1
|
Zhang X, Wei X, Shi L, Jiang H, Ma F, Li Y, Li C, Ma Y, Ma Y. The latest research progress: Active components of Traditional Chinese medicine as promising candidates for ovarian cancer therapy. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118811. [PMID: 39251149 DOI: 10.1016/j.jep.2024.118811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/19/2024] [Accepted: 09/07/2024] [Indexed: 09/11/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ovarian cancer ranks the first in the mortality of gynecological tumors. Because there are no obvious symptoms in the early stage of ovarian cancer, most patients are in the advanced stage of the disease at the time of diagnosis. The incidence of ovarian cancer is increasing year by year, and the incidence of ovarian cancer has a trend of younger age. In recent years. Traditional Chinese medicine (TCM) has a significant impact on improving the quality of life of cancer patients, reducing drug toxicity, preventing metastasis and recurrence, enhancing the efficacy of radiotherapy and chemotherapy, and prolonging survival time, so patients have benefited a lot. AIM OF THE STUDY This review summarizes the mechanisms and molecular pathways through which active ingredients of TCM act in ovarian cancer. It explores the advantages of TCM in treating ovarian cancer. This review provides theoretical support for the use of TCM in the treatment of ovarian cancer, offering new perspectives for its clinical prevention and treatment. MATERIALS AND METHODS This review conducted a literature search on PubMed, Web of Science, Wanfang Database, and China National Knowledge Infrastructure (CNKI) for relevant studies on TCM active ingredients in preventing ovarian cancer. The search terms included "ovarian cancer" combined with "Chinese herbal medicine," "Herbal medicine," "Traditional Chinese medicine," and "Active ingredients of Chinese medicine". Based on existing experimental and clinical research, the paper systematically summarized and analyzed the mechanisms of TCM in treating ovarian cancer. RESULTS Active ingredients of TCM inhibit the occurrence and development of ovarian cancer through inducing tumor cell apoptosis, inhibiting tumor cell proliferation, suppressing tumor cell migration and invasion, inducing tumor cell autophagy, promoting epithelial-mesenchymal transition, and enhancing the efficacy of radiotherapy and chemotherapy drugs. Chinese medicine provides a comprehensive treatment option for ovarian cancer patients, synergizing with radiotherapy and chemotherapy drugs to enhance treatment effectiveness and introduce new hope and possibilities in clinical therapy. CONCLUSIONS Active ingredients of TCM can inhibit the occurrence and development of ovarian cancer, but further clinical research is needed to support their application.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Department of Acupuncture and Massage College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaocen Wei
- Key Laboratory of New Material Research Institute, Institute of Pharmaceutical Research, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lei Shi
- Key Laboratory of New Material Research Institute, Institute of Pharmaceutical Research, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hehe Jiang
- Key Laboratory of New Material Research Institute, Institute of Pharmaceutical Research, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Fengjun Ma
- Department of Acupuncture and Massage College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yang Li
- Department of Acupuncture and Massage College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chunjing Li
- Department of Acupuncture and Massage College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuning Ma
- Key Laboratory of New Material Research Institute, Institute of Pharmaceutical Research, Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - Yuxia Ma
- Department of Acupuncture and Massage College, Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
2
|
Qi N, Zhou X, Ma N, Zhang J, Wang Z, Zhang X, Li A. Integrin αvβ3 and LHRH Receptor Double Directed Nano-Analogue Effective Against Ovarian Cancer in Mice Model. Int J Nanomedicine 2024; 19:3071-3086. [PMID: 38562611 PMCID: PMC10984207 DOI: 10.2147/ijn.s442921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 02/23/2024] [Indexed: 04/04/2024] Open
Abstract
Introduction The high mortality rate of malignant ovarian cancer is attributed to the absence of effective early diagnosis methods. The LHRH receptor is specifically overexpressed in most ovarian cancers, and the integrin αvβ3 receptor is also overexpressed on the surface of ovarian cancer cells. In this study, we designed LHRH analogues (LHRHa)/RGD co-modified paclitaxel liposomes (LHRHa-RGD-LP-PTX) to target LHRH receptor-positive ovarian cancers more effectively and enhance the anti-ovarian cancer effects. Methods LHRHa-RGD-LP-PTX liposomes were prepared using the thin film hydration method. The morphology, physicochemical properties, cellular uptake, and cell viability were assessed. Additionally, the cellular uptake mechanism of the modified liposomes was investigated using various endocytic inhibitors. The inhibitory effect of the formulations on tumor spheroids was observed under a microscope. The co-localization with lysosomes was visualized using confocal laser scanning microscopy (CLSM), and the in vivo tumor-targeting ability of the formulations was assessed using the IVIS fluorescent imaging system. Finally, the in vivo anti-tumor efficacy of the formulations was evaluated in the armpits of BALB/c nude mice. Results The results indicated that LHRHa-RGD-LP-PTX significantly enhanced cellular uptake in A2780 cells, increased cytotoxicity, and hand a more potent inhibitory effect on tumor spheroids of A2780 cells. It also showed enhanced co-localization with endosomes or lysosome in A2780 cells, improved tumor-targeting capability, and demonstrated an enhanced anti-tumor effect in LHRHR-positive ovarian cancers. Conclusion The designed LHRHa-RGD-LP-PTX liposomes significantly enhanced the tumor-targeting ability and therapeutic efficacy for LHRH receptor-positive ovarian cancers.
Collapse
Affiliation(s)
- Na Qi
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, People's Republic of China
| | - Xiantai Zhou
- Department of Pharmacy, Guilin Medical University, Guilin, 541004, People's Republic of China
| | - Ningzhu Ma
- Department of Pharmacy, Guilin Medical University, Guilin, 541004, People's Republic of China
| | - Jianguo Zhang
- Department of Pharmacy, Guilin Medical University, Guilin, 541004, People's Republic of China
| | - Zhenlin Wang
- Department of Pharmacy, Guilin Medical University, Guilin, 541004, People's Republic of China
| | - Xin Zhang
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, People's Republic of China
| | - Aimin Li
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, People's Republic of China
| |
Collapse
|
3
|
Chen J, Yu D, Li X, Deng Q, Yang H, Chen L, Bai L. A review of Brucea javanica: metabolites, pharmacology and clinical application. Front Pharmacol 2024; 14:1317620. [PMID: 38371913 PMCID: PMC10871038 DOI: 10.3389/fphar.2023.1317620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/27/2023] [Indexed: 02/20/2024] Open
Abstract
This review examines advances in the metabolites, pharmacological research, and therapeutic applications of the medicinal fruit of Brucea javanica (L.) Merr. Brucea javanica (BJ) is derived from the fruit of the Brucea javanica (L.) Merr. There are nearly 200 metabolites present in BJ, and due to the diversity of its metabolites, BJ has a wide range of pharmacological effects. The traditional pharmacological effects of BJ include anti-dysentery, anti-malaria, etc. The research investigating the contemporary pharmacological impacts of BJ mainly focuses on its anti-tumor properties. In the article, the strong monomeric metabolites among these pharmacological effects were preliminarily screened. Regarding the pharmacological mechanism of action, current research has initially explored BJ's pharmacological agent and molecular signaling pathways. However, a comprehensive system has yet to be established. BJ preparations have been utilized in clinical settings and have demonstrated effectiveness. Nevertheless, clinical research is primarily limited to observational studies, and there is a need for higher-quality research evidence to support its clinical application. There are still many difficulties and obstacles in studying BJ. However, it is indisputable that BJ is a botanical drugs with significant potential for application, and it is expected to have broader global usage.
Collapse
Affiliation(s)
- Jing Chen
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- The State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Pharmacy, Guangyuan Central Hospital of Sichuan Province, Guangyuan, China
| | - Dongke Yu
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xinyu Li
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Qichuan Deng
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Hao Yang
- Power China Chengdu Engineering Corporation Limited, Chengdu, China
| | - Lu Chen
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Department of Pharmacy, Guanghan People's Hospital, Guanghan, China
| | - Lan Bai
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- The State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
4
|
Current Update on Nanotechnology-Based Approaches in Ovarian Cancer Therapy. Reprod Sci 2023; 30:335-349. [PMID: 35585292 DOI: 10.1007/s43032-022-00968-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 05/06/2022] [Indexed: 10/18/2022]
Abstract
Ovarian cancer is one of the leading causes of cancer-related deaths among women. The drawbacks of conventional therapeutic strategies encourage researchers to look for alternative strategies, including nanotechnology. Nanotechnology is one of the upcoming domains of science that is rechanneled towards targeted cancer therapy and diagnosis. Nanocarriers such as dendrimers, liposomes, polymer micelles, and polymer nanoparticles present distinct surface characteristics in morphology, surface chemistry, and mode of action that help differentiate normal and malignant cells, which paves the way for target-specific drug delivery. Similarly, nanoparticles have been strategically utilized as efficacious vehicles to deliver drugs that alter the epigenetic modifications in epigenetic therapy. Some studies suggest that the use of specialized target-modified nanoparticles in siRNA-based nanotherapy prevents internalization and improves the antitumor activity of siRNA by ensuring unrestrained entry of siRNA into the tumor vasculature and efficient intracellular delivery of siRNA. Moreover, research findings highlight the significance of utilizing nanoparticles as depots for photosensitive drugs in photodynamic therapy. The applicability of nanoparticles is further extended to medical imaging. They serve as contrast agents in combination with conventional imaging modalities such as MRI, CT, and fluorescence-based imaging to produce vivid and enhanced images of tumors. Therefore, this review aims to explore and delve deeper into the advent of various nanotechnology-based therapeutic and imaging techniques that provide non-invasive and effective means to tackle ovarian cancers.
Collapse
|
5
|
Zheng X, Mai L, Xu Y, Wu M, Chen L, Chen B, Su Z, Chen J, Chen H, Lai Z, Xie Y. Brucea javanica oil alleviates intestinal mucosal injury induced by chemotherapeutic agent 5-fluorouracil in mice. Front Pharmacol 2023; 14:1136076. [PMID: 36895947 PMCID: PMC9990700 DOI: 10.3389/fphar.2023.1136076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 02/06/2023] [Indexed: 02/22/2023] Open
Abstract
Background: Brucea javanica (L.) Merr, has a long history to be an anti-dysentery medicine for thousand of years, which is commonly called "Ya-Dan-Zi" in Chinese. The common liquid preparation of its seed, B. javanica oil (BJO) exerts anti-inflammatory action in gastrointestinal diseases and is popularly used as an antitumor adjuvant in Asia. However, there is no report that BJO has the potential to treat 5-Fluorouracil (5-FU)-induced chemotherapeutic intestinal mucosal injury (CIM). Aim of the study: To test the hypothesis that BJO has potential intestinal protection on intestinal mucosal injury caused by 5-FU in mice and to explore the mechanisms. Materials and methods: Kunming mice (half male and female), were randomly divided into six groups: normal group, 5-FU group (5-FU, 60 mg/kg), LO group (loperamide, 4.0 mg/kg), BJO group (0.125, 0.25, 0.50 g/kg). CIM was induced by intraperitoneal injection of 5-FU at a dose of 60 mg/kg/day for 5 days (from day 1 to day 5). BJO and LO were given orally 30 min prior to 5-FU administration for 7 days (from day 1 to day 7). The ameliorative effects of BJO were assessed by body weight, diarrhea assessment, and H&E staining of the intestine. Furthermore, the changes in oxidative stress level, inflammatory level, intestinal epithelial cell apoptosis, and proliferation, as well as the amount of intestinal tight junction proteins were evaluated. Finally, the involvements of the Nrf2/HO-1 pathway were tested by western blot. Results: BJO effectively alleviated 5-FU-induced CIM, as represented by the improvement of body weight, diarrhea syndrome, and histopathological changes in the ileum. BJO not only attenuated oxidative stress by upregulating SOD and downregulating MDA in the serum, but also reduced the intestinal level of COX-2 and inflammatory cytokines, and repressed CXCL1/2 and NLRP3 inflammasome activation. Moreover, BJO ameliorated 5-FU-induced epithelial apoptosis as evidenced by the downregulation of Bax and caspase-3 and the upregulation of Bcl-2, but enhanced mucosal epithelial cell proliferation as implied by the increase of crypt-localized proliferating cell nuclear antigen (PCNA) level. Furthermore, BJO contributed to the mucosal barrier by raising the level of tight junction proteins (ZO-1, occludin, and claudin-1). Mechanistically, these anti-intestinal mucositis pharmacological effects of BJO were relevant for the activation of Nrf2/HO-1 in the intestinal tissues. Conclusion: The present study provides new insights into the protective effects of BJO against CIM and suggests that BJO deserves to be applied as a potential therapeutic agent for the prevention of CIM.
Collapse
Affiliation(s)
- Xinghan Zheng
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Pharmacy, Shenzhen University General Hospital/Shenzhen University Clinical Medical Academy, Shenzhen University, Shenzhen, Guangdong, China.,Pharmacy Department, Quanzhou Hospital of Traditional Chinese Medicine, Quanzhou, China
| | - Liting Mai
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.,Medical Insurance Office, Zhaoqing Hospital, Sun Yat-sen University, Zhaoqing, China.,Dongguan Institute of Guangzhou University of Chinese Medicine, Dongguan, China
| | - Ying Xu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.,Dongguan Institute of Guangzhou University of Chinese Medicine, Dongguan, China
| | - Minghui Wu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.,Dongguan Institute of Guangzhou University of Chinese Medicine, Dongguan, China
| | - Li Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.,Dongguan Institute of Guangzhou University of Chinese Medicine, Dongguan, China
| | - Baoyi Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.,Dongguan Institute of Guangzhou University of Chinese Medicine, Dongguan, China
| | - Ziren Su
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.,Dongguan Institute of Guangzhou University of Chinese Medicine, Dongguan, China
| | - Jiannan Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.,Dongguan Institute of Guangzhou University of Chinese Medicine, Dongguan, China
| | - Hongying Chen
- Guangzhou Baiyunshan Mingxing Pharmaceutical Co. Ltd, Guangzhou, China
| | - Zhengquan Lai
- Department of Pharmacy, Shenzhen University General Hospital/Shenzhen University Clinical Medical Academy, Shenzhen University, Shenzhen, Guangdong, China
| | - Youliang Xie
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.,Dongguan Institute of Guangzhou University of Chinese Medicine, Dongguan, China
| |
Collapse
|
6
|
Li K, Xiao K, Zhu S, Wang Y, Wang W. Chinese Herbal Medicine for Primary Liver Cancer Therapy: Perspectives and Challenges. Front Pharmacol 2022; 13:889799. [PMID: 35600861 PMCID: PMC9117702 DOI: 10.3389/fphar.2022.889799] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/21/2022] [Indexed: 12/17/2022] Open
Abstract
Primary liver cancer (PLC) is one of the most common solid malignancies. However, PLC drug development has been slow, and first-line treatments are still needed; thus, studies exploring and developing alternative strategies for effective PLC treatment are urgently needed. Chinese herbal medicine (CHM) has long been applied in the clinic due to its advantages of low toxicity and targeting of multiple factors and pathways, and it has great potential for the development of novel natural drugs against PLC. Purpose: This review aims to provide an update on the pharmacological mechanisms of Chinese patent medicines (CPMs) and the latest CHM-derived compounds for the treatment of PLC and relevant clinical evaluations. Materials and Methods: A systematic search of English literature databases, Chinese literature, the Clinical Trials Registry Platform, and the Chinese Clinical Trial Registry for studies of CHMs for PLC treatment was performed. Results: In this review, we summarize the clinical trials and mechanisms of CPMs for PLC treatment that have entered the clinic with the approval of the Chinese medicine regulatory authority. These CPMs included Huaier granules, Ganfule granules, Fufang Banmao capsules, Jinlong capsules, Brucea javanica oil emulsions, and compound kushen injections. We also summarize the latest in vivo, in vitro, and clinical studies of CHM-derived compounds against PLC: icaritin and ginsenoside Rg3. Dilemmas facing the development of CHMs, such as drug toxicity and low oral availability, and future developments are also discussed. Conclusion: This review provides a deeper the understanding of CHMs as PLC treatments and provides ideas for the development of new natural drugs against PLC.
Collapse
Affiliation(s)
- Kexin Li
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Dongzhimen Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Kunmin Xiao
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Department of Oncology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shijie Zhu
- Department of Oncology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yong Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Yong Wang, ; Wei Wang,
| | - Wei Wang
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Institute of Prescription and Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provinvial Key Laboratory of TCM Pathogenesis and Prescriptions of Heart and Spleen Diseases, Guangzhou, China
- *Correspondence: Yong Wang, ; Wei Wang,
| |
Collapse
|
7
|
Zhao Y, Wang H, Yin Y, Shi H, Wang D, Shu F, Wang R, Wang L. Anti-melanoma action of small molecular peptides derived from Brucea javanica(L.)Merr. globulin in vitro. JOURNAL OF TRADITIONAL CHINESE MEDICAL SCIENCES 2022. [DOI: 10.1016/j.jtcms.2022.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
8
|
Wu J, Zhou T, Wang Y, Jiang Y, Wang Y. Mechanisms and Advances in Anti-Ovarian Cancer with Natural Plants Component. Molecules 2021; 26:molecules26195949. [PMID: 34641493 PMCID: PMC8512305 DOI: 10.3390/molecules26195949] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 12/12/2022] Open
Abstract
Ovarian cancer ranks seventh in the most common malignant tumors among female disease, which seriously threatens female reproductive health. It is characterized by hidden pathogenesis, missed diagnosis, high reoccurrence rate, and poor prognosis. In clinic, the first-line treatment prioritized debulking surgery with paclitaxel-based chemotherapy. The harsh truth is that female patients are prone to relapse due to the dissemination of tumor cells and drug resistance. In these circumstances, the development of new therapy strategies combined with traditional approaches is conductive to improving the quality of treatment. Among numerous drug resources, botanical compounds have unique advantages due to their potentials in multitarget functions, long application history, and wide availability. Previous studies have revealed the therapeutic effects of bioactive plant components in ovarian cancer. These natural ingredients act as part of the initial treatment or an auxiliary option for maintenance therapy, further reducing the tumor and metastatic burden. In this review, we summarized the functions and mechanisms of natural botanical components applied in human ovarian cancer. We focused on the molecular mechanisms of cell apoptosis, autophagy, RNA and DNA lesion, ROS damage, and the multiple-drug resistance. We aim to provide a theoretical reference for in-depth drug research so as to manage ovarian cancer better in clinic.
Collapse
Affiliation(s)
- Jingyuan Wu
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, China; (J.W.); (Y.J.)
| | - Tuoyu Zhou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China;
| | - Yinxue Wang
- The Reproductive Medicine Special Hospital of the First Hospital of Lanzhou University, Lanzhou 730000, China;
| | - Yanbiao Jiang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, China; (J.W.); (Y.J.)
| | - Yiqing Wang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, China; (J.W.); (Y.J.)
- Gansu Key Laboratory of Reproductive Medicine and Embryology, The First Hospital of Lanzhou University, Lanzhou 730000, China
- Correspondence:
| |
Collapse
|
9
|
Seed oil of Brucea javanica induces apoptosis through the PI3K/Akt signaling pathway in acute lymphocytic leukemia Jurkat cells. Chin J Nat Med 2021; 19:608-620. [PMID: 34419260 DOI: 10.1016/s1875-5364(21)60060-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Indexed: 11/23/2022]
Abstract
Brucea javanica oil emulsion (BJOE) has been used to treat tumor in China for more than 40 years. However, its components and effectiveness in the treatment of acute lymphocytic leukemia (ALL) and its mechanism of anti-cancer activity remain unknown. In the current study, high-performance liquid chromatography-evaporative light scattering detector (HPLC-ELSD) was used to analyze the components of BJOE. Then, the anti-leukemia effects of BJOE were examined both in vitro and in vivo using ALL Jurkat cells and the p388 mouse leukemia transplant model, respectively. The primary ALL leukemia cells were also used to confirm the anti-leukemia effects of BJOE. The apoptotic-related results indicated that BJOE induced apoptosis in Jurkat cells and were suggestive of intrinsic apoptotic induction. Moreover, BJOE inhibited Akt (protein kinase B) activation and upregulated its downstream targets p53 and FoxO1 (forkhead box gene, group O-1) to initiate apoptosis. The activation of GSK3β was also involved. Our findings demonstrate that BJOE has anti-leukemia effects on ALL cells and can induce apoptosis in Jurkat cells through the phosphoinositide3-kinase (PI3K) /Akt signaling pathway.
Collapse
|
10
|
Wang T, Dou Y, Lin G, Li Q, Nie J, Chen B, Xie J, Su Z, Zeng H, Chen J, Xie Y. The anti-hepatocellular carcinoma effect of Brucea javanica oil in ascitic tumor-bearing mice: The detection of brusatol and its role. Biomed Pharmacother 2020; 134:111122. [PMID: 33341052 DOI: 10.1016/j.biopha.2020.111122] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/30/2020] [Accepted: 12/07/2020] [Indexed: 12/23/2022] Open
Abstract
Brucea javanica oil (BJO), one of the main products of Brucea javanica, has been widely used in treating different kinds of malignant tumors. Quassinoids are the major category of anticancer phytochemicals of B. javanica. However, current researches on the anti-cancer effect of BJO mainly focused on oleic acid and linoleic acid, the common major components of dietary edible oils, essential and characteristic components of B. javanica like quassinoids potentially involved remained unexplored. In the current investigation, we developed an efficient HPLC method to detect brusatol, a characteristic quassinoid, and comparatively scrutinized the anti-hepatocellular carcinoma (anti-HCC) effect of BJO, brusatol-free BJO (BF-BJO), and brusatol-enriched BJO (BE-BJO) against hepatoma 22 (H22) in mice. High-performance liquid chromatography (HPLC) was utilized to identify the components in BJO. BE-BJO was extracted with 95 % ethanol. The anti-tumor effect of BJO, BF-BJO and BE-BJO was comparatively investigated, and the potential underlying mechanism was explored in H22 ascites tumor-bearing mice. The results indicated that BJO and BE-BJO significantly prolonged the survival time of H22 ascites tumor-bearing mice, while BF-BJO exhibited no obvious effect. BJO and BE-BJO exhibited pronounced anti-HCC activity by suppressing the growth of implanted hepatoma H22 in mice, including ascending weight, abdominal circumference, ascites volume and cancer cell viability, with a relatively wide margin of safety. BJO and BE-BJO significantly induced H22 cell apoptosis by upregulating the miRNA-29b gene level and p53 expression. Furthermore, BJO and BE-BJO treatment substantially downregulated Bcl-2 and mitochondrial Cytochrome C protein expression, and upregulated expression levels of Bax, Bad, cytosol Cytochrome C, caspase-3 (cleaved), caspase‑9 (cleaved), PARP and PARP (cleaved) to induce H22 cells apoptosis. Brusatol was detected in BJO and found to be one of its major active anti-HCC components, rather than fatty acids including oleic acid and linoleic acid. The anti-HCC effect of BJO and BE-BJO was intimately associated with the activation of miRNA-29b, p53-associated apoptosis and mitochondrial-related pathways. Our study gained novel insight into the material basis of BJO in the treatment of HCC, and laid a foundation for a novel specific standard for the quality evaluation of BJO and its commercial products in terms of its anti-cancer application.
Collapse
Affiliation(s)
- Tongtong Wang
- The First Affiliated Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, PR China; Shandong Qingdao No. 2 Health School, Qingdao, PR China
| | - Yaoxing Dou
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Guoshu Lin
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Qiaoping Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Juan Nie
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Baoyi Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Jianhui Xie
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Ziren Su
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Huifang Zeng
- The First Affiliated Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, PR China.
| | - Jiannan Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, PR China.
| | - Youliang Xie
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, PR China.
| |
Collapse
|
11
|
Yoon BK, Lim ZY, Jeon WY, Cho NJ, Kim JH, Jackman JA. Medicinal Activities and Nanomedicine Delivery Strategies for Brucea javanica Oil and Its Molecular Components. Molecules 2020; 25:E5414. [PMID: 33228061 PMCID: PMC7699344 DOI: 10.3390/molecules25225414] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/11/2020] [Accepted: 11/16/2020] [Indexed: 12/16/2022] Open
Abstract
Brucea javanica oil (BJO) is widely used in traditional Chinese medicine to treat various types of cancer and inflammatory diseases. There is significant interest in understanding the medicinal activities of BJO and its molecular components, especially quassinoids, and in exploring how they can be incorporated into nanomedicine delivery strategies for improved application prospects. Herein, we cover the latest progress in developing different classes of drug delivery vehicles, including nanoemulsions, liposomes, nanostructured lipid carriers, and spongosomes, to encapsulate BJO and purified quassinoids. An introduction to the composition and medicinal activities of BJO and its molecular components, including quassinoids and fatty acids, is first provided. Application examples involving each type of drug delivery vehicle are then critically presented. Future opportunities for nanomedicine delivery strategies in the field are also discussed and considered within the context of translational medicine needs and drug development processes.
Collapse
Affiliation(s)
- Bo Kyeong Yoon
- School of Chemical Engineering and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea; (B.K.Y.); (Z.Y.L.); (W.-Y.J.)
| | - Zheng Yi Lim
- School of Chemical Engineering and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea; (B.K.Y.); (Z.Y.L.); (W.-Y.J.)
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 637553, Singapore;
| | - Won-Yong Jeon
- School of Chemical Engineering and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea; (B.K.Y.); (Z.Y.L.); (W.-Y.J.)
- Omni Colab Corporation, Suwon 16229, Korea
| | - Nam-Joon Cho
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 637553, Singapore;
| | - Jeong Hoon Kim
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul 06351, Korea;
| | - Joshua A. Jackman
- School of Chemical Engineering and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea; (B.K.Y.); (Z.Y.L.); (W.-Y.J.)
| |
Collapse
|
12
|
Lipid Nanoarchitectonics for Natural Products Delivery in Cancer Therapy. SUSTAINABLE AGRICULTURE REVIEWS 2020. [DOI: 10.1007/978-3-030-41842-7_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
13
|
Huang Y, Zhu J, Lin X, Hong Y, Feng Y, Shen L. Potential of Fatty Oils from Traditional Chinese Medicine in Cancer Therapy: A Review for Phytochemical, Pharmacological and Clinical Studies. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2019; 47:727-750. [DOI: 10.1142/s0192415x19500381] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cancer management is a worldwide challenge. In addition to effective cancer therapies like chemotherapy, radiotherapy and surgery, treatment based on traditional Chinese medicine (TCM) and combined TCM with western medicine has gradually gained attention in Oriental countries. One potential TCM approach using extracted fatty oils, containing fatty acids which are important active ingredients with a variety of pharmacological activities, makes significant contributions to cancer treatment. The strategies of treating cancer with the fatty oils of TCM were classified into “Fuzheng”, which usually associates with improving immunity, represented by coix seed oil. The other classification is “Quxie”, which relates to inducing apoptosis of cancer cells, and is represented by Brucea javanica oil. Compared with other active substances, the literature about anticancer fatty oils is relatively limited, and most of them focus on the composition and other biological activities without a systematic review. Therefore, based on the theories of “Fuzheng” and “Quxie” in TCM, in this paper, the anticancer effects of fatty oils have been reviewed. The chemical composition, anticancer mechanism, listed drugs, studying dosage form and clinical application of fatty oils have also been discussed. In summary, since there are different types and abundance of fatty oils among botanicals, anticancer effects of fatty oils can be achieved through two TCM theory-based strategies. We hoped that this review paper can reveal the anticancer potential of fatty oils and provide a reference for future related studies.
Collapse
Affiliation(s)
- Yanleng Huang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, No. 1200, Cai-lun Road, Pudong District, Shanghai 201203, P. R. China
| | - Jiayi Zhu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, No. 1200, Cai-lun Road, Pudong District, Shanghai 201203, P. R. China
| | - Xiao Lin
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, No. 1200, Cai-lun Road, Pudong District, Shanghai 201203, P. R. China
| | - Yanlong Hong
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, No. 1200, Cai-lun Road, Pudong District, Shanghai 201203, P. R. China
| | - Yi Feng
- Engineering Research Center of Modern Preparation Technology of Traditional Chinese Medicine of Ministry of Education, Shanghai University of Traditional Chinese Medicine, No. 1200, Cai-lun Road, Pudong District, Shanghai 201203, P. R. China
| | - Lan Shen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, No. 1200, Cai-lun Road, Pudong District, Shanghai 201203, P. R. China
| |
Collapse
|
14
|
Qiu ZH, Zhang WW, Zhang HH, Jiao GH. Brucea javanica oil emulsion improves the effect of radiotherapy on esophageal cancer cells by inhibiting cyclin D1-CDK4/6 axis. World J Gastroenterol 2019; 25:2463-2472. [PMID: 31171890 PMCID: PMC6543247 DOI: 10.3748/wjg.v25.i20.2463] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/12/2019] [Accepted: 05/08/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Esophageal cancer is one of the most common cancers around the world, and it has high incidence and mortality rates. The conventional therapy for esophageal cancer is radiotherapy, although its effect is highly limited by the resistance of esophageal cancer cells. Thus, strong radiosensitizers can be very crucial during radiotherapy against esophageal cancer. Brucea javanica oil emulsion (BJOE) is a widely used drug against various cancers, such as liver, colon, and ovarian cancer. However, its anti-cancer effect and mechanism and the use of BJOE as a radiosensitizer have not been explored in esophageal cancer.
AIM To evaluate the anti-cancer effect and mechanism of BJOE and explore the potential use of BJOE as a radiosensitizer during radiotherapy.
METHODS The inhibitory effect of BJOE and its enhancement function with radiation on cell viability were examined with the calculated half-maximal effective concentration and half-maximal lethal concentration. The influence of BJOE on cell migration and invasion were measured with EC109 and JAR cells by wound-healing and transwell assay. Clonogenesis and apoptotic rate, which was measured by Hoechst staining, were investigated to confirm its enhancement function with radiation. To investigate the molecular pathway underlying the effect of BJOE, the expressions of several apoptosis- and cycle-related proteins was detected by western blotting.
RESULTS Our results demonstrated that BJOE inhibited the growth of esophageal cancer cell lines more than normal cell lines, and it markedly reduced migration and invasion in esophageal cancer cells (EC109 and JAR). Moreover, it promoted cell apoptosis and enhanced the effect of radiotherapy against esophageal cancerous cells. In the viability test, the values of half-maximal effective concentration and half-maximal lethal concentration were reduced. Compared to the control, only around 1/5 colonies formed when using BJOE and radiation together in the clonogenic assay. The apoptotic rate in EC109 was obviously promoted when BJOE was added during radiotherapy. Our study suggests that the expression of the apoptosis-proteins Bax and p21 were increased, while the expression of Bcl-2 was stable. Further detection of downstream proteins revealed that the expression of cyclin D1 and cyclin-dependent kinase 4/6 were significantly decreased.
CONCLUSION BJOE has a strong anti-cancer effect on esophageal cancer and can be used as a radiosensitizer to promote apoptosis in cancerous esophageal cells via the cyclin D1-cyclin-dependent kinase 4/6 axis.
Collapse
Affiliation(s)
- Zhong-Hua Qiu
- Department of Interventional Therapy, Affiliated Hospital of Jining Medical University, Jining, 272000, Shandong Province, China
| | - Wei-Wei Zhang
- Department of Interventional Therapy, Affiliated Hospital of Jining Medical University, Jining, 272000, Shandong Province, China
| | - Hong-Hua Zhang
- Department of Neurology, Liangshan County People's Hospital, Jining, 272600, Shandong Province, China
| | - Gui-Hua Jiao
- Department of Interventional Therapy, Affiliated Hospital of Jining Medical University, Jining, 272000, Shandong Province, China
| |
Collapse
|
15
|
Zhao J, Liu S, Hu X, Zhang Y, Yan S, Zhao H, Zeng M, Li Y, Yang L, Zhang J. Improved delivery of natural alkaloids into lung cancer through woody oil-based emulsive nanosystems. Drug Deliv 2018; 25:1426-1437. [PMID: 29890855 PMCID: PMC6058528 DOI: 10.1080/10717544.2018.1474970] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Most antitumor ingredients found in nature have poor solubility. These ingredients are expected to have much better absorption and higher bioavailability than synthetic antitumor agents. Woody oil emulsive nanosystems carrying poorly soluble natural alkaloids were fabricated (evodiamine (EA) carried by fructus bruceae oil-based emulsive nanosystems, or EFEN). Fructus bruceae oil has two excipient-like properties (oil phase and stabilizer) that contribute to the formulation and one drug-like property (antitumor effects) that synergizes with the antitumor effect of EA. The properties of EFEN were compared with free EA, a blank nanoemulsion, an EA-loaded emulsive nanosystem, and a fructus bruceae oil-loaded emulsive nanosystem. For the first time, this suggests that increases in the sensitivity of lung cancer cells to poorly soluble natural alkaloids can be achieved by delivering drugs using woody oil-based emulsive nanosystems. In this study, woody oil-based emulsive nanosystems efficiently deliver poorly soluble natural alkaloids.
Collapse
Affiliation(s)
- Jing Zhao
- a Chongqing Research Center for Pharmaceutical Engineering , Chongqing Medical University , Chongqing , China
| | - Shan Liu
- a Chongqing Research Center for Pharmaceutical Engineering , Chongqing Medical University , Chongqing , China
| | - Xueyuan Hu
- a Chongqing Research Center for Pharmaceutical Engineering , Chongqing Medical University , Chongqing , China
| | - Yunmei Zhang
- b Nursing College, Chongqing Medical University , Chongqing , China
| | - Shenglei Yan
- a Chongqing Research Center for Pharmaceutical Engineering , Chongqing Medical University , Chongqing , China
| | - Hua Zhao
- a Chongqing Research Center for Pharmaceutical Engineering , Chongqing Medical University , Chongqing , China
| | - Mei Zeng
- a Chongqing Research Center for Pharmaceutical Engineering , Chongqing Medical University , Chongqing , China
| | - Yao Li
- a Chongqing Research Center for Pharmaceutical Engineering , Chongqing Medical University , Chongqing , China
| | - Lan Yang
- a Chongqing Research Center for Pharmaceutical Engineering , Chongqing Medical University , Chongqing , China
| | - Jingqing Zhang
- a Chongqing Research Center for Pharmaceutical Engineering , Chongqing Medical University , Chongqing , China
| |
Collapse
|
16
|
Liang Z, Lu Z, Zhang Y, Shang D, Li R, Liu L, Zhao Z, Zhang P, Lin Q, Feng C, Zhang Y, Liu P, Tu Z, Liu H. Targeting Membrane Receptors of Ovarian Cancer Cells for Therapy. Curr Cancer Drug Targets 2018; 19:449-467. [PMID: 30306870 DOI: 10.2174/1568009618666181010091246] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 08/31/2018] [Accepted: 09/29/2018] [Indexed: 01/02/2023]
Abstract
Ovarian cancer is a leading cause of death worldwide from gynecological malignancies, mainly because there are few early symptoms and the disease is generally diagnosed at an advanced stage. In addition, despite the effectiveness of cytoreductive surgery for ovarian cancer and the high response rates to chemotherapy, survival has improved little over the last 20 years. The management of patients with ovarian cancer also remains similar despite studies showing striking differences and heterogeneity among different subtypes. It is therefore clear that novel targeted therapeutics are urgently needed to improve clinical outcomes for ovarian cancer. To that end, several membrane receptors associated with pivotal cellular processes and often aberrantly overexpressed in ovarian cancer cells have emerged as potential targets for receptor-mediated therapeutic strategies including specific agents and multifunctional delivery systems based on ligand-receptor binding. This review focuses on the profiles and potentials of such strategies proposed for ovarian cancer treatment and imaging.
Collapse
Affiliation(s)
- Zhiquan Liang
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Ziwen Lu
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yafei Zhang
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Dongsheng Shang
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Ruyan Li
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Lanlan Liu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Zhicong Zhao
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Peishan Zhang
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Qiong Lin
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Chunlai Feng
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yibang Zhang
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Peng Liu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Zhigang Tu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Hanqing Liu
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| |
Collapse
|
17
|
Zhang Y, Zhang L, Zhang Q, Zhang X, Zhang T, Wang B. Enhanced gastric therapeutic effects of Brucea javanica oil and its gastroretentive drug delivery system compared to commercial products in pharmacokinetics study. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:535-544. [PMID: 29559770 PMCID: PMC5856296 DOI: 10.2147/dddt.s155244] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background Brucea javanica oil (BJO), a traditional Chinese herbal medicine, has a variety of pharmacological activities and several BJO-related patent drugs have been widely used in China. Purpose The objective of this study was to evaluate the gastric therapeutic effects of self-made BJO and its pharmaceutical potential to formulate novel BJO gastroretentive floating bead by comparing with commercial products. Methods BJO was extracted from the seeds of B. javanica, and its therapeutic effects were evaluated by comparing with commercial products in the treatment of human gastric cancer and gastric ulcer. Furthermore, the developed gastroretentive drug delivery system was evaluated by in vivo tests. A high-performance liquid chromatography–tandem mass spectrometry (HPLC-MS/MS) method for detecting the concentration of glycerol trioleate in the pharma-cokinetic study was applied. Results The antitumor activity of BJO was stronger than that of the marketed preparation; the 50% inhibitory concentration (IC50) values of BJO extracts on HGC27, SGC7901 and BGC823 gastric carcinoma were 0.3091, 1.736 and 2.743 μg/mL, respectively, whereas the values of marked BJO preparation were 15.26, 32.60 and 7.456 μg/mL, respectively. Histopathological studies demonstrated the ability of BJO to locally prevent and treat absolute ethanol-induced gastric ulcer. Developed BJO gastroretentive floating bead showed a satisfactory in vivo study. The highest glycerol trioleate concentration in the stomach after taking BJO gastroretentive floating bead was nearly two times higher when compared to the marketed BJO soft capsule. Conclusion Self-made BJO has a strong therapeutic effect on the stomach, and gastroretentive drug delivery system can be a promising approach to prolong and enhance its therapy ability when treating gastric diseases.
Collapse
Affiliation(s)
- Yue Zhang
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Pudong New District, Shanghai, People's Republic of China.,School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Pudong New District, Shanghai, People's Republic of China
| | - Liying Zhang
- Foreign Languages Teaching Center, Shanghai University of Traditional Chinese Medicine, Pudong New District, Shanghai, People's Republic of China
| | - Qi Zhang
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Pudong New District, Shanghai, People's Republic of China.,School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Pudong New District, Shanghai, People's Republic of China
| | - Xitong Zhang
- Department of Pharmacy, Shanghai Xiangshan Hospital of Traditional Chinese Medicine, Huangpu District, Shanghai, People's Republic of China
| | - Tong Zhang
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Pudong New District, Shanghai, People's Republic of China.,School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Pudong New District, Shanghai, People's Republic of China
| | - Bing Wang
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Pudong New District, Shanghai, People's Republic of China.,School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Pudong New District, Shanghai, People's Republic of China
| |
Collapse
|
18
|
Chen C, Wang B. Brucea javanica oil emulsion alleviates cachexia induced by Lewis lung cancer cells in mice. J Drug Target 2017; 26:222-230. [PMID: 28701059 DOI: 10.1080/1061186x.2017.1354003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Chao Chen
- Department of Radiotherapy, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Binbin Wang
- Department of Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, PR China
| |
Collapse
|