1
|
Tsai CC, Wang CY, Chang HH, Chang PTS, Chang CH, Chu TY, Hsu PC, Kuo CY. Diagnostics and Therapy for Malignant Tumors. Biomedicines 2024; 12:2659. [PMID: 39767566 PMCID: PMC11726849 DOI: 10.3390/biomedicines12122659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/20/2024] [Accepted: 11/20/2024] [Indexed: 01/03/2025] Open
Abstract
Malignant tumors remain one of the most significant global health challenges and contribute to high mortality rates across various cancer types. The complex nature of these tumors requires multifaceted diagnostic and therapeutic approaches. This review explores current advancements in diagnostic methods, including molecular imaging, biomarkers, and liquid biopsies. It also delves into the evolution of therapeutic strategies, including surgery, chemotherapy, radiation therapy, and novel targeted therapies such as immunotherapy and gene therapy. Although significant progress has been made in the understanding of cancer biology, the future of oncology lies in the integration of precision medicine, improved diagnostic tools, and personalized therapeutic approaches that address tumor heterogeneity. This review aims to provide a comprehensive overview of the current state of cancer diagnostics and treatments while highlighting emerging trends and challenges that lie ahead.
Collapse
Affiliation(s)
- Chung-Che Tsai
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan; (C.-C.T.); (C.-H.C.); (T.Y.C.)
| | - Chun-Yu Wang
- Department of Dentistry, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan;
| | - Hsu-Hung Chang
- Division of Nephrology, Department of Internal Medicine, Sijhih Cathay General Hospital, New Taipei City 221, Taiwan;
| | | | - Chuan-Hsin Chang
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan; (C.-C.T.); (C.-H.C.); (T.Y.C.)
| | - Tin Yi Chu
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan; (C.-C.T.); (C.-H.C.); (T.Y.C.)
| | - Po-Chih Hsu
- Department of Dentistry, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan;
- Institute of Oral Medicine and Materials, College of Medicine, Tzu Chi University, Hualien 970, Taiwan
| | - Chan-Yen Kuo
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan; (C.-C.T.); (C.-H.C.); (T.Y.C.)
| |
Collapse
|
2
|
Wen P, Qi X, Zheng R. Value of the HOTAIR expression assay in predicting therapy target in hepatocellular carcinoma: A meta-analysis and bioinformatics analysis. Int J Biol Markers 2024; 39:239-247. [PMID: 38748534 DOI: 10.1177/03936155241252458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
BACKGROUND Several studies show that the long non-coding RNA HOX transcript antisense RNA (HOTAIR) was upregulated in human cancer, which was associated with several clinical features and may have the potential to be prognostic markers. However, the significance of HOTAIR in hepatocellular carcinoma remains unclear. We performed a meta-analysis and bioanalysis to further investigate the association between HOTAIR and hepatocellular carcinoma. METHODS Eligible literature was systematically retrieved from PubMed, Embase, and Web of Science databases. The pooled hazard ratios with 95% confidence intervals were used to evaluate to the effect. Raw data on HOTAIR expression were obtained from The Cancer Genome Atlas data portals. All bioinformatics analyses were performed using R software (version 4.3.1). RESULTS We identified eight studies in this meta-analysis with a total of 399 patients. High-level HOTAIR expression was found to be significantly related to advanced tumor node metastasis stage, distant metastasis, poor tumor differentiation, and patients with hepatitis. Correspondingly, HOTAIR was also associated with poor overall survival and relapse-free survival. Subsequently, in bioanalysis, HOTAIR expression was higher in hepatocellular carcinoma as well as poor overall survival. High HOTAIR expression was strongly correlated with tumor node metastasis stage. Kyoto Encyclopedia of Genes and Genomes analysis revealed that the differentially expressed genes related to HOTAIR may be involved in the cancer-associated signaling pathway. CONCLUSION HOTAIR may be a potential biomarker for HCC prediction and is expected to become a new choice for clinical HCC prediction..
Collapse
MESH Headings
- Humans
- Biomarkers, Tumor/analysis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/mortality
- Carcinoma, Hepatocellular/pathology
- Computational Biology/methods
- Gene Expression Regulation, Neoplastic/drug effects
- Liver Neoplasms/drug therapy
- Liver Neoplasms/genetics
- Liver Neoplasms/mortality
- Liver Neoplasms/pathology
- Prognosis
- RNA, Long Noncoding/analysis
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
Collapse
Affiliation(s)
- Ping Wen
- Department of Second Stationed Out-Patient, General Hospital of Northern Theatre Command, Wenhua Road 83, Shenyang, Liaoning 110068, P.R. China
| | - Xiyu Qi
- Department of Nutrition, General Hospital of Northern Theatre Command, Wenhua Road 83, Shenyang, Liaoning 110068, P.R. China
| | - Ruzhen Zheng
- Department of Radiation Oncology, Hangzhou Cancer Hospital, Yanguan Lane34, Hangzhou, Zhejiang 310002, P.R. China
| |
Collapse
|
3
|
Cai Q, Wu D, Shen Y, Li S, Liu L, Liu D, Li Y, Chen X, Wang L, Zheng J. Exploring the mechanism of LncRNA CASC15 affecting hepatocellular carcinoma through miRNA. Medicine (Baltimore) 2024; 103:e35859. [PMID: 38306545 PMCID: PMC10843454 DOI: 10.1097/md.0000000000035859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 10/09/2023] [Indexed: 02/04/2024] Open
Abstract
This study aimed to determine the potential mechanisms through which long noncoding (Lnc) RNA cancer susceptibility candidate 15 (CASC15) affects hepatocellular carcinoma (HCC). We retrieved HCC RNA-seq and clinical information from the UCSC Xena database. The differential expression (DE) of CASC15 was detected. Overall survival was analyzed using Kaplan-Meier (K-M) curves. Molecular function and signaling pathways affected by CASC15 were determined using Gene Set Enrichment Analysis. Associations between CASC15 and the HCC microenvironment were investigated using immuno-infiltration assays. A differential CASC15-miRNA-mRNA network and HCC-specific CASC15-miRNA-mRNA ceRNA network were constructed. The overexpression of CASC15 in HCC tissues was associated with histological grade, clinical stage, pathological T stage, poor survival, more complex immune cell components, and 12 immune checkpoints. We identified 27 DE miRNAs and 270 DE mRNAs in the differential CASC15-miRNA-mRNA network, and 10 key genes that were enriched in 12 cancer-related signaling pathways. Extraction of the HCC-specific CASC15-miRNA-mRNA network revealed that IGF1R, MET, and KRAS were associated with HCC progression and occurrence. Our bioinformatic findings confirmed that CASC15 is a promising prognostic biomarker for HCC, and elevated levels in HCC are associated with the tumor microenvironment. We also constructed a disease-specific CASC15-miRNA-mRNA regulatory ceRNA network that provides a new perspective for the precise indexing of patients with elevated levels of CASC15.
Collapse
Affiliation(s)
- Qingshan Cai
- Department of Hepatobiliary Surgery, Tangshan Central Hospital, Hebei Province, China
| | - Dongyang Wu
- Department of Hepatobiliary Surgery, Tangshan Central Hospital, Hebei Province, China
| | - Yueling Shen
- Department of Otolaryngology, Qian ‘an People’s Hospital, Hebei Province, China
| | - Shudong Li
- Department of Hepatobiliary Surgery, Tangshan Central Hospital, Hebei Province, China
| | - Liyou Liu
- Department of Hepatobiliary Surgery, Tangshan Central Hospital, Hebei Province, China
| | - Dong Liu
- Department of Hepatobiliary Surgery, Tangshan Central Hospital, Hebei Province, China
| | - Yong Li
- Department of General Surgery, Tangshan Eighth Hospital, Hebei Province, China
| | - Xiaonan Chen
- Hepatobiliary Surgery Department, Tangshan Gongren Hospital, Hebei Province, China
| | - Limin Wang
- Department of Hepatobiliary Surgery, Tangshan Central Hospital, Hebei Province, China
| | - Jianxing Zheng
- Department of Hepatobiliary Surgery, Tangshan Central Hospital, Hebei Province, China
| |
Collapse
|
4
|
Zhong C, Xie Z, Duan S. H1Innovative approaches to combat anti-cancer drug resistance: Targeting lncRNA and autophagy. Clin Transl Med 2023; 13:e1445. [PMID: 37837401 PMCID: PMC10576445 DOI: 10.1002/ctm2.1445] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 09/21/2023] [Accepted: 10/01/2023] [Indexed: 10/16/2023] Open
Abstract
BACKGROUND To date, standardizing clinical predictive biomarkers for assessing the response to immunotherapy remains challenging due to variations in personal genetic signatures, tumour microenvironment complexities and epigenetic onco-mechanisms. MAIN BODY Early monitoring of key non-coding RNA (ncRNA) biomarkers may help in predicting the clinical efficacy of cancer immunotherapy and come up with standard predictive ncRNA biomarkers. For instance, reduced miR-125b-5p level in the plasma of non-small cell lung cancer patients treated with anti-PD-1 predicts a positive outcome. The level of miR-153 in the plasma of colorectal cancer patients treated with chimeric antigen receptor T lymphocyte (CAR-T) cell therapy may indicate the activation of T-cell killing activity. miR-148a-3p and miR-375 levels may forecast favourable responses to CAR-T-cell therapy in B-cell acute lymphoblastic leukaemia. In cancer patients treated with the GPC3 peptide vaccine, serum levels of miR-1228-5p, miR-193a-5p and miR-375-3p were reported as predictive biomarkers of good response and improved overall survival. Therefore, there is a critical need for further studies to elaborate on the key ncRNA biomarkers that have the potential to predict early clinical responses to immunotherapy. CONCLUSIONS This review summarises important predictive ncRNA biomarkers that were reported in cancer patients treated with different immunotherapeutic modalities including monoclonal antibodies, small molecule inhibitors, cancer vaccines and CAR-T cells. In addition, a concise discussion on forthcoming perspectives is provided, outlining technical approaches for the optimal utilisation of immune-modulatory ncRNA biomarkers as predictive tools and therapeutic targets.
Collapse
Affiliation(s)
- Chenming Zhong
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of MedicineHangzhou City UniversityHangzhouZhejiangP. R. China
- Medical Genetics CenterSchool of MedicineNingbo UniversityNingboZhejiangP. R. China
| | - Zijun Xie
- Medical Genetics CenterSchool of MedicineNingbo UniversityNingboZhejiangP. R. China
| | - Shiwei Duan
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of MedicineHangzhou City UniversityHangzhouZhejiangP. R. China
- Medical Genetics CenterSchool of MedicineNingbo UniversityNingboZhejiangP. R. China
| |
Collapse
|
5
|
Hussain MS, Afzal O, Gupta G, Altamimi ASA, Almalki WH, Alzarea SI, Kazmi I, Fuloria NK, Sekar M, Meenakshi DU, Thangavelu L, Sharma A. Long non-coding RNAs in lung cancer: Unraveling the molecular modulators of MAPK signaling. Pathol Res Pract 2023; 249:154738. [PMID: 37595448 DOI: 10.1016/j.prp.2023.154738] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/20/2023]
Abstract
Lung cancer (LC) continues to pose a significant global medical burden, necessitating a comprehensive understanding of its molecular foundations to establish effective treatment strategies. The mitogen-activated protein kinase (MAPK) signaling system has been scientifically associated with LC growth; however, the intricate regulatory mechanisms governing this system remain unknown. Long non-coding RNAs (lncRNAs) are emerging as crucial regulators of diverse cellular activities, including cancer growth. LncRNAs have been implicated in LC, which can function as oncogenes or tumor suppressors, and their dysregulation has been linked to cancer cell death, metastasis, spread, and proliferation. Due to their involvement in critical pathophysiological processes, lncRNAs are gaining attention as potential candidates for anti-cancer treatments. This article aims to elucidate the regulatory role of lncRNAs in MAPK signaling in LC. We provide a comprehensive review of the key components of the MAPK pathway and their relevance in LC, focusing on aberrant signaling processes associated with disease progression. By examining recent research and experimental findings, this article examines the molecular mechanisms through which lncRNAs influence MAPK signaling in lung cancer, ultimately contributing to tumor development.
Collapse
Affiliation(s)
- Md Sadique Hussain
- School of Pharmaceutical Sciences, Jaipur National University, Jagatpura, 302017 Jaipur, Rajasthan, India
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura, Jaipur, India; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India; School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India
| | | | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Mahendran Sekar
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Subang Jaya 47500, Selangor, Malaysia
| | | | - Lakshmi Thangavelu
- Center for Global Health Research , Saveetha Medical College , Saveetha Institute of Medical and Technical Sciences, Saveetha University, India
| | - Ajay Sharma
- Delhi Pharmaceutical Science and Research University, Pushp Vihar Sector-3, MB Road, New Delhi 110017, India.
| |
Collapse
|
6
|
Nikanfar R, Dabbaghi R, Rajabi A, Hashemzadeh S, Baradaran B, Teimourian S, Safaralizadeh R. Study of LncRNA BANCR Expression in Tumor Tissues and Adjacent Normal Tissues in Gastric Cancer Patients. Adv Biomed Res 2023; 12:186. [PMID: 37694252 PMCID: PMC10492603 DOI: 10.4103/abr.abr_260_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 05/24/2023] [Accepted: 03/27/2023] [Indexed: 09/12/2023] Open
Abstract
Background Long non-coding RNAs (lncRNAs) have emerged as crucial regulators in various biological processes, including cancer development and progression. This study aimed to investigate the expression differences of the BRAF-activated non-coding RNA (BANCR) gene in GC tissues compared to adjacent normal tissues. The potential diagnostic significance of BANCR in GC was explored, with the aim of improving diagnostic and therapeutic approaches for this global health burden. Materials and Methods Tissue samples from 100 gastric cancer (GC) patients were collected, and BANCR expression was analyzed using quantitative real-time PCR. Correlations between BANCR expression and clinicopathological features were assessed, and its biomarker potential was evaluated. Results In individuals diagnosed with GC, the expression of BANCR was notably elevated in tumor tissues compared to adjacent normal tissues (P < 0.0001). However, the analysis of gene expression data did not demonstrate any statistically significant correlation between elevated BANCR expression and clinicopathological features. According to the ROC analysis, BANCR demonstrated an AUC of 0.6733 (P < 0.0001), with a sensitivity of 73% and a specificity of 45%. However, further evaluation is required to determine its potential as a biomarker (CI 95% = 0.5992 to 0.7473). Conclusions The observed upregulation of BANCR in GC tissues implies its potential involvement as an oncogenic lncRNA in GC patients. Furthermore, BANCR may serve as a promising biomarker for identification and treatment of GC.
Collapse
Affiliation(s)
- Raha Nikanfar
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Rozhin Dabbaghi
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Ali Rajabi
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Shahriar Hashemzadeh
- Department of General and Thoracic Surgery, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahram Teimourian
- Department of Medical Genetics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Safaralizadeh
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| |
Collapse
|
7
|
Emam O, Wasfey EF, Hamdy NM. Notch-associated lncRNAs profiling circuiting epigenetic modification in colorectal cancer. Cancer Cell Int 2022; 22:316. [PMID: 36229883 PMCID: PMC9558410 DOI: 10.1186/s12935-022-02736-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/28/2022] [Indexed: 11/15/2022] Open
Abstract
Background Colorectal cancer (CRC) is one of the most prevalent digestive cancers, ranking the 2nd cause of cancer-related fatality worldwide. The worldwide burden of CRC is predicted to rise by 60% by 2030. Environmental factors drive, first, inflammation and hence, cancer incidence increase. Main The Notch-signaling system is an evolutionarily conserved cascade, has role in the biological normal developmental processes as well as malignancies. Long non-coding RNAs (LncRNAs) have become major contributors in the advancement of cancer by serving as signal pathways regulators. They can control gene expression through post-translational changes, interactions with micro-RNAs or down-stream effector proteins. Recent emerging evidence has emphasized the role of lncRNAs in controlling Notch-signaling activity, regulating development of several cancers including CRC. Conclusion Notch-associated lncRNAs might be useful prognostic biomarkers or promising potential therapeutic targets for CRC treatment. Therefore, here-in we will focus on the role of “Notch-associated lncRNAs in CRC” highlighting “the impact of Notch-associated lncRNAs as player for cancer induction and/or progression.” Graphical Abstract ![]()
Collapse
Affiliation(s)
| | - Eman F Wasfey
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Nadia M Hamdy
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt.
| |
Collapse
|
8
|
Liu G, Zhang Y, Zhang X, Liu Y, Xu Y, Cui S, Li G, Wang J. LncRNA MNX1-AS1 contributes to lung adenocarcinoma progression by targeting the miR-34a/SIRT1 axis. Am J Transl Res 2022; 14:4977-4989. [PMID: 35958481 PMCID: PMC9360842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
LncRNA MNX1-AS1 is known to be involved in progression of several tumor types. However, few studies have investigated the molecular mechanism of MNX1-AS1 in lung adenocarcinoma (LAC). To explore the function of MNX1-AS1 in the pathogenesis of LAC, qRT-PCR was performed to show MNX1-AS1 expression. MNX1-AS1 expression in LAC cells was suppressed by siRNA to detect the biologic behavior. The relationships among miR-34a, MNX1-AS1 and SIRT1 were confirmed by pull-down and dual-luciferase reporter assay. Whether MNX1-AS1 was involved in LAC by targeting miR-34a/SIRT1 axis was verified. MNX1-AS1 was up-regulated in LAC, and over-expression of MNX1-AS1 was significantly associated with lymph node metastasis and poor prognosis. In A549 and H1299 cells, cell proliferation, migration, and invasion were suppressed, the cell cycle was regulated, as well as apoptosis was increased after silencing MNX1-AS1. Mechanistically, MNX1-AS1 served as a ceRNA of miR-34a to down-regulate miR-34a expression. SIRT1 is targeted by miR-34a and its expression is regulated by MNX1-AS1 and miR-34a. Up-regulation of SIRT1 salvaged the effect of silencing MNX1-AS1 on A549 and H1299 cells, to some extent. These results showed that MNX1-AS1 contributes to LAC progression by targeting the miR-34a/SIRT1 axis.
Collapse
Affiliation(s)
- Gaofeng Liu
- Department of Cardiothoracic Surgery, The 988th Hospital of PLA Joint Logistics SupportZhengzhou 450042, Henan, China
| | - Yong Zhang
- Department of Cardiothoracic Surgery, The 988th Hospital of PLA Joint Logistics SupportZhengzhou 450042, Henan, China
| | - Xiaozhen Zhang
- Department of Cardiothoracic Surgery, The 988th Hospital of PLA Joint Logistics SupportZhengzhou 450042, Henan, China
| | - Yan Liu
- Department of Cardiothoracic Surgery, The 988th Hospital of PLA Joint Logistics SupportZhengzhou 450042, Henan, China
| | - Yanbin Xu
- Department of Cardiothoracic Surgery, The 988th Hospital of PLA Joint Logistics SupportZhengzhou 450042, Henan, China
| | - Sujuan Cui
- Department of Cardiothoracic Surgery, The 988th Hospital of PLA Joint Logistics SupportZhengzhou 450042, Henan, China
| | - Gang Li
- Department of Cardiothoracic Surgery, The 988th Hospital of PLA Joint Logistics SupportZhengzhou 450042, Henan, China
| | - Jianjun Wang
- Department of Thoracic Surgery, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, People’s Hospital of Henan UniversityZhengzhou 450008, Henan, China
| |
Collapse
|
9
|
Li J, Kong M, Wang D, Yang Z, Hao X. Prediction of lncRNA-Disease Associations via Closest Node Weight Graphs of the Spatial Neighborhood Based on the Edge Attention Graph Convolutional Network. Front Genet 2022; 12:808962. [PMID: 35058974 PMCID: PMC8763691 DOI: 10.3389/fgene.2021.808962] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 11/29/2021] [Indexed: 11/24/2022] Open
Abstract
Accumulated evidence of biological clinical trials has shown that long non-coding RNAs (lncRNAs) are closely related to the occurrence and development of various complex human diseases. Research works on lncRNA–disease relations will benefit to further understand the pathogenesis of human complex diseases at the molecular level, but only a small proportion of lncRNA–disease associations has been confirmed. Considering the high cost of biological experiments, exploring potential lncRNA–disease associations with computational approaches has become very urgent. In this study, a model based on closest node weight graph of the spatial neighborhood (CNWGSN) and edge attention graph convolutional network (EAGCN), LDA-EAGCN, was developed to uncover potential lncRNA–disease associations by integrating disease semantic similarity, lncRNA functional similarity, and known lncRNA–disease associations. Inspired by the great success of the EAGCN method on the chemical molecule property recognition problem, the prediction of lncRNA–disease associations could be regarded as a component recognition problem of lncRNA–disease characteristic graphs. The CNWGSN features of lncRNA–disease associations combined with known lncRNA–disease associations were introduced to train EAGCN, and correlation scores of input data were predicted with EAGCN for judging whether the input lncRNAs would be associated with the input diseases. LDA-EAGCN achieved a reliable AUC value of 0.9853 in the ten-fold cross-over experiments, which was the highest among five state-of-the-art models. Furthermore, case studies of renal cancer, laryngeal carcinoma, and liver cancer were implemented, and most of the top-ranking lncRNA–disease associations have been proven by recently published experimental literature works. It can be seen that LDA-EAGCN is an effective model for predicting potential lncRNA–disease associations. Its source code and experimental data are available at https://github.com/HGDKMF/LDA-EAGCN.
Collapse
Affiliation(s)
- Jianwei Li
- Institute of Computational Medicine, School of Artificial Intelligence, Hebei University of Technology, Tianjin, China.,Hebei Province Key Laboratory of Big Data Calculation, Hebei University of Technology, Tianjin, China
| | - Mengfan Kong
- Institute of Computational Medicine, School of Artificial Intelligence, Hebei University of Technology, Tianjin, China
| | - Duanyang Wang
- Institute of Computational Medicine, School of Artificial Intelligence, Hebei University of Technology, Tianjin, China
| | - Zhenwu Yang
- Institute of Computational Medicine, School of Artificial Intelligence, Hebei University of Technology, Tianjin, China
| | - Xiaoke Hao
- Institute of Computational Medicine, School of Artificial Intelligence, Hebei University of Technology, Tianjin, China
| |
Collapse
|
10
|
Evaluation of the Prognostic Value of Long Noncoding RNAs in Lung Squamous Cell Carcinoma. JOURNAL OF ONCOLOGY 2022; 2022:9273628. [PMID: 35069738 PMCID: PMC8776467 DOI: 10.1155/2022/9273628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/16/2021] [Indexed: 12/24/2022]
Abstract
Lung squamous cell carcinoma (LUSC) is the most common type of lung cancer accounting for 40% to 51%. Long noncoding RNAs (lncRNAs) have been reported to play a significant role in the invasion, migration, and proliferation of lung cancer tissue cells. However, systematic identification of lncRNA signatures and evaluation of the prognostic value for LUSC are still an urgent problem. In this work, LUSC RNA-seq data were collected from TCGA database, and the limma R package was used to screen differentially expressed lncRNAs (DElncRNAs). In total, 216 DElncRNAs were identified between the LUSC and normal samples. lncRNAs associated with prognosis were calculated using univariate Cox regression analysis. The overall survival (OS) prognostic model containing 10 lncRNAs and the disease-free survival (DFS) prognostic model consisting of 11 lncRNAs were constructed using a machine learning-based algorithm, systematic LASSO-Cox regression analysis. We found that the survival rate of samples in the high-risk group was lower than that in the low-risk group. Results of ROC curves showed that both the OS and DFS risk score had better prognostic effects than the clinical characteristics, including age, stage, gender, and TNM. Two lncRNAs (LINC00519 and FAM83A-AS1) that were commonly identified as prognostic factors in both models could be further investigated for their clinical significance and therapeutic value. In conclusion, we constructed lncRNA prognostic models with considerable prognostic effect for both OS and DFS of LUSC.
Collapse
|
11
|
Sadri S, Rejali L, Hadizadeh M, Aghdaei HA, Young C, Nazemalhosseini-Mojarad E, Zali MR, Bonab MA. ANRIL as a prognostic biomarker in colon pre-cancerous lesion detection via non-invasive sampling. Genes Genet Syst 2021; 96:285-292. [DOI: 10.1266/ggs.21-00102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
- Shadi Sadri
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Centre, Research Institute for Gastroenterology and Liver Diseases, Shaheed Beheshti University of Medical Sciences
| | - Leili Rejali
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Centre, Research Institute for Gastroenterology and Liver Diseases, Shaheed Beheshti University of Medical Sciences
| | | | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Centre, Research Institute for Gastroenterology and Liver Diseases, Shaheed Beheshti University of Medical Sciences
| | - Chris Young
- Leicester School of Allied Health Sciences, Faculty of Health and Life Sciences, De Montfort University
| | - Ehsan Nazemalhosseini-Mojarad
- Gastroenterology and Liver Diseases Research Centre, Research Institute for Gastroenterology and Liver Diseases, Shaheed Beheshti University of Medical Sciences
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Centre, Research Institute for Gastroenterology and Liver Diseases, Shaheed Beheshti University of Medical Sciences
| | | |
Collapse
|
12
|
Wang L, Sheng J, Zhang H, Xie B, Xiang L, Liu D, Zhang X, Zhang P, Liu J. The Association between Long Noncoding RNA over Expression and Poor Prognosis of Liver Cancer: A Meta-Analysis. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:1395131. [PMID: 35419184 DOI: 10.1016/j.envexpbot.2017.03.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 10/19/2021] [Accepted: 10/26/2021] [Indexed: 05/24/2023]
Abstract
BACKGROUND Long noncoding RNA (lncRNA) is considered to be a mediator of carcinogenesis, which may be associated with liver cancer survival. However, the relationship remains inconclusive. Meta-analysis was conducted to analytically review the association between the lncRNA expression level and clinicopathological characteristics and prognostic value of hepatic carcinoma. MATERIALS AND METHODS Four databases including Embase, PubMed, Web of Science, and the Cochrane Library were searched to collect studies about the relation between lncRNA overexpression and prognosis of liver cancer, dating from the earliest records of these databases to March 2021. Two researchers independently screened the data and literature to perform a stringent evaluation of the quality of material involved in the study. Meta-analysis was performed by Stata 16.0 software on 42 case-control studies with 6293 samples. RESULTS The outcomes of meta-analysis are presented as follows: lncRNA overexpression patients had later TNM stage (OR = 0.36, 95% CI (0.31, 0.41), P < 0.001), lower histological grade (OR = 0.56, 95%CI (0.49, 0.65), P < 0.001), more vascular invasion (OR = 2.02, 95% CI (1.74, 2.35), P < 0.001), bigger tumor size (OR = 2.28, 95% CI (2.00, 2.60), P < 0.001), more severe liver cirrhosis (OR = 1.39, 95% CI(0.1.16, 1.66), P < 0.001), more likely to metastasize (OR = 1.80, 95%CI(1.49, 2.18), P < 0.001), and more tumor numbers (OR = 0.72, 95% CI (0.62, 0.84), P < 0.05). lncRNA over expression patients had shorter OS (HR = 2.32, 95 CI% (2.08, 2.59), P < 0.01, RFS (HR = 2.19, 95 CI% (1.72, 2.78), P < 0.01), and DFS (HR = 2.01, 95 CI% (1.57, 2.57), P < 0.01). CONCLUSIONS Overexposure of lncRNA is a poor prognostic feature for patients with hepatic carcinoma. The scope of our study was limited because of a lack of relevant research and the poor representativeness and varying quality of the studies involved in the current meta-analysis. Our conclusion still requires higher studies for further validation. This trial is clinically registered with CRD4201920620.
Collapse
Affiliation(s)
- Leiqing Wang
- The First School of Clinical Medicine of Lanzhou University, Lanzhou 730000, Gansu, China
| | - Junzhi Sheng
- The First School of Clinical Medicine of Lanzhou University, Lanzhou 730000, Gansu, China
| | - Haojie Zhang
- Department of Clinical Medicine, Medical College, Wuhan University of Science and Technology, Wuhan 430065, Hubei, China
| | - Baoyuan Xie
- The Second School of Clinical Medicine of Lanzhou University, Lanzhou 730000, Gansu, China
| | - Linbiao Xiang
- The Second School of Clinical Medicine of Lanzhou University, Lanzhou 730000, Gansu, China
| | - Dong Liu
- The School of Clinical Medicine of Shi Hezi University, Shi Hezi 832000, Xinjiang, China
| | - Xinyuan Zhang
- The School of Clinical Medicine of Weifang Medical University, Weifang 261000, Shandong, China
| | - Peihao Zhang
- The Second School of Clinical Medicine of Lanzhou University, Lanzhou 730000, Gansu, China
| | - Jinjin Liu
- The First School of Clinical Medicine of Lanzhou University, Lanzhou 730000, Gansu, China
- Department of Endocrinology, The First Hospital of Lanzhou University, No. 1 West Donggang Road, Lanzhou, Gansu 730000, China
| |
Collapse
|
13
|
Wang L, Sheng J, Zhang H, Xie B, Xiang L, Liu D, Zhang X, Zhang P, Liu J. The Association between Long Noncoding RNA over Expression and Poor Prognosis of Liver Cancer: A Meta-Analysis. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:1395131. [PMID: 35419184 PMCID: PMC8995546 DOI: 10.1155/2021/1395131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 10/19/2021] [Accepted: 10/26/2021] [Indexed: 01/27/2023]
Abstract
Background Long noncoding RNA (lncRNA) is considered to be a mediator of carcinogenesis, which may be associated with liver cancer survival. However, the relationship remains inconclusive. Meta-analysis was conducted to analytically review the association between the lncRNA expression level and clinicopathological characteristics and prognostic value of hepatic carcinoma. Materials and Methods Four databases including Embase, PubMed, Web of Science, and the Cochrane Library were searched to collect studies about the relation between lncRNA overexpression and prognosis of liver cancer, dating from the earliest records of these databases to March 2021. Two researchers independently screened the data and literature to perform a stringent evaluation of the quality of material involved in the study. Meta-analysis was performed by Stata 16.0 software on 42 case-control studies with 6293 samples. Results The outcomes of meta-analysis are presented as follows: lncRNA overexpression patients had later TNM stage (OR = 0.36, 95% CI (0.31, 0.41), P < 0.001), lower histological grade (OR = 0.56, 95%CI (0.49, 0.65), P < 0.001), more vascular invasion (OR = 2.02, 95% CI (1.74, 2.35), P < 0.001), bigger tumor size (OR = 2.28, 95% CI (2.00, 2.60), P < 0.001), more severe liver cirrhosis (OR = 1.39, 95% CI(0.1.16, 1.66), P < 0.001), more likely to metastasize (OR = 1.80, 95%CI(1.49, 2.18), P < 0.001), and more tumor numbers (OR = 0.72, 95% CI (0.62, 0.84), P < 0.05). lncRNA over expression patients had shorter OS (HR = 2.32, 95 CI% (2.08, 2.59), P < 0.01, RFS (HR = 2.19, 95 CI% (1.72, 2.78), P < 0.01), and DFS (HR = 2.01, 95 CI% (1.57, 2.57), P < 0.01). Conclusions Overexposure of lncRNA is a poor prognostic feature for patients with hepatic carcinoma. The scope of our study was limited because of a lack of relevant research and the poor representativeness and varying quality of the studies involved in the current meta-analysis. Our conclusion still requires higher studies for further validation. This trial is clinically registered with CRD4201920620.
Collapse
Affiliation(s)
- Leiqing Wang
- The First School of Clinical Medicine of Lanzhou University, Lanzhou 730000, Gansu, China
| | - Junzhi Sheng
- The First School of Clinical Medicine of Lanzhou University, Lanzhou 730000, Gansu, China
| | - Haojie Zhang
- Department of Clinical Medicine, Medical College, Wuhan University of Science and Technology, Wuhan 430065, Hubei, China
| | - Baoyuan Xie
- The Second School of Clinical Medicine of Lanzhou University, Lanzhou 730000, Gansu, China
| | - Linbiao Xiang
- The Second School of Clinical Medicine of Lanzhou University, Lanzhou 730000, Gansu, China
| | - Dong Liu
- The School of Clinical Medicine of Shi Hezi University, Shi Hezi 832000, Xinjiang, China
| | - Xinyuan Zhang
- The School of Clinical Medicine of Weifang Medical University, Weifang 261000, Shandong, China
| | - Peihao Zhang
- The Second School of Clinical Medicine of Lanzhou University, Lanzhou 730000, Gansu, China
| | - Jinjin Liu
- The First School of Clinical Medicine of Lanzhou University, Lanzhou 730000, Gansu, China
- Department of Endocrinology, The First Hospital of Lanzhou University, No. 1 West Donggang Road, Lanzhou, Gansu 730000, China
| |
Collapse
|
14
|
Hussen BM, Azimi T, Abak A, Hidayat HJ, Taheri M, Ghafouri-Fard S. Role of lncRNA BANCR in Human Cancers: An Updated Review. Front Cell Dev Biol 2021; 9:689992. [PMID: 34409032 PMCID: PMC8367322 DOI: 10.3389/fcell.2021.689992] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/02/2021] [Indexed: 01/07/2023] Open
Abstract
Being located in a gene desert region on 9q21.11-q21.12, BRAF-activated non-protein coding RNA (BANCR) is an lncRNA with 693 bp length. It has been discovered in 2012 in a research aimed at assessment of gene expression in the melanocytes in association with BRAF mutation. Increasing numbers of studies have determined its importance in the tumorigenesis through affecting cell proliferation, migration, invasion, apoptosis, and epithelial to mesenchymal transition. BANCR exerts its effects via modulating some tumor-related signaling pathways particularly MAPK and other regulatory mechanisms such as sponging miRNAs. BANCR has been up-regulated in endometrial, gastric, breast, melanoma, and retinoblastoma. Conversely, it has been down-regulated in some other cancers such as those originated from lung, bladder, and renal tissues. In some cancer types such as colorectal cancer, hepatocellular carcinoma and papillary thyroid carcinoma, there is no agreement about BANCR expression, necessitating the importance of additional functional studies in these tissues. In the present manuscript, we review the investigations related to BANCR expression changes in cancerous cell lines, clinical samples, and animal models of cancer. We also discuss the outcome of its deregulation in cancer progression, prognosis, and the underlying mechanisms of these observations.
Collapse
Affiliation(s)
- Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Tahereh Azimi
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atefe Abak
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hazha Jamal Hidayat
- Department of Biology, College of Education, Salahadddin University-Erbil, Erbil, Iraq
| | - Mohammad Taheri
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Zhou M, Zhang G, Hu J, Zhu Y, Lan H, Shen X, Lv Y, Huang L. Rutin attenuates Sorafenib-induced Chemoresistance and Autophagy in Hepatocellular Carcinoma by regulating BANCR/miRNA-590-5P/OLR1 Axis. Int J Biol Sci 2021; 17:3595-3607. [PMID: 34512168 PMCID: PMC8416719 DOI: 10.7150/ijbs.62471] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 07/24/2021] [Indexed: 12/24/2022] Open
Abstract
Rutin, the main component of Potentilla discolor Bunge, was proven to exhibit anti-tumor properties. Sorafenib (SO) is conventionally used in chemotherapy against hepatocellular carcinoma (HCC), but acquired resistance developed during long-term therapy limits its benefits. This study aimed to explore the molecular mechanism of rutin in SO-induced autophagy and chemoresistance in HCC. Sixty-eight paired HCC patients who received the same chemotherapy treatment were obtained. We also established two SO resistance cell lines and then utilized high-throughput RNA sequencing to explore their long non-coding RNA (lncRNA) expression profiles. The target microRNA (miRNA) and downstream mRNA were also explored. Our results indicated that rutin treatment attenuates autophagy and BANCR expression in SO resistance cells. Transmission electron microscopy clearly showed a significantly decreased number of autophagosomes after rutin-treated HepG2/SO and HCCLM3/SO cells. BANCR knockdown promotes the sensitivity of SO resistance cells to SO. Further study found that BANCR acts as a molecular sponge of miR-590-5P to sequester miR-590-5P away from oxidized low-density lipoprotein receptor 1 (OLR1) in HCC cells. Furthermore, in vivo study demonstrated that rutin could inhibit autophagy through the BANCR/miRNA-590-5P/OLR1 axis. Our findings suggest that rutin could regulate autophagy by regulating BANCR/miRNA-590-5P/OLR1 axis.
Collapse
Affiliation(s)
- Meng Zhou
- Department of Hepatopancreatobiliary Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P. R. China
| | - Gan Zhang
- Department of Hepatopancreatobiliary Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P. R. China
| | - Jun Hu
- Department of Hepatopancreatobiliary Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P. R. China
| | - Yanzhi Zhu
- Department of Hepatopancreatobiliary Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P. R. China
| | - Haoming Lan
- Department of Hepatopancreatobiliary Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P. R. China
| | - Xianfeng Shen
- Department of Hepatopancreatobiliary Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P. R. China
| | - Yi Lv
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710000, P. R. China
| | - Linsheng Huang
- Department of Hepatopancreatobiliary Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P. R. China
| |
Collapse
|
16
|
Moon H, Ro SW. MAPK/ERK Signaling Pathway in Hepatocellular Carcinoma. Cancers (Basel) 2021; 13:3026. [PMID: 34204242 PMCID: PMC8234271 DOI: 10.3390/cancers13123026] [Citation(s) in RCA: 163] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/11/2021] [Accepted: 06/15/2021] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a major health concern worldwide, and its incidence is increasing steadily. Recently, the MAPK/ERK signaling pathway in HCC has gained renewed attention from basic and clinical researchers. The MAPK/ERK signaling pathway is activated in more than 50% of human HCC cases; however, activating mutations in RAS and RAF genes are rarely found in HCC, which are major genetic events leading to the activation of the MAPK/ERK signaling pathway in other cancers. This suggests that there is an alternative mechanism behind the activation of the signaling pathway in HCC. Here, we will review recent advances in understanding the cellular and molecular mechanisms involved in the activation of the MAPK/ERK signaling pathway and discuss potential therapeutic strategies targeting the signaling pathway in the context of HCC.
Collapse
Affiliation(s)
| | - Simon Weonsang Ro
- Department of Genetics and Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, Korea;
| |
Collapse
|
17
|
Liu Y, Tan M, Fang C, Chen X, Liu H, Feng Y, Zhang Y, Min W. A novel multifunctional gold nanorod-mediated and tumor-targeted gene silencing of GPC-3 synergizes photothermal therapy for liver cancer. NANOTECHNOLOGY 2021; 32:175101. [PMID: 33445163 DOI: 10.1088/1361-6528/abdbed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Tumor-specific targeted delivery is a major obstacle to clinical treatment of hepatocellular carcinoma (HCC). Here we have developed a novel multi-functional nanostructure GAL-GNR-siGPC-3, which consists of Galactose (GAL) as the HCC-targeting moiety, golden nanorods (GNR) as a framework to destroy tumor cells under laser irradiation, and siRNA of Glypican-3 (siGPC-3) which induce specifically gene silence of GPC-3 in HCC. Glypican-3 (GPC-3) gene is highly associated with HCC and is a new potential target for HCC therapy. On the other hand, Gal can specifically bind to the asialoglycoprotein receptor which is highly expressed on membrane of hepatoma cells. GAL and siGPC-3 can induce targeted silencing of GPC-3 gene in hepatoma cells. In vivo and in vitro results showed that GAL-GNR-siGPC-3 could significantly induce downregulation of GPC-3 gene and inhibit the progression of HCC. More notably, GAL-GNR-siGPC-3 could induce both GPC-3 gene silencing and photothermal effects, and the synergistic treatment of tumors was more effective than individual treatments. In summary, GAL-GNR-siGPC-3 achieved a synergistic outcome to the treatment of cancer, which opens up a new approach for the development of clinical therapies for HCC.
Collapse
Affiliation(s)
- Yanling Liu
- Jiangxi University of Technology, Nanchang, Jiangxi 330008 People's Republic of China
| | - Manman Tan
- Jiangxi University of Technology, Nanchang, Jiangxi 330008 People's Republic of China
| | - Chunjuan Fang
- Jiangxi University of Technology, Nanchang, Jiangxi 330008 People's Republic of China
| | - Xiaoyan Chen
- Jiangxi University of Technology, Nanchang, Jiangxi 330008 People's Republic of China
| | - Huan Liu
- Jiangxi University of Technology, Nanchang, Jiangxi 330008 People's Republic of China
| | - Ying Feng
- Jiangxi University of Technology, Nanchang, Jiangxi 330008 People's Republic of China
| | - Yujuan Zhang
- Jiangxi University of Technology, Nanchang, Jiangxi 330008 People's Republic of China
| | - Weiping Min
- Jiangxi University of Technology, Nanchang, Jiangxi 330008 People's Republic of China
- Institute of Immunotherapy, Nanchang University, Nanchang, Jiangxi 330008 People's Republic of China
- Department of Surgery, Pathology and Oncology, University of Western Ontario, London, N6A 5A5, Canada
| |
Collapse
|
18
|
Yang L, Si H, Ma M, Fang Y, Jiang Y, Wang J, Zhang C, Xiao H. LINC00221 silencing prevents the progression of hepatocellular carcinoma through let-7a-5p-targeted inhibition of MMP11. Cancer Cell Int 2021; 21:202. [PMID: 33836753 PMCID: PMC8035785 DOI: 10.1186/s12935-021-01819-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 02/06/2021] [Indexed: 12/13/2022] Open
Abstract
Background Microarray profiles of hepatocellular carcinoma (HCC) identified that long intergenic noncoding RNA 00221 (LINC00221) was upregulated. Herein, we aimed to identify the functional significance and underlying mechanisms of LINC00221 in HCC. Methods and results Human HCC samples had increased expression of LINC00221. Effects of LINC00221 on HCC cellular functions were analyzed using gain- and loss-function approaches. LINC00221 knockdown repressed HCC cell growth, migration, and invasion and enhanced their apoptosis. This anti-tumor effect was validated in vivo. Online prediction showed the potential binding relationship between LINC00221 and let-7a-5p, as well as that between let-7a-5p and matrix metalloproteinase 11 (MMP11). The results of luciferase, RNA immunoprecipitation, and RNA pull-down assays identified that LINC00221 interacted with let-7a-5p to increase expression of MMP11. Furthermore, we demonstrated that LINC00221 silencing increased let-7a-5p and inhibited MMP11 expression, thereby delaying the progression of HCC in vitro. Conclusions Silencing of LINC00221 could prevent HCC progression via upregulating let-7a-5p and downregulating MMP11. As such, LINC00221 inhibition presents a promising antitumor strategy for the treatment of HCC.
Collapse
Affiliation(s)
- Lin Yang
- Department of Hepatobiliary Surgery, Shaanxi Province, Xianyang Central Hospital, No. 78, Renmin East Road, Weicheng District, Xianyang, 712000, People's Republic of China
| | - Hailong Si
- Department of Oncology, Shaanxi Province, Affiliated Hospital of the Shaanxi University of Traditional Chinese Medicine, No. 2, Weiyang West Road, Xianyang, 712000, People's Republic of China
| | - Meng Ma
- Department of Oncology, Shaanxi Province, Affiliated Hospital of the Shaanxi University of Traditional Chinese Medicine, No. 2, Weiyang West Road, Xianyang, 712000, People's Republic of China
| | - Yu Fang
- Diagnostic Teaching and Research Unit, Shaanxi University of Traditional Chinese Medicine, Xianyang, 712046, People's Republic of China
| | - Yina Jiang
- Diagnostic Teaching and Research Unit, Shaanxi University of Traditional Chinese Medicine, Xianyang, 712046, People's Republic of China
| | - Jintao Wang
- Department of Hepatobiliary Surgery, Shaanxi Province, Xianyang Central Hospital, No. 78, Renmin East Road, Weicheng District, Xianyang, 712000, People's Republic of China
| | - Cheng Zhang
- Department of Hepatobiliary Surgery, Shaanxi Province, Xianyang Central Hospital, No. 78, Renmin East Road, Weicheng District, Xianyang, 712000, People's Republic of China.
| | - Haijuan Xiao
- Department of Oncology, Shaanxi Province, Affiliated Hospital of the Shaanxi University of Traditional Chinese Medicine, No. 2, Weiyang West Road, Xianyang, 712000, People's Republic of China.
| |
Collapse
|
19
|
Han W, Niu L, Wang L, Liu J, Li H. Downregulation of long non-coding RNA B-Raf proto-oncogene-activated non-coding RNA reverses cisplatin resistance in laryngeal squamous cell carcinoma. Arch Med Sci 2021; 17:1164-1174. [PMID: 34522245 PMCID: PMC8425235 DOI: 10.5114/aoms.2019.91352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 10/14/2018] [Indexed: 12/30/2022] Open
Abstract
INTRODUCTION This study was performed to explore the function of B-Raf proto-oncogene-activated non-coding RNA (BANCR) in laryngeal squamous cell carcinoma (LSCC) and cisplatin resistance. MATERIAL AND METHODS The relative expression level of long non-coding RNA (lncRNA) BANCR was examined by qRT-PCR in tumor tissues and adjacent tissues, normal laryngeal cells (Het-1A) and laryngeal squamous carcinoma cells (TU686, TU177). Cisplatin-resistant laryngeal squamous carcinoma cell lines (TU686-DDP-R, TU177-DDP-R) were established. Next, we inhibited BANCR expression by transfecting siRNA-BANCR and enhanced BANCR expression by transfecting pcDNA3.1-BANCR into TU686, TU177, TU686-DDP-R and TU177-DDP-R cells. The CCK-8 assay and clone formation assay were performed to detect colony proliferation ability and formation ability of cells. Further, to investigate through which BANCR cell viability/formation is regulated, we detected the expression of MRP1, Bcl-2, p-PKB, and Bax by western blot. RESULTS BANCR was highly expressed in laryngeal squamous carcinoma tissues and cells. Chemoresistance was generated in TU686-DDP-R and TU177-DDP-R compared with TU686 and TU177 cells after cisplatin treatment. In addition, upregulated lncRNA BANCR reduced or postponed cell sensitivity to cisplatin by enhancing cell proliferation in TU686 and TU177 cells. Meanwhile, the expression of MRP1, Bcl-2, and p-PKB was increased, while Bax was reduced. After cisplatin treatment, down-regulation of BANCR could consequently attenuate TU686-DDP-R and TU177-DDP-R cell proliferation, and the expression of MRP1, Bcl-2, and p-PKB was decreased and Bax was increased. CONCLUSIONS Down-regulation of BANCR reverses cisplatin resistance of cisplatin-resistant LSCC cell lines.
Collapse
Affiliation(s)
- Weiwei Han
- Department of Otolaryngology Head and Neck Surgery, Tianjin Union Medicine Centre, Tianjin, China
| | - Lin Niu
- Department of Otolaryngology Head and Neck Surgery, Tianjin Union Medicine Centre, Tianjin, China
| | - Lin Wang
- Department of Otolaryngology Head and Neck Surgery, Tianjin Union Medicine Centre, Tianjin, China
| | - Jixiang Liu
- Department of Otolaryngology Head and Neck Surgery, Tianjin Union Medicine Centre, Tianjin, China
| | - Huanying Li
- Department of Otolaryngology Head and Neck Surgery, Tianjin Union Medicine Centre, Tianjin, China
| |
Collapse
|
20
|
Song W, Wang K, Yang X, Dai W, Fan Z. Long non‑coding RNA BANCR mediates esophageal squamous cell carcinoma progression by regulating the IGF1R/Raf/MEK/ERK pathway via miR‑338‑3p. Int J Mol Med 2020; 46:1377-1388. [PMID: 32945416 PMCID: PMC7447317 DOI: 10.3892/ijmm.2020.4687] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 06/26/2020] [Indexed: 12/14/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is a type of digestive tract malignant tumor that severely threatens human health. The long non‑coding RNA BRAF activated non‑coding RNA (BANCR) and insulin‑like growth factor 1 receptor (IGF1R) are associated with various types of cancer; however, it remains unclear whether BANCR can regulate IGF1R expression in ESCC. In the present study, the expression levels of BANCR, IGF1R mRNA and microRNA‑338‑3p (miRNA/miR‑338‑3p) in ESCC tissues or cells were detected by reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR). The levels of IGF1R, E‑cadherin, N‑cadherin, Vimentin, p‑Raf‑1, p‑MEK1/2 and p‑ERK1/2 were measured by western blot analysis. The proliferation, migration and invasion of ESCC cells were determined by 3‑(4,5‑dimethylthiazol‑2‑yl)‑2,5‑diphenyltetrazolium bromide (MTT) or Transwell assays. The relationship between miR‑338‑3p and BANCR or IGF1R was predicted using starBase2.0 and confirmed by dual‑luciferase reporter assay. The role of BANCR in ESCC in vivo was confirmed through a tumor xenograft assay. It was found that BANCR and IGF1R were upregulated, while miR‑338‑3p was downregulated in ESCC tissues and cells. Both BANCR and IGF1R knockdown suppressed the proliferation, migration, invasion and epithelial‑mesenchymal transition (EMT) of ESCC cells. IGF1R enhancement reversed BANCR knockdown‑mediated effects on the proliferation, migration, invasion and EMT of ESCC cells. BANCR regulated the Raf/MEK/ERK pathway by regulating IGF1R expression. Notably, BANCR regulated IGF1R expression by sponging miR‑338‑3p. Moreover, BANCR silencing inhibited tumor growth in vivo. On the whole, the findings of the present study demonstrate that BANCR inhibition blocks ESCC progression by inactivating the IGF1R/Raf/MEK/ERK pathway by sponging miR‑338‑3p.
Collapse
Affiliation(s)
- Wei Song
- Department of Digestive Endoscopy, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029
- Department of Gastroenterology, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Kuangjing Wang
- Department of Digestive Endoscopy, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029
| | - Xiaozhong Yang
- Department of Gastroenterology, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Weijie Dai
- Department of Gastroenterology, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Zhining Fan
- Department of Digestive Endoscopy, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029
| |
Collapse
|
21
|
Fang S, Liu Z, Guo Q, Chen C, Ke X, Xu G. High BANCR expression is associated with worse prognosis in human malignant carcinomas: an updated systematic review and meta-analysis. BMC Cancer 2020; 20:870. [PMID: 32907530 PMCID: PMC7488167 DOI: 10.1186/s12885-020-07177-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 07/13/2020] [Indexed: 01/11/2023] Open
Abstract
Background BRAF-activated noncoding RNA (BANCR) is aberrantly expressed in various tumor tissues and has been confirmed to function as a tumor suppressor or oncogene in many types of cancers. Considering the conflicting results and insufficient sampling, a meta-analysis was performed to explore the prognostic value of BANCR in various carcinomas. Methods A comprehensive literature search of PubMed, Web of Science, EMBASE, Cochrane Library and the China National Knowledge Infrastructure (CNKI) was conducted to collect relevant articles. Results The pooled results showed a strong relationship between high BANCR expression and poor overall survival (OS) (HR (hazard ratio) =1.60, 95% confidence interval (CI): 1.19–2.15, P = 0.002) and recurrence-free survival (RFS) (HR = 1.53, 95% CI: 1.27–1.85, P < 0.00001). In addition, high BANCR expression predicted advanced tumor stage (OR (odds ratio) =2.39, 95% CI: 1.26–4.53, P = 0.008), presence of lymph node metastasis (OR = 2.03, 95% CI: 1.08–3.83, P = 0.03), positive distant metastasis (OR = 3.08, 95% CI: 1.92–4.96, P < 0.00001) and larger tumor sizes (OR = 1.63, 95% CI: 1.09–2.46, P = 0.02). However, no associations were found for smoking status (OR = 1.01, 95% CI: 0.65–1.56, P = 0.98), age (OR = 0.88, 95% CI: 0.71–1.09, P = 0.236) and sex (OR = 0.91, 95% CI: 0.72–1.16, P = 0.469). The sensitivity analysis of OS showed that the results of each publication were almost consistent with the combined results, and the merged results have high robustness and reliability. Conclusions The results showed that elevated BANCR expression was associated with unfavorable prognosis for most cancer patients, and BANCR could serve as a promising therapeutic target and independent prognostic predictor in most of cancer types.
Collapse
Affiliation(s)
- Shixu Fang
- Department of Thoracic Surgery, The Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, 563000, Guizhou, China
| | - Zhou Liu
- Department of Thoracic Surgery, The Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, 563000, Guizhou, China
| | - Qiang Guo
- Department of Thoracic Surgery, The Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, 563000, Guizhou, China
| | - Cheng Chen
- Department of Thoracic Surgery, The Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, 563000, Guizhou, China
| | - Xixian Ke
- Department of Thoracic Surgery, The Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, 563000, Guizhou, China.
| | - Gang Xu
- Department of Thoracic Surgery, The Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, 563000, Guizhou, China.
| |
Collapse
|
22
|
Li W, Ge J, Xie J, Yang J, Chen J, He T. LncRNA TUG1 Promotes Hepatocellular Carcinoma Migration and Invasion Via Targeting miR-137/AKT2 Axis. Cancer Biother Radiopharm 2020; 36:850-862. [PMID: 32589479 DOI: 10.1089/cbr.2019.3297] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background: The current study aimed to investigate the effects of TUG1 on the migration and invasion of hepatoma cells. Materials and Methods: The expressions of TUG1, miR-137, and AKT2 were detected in hepatoma tissues and cells by performing quantitative reverse transcription-polymerase chain reaction (qRT-PCR). The correlations among TUG1, miR-137, and AKT2 were predicted by bioinformatics analysis and confirmed by dual-luciferase reporter assay, and Pearson test was performed to analyze their relevance. The effects of TUG1, miR-137, and AKT2 on viability, migration, and invasion of transfected hepatoma cells were detected by CCK-8, wound scratch, and Transwell. Epithelial-mesenchymal transition (EMT)-related protein levels were determined by western blot and qRT-PCR. Results: TUG1 was highly expressed in hepatoma tissues and cells. Silencing TUG1 expression inhibited the viability, migration, and invasion of hepatoma cells. TUG1 targeted miR-137 and the two was negatively correlated, and silencing TUG1 expression inhibited the effects of low-expressed miR-137 on promoting proliferation, migration, and invasion of hepatoma cells. AKT2 was predicted to be the target gene for miR-137, and the two were negatively correlated. Moreover, inhibiting miR-137 expression promoted the expression of MMP2, MMP9, and N-cadherin and inhibited E-cadherin expression, while silencing TUG1 expression reversed the effects of low-expressed miR-137 on EMT-related protein levels. Conclusion: LncRNA TUG1 promotes hepatocellular carcinoma migration and invasion through targeting miR-137/AKT2 axis.
Collapse
Affiliation(s)
- Wei Li
- Department of Vascular Intervention, Jingmen No.2 People's Hospital, Jingmen, China
| | - Jinzhao Ge
- Department of Interventional Medicine, Zaozhuang Municipal Hospital, Zaozhuang, China
| | - Jinju Xie
- Department of Vascular Intervention, Jingmen No.2 People's Hospital, Jingmen, China
| | - Jidong Yang
- Department of Vascular Intervention, Jingmen No.2 People's Hospital, Jingmen, China
| | - Jin'e Chen
- Department of Vascular Intervention, Jingmen No.2 People's Hospital, Jingmen, China
| | - Tao He
- Department of Interventional Medicine, The Second People's Hospital of Huaihua, Huaihua, China
| |
Collapse
|
23
|
Ma X, Mo M, Tan HJJ, Tan C, Zeng X, Zhang G, Huang D, Liang J, Liu S, Qiu X. LINC02499, a novel liver-specific long non-coding RNA with potential diagnostic and prognostic value, inhibits hepatocellular carcinoma cell proliferation, migration, and invasion. Hepatol Res 2020; 50:726-740. [PMID: 32039538 DOI: 10.1111/hepr.13491] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 01/07/2020] [Accepted: 01/29/2020] [Indexed: 12/14/2022]
Abstract
AIM Liver-specific non-coding RNAs have been reported to play crucial roles in hepatocellular carcinoma (HCC). We investigated the possible biological performance of a novel liver-specific long non-coding RNA, LINC02499, in HCC. METHODS The association between LINC02499 expression and HCC was evaluated based on The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases, and then confirmed in a HCC cohort by quantitative real-time polymerase chain reaction. The effects of LINC02499 on HCC cells were verified by gain- and loss-of-function assays. Pathway enrichment analyses were used to explore the potential mechanism of LINC02499 in HCC. RESULTS LINC02499 expression was remarkably decreased in HCC tissues compared to adjacent non-tumor tissues based on TCGA (P < 0.001) and GEO databases (P < 0.001) and our HCC cohort (P < 0.001). Decreased LINC02499 was also significantly associated with poorer overall survival in both the TCGA database (P = 0.009) and our HCC cohort (P = 0.002). Furthermore, the receiver operating characteristic analysis indicated that LINC02499 showed a good performance in HCC diagnosis (area under the curve = 0.879, P < 0.001), and both sensitivity and specificity were 83.8%. In addition, up- and downregulated LINC02499 significantly impacted proliferation, migration, and invasion abilities of HCC cells in vitro. Pathway enrichment analyses revealed that the potential target genes of LINC02499 were involved in "Complement and coagulation cascades" and "Butanoate metabolism" pathways. CONCLUSION LINC02499 could be a potential novel diagnostic and prognostic biomarker for HCC patients, and it could exert a tumor suppressor role in the progression of HCC.
Collapse
Affiliation(s)
- Xiaoyun Ma
- Department of Epidemiology, School of Public Health, Guangxi Medical University, Nanning, China
| | - Meile Mo
- Department of Epidemiology, School of Public Health, Guangxi Medical University, Nanning, China
| | | | - Chao Tan
- Department of Epidemiology, School of Public Health, Guangxi Medical University, Nanning, China
| | - Xiaoyun Zeng
- Department of Epidemiology, School of Public Health, Guangxi Medical University, Nanning, China
| | - Guoqiang Zhang
- Hospital-acquired Infection Control Department, Affiliated Cancer Hospital of Guangxi Medical University, Nanning, China
| | - Dongping Huang
- Department of Sanitary Chemistry, School of Public Health, Guangxi Medical University, Nanning, China
| | - Jun Liang
- Department of Epidemiology, School of Public Health, Guangxi Medical University, Nanning, China
| | - Shun Liu
- Department of Epidemiology, School of Public Health, Guangxi Medical University, Nanning, China
| | - Xiaoqiang Qiu
- Department of Epidemiology, School of Public Health, Guangxi Medical University, Nanning, China
| |
Collapse
|
24
|
Chai H, Sun C, Liu J, Sheng H, Zhao R, Feng Z. The Relationship Between ZEB1-AS1 Expression and the Prognosis of Patients With Advanced Gastric Cancer Receiving Chemotherapy. Technol Cancer Res Treat 2019; 18:1533033819849069. [PMID: 31072267 PMCID: PMC6515840 DOI: 10.1177/1533033819849069] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Long noncoding RNA ZEB1 antisense RNA 1 plays a vital role in tumorigenesis and metastasis. However, the role of ZEB1 antisense RNA 1 in gastric cancer remains unclear. This study aimed to investigate the expression level of ZEB1 antisense RNA 1 in gastric cancer tissues and evaluate its association with clinicopathological features and prognosis of patients with advanced gastric cancer receiving chemotherapy. The expression levels of ZEB1 antisense RNA 1 were examined in 224 pairs of gastric cancer and adjacent noncancerous tissues by quantitative real-time polymerase chain reaction. The associations between ZEB1 antisense RNA 1 expression and clinicopathological features or survival of patients with advanced gastric cancer were assessed. The results showed that the expression levels of ZEB1 antisense RNA 1 in gastric cancer tissues were significantly higher than those in the paracancerous tissues (P < .001). Moreover, the high ZEB1 antisense RNA 1 expression was associated with tumor, nodes, and metastases stage IV (P = .018) and loss of E-cadherin expression (P = .033). Multivariate Cox hazards regression analysis revealed that high ZEB1 antisense RNA 1 expression was an independent risk factor for predicting poor prognosis in patients with advanced gastric cancer (hazard ratio = 1.530, 95% confidence interval, 1.052-2.224, P = .026). In conclusion, the present findings suggest that ZEB1 antisense RNA 1 is an independent prognostic factor for patients with advanced gastric cancer receiving chemotherapy.
Collapse
Affiliation(s)
- Haina Chai
- 1 Endoscopy Center, Northern Jiangsu People's Hospital, Clinical Medical College of Yangzhou University, Yangzhou, China
| | - Chao Sun
- 1 Endoscopy Center, Northern Jiangsu People's Hospital, Clinical Medical College of Yangzhou University, Yangzhou, China
| | - Jun Liu
- 1 Endoscopy Center, Northern Jiangsu People's Hospital, Clinical Medical College of Yangzhou University, Yangzhou, China
| | - Haihui Sheng
- 2 National Engineering Center for Biochip at Shanghai, Shanghai, China
| | - Renyan Zhao
- 3 Department of Critical Care Medicine, Northern Jiangsu People's Hospital, Clinical Medical College of Yangzhou University, Yangzhou, China
| | - Zhiqiang Feng
- 4 Department of Gastroenterology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou Digestive Disease Center Guangzhou, Guangzhou, China
| |
Collapse
|
25
|
Li RZ, Wang LM. Retraction Note: Decreased microRNA-452 expression and its prognostic significance in human osteosarcoma. World J Surg Oncol 2019; 17:104. [PMID: 31200724 PMCID: PMC6570835 DOI: 10.1186/s12957-019-1648-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
26
|
Zhou T, Gao Y. Expression of Concern to: Increased expression of LncRNA BANCR and its prognostic significance in human hepatocellular carcinoma. World J Surg Oncol 2019; 17:103. [PMID: 31196106 PMCID: PMC6567905 DOI: 10.1186/s12957-019-1644-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
27
|
Cui Z, Zheng X, Kong D. Expression of Concern to: Decreased miR-198 expression and its prognostic significance in human gastric cancer. World J Surg Oncol 2019; 17:102. [PMID: 31196112 PMCID: PMC6567556 DOI: 10.1186/s12957-019-1643-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
28
|
LINC01234/MicroRNA-31-5p/MAGEA3 Axis Mediates the Proliferation and Chemoresistance of Hepatocellular Carcinoma Cells. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 19:168-178. [PMID: 31838274 PMCID: PMC6926330 DOI: 10.1016/j.omtn.2019.10.035] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 10/28/2019] [Accepted: 10/28/2019] [Indexed: 12/27/2022]
Abstract
Hepatocellular carcinoma (HCC) is a prevalent malignancy characterized by aggressiveness and poor prognosis; however, the molecular mechanism remains to be fully identified. Based on the analysis of The Cancer Genome Atlas (TCGA) database, melanoma-associated antigen A3 (MAGEA3) and long non-coding RNA (lncRNA) LINC01234 were upregulated in HCC and associated with poor prognosis of HCC. We investigated the mechanism of how MAGEA3 and LINC01234 influenced HCC cellular functions and cisplatin resistance. MAGEA3 depletion inhibited proliferation, invasion, and cisplatin resistance of HepG2 cells and Huh7 cells in vitro, reduced resistance-associated protein 2 (MRP2), MRP3, and multidrug resistance protein 1 (MDR-1) expression, and elevated ALB expression. RNA pull-down and RIP assays identified the binding of LINC01234 and MAGEA3 to microRNA-31-5p (miR-31-5p). LINC01234 could restore MAGEA3 expression by binding to miR-31-5p. Furthermore, we delivered plasmids into HepG2 cells and Huh7 cells to alter the expression of LINC01234 and miR-31-5p. When miR-31-5p was downregulated, the proliferation and invasion of HepG2 cells and Huh7 cells were enhanced and the cisplatin-induced apoptosis was inhibited, while LINC01234 knockdown could diminish the effects caused by miR-31-5p depletion. In summary, these data highlight the vital role of MAGEA3/LINC01234/miR-31-5p axis in the HCC progression and chemoresistance of HCC cells.
Collapse
|
29
|
Fan X, Jin S, Li Y, Khadaroo PA, Dai Y, He L, Zhou D, Lin H. Genetic And Epigenetic Regulation Of E-Cadherin Signaling In Human Hepatocellular Carcinoma. Cancer Manag Res 2019; 11:8947-8963. [PMID: 31802937 PMCID: PMC6801489 DOI: 10.2147/cmar.s225606] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 09/27/2019] [Indexed: 12/24/2022] Open
Abstract
E-cadherin is well known as a growth and invasion suppressor and belongs to the large cadherin family. Loss of E-cadherin is widely known as the hallmark of epithelial-to-mesenchymal transition (EMT) with the involvement of transcription factors such as Snail, Slug, Twist and Zeb1/2. Tumor cells undergoing EMT could migrate to distant sites and become metastases. Recently, numerous studies have revealed how the expression of E-cadherin is regulated by different kinds of genetic and epigenetic alteration, which are implicated in several crucial transcription factors and pathways. E-cadherin signaling plays an important role in hepatocellular carcinoma (HCC) initiation and progression considering the highly mutated frequency of CTNNB1 (27%). Combining the data from The Cancer Genome Atlas (TCGA) database and previous studies, we have summarized the roles of gene mutations, chromosome instability, DNA methylation, histone modifications and non-coding RNA in E-cadherin in HCC. In this review, we discuss the current understanding of the relationship between these modifications and HCC. Perspectives on E-cadherin-related research in HCC are provided.
Collapse
Affiliation(s)
- Xiaoxiao Fan
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Shengxi Jin
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
- School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Yirun Li
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Parikshit Asutosh Khadaroo
- School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Yili Dai
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
- School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Lifeng He
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Daizhan Zhou
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Hui Lin
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| |
Collapse
|
30
|
Poor expression of long-chain noncoding RNA GAPLINC inhibits epithelial–mesenchymal transition, and invasion and migration of hepatocellular carcinoma cells. Anticancer Drugs 2019; 30:784-794. [DOI: 10.1097/cad.0000000000000752] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
31
|
Regulation of Long Non-Coding RNA-Dreh Involved in Proliferation and Migration of Hepatic Progenitor Cells during Liver Regeneration in Rats. Int J Mol Sci 2019; 20:ijms20102549. [PMID: 31137617 PMCID: PMC6566148 DOI: 10.3390/ijms20102549] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 05/21/2019] [Indexed: 02/07/2023] Open
Abstract
Liver regeneration plays a significant role in protecting liver function after liver injury or chronic liver disease. Long non-coding RNAs (lncRNAs) are considered to be involved in the proliferation of hepatocytes and liver regeneration. Therefore, this study aimed to explore the effects of LncRNA-Dreh on the regulation of hepatic progenitor cells (HPCs) during liver regeneration in rats. Initially, the rat model of liver injury was established to investigate the effect of LncRNA-Dreh down-regulation on liver tissues of rats with liver injury. Subsequently, HPCs line WB-F344 cells were transfected with interference plasmid of LncRNA-Dreh and the expression of LncRNA-Dreh and Vimentin was detected. The proliferation and migration ability of WB-F344 cells, as well as the content of albumin (ALB) and alpha fetoprotein (AFP) in cell differentiation were then determined. Disorderly arranged structure of liver tissue, a large number of HPCs set portal area as center extended to hepatic lobule and ductular reaction were observed in liver tissues of rats with liver injury. The expression of LncRNA-Dreh decreased while Vimentin increased in liver tissues of rats with liver injury. Moreover, the proliferation and migration ability, expression of Vimentin and AFP in WB-F344 cells were increased after silencing of LncRNA-Dreh and ALB was decreased. Collectively, our findings demonstrate that inhibition of LncRNA-Dreh can enhance the proliferation and migration abilities of HPCs in liver regeneration but cause abnormal differentiation of HPCs.
Collapse
|
32
|
Liu S, Duan W. Long noncoding RNA LINC00339 promotes laryngeal squamous cell carcinoma cell proliferation and invasion via sponging miR-145. J Cell Biochem 2019; 120:8272-8279. [PMID: 30485513 DOI: 10.1002/jcb.28110] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 10/31/2018] [Indexed: 01/24/2023]
Abstract
Laryngeal squamous cell carcinoma (LSCC) is a very common neoplasm of the head and neck in the world. Long noncoding RNAs play key roles in cell infiltration, fate, apoptosis, and invasion. However, the functional role and expression of LINC00339 remains unclear in LSCC. In this study, we showed that the expression level of LINC00339 was upregulated in LSCC tissues and cell lines. LINC00339 silencing suppressed the proliferation, invasion, and epithelial-mesenchymal transition (EMT) progression of LSCC cells. In addition, we showed that LINC00339 acted as a sponge of miR-145, and LINC00339 silencing promoted the expression of miR-145 in Hep2 cell. Furthermore, the expression of miR-145 was lower in LSCC tissues than in their paired normal samples and the miR-145 expression level was negatively correlated with LINC00339 expression in LSCC tissues. The knockdown of miR-145 promoted the proliferation, invasion, and EMT progression of LSCC cells. Finally, we indicated that LINC00339 silencing inhibited the proliferation, invasion, and EMT progression of LSCC cells by suppressing the miR-145 expression. These data suggested that LINC00339 acted as an oncogene in the development of LSCC, partly by regulating the miR-145 expression.
Collapse
Affiliation(s)
- Shouzhou Liu
- Department of Otolaryngology, Liaocheng People's Hospital, Liaocheng, China
| | - Wenchao Duan
- Department of Otolaryngology, Liaocheng People's Hospital, Liaocheng, China
| |
Collapse
|
33
|
Yang L, Liu G. lncRNA BANCR suppresses cell viability and invasion and promotes apoptosis in non-small-cell lung cancer cells in vitro and in vivo. Cancer Manag Res 2019; 11:3565-3574. [PMID: 31114383 PMCID: PMC6497868 DOI: 10.2147/cmar.s194848] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 02/22/2019] [Indexed: 12/28/2022] Open
Abstract
Background: As a leading cause of deaths worldwide, lung cancer is a collection of diseases with diverse etiologies which includes non-small-cell lung cancer (NSCLC). Increasing evidence reported that aberrant expression of BRAF activated non-coding RNA (BANCR) was involved in the tumorigenesis and progression of various malignancies. Purpose and methods: However, its role in NSCLC has not been completely clarified. In the present study, we identified the role of BANCR in the regulation of NSCLC cell viability, invasion, and apoptosis. Down-regulation of BANCR expression was significantly observed in different NSCLC cell lines (A549, H1299, H1650, H1975, SPC-A1, and PC-9), tumor tissue from NSCLC mouse model and 30 human NSCLC tissues compared with adjacent normal tissues. Result: Overexpression of BANCR in these six NSCLC cell lines attenuated the cell viability and invasion. An increased apoptotic level caused by BANCR overexpression was also detected and displayed a conversed influence on Bcl-2 and Bax expression in mRNA and protein level. Furthermore, we identified the effect of BANCR overexpression on tumor growth in NSCLC mouse model. The restoration of BANCR expression inhibits NSCLC. Conclusion: Taken together, our findings shed an insight on the novel molecular mechanisms of lung NSCLC oncogenesis and provide the information for new therapeutic approaches on the disease.
Collapse
Affiliation(s)
- Liu Yang
- Sterile Supply Center, Mudanjiang Medical College, Hongqi Hospital, Mudanjiang City 157011, Heilongjiang Province, People's Republic of China
| | - Guiting Liu
- Department of Thoracic Surgery, Mudanjiang Medical College, Hongqi Hospital, Mudanjiang City 157011, Heilongjiang Province, People's Republic of China
| |
Collapse
|
34
|
Zhu X, Yang G, Xu J, Zhang C. Silencing of SNHG6 induced cell autophagy by targeting miR-26a-5p/ULK1 signaling pathway in human osteosarcoma. Cancer Cell Int 2019; 19:82. [PMID: 30988663 PMCID: PMC6448242 DOI: 10.1186/s12935-019-0794-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 03/20/2019] [Indexed: 01/23/2023] Open
Abstract
Background lncRNAs have been proved to play crucial parts in various human cytopathology and cell physiology, including tumorigenesis. Down-regulated lncRNAs SNHG6 have shown great cell proliferation inhibitory effects in cancer development. Here we investigated how SNHG6 effected human osteosarcoma (OS) development and progression. Methods: Reverse transcription-quantitative PCR was performed to detect SNHG6 mRNA level in both OS tissues and cell lines. MTT and colony formation assays were used to determine the growth impact of SNHG6. Wound healing and trans-well assay were performed to measure the invasion effect of SNHG6. Western blotting were utilized to dissect molecular mechanisms. Results We identified SNHG6 as a lncRNAs that significantly up-regulated in OS tissues and cells, patients with high SNHG6 expression suffered more malignant metastasis and shorter survival times. Furthermore, silencing of SNHG6 in OS significantly inhibited OS cell growth, weakened cell invasion capacity, arrested cell cycle at G0/G1 phase, and induced cell apoptosis. Additionally, mechanism assays suggested that SNHG6 could competitively sponging miR-26a-5p thereby regulating ULK1, and induced cell apoptosis and autophagy by targeting caspase3 and ATF3. Conclusions: Our findings demonstrated that SNHG6 acted as an oncogene in osteosarcoma cells through regulating miR-26a-5p/ULK1 at a post-transcriptional level. SNHG6 might serve as a candidate prognostic biomarker and a target for novel therapies of osteosarcoma patients.
Collapse
Affiliation(s)
- Xin Zhu
- Department of Orthopedics, Shangqiu First People's Hospital, No.292, Kaixuan Road, Shangqiu, 476100 China
| | - Guangling Yang
- Department of Orthopedics, Shangqiu First People's Hospital, No.292, Kaixuan Road, Shangqiu, 476100 China
| | - Jisheng Xu
- Department of Orthopedics, Shangqiu First People's Hospital, No.292, Kaixuan Road, Shangqiu, 476100 China
| | - Chuanlin Zhang
- Department of Orthopedics, Shangqiu First People's Hospital, No.292, Kaixuan Road, Shangqiu, 476100 China
| |
Collapse
|
35
|
Yin J, Liu Q, Chen C, Liu W. Small regulatory polypeptide of amino acid response negatively relates to poor prognosis and controls hepatocellular carcinoma progression via regulating microRNA-5581-3p/human cardiolipin synthase 1. J Cell Physiol 2019; 234:17589-17599. [PMID: 30825207 DOI: 10.1002/jcp.28383] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/25/2019] [Accepted: 01/28/2019] [Indexed: 12/19/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignancies with extremely high rates of occurrence and death. Long noncoding RNAs (lncRNAs) have been increasingly revealed to participate in tumorigenesis and development of multiple human cancers, including HCC. LINC00961 is a novel lncRNA which has been uncovered as a tumor suppressor in lung cancer and glioma. However, the role of LINC00961 in HCC has never been probed yet. Herein, we revealed a marked downregulation of LINC00961 in HCC tissues and cell lines. Correlation of low LINC00961 expression with poor outcomes in patients with HCC suggested LINC00961 as an independent predictor for HCC prognosis. Functionally, LINC00961 overexpression obviously inhibited cell proliferation, migration, and invasion in HCC cells. Mechanistically, LINC00961 regulated cardiolipin synthase 1 (CRLS1) expression via sponging miR-5581-3p. Importantly, both miR-5581-3p upregulation and CRLS1 inhibition led to an acceleration in cellular processes in HCC cells. At length, the rescue assays suggested that LINC00961 functioned in HCC through the miR-5581-3p/CRLS1 axis. On the whole, our findings disclosed that LINC00961 played a suppressive role in HCC progression via modulating miR-5581-3p/CRLS1, thus providing a potentially effective target for the prognosis and treatment of patients with HCC.
Collapse
Affiliation(s)
- Jian Yin
- Department of Gastroenterology, The First Affiliated to Chinese PLA General Hospital, Beijing, China
| | - Qian Liu
- Department of Gastroenterology, The First Affiliated to Chinese PLA General Hospital, Beijing, China
| | - Chao Chen
- Department of Gastroenterology, The First Affiliated to Chinese PLA General Hospital, Beijing, China
| | - Wenxiang Liu
- Department of Gastroenterology, The First Affiliated to Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
36
|
Zhang S, Song X. Long non-coding RNA SNHG1 promotes cell proliferation and invasion of hepatocellular carcinoma by acting as a molecular sponge to modulate miR-195. Arch Med Sci 2019; 16:386-394. [PMID: 32190150 PMCID: PMC7069425 DOI: 10.5114/aoms.2019.81311] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 12/09/2018] [Indexed: 01/22/2023] Open
Abstract
INTRODUCTION Although long non-coding RNA SNHG1 (lncRNA SNHG1) action on cell proliferation and invasion of hepatocellular carcinoma (HCC) cells has been reported, the effects of lncRNA SNHG1 on migration of HCC cells and the mechanisms are still unclear. The present study aimed to investigate the influence of lncRNA SNHG1 on metastasis in HCC cells and the possible mechanisms underlying this phenotype. MATERIAL AND METHODS Expression of lncRNA SNHG1 and miR-195 was determined using qRT-PCR in both HCC cell lines Huh7 and HepG2. Si-RNA was used to silence SNHG1 and miR-195 inhibitor was used to inhibit expression of miR-195. Luciferase reporter assay was conducted to confirm whether miR-195 was the direct binding target of SNHG1. RESULTS lncRNA SNHG1 was significantly up-regulated and miR-195 was significantly down-regulated in HCC cell lines. When transfected with si-SNHG1, migration and invasion of HCC cells, as well as expression of astrocyte elevated gene 1 (AEG-1) protein, were significantly inhibited compared with the control cells. Results of dual luciferase reporter assay showed that lncRNA SNHG1 acted as an endogenous sponge of miR-195. On the other hand, the expression of miR-195 in tumor tissue was much lower than that of miR-195 in the corresponding normal tissue. Furthermore, the correlation analysis showed a strong negative relationship between lncRNA SNHG1 and miR-195 expression in HCC tissues. CONCLUSIONS SNHG1 may promote cell invasion and migration in HCC cells by sponging miR-195. These results can provide deeper understanding of SNHG1 in hepatocellular cancer and give new potential targets for treatment of HCC.
Collapse
Affiliation(s)
- Shuai Zhang
- Department of Radiation Oncology, Hainan General Hospital, Haikou, China
| | - Xiaoding Song
- Clinical Laboratory, Hainan General Hospital, Haikou, China
| |
Collapse
|
37
|
Xue S, Jiang SQ, Li QW, Wang S, Li J, Yang S, Zhang HM, Xu YF, Wang LS, Zheng JH. Decreased expression of BRAF-activated long non-coding RNA is associated with the proliferation of clear cell renal cell carcinoma. BMC Urol 2018; 18:79. [PMID: 30200918 PMCID: PMC6131937 DOI: 10.1186/s12894-018-0395-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Accepted: 09/03/2018] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND BRAF-activated long non-coding RNA (BANCR) has been associated with various types of cancer. Nevertheless, the role of BANCR in clear cell renal cell carcinoma (ccRCC) is still not fully understood. This study aims to investigate the relationship between ccRCC and BANCR. METHODS Expression of BANCR in TCGA renal cancer data sets was analyzed. The expression pattern of BANCR in Immortalized normal human proximal tubule epithelial cell line HK-2 and ccRCC cell lines (ACHN, CAKI-1, A498 and 786-O) was detected by real-time quantitative RT-PCR (qRT-PCR). ccRCC tissues with adjacent normal renal tissues diagnosed by pathological methods from 62 patients were used to detect the expression of BANCR, and its correlation with prognosis of ccRCC patients was assessed by Kaplan-Meier method. The LV-BANCR vector was used to examine the influence of BANCR on the proliferation, migration, invasion, apoptosis and cell cycle distribution of ccRCC cells in vitro. RESULTS BANCR was downregulated in renal cancer according to TCGA data sets. Compared with adjacent normal renal tissues and normal human proximal tubule epithelial cell line HK-2, BANCR expression was significantly decreased in ccRCC tissues and ccRCC cell lines, and its low expression was associated with poor prognosis. Moreover, in the condition of BANCR overexpression by LV-BANCR vector, the proliferation, migration, invasion capacity of ccRCC cells was inhibited, while the apoptosis was increased and the G1 cell cycle arrest was induced in vitro. CONCLUSIONS BANCR is downregulated in ccRCC tissues and cell lines, and is associated with ccRCC progression. Thus, BANCR may represent a novel prognostic biomarker and a potential therapeutic target for ccRCC patients.
Collapse
Affiliation(s)
- Sheng Xue
- Department of Urology, The First Affliated Hospital of Bengbu Medical College Bengbu, Bengbu, Anhui China
| | - Sheng-Qun Jiang
- Department of Ophthalmology, The First Affliated Hospital of Bengbu Medical College Bengbu, Bengbu, Anhui China
| | - Qing-wen Li
- Department of Urology, The First Affliated Hospital of Bengbu Medical College Bengbu, Bengbu, Anhui China
| | - Sheng Wang
- Department of Urology, The First Affliated Hospital of Bengbu Medical College Bengbu, Bengbu, Anhui China
| | - Jian Li
- Department of Urology, The First Affliated Hospital of Bengbu Medical College Bengbu, Bengbu, Anhui China
| | - Shuai Yang
- Department of Urology, The First Affliated Hospital of Bengbu Medical College Bengbu, Bengbu, Anhui China
| | - Hai-Min Zhang
- Department of Urology, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
| | - Yun-Fei Xu
- Department of Urology, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
| | - Long-Sheng Wang
- Department of Urology, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
| | - Jun-Hua Zheng
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200072 China
| |
Collapse
|
38
|
Li Q, Liu R, Zhao H, Di R, Lu Z, Liu E, Wang Y, Chu M, Wei C. Identification and Characterization of Long Noncoding RNAs in Ovine Skeletal Muscle. Animals (Basel) 2018; 8:ani8070127. [PMID: 30041440 PMCID: PMC6071021 DOI: 10.3390/ani8070127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 07/13/2018] [Accepted: 07/17/2018] [Indexed: 01/06/2023] Open
Abstract
Simple Summary LncRNAs may play important role in many biological processes. The aims of this research were to identify potential lncRNAs active in skeletal muscle of the Texel and Ujumqin sheep and investigate their functions. Overall, 2002 lncRNA transcripts were found, some of which may be related to muscle development. The findings obtained here should promote understanding of the regulatory functions of lncRNAs in ovine muscle development and potentially also in other mammals. Abstract Long noncoding RNAs (lncRNAs) are increasingly being recognized as key regulators in many cellular processes. However, few reports of them in livestock have been published. Here, we describe the identification and characterization of lncRNAs in ovine skeletal muscle. Eight libraries were constructed from the gastrocnemius muscle of fetal (days 85 and 120), newborn and adult Texel and Ujumqin sheep. The 2002 identified transcripts shared some characteristics, such as their number of exons, length and distribution. We also identified some coding genes near these lncRNA transcripts, which are particularly associated with transcriptional regulation- and development-related processes, suggesting that the lncRNAs are associated with muscle development. In addition, in pairwise comparisons between the libraries of the same stage in different breeds, a total of 967 transcripts were differentially expressed but just 15 differentially expressed lncRNAs were common to all stages. Among them, we found that TCONS_00013201 exhibited higher expression in Ujumqin samples, while TCONS_00006187 and TCONS_00083104 were higher in Texel samples. Moreover, TCONS_00044801, TCONS_00008482 and TCONS_00102859 were almost completely absent from Ujumqin samples. Our results suggest that differences in the expression of these lncRNAs may be associated with the muscular differences observed between Texel and Ujumqin sheep breeds.
Collapse
Affiliation(s)
- Qing Li
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Ruizao Liu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Huijing Zhao
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Ran Di
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Zengkui Lu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
- College of Animal Science and Technology, Gansu Agriculture University, Lanzhou 730070, China.
| | - Enmin Liu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Yuqin Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China.
| | - Mingxing Chu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Caihong Wei
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
39
|
Hu X, Jiang J, Xu Q, Ni C, Yang L, Huang D. A Systematic Review of Long Noncoding RNAs in Hepatocellular Carcinoma: Molecular Mechanism and Clinical Implications. BIOMED RESEARCH INTERNATIONAL 2018; 2018:8126208. [PMID: 30105249 PMCID: PMC6076971 DOI: 10.1155/2018/8126208] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 04/10/2018] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) has the second highest mortality rate worldwide among all cancers. Previous studies have revealed the significant involvement of long noncoding RNAs (lncRNAs) in numerous human cancers including HCC. Both oncogenic and tumor repressive lncRNAs have been identified and implicated in the complex process of hepatocarcinogenesis. They can be further explored as prospective diagnostic, prognostic, and therapeutic markers for HCC. An in-depth understanding of lncRNAs' mechanism in HCC is therefore required to fully explore their potential role. In the current review, we will concentrate on the underlying function, molecular mechanisms, and potential clinical implications of lncRNA in HCC.
Collapse
Affiliation(s)
- Xiaoge Hu
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Jiahong Jiang
- Department of Second Clinical Medical College, Zhejiang Chinese Medicine University, Hangzhou, Zhejiang 310053, China
| | - Qiuran Xu
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Chao Ni
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
- Department of General Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Liu Yang
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Dongsheng Huang
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| |
Collapse
|
40
|
Ma L, Wang Q, Gong Z, Xue L, Zuo Z. Long noncoding RNA GIHCG enhanced tongue squamous cell carcinoma progression through regulating miR-429. J Cell Biochem 2018; 119:9064-9071. [PMID: 29953645 DOI: 10.1002/jcb.27164] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 05/18/2018] [Indexed: 02/01/2023]
Abstract
Long noncoding RNAs play essential roles in cancer development and progression. Here, we tried to investigate the role of GIHCG in the progression and metastasis of tongue squamous cell carcinoma (TSCC). In our study, we showed that that the expression level of GIHCG was upregulated in TSCC tissues and cell lines. In addition, we indicated that high GIHCG expression was positively associated with poor overall survival. Moreover, ectopic expression of GIHCG enhanced TSCC cell cycle, proliferation, and migration. Elevated expression of GIHCG inhibited the miR-429 expression in TSCC cells. We demonstrated that the expression level of miR-429 was lower in TSCC tissues and cell lines. Low miR-429 expression was positively associated with poor overall survival. We then determined the correlation between miR-429 and GIHCG expression levels. A statistically significantly inverse correlation was observed between miR-429 and GIHCG expression levels in TSCC tissues. In addition, overexpression of miR-429 suppressed the TSCC cell cycle, proliferation, and migration. Elevated expression of GIHCG promoted TSCC cell cycle, proliferation, and migration through regulating miR-429 expression. These results suggested that GIHCG increased TSCC progression through negative modulation of miR-429. Our results suggested that GIHCG/miR-429 might play a vital role in TSCC progression.
Collapse
Affiliation(s)
- Long Ma
- Department of Periodontology, Jinan Stomatological Hospital, Jinan, Shandong, China
| | - Qibao Wang
- Department of Endodontics, Jinan Stomatological Hospital, Jinan, Shandong, China
| | - Zuode Gong
- Department of Endodontics, Jinan Stomatological Hospital, Jinan, Shandong, China
| | - Lande Xue
- Department of Periodontology, Jinan Stomatological Hospital, Jinan, Shandong, China
| | - Zhibin Zuo
- Department of Periodontology, Jinan Stomatological Hospital, Jinan, Shandong, China
| |
Collapse
|
41
|
Peng L, Yuan XQ, Zhang CY, Peng JY, Zhang YQ, Pan X, Li GC. The emergence of long non-coding RNAs in hepatocellular carcinoma: an update. J Cancer 2018; 9:2549-2558. [PMID: 30026854 PMCID: PMC6036883 DOI: 10.7150/jca.24560] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Accepted: 03/31/2018] [Indexed: 12/11/2022] Open
Abstract
Hepatocellular carcinoma (HCC) accounting for roughly 90% of all primary liver neoplasms is the sixth most frequent neoplasm and the second prominent reason of tumor fatality worldwide. As regulators of diverse biological processes, long non-coding RNAs (lncRNAs) are involved in onset and development of neoplasms. With the continuous booming of well-featured lncRNAs in HCC from 2016 to now, we reviewed the newly-presented comprehension about the relationship between lncRNAs and HCC in this study. To be specific, we summarized the overview function and study tools of lncRNAs, elaborated the roles of lncRNAs in HCC, and sketched the molecule mechanisms of lncRNAs in HCC. In addition, the application of lncRNAs serving as biomarkers in early diagnosis and outcome prediction of HCC patients was highlighted.
Collapse
Affiliation(s)
- Li Peng
- Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and the Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha 410078, P.R. China; Cancer Research Institute, Central South University, Changsha 410078, P.R. China
- Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P.R. China
| | - Xiao-Qing Yuan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Chao-Yang Zhang
- Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and the Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha 410078, P.R. China; Cancer Research Institute, Central South University, Changsha 410078, P.R. China
| | - Jiang-Yun Peng
- Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P.R. China
| | - Ya-Qin Zhang
- Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and the Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha 410078, P.R. China; Cancer Research Institute, Central South University, Changsha 410078, P.R. China
| | - Xi Pan
- Department of Oncology, the third Xiangya Hospital, Central South University, Changsha 410013, P.R. China
| | - Guan-Cheng Li
- Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and the Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha 410078, P.R. China; Cancer Research Institute, Central South University, Changsha 410078, P.R. China
| |
Collapse
|
42
|
Liu XF, Hao JL, Xie T, Pant OP, Lu CB, Lu CW, Zhou DD. The BRAF activated non-coding RNA: A pivotal long non-coding RNA in human malignancies. Cell Prolif 2018; 51:e12449. [PMID: 29484737 DOI: 10.1111/cpr.12449] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 01/13/2018] [Indexed: 12/13/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) participate in the complex network of cancer and play an important role in tumourigenesis and progression. BRAF activated non-coding RNA (BANCR), a 4-exon transcript of 693-bp, was first discovered as an oncogenic long non-coding RNA in BRAFV600E melanomas cells in 2012 and was related to melanoma cell migration. Besides melanoma, increasing evidence has explored the potential role of BANCR in the development and progression of multiple other human malignancies, such as retinoblastoma, lung cancer, gastric cancer etc. since its discovery. The expression pattern of BANCR varies in different types of cancers, either as a tumour suppressor or as an accelerator. Functional BANCR may serve as a promising biomarker for cancer diagnosis as well as prognosis evaluation. BANCR-targeted intervention may also become a valuable novel therapeutic tool against human malignancies. This review summarized the advanced research progresses concerning the expression and role of BANCR in different human malignancies.
Collapse
Affiliation(s)
- Xiu-Fen Liu
- Department of Ophthalmology, The First Hospital of Jilin University, Jilin, China
| | - Ji-Long Hao
- Department of Ophthalmology, The First Hospital of Jilin University, Jilin, China
| | - Tian Xie
- Department of. Neurosurgery, The People's Hospital of Jilin Province, Jilin, China
| | - Om Prakash Pant
- Department of Ophthalmology, The First Hospital of Jilin University, Jilin, China
| | - Cheng-Bo Lu
- Department of Cardiology, The First Hospital of Jiamusi University, Heilongjiang, China
| | - Cheng-Wei Lu
- Department of Ophthalmology, The First Hospital of Jilin University, Jilin, China
| | - Dan-Dan Zhou
- Department of Radiology, The First Hospital of Jilin University, Jilin, China
| |
Collapse
|
43
|
BRAF-activated lncRNA predicts gastrointestinal cancer patient prognosis: a meta-analysis. Oncotarget 2018; 8:6295-6303. [PMID: 28009984 PMCID: PMC5351632 DOI: 10.18632/oncotarget.14061] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 12/13/2016] [Indexed: 11/25/2022] Open
Abstract
BRAF activated non-coding RNA (BANCR) is often dysregulated in cancer. We performed a meta-analysis to clarify its functions as a prognostic indicator in malignant tumors. We searched the PubMed, Medline, OVID, Cochrane Library, and Web of Science databases to identify BANCR-related studies. Nine original studies and 898 total patients were included in the meta-analysis. Hazard ratios (HR) and 95% confidence intervals (CI) were extracted from the included studies to determine the relationship between BANCR expression and patient overall survival (OS). Odds ratios (OR) were calculated using RevMan 5.3 software to assess associations between BANCR expression and pathological parameters. High BANCR expression correlated with lymph node metastasis (LNM) (OR = 3.41, 95% CI: 1.82-6.37, P = 0.0001), distant metastasis (DM) (OR = 2.98, 95% CI: 1.76-5.07, P < 0.0001), tumor stage (OR = 3.11, 95% CI: 1.89-5.12, Z = 3.25, P < 0.0001), and poor OS (pooled HR = 1.98, 95% CI: 1.20-3.27, P = 0.008) in gastrointestinal (GI) cancer patients, but not in non-GI cancer patients. Our results support the notion that BANCR as a promising prognostic biomarker in Chinese patients with GI cancer.
Collapse
|
44
|
El Khodiry A, Afify M, El Tayebi HM. Behind the curtain of non-coding RNAs; long non-coding RNAs regulating hepatocarcinogenesis. World J Gastroenterol 2018; 24:549-572. [PMID: 29434445 PMCID: PMC5799857 DOI: 10.3748/wjg.v24.i5.549] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 01/17/2018] [Accepted: 01/23/2018] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common and aggressive cancers worldwide. HCC is the fifth common malignancy in the world and the second leading cause of cancer death in Asia. Long non-coding RNAs (lncRNAs) are RNAs with a length greater than 200 nucleotides that do not encode proteins. lncRNAs can regulate gene expression and protein synthesis in several ways by interacting with DNA, RNA and proteins in a sequence specific manner. They could regulate cellular and developmental processes through either gene inhibition or gene activation. Many studies have shown that dysregulation of lncRNAs is related to many human diseases such as cardiovascular diseases, genetic disorders, neurological diseases, immune mediated disorders and cancers. However, the study of lncRNAs is challenging as they are poorly conserved between species, their expression levels aren't as high as that of mRNAs and have great interpatient variations. The study of lncRNAs expression in cancers have been a breakthrough as it unveils potential biomarkers and drug targets for cancer therapy and helps understand the mechanism of pathogenesis. This review discusses many long non-coding RNAs and their contribution in HCC, their role in development, metastasis, and prognosis of HCC and how to regulate and target these lncRNAs as a therapeutic tool in HCC treatment in the future.
Collapse
Affiliation(s)
- Aya El Khodiry
- Genetic Pharmacology Research Group, Clinical Pharmacy Unit, Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| | - Menna Afify
- Genetic Pharmacology Research Group, Clinical Pharmacy Unit, Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| | - Hend M El Tayebi
- Genetic Pharmacology Research Group, Clinical Pharmacy Unit, Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| |
Collapse
|
45
|
Zhao J, Qi Y, Hu J, Dai W, Chen Y. Prognostic Role of Long Noncoding RNA BANCR in Solid Tumors: A Meta-Analysis. Technol Cancer Res Treat 2017. [PMCID: PMC5762099 DOI: 10.1177/1533034617748075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Accumulating studies have reported that long noncoding RNA BRAF-activated nonprotein coding RNA plays vital role in various cancers. However, the prognostic values of BRAF-activated nonprotein coding RNA in solid tumors remain controversial. Thus, we assessed the prognostic values of BRAF-activated nonprotein coding RNA by this meta-analysis. We comprehensively searched PubMed, Web of Science, Medline, China National Knowledge Infrastructure (CNKI), and the Cochrane Library at November 2016. After carefully screening, we ultimately included 14 studies in this meta-analysis. This meta-analysis brought all relevant articles into determining the association of BRAF-activated nonprotein coding RNA expression with overall survival and clinicopathologic features. The results showed that high BRAF-activated nonprotein coding RNA expression significantly shorten the overall survival of solid tumors (pooled hazard ratios 1.66, 95% confidence interval: 1.19-2.32). Moreover, high BRAF-activated nonprotein coding RNA expression was also strongly associated with advanced tumor stage (odds ratios = 2.57, 95% confidence interval: 1.14-5.79), differentiation grade (odds ratio = 1.71, 95% confidence interval: 1.26-2.31), lymph node metastasis (odds ratio = 2.67, 95% confidence interval: 1.93-3.70, P < .001), and distant metastasis (odds ratio = 2.98, 95% confidence interval: 1.76-5.07, P = .02). In conclusion, this meta-analysis demonstrated that high BRAF-activated nonprotein coding RNA expression may be a potential novel biomarker for indicating a poor prognosis and progression in human solid tumors.
Collapse
Affiliation(s)
- Jun Zhao
- Department of Respiratory Medicine, Qinghai Provincial People’s Hospital, Xining, Qinghai, China
| | - Yali Qi
- Department of Respiratory Medicine, Qinghai Provincial People’s Hospital, Xining, Qinghai, China
| | - Jiahao Hu
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wenwen Dai
- Department of Respiratory Medicine, Qinghai Provincial People’s Hospital, Xining, Qinghai, China
| | - Yifei Chen
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
46
|
Zou Y, Li J, Chen Y, Xiao H, Zhang F, Yu D, Luo K. BANCR: a novel oncogenic long non-coding RNA in human cancers. Oncotarget 2017; 8:94997-95004. [PMID: 29212285 PMCID: PMC5706931 DOI: 10.18632/oncotarget.22031] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Accepted: 09/21/2017] [Indexed: 02/05/2023] Open
Abstract
Long non-coding RNAs account for large proportion of non-coding transcripts in human genomes. Though they lack of open reading framework and cannot encode protein, they can control endogenous gene expression though regulating cell life activities. They serve as transcriptional modulator, posttranscriptional processor, chromatin remodeler and splicing regulator during the process of gene modification. Moreover, long non-coding RNAs were regarded as potential tumor markers for cancer diagnosis and prognosis. BANCR was identified as a cancer-promoting long non-coding RNA in melanoma tissues. Since then, increasing studies about BANCR in cancer progression were reported. BANCR was dysregulated in various cancers including melanoma, colorectal cancer, retinoblastoma, lung carcinoma and hepatocellular carcinoma, and increased BANCR expression cause poor prognosis and shorter survival rate of cancer patients. Furthermore, the functions and mechanisms of BANCR in cancer cells have been clarified. Here, we focus on the current research on the role of BANCR in the clinical management, progression and molecular mechanisms in human cancer.
Collapse
Affiliation(s)
- Yifan Zou
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People’s Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China
- Shantou University Medical College, Shantou, China
| | - Jianfa Li
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People’s Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen PKU-HKUST Medical Center, Shenzhen, China
| | - Yincong Chen
- Shantou University Medical College, Shantou, China
| | - Huizhong Xiao
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People’s Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Fuyou Zhang
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People’s Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Dan Yu
- Longgang District Central Hospital of Shenzhen, Shenzhen, China
| | - Kewang Luo
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People’s Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China
- People’s Hospital of Longhua, Shenzhen, China
| |
Collapse
|
47
|
Mehra M, Chauhan R. Long Noncoding RNAs as a Key Player in Hepatocellular Carcinoma. BIOMARKERS IN CANCER 2017; 9:1179299X17737301. [PMID: 29147078 PMCID: PMC5673005 DOI: 10.1177/1179299x17737301] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Indexed: 12/16/2022]
Abstract
Hepatocellular carcinoma (HCC) is a major malignancy in the liver and has emerged as one of the main cancers in the world with a high mortality rate. However, the molecular mechanisms of HCC are still poorly understood. Long noncoding RNAs (lncRNAs) have recently come to the forefront as functional non-protein-coding RNAs that are involved in a variety of cellular processes ranging from maintaining the structural integrity of chromosomes to gene expression regulation in a spatiotemporal manner. Many recent studies have reported the involvement of lncRNAs in HCC which has led to a better understanding of the underlying molecular mechanisms operating in HCC. Long noncoding RNAs have been shown to regulate development and progression of HCC, and thus, lncRNAs have both diagnostic and therapeutic potentials. In this review, we present an overview of the lncRNAs involved in different stages of HCC and their potential in clinical applications which have been studied so far.
Collapse
Affiliation(s)
- Mrigaya Mehra
- Studio of Computational Biology & Bioinformatics, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, India
- Academy of Scientific & Innovative Research, Chennai, India
| | - Ranjit Chauhan
- Department of Hepatology, Loyola University Chicago, Chicago, IL, USA
- Molecular Virology and Hepatology Research Group, Division of BioMedical Sciences, Health Sciences Center, Memorial University, St John’s, Newfoundland and Labrador, Canada
| |
Collapse
|
48
|
Luo J, Qu J, Wu DK, Lu ZL, Sun YS, Qu Q. Long non-coding RNAs: a rising biotarget in colorectal cancer. Oncotarget 2017; 8:22187-22202. [PMID: 28108736 PMCID: PMC5400657 DOI: 10.18632/oncotarget.14728] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 01/09/2017] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is a common gastrointestinal cancer, with a high incidence and high mortality. Long non-coding RNAs (lncRNAs) are involved in the development, invasion and metastasis, early diagnosis, prognosis, the chemoresistance and radioresistance of CRC through interference with mRNA activity, directly combining with proteins to regulate their activity or alter their localization, influencing downstream gene expression by inhibiting RNA polymerase and regulating gene expression as competing endogenous RNAs. Recent progress in next generation sequencing and transcriptome analysis has revealed that tissue and cancer-type specific lncRNAs could be useful prognostic markers. Here, the CRC-associated lncRNAs from recent studies until October 2016 are reviewed and multiple studies that have confirmed CRC-associated lncRNAs are summarized. This review may be helpful in understanding the overall relationships between the lncRNAs involved in CRC.
Collapse
Affiliation(s)
- Jian Luo
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, P. R. China
| | - Jian Qu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Institute of Clinical Pharmacy, Central South University, Changsha, P. R. China
| | - Dong-Kai Wu
- Department of Cardiothoracic Surgery, Xiangya Hospital, Central South University, Changsha, P. R. China
| | - Zhi-Li Lu
- Department of Pathology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, P. R. China
| | - Yue-Sheng Sun
- Department of General Surgery, The Third Clinical College of Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou, P. R. China
| | - Qiang Qu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, P. R. China
| |
Collapse
|
49
|
Qiu L, Tang Q, Li G, Chen K. Long non-coding RNAs as biomarkers and therapeutic targets: Recent insights into hepatocellular carcinoma. Life Sci 2017; 191:273-282. [PMID: 28987633 DOI: 10.1016/j.lfs.2017.10.007] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 09/19/2017] [Accepted: 10/03/2017] [Indexed: 12/19/2022]
Abstract
Hepatocellular carcinoma (HCC) is the most prevalent primary liver cancer worldwide, and the survival rates of patients with HCC remains quite low after 5years. Long non-coding RNAs (LncRNAs) are a novel class of non-coding RNAs that are capable of regulating gene expression at various levels. Recent works have demonstrated that lncRNAs are often dysregulated in HCC, and the dysregulation of some of these lncRNAs are associated with the clinicopathological features of HCC. They regulate cell proliferation, apoptosis, autophagy, Epithelial-Mesenchymal Transition (EMT), invasion and metastasis of HCC by modulating gene expression and cancer-related signaling pathways, and thus contribute to the onset and progression of HCC. In this review, we provide a comprehensive survey of dysregulated lncRNAs in HCC, with particular focus on the functions and regulatory mechanisms of several essential and important lncRNAs, and discuss their potential clinical application as early diagnostic and/or prognostic biomarkers or therapeutic targets for HCC.
Collapse
Affiliation(s)
- Lipeng Qiu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Qi Tang
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Guohui Li
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Keping Chen
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China.
| |
Collapse
|
50
|
Yu X, Zheng H, Chan MTV, Wu WKK. BANCR: a cancer-related long non-coding RNA. Am J Cancer Res 2017; 7:1779-1787. [PMID: 28979803 PMCID: PMC5622215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Accepted: 02/03/2016] [Indexed: 06/07/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are a group of non-protein-coding RNAs with more than 200 nucleotides in length. lncRNAs are involved in diverse biological processes, including development, cell proliferation and differentiation. Emerging evidences also suggest that lncRNAs may participate in cancer development by functioning as tumor suppressors and oncogenes. BRAF-activated non-coding RNA (BANCR) was first identified as an oncogene in melanoma. Later studies demonstrated that BANCR was frequently deregulated in human cancers, including lung cancer, gastric cancer, colorectal cancer, thyroid cancer and osteosarcoma. Nevertheless, the direction of deregulation was tissue-specific in which BANCR could as an oncogene or tumor-suppressor gene. In this review, we compile current evidences concerning the functional roles and molecular mechanisms of BANCR in tumor development.
Collapse
Affiliation(s)
- Xin Yu
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing 100042, China
| | - Heyi Zheng
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing 100042, China
| | - Matthew TV Chan
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong KongHong Kong, China
| | - William Ka Kei Wu
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong KongHong Kong, China
- State Key Laboratory of Digestive Disease, LKS Institute of Health Sciences, The Chinese University of Hong KongHong Kong, China
| |
Collapse
|