J, Astvatsatourov A, Gomm W, Haenisch B. COVID-19 in the years 2020 to 2022 in Germany: effects of comorbidities and co-medications based on a large-scale database analysis. BMC Public Health 2025; 25:525. [PMID: 39923000 PMCID: PMC11806888 DOI: 10.1186/s12889-024-21110-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 12/16/2024] [Indexed: 02/10/2025] Open
Abstract
BACKGROUND The SARS-CoV-2 pandemic was a challenge for health care systems worldwide. People with pre-existing chronic diseases have been identified as vulnerable patient groups. Furthermore, some of the drugs used for these chronic diseases such as antihypertensive drugs have been discussed as possible influencing factors on the progression of COVID-19. This study examines the effect of medication- and morbidity-associated risk factors suspected to moderate the disease course and progression of COVID-19. METHODS The study is based on claims data of the Techniker Krankenkasse, Germany's largest statutory health insurance. The data cover the years 2020 to 2022 and include insured persons with COVID-19 diagnosis from both the outpatient and inpatient sectors and a control of insured persons without COVID-19 diagnosis. We conducted a matched case-control study and matched each patient with an inpatient diagnosis of COVID-19 to (a) 10 control patients and (b) one patient with an outpatient diagnosis of COVID-19 to form two study cohorts. We performed a descriptive analysis to describe the proportion of patients in the two cohorts who were diagnosed with comorbidities or medication use known to influence the risk of COVID-19 progression. Multiple logistic regression models were used to identify risk factors for disease progression. RESULTS In the first study period the first study cohort comprised a total of 150,018 patients (13,638 cases hospitalised with COVID-19 and 136,380 control patients without a COVID-19 infection). Study cohort 2 included 27,238 patients (13,619 patients hospitalised with COVID-19 and 13,619 control patients with an outpatient COVID-19 diagnosis). Immunodeficiencies and use of immunosuppressives were strongest risk modifying factors for hospitalization in both study populations. Other comorbidities associated with hospitalization were diabetes, hypertension, and depression. CONCLUSION We have shown that hospitalisation with COVID-19 is associated with past medical history and medication use. Furthermore, we have demonstrated the ability of claims data as a timely available data source to identify risk factors for COVID-19 severity based on large numbers of patients. Given our results, claims data have the potential to be useful as part of a surveillance protocol allowing early-stage access to epidemiological data in future pandemics.
Collapse
Affiliation(s)
| | - Jonas Peltner
- German Center for Neurodegenerative Diseases (DZNE) e.V, Bonn, Germany
| | - Anatoli Astvatsatourov
- Clinical Trials Division, Federal Institute for Drugs and Medical Devices, Bonn, Germany
| | - Willy Gomm
- German Center for Neurodegenerative Diseases (DZNE) e.V, Bonn, Germany
| | - Britta Haenisch
- German Center for Neurodegenerative Diseases (DZNE) e.V, Bonn, Germany.
- Research Division, Federal Institute for Drugs and Medical Devices, Kurt-Georg-Kiesinger-Allee 3, 53175, Bonn, Germany.
- Center for Translational Medicine, Medical Faculty, University of Bonn, Bonn, Germany.
| |
Collapse
|
43
|
Agudelo C, Kateete DP, Nasinghe E, Kamulegeya R, Lubega C, Mbabazi M, Baker N, Lin KY, Liu CC, Kasambula AS, Kigozi E, Komakech K, Mukisa J, Mulumba K, Mwachan P, Nakalanda BS, Nalubega GP, Nsubuga J, Sitenda D, Ssenfuka H, Cirolia GT, Gustafson JT, Wang R, Nsubuga ML, Yiga F, Stanley SA, Bagaya BS, Elliott A, Joloba M, Wolf AR. Enterococcus and Eggerthella species are enriched in the gut microbiomes of COVID-19 cases in Uganda. Gut Pathog 2025; 17:9. [PMID: 39905557 DOI: 10.1186/s13099-025-00678-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 01/02/2025] [Indexed: 02/06/2025] Open
Abstract
BACKGROUND Infection with the COVID-19-causing pathogen SARS-CoV-2 is associated with disruption in the human gut microbiome. The gut microbiome enables protection against diverse pathogens and exhibits dysbiosis during infectious and autoimmune disease. Studies based in the United States and China have found that severe COVID-19 cases have altered gut microbiome composition when compared to mild COVID-19 cases. We present the first study to investigate the gut microbiome composition of COVID-19 cases in a population from Sub-Saharan Africa. Given the impact of geography and cultural traditions on microbiome composition, it is important to investigate the microbiome globally and not draw broad conclusions from homogenous populations. RESULTS We used stool samples in a Ugandan biobank collected from COVID-19 cases during 2020-2022. We profiled the gut microbiomes of 83 symptomatic individuals who tested positive for SARS-CoV-2 along with 43 household contacts who did not present any symptoms of COVID-19. The inclusion of healthy controls enables us to generate hypotheses about bacterial strains potentially related to susceptibility to COVID-19 disease, which is highly heterogeneous. Comparison of the COVID-19 patients and their household contacts revealed decreased alpha diversity and blooms of Enterococcus and Eggerthella in COVID-19 cases. CONCLUSIONS Our study finds that the microbiome of COVID-19 individuals is more likely to be disrupted, as indicated by decreased diversity and increased pathobiont levels. This is either a consequence of the disease or may indicate that certain microbiome states increase susceptibility to COVID-19 disease. Our findings enable comparison with cohorts previously published in the Global North, as well as support new hypotheses about the interaction between the gut microbiome and SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Carolina Agudelo
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - David Patrick Kateete
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
- Integrated Biorepository of H3Africa Uganda (IBRH3AU), Kampala, Uganda
| | - Emmanuel Nasinghe
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
- Integrated Biorepository of H3Africa Uganda (IBRH3AU), Kampala, Uganda
| | - Rogers Kamulegeya
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
- Integrated Biorepository of H3Africa Uganda (IBRH3AU), Kampala, Uganda
| | - Christopher Lubega
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
- Integrated Biorepository of H3Africa Uganda (IBRH3AU), Kampala, Uganda
| | - Monica Mbabazi
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
- Integrated Biorepository of H3Africa Uganda (IBRH3AU), Kampala, Uganda
| | - Noah Baker
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Kathryn Y Lin
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Chang C Liu
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Arthur Shem Kasambula
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
| | - Edgar Kigozi
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
| | - Kevin Komakech
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
| | - John Mukisa
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
| | - Kassim Mulumba
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
| | - Patricia Mwachan
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
| | - Brenda Sharon Nakalanda
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
| | - Gloria Patricia Nalubega
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
| | - Julius Nsubuga
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
| | - Diana Sitenda
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
| | - Henry Ssenfuka
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
| | - Giana T Cirolia
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
- Biophysics PhD Program, University of California, Berkeley, Berkeley, CA, USA
| | - Jeshua T Gustafson
- College of Engineering, University of California, Berkeley, Berkeley, CA, USA
| | - Ruohong Wang
- College of Engineering, University of California, Berkeley, Berkeley, CA, USA
| | - Moses Luutu Nsubuga
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
- Integrated Biorepository of H3Africa Uganda (IBRH3AU), Kampala, Uganda
| | - Fahim Yiga
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
- Integrated Biorepository of H3Africa Uganda (IBRH3AU), Kampala, Uganda
| | - Sarah A Stanley
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
- Department of Molecular Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Bernard Ssentalo Bagaya
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
- Integrated Biorepository of H3Africa Uganda (IBRH3AU), Kampala, Uganda
| | - Alison Elliott
- MRC/UVRI and LSHTM Uganda Research Unit, Entebbe, Uganda
| | - Moses Joloba
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda.
- Integrated Biorepository of H3Africa Uganda (IBRH3AU), Kampala, Uganda.
| | - Ashley R Wolf
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA.
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
44
|
Tsukada A, Katagiri D, Izumi S, Terada-Hirashima J, Shimizu Y, Uemura Y, Toda M, Yasuma T, Gabazza CND, Fujimoto H, Kobayashi T, Gabazza EC, Sugiyama M, Noiri E, Abe S, Azuma A, Sugiyama H. Inflammatory and Coagulation Marker Changes in PMX-DHP-Treated COVID-19 Patients. Cureus 2025; 17:e78836. [PMID: 40084335 PMCID: PMC11904442 DOI: 10.7759/cureus.78836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2025] [Indexed: 03/16/2025] Open
Abstract
Introduction Direct hemoperfusion using polymyxin B-immobilized polystyrene fiber column (PMX-DHP) removes endotoxin and inflammatory mediators from the blood. This study aimed to evaluate the changes in the levels of cytokines, coagulation factors, and a microbiota-derived proapoptotic peptide in COVID-19 patients treated with PMX-DHP. Methods We conducted a multicenter, prospective, single-arm interventional study of 21 oxygen-requiring patients with COVID-19 admitted between September 28, 2020, and March 31, 2022. PaO2/FiO2 (P/F) ratio and biomarkers of inflammation, fibrosis, coagulation, and microbiota-derived peptide were analyzed on PMX-DHP treatment days 1, 4, and 15. Results The P/F ratio significantly improved on Day 4 (87.1, 95% CI: 14.8-159.3) and Day 15 (140.6, 95% CI: 56.2-224.9) compared to baseline values. Among the inflammatory cytokines, IL-8 and IL-10 levels significantly decreased on Day 15 (-8.5, 95% CI: -13.4 to -3.5) and Day 4 (-2.3, 95% CI: -5.2 to 0.5) respectively compared to baseline values. Regarding coagulation markers, levels of thrombomodulin increased on Day 4 (1.1, 95% CI: 0.4-1.7) and Day 15 (0.8, 95% CI: 0.3-1.4), and those of tissue plasminogen activator-plasminogen activator-1 significantly decreased on Day 15 (-35.1, 95% CI: -57.6 to -12.6). Microbiota-derived corisin levels significantly decreased on Day 4 (-1740.6, 95% CI: -2860.2 to -621.0) and Day 15 (-1436.7, 95% CI: -2615.8 to -257.6). Conclusion Our study revealed improvement in the P/F ratio and the time course of various biomarkers in COVID-19 patients treated with PMX-DHP.
Collapse
Affiliation(s)
- Akinari Tsukada
- Respiratory Medicine, National Center for Global Health and Medicine, Tokyo, JPN
| | - Daisuke Katagiri
- Nephrology, National Center for Global Health and Medicine, Tokyo, JPN
| | - Shinyu Izumi
- Respiratory Medicine, National Center for Global Health and Medicine, Tokyo, JPN
| | | | - Yosuke Shimizu
- Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo, JPN
| | - Yukari Uemura
- Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo, JPN
| | - Masaaki Toda
- Immunology, Mie University Faculty and Graduate School of Medicine, Tsu, JPN
| | - Taro Yasuma
- Immunology, Mie University Faculty and Graduate School of Medicine, Tsu, JPN
| | | | - Hajime Fujimoto
- Pulmonary and Critical Care Medicine, Mie University Faculty and Graduate School of Medicine, Tsu, JPN
| | - Tetsu Kobayashi
- Pulmonary and Critical Care Medicine, Mie University Faculty and Graduate School of Medicine, Tsu, JPN
| | | | - Masaya Sugiyama
- Viral Pathogenesis and Controls, National Center for Global Health and Medicine, Tokyo, JPN
| | - Eisei Noiri
- National Center Biobank Network, National Center for Global Health and Medicine, Tokyo, JPN
| | - Shinji Abe
- Respiratory Medicine, Tokyo Medical University Hospital, Tokyo, JPN
| | - Arata Azuma
- Respiratory Medicine, Nippon Medical School, Musashi Kosugi Hospital, Kawasaki, JPN
| | - Haruhito Sugiyama
- Respiratory Medicine, National Center for Global Health and Medicine, Tokyo, JPN
| |
Collapse
|
45
|
Atarodi A, Kalankesh LR, Ghaderi Nansa L, Vaziri MH, Hajighasemkhan A. Association between COVID-19 Mortality and Underlying Disease; Tehran, Iran. J Caring Sci 2025; 14:37-41. [PMID: 40391312 PMCID: PMC12085763 DOI: 10.34172/jcs.025.33254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 05/22/2024] [Indexed: 05/21/2025] Open
Abstract
Introduction Coronavirus disease has emerged as one of the major health challenges in the 21st century. This study aimed to investigate the association between COVID-19 mortality and underlying disease in Tehran. Methods The retrospective, epidemiological study was conducted from January 1, 2019, to May 31, 2021, in hospitals in Tehran, Iran based on the International Classification of Diseases (ICD-11). Data concerning coronary cases with underlying disease (8018) and related demographic and clinical characteristics are collected by hospitals. Additionally, logistic regression was examined to determine the association between COVID-19 mortality and underlying disease. Results The result shows that incurable diseases (47.3%) and cancer (67.7%) had the lowest while; pulmonary disease showed the highest recovery day (80.7%) between various underlying conditions. In addition, cancer and pulmonary disease show 10.41 and 7.3 hospitalization days, respectively. The logistic regression analysis revealed that mortality in cases with cancer as an underlying disease is 4.72 times higher than in cases without cancer (95% CI: 4.08-5.46). Moreover, the adjusted regression analysis showed that the mortality in multiple underlying conditions such as cancer, respiratory issues, cardiovascular problems, and diabetes are 5.48, 2.75, 4.081, and 3.162 times higher, respectively (P<0.05). Conclusion The findings of this study provide valuable insights into how specific underlying health conditions can increase the risk of COVID-19 mortality, hospitalization, and recovery time.
Collapse
Affiliation(s)
- Alireza Atarodi
- Department of Knowledge and Information Science, Paramedical College and Social Development & Health Promotion Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Laleh R. Kalankesh
- Social Determinants of Health Research Center, Gonabad University of Medical sciences, Gonabad, Iran
| | - Leila Ghaderi Nansa
- Faculty of Health Information Management, Department of Health Information Technology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Hossein Vaziri
- Workplace Health Promotion Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Health, Safety and Environment (HSE), School of Public Health and Safety, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Alireza Hajighasemkhan
- Workplace Health Promotion Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Occupational Health Engineering and Safety, School of Public Health and Safety, Shahid Beheshti University of Medical Science, Tehran, Iran
| |
Collapse
|
46
|
Costa MP, Abdu JOC, Machado Resende Guedes MC, Sarcinelli MA, Fabri RL, Pittella F, Macedo GC, Vilela FMP, Rocha HVA, Tavares GD. Dexamethasone-loaded chitosan-decorated PLGA nanoparticles: A step forward in attenuating the COVID-19 cytokine storm? Colloids Surf B Biointerfaces 2025; 246:114359. [PMID: 39522287 DOI: 10.1016/j.colsurfb.2024.114359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
This study aims to develop and characterize poly (lactic-co-glycolic acid) (PLGA) nanoparticles decorated with chitosan (CS) for the encapsulation of dexamethasone (DEX) (NP-DEX-CS), targeting improved efficacy in the treatment of severe acute respiratory syndrome (SARS) associated with COVID-19. The nanoparticles were systematically characterized for size, zeta potential (ZP), morphology, encapsulation efficiency, and in vitro drug release. Incorporation of CS resulted in significant modifications in the nanoparticles' physical properties, notably an increase in size (from 207.3 ± 6.7 nm to 264.4 ± 4.4 nm) and a shift in ZP to positive values (from -11.8 ±1.4 mV to +30.0 ± 1,6 mV). The NP-DEX-CS formulation achieved a high encapsulation efficiency (∼79 %) and a drug loading capacity of 6.53 ± 0.02 %.In addition, the in vitro release rate of DEX from NP-DEX-CS was lower compared to undecorated nanoparticles, with a reduction from approximately 64-37 % within 24 h. Microscopy analyses revealed a smoother surface on the CS-decorated nanoparticles. FTIR and XRD analyses confirmed successful chitosan coating and DEX encapsulation. The CS coating enhanced the tolerability of J774.A1 cells to the nanoparticles, particularly evident at the highest concentration (400ug/mL), resulting in a cell viability ≥70 %. Importantly, the NP-DEX-CS significantly reduced levels of nitric oxide and inflammatory cytokines (IL-1, IL-6, IL-12, and TNF-α). These findings suggest that CS-decorated PLGA nanoparticles hold promise as an effective dexamethasone delivery system for treating SARS related to COVID-19.
Collapse
Affiliation(s)
- Mirsiane Pascoal Costa
- Postgraduate Program in Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil.
| | | | - Maria Clara Machado Resende Guedes
- Postgraduate Program in Biological Sciences, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil.
| | | | - Rodrigo Luiz Fabri
- Postgraduate Program in Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil.
| | - Frederico Pittella
- Postgraduate Program in Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil; Faculty of Pharmacy, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil.
| | - Gilson Costa Macedo
- Postgraduate Program in Biological Sciences, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil.
| | - Fernanda Maria Pinto Vilela
- Postgraduate Program in Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil; Faculty of Pharmacy, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil.
| | | | - Guilherme Diniz Tavares
- Postgraduate Program in Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil; Faculty of Pharmacy, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil.
| |
Collapse
|
47
|
Witowski A, Palmowski L, Rahmel T, Nowak H, Ehrentraut SF, Putensen C, von Groote T, Zarbock A, Babel N, Anft M, Sitek B, Bracht T, Bayer M, Weber M, Weisheit C, Pfänder S, Eisenacher M, Adamzik M, Katharina R, Koos B, Ziehe D. Activation of the MAPK network provides a survival advantage during the course of COVID-19-induced sepsis: a real-world evidence analysis of a multicenter COVID-19 Sepsis Cohort. Infection 2025; 53:107-115. [PMID: 38896372 PMCID: PMC11825614 DOI: 10.1007/s15010-024-02325-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 06/13/2024] [Indexed: 06/21/2024]
Abstract
PURPOSE There is evidence that lower activity of the RAF/MEK/ERK network is associated with positive outcomes in mild and moderate courses of COVID-19. The effect of this cascade in COVID-19 sepsis is still undetermined. Therefore, we tested the hypothesis that activity of the RAF/MEK/ERK network in COVID-19-induced sepsis is associated with an impact on 30-day survival. METHODS We used biomaterial from 81 prospectively recruited patients from the multicentric CovidDataNet.NRW-study cohort (German clinical trial registry: DRKS00026184) with their collected medical history, vital signs, laboratory parameters, microbiological findings and patient outcome. ERK activity was measured by evaluating ERK phosphorylation using a Proximity Ligation Assay. RESULTS An increased ERK activity at 4 days after diagnosis of COVID-19-induced sepsis was associated with a more than threefold increased chance of survival in an adjusted Cox regression model. ERK activity was independent of other confounders such as Charlson Comorbidity Index or SOFA score (HR 0.28, 95% CI 0.10-0.84, p = 0.02). CONCLUSION High activity of the RAF/MEK/ERK network during the course of COVID-19 sepsis is a protective factor and may indicate recovery of the immune system. Further studies are needed to confirm these results.
Collapse
Affiliation(s)
- Andrea Witowski
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, In der Schornau 23-25, 44892, Bochum, Germany
| | - Lars Palmowski
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, In der Schornau 23-25, 44892, Bochum, Germany
| | - Tim Rahmel
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, In der Schornau 23-25, 44892, Bochum, Germany
| | - Hartmuth Nowak
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, In der Schornau 23-25, 44892, Bochum, Germany
- Zentrum für Künstliche Intelligenz, Medizininformatik und Datenwissenschaften, Universitätsklinikum Knappschaftskrankenhaus Bochum, Bochum, Germany
| | - Stefan F Ehrentraut
- Klinik für Anästhesiologie und operative Intensivmedizin, Universitätsklinikum Bonn, Bonn, Germany
| | - Christian Putensen
- Klinik für Anästhesiologie und operative Intensivmedizin, Universitätsklinikum Bonn, Bonn, Germany
| | - Thilo von Groote
- Klinik für Anästhesiologie, operative Intensivmedizin und Schmerztherapie, Universitätsklinikum Münster, Münster, Germany
| | - Alexander Zarbock
- Klinik für Anästhesiologie, operative Intensivmedizin und Schmerztherapie, Universitätsklinikum Münster, Münster, Germany
| | - Nina Babel
- Centrum für Translationale Medizin, Medizinische Klinik I, Marien Hospital Herne, Universitätsklinikum der Ruhr-Universität Bochum, Herne, Germany
| | - Moritz Anft
- Centrum für Translationale Medizin, Medizinische Klinik I, Marien Hospital Herne, Universitätsklinikum der Ruhr-Universität Bochum, Herne, Germany
| | - Barbara Sitek
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, In der Schornau 23-25, 44892, Bochum, Germany
- Medizinisches Proteom-Center, Ruhr Universität Bochum, Medizinische Fakultät, Bochum, Germany
| | - Thilo Bracht
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, In der Schornau 23-25, 44892, Bochum, Germany
- Medizinisches Proteom-Center, Ruhr Universität Bochum, Medizinische Fakultät, Bochum, Germany
| | - Malte Bayer
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, In der Schornau 23-25, 44892, Bochum, Germany
- Medizinisches Proteom-Center, Ruhr Universität Bochum, Medizinische Fakultät, Bochum, Germany
| | - Maike Weber
- Medizinisches Proteom-Center, Ruhr Universität Bochum, Medizinische Fakultät, Bochum, Germany
- Center for Protein Diagnostics (PRODI), Medical Proteome Analysis, Ruhr Universität Bochum, Bochum, Germany
| | - Christina Weisheit
- Klinik für Anästhesiologie und operative Intensivmedizin, Universitätsklinikum Bonn, Bonn, Germany
| | - Stephanie Pfänder
- Research Unit Emerging Viruses, Leibniz Institute of Virology (LIV), Hamburg, Germany
- University of Lübeck, Lübeck, Germany
| | - Martin Eisenacher
- Medizinisches Proteom-Center, Ruhr Universität Bochum, Medizinische Fakultät, Bochum, Germany
- Center for Protein Diagnostics (PRODI), Medical Proteome Analysis, Ruhr Universität Bochum, Bochum, Germany
| | - Michael Adamzik
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, In der Schornau 23-25, 44892, Bochum, Germany
| | - Rump Katharina
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, In der Schornau 23-25, 44892, Bochum, Germany
| | - Björn Koos
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, In der Schornau 23-25, 44892, Bochum, Germany.
| | - Dominik Ziehe
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, In der Schornau 23-25, 44892, Bochum, Germany
| |
Collapse
|
48
|
Yendewa GA, Olasehinde T, Mulindwa F, Salata RA, Mohareb AM, Jacobson JM. Chronic Hepatitis B and COVID-19 Clinical Outcomes in the United States: A Multisite Retrospective Cohort Study. Open Forum Infect Dis 2025; 12:ofaf013. [PMID: 39896985 PMCID: PMC11786054 DOI: 10.1093/ofid/ofaf013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 01/08/2025] [Indexed: 02/04/2025] Open
Abstract
Background There is conflicting evidence regarding the impact of chronic hepatitis B virus (HBV) on SARS-CoV-2 outcomes. Additionally, the impact of SARS-CoV-2 vaccination and variant periods on outcomes in HBV/SARS-CoV-2 coinfection remain unexplored. Methods We utilized the TriNetX database to compare adults with HBV/SARS-CoV-2 (vs SARS-CoV-2 alone) across 97 US healthcare systems from 2020 to 2023. We assessed the odds of all inpatient hospitalizations, intensive care unit admissions, mechanical ventilation, 30-day, 90-day, and overall mortality. In sensitivity analyses, we excluded HIV, hepatitis C virus, and transplant cases and stratified the HBV/SARS-CoV-2 cohort by cirrhosis status. We applied propensity score matching to address confounding and reported odds ratios (OR) with 95% confidence intervals (CI). Results Of 4 206 774 individuals with SARS-CoV-2, about 0.2% (8293) were HBV/SARS-CoV-2. Individuals with HBV/SARS-CoV-2 (vs SARS-CoV-2 alone) had higher odds of intensive care unit admissions (OR, 1.18; 95% CI, 1.02-1.36), 90-day (OR, 1.22; 95% CI, 1.01-1.41) and overall mortality (OR, 1.18; 95% CI, 1.06-1.33). In sensitivity analyses, those with HBV/SARS-CoV-2 and cirrhosis had a 2.0- to 2.50-fold higher odds of adverse outcomes. Notably, even individuals with HBV/SARS-CoV-2 without cirrhosis had higher odds of mortality. Vaccinated (vs unvaccinated) individuals with HBV/SARS-CoV-2 had 57%, 54%, and 29% reduction in 30-day, 90-day, and overall mortality, respectively. The pre-Delta variant period was associated with higher odds of hospitalization compared to the Omicron but not the Delta period. Conclusions Chronic HBV was associated with worse SARS-CoV-2 outcomes, whereas SARS-CoV-2 vaccination reduced the likelihood of adverse outcomes.
Collapse
Affiliation(s)
- George A Yendewa
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Division of Infectious Diseases and HIV Medicine, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Temitope Olasehinde
- Division of Infectious Diseases and HIV Medicine, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Frank Mulindwa
- Department of Medicine, United Health Services Wilson Medical Center, Johnson City, New York, USA
| | - Robert A Salata
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Division of Infectious Diseases and HIV Medicine, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Amir M Mohareb
- Center for Global Health, Massachusetts General Hospital, Boston, Massachusetts, USA
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Jeffrey M Jacobson
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Division of Infectious Diseases and HIV Medicine, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| |
Collapse
|
49
|
Hou YC, Lin ST, Yang CH, Tsai KW, Wu JH, Huang HY, Su WL. Proof of Concept: Effects of an Immune-Enhancing Formula on Clinical Markers of Critical Coronavirus Disease 2019 Cases. Biomedicines 2025; 13:309. [PMID: 40002722 PMCID: PMC11852627 DOI: 10.3390/biomedicines13020309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 01/23/2025] [Accepted: 01/25/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: The rapid viral spread observed in coronavirus disease 2019 (COVID-19) is capable of inducing the secretion of excessive inflammatory cytokines. The resulting multi-organ damage is a severe complication that can be attenuated through adequate nutrition. Formulae enhanced with either glutamine or arginine are conditionally essential amino acids that have been proven to improve the condition of hospitalized patients. This retrospective study aimed to investigate the effects of administering an immune-enhancing enteral formula enhanced with arginine and glutamine on the clinical signs and biomarkers of patients with severe COVID-19. Methods: After checking the data of 232 patients enrolled in the biobank for completeness and eligibility, 31 patients with severe COVID-19 in the intensive care unit at Taipei Tzu Chi Hospital were grouped based on the type of enteral formula used: 16 patients received the control formula, and 15 patients received the immune-enhancing formula. Baseline characteristics, clinical signs, and inflammatory markers were analyzed for differences. Results: An increase in IL-10 levels in the intervention group was observed (p = 0.048). Changes in other inflammatory cytokine levels were insignificant. Conclusions: Providing an enteral formula enriched with glutamine and arginine to severe COVID-19 patients may help improve their anti-inflammatory marker levels. Further interventional study utilizing enteral formula enriched with glutamine and arginine is needed to confirm the findings of this study.
Collapse
Affiliation(s)
- Yi-Cheng Hou
- Department of Nutrition, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan; (Y.-C.H.); (S.-T.L.); (C.-H.Y.); (J.-H.W.)
| | - Su-Ting Lin
- Department of Nutrition, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan; (Y.-C.H.); (S.-T.L.); (C.-H.Y.); (J.-H.W.)
| | - Chin-Hsuan Yang
- Department of Nutrition, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan; (Y.-C.H.); (S.-T.L.); (C.-H.Y.); (J.-H.W.)
| | - Kuo-Wang Tsai
- Department of Medical Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan;
| | - Jing-Huei Wu
- Department of Nutrition, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan; (Y.-C.H.); (S.-T.L.); (C.-H.Y.); (J.-H.W.)
| | - Hsiang-Yu Huang
- Department of Respiratory Therapy, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan;
| | - Wen-Lin Su
- Division of Pulmonary Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan
- School of Medicine, Tzu-Chi University, Hualien 970, Taiwan
| |
Collapse
|
50
|
García-Aranda M, Onieva MÁ, Martín-García D, Quirós R, López I, Padilla-Ruiz M, Téllez T, Martínez-Gálvez B, Hortas ML, García-Galindo A, González-Gomariz J, Armañanzas R, Rivas-Ruiz F, Serrano A, Barragán-Mallofret I, Redondo M. KLRB1 expression in nasopharyngeal mucosa as a prognostic biomarker in COVID-19 patients. Sci Rep 2025; 15:3079. [PMID: 39856133 PMCID: PMC11761047 DOI: 10.1038/s41598-025-86846-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
The resurgence of COVID-19 and the rise in severe outcomes emphasize the need for reliable prognostic markers to guide patient care and optimize ICU and hospital resources. This study investigates the potential of nasopharyngeal swabs to identify biomarkers that predict ICU admission or death in hospitalized COVID-19 patients. We analyzed nasopharyngeal exudates from 95 hospitalized patients in 2020 using high-plex RNA quantification on the NanoString® nCounter platform. Comparative analysis identified four genes, with KLRB1 (Killer cell lectin like receptor B1) (Odds Ratio OR 0.5, 95% CI: 0.27-0.96), along with age (OR 3.3, 95% CI: 1.25-8.93) emerging as independent prognostic markers in multivariate analysis. These findings were validated using qRT-PCR in an independent cohort of 168 patients hospitalized in 2022. While univariate analysis identified a significant association between KLRB1 expression and vaccination status (p < 0.05), only low KLRB1 expression (OR 1.135, 95% CI: 1.0-1.280), and age (OR 1.033, 95% CI: 1.006-1.061) were confirmed as independent risk factors for ICU admission or death, regardless of other studied variables such as comorbidities, vaccination status, or smoking habits. Our findings suggest that KLRB1 expression could improve prognostic tools by identifying patients at higher risk upon admission. Incorporating KLRB1 into multiplex diagnostic kits alongside SARS-CoV-2 detection could streamline prognostic assessment, providing a more comprehensive and efficient approach to patient management.
Collapse
Affiliation(s)
- Marilina García-Aranda
- Research and Innovation Unit, Costa del Sol University Hospital, Autovía A-7, km 187, Marbella, 29603, Spain.
- Department of Surgical Specialties, Biochemistry and Immunology, Faculty of Medicine, University of Malaga, Malaga, 29010, Spain.
- Malaga Biomedical Research Institute (IBIMA-Plataforma BIONAND), Calle Severo Ochoa, 35. 29590, Malaga, Spain.
| | - María Ángeles Onieva
- Preventive Medicine Unit, Costa del Sol University Hospital, Autovía A-7, km 186, Marbella, 29603, Spain
| | - Desirée Martín-García
- Research and Innovation Unit, Costa del Sol University Hospital, Autovía A-7, km 187, Marbella, 29603, Spain
- Malaga Biomedical Research Institute (IBIMA-Plataforma BIONAND), Calle Severo Ochoa, 35. 29590, Malaga, Spain
- RICAPPS (Network for Research on Chronicity, Primary Care and Health Promotion), Marbella, Spain
| | - Raúl Quirós
- Internal Medicine Unit, Costa del Sol University Hospital, Autovía A-7 km 187, Marbella, 29603, Spain
| | - Inmaculada López
- Microbiology Unit, General Clinical Analysis Service, Costa del Sol University Hospital, Autovía A-7, km 187, Marbella, 29603, Spain
| | - María Padilla-Ruiz
- Research and Innovation Unit, Costa del Sol University Hospital, Autovía A-7, km 187, Marbella, 29603, Spain
- RICAPPS (Network for Research on Chronicity, Primary Care and Health Promotion), Marbella, Spain
| | - Teresa Téllez
- Research and Innovation Unit, Costa del Sol University Hospital, Autovía A-7, km 187, Marbella, 29603, Spain
- Malaga Biomedical Research Institute (IBIMA-Plataforma BIONAND), Calle Severo Ochoa, 35. 29590, Malaga, Spain
| | - Beatriz Martínez-Gálvez
- Malaga Biomedical Research Institute (IBIMA-Plataforma BIONAND), Calle Severo Ochoa, 35. 29590, Malaga, Spain
| | - María Luisa Hortas
- Clinical Analysis Service, Costa del Sol University Hospital, Autovía A-7 km 187, Marbella, 29603, Spain
| | - Alberto García-Galindo
- Institute of Data Science and Artificial Intelligence (DATAI), University of Navarra, Ismael Sánchez Bella Building, Campus Universitario, Pamplona, 31009, Spain
- TECNUN School of Engineering, University of Na- varra, Manuel Lardizabal Ibilbidea, 13, Donostia, San Sebastián, 20018, Spain
| | - José González-Gomariz
- Institute of Data Science and Artificial Intelligence (DATAI), University of Navarra, Ismael Sánchez Bella Building, Campus Universitario, Pamplona, 31009, Spain
- TECNUN School of Engineering, University of Na- varra, Manuel Lardizabal Ibilbidea, 13, Donostia, San Sebastián, 20018, Spain
| | - Rubén Armañanzas
- Institute of Data Science and Artificial Intelligence (DATAI), University of Navarra, Ismael Sánchez Bella Building, Campus Universitario, Pamplona, 31009, Spain
- TECNUN School of Engineering, University of Na- varra, Manuel Lardizabal Ibilbidea, 13, Donostia, San Sebastián, 20018, Spain
| | - Francisco Rivas-Ruiz
- Research and Innovation Unit, Costa del Sol University Hospital, Autovía A-7, km 187, Marbella, 29603, Spain
- RICAPPS (Network for Research on Chronicity, Primary Care and Health Promotion), Marbella, Spain
| | - Alfonso Serrano
- Immunology & Clinical Analysis Service, Virgen de la Victoria University Hospital, Campus de Teatinos, Malaga, 29010, Spain
| | - Isabel Barragán-Mallofret
- Medical Oncology Unit Virgen de la Victoria, Malaga Biomedical Research Institute (IBIMA-Plataforma BIONAND), Calle Severo Ochoa, 35. 29590, Malaga, Spain
- Group of Pharmacoepigenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Maximino Redondo
- Research and Innovation Unit, Costa del Sol University Hospital, Autovía A-7, km 187, Marbella, 29603, Spain.
- Department of Surgical Specialties, Biochemistry and Immunology, Faculty of Medicine, University of Malaga, Malaga, 29010, Spain.
- Malaga Biomedical Research Institute (IBIMA-Plataforma BIONAND), Calle Severo Ochoa, 35. 29590, Malaga, Spain.
- RICAPPS (Network for Research on Chronicity, Primary Care and Health Promotion), Marbella, Spain.
| |
Collapse
|