1
|
Arroyave-Ospina JC, Martínez M, Buist-Homan M, Palasantzas V, Arrese M, Moshage H. Coffee Compounds Protection Against Lipotoxicity Is Associated with Lipid Droplet Formation and Antioxidant Response in Primary Rat Hepatocytes. Antioxidants (Basel) 2025; 14:175. [PMID: 40002362 PMCID: PMC11851918 DOI: 10.3390/antiox14020175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/16/2025] [Accepted: 01/27/2025] [Indexed: 02/27/2025] Open
Abstract
Metabolic dysfunction associated with steatotic liver disease (MASLD) is the result of disturbed lipid metabolism. In MASLD, the accumulation of free fatty acids (FFAs) in hepatocytes causes lipotoxicity mediated by oxidative stress. Coffee compounds are known for their beneficial effects in MASLD; however, the mechanisms still need to be further explored. The aim of this study was to elucidate the protective mechanisms of coffee compounds against palmitate-induced lipotoxicity in primary hepatocytes. METHODS Primary hepatocytes were isolated from male Wistar rats and treated with palmitate (1 mmol/L) in combination with caffeine (CF: 1 mmol/L) or chlorogenic acid (CGA: 5 µmol/L). Mitochondrial ROS production, palmitate-induced necrosis, antioxidant response, ER stress markers and lipid droplet (LD) formation were assessed. Monoacylglycerols 2-SG (2-Stearolylglycerol), 2-OG (2-Oleoylglycerol) and SCD-1 (Stearoyl-CoA Desaturase 1) inhibitors were used to modulate LD formation. LD formation in steatotic Zucker rat hepatocytes was also investigated. RESULTS CF and CGA prevented palmitate-induced cell death and reduced ROS production. CF and CGA induced the antioxidant response, especially HO-1 expression, but had no significant effect on ER stress markers. CF and CGA increased LD formation in palmitate-treated cells. This effect was significantly reduced by 2-SG and SCD-1 inhibitors but enhanced by 2-OG. Lipid droplets were associated with lower palmitate toxicity and reduced ROS production. CONCLUSIONS CF and CGA protect hepatocytes from lipotoxicity via modulation of the antioxidant response and enhance lipid droplet formation via an SCD-1-dependent mechanism. Oxidative stress-related toxicity in hepatocytes can be prevented by enhancing LD formation.
Collapse
Affiliation(s)
- Johanna C. Arroyave-Ospina
- Department of Fisiología y Bioquímica and Grupo de Gastrohepatología, Facultad de Medicina Universidad de Antioquia, Medellín 050010, Colombia
- Department of Gastroenterology and Hepatology, University Med ical Center of Groningen, University of Groningen, P.O. Box 30.001, 9713 GZ Groningen, The Netherlands; (M.M.); (M.B.-H.)
| | - Magnolia Martínez
- Department of Gastroenterology and Hepatology, University Med ical Center of Groningen, University of Groningen, P.O. Box 30.001, 9713 GZ Groningen, The Netherlands; (M.M.); (M.B.-H.)
| | - Manon Buist-Homan
- Department of Gastroenterology and Hepatology, University Med ical Center of Groningen, University of Groningen, P.O. Box 30.001, 9713 GZ Groningen, The Netherlands; (M.M.); (M.B.-H.)
| | - Victoria Palasantzas
- Department of Genetics and Department of Pediatrics, University Medical Center of Groningen, University of Groningen, P.O. Box 30.001, 9713 GZ Groningen, The Netherlands;
| | - Marco Arrese
- Department of Gastroenterology, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile;
| | - Han Moshage
- Department of Gastroenterology and Hepatology, University Med ical Center of Groningen, University of Groningen, P.O. Box 30.001, 9713 GZ Groningen, The Netherlands; (M.M.); (M.B.-H.)
| |
Collapse
|
2
|
Jeon HJ, Lee BS, Park C. Extraction of Chlorogenic Acid Using Single and Mixed Solvents. Molecules 2025; 30:481. [PMID: 39942586 PMCID: PMC11820232 DOI: 10.3390/molecules30030481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/10/2025] [Accepted: 01/17/2025] [Indexed: 02/16/2025] Open
Abstract
Chlorogenic acid, which is extracted from a wide range of natural sources, is attracting the attention of many researchers in the pharmaceutical and biomedical fields due to its various positive effects, such as such as anti-inflammatory and antibacterial properties. Considering the effects of economics and solvent toxicity, water, ethanol, and their mixtures were selected as the solvents for extracting chlorogenic acid at various temperatures (298~318 K) and over a whole range of concentrations. The solubility of chlorogenic acid increased with temperature regardless of the solvents, and the solubility was higher in pure ethanol than in pure water. The solubility of chlorogenic acid in mixed solvents exhibited a gradual rise as the water content increased, reaching a maximum at a specific water weight fraction. These trends were well predicted by the COSMO-SAC model and Hansen solubility parameter method. By comparing the σ-profile, it was confirmed that the maximum solubility in mixed solvent comes from the similarity of σ-profiles between chlorogenic acid and mixed solvent which represents the surface charge density of the molecule.
Collapse
Affiliation(s)
- Hyeon Ji Jeon
- Department of Chemical Engineering, Kangwon National University, Chuncheon 24341, Gangwon, Republic of Korea;
- Department of Integrative Engineering for Hydrogen Safety, Kangwon National University, Chuncheon 24341, Gangwon, Republic of Korea
| | - Bong-Seop Lee
- Department of Chemical Engineering, Kangwon National University, Chuncheon 24341, Gangwon, Republic of Korea;
- Department of Integrative Engineering for Hydrogen Safety, Kangwon National University, Chuncheon 24341, Gangwon, Republic of Korea
| | - Changhyup Park
- Department of Integrative Engineering for Hydrogen Safety, Kangwon National University, Chuncheon 24341, Gangwon, Republic of Korea
| |
Collapse
|
3
|
Liaudanskas M, Šedbarė R, Janulis V. Determination of Biologically Active Compounds and Antioxidant Capacity In Vitro in Fruit of Small Cranberries ( Vaccinium oxycoccos L.) Growing in Natural Habitats in Lithuania. Antioxidants (Basel) 2024; 13:1045. [PMID: 39334704 PMCID: PMC11428458 DOI: 10.3390/antiox13091045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/23/2024] [Accepted: 08/25/2024] [Indexed: 09/30/2024] Open
Abstract
The composition of flavonols, proanthocyanidins, anthocyanins, triterpene compounds, and chlorogenic acid in small cranberry fruit samples collected in natural habitats in Lithuania and variation in the antioxidant capacity of cranberry fruit extracts was determined. This study showed that in the flavonol group, hyperoside and myricetin-3-O-galactoside predominated in cranberry fruit samples; in the anthocyanin group, the predominant compounds were cyanidin-3-O-galactoside, cyanidin-3-O-arabinoside, peonidin-3-O-galactoside, and peonidin-3-O-arabinoside, and in the group of triterpene compounds, ursolic acid was predominant. The highest total amounts of flavonols and anthocyanins were found in the samples collected in Čepkeliai State Strict Nature Reserve (2079.44 ± 102.99 μg/g and 6993.79 ± 350.22 μg/g, respectively). Cluster analysis of the chemical composition of small cranberry fruit samples revealed trends in the accumulation of bioactive compounds in cranberry fruit. Cranberry fruit samples collected in central Lithuania had higher levels of triterpene compounds. Statistical correlation analysis showed the strongest correlation between the quantitative composition of cyanidin-3-O-arabinoside and peonidin-3-O-arabinoside and the reducing capacity of the ethanolic extracts of the cranberry fruit samples assessed in vitro by the FRAP assay (r = 0.882, p < 0.01 and r = 0.805, p < 0.01, respectively). Summarizing the results, the geographical factor affects the variation of the quantitative composition of biologically active compounds in cranberry fruit samples.
Collapse
Affiliation(s)
- Mindaugas Liaudanskas
- Department of Pharmacognosy, Faculty of Pharmacy, Lithuanian University of Health Sciences, LT-50162 Kaunas, Lithuania
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Lithuanian University of Health Sciences, LT-50162 Kaunas, Lithuania
| | - Rima Šedbarė
- Department of Pharmacognosy, Faculty of Pharmacy, Lithuanian University of Health Sciences, LT-50162 Kaunas, Lithuania
- Department of Analytical and Toxicological Chemistry, Faculty of Pharmacy, Lithuanian University of Health Sciences, LT-50162 Kaunas, Lithuania
| | - Valdimaras Janulis
- Department of Pharmacognosy, Faculty of Pharmacy, Lithuanian University of Health Sciences, LT-50162 Kaunas, Lithuania
| |
Collapse
|
4
|
Ziółkiewicz A, Niziński P, Soja J, Oniszczuk T, Combrzyński M, Kondracka A, Oniszczuk A. Potential of Chlorogenic Acid in the Management of Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD): Animal Studies and Clinical Trials-A Narrative Review. Metabolites 2024; 14:346. [PMID: 38921480 PMCID: PMC11205996 DOI: 10.3390/metabo14060346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 06/27/2024] Open
Abstract
Chlorogenic acid (CGA) is a natural polyphenol found in coffee, tea, vegetables, and fruits. It exhibits strong antioxidant activity and possesses several other biological properties, including anti-inflammatory effects, antimicrobial activity, and insulin-sensitizing properties. Moreover, it may improve lipid and glucose metabolism. This review summarizes the available information on the therapeutic effect of CGA in metabolic dysfunction-associated steatotic liver disease (MASLD). As the literature search engine, the browsers in the PubMed, Scopus, Web of Science databases, and ClinicalTrials.gov register were used. Animal trials and clinical studies suggest that CGA has promising therapeutic potential in treating MASLD and hepatic steatosis. Its mechanisms of action include antioxidant, anti-inflammatory, and anti-apoptotic effects via the activation of the Nrf2 signaling pathway and the inhibition of the TLR4/NF-κB signaling cascade. Furthermore, the alleviation of liver disease by CGA also involves other important molecules such as AMPK and important physiological processes such as the intestinal barrier and gut microbiota. Nevertheless, the specific target cell and key molecule to which CGA is directed remain unidentified and require further study.
Collapse
Affiliation(s)
- Agnieszka Ziółkiewicz
- Department of Inorganic Chemistry, Medical University of Lublin, Dr Witolda Chodźki 4a, 20-093 Lublin, Poland; (A.Z.); (A.O.)
| | - Przemysław Niziński
- Department of Pharmacology, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland
| | - Jakub Soja
- Department of Thermal Technology and Food Process Engineering, University of Life Sciences in Lublin, Głęboka 31, 20-612 Lublin, Poland; (J.S.); (T.O.); (M.C.)
| | - Tomasz Oniszczuk
- Department of Thermal Technology and Food Process Engineering, University of Life Sciences in Lublin, Głęboka 31, 20-612 Lublin, Poland; (J.S.); (T.O.); (M.C.)
| | - Maciej Combrzyński
- Department of Thermal Technology and Food Process Engineering, University of Life Sciences in Lublin, Głęboka 31, 20-612 Lublin, Poland; (J.S.); (T.O.); (M.C.)
| | - Adrianna Kondracka
- Department of Obstetrics and Pathology of Pregnancy, Medical University of Lublin, 20-081 Lublin, Poland;
| | - Anna Oniszczuk
- Department of Inorganic Chemistry, Medical University of Lublin, Dr Witolda Chodźki 4a, 20-093 Lublin, Poland; (A.Z.); (A.O.)
| |
Collapse
|
5
|
Lin YL, Wu YHS, Chao MY, Yang DJ, Liu CW, Tseng JK, Chen YC. An alleviative effect of Lonicerae japonicae flos water extract against liver fibrogenesis in vitro and in vivo. ENVIRONMENTAL TOXICOLOGY 2024; 39:2881-2892. [PMID: 38294203 DOI: 10.1002/tox.24154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/04/2024] [Accepted: 01/18/2024] [Indexed: 02/01/2024]
Abstract
Lonicerae japonicae (L. japonicae) flos is a medical and food homology herb. This study investigated the phenolic acid and flavonoid contents in L. japonicae flos water extract solution (LJWES) and the preventive effects of LJWES against liver fibrogenesis via FL83B cells and rats. LJWES contains many polyphenols, such as chlorogenic acid, morin, and epicatechin. LJWES increased cell viability and decreased cytotoxicity in thioacetamide (TAA)-treated FL83B cells (75 mM) (p < .05). LJWES decreased (p < .05) gene expressions of Tnf-α, Tnfr1, Bax, and cytochrome c but upregulated Bcl-2 and Bcl-xl in TAA-treated cells; meanwhile, increased protein levels of P53, cleaved caspase 3, and cleaved caspase 9 in TAA treated cells were downregulated (p < .05) by LJWES supplementation. In vivo, results indicated that TAA treatment increased serum liver damage indices (alanine aminotransferase [ALT] and alkaline phosphatase [ALP]) and cytokines (interleukin-6 and transforming growth factor-β1) levels and impaired liver antioxidant capacities (increased thiobarbituric acid reactive substance value but decreased catalase/glutathione peroxidase activities) in rats (p < .05) while LJWES supplementation amended (p < .05) them. Liver fibrosis scores, collagen deposition, and alpha-smooth muscle actin deposition in TAA-treated rats were also decreased by LJWES supplementation (p < .05). To sum up, LJWES could be a potential hepatoprotective agent against liver fibrogenesis by enhancing antioxidant ability, downregulating inflammation in livers, and reducing apoptosis in hepatocytes.
Collapse
Affiliation(s)
- Yi-Ling Lin
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
- Undergraduate and Graduate Programs of Nutrition Science, National Taiwan Normal University, Taipei, Taiwan
| | - Yi-Hsieng Samuel Wu
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
- Institute of Food Safety and Health Risk Assessment, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ming-Yuan Chao
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Deng-Jye Yang
- Institute of Food Safety and Health Risk Assessment, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Cheng-Wei Liu
- Department of Smart and Quality Agriculture, MingDao University, Changhua, Taiwan
| | - Jung-Kai Tseng
- Department of Optometry, Asia University, Taichung, Taiwan
| | - Yi-Chen Chen
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
- Master Program in Global Agriculture Technology and Genomic Science, International College, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
6
|
Dai C, Li H, Zhao W, Fu Y, Cheng J. Bioactive functions of chlorogenic acid and its research progress in pig industry. J Anim Physiol Anim Nutr (Berl) 2024; 108:439-450. [PMID: 37975278 DOI: 10.1111/jpn.13905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 09/04/2023] [Accepted: 10/30/2023] [Indexed: 11/19/2023]
Abstract
Chlorogenic acid (CGA), also known as 3-caffeioylquinic acid or coffee tannin, is a water-soluble polyphenol phenylacrylate compound produced through the shikimate pathway by plants during aerobic respiration. CGA widely exists in higher dicotyledons, ferns and many Chinese medicinal materials, and enjoys the reputation of 'plant gold'. Here, we summarized the source, chemical structure, biological activity functions of CGA and its research progress in pigs, aiming to provide a more comprehensive understanding and theoretical basis for the prospect of CGA replacing antibiotics as a pig feed additive.
Collapse
Affiliation(s)
- Chaohui Dai
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Key Laboratory of Crop and Livestock Integration Ministry of Agriculture and Rural Affairs, Nanjing, China
- Jiangsu Germplasm Resources Protection and Utilization Platform, Nanjing, China
| | - Hui Li
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Key Laboratory of Crop and Livestock Integration Ministry of Agriculture and Rural Affairs, Nanjing, China
- Jiangsu Germplasm Resources Protection and Utilization Platform, Nanjing, China
| | - Weimin Zhao
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Key Laboratory of Crop and Livestock Integration Ministry of Agriculture and Rural Affairs, Nanjing, China
- Jiangsu Germplasm Resources Protection and Utilization Platform, Nanjing, China
| | - Yanfeng Fu
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Key Laboratory of Crop and Livestock Integration Ministry of Agriculture and Rural Affairs, Nanjing, China
- Jiangsu Germplasm Resources Protection and Utilization Platform, Nanjing, China
| | - Jinhua Cheng
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Key Laboratory of Crop and Livestock Integration Ministry of Agriculture and Rural Affairs, Nanjing, China
- Jiangsu Germplasm Resources Protection and Utilization Platform, Nanjing, China
| |
Collapse
|
7
|
Xiao N, Zhang T, Han M, Tian D, Liu J, Li S, Yang L, Pan G. Chlorogenic Acid Inhibits Ceramide Accumulation to Restrain Hepatic Glucagon Response. Nutrients 2023; 15:3173. [PMID: 37513589 PMCID: PMC10384019 DOI: 10.3390/nu15143173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/05/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Chlorogenic acid (CGA), a dietary natural phenolic acid, has been widely reported to regulate glucose and lipid metabolism. However, the protective effects and the underlying mechanisms of CGA on glucagon-induced hepatic glucose production remain largely uncharacterized. Herein, we investigated the efficacy of CGA on hepatic gluconeogenesis both in vivo and in vitro. The elevated levels of endogenous glucose production induced by infusion of glucagon or pyruvate were lowered in mice administered with CGA. Furthermore, chronic CGA treatment ameliorated the accumulation of glucose and ceramide in high-fat diet (HFD)-fed mice. CGA also attenuated HFD-fed-induced inflammation response. The protective effect of CGA on glucose production was further confirmed in primary mouse hepatocytes by inhibiting accumulation of ceramide and expression of p38 MAPK. Moreover, CGA administration in HFD-fed mice preserved the decreased phosphorylation of Akt in the liver, resulting in the inhibition of FoxO1 activation and, ultimately, hepatic gluconeogenesis. However, these protective effects were significantly attenuated by the addition of C2 ceramide. These results suggest that CGA inhibits ceramide accumulation to restrain hepatic glucagon response.
Collapse
Affiliation(s)
- Na Xiao
- College of Agronomy, Shandong Agriculture University, Tai'an 271018, China
| | - Tengfei Zhang
- College of Agronomy, Shandong Agriculture University, Tai'an 271018, China
| | - Mingli Han
- College of Agronomy, Shandong Agriculture University, Tai'an 271018, China
| | - Dan Tian
- College of Agronomy, Shandong Agriculture University, Tai'an 271018, China
| | - Jiawei Liu
- College of Agronomy, Shandong Agriculture University, Tai'an 271018, China
| | - Shan Li
- College of Agronomy, Shandong Agriculture University, Tai'an 271018, China
| | - Lele Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Guojun Pan
- College of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271000, China
| |
Collapse
|
8
|
Hamada S, Mae Y, Takata T, Hanada H, Kubo M, Taniguchi S, Iyama T, Sugihara T, Isomoto H. Five-Aminolevulinic Acid (5-ALA) Induces Heme Oxygenase-1 and Ameliorates Palmitic Acid-Induced Endoplasmic Reticulum Stress in Renal Tubules. Int J Mol Sci 2023; 24:10151. [PMID: 37373300 DOI: 10.3390/ijms241210151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/31/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Steatosis, or ectopic lipid deposition, is the fundamental pathophysiology of non-alcoholic steatohepatitis and chronic kidney disease. Steatosis in the renal tubule causes endoplasmic reticulum (ER) stress, leading to kidney injury. Thus, ER stress could be a therapeutic target in steatonephropathy. Five-aminolevulinic acid (5-ALA) is a natural product that induces heme oxygenase (HO)-1, which acts as an antioxidant. This study aimed to investigate the therapeutic potential of 5-ALA in lipotoxicity-induced ER stress in human primary renal proximal tubule epithelial cells. Cells were stimulated with palmitic acid (PA) to induce ER stress. Cellular apoptotic signals and expression of genes involved in the ER stress cascade and heme biosynthesis pathway were analyzed. The expression of glucose-regulated protein 78 (GRP78), a master regulator of ER stress, increased significantly, followed by increased cellular apoptosis. Administration of 5-ALA induced a remarkable increase in HO-1 expression, thus ameliorating PA-induced GRP78 expression and apoptotic signals. BTB and CNC homology 1 (BACH1), a transcriptional repressor of HO-1, was significantly downregulated by 5-ALA treatment. HO-1 induction attenuates PA-induced renal tubular injury by suppressing ER stress. This study demonstrates the therapeutic potential of 5-ALA against lipotoxicity through redox pathway.
Collapse
Affiliation(s)
- Shintaro Hamada
- Division of Gastroenterology and Nephrology, Faculty of Medicine, Tottori University, Tottori 683-8504, Japan
| | - Yukari Mae
- Division of Gastroenterology and Nephrology, Faculty of Medicine, Tottori University, Tottori 683-8504, Japan
| | - Tomoaki Takata
- Division of Gastroenterology and Nephrology, Faculty of Medicine, Tottori University, Tottori 683-8504, Japan
| | - Hinako Hanada
- Division of Gastroenterology and Nephrology, Faculty of Medicine, Tottori University, Tottori 683-8504, Japan
| | - Misaki Kubo
- Division of Gastroenterology and Nephrology, Faculty of Medicine, Tottori University, Tottori 683-8504, Japan
| | - Sosuke Taniguchi
- Division of Gastroenterology and Nephrology, Faculty of Medicine, Tottori University, Tottori 683-8504, Japan
| | - Takuji Iyama
- Division of Gastroenterology and Nephrology, Faculty of Medicine, Tottori University, Tottori 683-8504, Japan
| | - Takaaki Sugihara
- Division of Gastroenterology and Nephrology, Faculty of Medicine, Tottori University, Tottori 683-8504, Japan
| | - Hajime Isomoto
- Division of Gastroenterology and Nephrology, Faculty of Medicine, Tottori University, Tottori 683-8504, Japan
| |
Collapse
|
9
|
Huang CY, Chen HW, Lo CW, Wang YR, Li CC, Liu KL, Lii CK. Luteolin ameliorates palmitate-induced lipotoxicity in hepatocytes by mediating endoplasmic reticulum stress and autophagy. Food Chem Toxicol 2022; 171:113554. [PMID: 36509263 DOI: 10.1016/j.fct.2022.113554] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/21/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022]
Abstract
Abnormal accumulation of lipids in liver leads to uncontrolled endoplasmic reticulum (ER) stress and autophagy. Luteolin is known to have antioxidant, anti-inflammatory, and anti-cancer properties, but whether it protects against lipotoxicity in liver remains unclear. In this study, we challenged AML12 liver cells and mouse primary hepatocytes with palmitic acid (PA) with or without luteolin pretreatment. In the presence of PA, reactive oxygen species (ROS) production was increased at 3 h, followed by enhancement of expression of p-PERK, ATF4, p-eIF2α, CHOP, and TXNIP (ER stress markers) and p-p62 and LC3II/LC3I ratio (autophagy markers), in both primary hepatocytes and AML12 cells. When PA treatment was extended up to 24 h, apoptosis was induced as evidenced by an increase in caspase-3 activation. RFP-GFP-LC3B transfection further revealed that the fusion of autophagosomes with lysosomes was damaged by PA. With luteolin treatment, the expression of antioxidant enzymes, i.e., heme oxygenase-1 and glutathione peroxidase, was upregulated, and PA-induced ROS production, ER stress, and cell death were dose-dependently ameliorated. Luteolin could also reverse the damage caused to autophagic flux. These results indicate that luteolin protects hepatocytes against PA assault by enhancing antioxidant defense, which can attenuate ER stress and autophagy as well as promote autophagic flux.
Collapse
Affiliation(s)
- Chun-Yin Huang
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | - Haw-Wen Chen
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | - Chia-Wen Lo
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | - Yu-Ru Wang
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | - Chien-Chun Li
- Department of Nutrition, Chung Shan Medical University, Taichung, Taiwan; Department of Nutrition, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Kai-Li Liu
- Department of Nutrition, Chung Shan Medical University, Taichung, Taiwan; Department of Nutrition, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chong-Kuei Lii
- Department of Nutrition, China Medical University, Taichung, Taiwan; Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan.
| |
Collapse
|
10
|
Wang L, Pan X, Jiang L, Chu Y, Gao S, Jiang X, Zhang Y, Chen Y, Luo S, Peng C. The Biological Activity Mechanism of Chlorogenic Acid and Its Applications in Food Industry: A Review. Front Nutr 2022; 9:943911. [PMID: 35845802 PMCID: PMC9278960 DOI: 10.3389/fnut.2022.943911] [Citation(s) in RCA: 108] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 06/06/2022] [Indexed: 01/01/2023] Open
Abstract
Chlorogenic acid (CGA), also known as coffee tannic acid and 3-caffeoylquinic acid, is a water-soluble polyphenolic phenylacrylate compound produced by plants through the shikimic acid pathway during aerobic respiration. CGA is widely found in higher dicotyledonous plants, ferns, and many Chinese medicine plants, which enjoy the reputation of “plant gold.” We have summarized the biological activities of CGA, which are mainly shown as anti-oxidant, liver and kidney protection, anti-bacterial, anti-tumor, regulation of glucose metabolism and lipid metabolism, anti-inflammatory, protection of the nervous system, and action on blood vessels. We further determined the main applications of CGA in the food industry, including food additives, food storage, food composition modification, food packaging materials, functional food materials, and prebiotics. With a view to the theoretical improvement of CGA, biological activity mechanism, and subsequent development and utilization provide reference and scientific basis.
Collapse
Affiliation(s)
- Liang Wang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoqi Pan
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lishi Jiang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu Chu
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Song Gao
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xingyue Jiang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuhui Zhang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yan Chen
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Yan Chen
| | - Shajie Luo
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Shajie Luo
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Cheng Peng
| |
Collapse
|
11
|
Zhang X, Xu P, Lin B, Deng X, Zhu J, Chen X, Liu S, Li R, Wang N, Chen L. Chimonanthus salicifolius attenuated vascular remodeling by alleviating endoplasmic reticulum stress in spontaneously hypertensive rats. Food Funct 2022; 13:6293-6305. [PMID: 35611700 DOI: 10.1039/d1fo04381a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chimonanthus salicifolius (CS), the leaves of Chimonanthus salicifolius S. Y. Hu., is an effective tea to prevent and treat hypertension in China. This study aimed to explore the effect and mechanism of CS in the protection against vascular remodeling in hypertension. Spontaneously hypertensive rats (SHRs) were orally administered with aqueous extracts of CS for 6 months. The blood pressure and morphological changes of the aorta were measured. Their mechanisms were studied by combining chemical identification, network pharmacology analysis and validation in vivo. Hypertensive rats showed an impaired vascular structure and dyslipidemia as illustrated by the increase of the vascular media thickness and collagen deposition in the aorta. CS treatment exhibited significant beneficial effects on blood pressure control and aortal morphology. A total of 21 compounds from CS were identified, which were linked to 106 corresponding targeted genes for vascular remodeling. The network pharmacology predicted that CS prevented vascular remodeling through the endoplasmic reticulum stress pathway. The in vivo experiments further showed that CS treatment upregulated Glucose-Regulated Protein 78 and downregulated CCAAT-enhancer-binding protein homologous protein at both mRNA and protein levels, paralleling reduced apoptotic cells in the arterial wall. Additionally, CS diminished the low-density lipoprotein cholesterol levels, total cholesterol contents and triglyceride/high-density lipoprotein cholesterol ratios in the sera of SHRs, which might also contribute to its protection of vessels. Collectively, CS protects against vascular modeling by suppressing endoplasmic reticulum stress-related apoptosis in hypertension, and it could be a potential agent for the prevention and treatment of vascular modeling.
Collapse
Affiliation(s)
- Xiaoqin Zhang
- Department of Pharmacy, Lishui hospital of traditional Chinese medicine, Lishui, Zhejiang, 323000, China.
| | - Pingcui Xu
- Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang, 310007, China.
| | - Bingfeng Lin
- Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang, 310007, China.
| | - Xuehui Deng
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310007, China.
| | - Jiazhen Zhu
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310007, China.
| | - Xinyi Chen
- Department of Pharmacy, Lishui hospital of traditional Chinese medicine, Lishui, Zhejiang, 323000, China.
| | - Shuang Liu
- Department of Pharmacy, Lishui hospital of traditional Chinese medicine, Lishui, Zhejiang, 323000, China.
| | - Rui Li
- Department of Pharmacy, Lishui hospital of traditional Chinese medicine, Lishui, Zhejiang, 323000, China.
| | - Nani Wang
- Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang, 310007, China. .,School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310007, China.
| | - Liping Chen
- Department of Pharmacy, Lishui hospital of traditional Chinese medicine, Lishui, Zhejiang, 323000, China. .,School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310007, China.
| |
Collapse
|
12
|
Urso C, Zhou H. Palmitic acid-induced defects in cell cycle progression and cytokinesis in Neuro-2a cells. Cell Cycle 2022; 21:1048-1057. [PMID: 35171079 PMCID: PMC9037450 DOI: 10.1080/15384101.2022.2040769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Obesity is associated with elevated levels of free fatty acids (FFAs). Excessive saturated fatty acids (SFAs) exhibit significant deleterious cytotoxic effects in many types of cells. However, the effects of palmitic acid (PA), the most common circulating SFA, on cell cycle progression in neuronal cells have not been well-examined. The aim of this study was to examine whether PA affects the proliferation and cell cycle progression in mouse neuroblastoma Neuro-2a (N2a) cells. Our studies found that 200 µM PA significantly decreased DNA synthesis and mitotic index in N2a cells as early as 4 h following treatment. 24 h treatment with 200 µM PA significantly decreased the percentage of diploid (2 N) cells while dramatically increasing the percentage of tetraploid (4 N) cells as compared to the BSA control. Moreover, our studies found that 24 h treatment with 200 µM PA increased the percentage of binucleate cells as compared to the BSA control. Our studies also found that unsaturated fatty acids (UFAs), including linoleic acid, oleic acid, α-linolenic acid, and docosahexaenoic acid, were able to abolish PA-induced decrease of 2 N cells, increase of 4 N cells, and accumulation of binucleate cells. Taken together, these results suggest that PA may affect multiple aspects of the cell cycle progression in N2a cells, including decreased DNA synthesis, G2/M arrest, and cytokinetic failure, which could be abolished by UFAs.Abbreviations: 4-PBA, 4-Phenylbutyric Acid; ALA, α-linolenic acid; BrdU, 5-bromo-2'-deoxyuridine; DAPI, 4',6-diamidino-2-phenylindole; ER, endoplasmic reticulum; FFA, free fatty acids; FITC, fluorescein isothiocyanate; LA, linoleic acid; MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide; N2a, Neuro-2a; NAC, N-acetyl cysteine; OA, oleic acid; PA, palmitic acid; pHH3, Phosphorylation of histone H3; PI, propidium iodide; SFA, saturated fatty acids; PUFA, polyunsaturated fatty acids; TUNEL, terminal deoxynucleotidyl transferase dUTP nick end labeling; UFA, unsaturated fatty acids.
Collapse
Affiliation(s)
- C.J. Urso
- Department of Biological Sciences, Seton Hall University, South Orange, NJ, USA
| | - Heping Zhou
- Department of Biological Sciences, Seton Hall University, South Orange, NJ, USA,CONTACT Heping Zhou Department of Biological Sciences, Seton Hall University, South Orange, NJ07079, USA
| |
Collapse
|
13
|
Oxidative Stress-Induced Growth Inhibitor (OSGIN1), a Target of X-Box-Binding Protein 1, Protects Palmitic Acid-Induced Vascular Lipotoxicity through Maintaining Autophagy. Biomedicines 2022; 10:biomedicines10050992. [PMID: 35625730 PMCID: PMC9138516 DOI: 10.3390/biomedicines10050992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 11/16/2022] Open
Abstract
Saturated free fatty acids (FFAs) strongly correlate with metabolic syndromes and are well-known risk factors for cardiovascular diseases (CVDs). The mechanism of palmitic acid (PA)-induced vascular lipotoxicity under endoplasmic reticulum (ER) stress is unknown. In the present paper, we investigate the roles of spliced form of X-box-binding protein 1 (XBP1s) target gene oxidative stress-induced growth inhibitor 1 (OSGIN1) in PA-induced vascular dysfunction. PA inhibited the tube formation assay of primary human umbilical vein endothelial cells (HUVECs). Simultaneously, PA treatment induced the XBP1s expression in HUVECs. Attenuate the induction of XBP1s by silencing the XBP1s retarded cell migration and diminished endothelial nitric oxide synthase (eNOS) expression. OSGIN1 is a target gene of XBP1s under PA treatment. The silencing of OSGIN1 inhibits cell migration by decreasing phospho-eNOS expression. PA activated autophagy in endothelial cells, inhibiting autophagy by 3-methyladenine (3-MA) decreased endothelial cell migration. Silencing XBP1s and OSGIN1 would reduce the induction of LC3 II; therefore, OSGIN1 could maintain autophagy to preserve endothelial cell migration. In conclusion, PA treatment induced ER stress and activated the inositol-requiring enzyme 1 alpha–spliced XBP1 (IRE1α–XBP1s) pathway. OSGIN1, a target gene of XBP1s, could protect endothelial cells from vascular lipotoxicity by regulating autophagy.
Collapse
|
14
|
Preetha Rani MR, Salin Raj P, Nair A, Ranjith S, Rajankutty K, Raghu KG. In vitro and in vivo studies reveal the beneficial effects of chlorogenic acid against ER stress mediated ER-phagy and associated apoptosis in the heart of diabetic rat. Chem Biol Interact 2022; 351:109755. [PMID: 34801538 DOI: 10.1016/j.cbi.2021.109755] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/01/2021] [Accepted: 11/16/2021] [Indexed: 11/26/2022]
Abstract
Endoplasmic reticulum (ER) and associated signaling pathways are involved in diabetic cardiomyopathy (DCM) however, detailed studies are not available. The present study investigated the role of ER stress and related pathways such as ER-phagy, apoptosis and their underlying mechanisms using appropriate models. Beneficial effect of chlorogenic acid was also evaluated against ER stress mediated DCM. H9c2 cells with high glucose (33 mM, in vitro model of hyperglycemia) showed significant activation of ER stress response (GRP78, PERK, IRE1α, ATF6α) and altered its regulatory proteins (PDI, ERO1α). Also, it enhanced ER-phagy through upregulation of Sec62, RTN3 and downregulation of FAM134B. High glucose caused apoptosis via increased levels of CHOP, caspase 12 and calnexin. All these proteins (PERK, IRE1α, ATF6α, RTN3, Sec62 and FAM134B) have been found to have a significant role in the functioning of heart such as excitation contraction coupling and we expect these alterations to induce cardiomyopathy during diabetes. This was confirmed in in vivo study too. High fat, high fructose diet with mild streptozotocin induced diabetic rats showed an increased expression of BNP confirming cardiac injury. We also noticed severe ER stress in the heart of diabetic animals. All these have contributed significantly into alterations in histopathology and increase of weight of the hearts. These findings clearly show that ER stress plays a vital protagonist in the progression of DCM. We also found chlorogenic acid is effective against hyperglycemia induced pathological alteration both in vitro as well as in vivo.
Collapse
Affiliation(s)
- M R Preetha Rani
- Biochemistry and Molecular Mechanism Laboratory, Agroprocessing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, Kerala, 695019, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - P Salin Raj
- Biochemistry and Molecular Mechanism Laboratory, Agroprocessing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, Kerala, 695019, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Anupama Nair
- Biochemistry and Molecular Mechanism Laboratory, Agroprocessing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, Kerala, 695019, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - S Ranjith
- Small Animal Research Facility, Jubilee Centre for Medical Research (JCMR), Jubilee Mission Medical College and Research Institute (JMMCRI), Thrissur, Kerala, 680005, India
| | - K Rajankutty
- Small Animal Research Facility, Jubilee Centre for Medical Research (JCMR), Jubilee Mission Medical College and Research Institute (JMMCRI), Thrissur, Kerala, 680005, India
| | - K G Raghu
- Biochemistry and Molecular Mechanism Laboratory, Agroprocessing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, Kerala, 695019, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
15
|
Song L, Wu T, Zhang L, Wan J, Ruan Z. Chlorogenic acid improves the intestinal barrier by relieving endoplasmic reticulum stress and inhibiting ROCK/MLCK signaling pathways. Food Funct 2022; 13:4562-4575. [DOI: 10.1039/d1fo02662c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Phenolic acids play an active role in protecting the intestinal barrier, the structural integrity and function of which are crucial for host health. In the present study, we aimed to...
Collapse
|
16
|
Impact of adiponectin and quercetin on alleviating palmitic acid-induced kidney cell damage through Keap1/Nrf2 pathway. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
17
|
Jin R, Ren H, Liao M, Shang J, Wang D, Li M, Liu N. A dipeptidyl peptidase IV inhibitory peptide relieves palmitic acid-induced endoplasmic reticulum stress in HepG2 cells independent of inhibiting dipeptidyl peptidase IV activity. Food Funct 2021; 12:10773-10782. [PMID: 34609396 DOI: 10.1039/d1fo02283k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The peptide VLATSGPG (VLA) is known to inhibit dipeptidyl peptidase IV (DPP-IV), although its mechanism in relieving endoplasmic reticulum (ER) stress is unclear. In this study, we found that treating HepG2 cells with 1.0 mM VLA reduced DPP-IV activity by 73.7 ± 4.8% without changing the DPP-IV mRNA expression level. In addition, 1.0 and 0.5 mM VLA alleviated palmitic acid (PA)-induced cell death and intracellular calcium imbalances. The levels of apoptosis-related proteins (caspase-3, caspase-9, and CHOP) were reduced by VLA treatment, which was presumed to be related to ER stress. Further studies confirmed that VLA alleviated PA-induced morphological damage to the ER and reduced the levels of the ER stress marker proteins (BIP, p-PERK, and p-IRE1α). VLA alleviated PA-induced ER stress in HepG2 cells independent of DPP-IV enzymatic activity inhibition. These findings have implications for developing novel treatment approaches for liver diseases caused by ER stress.
Collapse
Affiliation(s)
- Ritian Jin
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China. .,Key Lab of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China.,Harbin Tengning Technology Co., Ltd, Harbin, 150010, China
| | - Haowei Ren
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China. .,Key Lab of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China.,Harbin Tengning Technology Co., Ltd, Harbin, 150010, China
| | - Minhe Liao
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China. .,Key Lab of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China.,Harbin Tengning Technology Co., Ltd, Harbin, 150010, China
| | - Jiaqi Shang
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China. .,Key Lab of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China.,Harbin Tengning Technology Co., Ltd, Harbin, 150010, China
| | - Dangfeng Wang
- College of Food Science and Technology, Bohai University, Food Safety Key Lab of Liaoning Province, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning, 121013, China.,College of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Meng Li
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China. .,Key Lab of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China
| | - Ning Liu
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China. .,Key Lab of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China.,Harbin Tengning Technology Co., Ltd, Harbin, 150010, China
| |
Collapse
|
18
|
5-Aminolevulinic Acid Attenuates Glucose-Regulated Protein 78 Expression and Hepatocyte Lipoapoptosis via Heme Oxygenase-1 Induction. Int J Mol Sci 2021; 22:ijms222111405. [PMID: 34768836 PMCID: PMC8584191 DOI: 10.3390/ijms222111405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/13/2021] [Accepted: 10/19/2021] [Indexed: 02/06/2023] Open
Abstract
Endoplasmic reticulum (ER) stress plays a pivotal role in the progression of steatohepatitis. 5-aminolevulinic acid (5-ALA), a precursor in the heme biosynthetic pathway, has recently been reported to induce heme oxygenase (HO)-1. HO-1 exerts important cytoprotective actions. In this study, we aimed to explore the therapeutic potential of 5-ALA on palmitate-induced ER stress and lipoapoptosis. Huh-7 cells were treated with palmitic acid (PA) (800 μM) to induce steatosis for eight hours. Steatosis was evaluated by Lipi-green staining. 5-ALA (200 μM) was added with PA. The gene expression levels of the nuclear factor erythroid 2-related factor 2 (NRF2), HO-1, Glucose-regulated protein 78 (GRP78), activating transcription factor 6 (ATF6), PKR-like endoplasmic reticulum kinase (PERK), inositol-requiring enzyme 1 (IRE1), C/EBP homologous protein (CHOP), and B-cell lymphoma 2 (BCL-2) were evaluated by RT-PCR. Caspase-3/7 activity was evaluated by fluorescein active Caspase-3/7 staining. Cell death was evaluated by Annexin V/SYTOX green staining. PA significantly induced steatosis and increased GRP78 expression in Huh-7 cells. 5-ALA significantly induced HO-1 and decreased GRP78 expression. ATF6 was subsequently decreased. However, NRF2 and CHOP expression were not altered. Anti-apoptotic BCL-2 expression significantly increased, and Caspase 3/7 activity and cell death also decreased. 5-ALA has a therapeutic potential on hepatic steatosis by suppressing ER stress and lipoapoptosis by attenuating GRP78 via HO-1 induction.
Collapse
|
19
|
Lu MC, Lee IT, Hong LZ, Ben-Arie E, Lin YH, Lin WT, Kao PY, Yang MD, Chan YC. Coffeeberry Activates the CaMKII/CREB/BDNF Pathway, Normalizes Autophagy and Apoptosis Signaling in Nonalcoholic Fatty Liver Rodent Model. Nutrients 2021; 13:nu13103652. [PMID: 34684653 PMCID: PMC8541094 DOI: 10.3390/nu13103652] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 12/02/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) shows extensive liver cell destruction with lipid accumulation, which is frequently accompanied by metabolic comorbidities and increases mortality. This study aimed to investigate the effects of coffeeberry (CB) on regulating the redox status, the CaMKII/CREB/BDNF pathway, autophagy, and apoptosis signaling by a NAFLD rodent model senescence-accelerated mice prone 8 (SAMP8). Three-month-old male SAMP8 mice were divided into a control group and three CB groups (50, 100, and 200 mg/kg BW), and fed for 12 weeks. The results show that CB reduced hepatic malondialdehyde and carbonyl protein levels. CB significantly enhanced Ca2+/calmodulin-dependent protein kinase II (CaMKII) and brain-derived neurotrophic factor (BDNF) and reduced the phospho-cAMP response element-binding protein (p-CREB)/CREB ratio. In addition, CB increased the silent information regulator T1 level, promoted Beclin 1 and microtubule-associated protein light chain 3 II expressions, and reduced phosphorylated mammalian target of rapamycin and its downstream p-p70s6k levels. CB also inhibited the expressions of apoptosis-related factors poly (ADP-ribose) polymerase-1 and the apoptosis-inducing factor. In conclusion, CB might protect the liver by reducing oxidative stress, activating the CaMKII/CREB/BDNF pathway, and improving autophagic and apoptotic expressions in a dose-dependent manner.
Collapse
Affiliation(s)
- Meng-Chun Lu
- Department of Clinical Nutrition, China Medical University Hospital, Taichung 406040, Taiwan;
- Department of Nutrition, China Medical University, Taichung 406040, Taiwan
- Department of Food and Nutrition, Providence University, Taichung 43301, Taiwan; (Y.-H.L.); (W.-T.L.)
| | - I-Te Lee
- Division of Endocrinology and Metabolism, Taichung Veterans General Hospital, Taichung 40705, Taiwan;
| | - Ling-Zong Hong
- Department of Medical Research, Taichung Veterans General Hospital, Taichung 40705, Taiwan;
| | - Eyal Ben-Arie
- Graduate Institute of Acupuncture Science, Collage of Chinese Medicine, China Medical University, Taichung 406040, Taiwan;
| | - Yu-Hsuan Lin
- Department of Food and Nutrition, Providence University, Taichung 43301, Taiwan; (Y.-H.L.); (W.-T.L.)
| | - Wei-Ting Lin
- Department of Food and Nutrition, Providence University, Taichung 43301, Taiwan; (Y.-H.L.); (W.-T.L.)
| | - Pei-Yu Kao
- Division of Thoracic Surgery, Department of Surgery, China Medical University Hospital, Taichung 406040, Taiwan;
| | - Mei-Due Yang
- Division of General Surgery, Department of Surgery, China Medical University Hospital, Taichung 406040, Taiwan;
| | - Yin-Ching Chan
- Department of Food and Nutrition, Providence University, Taichung 43301, Taiwan; (Y.-H.L.); (W.-T.L.)
- Correspondence:
| |
Collapse
|
20
|
Elfiky AA. Natural products may interfere with SARS-CoV-2 attachment to the host cell. J Biomol Struct Dyn 2021; 39:3194-3203. [PMID: 32340551 PMCID: PMC7212544 DOI: 10.1080/07391102.2020.1761881] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 04/23/2020] [Indexed: 12/16/2022]
Abstract
SARS-CoV-2 has been emerged in December 2019 in China, causing deadly (5% mortality) pandemic pneumonia, termed COVID-19. More than one host-cell receptor is reported to be recognized by the viral spike protein, among them is the cell-surface Heat Shock Protein A5 (HSPA5), also termed GRP78 or BiP. Upon viral infection, HSPA5 is upregulated, then translocating to the cell membrane where it is subjected to be recognized by the SARS-CoV-2 spike. In this study, some natural product compounds are tested against the HSPA5 substrate-binding domain β (SBDβ), which reported to be the recognition site for the SARS-CoV-2 spike. Molecular docking and molecular dynamics simulations are used to test some natural compounds binding to HSPA5 SBDβ. The results show high to a moderate binding affinity for the phytoestrogens (Diadiazin, Genistein, Formontein, and Biochanin A), chlorogenic acid, linolenic acid, palmitic acid, caffeic acid, caffeic acid phenethyl ester, hydroxytyrosol, cis-p-Coumaric acid, cinnamaldehyde, thymoquinone, and some physiological hormones such as estrogens, progesterone, testosterone, and cholesterol to the HSPA5 SBDβ. Based on its binding affinities, the phytoestrogens and estrogens are the best in binding HSPA5, hence may interfere with SARS-CoV-2 attachment to the stressed cells. These compounds can be successful as anti-COVID-19 agents for people with a high risk of cell stress like elders, cancer patients, and front-line medical staff.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Abdo A. Elfiky
- Faculty of Sciences, Department of Biophysics, Cairo University, Giza, Egypt
| |
Collapse
|
21
|
Chang Z, Yang M, Ji H. Molecular characterization and functional analysis of apoptosis-inducing factor (AIF) in palmitic acid-induced apoptosis in Ctenopharyngodon idellus kidney (CIK) cells. FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:213-224. [PMID: 33528736 DOI: 10.1007/s10695-020-00907-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 11/23/2020] [Indexed: 06/12/2023]
Abstract
Palmitic acid (PA), the most common saturated free fatty acid, may cause apoptosis when overloaded in non-fat cells. Apoptosis-inducing factor (AIF) is known to translocate from the mitochondria into the nucleus to induce apoptosis. However, it remains to be investigated whether AIF involved in palmitic acid-induced lipoapoptosis in fish. In the present study, we cloned a coding sequence of grass carp (Ctenopharyngodon idella) AIF (CiAIF) gene, and determined its function in Ctenopharyngodon idellus kidney (CIK) cells. The open reading frame (ORF) of CiAIF gene is 1863 bp, encoding a precursor protein of 620 amino acids (aa). Sequence analysis indicated that CiAIF contains a mitochondrial localization sequence, a conserved Pyr_redox and a C-terminal domain. Phylogenetic analyses showed that the CiAIF gene tended to cluster with sequences from Danio rerio. CiAIF gene was ubiquitously expressed in all tested tissues, including heart, liver, spleen, muscle, brain, eye, kidney, intestine, and fat. Moreover, we demonstrated that PA treatment induced the expression level of CiAIF and increases in markers of endoplasmic reticulum (ER) stress and apoptosis. Meanwhile, ER stress-inducing agent thapsigargin (TG) induced CiAIF translocated into the nucleus in CIK cells, whereas the suppression of ER stress inhibited PA-induced CiAIF expression and apoptosis. In addition, overexpression of CiAIF caused apoptosis by upregulating capase9, capase8, and capase3b, and affects protein translation via directly interacting with CieIF3g. Taken together, our data indicate that in Ctenopharyngodon idellus, PA is key elements that affect not only ER stress and mitochondrial apoptosis but also different physiological functions, such as protein translation, and CiAIF might play a key role in this progress.
Collapse
Affiliation(s)
- Zhiguang Chang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi Province, China
| | - Minghui Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi Province, China
| | - Hong Ji
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi Province, China.
| |
Collapse
|
22
|
Sharmin MM, Islam MA, Yamamoto I, Taniguchi S, Yonekura S. 5-ALA Attenuates the Palmitic Acid-Induced ER Stress and Apoptosis in Bovine Mammary Epithelial Cells. Molecules 2021; 26:molecules26041183. [PMID: 33672109 PMCID: PMC7926617 DOI: 10.3390/molecules26041183] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 02/19/2021] [Accepted: 02/19/2021] [Indexed: 11/24/2022] Open
Abstract
The conservation of mammary gland physiology by maintaining the maximum number of mammary epithelial cells (MECs) is of the utmost importance for the optimum amount of milk production. In a state of negative energy balance, palmitic acid (PA) reduces the number of bovine MECs. However, there is no effective strategy against PA-induced apoptosis of MECs. In the present study, 5-aminolevulinic acid (5-ALA) was established as a remedial agent against PA-induced apoptosis of MAC-T cells (an established line of bovine MECs). In PA-treated cells, the apoptosis-related genes BCL2 and BAX were down- and upregulated, respectively. The elevated expression of major genes of the unfolded protein response (UPR), such as CHOP, a proapoptotic marker (C/EBP homologous protein), reduced the viability of PA-treated MAC-T cells. In contrast, 5-ALA pretreatment increased and decreased BCL2 and BAX expression, respectively. Moreover, cleaved caspase-3 protein expression was significantly reduced in the 5-ALA-pretreated group in comparison with the PA group. The downregulation of major UPR-related genes, including CHOP, extended the viability of MAC-T cells pretreated with 5-ALA and also reduced the enhanced intensity of the PA-induced expression of phospho-protein kinase R-like ER kinase. Moreover, the enhanced expression of HO-1 (antioxidant gene heme oxygenase) by 5-ALA reduced PA-induced oxidative stress (OxS). HO-1 is not only protective against OxS but also effective against ER stress. Collectively, these findings offer new insights into the protective effects of 5-ALA against PA-induced apoptosis of bovine MECs.
Collapse
Affiliation(s)
- Mst Mamuna Sharmin
- Department of Biomedical Engineering, Graduate School of Medicine, Science and Technology, Shinshu University, Minamiminowa, Kamiina-gun, Nagano 399-4598, Japan; (M.M.S.); (M.A.I.)
| | - Md Aminul Islam
- Department of Biomedical Engineering, Graduate School of Medicine, Science and Technology, Shinshu University, Minamiminowa, Kamiina-gun, Nagano 399-4598, Japan; (M.M.S.); (M.A.I.)
| | - Itsuki Yamamoto
- Department of Biomedical Engineering, Graduate School of Science and Technology, Shinshu University, Minamiminowa, Kamiina, Nagano 399-4598, Japan;
| | - Shin Taniguchi
- Neopharma Japan Co., Ltd., Tokyo 102-0071, Japan;
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima 739-8528, Japan
| | - Shinichi Yonekura
- Department of Biomedical Engineering, Graduate School of Medicine, Science and Technology, Shinshu University, Minamiminowa, Kamiina-gun, Nagano 399-4598, Japan; (M.M.S.); (M.A.I.)
- Department of Biomedical Engineering, Graduate School of Science and Technology, Shinshu University, Minamiminowa, Kamiina, Nagano 399-4598, Japan;
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, 8304 Minamiminowa, Kamiina, Nagano 399-4598, Japan
- Correspondence: ; Tel.: +81-265-77-1443
| |
Collapse
|
23
|
Arroyave-Ospina JC, Wu Z, Geng Y, Moshage H. Role of Oxidative Stress in the Pathogenesis of Non-Alcoholic Fatty Liver Disease: Implications for Prevention and Therapy. Antioxidants (Basel) 2021; 10:antiox10020174. [PMID: 33530432 PMCID: PMC7911109 DOI: 10.3390/antiox10020174] [Citation(s) in RCA: 282] [Impact Index Per Article: 70.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 02/07/2023] Open
Abstract
Oxidative stress (OxS) is considered a major factor in the pathophysiology of inflammatory chronic liver diseases, including non-alcoholic liver disease (NAFLD). Chronic impairment of lipid metabolism is closely related to alterations of the oxidant/antioxidant balance, which affect metabolism-related organelles, leading to cellular lipotoxicity, lipid peroxidation, chronic endoplasmic reticulum (ER) stress, and mitochondrial dysfunction. Increased OxS also triggers hepatocytes stress pathways, leading to inflammation and fibrogenesis, contributing to the progression of non-alcoholic steatohepatitis (NASH). The antioxidant response, regulated by the Nrf2/ARE pathway, is a key component in this process and counteracts oxidative stress-induced damage, contributing to the restoration of normal lipid metabolism. Therefore, modulation of the antioxidant response emerges as an interesting target to prevent NAFLD development and progression. This review highlights the link between disturbed lipid metabolism and oxidative stress in the context of NAFLD. In addition, emerging potential therapies based on antioxidant effects and their likely molecular targets are discussed.
Collapse
|
24
|
Chlorogenic Acid Potentiates the Anti-Inflammatory Activity of Curcumin in LPS-Stimulated THP-1 Cells. Nutrients 2020; 12:nu12092706. [PMID: 32899726 PMCID: PMC7551420 DOI: 10.3390/nu12092706] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/27/2020] [Accepted: 08/30/2020] [Indexed: 02/03/2023] Open
Abstract
The anti-inflammatory effects of curcumin are well documented. However, the bioavailability of curcumin is a major barrier to its biological efficacy. Low-dose combination of complimentary bioactives appears to be an attractive strategy for limiting barriers to efficacy of bioactive compounds. In this study, the anti-inflammatory potential of curcumin in combination with chlorogenic acid (CGA), was investigated using human THP-1 macrophages stimulated with lipopolysaccharide (LPS). Curcumin alone suppressed TNF-α production in a dose-dependent manner with a decrease in cell viability at higher doses. Although treatment with CGA alone had no effect on TNF-α production, it however enhanced cell viability and co-administration with curcumin at a 1:1 ratio caused a synergistic reduction in TNF-α production with no impact on cell viability. Furthermore, an qRT-PCR analysis of NF-κB pathway components and inflammatory biomarkers indicated that CGA alone was not effective in reducing the mRNA expression of any of the tested inflammatory marker genes, except TLR-4. However, co-administration of CGA with curcumin, potentiated the anti-inflammatory effects of curcumin. Curcumin and CGA together reduced the mRNA expression of pro-inflammatory cytokines [TNF-α (~88%) and IL-6 (~99%)], and COX-2 (~92%), possibly by suppression of NF-κB (~78%), IκB-β-kinase (~60%) and TLR-4 receptor (~72%) at the mRNA level. Overall, co-administration with CGA improved the inflammation-lowering effects of curcumin in THP-1 cells.
Collapse
|
25
|
Oleic Acid Counters Impaired Blastocyst Development Induced by Palmitic Acid During Mouse Preimplantation Development: Understanding Obesity-Related Declines in Fertility. Reprod Sci 2020; 27:2038-2051. [PMID: 32542540 PMCID: PMC7522107 DOI: 10.1007/s43032-020-00223-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 05/25/2020] [Indexed: 01/07/2023]
Abstract
Obesity is associated with altered fatty acid profiles, reduced fertility, and assisted reproductive technology (ART) success. The effects of palmitic acid (PA), oleic acid (OA), and their combination on mouse preimplantation development, endoplasmic reticulum (ER) stress pathway gene expression, lipid droplet formation, and mitochondrial reactive oxygen species (ROS) were characterized. Two-cell stage mouse embryos collected from superovulated and mated CD1 females were placed into culture with KSOMaa medium, or PA alone or in combination with OA for 46 h. PA significantly reduced blastocyst development in a concentration-dependent manner, which was prevented by co-treatment with OA. PA and OA levels in mouse reproductive tracts were assessed by liquid chromatography coupled to mass spectrometry (LC-MS). LC-MS indicated higher concentrations of PA in the mouse oviduct than the uterus. Transcript analysis revealed that PA alone groups had increased ER stress pathway (ATF3, CHOP, and XBP1 splicing) mRNAs, which was alleviated by OA co-treatment. OA co-treatment significantly increased lipid droplet accumulation and significantly decreased mitochondrial ROS from PA treatment alone. PA treatment for only 24 h significantly reduced its impact on blastocyst development from the 2-cell stage. Thus, PA affects ER stress pathway gene expression, lipid droplet accumulation, and mitochondrial ROS in treated preimplantation embryos. These mechanisms may serve to offset free fatty acid exposure effects on preimplantation development, but their protective ability may be overwhelmed by elevated PA.
Collapse
|
26
|
Zakłos-Szyda M, Kowalska-Baron A, Pietrzyk N, Drzazga A, Podsędek A. Evaluation of Viburnum opulus L. Fruit Phenolics Cytoprotective Potential on Insulinoma MIN6 Cells Relevant for Diabetes Mellitus and Obesity. Antioxidants (Basel) 2020; 9:E433. [PMID: 32429334 PMCID: PMC7278587 DOI: 10.3390/antiox9050433] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/14/2020] [Accepted: 05/14/2020] [Indexed: 12/16/2022] Open
Abstract
In this study, the influence of guelder rose (Viburnum opulus) fruit fresh juice (FJ) and a phenolic-rich fraction (PRF) isolated from juice on mice insulinoma MIN6 cells activities was investigated. Extracts were able to decrease intracellular oxidative stress at the highest non-cytotoxic concentrations. They induced glucagon-like peptide-1 (GLP-1) secretion in the presence of an elevated glucose concentration, and they inhibited in vitro activity of the dipeptidyl peptidase-4 (DPP4) enzyme. Nonetheless, inhibition of glucose-stimulated insulin secretion was detected, which was accompanied by a decrease of cellular membrane fluidity and hyperpolarization effect. In addition, the increase of free fatty acid uptake and accumulation of lipid droplets in MIN6 cells were observed. Elevated extract concentrations induced cell apoptosis through the intrinsic mitochondrial pathway with activation of initiatory caspase-9 and downstream caspases-3/7. The fluorescence-quenching studies indicated that PRF extract has binding affinity to human serum albumin, which is one of the factors determining drug bioavailability. Taken together, despite the cytoprotective activity against generated intracellular oxidative stress, V. opulus revealed potential toxic effects as well as decreased insulin secretion from MIN6 cells. These findings are relevant in understanding V. opulus limitations in developing diet supplements designed for the prevention and treatment of postprandial glucose elevation.
Collapse
Affiliation(s)
- Małgorzata Zakłos-Szyda
- Institute of Molecular and Industrial Biotechnology, Department of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 4/10, 90-924 Lodz, Poland; (N.P.); (A.D.); (A.P.)
| | - Agnieszka Kowalska-Baron
- Institute of Natural Raw Materials and Cosmetics, Department of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 4/10, 90-924 Lodz, Poland;
| | - Nina Pietrzyk
- Institute of Molecular and Industrial Biotechnology, Department of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 4/10, 90-924 Lodz, Poland; (N.P.); (A.D.); (A.P.)
| | - Anna Drzazga
- Institute of Molecular and Industrial Biotechnology, Department of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 4/10, 90-924 Lodz, Poland; (N.P.); (A.D.); (A.P.)
| | - Anna Podsędek
- Institute of Molecular and Industrial Biotechnology, Department of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 4/10, 90-924 Lodz, Poland; (N.P.); (A.D.); (A.P.)
| |
Collapse
|
27
|
Xie RJ, Hu XX, Zheng L, Cai S, Chen YS, Yang Y, Yang T, Han B, Yang Q. Calpain-2 activity promotes aberrant endoplasmic reticulum stress-related apoptosis in hepatocytes. World J Gastroenterol 2020; 26:1450-1462. [PMID: 32308346 PMCID: PMC7152521 DOI: 10.3748/wjg.v26.i13.1450] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/20/2020] [Accepted: 03/09/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Calpain-2 is a Ca2+-dependent cysteine protease, and high calpain-2 activity can enhance apoptosis mediated by multiple triggers.
AIM To investigate whether calpain-2 can modulate aberrant endoplasmic reticulum (ER) stress-related apoptosis in rat hepatocyte BRL-3A cells.
METHODS BRL-3A cells were treated with varying doses of dithiothreitol (DTT), and their viability and apoptosis were quantified by 3-[4, 5-dimethyl-2-thiazolyl]-2, 5-diphenyl-2-H-tetrazolium bromide and flow cytometry. The expression of ER stress- and apoptosis-related proteins was detected by Western blot analysis. The protease activity of calpain-2 was determined using a fluorescent substrate, N-succinyl-Leu-Leu-Val-Tyr-AMC. Intracellular Ca2+ content, and ER and calpain-2 co-localization were characterized by fluorescent microscopy. The impact of calpain-2 silencing by specific small interfering RNA on caspase-12 activation and apoptosis of BRL-3A cells was quantified.
RESULTS DTT exhibited dose-dependent cytotoxicity against BRL-3A cells and treatment with 2 mmol/L DTT triggered BRL-3A cell apoptosis. DTT treatment significantly upregulated 78 kDa glucose-regulated protein, activating transcription factor 4, C/EBP-homologous protein expression by >2-fold, and enhanced PRKR-like ER kinase phosphorylation, caspase-12 and caspase-3 cleavage in BRL-3A cells in a trend of time-dependence. DTT treatment also significantly increased intracellular Ca2+ content, calpain-2 expression, and activity by >2-fold in BRL-3A cells. Furthermore, immunofluorescence revealed that DTT treatment promoted the ER accumulation of calpain-2. Moreover, calpain-2 silencing to decrease calpain-2 expression by 85% significantly mitigated DTT-enhanced calpain-2 expression, caspase-12 cleavage, and apoptosis in BRL-3A cells.
CONCLUSION The data indicated that Ca2+-dependent calpain-2 activity promoted the aberrant ER stress-related apoptosis of rat hepatocytes by activating caspase-12 in the ER.
Collapse
Affiliation(s)
- Ru-Jia Xie
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, College of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, Guizhou Province, China
- Department of Pathophysiology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, Guizhou Province, China
| | - Xiao-Xia Hu
- Department of Physiology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, Guizhou Province, China
| | - Lu Zheng
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, College of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, Guizhou Province, China
- Department of Pathophysiology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, Guizhou Province, China
| | - Shuang Cai
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, College of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, Guizhou Province, China
- Department of Pathophysiology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, Guizhou Province, China
| | - Yu-Si Chen
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, College of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, Guizhou Province, China
- Department of Pathophysiology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, Guizhou Province, China
| | - Yi Yang
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, College of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, Guizhou Province, China
- Department of Pathophysiology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, Guizhou Province, China
| | - Ting Yang
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, College of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, Guizhou Province, China
- Department of Pathophysiology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, Guizhou Province, China
| | - Bing Han
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, College of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, Guizhou Province, China
- Department of Pathophysiology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, Guizhou Province, China
| | - Qin Yang
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, College of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, Guizhou Province, China
- Department of Pathophysiology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, Guizhou Province, China
| |
Collapse
|
28
|
Ghazali R, Mehta KJ, Bligh SA, Tewfik I, Clemens D, Patel VB. High omega arachidonic acid/docosahexaenoic acid ratio induces mitochondrial dysfunction and altered lipid metabolism in human hepatoma cells. World J Hepatol 2020; 12:84-98. [PMID: 32231762 PMCID: PMC7097500 DOI: 10.4254/wjh.v12.i3.84] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 12/24/2019] [Accepted: 01/14/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is a common cause of liver disease worldwide and is a growing epidemic. A high ratio of omega-6 fatty acids to omega-3 fatty acids in the diet has been implicated in the development of NAFLD. However, the inflicted cellular pathology remains unknown. A high ratio may promote lipogenic pathways and contribute to reactive oxygen species (ROS)-mediated damage, perhaps leading to mitochondrial dysfunction. Therefore, these parameters were investigated to understand their contribution to NAFLD development. AIM To examine the effect of increasing ratios of omega-6:3 fatty acids on mitochondrial function and lipid metabolism mediators. METHODS HepG2-derived VL-17A cells were treated with normal (1:1, 4:1) and high (15:1, 25:1) ratios of omega-6: omega-3 fatty acids [arachidonic acid (AA): docosahexaenoic acid (DHA)] at various time points. Mitochondrial activity and function were examined via MTT assay and Seahorse XF24 analyzer, respectively. Triglyceride accumulation was determined by using EnzyChrom™ and levels of ROS were measured by fluorescence intensity. Protein expression of the mediators of lipogenic, lipolytic and endocannabinoid pathways was assessed by Western blotting. RESULTS High AA:DHA ratio decreased mitochondrial activity (P < 0.01; up to 80%) and promoted intracellular triglyceride accumulation (P < 0.05; 40%-70%). Mechanistically, it altered the mediators of lipid metabolism; increased the expression of stearoyl-CoA desaturase (P < 0.05; 22%-35%), decreased the expression of peroxisome proliferator-activated receptor-alpha (P < 0.05; 30%-40%) and increased the expression of cannabinoid receptor 1 (P < 0.05; 31%). Furthermore, the high ratio increased ROS production (P < 0.01; 74%-115%) and reduced mitochondrial respiratory functions such as basal and maximal respiration, ATP production, spare respiratory capacity and proton leak (P < 0.01; 35%-68%). CONCLUSION High AA:DHA ratio induced triglyceride accumulation, increased oxidative stress and disrupted mitochondrial functions. Stimulation of lipogenic and steroidal transcription factors may partly mediate these effects and contribute to NAFLD development.
Collapse
Affiliation(s)
- Reem Ghazali
- School of Life Sciences, University of Westminster, London W1W 6UW, United Kingdom
| | - Kosha J Mehta
- Centre for Education, Faculty of Life Sciences and Medicine, King's College London SE1 1UL, United Kingdom
| | - Sw Annie Bligh
- School of Life Sciences, University of Westminster, London W1W 6UW, United Kingdom
| | - Ihab Tewfik
- School of Life Sciences, University of Westminster, London W1W 6UW, United Kingdom
| | - Dahn Clemens
- Nebraska and Western Iowa Veterans Administration Medical Center and Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Vinood B Patel
- School of Life Sciences, University of Westminster, London W1W 6UW, United Kingdom.
| |
Collapse
|
29
|
Yang L, Wei J, Sheng F, Li P. Attenuation of Palmitic Acid-Induced Lipotoxicity by Chlorogenic Acid through Activation of SIRT1 in Hepatocytes. Mol Nutr Food Res 2019; 63:e1801432. [PMID: 31168914 DOI: 10.1002/mnfr.201801432] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 03/28/2019] [Indexed: 12/22/2022]
Abstract
SCOPE Saturated free fatty acids (FFAs) induce hepatocyte lipotoxicity, wherein oxidative stress-associated mitochondrial dysfunction is mechanistically involved. Chlorogenic acid (CGA), a potent antioxidant and anti-inflammatory compound, protects against high-fat-diet-induced oxidative stress and mitochondrial dysfunction in liver. This study investigates whether CGA protects against FFA-induced hepatocyte lipotoxicity via the regulation of mitochondrial fission/fusion and elucidates its underlying mechanisms. METHODS AND RESULTS AML12 cell, a non-transformed hepatocyte cell line, is treated with palmitate. Here, it is shown that CGA prevents palmitate-induced lipotoxicity by activation of SIRT1 regulated mitochondrial morphology. CGA treatment mitigates oxidative stress and mitochondrial dysfunction, as evidenced by a decrease in reactive oxygen species (ROS) production, and an increase in mitochondrial mass and mitochondrial membrane potential. CGA also significantly decreases Bax expression and thereby reduces mitochondria-mediated caspase-dependent apoptosis. Mechanistically, CGA attenuates ROS-induced mitochondrial fragmentation by inhibiting dynamin-related protein 1 (Drp1) and enhancing Mfn2 expression. In contrast, the inhibitory effects of CGA on the generation of mitochondrial ROS and Drp1 are blocked by siRNA knockdown of SIRT1. CONCLUSION Collectively, these findings show that supplementation with CGA protects hepatocytes from FFA-induced lipotoxicity through activation of SIRT1, which reverses the oxidative stress and dysfunction of mitochondrial biogenesis directly.
Collapse
Affiliation(s)
- Lele Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, China
| | - Jinchao Wei
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, China
| | - Feiya Sheng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, China
| | - Peng Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, China
| |
Collapse
|
30
|
Chen Z, Lei L, Wen D, Yang L. Melatonin attenuates palmitic acid-induced mouse granulosa cells apoptosis via endoplasmic reticulum stress. J Ovarian Res 2019; 12:43. [PMID: 31077207 PMCID: PMC6511168 DOI: 10.1186/s13048-019-0519-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 04/30/2019] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Palmitic acid (PA), the main component of dietary saturated fat, causes apoptosis in many cell types, including mouse granulosa cell. Melatonin, an important endogenous hormone, has beneficial effects on female reproductive processes. Since elevated PA levels are present in follicular fluid (FF) of patients with infertility and are shown to be toxic for granulosa cells, we investigated the molecular mechanisms of PA toxicity in mouse granulosa cells and explored the effects of melatonin on PA-induced apoptosis. METHODS Granulosa cells from immature female mice were cultured for 24 h in medium containing PA and/or melatonin. Then, the effects of PA alone or combined with melatonin on viability, apoptosis and endoplasmic reticulum (ER) stress in granulosa cells were detected by methyl thiazolyl tetrazolium (MTT) assay, flow cytometry assay and western blot. After 48 h of PA and/or melatonin treatment, the concentrations of estradiol (E2) and progesterone (P4) in the culture supernatants were measured with ELISA kits. RESULTS In this study, we explored the effects of melatonin on cell viability and apoptosis in PA-treated mouse granulosa cells and uncovered the signaling pathways involved in these processes. Our results showed that 200-800 μM PA treatment reduces cell viability, induces cell apoptosis, enhances the expression of apoptosis-related genes (Caspase 3 and B-cell lymphoma-2 (BCL-2) associated X protein (BAX)), and activates the expression of ER stress marker genes (glucose-regulated protein 78 (GRP78) and CCAAT/enhancer binding protein homologous protein (CHOP)). Melatonin treatment (1-10 μM) suppresses 400 μM PA-induced cell viability decrease, cell apoptosis, Caspase 3 activation, and BAX, CHOP, and GRP78 expression. In addition, we found that 10 μM melatonin successfully attenuated the 400 μM PA-induced estrogen (E2) and progesterone (P4) decreases. CONCLUSIONS This study suggests that PA triggers cell apoptosis via ER stress and that melatonin protects cells against apoptosis by inhibiting ER stress in mouse granulosa cells.
Collapse
Affiliation(s)
- Zhi Chen
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Guizhou, 558000, Duyun, China
| | - Lanjie Lei
- Affiliated Hospital of Jiujiang University, Jiujiang University, Jiujiang, 332000, Jiangxi, China
- Key Laboratory of System Bio-medicine of Jiangxi Province, Jiujiang University, Jiujiang, 332000, Jiangxi, China
| | - Di Wen
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Guizhou, 558000, Duyun, China
| | - Lei Yang
- Key Laboratory of System Bio-medicine of Jiangxi Province, Jiujiang University, Jiujiang, 332000, Jiangxi, China.
- College of Basic Medical Science, Jiujiang University, Jiujiang, 332000, Jiangxi, China.
| |
Collapse
|
31
|
Lebeau PF, Byun JH, Platko K, MacDonald ME, Poon SV, Faiyaz M, Seidah NG, Austin RC. Diet-induced hepatic steatosis abrogates cell-surface LDLR by inducing de novo PCSK9 expression in mice. J Biol Chem 2019; 294:9037-9047. [PMID: 31004037 DOI: 10.1074/jbc.ra119.008094] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/09/2019] [Indexed: 12/11/2022] Open
Abstract
The worldwide prevalence of non-alcoholic fatty liver disease (NAFLD) is increasing rapidly. Although this condition is generally benign, accumulating evidence now suggests that patients with NAFLD are also at increased risk of cardiovascular disease (CVD); the leading cause of death in developed nations. Despite the well-established role of the liver as a central regulator of circulating low-density lipoprotein (LDL) cholesterol levels, a known driver of CVD, the mechanism(s) by which hepatic steatosis contributes to CVD remains elusive. Interestingly, a recent study has shown that circulating proprotein convertase subtilisin/kexin type 9 (PCSK9) levels correlate positively with liver steatosis grade. Given that PCSK9 degrades the LDL receptor (LDLR) and prevents the removal of LDL from the blood into the liver, in the present study we examined the effect of hepatic steatosis on LDLR expression and circulating LDL cholesterol levels. We now report that in a manner consistent with findings in patients, diet-induced steatosis increases circulating PCSK9 levels as a result of de novo expression in mice. We also report the finding that steatosis abrogates hepatic LDLR expression and increases circulating LDL levels in a PCSK9-dependent manner. These findings provide important mechanistic insights as to how hepatic steatosis modulates lipid regulatory genes, including PCSK9 and the LDLR, and also highlights a novel mechanism by which liver disease may contribute to CVD.
Collapse
Affiliation(s)
- Paul F Lebeau
- From the Department of Medicine, McMaster University, The Research Institute of St. Joe's Hamilton, Hamilton, Ontario L8N 4A6 and
| | - Jae Hyun Byun
- From the Department of Medicine, McMaster University, The Research Institute of St. Joe's Hamilton, Hamilton, Ontario L8N 4A6 and
| | - Khrystyna Platko
- From the Department of Medicine, McMaster University, The Research Institute of St. Joe's Hamilton, Hamilton, Ontario L8N 4A6 and
| | - Melissa E MacDonald
- From the Department of Medicine, McMaster University, The Research Institute of St. Joe's Hamilton, Hamilton, Ontario L8N 4A6 and
| | - Samantha V Poon
- From the Department of Medicine, McMaster University, The Research Institute of St. Joe's Hamilton, Hamilton, Ontario L8N 4A6 and
| | - Mahi Faiyaz
- From the Department of Medicine, McMaster University, The Research Institute of St. Joe's Hamilton, Hamilton, Ontario L8N 4A6 and
| | - Nabil G Seidah
- the Laboratory of Biochemical Neuroendocrinology, Montreal Clinical Research Institute, University of Montreal, Montreal, Quebec H2W 1R7, Canada
| | - Richard C Austin
- From the Department of Medicine, McMaster University, The Research Institute of St. Joe's Hamilton, Hamilton, Ontario L8N 4A6 and
| |
Collapse
|