BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Su Y, Liu C, Fang H, Zhang D. Bacillus subtilis: a universal cell factory for industry, agriculture, biomaterials and medicine. Microb Cell Fact 2020;19:173. [PMID: 32883293 DOI: 10.1186/s12934-020-01436-8] [Cited by in Crossref: 18] [Cited by in F6Publishing: 12] [Article Influence: 9.0] [Reference Citation Analysis]
Number Citing Articles
1 Wang Y, Cao L, Bi M, Wang S, Chen M, Chen X, Ying M, Huang L. Wobble Editing of Cre-box by Unspecific CRISPR/Cas9 Causes CCR Release and Phenotypic Changes in Bacillus pumilus. Front Chem 2021;9:717609. [PMID: 34434920 DOI: 10.3389/fchem.2021.717609] [Reference Citation Analysis]
2 Yamanashi Y, Ito T. A Minority Population of Non-dye-decolorizing Bacillus subtilis enhances the Azo Dye-decolorizing Activity of Enterococcus faecalis. Microbes Environ 2022;37. [PMID: 35650111 DOI: 10.1264/jsme2.ME21080] [Reference Citation Analysis]
3 Mavrommati M, Daskalaki A, Papanikolaou S, Aggelis G. Adaptive laboratory evolution principles and applications in industrial biotechnology. Biotechnol Adv 2021;:107795. [PMID: 34246744 DOI: 10.1016/j.biotechadv.2021.107795] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 10.0] [Reference Citation Analysis]
4 Mortier J, Van Riet S, Senovilla Herrero D, Vanoirbeek K, Aertsen A. High-Throughput Time-Lapse Fluorescence Microscopy Screening for Heterogeneously Expressed Genes in Bacillus subtilis. Microbiol Spectr 2022;:e0204521. [PMID: 35171018 DOI: 10.1128/spectrum.02045-21] [Reference Citation Analysis]
5 Malik WA, Khan HM, Javed S. Bioprocess Optimization for Enhanced Production of Bacterial Cellulase and Hydrolysis of Sugarcane Bagasse. Bioenerg Res . [DOI: 10.1007/s12155-021-10259-3] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
6 Huang X, Xu Y, Wu X, Ding Y, Fan C, Xue Y, Zhuo Z, Cheng J. Mixed Fermentation of Lactiplantibacillus plantarum and Bacillus licheniformis Changed the Chemical Composition, Bacterial Community, and Rumen Degradation Rate of Tea Residue. Fermentation 2022;8:380. [DOI: 10.3390/fermentation8080380] [Reference Citation Analysis]
7 Han S, Chen J, Zhao Y, Cai H, Guo C. Bacillus subtilis HSY21 can reduce soybean root rot and inhibit the expression of genes related to the pathogenicity of Fusarium oxysporum. Pestic Biochem Physiol 2021;178:104916. [PMID: 34446192 DOI: 10.1016/j.pestbp.2021.104916] [Reference Citation Analysis]
8 Bisly AA, Hettiarachchy NS, Kumar TKS, Lay JO. Antioxidant activities of solid‐state fermentation derived proteins and peptides from heat‐stabilized defatted rice bran. J Americ Oil Chem Soc 2022;99:215-28. [DOI: 10.1002/aocs.12558] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Falkenberg KB, Mol V, de la Maza Larrea AS, Pogrebnyakov I, Nørholm MHH, Nielsen AT, Jensen SI. The ProUSER2.0 Toolbox: Genetic Parts and Highly Customizable Plasmids for Synthetic Biology in Bacillus subtilis. ACS Synth Biol 2021;10:3278-89. [PMID: 34793671 DOI: 10.1021/acssynbio.1c00130] [Reference Citation Analysis]
10 Tenea GN, Gonzalez GL, Moreno JL. Probiotic Characteristics and Antimicrobial Potential of a Native Bacillus subtilis Strain Fa17.2 Rescued from Wild Bromelia sp. Flowers. Microorganisms 2022;10:860. [DOI: 10.3390/microorganisms10050860] [Reference Citation Analysis]
11 Yu Z, Guo J. Non-caloric artificial sweeteners exhibit antimicrobial activity against bacteria and promote bacterial evolution of antibiotic tolerance. J Hazard Mater 2022;433:128840. [PMID: 35398799 DOI: 10.1016/j.jhazmat.2022.128840] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Tusher TR, Chang J, Saunivalu MI, Wakasa S, Li W, Huang C, Inoue C, Chien M. Second-generation bioethanol production from phytomass after phytoremediation using recombinant bacteria-yeast co-culture. Fuel 2022;326:124975. [DOI: 10.1016/j.fuel.2022.124975] [Reference Citation Analysis]
13 Jumpathong W, Intra B, Euanorasetr J, Wanapaisan P. Biosurfactant-Producing Bacillus velezensis PW192 as an Anti-Fungal Biocontrol Agent against Colletotrichum gloeosporioides and Colletotrichum musae. Microorganisms 2022;10:1017. [DOI: 10.3390/microorganisms10051017] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
14 Treinen C, Magosch O, Hoffmann M, Klausmann P, Würtz B, Pfannstiel J, Morabbi Heravi K, Lilge L, Hausmann R, Henkel M. Modeling the time course of ComX: towards molecular process control for Bacillus wild-type cultivations. AMB Express 2021;11:144. [PMID: 34714452 DOI: 10.1186/s13568-021-01306-5] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
15 Liu P, Liu H, Semenec L, Yuan D, Yan S, Cain AK, Li M. Length-based separation of Bacillus subtilis bacterial populations by viscoelastic microfluidics. Microsyst Nanoeng 2022;8. [DOI: 10.1038/s41378-021-00333-3] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
16 Mahto RB, Yadav M, Muthuraj M, Sharma AK, Bhunia B. Biochemical properties and application of a novel pectinase from a mutant strain of Bacillus subtilis. Biomass Conv Bioref . [DOI: 10.1007/s13399-021-02225-y] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
17 Frank C, Hoffmann T, Zelder O, Felle MF, Bremer E. Enhanced Glutamate Synthesis and Export by the Thermotolerant Emerging Industrial Workhorse Bacillus methanolicus in Response to High Osmolarity. Front Microbiol 2021;12:640980. [PMID: 33897645 DOI: 10.3389/fmicb.2021.640980] [Reference Citation Analysis]
18 Zocca VFB, Corrêa GG, Lins MRDCR, de Jesus VN, Tavares LF, Amorim LADS, Kundlatsch GE, Pedrolli DB. The CRISPR toolbox for the gram-positive model bacterium Bacillus subtilis. Crit Rev Biotechnol 2021;:1-14. [PMID: 34719304 DOI: 10.1080/07388551.2021.1983516] [Reference Citation Analysis]
19 Amadi O, Awodiran I, Moneke A, Nwagu T, Egong J, Chukwu G. Concurrent production of cellulase, xylanase, pectinase and immobilization by combined Cross-linked enzyme aggregate strategy- advancing tri-enzyme biocatalysis. Bioresource Technology Reports 2022;18:101019. [DOI: 10.1016/j.biteb.2022.101019] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
20 SECRETERS - European Union’s Horizon 2020 Programme. Electronic address: l.rettenbacher@kent.ac.uk., SECRETERS - European Union’s Horizon 2020 Programme. Microbial protein cell factories fight back? Trends Biotechnol 2021:S0167-7799(21)00230-4. [PMID: 34924209 DOI: 10.1016/j.tibtech.2021.10.003] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
21 Kang SY, Pokhrel A, Bratsch S, Benson JJ, Seo SO, Quin MB, Aksan A, Schmidt-Dannert C. Engineering Bacillus subtilis for the formation of a durable living biocomposite material. Nat Commun 2021;12:7133. [PMID: 34880257 DOI: 10.1038/s41467-021-27467-2] [Reference Citation Analysis]
22 Ravikumar Y, Razack SA, Ponpandian LN, Zhang G, Yun J, Huang J, Lee D, Li X, Dou Y, Qi X. Microbial hosts for production of D-arabitol: Current state-of-art and future prospects. Trends in Food Science & Technology 2022;120:100-10. [DOI: 10.1016/j.tifs.2021.12.029] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
23 Gurnani M, Rath P, Chauhan A, Ranjan A, Ghosh A, Lal R, Mukerjee N, Aljarba NH, Alkahtani S, Rajput VD, Sushkova S, Prazdnova EV, Minkina T, Jindal T. Inhibition of Filamentous Thermosensitive Mutant-Z Protein in Bacillus subtilis by Cyanobacterial Bioactive Compounds. Molecules 2022;27:1907. [PMID: 35335270 DOI: 10.3390/molecules27061907] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
24 Hemalatha M, Venkata Mohan S. Duckweed biorefinery - Potential to remediate dairy wastewater in integration with microbial protein production. Bioresour Technol 2021;346:126499. [PMID: 34883194 DOI: 10.1016/j.biortech.2021.126499] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
25 Cai M, Kee PE, Ng HS, Chen P. Development of Bacillus subtilis self-inducible expression system for keratinase production using piggery wastewater. Journal of the Taiwan Institute of Chemical Engineers 2022. [DOI: 10.1016/j.jtice.2022.104218] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
26 Chen YM, Li Y, Wang X, Wang ZL, Hou JJ, Su S, Zhong WL, Xu X, Zhang J, Wang BM, Wang YM. Effect of Bacillus subtilis, Enterococcus faecium, and Enterococcus faecalis supernatants on serotonin transporter expression in cells and tissues. World J Gastroenterol 2022; 28(5): 532-546 [DOI: 10.3748/wjg.v28.i5.532] [Reference Citation Analysis]
27 Zhang K, Tan R, Yao D, Su L, Xia Y, Wu J. Enhanced Production of Soluble Pyrococcus furiosus α-Amylase in Bacillus subtilis through Chaperone Co-Expression, Heat Treatment and Fermentation Optimization. J Microbiol Biotechnol 2021;31:570-83. [PMID: 33753701 DOI: 10.4014/jmb.2101.01039] [Reference Citation Analysis]
28 Liu J, Wang X, Dai G, Zhang Y, Bian X. Microbial chassis engineering drives heterologous production of complex secondary metabolites. Biotechnol Adv 2022;:107966. [PMID: 35487394 DOI: 10.1016/j.biotechadv.2022.107966] [Reference Citation Analysis]
29 Wang Z, Gan C, Wang J, Bravo A, Soberón M, Yang Q, Zhang J. Nutrient conditions determine the localization of Bacillus thuringiensis Vip3Aa protein in the mother cell compartment. Microb Biotechnol 2021;14:551-60. [PMID: 33252200 DOI: 10.1111/1751-7915.13719] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
30 Evdokias G, Semper C, Mora-Ochomogo M, Di Falco M, Nguyen TTM, Savchenko A, Tsang A, Benoit-Gelber I. Identification of a Novel Biosynthetic Gene Cluster in Aspergillus niger Using Comparative Genomics. J Fungi (Basel) 2021;7:374. [PMID: 34064722 DOI: 10.3390/jof7050374] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
31 Chen Q, Ding Q, Li W, Deng J, Lin Q, Li J. Enhanced treatment of organic matters in starch wastewater through Bacillus subtilis strain with polyethylene glycol-modified polyvinyl alcohol/sodium alginate hydrogel microspheres. Bioresource Technology 2022;347:126741. [DOI: 10.1016/j.biortech.2022.126741] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
32 Bi W, Wang R, Yang Y, Wang Y, Ma Z, Wang Q, Zhang D. Pantoea vagans strain BWL1 controls blue mold in mandarin fruit by inhibiting ergosterol biosynthesis in Penicillium expansum. Biological Control 2021;161:104639. [DOI: 10.1016/j.biocontrol.2021.104639] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
33 Ding X, Zheng Z, Zhao G, Wang L, Wang H, Yang Q, Zhang M, Li L, Wang P. Bottom-up synthetic biology approach for improving the efficiency of menaquinone-7 synthesis in Bacillus subtilis. Microb Cell Fact 2022;21. [DOI: 10.1186/s12934-022-01823-3] [Reference Citation Analysis]
34 Latos-Brozio M, Masek A, Piotrowska M. Polymeric Forms of Plant Flavonoids Obtained by Enzymatic Reactions. Molecules 2022;27:3702. [PMID: 35744827 DOI: 10.3390/molecules27123702] [Reference Citation Analysis]
35 Ryu J, Choi S. Bioelectricity production from sweat-activated germination of bacterial endospores. Biosens Bioelectron 2021;186:113293. [PMID: 33964796 DOI: 10.1016/j.bios.2021.113293] [Reference Citation Analysis]
36 Rafique N, Bashir S, Khan MZ, Hayat I, Orts W, Wong DWS. Metabolic engineering of Bacillus subtilis with an endopolygalacturonase gene isolated from Pectobacterium. carotovorum; a plant pathogenic bacterial strain. PLoS One 2021;16:e0256562. [PMID: 34936645 DOI: 10.1371/journal.pone.0256562] [Reference Citation Analysis]
37 Nair A, Sarma SJ. The impact of carbon and nitrogen catabolite repression in microorganisms. Microbiol Res 2021;251:126831. [PMID: 34325194 DOI: 10.1016/j.micres.2021.126831] [Reference Citation Analysis]
38 Mutungi PM, Wekesa VW, Onguso J, Kanga E, Baleba SBS, Boga HI. Culturable Bacterial Endophytes Associated With Shrubs Growing Along the Draw-Down Zone of Lake Bogoria, Kenya: Assessment of Antifungal Potential Against Fusarium solani and Induction of Bean Root Rot Protection. Front Plant Sci 2021;12:796847. [PMID: 35222451 DOI: 10.3389/fpls.2021.796847] [Reference Citation Analysis]
39 Kharnaior P, Tamang JP. Metagenomic-Metabolomic Mining of Kinema, a Naturally Fermented Soybean Food of the Eastern Himalayas. Front Microbiol 2022;13:868383. [DOI: 10.3389/fmicb.2022.868383] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
40 Sung JC, Liu Y, Wu KC, Choi MC, Ma CH, Lin J, He EIC, Leung DY, Sze ET, Hamied YK, Lam DM, Kwong KW. Expression of SARS-CoV-2 Spike Protein Receptor Binding Domain on Recombinant B. subtilis on Spore Surface: A Potential COVID-19 Oral Vaccine Candidate. Vaccines (Basel) 2021;10:2. [PMID: 35062663 DOI: 10.3390/vaccines10010002] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
41 Gao Q, Shao J, Tang M, Xin Y, Zhang L. Promote the expression and corrected folding of an extremely stable N-demethylase by promoter reconstruction, native environment simulation and surface design. Int J Biol Macromol 2021;178:434-43. [PMID: 33647338 DOI: 10.1016/j.ijbiomac.2021.02.176] [Reference Citation Analysis]
42 Fehler AO, Kallehauge TB, Geissler AS, González-Tortuero E, Seemann SE, Gorodkin J, Vinther J. Flagella disruption in Bacillus subtilis increases amylase production yield. Microb Cell Fact 2022;21:131. [PMID: 35780132 DOI: 10.1186/s12934-022-01861-x] [Reference Citation Analysis]
43 Yang H, Qu J, Zou W, Shen W, Chen X. An overview and future prospects of recombinant protein production in Bacillus subtilis. Appl Microbiol Biotechnol 2021;105:6607-26. [PMID: 34468804 DOI: 10.1007/s00253-021-11533-2] [Reference Citation Analysis]
44 He DC, He MH, Amalin DM, Liu W, Alvindia DG, Zhan J. Biological Control of Plant Diseases: An Evolutionary and Eco-Economic Consideration. Pathogens 2021;10:1311. [PMID: 34684260 DOI: 10.3390/pathogens10101311] [Reference Citation Analysis]
45 Wang G, Wang M, Liu L, Hui X, Wang B, Ma K, Yang X. Improvement of the catalytic performance of glycerol kinase from Bacillus subtilis by chromosomal site-directed mutagenesis. Biotechnol Lett 2022. [PMID: 35922648 DOI: 10.1007/s10529-022-03281-8] [Reference Citation Analysis]
46 Brutscher LM, Borgmeier C, Garvey SM, Spears JL. Preclinical Safety Assessment of Bacillus subtilis BS50 for Probiotic and Food Applications. Microorganisms 2022;10:1038. [DOI: 10.3390/microorganisms10051038] [Reference Citation Analysis]
47 Eghtesadi N, Olaifa K, Perna FM, Capriati V, Trotta M, Ajunwa O, Marsili E. Electroactivity of weak electricigen Bacillus subtilis biofilms in solution containing deep eutectic solvent components. Bioelectrochemistry 2022;147:108207. [PMID: 35839687 DOI: 10.1016/j.bioelechem.2022.108207] [Reference Citation Analysis]
48 Wu JJ, Chou HP, Huang JW, Deng WL. Genomic and biochemical characterization of antifungal compounds produced by Bacillus subtilis PMB102 against Alternaria brassicicola. Microbiol Res 2021;251:126815. [PMID: 34284299 DOI: 10.1016/j.micres.2021.126815] [Reference Citation Analysis]