1
|
Du J, Hou J, Liu S, Wu X, Hu L, Xu W, Zhuo S. Curcumin-Loaded Silver-Based Metal-Organic Frameworks: Efficient Antibacterial and Antioxidant Properties against Escherichia coli and Staphylococcus aureus for Promoting Infected Wound Healing. ACS APPLIED BIO MATERIALS 2025; 8:4140-4152. [PMID: 40340321 DOI: 10.1021/acsabm.5c00275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2025]
Abstract
Slow or noticeably delayed wound healing is frequently intimately linked to bacterial infection and excessive reactive oxygen species (ROS), while the inappropriate usage of antibiotics fuels the rise of bacterial resistance. The innovative materials are desperately needed to eliminate bacteria and effectively accelerate wound healing. In this work, a curcumin-loaded silver-based metal-organic framework (Cur/Ag-MOF) composite nanomaterial was developed, which exhibited good antimicrobial activity, biocompatibility, and drug resistance. Meanwhile, surface-loaded curcumin can effectively eliminate excess free radicals and promote wound healing due to its antioxidative and ROS scavenging properties. Additionally, it was discovered that the application of Cur/Ag-MOF to the site of skin trauma significantly sped up the process of wound closure in mice used as subjects. These findings highlighted its great potential for treating bacterial infection-induced skin injuries and aiding the healing and reconstruction of skin tissues.
Collapse
Affiliation(s)
- Jinyan Du
- Anhui Key Laboratory of Chemo-Biosensing, Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, PR China
| | - Jinrui Hou
- Anhui Key Laboratory of Chemo-Biosensing, Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, PR China
| | - Shiji Liu
- Anhui Key Laboratory of Chemo-Biosensing, Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, PR China
| | - Xinyue Wu
- Anhui Key Laboratory of Chemo-Biosensing, Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, PR China
| | - Liangde Hu
- Anhui Key Laboratory of Chemo-Biosensing, Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, PR China
| | - Wenjiang Xu
- Anhui Key Laboratory of Chemo-Biosensing, Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, PR China
| | - Shujuan Zhuo
- Anhui Key Laboratory of Chemo-Biosensing, Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, PR China
| |
Collapse
|
2
|
Ni C, Li X, Jiang H, Gui S, Yin H, Nie X. A targeted and synergetic nano-delivery system against Pseudomonas aeruginosa infection for promoting wound healing. Mater Today Bio 2025; 31:101470. [PMID: 39882550 PMCID: PMC11772151 DOI: 10.1016/j.mtbio.2025.101470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 01/07/2025] [Accepted: 01/07/2025] [Indexed: 01/31/2025] Open
Abstract
Purpose Pseudomonas aeruginosa infection is the most common pathogen in burn wound infections, causing delayed wound healing and progression to chronic wounds. Therefore, there is an urgent need to develop antimicrobial agents that can promote wound healing for effectively treating infected wounds. Patients and methods Using magnetic stirring and ultrasound to synthesize Apt-pM@UCNPmSiO2-Cur-CAZ. The nanosystems were characterized using transmission electron microscopy (TEM), dynamic light scattering (DLS), and ultraviolet-visible spectrophotometry (UV-Vis). Flow cytometry, bacterial LIVE/DEAD staining and scanning electron microscopy were performed to assess the in vitro antibacterial and anti-biofilm effects of the nanosystems. The wound healing potential and in vivo toxicity of the nanosystems were evaluated in a mouse skin wound model. Results The Apt-pM@UCNPmSiO2-Cur-CAZ synthesized exhibited uniform circular shape with a Zeta potential of -0.8 mV. In vitro, Apt-pM@UCNPmSiO2-Cur-CAZ demonstrated superior antibacterial effects compared to standalone antibiotics. Bacteria treated with Apt-pM@UCNPmSiO2-Cur-CAZ showed varying degrees of deformation and shrinkage, resulting in severe damage to the bacterial cells. Additionally, Apt-pM@UCNPmSiO2-Cur-CAZ can inhibit and eradicate bacterial biofilms, while also targeting bacteria for enhanced antibacterial efficacy. Interestingly, the NIR light could enhance the antibacterial and anti-biofilm effects of Apt-pM@UCNPmSiO2-Cur-CAZ due to the photodynamic action. In a mouse skin wound infection model, the nanosystem effectively eliminated wound bacteria, promoting the healing of Pseudomonas aeruginosa-infected wounds without significant toxic effects. Conclusion Apt-pM@UCNPmSiO2-Cur-CAZ is a novel targeted nano-delivery system with promising potential in combating Pseudomonas aeruginosa infections, and it may serve as a new therapeutic approach for treating skin wound infections.
Collapse
Affiliation(s)
| | | | - Haiye Jiang
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan Province, China
| | - Shumin Gui
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan Province, China
| | - Heng Yin
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan Province, China
| | - Xinmin Nie
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan Province, China
| |
Collapse
|
3
|
Chen H, Hu P, Wang Y, Liu H, Zheng J, Huang Z, Zhang X, Liu Y, Zhou T. From quorum sensing inhibition to antimicrobial defense: The dual role of eugenol-gold nanoparticles against carbapenem-resistant Pseudomonas aeruginosa. Colloids Surf B Biointerfaces 2025; 247:114415. [PMID: 39622152 DOI: 10.1016/j.colsurfb.2024.114415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 11/25/2024] [Accepted: 11/27/2024] [Indexed: 01/22/2025]
Abstract
To address the pressing challenge of antibiotic resistance, particularly the robust defense mechanisms of Pseudomonas aeruginosa (P. aeruginosa) against conventional antibiotics, this study employs nanotechnology to enhance antimicrobial efficacy while ensuring good biocompatibility with the host. In this study, gold nanoparticles were chemically decorated with eugenol, a phenol-rich natural compound, using a one-pot synthesis method. The successful synthesis and functionalization of eugenol-decorated gold nanoparticles (Eugenol_Au NPs) were validated by comprehensive physicochemical analyses, demonstrating their stability and biocompatibility. These nanoparticles exhibited potent antimicrobial activity against both planktonic and biofilm-embedded carbapenem-resistant P. aeruginosa strains. Eugenol_Au NPs disrupted the bacterial quorum sensing system and stimulated intracellular reactive oxygen species production, which enhance their antibacterial effects. This dual mechanism of action has promising clinical implications for the treatment of infections associated with antibiotic-resistant P. aeruginosa. In vivo assessments in a murine peritoneal infection model showed that Eugenol_Au NPs significantly reduced bacterial loads and mitigated inflammatory responses, thereby improving survival rates. The study highlights the potential of Eugenol_Au NPs as an alternative strategy for refractory infections caused by carbapenem-resistant P. aeruginosa, and underscores the feasibility and promise of further clinical research and development of new therapeutic approaches targeting this resistant pathogen.
Collapse
Affiliation(s)
- Huale Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University; Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang, China; Department of Clinical Laboratory, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Panjie Hu
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University; Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Yaran Wang
- Wenzhou Institute, University of Chinese Academy of Sciences, Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, China
| | - Haifeng Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University; Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Junyuan Zheng
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University; Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Zeyu Huang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University; Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Xiaotuan Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University; Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Yong Liu
- Wenzhou Institute, University of Chinese Academy of Sciences, Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, China.
| | - Tieli Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University; Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang, China.
| |
Collapse
|
4
|
Yu Z, Wang M, Li J, Xu H, Zhang W, Xing F, Li J, Yang J, Xiong Y. A Fused Membrane-Camouflaged Biomimetic Nanosystem for Dual-Targeted Therapy of Septic Arthritis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2410710. [PMID: 39828630 DOI: 10.1002/smll.202410710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/31/2024] [Indexed: 01/22/2025]
Abstract
Due to the inherent aseptic and enclosed characteristics of joint cavity, septic arthritis (SA) almost inevitably leads to intractable infections and rapidly progressing complex pathological environments. Presently, SA faces not only the deficient effectiveness of the gold-standard systemic antibiotic therapy but also the scarcity of effective localized targeted approaches and standardized animal models. Herein, an ingenious multifunctional nanosystem is designed, which involves the methylation of hyaluronic acid (HA), copolymerization with DEGDA, loading with vancomycin (VAN), and then coating with fused macrophage-platelet membrane (denoted as FM@HA@VAN). Upon intra-articular administration, FM@HA@VAN nanoparticles exhibit sustained retention and selectively targeting to infected sites, leveraging macrophage-mediated inflammation homing and platelet-directed bacteria targeting. The acidic microenvironment triggers responsive release of vancomycin, leading to potent bactericidal effects. Subsequently, the exposed HA@VAN nanoparticles are efficiently internalized by activated macrophages, releasing HA to alleviate oxidative stress and achieve chondroprotection by inhibiting pro-inflammatory cytokines, neutralizing ROS and upregulating macrophage M2 polarization. In vivo model and experiments confirm the efficacy of this dual-targeting antibacterial approach, demonstrating its precision in eradicating bacterial infections and alleviating associated pathological processes, including synovial hyperplasia and cartilage erosion. The dual-targeting therapeutic nanosystem, coordinated with fused-membranes, holds promise for enhancing the treatment efficacy of SA.
Collapse
Affiliation(s)
- Zeping Yu
- Sports Medicine Center, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Orthopedics and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Mengxian Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Junqiao Li
- Sports Medicine Center, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Orthopedics and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hong Xu
- Department of Orthopedics and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wenli Zhang
- Department of Orthopedics and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Fei Xing
- Department of Pediatric Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jian Li
- Sports Medicine Center, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Orthopedics and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jiaojiao Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yan Xiong
- Sports Medicine Center, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Orthopedics and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
5
|
Meng M, Huo R, Li Z, Wang X, Qiu Y, Shen X, Chang G. Protective effect of curcumin-loaded zeolitic imidazolate framework-8-based pH-responsive drug delivery system against Staphylococcus aureus infection. Microb Pathog 2025; 200:107336. [PMID: 39864761 DOI: 10.1016/j.micpath.2025.107336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/08/2025] [Accepted: 01/23/2025] [Indexed: 01/28/2025]
Abstract
Mastitis, generally caused by pathogenic microorganisms, is a serious disease in dairy farming. Staphylococcus aureus (S. aureus) is one of the main pathogens that induces mastitis in dairy cows. It evades the innate and adaptive immune responses of dairy cows, causing recessive transmission and harming the health of the mammary glands. Antibiotics remain the primary treatment; however, their excessive use can lead to antimicrobial resistance. Therefore, it is necessary to develop new strategies to replace antibiotic therapies. The zeolitic imidazolate framework (ZIF-8) is a metal-organic skeleton material with applications in biology and drug delivery. This study aimed to construct a novel nanodrug delivery system for S. aureus infection by combining ZIF-8 with curcumin (ZIF-8@CCM), which exhibits antibacterial and anti-inflammatory properties. Bovine mammary epithelial cells (BMECs) and mice were used to evaluate the therapeutic efficacy and biotoxicity of the system, and to explore the protective mechanism of ZIF-8@CCM. The results showed that ZIF-8@CCM exhibited high drug loading capacity, stability, and pH responsiveness. Both in vitro and in vivo experiments revealed that ZIF-8@CCM effectively released encapsulated curcumin in response to the acidic microenvironment induced by bacterial infection, which in turn enhanced the bactericidal efficacy. It not only prevents biofilm formation, but also mitigates the toxic side effects associated with drug treatments, showing excellent bioavailability and biocompatibility. Furthermore, ZIF-8@CCM also attenuated S. aureus-induced inflammatory through suppressing the activation of TLR2-NF-κB pathway. Consequently, ZIF-8@CCM is an effective targeted antibacterial and anti-inflammatory drug, showing promise as a novel therapeutic agent for the clinical management of S. aureus-induced mastitis in dairy cows.
Collapse
Affiliation(s)
- Meijuan Meng
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, PR China
| | - Ran Huo
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, PR China
| | - Zhixin Li
- Animal Disease Prevention and Control Center of Ningxia Hui Autonomous Region, Yinchuan, 750001, Ningxia, PR China
| | - Xiaoliang Wang
- Animal Disease Prevention and Control Center of Ningxia Hui Autonomous Region, Yinchuan, 750001, Ningxia, PR China
| | - Yawei Qiu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, PR China
| | - Xiangzhen Shen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, PR China
| | - Guangjun Chang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, PR China; Animal Disease Prevention and Control Center of Ningxia Hui Autonomous Region, Yinchuan, 750001, Ningxia, PR China.
| |
Collapse
|
6
|
Nyandoro VO, Ismail EA, Tageldin A, Gafar MA, Peters XQ, Mautsoe R, Omolo CA, Govender T. Potential of nanocarrier-mediated delivery of vancomycin for MRSA infections. Expert Opin Drug Deliv 2025; 22:347-365. [PMID: 39949087 DOI: 10.1080/17425247.2025.2459756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 01/24/2025] [Indexed: 02/20/2025]
Abstract
INTRODUCTION Methicillin-resistant Staphylococcus aureus (MRSA) threatens global health due to its resistance to vancomycin, which is the standard treatment despite limitations, including nephrotoxicity and low intracellular permeability. This necessitates the development of innovative strategies such as nanocarrier-mediated delivery to overcome such limitations. Nanocarriers serve as delivery systems for vancomycin and exhibit inherent antibacterial properties, potentially providing synergism and overcoming MRSA's resistance. Nanocarriers provide sustained release and targeted delivery of vancomycin to the infection site, achieving higher therapeutic concentrations and superior antibacterial activity with reduced doses, which minimizes systemic toxicity. Moreover, leveraging simulations techniques provides more insights on vancomycin-nanocarrier interactions, facilitating the optimization of nanosystems. AREAS COVERED The article discusses the potential of nanocarriers in delivering vancomycin to infection site, reducing systemic toxicity, and potentiating anti-MRSA activity. Additionally, it reviews modeling and simulation studies to provide a deeper understanding of vancomycin-nanocarrier interactions. The literature search included experimental articles from 2017 to 2024, searched in Web of Science, Google scholar, PubMed, and Scopus. EXPERT OPINION Nanocarrier-mediated delivery of vancomycin offers promising approaches to combat MRSA infections by enhancing therapeutic efficacy and reducing systemic toxicity. However, further research is required to optimize these nanoformulations and advance them to clinical trials and practical applications.
Collapse
Affiliation(s)
- Vincent O Nyandoro
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
- Department of Pharmaceutics and Pharmaceutical Chemistry, School of Pharmacy, Kabarak University, Kabarak, Kenya
| | - Eman A Ismail
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
- Department of Pharmaceutics, Faculty of Pharmacy, University of Gezira, Wad Medani, Sudan
| | - Abdelrahman Tageldin
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Mohammed A Gafar
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Xylia Q Peters
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Relebohile Mautsoe
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Calvin A Omolo
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
- School of Pharmacy and Health Sciences, Department of Pharmaceutics, United States International University-Africa, Nairobi, Kenya
| | - Thirumala Govender
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
7
|
Fang X, Li Y, Wang Y, Cai R, Ao Q. Platelet-derived biomaterials for targeted drug delivery and tissue repair. J Mater Chem B 2025; 13:1573-1585. [PMID: 39711405 DOI: 10.1039/d4tb02477j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Platelets are nucleic-free cells with a lifespan of 7-10 days in the bloodstream, playing a crucial role in various physiological processes such as hemostasis, thrombus formation, tumor development and metastasis, inflammation, and host defense. By utilizing the unique structural and functional characteristics of platelets, platelet-modified nano-drugs can evade immune recognition and clearance and facilitate prolonged circulation in vivo, which ultimately allows the nanoparticles to reach sites of disease such as thrombi, tumors, inflammation, or bacterial infections, leading to specific adhesion and significantly enhancing the efficiency of targeted drug delivery. This paper reviews the novel design and application of platelet-derived biomaterials in various diseases in recent years and comprehensively demonstrates the potential of platelet-derived biomaterials in the fields of disease therapy and biodefence, which will provide a reference for advancing the development of platelet-derived biomaterials and clinical practice.
Collapse
Affiliation(s)
- Xinyu Fang
- College of Biomedical Engineering, National Engineering Research Centre for Biomaterials, Sichuan University, Chengdu, Sichuan 610064, China.
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial & Institute of Regulatory Science for Medical Device & National Engineering Research Centre for Biomaterials, Sichuan University, Chengdu, Sichuan 610064, China
| | - Ya Li
- College of Biomedical Engineering, National Engineering Research Centre for Biomaterials, Sichuan University, Chengdu, Sichuan 610064, China.
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial & Institute of Regulatory Science for Medical Device & National Engineering Research Centre for Biomaterials, Sichuan University, Chengdu, Sichuan 610064, China
| | - Yulin Wang
- College of Biomedical Engineering, National Engineering Research Centre for Biomaterials, Sichuan University, Chengdu, Sichuan 610064, China.
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial & Institute of Regulatory Science for Medical Device & National Engineering Research Centre for Biomaterials, Sichuan University, Chengdu, Sichuan 610064, China
| | - Rupeng Cai
- College of Biomedical Engineering, National Engineering Research Centre for Biomaterials, Sichuan University, Chengdu, Sichuan 610064, China.
| | - Qiang Ao
- College of Biomedical Engineering, National Engineering Research Centre for Biomaterials, Sichuan University, Chengdu, Sichuan 610064, China.
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial & Institute of Regulatory Science for Medical Device & National Engineering Research Centre for Biomaterials, Sichuan University, Chengdu, Sichuan 610064, China
| |
Collapse
|
8
|
Li QJ, Xing F, Wu WT, Zhe M, Zhang WQ, Qin L, Huang LP, Zhao LM, Wang R, Fan MH, Zou CY, Duan WQ, Li-Ling J, Xie HQ. Multifunctional metal-organic frameworks as promising nanomaterials for antimicrobial strategies. BURNS & TRAUMA 2025; 13:tkaf008. [PMID: 40276581 PMCID: PMC12018305 DOI: 10.1093/burnst/tkaf008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 01/18/2025] [Accepted: 01/22/2025] [Indexed: 04/26/2025]
Abstract
Bacterial infections pose a serious threat to human health. While antibiotics have been effective in treating bacterial infectious diseases, antibiotic resistance significantly reduces their effectiveness. Therefore, it is crucial to develop new and effective antimicrobial strategies. Metal-organic frameworks (MOFs) have become ideal nanomaterials for various antimicrobial applications due to their crystalline porous structure, tunable size, good mechanical stability, large surface area, and chemical stability. Importantly, the performance of MOFs can be adjusted by changing the synthesis steps and conditions. Pure MOFs can release metal ions to modulate cellular behaviors and kill various microorganisms. Additionally, MOFs can act as carriers for delivering antimicrobial agents in a desired manner. Importantly, the performance of MOFs can be adjusted by changing the synthesis steps and conditions. Furthermore, certain types of MOFs can be combined with traditional photothermal or other physical stimuli to achieve broad-spectrum antimicrobial activity. Recently an increasing number of researchers have conducted many studies on applying various MOFs for diseases caused by bacterial infections. Based on this, we perform this study to report the current status of MOF-based antimicrobial strategy. In addition, we also discussed some challenges that MOFs currently face in biomedical applications, such as biocompatibility and controlled release capabilities. Although these challenges currently limit their widespread use, we believe that with further research and development, new MOFs with higher biocompatibility and targeting capabilities can provide diversified treatment strategies for various diseases caused by bacterial infections.
Collapse
Affiliation(s)
- Qian-Jin Li
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Fei Xing
- Department of Pediatric Surgery, Division of Orthopedic Surgery, Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China School of Medicine, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Chengdu 610041, China
| | - Wen-Ting Wu
- Department of Pediatric Surgery, Division of Orthopedic Surgery, Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China School of Medicine, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Chengdu 610041, China
| | - Man Zhe
- Animal Experiment Center, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Chengdu 610041, Sichuan, China
| | - Wen-Qian Zhang
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Lu Qin
- Integrated Care Management Center, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Chengdu 610041, Sichuan, China
| | - Li-Ping Huang
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Long-Mei Zhao
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Rui Wang
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Ming-Hui Fan
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Chen-Yu Zou
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Wei-Qiang Duan
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Chengdu 610041, Sichuan, China
| | - Jesse Li-Ling
- Department of Medical Genetics, West China Second Hospital, Sichuan University, Chengdu 610041, China
- Tianfu Jincheng Laboratory, Chengdu, 610093, China
| | - Hui-Qi Xie
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- Tianfu Jincheng Laboratory, Chengdu, 610093, China
| |
Collapse
|
9
|
Wang J, Li K, Yuan H. Preparation of Ag-Metal organic frameworks-loaded Sodium Alginate Hydrogel for the treatment of periodontitis. Sci Rep 2025; 15:800. [PMID: 39755826 PMCID: PMC11700186 DOI: 10.1038/s41598-025-85123-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 01/01/2025] [Indexed: 01/06/2025] Open
Abstract
Periodontitis, a common chronic inflammatory condition caused by bacteria, leads to loss of attachment, resorption of alveolar bone, and ultimately tooth loss. Therefore, reducing bacterial load and fostering alveolar bone regeneration are essential components in the treatment of periodontitis. In this study, we prepared smaller-sized Ag-Metal Organic Frameworks (Ag@MOF) and loaded with sodium alginate (Alg) hydrogel for periodontitis treatment. The results showed that Ag@MOF with a smaller particle size was prepared, approximately 5.5 nm. It successfully hindered the development of Escherichia coli (E.coli) and Staphylococcus aureus (S.aureus) by disrupting bacterial intracellular metabolism, generating ROS, compromising cell membrane integrity, and preventing biofilm formation. The Ag@MOF/Alg hydrogel displayed a characteristic interconnected three-dimensional structure, along with hydrophilic and antimicrobial effects. The Ag@MOF/Alg hydrogel we developed greatly enhances the invasion and migration capabilities of endothelial cells, as well as promoting angiogenesis. In mouse models of periodontitis induced by ligature, the extent of bone loss in the jaw and the presence of cells causing inflammation in the tissues surrounding the teeth were improved in the group treated with Ag@MOF/Alg hydrogel. The levels of TNF-α, IL-6, and IL-1β were significantly reduced compared to the control group. Conclusion: The experimental results prove that Ag@MOF/Alg hydrogel offers a new therapeutic approach for periodontitis.
Collapse
Affiliation(s)
- Jinlei Wang
- PKUCare Lu'an Hospital, 046204, Shanxi, China
| | - Ke Li
- 2nd Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121000, China
| | | |
Collapse
|
10
|
Martian PC, Tertis M, Leonte D, Hadade N, Cristea C, Crisan O. Cyclic peptides: A powerful instrument for advancing biomedical nanotechnologies and drug development. J Pharm Biomed Anal 2025; 252:116488. [PMID: 39388867 DOI: 10.1016/j.jpba.2024.116488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/05/2024] [Accepted: 09/26/2024] [Indexed: 10/12/2024]
Abstract
Cyclic peptides have emerged as an essential tool in the advancement of biomedical nanotechnologies, offering unique structural and functional advantages over linear peptides. This review article aims to highlight the roles of cyclic peptides in the development of biomedical fields, with a particular focus on their application in drug discovery and delivery. Cyclic peptides exhibit exceptional stability, bioavailability, and binding specificity, making them ideal candidates for therapeutic and diagnostic applications. We explore the synthesis and design strategies that enable the precise control of cyclic peptide structures, leading to enhanced performance in targeting specific cellular pathways. The article also highlights recent breakthroughs in the use of cyclic peptides for creating innovative drug delivery systems, including nanoparticle conjugates and peptide-drug conjugates, which have shown promise in improving the efficacy and safety profiles of existing traditional treatments. The integration of cyclic peptides into nanotechnological frameworks holds significant promise for addressing unmet medical needs, providing a foundation for future advancements in personalized medicine and targeted drug delivery.
Collapse
Affiliation(s)
- Paul Cristian Martian
- Department of Analytical Chemistry, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 4 Pasteur Street, Cluj-Napoca 400021, Romania
| | - Mihaela Tertis
- Department of Analytical Chemistry, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 4 Pasteur Street, Cluj-Napoca 400021, Romania
| | - Denisa Leonte
- Department of Organic Chemistry, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 28 Victor Babes Street, Cluj-Napoca 400023, Romania
| | - Niculina Hadade
- Department of Chemistry, Faculty of Chemistry and Chemical Engineering, Babes Bolyai University, 11 Arany Janos Street, Cluj-Napoca 400028, Romania
| | - Cecilia Cristea
- Department of Analytical Chemistry, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 4 Pasteur Street, Cluj-Napoca 400021, Romania.
| | - Ovidiu Crisan
- Department of Organic Chemistry, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 28 Victor Babes Street, Cluj-Napoca 400023, Romania
| |
Collapse
|
11
|
Li N, Zhang C, Xin G, Wang Y, Gao Y, Hu J, Wang Z, He X. Concanavalin-conjugated zinc-metal-organic framework drug for pH-controlled and targeted therapy of wound bacterial infection. Int J Biol Macromol 2024; 278:134637. [PMID: 39128734 DOI: 10.1016/j.ijbiomac.2024.134637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/01/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
Wounds are prone to infection which may be fatal to the life of the patient. The use of antibiotics is essential for managing bacterial infections in wounds, but the long-term use of high doses of antibiotics may lead to bacterial drug resistance and even to creation of superbacteria. Therefore, the development of targeted antimicrobial treatment strategies and the reduction in antibiotic usage are of utmost urgency. In this study, a multifunctional nanodrug delivery system (Cef-rhEGF@ZIF-8@ConA) for the treatment of bacteriostatic infection was synthesized through self-assembly of Zn2+, cefradine (Cef) and recombinant human epidermal growth factor (rhEGF), then conjugated with concanavalin (ConA), which undergoes pH-responsive degradation to release the drugs. First, ConA can specifically combine with bacteria and inhibit the rapid release of Zn2+ ions, thus achieving a long-acting antibacterial effect. Cef exerts its antibacterial effect by inhibiting the synthesis of bacterial membrane proteins. Finally, Zn2+ ions released from the Zn-metal-organic framework (MOF) demonstrate bacteriostatic properties by enhancing the permeability of the bacterial cell membrane. Furthermore, rhEGF upregulates angiogenesis-associated genes, thereby promoting angiogenesis, re-epithelialization and wound healing processes. The results showed that Cef-rhEGF@ZIF-8@ConA has good biocompatibility, with antibacterial efficacy against Staphylococcus aureus and Escherichia coli of 99.61 % and 99.75 %, respectively. These nanomaterials can inhibit the release of inflammatory cytokines and promote the release of anti-inflammatory cytokines, while also stimulating the proliferation of fibroblasts to facilitate wound healing. Taken together, the Cef-rhEGF@ZIF-8@ConA nanosystem is an excellent candidate in clinical therapeutics for bacteriostatic infection and wound healing.
Collapse
Affiliation(s)
- Na Li
- School of Life Science and Technology, Changchun University of Science and Technology, Changchun 130022, China
| | - Chong Zhang
- School of Life Science and Technology, Changchun University of Science and Technology, Changchun 130022, China
| | - Gaoli Xin
- School of Life Science and Technology, Changchun University of Science and Technology, Changchun 130022, China
| | - Yexing Wang
- School of Life Science and Technology, Changchun University of Science and Technology, Changchun 130022, China
| | - Yuwei Gao
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun 130122, China
| | - Junli Hu
- Key Laboratory of UV-Emitting Materials and Technology, Northeast Normal University, Ministry of Education, Changchun, Jilin 130024, China
| | - Zuobin Wang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China.
| | - Xiuxia He
- School of Life Science and Technology, Changchun University of Science and Technology, Changchun 130022, China; International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China.
| |
Collapse
|
12
|
Belay WY, Getachew M, Tegegne BA, Teffera ZH, Dagne A, Zeleke TK, Abebe RB, Gedif AA, Fenta A, Yirdaw G, Tilahun A, Aschale Y. Mechanism of antibacterial resistance, strategies and next-generation antimicrobials to contain antimicrobial resistance: a review. Front Pharmacol 2024; 15:1444781. [PMID: 39221153 PMCID: PMC11362070 DOI: 10.3389/fphar.2024.1444781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Antibacterial drug resistance poses a significant challenge to modern healthcare systems, threatening our ability to effectively treat bacterial infections. This review aims to provide a comprehensive overview of the types and mechanisms of antibacterial drug resistance. To achieve this aim, a thorough literature search was conducted to identify key studies and reviews on antibacterial resistance mechanisms, strategies and next-generation antimicrobials to contain antimicrobial resistance. In this review, types of resistance and major mechanisms of antibacterial resistance with examples including target site modifications, decreased influx, increased efflux pumps, and enzymatic inactivation of antibacterials has been discussed. Moreover, biofilm formation, and horizontal gene transfer methods has also been included. Furthermore, measures (interventions) taken to control antimicrobial resistance and next-generation antimicrobials have been discussed in detail. Overall, this review provides valuable insights into the diverse mechanisms employed by bacteria to resist the effects of antibacterial drugs, with the aim of informing future research and guiding antimicrobial stewardship efforts.
Collapse
Affiliation(s)
- Wubetu Yihunie Belay
- Department of Pharmacy, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Melese Getachew
- Department of Pharmacy, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Bantayehu Addis Tegegne
- Department of Pharmacy, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Zigale Hibstu Teffera
- Department of Medical Laboratory Science, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Abebe Dagne
- Department of Pharmacy, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Tirsit Ketsela Zeleke
- Department of Pharmacy, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Rahel Belete Abebe
- Department of clinical pharmacy, College of medicine and health sciences, University of Gondar, Gondar, Ethiopia
| | - Abebaw Abie Gedif
- Department of Pharmacy, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Abebe Fenta
- Department of Medical Laboratory Science, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Getasew Yirdaw
- Department of environmental health science, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Adane Tilahun
- Department of Medical Laboratory Science, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Yibeltal Aschale
- Department of Medical Laboratory Science, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| |
Collapse
|
13
|
Ansari M, Shahlaei M, Hosseinzadeh S, Moradi S. Recent advances in nanostructured delivery systems for vancomycin. Nanomedicine (Lond) 2024; 19:1931-1951. [PMID: 39143926 PMCID: PMC11457640 DOI: 10.1080/17435889.2024.2377063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/30/2024] [Indexed: 08/16/2024] Open
Abstract
Despite the development of new generations of antibiotics, vancomycin remained as a high-efficacy antibiotic for treating the infections caused by MRSA. Researchers have explored various nanoformulations, aiming to enhance the therapeutic efficacy of vancomycin. Such novel formulations improve the effectiveness of drug cargoes in treating bacterial infections and minimizing the risk of adverse effects. The vast of researches have focuses on enhancing the permeation ability of vancomycin through different biological barriers especially those of gastrointestinal tract. Increasing the drug loading and tuning the drug release from nanocarrier are other important goal for many conducted studies. This study reviews the newest nano-based formulations for vancomycin as a key antibiotic in treating hospitalized bacterial infections.
Collapse
Affiliation(s)
- Mohabbat Ansari
- Department of Tissue Engineering & Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Shahlaei
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Simzar Hosseinzadeh
- Department of Tissue Engineering & Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sajad Moradi
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
14
|
Gu Y, Du L, Wu Y, Qin J, Gu X, Guo Z, Li Y. Biomembrane-Modified Biomimetic Nanodrug Delivery Systems: Frontier Platforms for Cardiovascular Disease Treatment. Biomolecules 2024; 14:960. [PMID: 39199348 PMCID: PMC11352341 DOI: 10.3390/biom14080960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 09/01/2024] Open
Abstract
Cardiovascular diseases (CVDs) are one of the leading causes of death worldwide. Despite significant advances in current drug therapies, issues such as poor drug targeting and severe side effects persist. In recent years, nanomedicine has been extensively applied in the research and treatment of CVDs. Among these, biomembrane-modified biomimetic nanodrug delivery systems (BNDSs) have emerged as a research focus due to their unique biocompatibility and efficient drug delivery capabilities. By modifying with biological membranes, BNDSs can effectively reduce recognition and clearance by the immune system, enhance biocompatibility and circulation time in vivo, and improve drug targeting. This review first provides an overview of the classification and pathological mechanisms of CVDs, then systematically summarizes the research progress of BNDSs in the treatment of CVDs, discussing their design principles, functional characteristics, and clinical application potential. Finally, it highlights the issues and challenges faced in the clinical translation of BNDSs.
Collapse
Affiliation(s)
- Yunan Gu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (Y.G.); (L.D.); (Y.W.); (J.Q.); (X.G.)
| | - Lixin Du
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (Y.G.); (L.D.); (Y.W.); (J.Q.); (X.G.)
| | - Yuxin Wu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (Y.G.); (L.D.); (Y.W.); (J.Q.); (X.G.)
| | - Juan Qin
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (Y.G.); (L.D.); (Y.W.); (J.Q.); (X.G.)
| | - Xiang Gu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (Y.G.); (L.D.); (Y.W.); (J.Q.); (X.G.)
| | - Zhihua Guo
- School of Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, China;
| | - Ya Li
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (Y.G.); (L.D.); (Y.W.); (J.Q.); (X.G.)
| |
Collapse
|
15
|
Liu H, Cai G, Yuan S, Zhou X, Gui R, Huang R. Platelet Membrane-Camouflaged Silver Metal-Organic Framework Biomimetic Nanoparticles for the Treatment of Triple-Negative Breast Cancer. Mol Pharm 2024; 21:3577-3590. [PMID: 38857525 DOI: 10.1021/acs.molpharmaceut.4c00307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Triple-negative breast cancer (TNBC) is characterized by high malignancy and limited treatment options. Given the pressing need for more effective treatments for TNBC, this study aimed to develop platelet membrane (PM)-camouflaged silver metal-organic framework nanoparticles (PM@MOF-Ag NPs), a biomimetic nanodrug. PM@MOF-Ag NP construction involved the utilization of 2-methylimidazole and silver nitrate to prepare silver metal-organic framework (MOF-Ag) NPs. The PM@MOF-Ag NPs, due to their camouflage, possess excellent blood compatibility, immune escape ability, and a strong affinity for 4T1 tumor cells. This enhances their circulation time in vivo and promotes the aggregation of PM@MOF-Ag NPs at the 4T1 tumor site. Importantly, PM@MOF-Ag NPs demonstrated promising antitumor activity in vitro and in vivo. We further revealed that PM@MOF-Ag NPs induced tumor cell death by overproducing reactive oxygen species and promoting cell apoptosis. Moreover, PM@MOF-Ag NPs enhanced apoptosis by upregulating the ratios of Bax/Bcl-2 and cleaved caspase3/pro-caspase3. Notably, PM@MOF-Ag NPs exhibited no significant organ toxicity, whereas the administration of MOF-Ag NPs resulted in liver inflammation compared to the control group.
Collapse
Affiliation(s)
- Haiting Liu
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P. R. China
| | - Guangqing Cai
- Department of Orthopedics, Changsha Hospital of Traditional Chinese Medicine, Changsha Eighth Hospital, Changsha, Hunan 410013, P. R. China
| | - Shuai Yuan
- Guangzhou Customs District Technology Center, Guangzhou 510700, China
| | - Xionghui Zhou
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P. R. China
| | - Rong Gui
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P. R. China
| | - Rong Huang
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P. R. China
| |
Collapse
|
16
|
Hou Y, Zhu C, Ban G, Shen Z, Liang Y, Chen K, Wang C, Shi H. Advancements and Challenges in the Application of Metal-Organic Framework (MOF) Nanocomposites for Tumor Diagnosis and Treatment. Int J Nanomedicine 2024; 19:6295-6317. [PMID: 38919774 PMCID: PMC11198007 DOI: 10.2147/ijn.s463144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/21/2024] [Indexed: 06/27/2024] Open
Abstract
Nanoscale metal-organic frameworks (MOFs) offer high biocompatibility, nanomaterial permeability, substantial specific surface area, and well-defined pores. These properties make MOFs valuable in biomedical applications, including biological targeting and drug delivery. They also play a critical role in tumor diagnosis and treatment, including tumor cell targeting, identification, imaging, and therapeutic methods such as drug delivery, photothermal effects, photodynamic therapy, and immunogenic cell death. The diversity of MOFs with different metal centers, organics, and surface modifications underscores their multifaceted contributions to tumor research and treatment. This review is a summary of these roles and mechanisms. The final section of this review summarizes the current state of the field and discusses prospects that may bring MOFs closer to pharmaceutical applications.
Collapse
Affiliation(s)
- Yingze Hou
- School of Intelligent Medical Engineering, Sanquan College of Xinxiang Medical University, Xinxiang, 453003, People’s Republic of China
- Clinical Medical College, Sanquan College of Xinxiang Medical University, Xinxiang, 453003, People’s Republic of China
| | - Can Zhu
- Department of Urology, The Second Clinical Medical College of Anhui Medical University, Hefei, 230032, People’s Republic of China
| | - Ge Ban
- School of Intelligent Medical Engineering, Sanquan College of Xinxiang Medical University, Xinxiang, 453003, People’s Republic of China
| | - Zhean Shen
- Heart Center, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, 310000, People’s Republic of China
| | - Yingbing Liang
- Department of Chemistry and Biotechnology, Graduate School of Engineering Tottori University Koyama-Minami 4-101, Tottori, 680-8552, Japan
| | - Kun Chen
- School of Intelligent Medical Engineering, Sanquan College of Xinxiang Medical University, Xinxiang, 453003, People’s Republic of China
| | - Chenbo Wang
- School of Intelligent Medical Engineering, Sanquan College of Xinxiang Medical University, Xinxiang, 453003, People’s Republic of China
| | - Heng Shi
- Heart Center, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, 310000, People’s Republic of China
| |
Collapse
|
17
|
Gao R, Lin P, Fang Z, Yang W, Gao W, Wang F, Pan X, Yu W. Cell-derived biomimetic nanoparticles for the targeted therapy of ALI/ARDS. Drug Deliv Transl Res 2024; 14:1432-1457. [PMID: 38117405 DOI: 10.1007/s13346-023-01494-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2023] [Indexed: 12/21/2023]
Abstract
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are common clinical critical diseases with high morbidity and mortality. Especially since the COVID-19 outbreak, the mortality rates of critically ill patients with ARDS can be as high as 60%. Therefore, this problem has become a matter of concern to respiratory critical care. To date, the main clinical measures for ALI/ARDS are mechanical ventilation and drug therapy. Although ventilation treatment reduces mortality, it increases the risk of hyperxemia, and drug treatment lacks safe and effective delivery methods. Therefore, novel therapeutic strategies for ALI/ARDS are urgently needed. Developments in nanotechnology have allowed the construction of a safe, efficient, precise, and controllable drug delivery system. However, problems still encounter in the treatment of ALI/ARDS, such as the toxicity, poor targeting ability, and immunogenicity of nanomaterials. Cell-derived biomimetic nanodelivery drug systems have the advantages of low toxicity, long circulation, high targeting, and high bioavailability and show great therapeutic promises for ALI/ARDS owing to their acquired cellular biological features and some functions. This paper reviews ALI/ARDS treatments based on cell membrane biomimetic technology and extracellular vesicle biomimetic technology, aiming to achieve a significant breakthrough in ALI/ARDS treatments.
Collapse
Affiliation(s)
- Rui Gao
- School of Pharmacy, Hangzhou Medical College, Hangzhou, 310013, China
| | - Peihong Lin
- School of Pharmacy, Hangzhou Medical College, Hangzhou, 310013, China
| | - Zhengyu Fang
- School of Pharmacy, Hangzhou Medical College, Hangzhou, 310013, China
| | - Wenjing Yang
- School of Pharmacy, Hangzhou Medical College, Hangzhou, 310013, China
| | - Wenyan Gao
- School of Pharmacy, Hangzhou Medical College, Hangzhou, 310013, China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, 310013, China
| | - Fangqian Wang
- School of Pharmacy, Hangzhou Medical College, Hangzhou, 310013, China
| | - Xuwang Pan
- Department of Pharmaceutical Preparation, Affiliated Hangzhou Xixi Hospital, Zhejiang University School of Medicine, Hangzhou, 310013, China.
| | - Wenying Yu
- School of Pharmacy, Hangzhou Medical College, Hangzhou, 310013, China.
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, 310013, China.
| |
Collapse
|
18
|
Jia Y, Zhang L, Xu J, Xiang L. Recent advances in cell membrane camouflaged nanotherapeutics for the treatment of bacterial infection. Biomed Mater 2024; 19:042006. [PMID: 38697197 DOI: 10.1088/1748-605x/ad46d4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 05/01/2024] [Indexed: 05/04/2024]
Abstract
Infectious diseases caused by bacterial infections are common in clinical practice. Cell membrane coating nanotechnology represents a pioneering approach for the delivery of therapeutic agents without being cleared by the immune system in the meantime. And the mechanism of infection treatment should be divided into two parts: suppression of pathogenic bacteria and suppression of excessive immune response. The membrane-coated nanoparticles exert anti-bacterial function by neutralizing exotoxins and endotoxins, and some other bacterial proteins. Inflammation, the second procedure of bacterial infection, can also be suppressed through targeting the inflamed site, neutralization of toxins, and the suppression of pro-inflammatory cytokines. And platelet membrane can affect the complement process to suppress inflammation. Membrane-coated nanoparticles treat bacterial infections through the combined action of membranes and nanoparticles, and diagnose by imaging, forming a theranostic system. Several strategies have been discovered to enhance the anti-bacterial/anti-inflammatory capability, such as synthesizing the material through electroporation, pretreating with the corresponding pathogen, membrane hybridization, or incorporating with genetic modification, lipid insertion, and click chemistry. Here we aim to provide a comprehensive overview of the current knowledge regarding the application of membrane-coated nanoparticles in preventing bacterial infections as well as addressing existing uncertainties and misconceptions.
Collapse
Affiliation(s)
- Yinan Jia
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Li Zhang
- Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Junhua Xu
- Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Lin Xiang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| |
Collapse
|
19
|
Huang D, Wang X, Wang W, Li J, Zhang X, Xia B. Cell-membrane engineering strategies for clinic-guided design of nanomedicine. Biomater Sci 2024; 12:2865-2884. [PMID: 38686665 DOI: 10.1039/d3bm02114a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Cells are the fundamental units of life. The cell membrane primarily composed of two layers of phospholipids (a bilayer) structurally defines the boundary of a cell, which can protect its interior from external disturbances and also selectively exchange substances and conduct signals from the extracellular environment. The complexity and particularity of transmembrane proteins provide the foundation for versatile cellular functions. Nanomedicine as an emerging therapeutic strategy holds tremendous potential in the healthcare field. However, it is susceptible to recognition and clearance by the immune system. To overcome this bottleneck, the technology of cell membrane coating has been extensively used in nanomedicines for their enhanced therapeutic efficacy, attributed to the favorable fluidity and biocompatibility of cell membranes with various membrane-anchored proteins. Meanwhile, some engineering strategies of cell membranes through various chemical, physical and biological ways have been progressively developed to enable their versatile therapeutic functions against complex diseases. In this review, we summarized the potential clinical applications of four typical cell membranes, elucidated their underlying therapeutic mechanisms, and outlined their current engineering approaches. In addition, we further discussed the limitation of this technology of cell membrane coating in clinical applications, and possible solutions to address these challenges.
Collapse
Affiliation(s)
- Di Huang
- College of Science, State Key Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing 210037, P. R. China.
| | - Xiaoyu Wang
- College of Science, State Key Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing 210037, P. R. China.
| | - Wentao Wang
- College of Science, State Key Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing 210037, P. R. China.
| | - Jiachen Li
- Department of Biomedical Engineering, W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen/University of Groningen, Ant. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Xiaomei Zhang
- College of Science, State Key Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing 210037, P. R. China.
| | - Bing Xia
- College of Science, State Key Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing 210037, P. R. China.
- Department of Geriatric Oncology, Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, P. R. China
| |
Collapse
|
20
|
Zhu Y, Xu L, Kang Y, Cheng Q, He Y, Ji X. Platelet-derived drug delivery systems: Pioneering treatment for cancer, cardiovascular diseases, infectious diseases, and beyond. Biomaterials 2024; 306:122478. [PMID: 38266348 DOI: 10.1016/j.biomaterials.2024.122478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/14/2024] [Accepted: 01/20/2024] [Indexed: 01/26/2024]
Abstract
Platelets play a critical role as circulating cells in the human body and contribute to essential physiological processes such as blood clotting, hemostasis, vascular repair, and thrombus formation. Currently, platelets are extensively employed in the development of innovative biomimetic drug delivery systems, offering significant enhancements in circulation time, biocompatibility, and targeted delivery efficiency compared to conventional drug delivery approaches. Leveraging the unique physiological functions of platelets, these platelet-derived drug delivery systems (DDSs) hold great promise for the treatment of diverse diseases, including cancer, cardiovascular diseases, infectious diseases, wound healing and other diseases. This review primarily focuses on the design and characteristics of existing platelet-derived DDSs, including their preparation and characterization methods. Furthermore, this review comprehensively outlines the applications of these materials across various diseases, offering a holistic understanding of their therapeutic potential. This study aimed to provide a comprehensive overview of the potential value of these materials in clinical treatment, serving as a valuable reference for the advancement of novel platelet-derived DDSs and their broader utilization in the field of disease treatment.
Collapse
Affiliation(s)
- Yalan Zhu
- Department of Pharmacy, Jinhua Municipal Central Hospital, Jinhua, Zhejiang, 321000, China
| | - Lingling Xu
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, 300072, China
| | - Yong Kang
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, 300072, China
| | - Qinzhen Cheng
- Department of Pharmacy, Jinhua Municipal Central Hospital, Jinhua, Zhejiang, 321000, China.
| | - Yiling He
- Department of Pharmacy, Jinhua Municipal Central Hospital, Jinhua, Zhejiang, 321000, China.
| | - Xiaoyuan Ji
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, 300072, China; Medical College, Linyi University, Linyi, 276000, China.
| |
Collapse
|
21
|
Guo L, Kong W, Che Y, Liu C, Zhang S, Liu H, Tang Y, Yang X, Zhang J, Xu C. Research progress on antibacterial applications of metal-organic frameworks and their biomacromolecule composites. Int J Biol Macromol 2024; 261:129799. [PMID: 38296133 DOI: 10.1016/j.ijbiomac.2024.129799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/03/2024]
Abstract
With the extensive use of antibiotics, resulting in increasingly serious problems of bacterial resistance, antimicrobial therapy has become a global concern. Metal-organic frameworks (MOFs) are low-density porous coordination materials composed of metal ions and organic ligands, which can form composite materials with biomacromolecules such as proteins and polysaccharides. In recent years, MOFs and their derivatives have been widely used in the antibacterial field as efficient antibacterial agents. This review offers a detailed summary of the antibacterial applications of MOFs and their composites, and the different synthesis methods and antibacterial mechanisms of MOFs and MOF-based composites are briefly introduced. Finally, the challenges and prospects of MOFs-based antibacterial materials in the rapidly developing medical field were briefly discussed. We hope this review will provide new strategies for the medical application of MOFs-based antibacterial materials.
Collapse
Affiliation(s)
- Lei Guo
- College of Basic Medical Sciences, Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, Jilin, China
| | - Wei Kong
- Radiation Medicine, School of Public Health, Jilin University, Changchun 130021, Jilin, China
| | - Yilin Che
- Radiation Medicine, School of Public Health, Jilin University, Changchun 130021, Jilin, China
| | - Chang Liu
- College of Basic Medical Sciences, Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, Jilin, China; Department of Neurology and Neuroscience Center, First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Shichen Zhang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun 130021, Jilin, China
| | - Heshi Liu
- Department of Gastrocolorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Yixin Tang
- College of Basic Medical Sciences, Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, Jilin, China
| | - Xi Yang
- College of Basic Medical Sciences, Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, Jilin, China
| | - Jizhou Zhang
- College of Basic Medical Sciences, Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, Jilin, China
| | - Caina Xu
- College of Basic Medical Sciences, Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, Jilin, China.
| |
Collapse
|
22
|
Xing F, Xu J, Zhou Y, Yu P, Zhe M, Xiang Z, Duan X, Ritz U. Recent advances in metal-organic frameworks for stimuli-responsive drug delivery. NANOSCALE 2024; 16:4434-4483. [PMID: 38305732 DOI: 10.1039/d3nr05776c] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
After entering the human body, drugs for treating diseases, which are prone to delivery and release in an uncontrolled manner, are affected by various factors. Based on this, many researchers utilize various microenvironmental changes encountered during drug delivery to trigger drug release and have proposed stimuli-responsive drug delivery systems. In recent years, metal-organic frameworks (MOFs) have become promising stimuli-responsive agents to release the loaded therapeutic agents at the target site to achieve more precise drug delivery due to their high drug loading, excellent biocompatibility, and high stimuli-responsiveness. The MOF-based stimuli-responsive systems can respond to various stimuli under pathological conditions at the site of the lesion, releasing the loaded therapeutic agent in a controlled manner, and improving the accuracy and safety of drug delivery. Due to the changes in different physical and chemical factors in the pathological process of diseases, the construction of stimuli-responsive systems based on MOFs has become a new direction in drug delivery and controlled release. Based on the background of the rapidly increasing attention to MOFs applied in drug delivery, we aim to review various MOF-based stimuli-responsive drug delivery systems and their response mechanisms to various stimuli. In addition, the current challenges and future perspectives of MOF-based stimuli-responsive drug delivery systems are also discussed in this review.
Collapse
Affiliation(s)
- Fei Xing
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China.
| | - Jiawei Xu
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China.
| | - Yuxi Zhou
- Department of Periodontology, Justus-Liebig-University of Giessen, Germany
| | - Peiyun Yu
- LIMES Institute, Department of Molecular Brain Physiology and Behavior, University of Bonn, Carl-Troll-Str. 31, 53115 Bonn, Germany
| | - Man Zhe
- Animal Experiment Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Zhou Xiang
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China.
| | - Xin Duan
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China.
- Department of Orthopedic Surgery, The Fifth People's Hospital of Sichuan Province, Chengdu, China
| | - Ulrike Ritz
- Department of Orthopaedics and Traumatology, Biomatics Group, University Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany.
| |
Collapse
|
23
|
Tavassoli M, Khezerlou A, Sani MA, Hashemi M, Firoozy S, Ehsani A, Khodaiyan F, Adibi S, Noori SMA, McClements DJ. Methylcellulose/chitosan nanofiber-based composites doped with lactoferrin-loaded Ag-MOF nanoparticles for the preservation of fresh apple. Int J Biol Macromol 2024; 259:129182. [PMID: 38176499 DOI: 10.1016/j.ijbiomac.2023.129182] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 12/14/2023] [Accepted: 12/30/2023] [Indexed: 01/06/2024]
Abstract
Increasing demand for high-quality fresh fruits and vegetables has led to the development of innovative active packaging materials that exhibit controlled release of antimicrobial/antioxidant agents. In this study, composite biopolymer films consisting of methylcellulose (MC) and chitosan nanofibers (ChNF) were fabricated, which contained lactoferrin (LAC)-loaded silver-metal organic framework (Ag-MOF) nanoparticles. The results indicated that the nanoparticles were uniformly distributed throughout the biopolymer films, which led to improvements in tensile strength (56.1 ± 3.2 MPa), thermal stability, water solubility, swelling index, water vapor barrier properties (from 2.2 ± 2.1 to 1.9 ± 1.9 × 10-11 g. m/m2. s. Pa), and UV-shielding effects. The Ag-MOF-LAC2% films also exhibited strong and long-lasting antibacterial activity against E. coli (19.8 ± 5.2 mm) and S. aureus (20.1 ± 3.2 mm), which was attributed to the slow release of antimicrobial LAC from the films. The composite films were shown to maintain the fresh appearance of apples for at least seven days, which was attributed to their antimicrobial and antioxidant activities. Consequently, these composite films have the potential in the assembly of innovative active packaging materials for protecting fresh fruits and vegetables. However, further work is required to ensure their safety and economic viability.
Collapse
Affiliation(s)
- Milad Tavassoli
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Student Research Committee, Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Arezou Khezerlou
- Student Research Committee, Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahmood Alizadeh Sani
- Student's Scientific Research Center, Department of Food Safety and Hygiene, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hashemi
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Solmaz Firoozy
- Department of Biological Sciences, Faculty of Basic Sciences, Higher Education Institute of Rab Rashid, Tabriz, Iran
| | - Ali Ehsani
- Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Faramarz Khodaiyan
- Bioprocessing and Biodetection Laboratory, Department of Food Science and Engineering, University of Tehran, Karaj, Iran
| | - Shiva Adibi
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyyed Mohammad Ali Noori
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | | |
Collapse
|
24
|
Zhang Y, Li J, Jing Q, Chen Z, Wang K, Sun C. An Erythrocyte Membrane-Derived Nanosystem for Efficient Reversal of Endothelial Injury in Sepsis. Adv Healthc Mater 2024; 13:e2302320. [PMID: 37883686 DOI: 10.1002/adhm.202302320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/19/2023] [Indexed: 10/28/2023]
Abstract
Sepsis is caused by a disordered host immune in response to infection and endothelial cells perform a crucial role in boosting immunity reaction in the pathophysiology of sepsis and septic organ failure. The aim of this study is to construct a novel erythrocyte membrane-derived nanosystems to reverse endothelial damage in sepsis. Herein, an innovative nanometer calcium metal-organic framework (Ca-MOF) is generated for the first time by using chelidonic acid as a ligand and calcium chloride as an ion donor for anti-inflammation. Then, zoliflodacin is loaded into Ca-MOF (CMZ) to sterilize and nanoscale erythrocyte membrane vesicles are prepared by modification with a γ3 peptide on the surface (γ3-RM) for precise targeting. Finally, γ3-RM camouflages the nanocore CMZ, to form novel erythrocyte membrane-camouflaged nanoparticle γ3-RCMZ. The superior performance of novel nanosystem results from its suitable biocompatibility, nontoxicity, specific targeting, and anti-inflammatory and bactericidal effects. Its anti-inflammatory mechanism mainly involves inhibiting the Caspase1-nuclear factor kappa-B (Caspase1-NF-κB) pathway and oxidative stress reduction to alleviate endothelial damage. Moreover, the findings have revealed for the first time that the bactericidal drug zoliflodacin also has anti-inflammatory effects in vivo and in vitro. Therefore, the novel nanosystem (γ3-RCMZ) provides a new nanotherapy strategy for sepsis treatment.
Collapse
Affiliation(s)
- Yao Zhang
- Department of Emergency, The Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Jian Li
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Qi Jing
- Department of Emergency, The Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Ziying Chen
- Department of Emergency, The Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Kai Wang
- Department of Emergency, The Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Chuanzheng Sun
- Department of Emergency, The Third Xiangya Hospital of Central South University, Changsha, 410013, China
| |
Collapse
|
25
|
Liu H, Huang Z, Chen H, Zhang Y, Yu P, Hu P, Zhang X, Cao J, Zhou T. A potential strategy against clinical carbapenem-resistant Enterobacteriaceae: antimicrobial activity study of sweetener-decorated gold nanoparticles in vitro and in vivo. J Nanobiotechnology 2023; 21:409. [PMID: 37932843 PMCID: PMC10626710 DOI: 10.1186/s12951-023-02149-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/09/2023] [Indexed: 11/08/2023] Open
Abstract
BACKGROUND Carbapenem-resistant Enterobacteriaceae (CRE) present substantial challenges to clinical intervention, necessitating the formulation of novel antimicrobial strategies to counteract them. Nanomaterials offer a distinctive avenue for eradicating bacteria by employing mechanisms divergent from traditional antibiotic resistance pathways and exhibiting reduced susceptibility to drug resistance development. Non-caloric artificial sweeteners, commonly utilized in the food sector, such as saccharin, sucralose, acesulfame, and aspartame, possess structures amenable to nanomaterial formation. In this investigation, we synthesized gold nanoparticles decorated with non-caloric artificial sweeteners and evaluated their antimicrobial efficacy against clinical CRE strains. RESULTS Among these, gold nanoparticles decorated with aspartame (ASP_Au NPs) exhibited the most potent antimicrobial effect, displaying minimum inhibitory concentrations ranging from 4 to 16 µg/mL. As a result, ASP_Au NPs were chosen for further experimentation. Elucidation of the antimicrobial mechanism unveiled that ASP_Au NPs substantially elevated bacterial reactive oxygen species (ROS) levels, which dissipated upon ROS scavenger treatment, indicating ROS accumulation within bacteria as the fundamental antimicrobial modality. Furthermore, findings from membrane permeability assessments suggested that ASP_Au NPs may represent a secondary antimicrobial modality via enhancing inner membrane permeability. In addition, experiments involving crystal violet and confocal live/dead staining demonstrated effective suppression of bacterial biofilm formation by ASP_Au NPs. Moreover, ASP_Au NPs demonstrated notable efficacy in the treatment of Galleria mellonella bacterial infection and acute abdominal infection in mice, concurrently mitigating the organism's inflammatory response. Crucially, evaluation of in vivo safety and biocompatibility established that ASP_Au NPs exhibited negligible toxicity at bactericidal concentrations. CONCLUSIONS Our results demonstrated that ASP_Au NPs exhibit promise as innovative antimicrobial agents against clinical CRE.
Collapse
Affiliation(s)
- Haifeng Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Zeyu Huang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Huanchang Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Ying Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Pingting Yu
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Panjie Hu
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaotuan Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Jianming Cao
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang, China.
| | - Tieli Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang, China.
| |
Collapse
|
26
|
Zhang S, Li J, Yan L, You Y, Zhao F, Cheng J, Yang L, Sun Y, Chang Q, Liu R, Li Y. Zeolitic Imidazolate Framework-8 (ZIF-8) as a Drug Delivery Vehicle for the Transport and Release of Telomerase Inhibitor BIBR 1532. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13111779. [PMID: 37299682 DOI: 10.3390/nano13111779] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 05/26/2023] [Accepted: 05/28/2023] [Indexed: 06/12/2023]
Abstract
Telomerase is constitutively overexpressed in the majority of human cancers and telomerase inhibition provides a promising broad-spectrum anticancer therapeutic strategy. BIBR 1532 is a well-known synthetic telomerase inhibitor that blocks the enzymatic activity of hTERT, the catalytic subunit of telomerase. However, water insolubility of BIBR 1532 leads to low cellular uptake and inadequate delivery and thus, limits its anti-tumor effects. Zeolitic imidazolate framework-8 (ZIF-8) is considered as an attractive drug delivery vehicle for improved transport, release and anti-tumor effects of BIBR 1532. Herein, ZIF-8 and BIBR 1532@ZIF-8 were synthesized, respectively, and the physicochemical characterizations confirmed the successful encapsulation of BIBR 1532 in ZIF-8 coupled with an improved stability of BIBR 1532. ZIF-8 could alter the permeability of lysosomal membrane probably by the imidazole ring-dependent protonation. Moreover, ZIF-8 encapsulation facilitated the cellular uptake and release of BIBR 1532 with more accumulation in the nucleus. BIBR 1532 encapsulation with ZIF-8 triggered a more obvious growth inhibition of cancer cells as compared with free BIBR 1532. A more potent inhibition on hTERT mRNA expression, aggravated G0/G1 arrest accompanied with an increased cellular senescence were detected in BIBR 1532@ZIF-8-treated cancer cells. Our work has provided preliminary information on improving the transport, release and efficacy of water-insoluble small molecule drugs by using ZIF-8 as a delivery vehicle.
Collapse
Affiliation(s)
- Shunyu Zhang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing 210000, China
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Jinxia Li
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Liang Yan
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Yue You
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Feng Zhao
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Jixing Cheng
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing 210000, China
| | - Limin Yang
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Yanqi Sun
- Department of Prevention and Health Care, Rizhao 276800, China
| | - Qingchao Chang
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Ru Liu
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Yunhui Li
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing 210000, China
| |
Collapse
|
27
|
Lu L, Quan L, Li J, Yuan J, Nie X, Huang X, Dong H, Su Y, Huang Y, Kou Q, Liu L, Liu H, Zhou X, Gui R, Gu L. Bioengineered stem cell membrane functionalized nanoparticles combine anti-inflammatory and antimicrobial properties for sepsis treatment. J Nanobiotechnology 2023; 21:170. [PMID: 37237294 DOI: 10.1186/s12951-023-01913-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND Sepsis is a syndrome of physiological, pathological and biochemical abnormalities caused by infection. Although the mortality rate is lower than before, many survivors have persistent infection, which means sepsis calls for new treatment. After infection, inflammatory mediators were largely released into the blood, leading to multiple organ dysfunction. Therefore, anti-infection and anti-inflammation are critical issues in sepsis management. RESULTS Here, we successfully constructed a novel nanometer drug loading system for sepsis management, FZ/MER-AgMOF@Bm. The nanoparticles were modified with LPS-treated bone marrow mesenchymal stem cell (BMSC) membrane, and silver metal organic framework (AgMOF) was used as the nanocore for loading FPS-ZM1 and meropenem which was delivery to the infectious microenvironments (IMEs) to exert dual anti-inflammatory and antibacterial effects. FZ/MER-AgMOF@Bm effectively alleviated excessive inflammatory response and eliminated bacteria. FZ/MER-AgMOF@Bm also played an anti-inflammatory role by promoting the polarization of macrophages to M2. When sepsis induced by cecal ligation and puncture (CLP) challenged mice was treated, FZ/MER-AgMOF@Bm could not only reduce the levels of pro-inflammatory factors and lung injury, but also help to improve hypothermia caused by septic shock and prolong survival time. CONCLUSIONS Together, the nanoparticles played a role in combined anti-inflammatory and antimicrobial properties, alleviating cytokine storm and protecting vital organ functions, could be a potential new strategy for sepsis management.
Collapse
Affiliation(s)
- Lu Lu
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Lingli Quan
- Department of Pulmonary and Critical Care Medicine, The Affiliated Zhuzhou Hospital of Xiangya Medical College, Central South University, Zhuzhou, 412007, China
| | - Jian Li
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Junbin Yuan
- Department of Urology, The Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Xinmin Nie
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Xueyuan Huang
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Hang Dong
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Yanrong Su
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Yufen Huang
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Qingjie Kou
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Leping Liu
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Haiting Liu
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Xionghui Zhou
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Rong Gui
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
| | - Lan Gu
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
| |
Collapse
|
28
|
Andrade S, Ramalho MJ, Santos SB, Melo LDR, Santos RS, Guimarães N, Azevedo NF, Loureiro JA, Pereira MC. Fighting Methicillin-Resistant Staphylococcus aureus with Targeted Nanoparticles. Int J Mol Sci 2023; 24:ijms24109030. [PMID: 37240376 DOI: 10.3390/ijms24109030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/03/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Antimicrobial resistance (AMR) is considered one of the greatest threats to global health. Methicillin-resistant Staphylococcus aureus (MRSA) remains at the core of this threat, accounting for about 90% of S. aureus infections widespread in the community and hospital settings. In recent years, the use of nanoparticles (NPs) has emerged as a promising strategy to treat MRSA infections. NPs can act directly as antibacterial agents via antibiotic-independent activity and/or serve as drug delivery systems (DDSs), releasing loaded antibiotics. Nonetheless, directing NPs to the infection site is fundamental for effective MRSA treatment so that highly concentrated therapeutic agents are delivered to the infection site while directly reducing the toxicity to healthy human cells. This leads to decreased AMR emergence and less disturbance of the individual's healthy microbiota. Hence, this review compiles and discusses the scientific evidence related to targeted NPs developed for MRSA treatment.
Collapse
Affiliation(s)
- Stéphanie Andrade
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Maria J Ramalho
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Sílvio B Santos
- CEB-Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Luís D R Melo
- CEB-Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
- LABBELS-Associate Laboratory, University of Minho, 4710-057 Braga, Portugal
| | - Rita S Santos
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Nuno Guimarães
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Nuno F Azevedo
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Joana A Loureiro
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Maria C Pereira
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|
29
|
Qi X, Shen N, Al Othman A, Mezentsev A, Permyakova A, Yu Z, Lepoitevin M, Serre C, Durymanov M. Metal-Organic Framework-Based Nanomedicines for the Treatment of Intracellular Bacterial Infections. Pharmaceutics 2023; 15:1521. [PMID: 37242762 PMCID: PMC10220673 DOI: 10.3390/pharmaceutics15051521] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Metal-organic frameworks (MOFs) are a highly versatile class of ordered porous materials, which hold great promise for different biomedical applications, including antibacterial therapy. In light of the antibacterial effects, these nanomaterials can be attractive for several reasons. First, MOFs exhibit a high loading capacity for numerous antibacterial drugs, including antibiotics, photosensitizers, and/or photothermal molecules. The inherent micro- or meso-porosity of MOF structures enables their use as nanocarriers for simultaneous encapsulation of multiple drugs resulting in a combined therapeutic effect. In addition to being encapsulated into an MOF's pores, antibacterial agents can sometimes be directly incorporated into an MOF skeleton as organic linkers. Next, MOFs contain coordinated metal ions in their structure. Incorporation of Fe2/3+, Cu2+, Zn2+, Co2+, and Ag+ can significantly increase the innate cytotoxicity of these materials for bacteria and cause a synergistic effect. Finally, abundance of functional groups enables modifying the external surface of MOF particles with stealth coating and ligand moieties for improved drug delivery. To date, there are a number of MOF-based nanomedicines available for the treatment of bacterial infections. This review is focused on biomedical consideration of MOF nano-formulations designed for the therapy of intracellular infections such as Staphylococcus aureus, Mycobacterium tuberculosis, and Chlamydia trachomatis. Increasing knowledge about the ability of MOF nanoparticles to accumulate in a pathogen intracellular niche in the host cells provides an excellent opportunity to use MOF-based nanomedicines for the eradication of persistent infections. Here, we discuss advantages and current limitations of MOFs, their clinical significance, and their prospects for the treatment of the mentioned infections.
Collapse
Affiliation(s)
- Xiaoli Qi
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | - Ningfei Shen
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | - Aya Al Othman
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | | | | | - Zhihao Yu
- Institute of Porous Materials from Paris (IMAP), Ecole Normale Supérieure, ESPCI Paris, CNRS, PSL University, 75006 Paris, France
| | - Mathilde Lepoitevin
- Institute of Porous Materials from Paris (IMAP), Ecole Normale Supérieure, ESPCI Paris, CNRS, PSL University, 75006 Paris, France
| | - Christian Serre
- Institute of Porous Materials from Paris (IMAP), Ecole Normale Supérieure, ESPCI Paris, CNRS, PSL University, 75006 Paris, France
| | - Mikhail Durymanov
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
- Faculty of Chemistry, Lomonosov Moscow State University, 119234 Moscow, Russia
| |
Collapse
|
30
|
Huang Y, Kou Q, Su Y, Lu L, Li X, Jiang H, Gui R, Huang R, Nie X, Li J. Combination therapy based on dual-target biomimetic nano-delivery system for overcoming cisplatin resistance in hepatocellular carcinoma. J Nanobiotechnology 2023; 21:89. [PMID: 36918874 PMCID: PMC10015699 DOI: 10.1186/s12951-023-01840-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/06/2023] [Indexed: 03/16/2023] Open
Abstract
Strategies to overcome toxicity and drug resistance caused by chemotherapeutic drugs for targeted therapy against hepatocellular carcinoma (HCC) are urgently needed. Previous studies revealed that high oxidored-nitro domain-containing protein 1(NOR1) expression in HCC was associated with cisplatin (DDP) resistance. Herein, a novel dual-targeting nanocarrier system AR-NADR was generated for the treatment of DDP resistance in HCC. The core of the nanocarrier system is the metal-organic frameworks (MOF) modified with nuclear location sequence (NLS), which loading with DDP and NOR1 shRNA (R). The shell is an A54 peptide inserted into the erythrocyte membrane (AR). Our results show that AR-NADR efficiently internalized by tumor cells due to its specific binding to the A54 receptors that are abundantly expressed on the surface of HCC cells and NLS peptide-mediated nuclear entry. Additionally, DDP is more likely to be released due to the degradation of Ag-MOF in the acidic tumor microenvironment. Moreover, by acting as a vector for gene delivery, AR-NADR effectively inhibits tumor drug resistance by suppressing the expression of NOR1, which induces intracellular DDP accumulation and makes cells sensitive to DDP. Finally, the anti-HCC efficacy and mechanisms of AR-NADR were systematically elucidated by a HepG2/DDP cell model as well as a tumor model. Therefore, AR-NADR constitutes a key strategy to achieve excellent gene silencing and antitumor efficacy, which provides effective gene therapy and precise treatment strategies for cisplatin resistance in HCC.
Collapse
Affiliation(s)
- Yufen Huang
- Department of Laboratory Medicine, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Qinjie Kou
- Department of Laboratory Medicine, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Yanrong Su
- Department of Laboratory Medicine, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Lu Lu
- Department of Blood Transfusion, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Xisheng Li
- Department of Laboratory Medicine, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Haiye Jiang
- Department of Laboratory Medicine, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Rong Gui
- Department of Blood Transfusion, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Rong Huang
- Department of Blood Transfusion, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Xinmin Nie
- Department of Laboratory Medicine, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China. .,Hunan Engineering Technology Research Center of Optoelectronic Health Detection, Changsha, 410000, Hunan, China.
| | - Jian Li
- Department of Blood Transfusion, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
| |
Collapse
|
31
|
Wang Y, Liu L, Zheng X, Liu X. Membrane-camouflaged biomimetic nanoparticles as potential immunomodulatory solutions for sepsis: An overview. Front Bioeng Biotechnol 2023; 11:1111963. [PMID: 36970623 PMCID: PMC10036601 DOI: 10.3389/fbioe.2023.1111963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/27/2023] [Indexed: 03/12/2023] Open
Abstract
Sepsis is a life-threatening organ dysfunction due to dysregulated host responses induced by infection. The presence of immune disturbance is key to the onset and development of sepsis but has remarkably limited therapeutic options. Advances in biomedical nanotechnology have provided innovative approaches to rebalancing the host immunity. In particular, the technique of membrane-coating has demonstrated remarkable improvements to therapeutic nanoparticles (NPs) in terms of tolerance and stability while also improving their biomimetic performance for immunomodulatory purposes. This development has led to the emergence of using cell-membrane-based biomimetic NPs in treating sepsis-associated immunologic derangements. In this minireview, we present an overview of the recent advances in membrane-camouflaged biomimetic NPs, highlighting their multifaceted immunomodulatory effects in sepsis such as anti-infection, vaccination, inflammation control, reversing of immunosuppression, and targeted delivery of immunomodulatory agents.
Collapse
Affiliation(s)
- Yanbei Wang
- School of Culture and Tourism, Chongqing City Management College, Chongqing, China
| | - Liping Liu
- School of Culture and Tourism, Chongqing City Management College, Chongqing, China
| | - Xinchuan Zheng
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
- *Correspondence: Xinchuan Zheng, ; Xin Liu,
| | - Xin Liu
- Medical Research Center, Southwest Hospital, Army Military Medical University, Chongqing, China
- *Correspondence: Xinchuan Zheng, ; Xin Liu,
| |
Collapse
|
32
|
Altaf S, Alkheraije KA. Cell membrane-coated nanoparticles: An emerging antibacterial platform for pathogens of food animals. Front Vet Sci 2023; 10:1148964. [PMID: 36950535 PMCID: PMC10025400 DOI: 10.3389/fvets.2023.1148964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 02/14/2023] [Indexed: 03/08/2023] Open
Abstract
Bacterial pathogens of animals impact food production and human health globally. Food animals act as the major host reservoirs for pathogenic bacteria and thus are highly prone to suffer from several endemic infections such as pneumonia, sepsis, mastitis, and diarrhea, imposing a major health and economical loss. Moreover, the consumption of food products of infected animals is the main route by which human beings are exposed to zoonotic bacteria. Thus, there is excessive and undue administration of antibiotics to fight these virulent causative agents of food-borne illness, leading to emergence of resistant strains. Thus, highprevalence antibiotic-resistant resistant food-borne bacterial infections motivated the researchers to discover new alternative therapeutic strategies to eradicate resistant bacterial strains. One of the successful therapeutic approach for the treatment of animal infections, is the application of cell membrane-coated nanoparticles. Cell membranes of several different types of cells including platelets, red blood cells, neutrophils, cancer cells, and bacteria are being wrapped over the nanoparticles to prepare biocompatible nanoformulations. This diversity of cell membrane selection and together with the possibility of combining with an extensive range of nanoparticles, has opened a new opportunistic window for the development of more potentially effective, safe, and immune evading nanoformulations, as compared to conventionally used bare nanoparticle. This article will elaborately discuss the discovery and development of novel bioinspired cell membrane-coated nanoformulations against several pathogenic bacteria of food animals such as Klebsiella pneumoniae, Escherichia coli, Staphylococcus aureus, Salmonella enteritidis, Campylobacter jejuni, Helicobacter pylori, and Group A Streptococcus and Group B Streptococcus.
Collapse
Affiliation(s)
- Sidra Altaf
- Department of Pharmacy, University of Agriculture, Faisalabad, Pakistan
| | - Khalid Ali Alkheraije
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraidah, Saudi Arabia
| |
Collapse
|
33
|
Song Y, Zheng X, Hu J, Ma S, Li K, Chen J, Xu X, Lu X, Wang X. Recent advances of cell membrane-coated nanoparticles for therapy of bacterial infection. Front Microbiol 2023; 14:1083007. [PMID: 36876074 PMCID: PMC9981803 DOI: 10.3389/fmicb.2023.1083007] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 02/01/2023] [Indexed: 02/19/2023] Open
Abstract
The rapid evolution of antibiotic resistance and the complicated bacterial infection microenvironments are serious obstacles to traditional antibiotic therapy. Developing novel antibacterial agents or strategy to prevent the occurrence of antibiotic resistance and enhance antibacterial efficiency is of the utmost importance. Cell membrane-coated nanoparticles (CM-NPs) combine the characteristics of the naturally occurring membranes with those of the synthetic core materials. CM-NPs have shown considerable promise in neutralizing toxins, evading clearance by the immune system, targeting specific bacteria, delivering antibiotics, achieving responsive antibiotic released to the microenvironments, and eradicating biofilms. Additionally, CM-NPs can be utilized in conjunction with photodynamic, sonodynamic, and photothermal therapies. In this review, the process for preparing CM-NPs is briefly described. We focus on the functions and the recent advances in applications of several types of CM-NPs in bacterial infection, including CM-NPs derived from red blood cells, white blood cells, platelet, bacteria. CM-NPs derived from other cells, such as dendritic cells, genetically engineered cells, gastric epithelial cells and plant-derived extracellular vesicles are introduced as well. Finally, we place a novel perspective on CM-NPs' applications in bacterial infection, and list the challenges encountered in this field from the preparation and application standpoint. We believe that advances in this technology will reduce threats posed by bacteria resistance and save lives from infectious diseases in the future.
Collapse
Affiliation(s)
- Yue Song
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, China
| | - Xia Zheng
- The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Juan Hu
- The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Subo Ma
- The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Kun Li
- The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Junyao Chen
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Xiaoling Xu
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Xiaoyang Lu
- The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaojuan Wang
- The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
34
|
Fang Z, Fang J, Gao C, Gao R, Lin P, Yu W. Recent trends in platelet membrane-cloaked nanoparticles for application of inflammatory diseases. Drug Deliv 2022; 29:2805-2814. [PMID: 36047245 PMCID: PMC9448372 DOI: 10.1080/10717544.2022.2117434] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Platelets are multifunctional effectors of inflammatory responses and inseparable from the occurrence and development of various inflammatory diseases. The platelet membrane (PM) is integrated onto the surface of a nano-drug delivery system to form the PM-cloaked nanoparticles (PM@NPs), which can increase the biocompatibility of the nano-drug delivery system and mitigate adverse drug reactions. Owing to the strong affinity of immune regulation and adhesion-related antigens on the surface of PM to the focal sites of inflammatory diseases, which endows PM@NPs with the potential to actively target lesions and improve the therapeutic efficacy of drugs for inflammatory diseases. Based on latest developments in PM biomimetic technique and nanomedicine for the treatment of inflammatory diseases, this paper mainly elaborates three aspects: advantages of PM@NPs, experimental foundation of PM biomimetic nanotechnology, and applications of PM@NPs to the treatment of inflammatory diseases. The aim is to provide reference for the development and application of PM@NPs and novel insights into the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Zhengyu Fang
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| | - Jie Fang
- Laboratory Animal Center, Hangzhou Medical College, Hangzhou, China
| | - Chunxiao Gao
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| | - Rui Gao
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| | - Peihong Lin
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| | - Wenying Yu
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
35
|
Zhao J, Lu H, Xu D, Sun R, Fang C, Zhao Q, He C, Pan Y, Xu F, Jiang T. Neutrophil membrane-coated nanoparticles for enhanced nanosecond pulsed electric field treatment of pancreatic cancer. Int J Hyperthermia 2022; 39:1026-1035. [PMID: 35914867 DOI: 10.1080/02656736.2022.2093994] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022] Open
Abstract
OBJECTIVE Pancreatic cancer is one of the leading causes of cancer-related deaths worldwide. Poor prognosis and low survival rates have driven the development of novel therapeutic strategies. Nanosecond pulsed electric field has emerged as a novel, minimal invasive and non-thermal treatment for solid tumors. It is of great significance to study the combination therapy of nsPEF and other treatment strategies for pancreatic cancer. METHODS We developed neutrophil membrane-wrapped liposomal nanoparticles loaded with gemcitabine (NE/Lip-GEM) and investigated their use as a complementary agent for nsPEF treatment. RESULTS Our results showed that neutrophil-mediated delivery of liposomal-gemcitabine (NE/Lip-GEM) efficiently inhibited the growth of pancreatic tumors in mice whose has been treated with incomplete nsPEF ablation. CONCLUSIONS The combination of nsPEF and NE/Lip-GEM may be a promising synergistic strategy for pancreatic cancer therapy.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Ultrasound, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, China
| | - Huidan Lu
- Department of Infectious Diseases, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Danxia Xu
- Department of Ultrasound, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Ruiqi Sun
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, China
| | - Chengyu Fang
- Department of Ultrasound, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Qiyu Zhao
- Department of Ultrasound, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Chang He
- Department of Ultrasound, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yuwei Pan
- Department of Ultrasound, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Feng Xu
- Department of Infectious Diseases, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tianna Jiang
- Department of Ultrasound, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, China
| |
Collapse
|
36
|
Ding M, Liu W, Gref R. Nanoscale MOFs: From synthesis to drug delivery and theranostics applications. Adv Drug Deliv Rev 2022; 190:114496. [PMID: 35970275 DOI: 10.1016/j.addr.2022.114496] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/02/2022] [Accepted: 08/09/2022] [Indexed: 01/24/2023]
Abstract
Since the first report in 1989, Metal-Organic Frameworks (MOFs) self-assembled from metal ions or clusters, as well as organic linkers, have attracted extensive attention. Due to their flexible composition, large surface areas, modifiable surface properties, and their degradability, there has been an exponential increase in the study of MOFs materials, specifically in drug delivery system areas such as infection, diabetes, pulmonary disease, ocular disease, imaging, tumor therapy, and especially cancer theranostics. In this review, we discuss the trends in MOFs biosafety, from "green" synthesis to applications in drug delivery systems. Firstly, we present the different "green" synthesis approaches used to prepare MOFs materials. Secondly, we detail the methods for the functional coating, either through grafting targeting units, poly(ethylene glycol) (PEG) chains or by using cell membranes. Then, we discuss drug encapsulation strategies, host-guest interactions, as well as drug release mechanisms. Lastly, we report on the drug delivery applications of nanoscale MOFs. In particular, we discuss MOFs-based imaging techniques, including magnetic resonance imaging (MRI), photoacoustic imaging (PAI), positron emission tomography (PET), and fluorescence imaging. MOFs-based cancer therapy methods are also presented, such as photothermal therapy (PTT), photodynamic therapy (PDT), radiotherapy (RT), chemotherapy, and immunotherapy.
Collapse
Affiliation(s)
- Mengli Ding
- Institut des Sciences Moléculaires d'Orsay (ISMO), CNRS UMR 8214, Université Paris-Sud, Université Paris-Saclay, 91405 Orsay, France
| | - Wenbo Liu
- Institut des Sciences Moléculaires d'Orsay (ISMO), CNRS UMR 8214, Université Paris-Sud, Université Paris-Saclay, 91405 Orsay, France
| | - Ruxandra Gref
- Institut des Sciences Moléculaires d'Orsay (ISMO), CNRS UMR 8214, Université Paris-Sud, Université Paris-Saclay, 91405 Orsay, France.
| |
Collapse
|
37
|
Zhang W, Ye G, Liao D, Chen X, Lu C, Nezamzadeh-Ejhieh A, Khan MS, Liu J, Pan Y, Dai Z. Recent Advances of Silver-Based Coordination Polymers on Antibacterial Applications. Molecules 2022; 27:7166. [PMID: 36363993 PMCID: PMC9656551 DOI: 10.3390/molecules27217166] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/15/2022] [Accepted: 10/18/2022] [Indexed: 07/30/2023] Open
Abstract
With the continuous evolution of bacteria and the constant use of traditional antibiotics, the emergence of drug-resistant bacteria and super viruses has attracted worldwide attention. Antimicrobial therapy has become the most popular and important research field at present. Coordination Polymer (CP) and/or metal-organic framework (MOF) platforms have the advantages of a high biocompatibility, biodegradability, and non-toxicity, have a great antibacterial potential and have been widely used in antibacterial treatment. This paper reviewed the mechanism and antibacterial effect of three typical MOFs (pure Ag-MOFs, hybrid Ag-MOFs, and Ag-containing-polymer @MOFs) in silver-based coordination polymers. At the same time, the existing shortcomings and future views are briefly discussed. The study on the antibacterial efficacy and mechanism of Ag-MOFs can provide a better basis for its clinical application and, meanwhile, open up a novel strategy for the preparation of more advanced Ag-contained materials with antibacterial characteristics.
Collapse
Affiliation(s)
- Wenfeng Zhang
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Guangdong Medical University, Dongguan 523808, China
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
| | - Gaomin Ye
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Guangdong Medical University, Dongguan 523808, China
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
| | - Donghui Liao
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Guangdong Medical University, Dongguan 523808, China
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
| | - Xuelin Chen
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Guangdong Medical University, Dongguan 523808, China
| | - Chengyu Lu
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Guangdong Medical University, Dongguan 523808, China
| | | | - M. Shahnawaz Khan
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Jianqiang Liu
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Guangdong Medical University, Dongguan 523808, China
| | - Ying Pan
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Guangdong Medical University, Dongguan 523808, China
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
| | - Zhong Dai
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Guangdong Medical University, Dongguan 523808, China
| |
Collapse
|
38
|
Ding YN, Xue M, Tang QS, Wang LJ, Ding HY, Li H, Gao CC, Yu WP. Immunotherapy-based novel nanoparticles in the treatment of gastrointestinal cancer: Trends and challenges. World J Gastroenterol 2022; 28:5403-5419. [PMID: 36312831 PMCID: PMC9611702 DOI: 10.3748/wjg.v28.i37.5403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/27/2022] [Accepted: 09/15/2022] [Indexed: 02/06/2023] Open
Abstract
Gastrointestinal cancer (GIC) is the most common cancer with a poor prognosis. Currently, surgery is the main treatment for GIC. However, the high rate of postoperative recurrence leads to a low five-year survival rate. In recent years, immunotherapy has received much attention. As the only immunotherapy drugs approved by the Food and Drug Administration (FDA), immune checkpoint blockade (ICB) drugs have great potential in cancer therapy. Nevertheless, the efficacy of ICB treatment is greatly limited by the low immunogenicity and immunosuppressive microenvironment of GIC. Therefore, the targets of immunotherapy have expanded from ICB to increasing tumor immunogenicity, increasing the recruitment and maturation of immune cells and reducing the proportion of inhibitory immune cells, such as M2-like macrophages, regulatory T cells and myeloid-derived suppressor cells. Moreover, with the development of nanotechnology, a variety of nanoparticles have been approved by the FDA for clinical therapy, so novel nanodrug delivery systems have become a research focus for anticancer therapy. In this review, we summarize recent advances in the application of immunotherapy-based nanoparticles in GICs, such as gastric cancer, hepatocellular carcinoma, colorectal cancer and pancreatic cancer, and described the existing challenges and future trends.
Collapse
Affiliation(s)
- Yi-Nan Ding
- Department of Pathophysiology, College of Medicine, Southeast University, Nanjing 210000, Jiangsu Province, China
| | - Ming Xue
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210000, Jiangsu Province, China
| | - Qiu-Sha Tang
- Department of Pathophysiology, College of Medicine, Southeast University, Nanjing 210000, Jiangsu Province, China
| | - Li-Jun Wang
- Department of Pathophysiology, College of Medicine, Southeast University, Nanjing 210000, Jiangsu Province, China
| | - Hui-Yan Ding
- Department of Pathophysiology, College of Medicine, Southeast University, Nanjing 210000, Jiangsu Province, China
| | - Han Li
- Department of Tuberculosis, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing 210000, Jiangsu Province, China
| | - Cheng-Cheng Gao
- Department of Radiology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang Province, China
| | - Wei-Ping Yu
- Medical School, Southeast University, Nanjing 210009, Jiangsu Province, China
| |
Collapse
|
39
|
Wang T, Zhou T, Xu M, Wang S, Wu A, Zhang M, Zhou YL, Shi J. Platelet membrane-camouflaged nanoparticles carry microRNA inhibitor against myocardial ischaemia‒reperfusion injury. J Nanobiotechnology 2022; 20:434. [PMID: 36195952 PMCID: PMC9531416 DOI: 10.1186/s12951-022-01639-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 09/18/2022] [Indexed: 12/04/2022] Open
Abstract
The incidence of myocardial ischaemia‒reperfusion injury (MIRI) is increasing every year, and there is an urgent need to develop new therapeutic approaches. Nrf2 is thought to play a protective role during MIRI and it is regulated by microRNAs (miRNAs). This study focused on PLGA nanoparticles camouflaged by platelet membrane vesicles (PMVs) (i.e., PMVs@PLGA complexes) carrying microRNA inhibitors, which regulate Nrf2 and can play a therapeutic role in the MIRI process. In vitro and in vivo characterization showed that PMVs@PLGA has excellent transfection efficiency, low toxicity and good targeting. MicroRNAs that effectively regulate Nrf2 were identified, and then PMVs@PLGA-miRNA complexes were prepared and used for in vitro and in vivo treatment. PMVs@PLGA-miRNA complexes can effectively target the delivery of inhibitors to cardiomyocytes. Our results suggest that PMVs@PLGA complexes are a novel delivery system and a novel biological approach to the treatment of MIRI.
Collapse
Affiliation(s)
- Tianyi Wang
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, NO.20, Xisi Road, Nantong, 226001, Jiangsu, China.,Department of Thoracic Surgery, Affiliated Hospital of Nantong University, NO.20, Xisi Road, Nantong, 226001, Jiangsu, China
| | - Tingting Zhou
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, NO.20, Xisi Road, Nantong, 226001, Jiangsu, China.,Department of Thoracic Surgery, Affiliated Hospital of Nantong University, NO.20, Xisi Road, Nantong, 226001, Jiangsu, China
| | - Mingming Xu
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, NO.20, Xisi Road, Nantong, 226001, Jiangsu, China.,Department of Thoracic Surgery, Affiliated Hospital of Nantong University, NO.20, Xisi Road, Nantong, 226001, Jiangsu, China
| | - Shuo Wang
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, NO.20, Xisi Road, Nantong, 226001, Jiangsu, China.,Department of Thoracic Surgery, Affiliated Hospital of Nantong University, NO.20, Xisi Road, Nantong, 226001, Jiangsu, China
| | - Anqi Wu
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, NO.20, Xisi Road, Nantong, 226001, Jiangsu, China.,Department of Thoracic Surgery, Affiliated Hospital of Nantong University, NO.20, Xisi Road, Nantong, 226001, Jiangsu, China
| | - Mingyang Zhang
- Department of Forensic Sciences, Soochow University, NO.178, Ganjiang Road, Suzhou, 215000, Jiangsu, China.
| | - You Lang Zhou
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, NO.20, Xisi Road, Nantong, 226001, Jiangsu, China.
| | - Jiahai Shi
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, NO.20, Xisi Road, Nantong, 226001, Jiangsu, China. .,Department of Thoracic Surgery, Affiliated Hospital of Nantong University, NO.20, Xisi Road, Nantong, 226001, Jiangsu, China. .,School of Public Health, Nantong University, NO.9, Seyuan Road, Nantong, 226019, Jiangsu, China.
| |
Collapse
|
40
|
Drug loaded on aramid nanofibrils-metal organic framework composites for the combined antibacterial properties. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
41
|
Zou J, He J, Wang X, Wang Y, Wu C, Shi M, Jiang H, Wu Z, Liu J, Zhang W. Glycoprotein Ib-regulated micro platelet ghost for biosafe distribution and photothermal oncotherapy. J Control Release 2022; 351:341-360. [PMID: 36152806 DOI: 10.1016/j.jconrel.2022.09.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 08/20/2022] [Accepted: 09/15/2022] [Indexed: 10/31/2022]
Abstract
Despite the tremendous theranostics potential of nano-scale drug delivery system (NDDS) in oncology field, their tumor-targeting efficiency and safety remain major challenges due to their proneness of off-target accumulation through widespread vascular endothelial gaps (up to 1 μm). To address this problem, in this research, micro-sized cellular platelet "ghosts" (PGs, 1.32 μm, platelet without inner granules and coagulation) were employed as carriers to ship hollow gold nanoparticles (HGNs, 58.7 nm), forming a hierarchical biosafe system (PG@HGNs) to reduce normal tissue interception and enhance tumor targeting delivery of HGNs for improved photothermal therapy. PGs were prepared by an optimized "swelling-extrusion-elution" method, HGNs were loaded in PGs (PG@HGNs) through a "hypotonic dialysis" method and the safety and biodistribution of the system was evaluated in vitro and in vivo. In in vitro condition that stimulated the tumoral vessel acidic microenvironment (pH = 6.5), PG@HGNs were demonstrated with enhanced membrane fluidity through down-regulation of the glycoprotein Ib expressed on the PGs. This change induced a burst release of nano-sized HGNs which were capable to traverse vascular endothelium layer on a tumor-endothelial cell transwell model, whilst the micro-sized PG carriers were intercepted. In comparison to nano-sized platelet membrane-coated carriers (PM@HGNs), PG@HGNs showed enhanced internalization and cytotoxicity to 4T1 cells. In animal models, PG@HGNs remarkably prolonged circulation most likely due to the presence of "self-recognition" receptor-CD47 of PGs, and effectively reduced normal tissue interception via the micro-scale size effect. These both contributed to the significantly improved tumor targeting efficiency of HGNs. PG@HGNs generated the greater antitumor photothermal efficacy alongside safety in the animals compared to PM@HGNs. Collectively, this study demonstrated the potential of the micro-scale PGs equipped with adjusted membrane GP Ib as biosafe vehicles for HGNs or possibly other nanodrugs. THE STATEMENT OF SIGNIFICANCE: Despite the tremendous theranostics potentials, the safety and tumor-targeting efficiency of nano-scale drug delivery systems (NDDS) are compromised by their undesirable accumulation in normal tissues with widespread vascular endothelial gaps, such as many tumor-targeted NDDSs still accumulated much in liver and/or spleen. Herein, we explored a micro-nano biomimetic cascade delivery system to address the above drawbacks. By forming a hierarchical biosafe system, micro-sized platelet "ghost" (PGs, 1.32 μm) was employed as tumor-targeted delivery carrier to transport hollow gold nanoparticles (HGNs, 58.7 nm). It was demonstrated that this micro-size system could maintain platelet membrane structure thus prolong in vivo circulation, while avoiding extravasation into normal tissues. PG@HGNs could sensitively respond to the acidic microenvironment near tumor vessel via down-regulation of glycoprotein Ib and rapidly release "nano-bullets"-HGNs to further penetrate into the tumor tissues through EPR effect, thus enhancing photothermal efficacy generated by HGNs under NIR irradiation. Collectively, the micro-scaled PGs could be biosafe vehicles for improved tumor-targeted delivery of HGNs or possibly other nanodrugs.
Collapse
Affiliation(s)
- Jiahui Zou
- Department of Pharmaceutics, China Pharmaceutical University, Jiangsu 210009, PR China
| | - Jianhua He
- Department of Pharmaceutics, China Pharmaceutical University, Jiangsu 210009, PR China
| | - Xiaobo Wang
- Department of Pharmaceutics, China Pharmaceutical University, Jiangsu 210009, PR China
| | - Yajie Wang
- Department of Pharmaceutics, China Pharmaceutical University, Jiangsu 210009, PR China
| | - Chenchen Wu
- Department of Pharmaceutics, China Pharmaceutical University, Jiangsu 210009, PR China
| | - Mengya Shi
- Department of Pharmaceutics, China Pharmaceutical University, Jiangsu 210009, PR China
| | - Hulin Jiang
- Department of Pharmaceutics, China Pharmaceutical University, Jiangsu 210009, PR China
| | - Zimei Wu
- School of Pharmacy, The University of Auckland, Auckland 1142, New Zealand
| | - Jianping Liu
- Department of Pharmaceutics, China Pharmaceutical University, Jiangsu 210009, PR China.
| | - Wenli Zhang
- Department of Pharmaceutics, China Pharmaceutical University, Jiangsu 210009, PR China.
| |
Collapse
|
42
|
Yeo WWY, Maran S, Kong ASY, Cheng WH, Lim SHE, Loh JY, Lai KS. A Metal-Containing NP Approach to Treat Methicillin-Resistant Staphylococcus aureus (MRSA): Prospects and Challenges. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15175802. [PMID: 36079184 PMCID: PMC9456709 DOI: 10.3390/ma15175802] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/15/2022] [Accepted: 07/28/2022] [Indexed: 06/01/2023]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is an important cause of pneumonia in humans, and it is associated with high morbidity and mortality rates, especially in immunocompromised patients. Its high rate of multidrug resistance led to an exploration of novel antimicrobials. Metal nanoparticles have shown potent antibacterial activity, thus instigating their application in MRSA. This review summarizes current insights of Metal-Containing NPs in treating MRSA. This review also provides an in-depth appraisal of opportunities and challenges in utilizing metal-NPs to treat MRSA.
Collapse
Affiliation(s)
- Wendy Wai Yeng Yeo
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Malaysia
| | - Sathiya Maran
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Malaysia
| | - Amanda Shen-Yee Kong
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Malaysia
| | - Wan-Hee Cheng
- Faculty of Health and Life Sciences, INTI International University, Persiaran Perdana BBN, Putra Nilai, Nilai 71800, Malaysia
| | - Swee-Hua Erin Lim
- Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology, Abu Dhabi 41012, United Arab Emirates
| | - Jiun-Yan Loh
- Centre of Research for Advanced Aquaculture (COORA), UCSI University, Cheras 56000, Malaysia
| | - Kok-Song Lai
- Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology, Abu Dhabi 41012, United Arab Emirates
| |
Collapse
|
43
|
Wei Y, Wang J, Wu S, Zhou R, Zhang K, Zhang Z, Liu J, Qin S, Shi J. Nanomaterial-Based Zinc Ion Interference Therapy to Combat Bacterial Infections. Front Immunol 2022; 13:899992. [PMID: 35844505 PMCID: PMC9279624 DOI: 10.3389/fimmu.2022.899992] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 05/27/2022] [Indexed: 01/04/2023] Open
Abstract
Pathogenic bacterial infections are the second highest cause of death worldwide and bring severe challenges to public healthcare. Antibiotic resistance makes it urgent to explore new antibacterial therapy. As an essential metal element in both humans and bacteria, zinc ions have various physiological and biochemical functions. They can stabilize the folded conformation of metalloproteins and participate in critical biochemical reactions, including DNA replication, transcription, translation, and signal transduction. Therefore, zinc deficiency would impair bacterial activity and inhibit the growth of bacteria. Interestingly, excess zinc ions also could cause oxidative stress to damage DNA, proteins, and lipids by inhibiting the function of respiratory enzymes to promote the formation of free radicals. Such dual characteristics endow zinc ions with unparalleled advantages in the direction of antibacterial therapy. Based on the fascinating features of zinc ions, nanomaterial-based zinc ion interference therapy emerges relying on the outstanding benefits of nanomaterials. Zinc ion interference therapy is divided into two classes: zinc overloading and zinc deprivation. In this review, we summarized the recent innovative zinc ion interference strategy for the treatment of bacterial infections and focused on analyzing the antibacterial mechanism of zinc overloading and zinc deprivation. Finally, we discuss the current limitations of zinc ion interference antibacterial therapy and put forward problems of clinical translation for zinc ion interference antibacterial therapy.
Collapse
Affiliation(s)
- Yongbin Wei
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jiaming Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Sixuan Wu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Ruixue Zhou
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Kaixiang Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou, China
- Key Laboratory of Key Drug Preparation Technology Ministry of Education, Zhengzhou University, Zhengzhou, China
| | - Zhenzhong Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou, China
- Key Laboratory of Key Drug Preparation Technology Ministry of Education, Zhengzhou University, Zhengzhou, China
| | - Junjie Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou, China
- Key Laboratory of Key Drug Preparation Technology Ministry of Education, Zhengzhou University, Zhengzhou, China
| | - Shangshang Qin
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou, China
- Key Laboratory of Key Drug Preparation Technology Ministry of Education, Zhengzhou University, Zhengzhou, China
| | - Jinjin Shi
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou, China
- Key Laboratory of Key Drug Preparation Technology Ministry of Education, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
44
|
Wang W, Yu Y, Jin Y, Liu X, Shang M, Zheng X, Liu T, Xie Z. Two-dimensional metal-organic frameworks: from synthesis to bioapplications. J Nanobiotechnology 2022; 20:207. [PMID: 35501794 PMCID: PMC9059454 DOI: 10.1186/s12951-022-01395-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/23/2022] [Indexed: 12/19/2022] Open
Abstract
As a typical class of crystalline porous materials, metal-organic framework possesses unique features including versatile functionality, structural and compositional tunability. After being reduced to two-dimension, ultrathin metal-organic framework layers possess more external excellent properties favoring various technological applications. In this review article, the unique structural properties of the ultrathin metal-organic framework nanosheets benefiting from the planar topography were highlighted, involving light transmittance, and electrical conductivity. Moreover, the design strategy and versatile fabrication methodology were summarized covering discussions on their applicability and accessibility, especially for porphyritic metal-organic framework nanosheet. The current achievements in the bioapplications of two-dimensional metal-organic frameworks were presented comprising biocatalysis, biosensor, and theranostic, with an emphasis on reactive oxygen species-based nanomedicine for oncology treatment. Furthermore, current challenges confronting the utilization of two-dimensional metal-organic frameworks and future opportunities in emerging research frontiers were presented.
Collapse
Affiliation(s)
- Weiqi Wang
- School of Pharmacy, Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Yuting Yu
- School of Pharmacy, Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Yilan Jin
- School of Pharmacy, Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Xiao Liu
- School of Pharmacy, Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Min Shang
- School of Pharmacy, Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Xiaohua Zheng
- School of Pharmacy, Nantong University, Nantong, 226001, Jiangsu Province, China.
| | - Tingting Liu
- Department of Medical Imaging, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, China.
| | - Zhigang Xie
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.
| |
Collapse
|
45
|
Application of Nanomaterials in the Prevention, Detection, and Treatment of Methicillin-Resistant Staphylococcus aureus (MRSA). Pharmaceutics 2022; 14:pharmaceutics14040805. [PMID: 35456638 PMCID: PMC9030647 DOI: 10.3390/pharmaceutics14040805] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/01/2022] [Accepted: 04/04/2022] [Indexed: 01/27/2023] Open
Abstract
Due to differences in geographic surveillance systems, chemical sanitization practices, and antibiotic stewardship (AS) implementation employed during the COVID-19 pandemic, many experts have expressed concerns regarding a future surge in global antimicrobial resistance (AMR). A potential beneficiary of these differences is the Gram-positive bacteria MRSA. MRSA is a bacterial pathogen with a high potential for mutational resistance, allowing it to engage various AMR mechanisms circumventing conventional antibiotic therapies and the host’s immune response. Coupled with a lack of novel FDA-approved antibiotics reaching the clinic, the onus is on researchers to develop alternative treatment tools to mitigate against an increase in pathogenic resistance. Mitigation strategies can take the form of synthetic or biomimetic nanomaterials/vesicles employed in vaccines, rapid diagnostics, antibiotic delivery, and nanotherapeutics. This review seeks to discuss the current potential of the aforementioned nanomaterials in detecting and treating MRSA.
Collapse
|
46
|
Hu F, Xia SS, He Y, Huang ZL, Ke H, Liao JZ. Reactive organic radical-doped Ag(I)-based coordination compounds for highly efficient antibacterial wound therapy. Colloids Surf B Biointerfaces 2022; 213:112425. [PMID: 35231687 DOI: 10.1016/j.colsurfb.2022.112425] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 02/15/2022] [Accepted: 02/21/2022] [Indexed: 02/07/2023]
Abstract
Antibiotics, being critical antimicrobial agents, have been widely used for treating bacterial infections. However, prolonged use of antibiotics can induce drug resistance resulting in "superbug" that threatens human health. Therefore, developing antibiotic-free materials with intrinsic antibacterial properties is the key to the "superbug" challenge. In this study, two highly efficient metal-organic frameworks (MOFs) were successfully assembled through synergistic use of the antibacterial properties of reactive organic radicals and silver (Ag) cations. These hybrid Ag-based materials possessed radical-doped characteristics, continuously releasing Ag+, which significantly inhibited the growth of four common Gram-negative and Gram-positive human pathogens (Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis, and Staphylococcus aureus), and particularly two multi-drug-resistance bacteria (MRSA and MDR-PA). Furthermore, in vivo assays indicated that the synergistic antibacterial effect of these compounds could significantly accelerate the healing rate of infected wounds in mice. Blood biochemistry and histological analyses of main organs in treated mice also exhibited negligible cytotoxicity. This study unveiled the promising potential of Ag-MOFs for anti-infective therapies and future clinical applications.
Collapse
Affiliation(s)
- Fen Hu
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350002, PR China
| | - Shuang-Shuang Xia
- Engineering Technology Research Center for Environmental Protection Materials, Pingxiang University, Pingxiang, Jiangxi 337055, PR China
| | - Yun He
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350002, PR China
| | - Ze-Long Huang
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350002, PR China
| | - Hua Ke
- Engineering Technology Research Center for Environmental Protection Materials, Pingxiang University, Pingxiang, Jiangxi 337055, PR China; State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, PR China.
| | - Jian-Zhen Liao
- Engineering Technology Research Center for Environmental Protection Materials, Pingxiang University, Pingxiang, Jiangxi 337055, PR China; State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, PR China.
| |
Collapse
|
47
|
Zhang M, Zheng Y, Jin Y, Wang D, Wang G, Zhang X, Li Y, Lee S. Ag@MOF-loaded p-coumaric acid modified chitosan/chitosan nanoparticle and polyvinyl alcohol/starch bilayer films for food packing applications. Int J Biol Macromol 2022; 202:80-90. [PMID: 35038467 DOI: 10.1016/j.ijbiomac.2022.01.074] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 12/12/2022]
Abstract
Developing novel bilayer food packing film having the ability to prevent bacterial infections and capable of inhibiting oxidation is utmost important, since bacterial infections and oxidation can cause food spoilage. Ag-Metal-organic framework loaded p-coumaric acid modified chitosan (P-CS/Ag@MOF) or chitosan nanoparticles (P-CSNPs/Ag@MOF) and polyvinyl alcohol/starch (PVA/ST) were used as the upper film and lower layer film to successfully prepare a bilayer composite film. The microscopic morphology, water resistance, oil resistance, oxidation resistance, optical properties, cytotoxicity and antibacterial properties of the composite films were compared. The results showed that the surface of P-CS/Ag@MOF bilayer was relatively smooth and its tensile strength (TS) was higher (27.67 MPa). Among them, P-CS/Ag@MOF bilayer films had better oil resistance and oxidation resistance activity. In addition, the P-CS/Ag@MOF bilayer film had good UV-blocking properties and transparency. P-CSNPs/Ag@MOF bilayer film had higher antibacterial activity and cytotoxicity.
Collapse
Affiliation(s)
- Meng Zhang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China; Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China; Shandong Engineering Technology Research Center for Advanced Coating, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China
| | - Yuqi Zheng
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China; Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China; Shandong Engineering Technology Research Center for Advanced Coating, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China
| | - Yang Jin
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China; Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China; Shandong Engineering Technology Research Center for Advanced Coating, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China
| | - Dong Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China; Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China; Shandong Engineering Technology Research Center for Advanced Coating, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China.
| | - Guohui Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China; Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China; Shandong Engineering Technology Research Center for Advanced Coating, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China
| | - Xin Zhang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China; Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China; Shandong Engineering Technology Research Center for Advanced Coating, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China
| | - Yanxin Li
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China; Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China; Shandong Engineering Technology Research Center for Advanced Coating, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China
| | - Shaoxiang Lee
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China; Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China; Shandong Engineering Technology Research Center for Advanced Coating, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China
| |
Collapse
|
48
|
Yang M, Zhang J, Wei Y, Zhang J, Tao C. Recent advances in metal-organic framework-based materials for anti-staphylococcus aureus infection. NANO RESEARCH 2022; 15:6220-6242. [PMID: 35578616 PMCID: PMC9094125 DOI: 10.1007/s12274-022-4302-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 05/03/2023]
Abstract
The rapid spread of staphylococcus aureus (S. aureus) causes an increased morbidity and mortality, as well as great economic losses in the world. Anti-S. aureus infection becomes a major challenge for clinicians and nursing professionals to address drug resistance. Hence, it is urgent to explore high efficiency, low toxicity, and environmental-friendly methods against S. aureus. Metal-organic frameworks (MOFs) represent great potential in treating S. aureus infection due to the unique features of MOFs including tunable chemical constitute, open crystalline structure, and high specific surface area. Especially, these properties endow MOF-based materials outstanding antibacterial effect, which can be mainly attributed to the continuously released active components and the exerted catalytic activity to fight bacterial infection. Herein, the structural characteristics of MOFs and evaluation method of antimicrobial activity are briefly summarized. Then we systematically give an overview on their recent progress on antibacterial mechanisms, metal ion sustained-release system, controlled delivery system, catalytic system, and energy conversion system based on MOF materials. Finally, suggestions and direction for future research to develop and mechanism understand MOF-based materials are discussed in antibacterial application.
Collapse
Affiliation(s)
- Mei Yang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Jin Zhang
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065 China
| | - Yinhao Wei
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Jie Zhang
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065 China
| | - Chuanmin Tao
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041 China
| |
Collapse
|
49
|
Huang R, Cai GQ, Li J, Li XS, Liu HT, Shang XL, Zhou JD, Nie XM, Gui R. Correction to: Platelet membrane-camouflaged silver metal-organic framework drug system against infections caused by methicillin-resistant Staphylococcus aureus. J Nanobiotechnology 2021; 19:278. [PMID: 34538234 PMCID: PMC8451120 DOI: 10.1186/s12951-021-01009-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Rong Huang
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China.,Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Guang-Qing Cai
- Department of Orthopedics, Changsha Hospital of Traditional Chinese Medicine, Changsha Eighth Hospital, Changsha, Hunan, China
| | - Jian Li
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xi-Sheng Li
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hai-Ting Liu
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xue-Ling Shang
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jian-Dang Zhou
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xin-Min Nie
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Rong Gui
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|