1
|
Carlson CJ, Garnier R, Tiu A, Luby SP, Bansal S. Strategic vaccine stockpiles for regional epidemics of emerging viruses: A geospatial modeling framework. Vaccine 2024; 42:126051. [PMID: 38902187 DOI: 10.1016/j.vaccine.2024.06.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 06/22/2024]
Abstract
Multinational epidemics of emerging infectious diseases are increasingly common, due to anthropogenic pressure on ecosystems and the growing connectivity of human populations. Early and efficient vaccination can contain outbreaks and prevent mass mortality, but optimal vaccine stockpiling strategies are dependent on pathogen characteristics, reservoir ecology, and epidemic dynamics. Here, we model major regional outbreaks of Nipah virus and Middle East respiratory syndrome, and use these to develop a generalized framework for estimating vaccine stockpile needs based on spillover geography, spatially-heterogeneous healthcare capacity and spatially-distributed human mobility networks. Because outbreak sizes were highly skewed, we found that most outbreaks were readily contained (median stockpile estimate for MERS-CoV: 2,089 doses; Nipah: 1,882 doses), but the maximum estimated stockpile need in a highly unlikely large outbreak scenario was 2-3 orders of magnitude higher (MERS-CoV: ∼87,000 doses; Nipah ∼ 1.1 million doses). Sensitivity analysis revealed that stockpile needs were more dependent on basic epidemiological parameters (i.e., death and recovery rate) and healthcare availability than any uncertainty related to vaccine efficacy or deployment strategy. Our results highlight the value of descriptive epidemiology for real-world modeling applications, and suggest that stockpile allocation should consider ecological, epidemiological, and social dimensions of risk.
Collapse
Affiliation(s)
- Colin J Carlson
- Department of Biology, Georgetown University; Department of Epidemiology of Microbial Diseases, Yale University School of Public Health
| | | | - Andrew Tiu
- Department of Biology, Georgetown University
| | | | | |
Collapse
|
2
|
Herstein JJ, Lukowski J, ElRayes W, Lowe JJ, Mehta AK, Mukherjee V, Stern KL, Carrasco SV, Vasa A, Vasistha S, Sauer LM. High-Level Isolation: A Landscape Analysis of Global Capabilities and Opportunities to Advance the Field. Health Secur 2024; 22:S17-S33. [PMID: 39101827 DOI: 10.1089/hs.2023.0181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024] Open
Abstract
High-level isolation units (HLIUs) have been established by countries to provide safe and optimal medical care for patients with high-consequence infectious diseases. We aimed to identify global high-level isolation capabilities and determine gaps and priorities of global HLIUs, using a multiple method approach that included a systematic review of published and gray literature and a review of Joint External Evaluations and Global Health Security Index reports from 112 countries. A follow-up electronic survey was distributed to identified HLIUs. The landscape analysis found 44 previously designated/self-described HLIUs in 19 countries. An additional 33 countries had potential HLIUs; however, there were not enough details on capabilities to determine if they fit the HLIU definition. An electronic survey was distributed to 36 HLIUs to validate landscape analysis findings and to understand challenges, best practices, and priorities for increased networking with a global HLIU cohort; 31 (86%) HLIUs responded. Responses revealed an additional 30 confirmed HLIUs that were not identified in the landscape analysis. To our knowledge, this was the first mapping and the largest ever survey of global HLIUs. Survey findings identified major gaps in visibility of HLIUs: while our landscape analysis initially identified 44 units, the survey unveiled an additional 30 HLIUs that had not been previously identified or confirmed. The lack of formalized regional or global coordinating organizations exacerbates these visibility gaps. The unique characteristics and capabilities of these facilities, coupled with the likelihood these units serve as core components of national health security plans, provides an opportunity for increased connection and networking to advance the field of high-level isolation and address identified gaps in coordination, build an evidence base for HLIU approaches, and inform HLIU definitions and key components.
Collapse
Affiliation(s)
- Jocelyn J Herstein
- Jocelyn J. Herstein, PhD, MPH, is an Assistant Professor, Department of Environmental, Agricultural and Occupational Health, College of Public Health, and Director, National Emerging Special Pathogens Training and Education Center (NETEC) International Partnerships and Programs
| | - Joseph Lukowski
- Joseph Lukowski, MPH, is a Data Coordinator II, Lymphoma Study Group-Tissue Bank/Consent, Oncology/Hematology, Department of Internal Medicine
| | - Wael ElRayes
- Wael ElRayes, MBBCh, PhD, MS, FACHE, is Faculty, Department of Health Services Research and Administration, and Co-Director, Center for Global Health and Development, College of Public Health
| | - John J Lowe
- John J. Lowe, PhD, is Director, Global Center for Health Security, Professor and Chair, Department of Environmental, Agricultural and Occupational Health, College of Public Health, and Assistant Vice Chancellor for Health Security Training and Education, Office of the Vice Chancellor for Academic Affairs
| | - Aneesh K Mehta
- Aneesh K. Mehta, MD, FIDSA, FAST, is Professor of Medicine and of Surgery, Assistant Director of Transplant Infectious Diseases, and Chief of Infectious Diseases Services, Emory University Hospital, Emory University School of Medicine, Atlanta, GA
| | - Vikramjit Mukherjee
- Vikramjit Mukherjee, MD, FRCP, is Director, Critical Care, and Director, Special Pathogens Program, NYC Health + Hospitals/Bellevue, and Associate Professor, NYU School of Medicine, New York, NY
| | - Katie L Stern
- Katie L. Stern, MPH, is a Program Evaluation Specialist, Global Center for Health Security
| | - Sharon Vanairsdale Carrasco
- Sharon Vanairsdale Carrasco, DNP, APRN, ACNS-BC, NP-C, CEN, FAEN, FAAN, FNAP, is an Associate Clinical Professor, Nell Hodgson Woodruff School of Nursing, Director of Training and Education, NETEC, and Director, Regional Emerging Special Pathogen Treatment Center, Region IV, Emory University, Atlanta, GA
| | - Angela Vasa
- Angela Vasa, MSN, RN, is Director, Readiness Consultations and Metrics Development, NETEC, and Director, Biopreparedness and Special Pathogen Programs, Nebraska Medicine, Omaha, NE
| | - Sami Vasistha
- Sami Vasistha, MS, is Lead Program Manager, NETEC, and Program Manager, Global Center for Health Security; and
| | - Lauren M Sauer
- Lauren M. Sauer, MSc, is Associate Director of Research, Global Center for Health Security, Director, Special Pathogens Research Network, and Associate Professor, Department of Environmental, Agricultural and Occupational Health, College of Public Health; all at the University of Nebraska Medical Center, Omaha, NE
| |
Collapse
|
3
|
So RTY, Chu DKW, Hui KPY, Mok CKP, Shum MHH, Sanyal S, Nicholls JM, Ho JCW, Cheung MC, Ng KC, Yeung HW, Chan MCW, Poon LLM, Zhao J, Lam TTY, Peiris M. Amino acid substitution L232F in non-structural protein 6 identified as a possible human-adaptive mutation in clade B MERS coronaviruses. J Virol 2023; 97:e0136923. [PMID: 38038429 PMCID: PMC10734512 DOI: 10.1128/jvi.01369-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 11/09/2023] [Indexed: 12/02/2023] Open
Abstract
IMPORTANCE Viral host adaptation plays an important role in inter-species transmission of coronaviruses and influenza viruses. Multiple human-adaptive mutations have been identified in influenza viruses but not so far in MERS-CoV that circulates widely in dromedary camels in the Arabian Peninsula leading to zoonotic transmission. Here, we analyzed clade B MERS-CoV sequences and identified an amino acid substitution L232F in nsp6 that repeatedly occurs in human MERS-CoV. Using a loss-of-function reverse genetics approach, we found the nsp6 L232F conferred increased viral replication competence in vitro, in cultures of the upper human respiratory tract ex vivo, and in lungs of mice infected in vivo. Our results showed that nsp6 L232F may be an adaptive mutation associated with zoonotic transmission of MERS-CoV. This study highlighted the capacity of MERS-CoV to adapt to transmission to humans and also the need for continued surveillance of MERS-CoV in camels.
Collapse
Affiliation(s)
- Ray T. Y. So
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, People's Republic of China
| | - Daniel K. W. Chu
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
- UK Health Security Agency, London, United Kingdom
| | - Kenrie P. Y. Hui
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
| | - Chris K. P. Mok
- The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong SAR, People's Republic of China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Marcus H. H. Shum
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
| | - Sumana Sanyal
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - John M. Nicholls
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
| | - John C. W. Ho
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
| | - Man-chun Cheung
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
| | - Ka-chun Ng
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
| | - Hin-Wo Yeung
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
| | - Michael C. W. Chan
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
| | - Leo L. M. Poon
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, People's Republic of China
| | - Jincun Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Tommy T. Y. Lam
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
| | - Malik Peiris
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, People's Republic of China
| |
Collapse
|
4
|
Johari J, Hontz RD, Pike BL, Husain T, Rusli N, Mohd-Zain R, Tiong V, Lee HY, Teoh BT, Sam SS, Khor CS, Loong SK, Abd-Jamil J, Nor'e SS, Yahaya H, Che-Kamaruddin N, Garcia-Rivera JA, AbuBakar S. MERS-CoV seroconversion amongst Malaysian Hajj pilgrims returning from the Middle East, 2016-2018: results from the MERCURIAL multiyear prospective cohort study. Emerg Microbes Infect 2023; 12:2208678. [PMID: 37101375 PMCID: PMC10208164 DOI: 10.1080/22221751.2023.2208678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/25/2023] [Indexed: 04/28/2023]
Abstract
Prospective cohort study to investigate the potential exposure to the Middle East Respiratory Syndrome-Coronavirus (MERS-CoV) following Hajj pilgrims is still very limited. Here, we report the antibody seroconversion study results obtained from successive three years cohort studies (2016-2018) involving the Malaysian Hajj pilgrims returning from the Middle East. A cohort study of Hajj pilgrims from Malaysia enrolled 2,863 participants from 2016-2018, all of whom consented to provide paired blood samples for both pre- and post-Hajj travel to the Middle East. ELISAs and micro-neutralization assays were performed to detect the presence of MERS-CoV IgG antibodies. Sociodemographic data, symptoms experienced during Hajj, and history of exposure to camels or camel products were recorded using structured pre- and post-Hajj questionnaires. A 4-fold increase in anti-MERS-CoV IgG between paired pre-Hajj and post-Hajj serum samples in twelve participants was observed. None of the twelve ELISA-positive sera had detectable levels of virus-neutralizing antibodies. All reportedly had mild symptoms of respiratory symptoms at a certain point during the pilgrimage, implying mild or asymptomatic infections. No association between post-Hajj serum positivity and a history of exposure to camels or camel products was obtained. Findings from the study suggest that serologic conversion to MERS-CoV occurred in at least 0.6% of the Hajj pilgrims returning from the Middle East. Since all the seroconvertants had mild to no symptoms during the sampling period, it highlights the likelihood of occurrence of only low infectivity spillover infections among the Hajj pilgrims.
Collapse
Affiliation(s)
- Jefree Johari
- Tropical Infectious Diseases Research & Education Centre (TIDREC), Universiti Malaya, Kuala Lumpur, Malaysia
| | - Robert D. Hontz
- U.S. Naval Medical Research Center – Asia, Singapore, Singapore
| | - Brian L. Pike
- U.S. Naval Medical Research Center – Asia, Singapore, Singapore
| | - Tupur Husain
- U.S. Naval Medical Research Center – Asia, Singapore, Singapore
| | | | | | - Vunjia Tiong
- Tropical Infectious Diseases Research & Education Centre (TIDREC), Universiti Malaya, Kuala Lumpur, Malaysia
| | - Hai-Yen Lee
- Tropical Infectious Diseases Research & Education Centre (TIDREC), Universiti Malaya, Kuala Lumpur, Malaysia
| | - Boon-Teong Teoh
- Tropical Infectious Diseases Research & Education Centre (TIDREC), Universiti Malaya, Kuala Lumpur, Malaysia
| | - Sing-Sin Sam
- Tropical Infectious Diseases Research & Education Centre (TIDREC), Universiti Malaya, Kuala Lumpur, Malaysia
| | - Chee-Sieng Khor
- Tropical Infectious Diseases Research & Education Centre (TIDREC), Universiti Malaya, Kuala Lumpur, Malaysia
| | - Shih-Keng Loong
- Tropical Infectious Diseases Research & Education Centre (TIDREC), Universiti Malaya, Kuala Lumpur, Malaysia
| | - Juraina Abd-Jamil
- Tropical Infectious Diseases Research & Education Centre (TIDREC), Universiti Malaya, Kuala Lumpur, Malaysia
| | - Siti-Sarah Nor'e
- Tropical Infectious Diseases Research & Education Centre (TIDREC), Universiti Malaya, Kuala Lumpur, Malaysia
| | - Hasmawati Yahaya
- Tropical Infectious Diseases Research & Education Centre (TIDREC), Universiti Malaya, Kuala Lumpur, Malaysia
| | - Naim Che-Kamaruddin
- Tropical Infectious Diseases Research & Education Centre (TIDREC), Universiti Malaya, Kuala Lumpur, Malaysia
| | | | - Sazaly AbuBakar
- Tropical Infectious Diseases Research & Education Centre (TIDREC), Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
5
|
So RTY, Chu DKW, Hui KPY, Mok CKP, Sanyal S, Nicholls JM, Ho JCW, Cheung MC, Ng KC, Yeung HW, Chan MCW, Poon LLM, Zhao J, Peiris M. Mutation nsp6 L232F associated with MERS-CoV zoonotic transmission confers higher viral replication in human respiratory tract cultures ex-vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.27.534490. [PMID: 37034576 PMCID: PMC10081289 DOI: 10.1101/2023.03.27.534490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) causes zoonotic disease. Dromedary camels are the source of zoonotic infection. We identified a mutation of amino acid leucine to phenylalanine in the codon 232 position of the non-structural protein 6 (nsp6) (nsp6 L232F) that is repeatedly associated with zoonotic transmission. We generated a pair of isogenic recombinant MERS-CoV with nsp6 232L and 232F residues, respectively, and showed that the nsp6 L232F mutation confers higher replication competence in ex-vivo culture of human nasal and bronchial tissues and in lungs of mice experimentally infected in-vivo. Mechanistically, the nsp6 L232F mutation appeared to modulate autophagy and was associated with higher exocytic virus egress, while innate immune responses and zippering activity of the endoplasmic reticulum remained unaffected. Our study suggests that MERS-CoV nsp6 may contribute to viral adaptation to humans. This highlights the importance of continued surveillance of MERS-CoV in both camels and humans.
Collapse
Affiliation(s)
- Ray TY So
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, People’s Republic of China
| | - Daniel KW Chu
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
- UK Health Security Agency, London, United Kingdom
| | - Kenrie PY Hui
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Chris KP Mok
- The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong SAR, PR China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Sumana Sanyal
- Sir William Dunn School of Pathology, University of Oxford, UK
| | - John M Nicholls
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - John C. W. Ho
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Man-chun Cheung
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Ka-chun Ng
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Hin-Wo Yeung
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Michael CW Chan
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Leo LM Poon
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, People’s Republic of China
| | - Jincun Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Malik Peiris
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, People’s Republic of China
| |
Collapse
|
6
|
Ali FEM, Abd El-Aziz MK, Ali MM, Ghogar OM, Bakr AG. COVID-19 and hepatic injury: cellular and molecular mechanisms in diverse liver cells. World J Gastroenterol 2023; 29:425-449. [PMID: 36688024 PMCID: PMC9850933 DOI: 10.3748/wjg.v29.i3.425] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/15/2022] [Accepted: 12/23/2022] [Indexed: 01/12/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) represents a global health and economic challenge. Hepatic injuries have been approved to be associated with severe acute respiratory syndrome coronavirus (SARS-CoV-2) infection. The viral tropism pattern of SARS-CoV-2 can induce hepatic injuries either by itself or by worsening the conditions of patients with hepatic diseases. Besides, other factors have been reported to play a crucial role in the pathological forms of hepatic injuries induced by SARS-CoV-2, including cytokine storm, hypoxia, endothelial cells, and even some treatments for COVID-19. On the other hand, several groups of people could be at risk of hepatic COVID-19 complications, such as pregnant women and neonates. The present review outlines and discusses the interplay between SARS-CoV-2 infection and hepatic injury, hepatic illness comorbidity, and risk factors. Besides, it is focused on the vaccination process and the role of developed vaccines in preventing hepatic injuries due to SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Fares E M Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| | | | - Mahmoud M Ali
- Department of Pharmacology, Al-Azhar University, Assiut 71524, Egypt
| | - Osama M Ghogar
- Department of Biochemistry Faculty of Pharmacy, Badr University in Assiut, Egypt
| | - Adel G Bakr
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| |
Collapse
|
7
|
Khaksarinejad R, Arabpour Z, RezaKhani L, Parvizpour F, Rasmi Y. Biomarker based biosensors: An opportunity for diagnosis of COVID-19. Rev Med Virol 2022; 32:e2356. [PMID: 35478470 PMCID: PMC9111147 DOI: 10.1002/rmv.2356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/16/2022] [Accepted: 03/26/2022] [Indexed: 01/08/2023]
Abstract
Early diagnosis and treatment of diseases are crucial research areas of human health. For early diagnosis, one method that has proven efficient is the detection of biomarkers which can provide real-time and accurate biological information. Most biomarker detection is currently carried out at localised dedicated laboratories using large and automated analysers, increasing waiting time and costs. Smaller, faster, and cheaper devices could potentially replace these time-consuming laboratory analyses and make analytical results available as point-of-care diagnostics. Innovative biosensor-based strategies could allow biomarkers to be tested reliably in a decentralised setting. Early diagnosis of COVID-19 patients has a key role in order to use quarantine and treatment strategies in a timely manner. Raised levels of several biomarkers in COVID-19 patients are associated with respiratory infections or dysfunction of various organs. Through clinical studies of COVID-19 patient biomarkers such as ferritin, Interleukins, albumin and …are found to reveals significant differences in their excretion ranges from healthy patients and patients with SARS-CoV-2, in addition to the development of biomarkers based biosensor such as stated biomarkers can be used and to investigate more specific biomarkers further proteomic analysis can be performed. This review presents several biomarker alterations in COVID-19 patients such as salivary, circulatory, coagulation, cardiovascular, renal, liver, C-reactive protein (CRP), immunological and inflammatory biomarkers. Also, biomarker sensors based on electrochemical, optical, and lateral flow characteristics which have potential applications for SARS-COV-2 in the recent COVID-19 pandemic, will be discussed.
Collapse
Affiliation(s)
- Reza Khaksarinejad
- Department of ToxicologyFaculty of Medical SciencesTarbiat Modares UniversityTehranIran
| | - Zohreh Arabpour
- Iranian Tissue Bank and Research CenterTehran University of Medical SciencesTehranIran
| | - Leila RezaKhani
- Fertility and Infertility Research CenterHealth Technology InstituteKermanshah University of Medical SciencesKermanshahIran
- Department of Tissue EngineeringSchool of MedicineKermanshah University of Medical SciencesKermanshahIran
| | - Farzad Parvizpour
- Iranian Tissue Bank and Research CenterTehran University of Medical SciencesTehranIran
| | - Yousef Rasmi
- Department of BiochemistryFaculty of MedicineUrmia University of Medical SciencesUrmiaIran
- Cellular and Molecular Research CenterUrmia University of Medical SciencesUrmiaIran
| |
Collapse
|
8
|
Subramaniam A, Lim ZJ, Ponnapa Reddy M, Mitchell H, Shekar K. SARS-CoV-2 transmission risk to healthcare workers performing tracheostomies: a systematic review. ANZ J Surg 2022; 92:1614-1625. [PMID: 35655401 PMCID: PMC9347596 DOI: 10.1111/ans.17814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/10/2022] [Accepted: 05/14/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Tracheostomy is a commonly performed procedure in patients with coronavirus disease 2019 (COVID-19) receiving mechanical ventilation (MV). This review aims to investigate the occurrence of SARS-CoV-2 transmission from patients to healthcare workers (HCWs) when tracheostomies are performed. METHODS This systematic review used the preferred reporting items for systematic reviews and meta-analysis framework. Studies reporting SARS-CoV-2 infection in HCWs involved in tracheostomy procedures were included. RESULTS Sixty-nine studies (between 01/11/2019 and 16/01/2022) reporting 3117 tracheostomy events were included, 45.9% (1430/3117) were performed surgically. The mean time from MV initiation to tracheostomy was 16.7 ± 7.9 days. Location of tracheostomy, personal protective equipment used, and anaesthesia technique varied between studies. The mean procedure duration was 14.1 ± 7.5 minutes; was statistically longer for percutaneous tracheostomies compared with surgical tracheostomies (mean duration 17.5 ± 7.0 versus 15.5 ± 5.6 minutes, p = 0.02). Across 5 out of 69 studies that reported 311 tracheostomies, 34 HCWs tested positive for SARS-CoV-2 and 23/34 (67.6%) were associated with percutaneous tracheostomies. CONCLUSIONS In this systematic review we found that SARS-CoV-2 transmission to HCWs performing or assisting with a tracheostomy procedure appeared to be low, with all reported transmissions occurring in 2020, prior to vaccinations and more recent strains of SARS-CoV-2. Transmissions may be higher with percutaneous tracheostomies. However, an accurate estimation of infection risk was not possible in the absence of the actual number of HCWs exposed to the risk during the procedure and the inability to control for multiple confounders related to variable timing, technique, and infection control practices.
Collapse
Affiliation(s)
- Ashwin Subramaniam
- Department of Intensive Care MedicinePeninsula HealthMelbourneVictoria
- Monash University, Peninsula Clinical SchoolMelbourneVictoriaAustralia
- Australian and New Zealand Intensive Care Research Centre (ANZIC RC), Department of Epidemiology and Preventive MedicineMonash UniversityMelbourneVictoriaAustralia
| | - Zheng Jie Lim
- Department of AnaesthesiaAustin HospitalHeidelbergVictoriaAustralia
| | - Mallikarjuna Ponnapa Reddy
- Department of Intensive Care MedicinePeninsula HealthMelbourneVictoria
- Department of Intensive Care MedicineCalvary HospitalCanberraAustralian Capital TerritoryAustralia
| | - Hayden Mitchell
- Department of MedicinePeninsula HealthFrankstonVictoriaAustralia
| | - Kiran Shekar
- Adult Intensive Care ServicesThe Prince Charles HospitalBrisbaneQueenslandAustralia
- School of MedicineUniversity of QueenslandBrisbaneQueenslandAustralia
- Institute of Health and Biomedical innovationUniversity of Technology BrisbaneBrisbaneQueenslandAustralia
- School of MedicineBond UniversityGold CoastQueenslandAustralia
| |
Collapse
|
9
|
Stein RA, Bianchini EC. Bacterial-Viral Interactions: A Factor That Facilitates Transmission Heterogeneities. FEMS MICROBES 2022. [DOI: 10.1093/femsmc/xtac018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
The transmission of infectious diseases is characterized by heterogeneities that are shaped by the host, the pathogen, and the environment. Extreme forms of these heterogeneities are called super-spreading events. Transmission heterogeneities are usually identified retrospectively, but their contribution to the dynamics of outbreaks makes the ability to predict them valuable for science, medicine, and public health. Previous studies identified several factors that facilitate super-spreading; one of them is the interaction between bacteria and viruses within a host. The heightened dispersal of bacteria colonizing the nasal cavity during an upper respiratory viral infection, and the increased shedding of HIV-1 from the urogenital tract during a sexually transmitted bacterial infection, are among the most extensively studied examples of transmission heterogeneities that result from bacterial-viral interactions. Interrogating these transmission heterogeneities, and elucidating the underlying cellular and molecular mechanisms, are part of much-needed efforts to guide public health interventions, in areas that range from predicting or controlling the population transmission of respiratory pathogens, to limiting the spread of sexually transmitted infections, and tailoring vaccination initiatives with live attenuated vaccines.
Collapse
Affiliation(s)
- Richard A Stein
- NYU Tandon School of Engineering Department of Chemical and Biomolecular Engineering 6 MetroTech Center Brooklyn , NY 11201 USA
| | - Emilia Claire Bianchini
- NYU Tandon School of Engineering Department of Chemical and Biomolecular Engineering 6 MetroTech Center Brooklyn , NY 11201 USA
| |
Collapse
|
10
|
Li CX, Noreen S, Zhang LX, Saeed M, Wu PF, Ijaz M, Dai DF, Maqbool I, Madni A, Akram F, Naveed M, Li JH. A critical analysis of SARS-CoV-2 (COVID-19) complexities, emerging variants, and therapeutic interventions and vaccination strategies. Biomed Pharmacother 2022; 146:112550. [PMID: 34959116 PMCID: PMC8673752 DOI: 10.1016/j.biopha.2021.112550] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 01/11/2023] Open
Abstract
Coronavirus is a family of viruses that can cause diseases such as the common cold, severe acute respiratory syndrome (SARS), and Middle East respiratory syndrome (MERS). The universal outbreak of coronavirus disease 2019 (COVID-19) caused by SARS coronaviruses 2 (SARS-CoV-2) has become a global pandemic. The β-Coronaviruses, which caused SARS-CoV-2 (COVID-19), have spread in more than 213 countries, infected over 81 million people, and caused more than 1.79 million deaths. COVID-19 symptoms vary from mild fever, flu to severe pneumonia in severely ill patients. Difficult breathing, acute respiratory distress syndrome (ARDS), acute kidney disease, liver damage, and multi-organ failure ultimately lead to death. Researchers are working on different pre-clinical and clinical trials to prevent this deadly pandemic by developing new vaccines. Along with vaccines, therapeutic intervention is an integral part of healthcare response to address the ongoing threat posed by COVID-19. Despite the global efforts to understand and fight against COVID-19, many challenges need to be addressed. This article summarizes the current pandemic, different strains of SARS-CoV-2, etiology, complexities, surviving medications of COVID-19, and so far, vaccination for the treatment of COVID-19.
Collapse
Affiliation(s)
- Chang-Xing Li
- Department of Human Anatomy, Medical College of Qinghai University, 810000 Xining, China
| | - Sobia Noreen
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Li-Xue Zhang
- School of Medicine, Northwest Minzu University, Lanzhou 730030, China
| | - Muhammad Saeed
- The Cholistan University of Veterinary and Animal Sciences, Bahawalpur 6300, Pakistan
| | - Pei-Feng Wu
- School of Medicine, Northwest Minzu University, Lanzhou 730030, China
| | - Muhammad Ijaz
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Lahore 54000, Pakistan
| | - Dong-Fang Dai
- Department of Human Anatomy, Medical College of Qinghai University, 810000 Xining, China
| | - Irsah Maqbool
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Asadullah Madni
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Faizan Akram
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Muhammad Naveed
- Department of Clinical Pharmacy, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China.
| | - Jian-Hua Li
- Department of Human Anatomy, Medical College of Qinghai University, 810000 Xining, China.
| |
Collapse
|
11
|
Saleki K, Yaribash S, Banazadeh M, Hajihosseinlou E, Gouravani M, Saghazadeh A, Rezaei N. Interferon therapy in patients with SARS, MERS, and COVID-19: A systematic review and meta-analysis of clinical studies. Eur J Pharmacol 2021; 906:174248. [PMID: 34126092 PMCID: PMC8195694 DOI: 10.1016/j.ejphar.2021.174248] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 06/03/2021] [Accepted: 06/07/2021] [Indexed: 12/11/2022]
Abstract
Concern regarding coronavirus (CoV) outbreaks has stayed relevant to global health in the last decades. Emerging COVID-19 infection, caused by the novel SARS-CoV2, is now a pandemic, bringing a substantial burden to human health. Interferon (IFN), combined with other antivirals and various treatments, has been used to treat and prevent MERS-CoV, SARS-CoV, and SARS-CoV2 infections. We aimed to assess the clinical efficacy of IFN-based treatments and combinational therapy with antivirals, corticosteroids, traditional medicine, and other treatments. Major healthcare databases and grey literature were investigated. A three-stage screening was utilized, and included studies were checked against the protocol eligibility criteria. Risk of bias assessment and data extraction were performed, followed by narrative data synthesis. Fifty-five distinct studies of SARS-CoV2, MERS-CoV, and SARS-CoV were spotted. Our narrative synthesis showed a possible benefit in the use of IFN. A good quality cohort showed lower CRP levels in Arbidol (ARB) + IFN group vs. IFN only group. Another study reported a significantly shorter chest X-ray (CXR) resolution in IFN-Alfacon-1 + corticosteroid group compared with the corticosteroid only group in SARS-CoV patients. In a COVID-19 trial, total adverse drug events (ADEs) were much lower in the Favipiravir (FPV) + IFN-α group compared with the LPV/RTV arm (P = 0.001). Also, nausea in patients receiving FPV + IFN-α regimen was significantly lower (P = 0.03). Quantitative analysis of mortality did not show a conclusive effect for IFN/RBV treatment in six moderately heterogeneous MERS-CoV studies (log OR = -0.05, 95% CI: (-0.71,0.62), I2 = 44.71%). A meta-analysis of three COVID-19 studies did not show a conclusive nor meaningful relation between receiving IFN and COVID-19 severity (log OR = -0.44, 95% CI: (-1.13,0.25), I2 = 31.42%). A lack of high-quality cohorts and controlled trials was observed. Evidence suggests the potential efficacy of several combination IFN therapies such as lower ADEs, quicker resolution of CXR, or a decrease in inflammatory cytokines; Still, these options must possibly be further explored before being recommended in public guidelines. For all major CoVs, our results may indicate a lack of a definitive effect of IFN treatment on mortality. We recommend such therapeutics be administered with extreme caution until further investigation uncovers high-quality evidence in favor of IFN or combination therapy with IFN.
Collapse
Affiliation(s)
- Kiarash Saleki
- Systematic Review and Meta-analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Student Research Committee, Babol University of Medical Sciences, Babol, Iran; USERN Office, Babol University of Medical Sciences, Babol, Iran
| | - Shakila Yaribash
- Systematic Review and Meta-analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran; International Campus, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Banazadeh
- Systematic Review and Meta-analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Ehsan Hajihosseinlou
- Systematic Review and Meta-analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran; School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Gouravani
- Systematic Review and Meta-analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran; School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amene Saghazadeh
- Systematic Review and Meta-analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
12
|
Zocchi E, Terrazzano G. COVID-19: why not learn from the past? Front Med 2021; 15:776-781. [PMID: 34463906 PMCID: PMC8407128 DOI: 10.1007/s11684-021-0883-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 07/23/2021] [Indexed: 11/26/2022]
Affiliation(s)
- Elena Zocchi
- Department of Experimental Medicine (DIMES), University of Genova, Genova, Italy.
| | | |
Collapse
|
13
|
Shawki MA, Elsayed NS, Mantawy EM, Said RS. Promising drug repurposing approach targeted for cytokine storm implicated in SARS-CoV-2 complications. Immunopharmacol Immunotoxicol 2021; 43:395-409. [PMID: 34057871 PMCID: PMC8171013 DOI: 10.1080/08923973.2021.1931302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 04/04/2021] [Indexed: 12/16/2022]
Abstract
A global threat has emerged in 2019 due to the rapid spread of Coronavirus disease (COVID-19). As of January 2021, the number of cases worldwide reached 103 million cases and 2.22 million deaths which were confirmed as the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This global pandemic galvanized the scientific community to study the causative virus (SARS-CoV2) pathogenesis, transmission, and clinical symptoms. Remarkably, the most common complication associated with this disease is the cytokine storm which is responsible for COVID-19 mortality. Thus, targeting the cytokine storm with new medications is needed to hamper COVID-19 complications where the most prominent strategy for the treatment is drug repurposing. Through this strategy, several steps are skipped especially those required for testing drug safety and thus may help in reducing the dissemination of this pandemic. Accordingly, the aim of this review is to outline the pathogenesis, clinical features, and immune complications of SARS-CoV2 in addition to suggesting several repurposed drugs with their plausible mechanism of action for possible management of severe COVID-19 cases.
Collapse
Affiliation(s)
- May Ahmed Shawki
- Department of Clinical Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Noha Salah Elsayed
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Eman M. Mantawy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Riham S. Said
- Department of Drug Radiation Research, National Center for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|
14
|
Beyrampour-Basmenj H, Milani M, Ebrahimi-Kalan A, Ben Taleb Z, Ward KD, Dargahi Abbasabad G, Aliyari-serej Z, Ebrahimi Kalan M. An Overview of the Epidemiologic, Diagnostic and Treatment Approaches of COVID-19: What do We Know? Public Health Rev 2021; 42:1604061. [PMID: 34381626 PMCID: PMC8245675 DOI: 10.3389/phrs.2021.1604061] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/01/2021] [Indexed: 01/08/2023] Open
Abstract
Background: In late December 2019, a new infectious respiratory disease (COVID-19) was reported in a number of patients with a history of exposure to the Huanan seafood market in China. The World Health Organization officially announced the COVID-19 pandemic on March 11, 2020. Here, we provided an overview of the epidemiologic, diagnostic and treatment approaches associated with COVID-19. Methods: We reviewed the publications indexed in major biomedical databases by December 20, 2020 or earlier (updated on May 16, 2021). Search keywords included a combination of: COVID-19, Coronavirus disease 2019, SARS-CoV-2, Epidemiology, Prevention, Diagnosis, Vaccine, and Treatment. We also used available information about COVID-19 from valid sources such as WHO. Results and Conclusion: At the time of writing this review, while most of the countries authorized COVID-19 vaccines for emergency use starting December 8, 2020, there is no a definite cure for it. This review synthesizes current knowledge of virology, epidemiology, clinical symptoms, diagnostic approaches, common treatment strategies, novel potential therapeutic options for control and prevention of COVID-19 infection, available vaccines, public health and clinical implications.
Collapse
Affiliation(s)
| | | | | | - Ziyad Ben Taleb
- University of Texas at Arlington, Arlington, VA, United States
| | | | | | | | | |
Collapse
|
15
|
Muhamad SA, Ugusman A, Kumar J, Skiba D, Hamid AA, Aminuddin A. COVID-19 and Hypertension: The What, the Why, and the How. Front Physiol 2021; 12:665064. [PMID: 34012410 PMCID: PMC8126692 DOI: 10.3389/fphys.2021.665064] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 04/08/2021] [Indexed: 01/08/2023] Open
Abstract
It has been a year since the coronavirus disease 2019 (COVID-19) was declared pandemic and wreak havoc worldwide. Despite meticulous research has been done in this period, there are still much to be learn from this novel coronavirus. Globally, observational studies have seen that majority of the patients with COVID-19 have preexisting hypertension. This raises the question about the possible relationship between COVID-19 and hypertension. This review summarizes the current understanding of the link between hypertension and COVID-19 and its underlying mechanisms.
Collapse
Affiliation(s)
- Shah-Abas Muhamad
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Azizah Ugusman
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Jaya Kumar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Dominik Skiba
- Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Magdalenka, Poland
| | - Adila A Hamid
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Amilia Aminuddin
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| |
Collapse
|
16
|
Arashkia A, Jalilvand S, Mohajel N, Afchangi A, Azadmanesh K, Salehi‐Vaziri M, Fazlalipour M, Pouriayevali MH, Jalali T, Mousavi Nasab SD, Roohvand F, Shoja Z, for the SARS CoV‐2 Rapid Response Team of Pasteur Institute of Iran (PII). Severe acute respiratory syndrome-coronavirus-2 spike (S) protein based vaccine candidates: State of the art and future prospects. Rev Med Virol 2021; 31:e2183. [PMID: 33594794 PMCID: PMC7646037 DOI: 10.1002/rmv.2183] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/30/2020] [Accepted: 10/01/2020] [Indexed: 01/07/2023]
Abstract
Coronavirus disease 2019 (Covid-19) is caused by severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) which is responsible for a global pandemic that started in late 2019 in Wuhan, China. To prevent the worldwide spread of this highly pathogenic virus, development of an effective and safe vaccine is urgently needed. The SARS-CoV-2 and SARS-CoV share a high degree of genetic and pathologic identity and share safety and immune-enhancement concerns regarding vaccine development. Prior animal studies with first generation (whole virus-based) preparations of SARS-CoV vaccines (inactivated and attenuated vaccine modalities) indicated the possibility of increased infectivity or eosinophilic infiltration by immunization. Therefore, development of second and third generation safer vaccines (by using modern vaccine platforms) is actively sought for this viral infection. The spike (S) protein of SARS-CoVs is the main determinant of cell entry and tropism and is responsible for facilitating zoonosis into humans and sustained person-to-person transmission. Furthermore, 'S' protein contains multiple neutralizing epitopes that play an essential role in the induction of neutralizing antibodies (nAbs) and protective immunity. Moreover, T-cell responses against the SARS-CoV-2 'S' protein have also been characterized that correlate to the IgG and IgA antibody titres in Covid-19 patients. Thus, S protein is an obvious candidate antigen for inclusion into vaccine platforms against SARS-CoV-2 viral infection. This manuscript reviews different characteristics of S protein, its potency and 'state of the art' of the vaccine development strategies and platforms using this antigen, for construction of a safe and effective SARS-CoV-2 vaccine.
Collapse
MESH Headings
- Antibodies, Viral/biosynthesis
- COVID-19/epidemiology
- COVID-19/immunology
- COVID-19/prevention & control
- COVID-19/virology
- COVID-19 Vaccines/administration & dosage
- COVID-19 Vaccines/biosynthesis
- COVID-19 Vaccines/immunology
- Clinical Trials as Topic
- Genetic Vectors/chemistry
- Genetic Vectors/immunology
- Genome, Viral/immunology
- Humans
- Immunity, Innate/drug effects
- Immunization Schedule
- Immunogenicity, Vaccine
- Pandemics
- Patient Safety
- SARS-CoV-2/drug effects
- SARS-CoV-2/immunology
- SARS-CoV-2/pathogenicity
- Spike Glycoprotein, Coronavirus/chemistry
- Spike Glycoprotein, Coronavirus/genetics
- Spike Glycoprotein, Coronavirus/immunology
- Vaccines, Attenuated
- Vaccines, DNA
- Vaccines, Subunit
Collapse
Affiliation(s)
- Arash Arashkia
- Department of Molecular VirologyPasteur Institute of IranTehranIran
| | - Somayeh Jalilvand
- Department of VirologySchool of Public HealthTehran University of Medical SciencesTehranIran
| | - Nasir Mohajel
- Department of Molecular VirologyPasteur Institute of IranTehranIran
| | - Atefeh Afchangi
- Department of VirologySchool of Public HealthTehran University of Medical SciencesTehranIran
| | | | - Mostafa Salehi‐Vaziri
- Department of Arboviruses and Viral Hemorrhagic Fevers (National Ref Lab)Pasteur Institute of IranTehranIran
| | - Mehdi Fazlalipour
- Department of Arboviruses and Viral Hemorrhagic Fevers (National Ref Lab)Pasteur Institute of IranTehranIran
| | | | - Tahmineh Jalali
- Department of Arboviruses and Viral Hemorrhagic Fevers (National Ref Lab)Pasteur Institute of IranTehranIran
| | - Seyed Dawood Mousavi Nasab
- Department of Research and DevelopmentProduction and Research ComplexPasteur Institute of IranTehranIran
| | - Farzin Roohvand
- Department of Molecular VirologyPasteur Institute of IranTehranIran
| | - Zabihollah Shoja
- Department of Molecular VirologyPasteur Institute of IranTehranIran
| | | |
Collapse
|
17
|
Wang J, Yeoh EK, Yung TKC, Wong MCS, Dong D, Chen X, Chan MKY, Wong ELY, Wu Y, Guo Z, Wang Y, Zhao S, Chong KC. Change in eating habits and physical activities before and during the COVID-19 pandemic in Hong Kong: a cross-sectional study via random telephone survey. J Int Soc Sports Nutr 2021; 18:33. [PMID: 33910582 PMCID: PMC8080997 DOI: 10.1186/s12970-021-00431-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/16/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Hong Kong is a densely populated city with a low incidence and mortality of coronavirus disease 2019 (COVID-19). The city imposed different levels of social distancing including, the closure of sports venues and restrictions on eateries. This inevitably affects the eating behaviour and physical activities of the population. We examined the changes in eating behavior and physical activities before and during the COVID-19 pandemic, and identified sociodemographic factors associated with the behavioral changes. METHODS This was a cross-sectional study via a random telephone survey of Chinese adults conducted in Hong Kong from May to June, 2020 - a period in which social distancing measures were being imposed. We measured the physical activity habits from four aspects and dietary consumption patterns from seven aspects before and during the pandemic based on the World Health Organization's guidelines and previous publications. RESULTS In total, 724 participants were recruited. Individuals were found to cook more frequently at home (p < 0.001) and order take-out (p < 0.001) during the COVID-19 pandemic. While no significant change in the frequency of fast food consumption was observed, we found significant increases in the frequency of eating fruits (p < 0.001) and vegetables (p = 0.004). The frequencies of walking, moderate-intensive sports, and high-intensity sports were significantly reduced (p < 0.001). We found that healthy lifestyle behaviors during the pandemic were negatively associated with participants' economic status. CONCLUSIONS Social distancing measures likely provided an opportunity for individuals to stay home and thus eat healthier. However, in a prolonged period of social restrictions, a lower physical activity level poses a risk to public health. Public health officials are thus advised to monitor physical health on a population-wide basis. The findings highlighted the importance of interventions tailored to individuals who have prolonged home stays - particularly for individuals in the low economic group.
Collapse
Affiliation(s)
- Jingxuan Wang
- School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China
| | - Eng Kiong Yeoh
- School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China
- CUHK Institute of Health Equity, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China
- Centre for Health Systems and Policy Research, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China
| | - Tony Ka Chun Yung
- School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China
| | - Martin Chi Sang Wong
- School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China
| | - Dong Dong
- School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China
| | - Xiao Chen
- School of Public Health, Zhejiang University, Zhejiang, China
| | - Maggie Ka Ying Chan
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China
| | - Eliza Lai Yi Wong
- School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China
| | - Yushan Wu
- School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China
| | - Zihao Guo
- School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China
| | - Yawen Wang
- School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China
| | - Shi Zhao
- School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Ka Chun Chong
- School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China.
- Centre for Health Systems and Policy Research, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China.
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China.
| |
Collapse
|
18
|
Carmi G, Gorohovski A, Mukherjee S, Frenkel-Morgenstern M. Non-optimal codon usage preferences of coronaviruses determine their promiscuity for infecting multiple hosts. FEBS J 2021; 288:5201-5223. [PMID: 33756061 DOI: 10.1111/febs.15835] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 02/09/2021] [Accepted: 03/22/2021] [Indexed: 12/11/2022]
Abstract
Circulating animal coronaviruses occasionally infect humans. The SARS-CoV-2 is responsible for the current worldwide outbreak of COVID-19 that has resulted in 2 112 844 deaths as of late January 2021. We compared genetic code preferences in 496 viruses, including 34 coronaviruses and 242 corresponding hosts, to uncover patterns that distinguish single- and 'promiscuous' multiple-host-infecting viruses. Based on a codon usage preference score, promiscuous viruses were shown to significantly employ nonoptimal codons, namely codons that involve 'wobble' binding to anticodons, as compared to single-host viruses. The codon adaptation index (CAI) and the effective number of codons (ENC) were calculated for all viruses and hosts. Promiscuous viruses were less adapted hosts vs single-host viruses (P-value = 4.392e-11). All coronaviruses exploit nonoptimal codons to infect multiple hosts. We found that nonoptimal codon preferences at the beginning of viral coding sequences enhance the translational efficiency of viral proteins within the host. Finally, coronaviruses lack endogenous RNA degradation motifs to a significant degree, thereby increasing viral mRNA burden and infection load. To conclude, we found that promiscuously infecting coronaviruses prefer nonoptimal codon usage to remove degradation motifs from their RNAs and to dramatically increase their viral RNA production rates.
Collapse
Affiliation(s)
- Gon Carmi
- Cancer Genomics and BioComputing of Complex Diseases Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Alessandro Gorohovski
- Cancer Genomics and BioComputing of Complex Diseases Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Sumit Mukherjee
- Cancer Genomics and BioComputing of Complex Diseases Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Milana Frenkel-Morgenstern
- Cancer Genomics and BioComputing of Complex Diseases Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel.,The Data Science Institute, Bar-Ilan University, Ramat Gan, Israel.,The Dangoor Center for Personalized Medicine, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
19
|
Abdelghany TM, Ganash M, Bakri MM, Qanash H, Al-Rajhi AMH, Elhussieny NI. SARS-CoV-2, the other face to SARS-CoV and MERS-CoV: Future predictions. Biomed J 2021; 44:86-93. [PMID: 33602634 PMCID: PMC7603957 DOI: 10.1016/j.bj.2020.10.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/15/2020] [Accepted: 10/26/2020] [Indexed: 12/28/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) outbreak is proving to be an unprecedented disaster that lays its dark shadow on global health, economics and personal freedom. Severe acute respiratory syndrome (SARS) and middle east respiratory syndrome (MERS) epidemics provide scientific data that is useful in better understanding and resolution of COVID-19. Similarities among SARS-CoV, MERS-CoV and SARS-CoV-2 have been investigated in the light of available data. SARS-CoV, MERS-CoV and SARS-CoV-2 evolved in bats and have positive-sense RNA genomes of 27.9 kb, 30.1 kb and 29.9 kb, respectively. Molecular and serological tools used for diagnosis of SARS and MERS patients resemble COVID-19 diagnostic tools. Stability and longevity data of SARS and MERS epidemics contribute in the current pandemic precaution policies. Trials to produce vaccines for SARS-CoV and MERS-CoV failed, therefore different strategies were employed for SARS-CoV2 vaccines production and during the past period antiviral agents, Convalescent plasma and monoclonal antibodies provide potential treatments for sever patients. The mortality rate caused by the SARS-CoV and MERS-CoV reached 15% and 37%, respectively. The first declarations about mortality rate of SARS-CoV-2 was around 2-4% but now this rate differed globally and reached more than 13% in some countries. A realistic COVID-19 outbreak scenario suggest that the pandemic might last for three years with fluctuation in the number of infected cases, unless vaccination process goes faster and/or antiviral drug is discovered.
Collapse
Affiliation(s)
- T M Abdelghany
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo, Egypt.
| | - Magdah Ganash
- Biology Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Marwah M Bakri
- University College, Al-Ardah, Jazan University, Jazan, Saudi Arabia
| | - Husam Qanash
- Clinical Laboratory Science Department, College of Applied Medical Sciences, University of Hail, Hail, Saudi Arabia
| | - Aisha M H Al-Rajhi
- Biology Department, Faculty of Science, Princess Nora Bent Abdularahman University, Riyadh, Saudi Arabia
| | - Nadeem I Elhussieny
- Chemistry of Natural and Microbial Products Department, National Research Centre, Cairo, Egypt; Institute of Environmental Biology and Biotechnology, University of Applied Sciences, Bremen, Germany; Life Sciences and Chemistry Department, Jacobs University Bremen GmbH, Bremen, Germany
| |
Collapse
|
20
|
Molaei S, Dadkhah M, Asghariazar V, Karami C, Safarzadeh E. The immune response and immune evasion characteristics in SARS-CoV, MERS-CoV, and SARS-CoV-2: Vaccine design strategies. Int Immunopharmacol 2021; 92:107051. [PMID: 33429331 PMCID: PMC7522676 DOI: 10.1016/j.intimp.2020.107051] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 09/24/2020] [Accepted: 09/24/2020] [Indexed: 01/25/2023]
Abstract
The worldwide outbreak of SARS-CoV-2, severe acute respiratory syndrome coronavirus 2 as a novel human coronavirus, was the worrying news at the beginning of 2020. Since its emergence complicated more than 870,000 individuals and led to more than 43,000 deaths worldwide. Considering to the potential threat of a pandemic and transmission severity of it, there is an urgent need to evaluate and realize this new virus's structure and behavior and the immunopathology of this disease to find potential therapeutic protocols and to design and develop effective vaccines. This disease is able to agitate the response of the immune system in the infected patients, so ARDS, as a common consequence of immunopathological events for infections with Middle East respiratory syndrome coronavirus (MERS-CoV), SARS-CoV, and SARS-CoV-2, could be the main reason for death. Here, we summarized the immune response and immune evasion characteristics in SARS-CoV, MERS-CoV, and SARS-CoV-2 and therapeutic and prophylactic strategies with a focus on vaccine development and its challenges.
Collapse
Affiliation(s)
- Soheila Molaei
- Deputy of Research & Technology, Ardabil University of Medical Sciences, Ardabil, Iran; Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Masoomeh Dadkhah
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran; Department of Pharmacology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Vahid Asghariazar
- Deputy of Research & Technology, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Chiman Karami
- Department of Microbiology, Parasitology, and Immunology, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Elham Safarzadeh
- Department of Microbiology, Parasitology, and Immunology, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
21
|
Sahoo S, Mahapatra SR, Parida BK, Rath S, Dehury B, Raina V, Mohakud NK, Misra N, Suar M. DBCOVP: A database of coronavirus virulent glycoproteins. Comput Biol Med 2021; 129:104131. [PMID: 33276297 PMCID: PMC7679231 DOI: 10.1016/j.compbiomed.2020.104131] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/31/2020] [Accepted: 11/13/2020] [Indexed: 12/12/2022]
Abstract
Since the emergence of SARS-CoV-1 (2002), novel coronaviruses have emerged periodically like the MERS- CoV (2012) and now, the SARS-CoV-2 outbreak which has posed a global threat to public health. Although, this is the third zoonotic coronavirus breakout within the last two decades, there are only a few platforms that provide information about coronavirus genomes. None of them is specific for the virulence glycoproteins and complete sequence-structural features of these virulence factors across the betacoronavirus family including SARS-CoV-2 strains are lacking. Against this backdrop, we present DBCOVP (http://covp.immt.res.in/), the first manually-curated, web-based resource to provide extensive information on the complete repertoire of structural virulent glycoproteins from coronavirus genomes belonging to betacoronavirus genera. The database provides various sequence-structural properties in which users can browse and analyze information in different ways. Furthermore, many conserved T-cell and B-cell epitopes predicted for each protein are present that may perform a significant role in eliciting the humoral and cellular immune response. The tertiary structure of the epitopes together with the docked epitope-HLA binding-complex is made available to facilitate further analysis. DBCOVP presents an easy-to-use interface with in-built tools for similarity search, cross-genome comparison, phylogenetic, and multiple sequence alignment. DBCOVP will certainly be an important resource for experimental biologists engaged in coronavirus research studies and will aid in vaccine development.
Collapse
Affiliation(s)
- Susrita Sahoo
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, Odisha, India
| | - Soumya Ranjan Mahapatra
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, Odisha, India
| | - Bikram Kumar Parida
- Informatics Lab, CSIR-Institute of Minerals and Materials Technology (CSIR-IMMT), Bhubaneswar, Odisha, India
| | - Satyajit Rath
- Informatics Lab, CSIR-Institute of Minerals and Materials Technology (CSIR-IMMT), Bhubaneswar, Odisha, India
| | - Budheswar Dehury
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, Odisha, India
| | - Vishakha Raina
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, Odisha, India
| | - Nirmal Kumar Mohakud
- Department of Pediatrics, Kalinga Institute of Medical Sciences, KIIT Deemed to Be University, Bhubaneswar, Odisha, India
| | - Namrata Misra
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, Odisha, India; KIIT-Technology Business Incubator (KIIT-TBI), Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, Odisha, India
| | - Mrutyunjay Suar
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, Odisha, India; KIIT-Technology Business Incubator (KIIT-TBI), Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, Odisha, India.
| |
Collapse
|
22
|
Rehman Z, Fahim A, Bhatti MF. Scouting the receptor-binding domain of SARS coronavirus 2: a comprehensive immunoinformatics inquisition. Future Virol 2021. [PMCID: PMC7899787 DOI: 10.2217/fvl-2020-0269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Aim: December 2019 witnessed the emergence of a worldwide outbreak of a novel strain of coronavirus (CoV) termed SARS-CoV-2. Several preventive strategies are being developed, such as vaccines, to stop the spread of infection. Materials & methods: A comprehensive immunoinformatics approach was used to map conserved peptide sequences on the receptor binding domain of SARS-CoV-2 for their B-cell, T-helper & T-cytotoxic cell epitope profiles. Results & conclusion: The antigenic B-cell epitopes were LFRKSN and SYGFQPT. Among T-cell epitopes, CVADYSVLY and FTNVYADSF exhibited affinity for MHC class I, while YRLFRKSNL and VYAWNRKRI exhibited affinity for of MHC class II alleles. The overlapping epitope between B- and T-cells was YRLFRKSNL. The deployment of these epitopes in potential vaccine development against COVID-19 may help in slowing down the SARS-CoV-2 spread.
Collapse
Affiliation(s)
- Zaira Rehman
- Department of Virology, National Institute of Health (NIH), Islamabad, Pakistan
| | - Ammad Fahim
- Department of Multidisciplinary Sciences, National University of Medical Sciences (NUMS), Rawalpindi, Pakistan
| | - Muhammad Faraz Bhatti
- Atta-ur-Rahman School of Applied Biosciences (ASAB),National University of Sciences & Technology (NUST), Sector H-12, Islamabad, Pakistan
| |
Collapse
|
23
|
Wang Y, Lv Y, Liu Q. SARS-CoV-2 infection associated acute kidney injury in patients with pre-existing chronic renal disease: A report of two cases. Immun Inflamm Dis 2020; 8:506-511. [PMID: 32725744 PMCID: PMC7654398 DOI: 10.1002/iid3.333] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 07/20/2020] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND The 2019 novel coronavirus (severe acute respiratory syndrome coronavirus 2 [SARS-CoV-2]) is driving a novel atypical pneumonia (coronavirus disease 2019 [COVID-19]) outbreak in Wuhan, causing huge public health challenges both in China and globally. Limited data are available for information and prognosis on COVID-19 patients with pre-existing chronic kidney disease. CASE PRESENTATION Here we described the clinical characteristics and outcomes from two patients-a female aged 40-year-old and an 83-year-old male-who were subjected to SARS-CoV-2 infection, with history of chronic renal insufficiency. The female was admitted for dry cough and shortness of breath and the male was admitted for fever. The thorax computed tomography revealed patchy consolidation and ground-glass opacity in both scattered lobes and the throat swab sample for coronavirus nucleic acid was positive. They were diagnosed with COVID-19 and their renal function became progressively worse after infection with COVID-19. After symptomatic support treatment, in both the patients, renal function was obviously restored, and both recovered from this pneumonia and conformed to the discharge criteria. CONCLUSION SARS-CoV-2 infection may aggravate renal function impairment. It is crucial to monitor changes of renal function in patients with COVID-19, especially those with primary kidney disease. Kidney protection interventions should be taken as early as possible, thereby improving the prognosis of patients with COVID-19.
Collapse
Affiliation(s)
- Yiru Wang
- Department of Nephrology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yongman Lv
- Department of Nephrology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Department of Health Management Centre, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Qingquan Liu
- Department of Nephrology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
24
|
Yakass MB, Quaye O, Woodward BJ. Risks of SARS-CoV-2 on male reproductive health and the practice of semen analysis and cryopreservation. Future Microbiol 2020; 15:1415-1418. [PMID: 33156722 PMCID: PMC7675012 DOI: 10.2217/fmb-2020-0114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Michael B Yakass
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana.,Department of Biochemistry, Cell & Molecular Biology, University of Ghana, Accra, Ghana.,Assisted Conception Unit, Lister Hospital & Fertility Centre, Accra, Ghana
| | - Osbourne Quaye
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana.,Department of Biochemistry, Cell & Molecular Biology, University of Ghana, Accra, Ghana
| | | |
Collapse
|
25
|
Cheng ZJ, Qu HQ, Tian L, Duan Z, Hakonarson H. COVID-19: Look to the Future, Learn from the Past. Viruses 2020; 12:E1226. [PMID: 33138262 PMCID: PMC7692564 DOI: 10.3390/v12111226] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/28/2020] [Accepted: 10/28/2020] [Indexed: 12/13/2022] Open
Abstract
There is a current pandemic of a new type of coronavirus, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The number of confirmed infected cases has been rapidly increasing. This paper analyzes the characteristics of SARS-CoV-2 in comparison with Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV), Middle East Respiratory Syndrome Coronavirus (MERS-CoV) and influenza. COVID-19 is similar to the diseases caused by SARS-CoV and MERS-CoV virologically and etiologically, but closer to influenza in epidemiology and virulence. The comparison provides a new perspective for the future of the disease control, and offers some ideas in the prevention and control management strategy. The large number of infectious people from the origin, and the highly infectious and occult nature have been two major problems, making the virus difficult to eradicate. We thus need to contemplate the possibility of long-term co-existence with COVID-19.
Collapse
Affiliation(s)
- Zhangkai J. Cheng
- Institute of Medical Physics, School of Physics, University of Sydney, Sydney, NSW 2006, Australia
- Center for Applied Genomics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA; (H.-Q.Q.); (L.T.); (Z.D.)
| | - Hui-Qi Qu
- Center for Applied Genomics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA; (H.-Q.Q.); (L.T.); (Z.D.)
| | - Lifeng Tian
- Center for Applied Genomics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA; (H.-Q.Q.); (L.T.); (Z.D.)
| | - Zhifeng Duan
- Center for Applied Genomics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA; (H.-Q.Q.); (L.T.); (Z.D.)
| | - Hakon Hakonarson
- Center for Applied Genomics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA; (H.-Q.Q.); (L.T.); (Z.D.)
- Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Division of Pulmonary Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| |
Collapse
|
26
|
Li T, Sun L, Zhang W, Zheng C, Jiang C, Chen M, Chen D, Dai Z, Bao S, Shen X. Bromhexine Hydrochloride Tablets for the Treatment of Moderate COVID-19: An Open-Label Randomized Controlled Pilot Study. Clin Transl Sci 2020; 13:1096-1102. [PMID: 32881359 PMCID: PMC7719397 DOI: 10.1111/cts.12881] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/17/2020] [Indexed: 01/08/2023] Open
Abstract
This open‐label randomized controlled pilot study aimed to test the study feasibility of bromhexine hydrochloride (BRH) tablets for the treatment of mild or moderate coronavirus disease 2019 (COVID‐19) and to explore its clinical efficacy and safety. Patients with mild or moderate COVID‐19 were randomly divided into the BRH group or the control group at a 2:1 ratio. Routine treatment according to China’s Novel Coronavirus Pneumonia Diagnosis and Treatment Plan was performed in both groups, whereas patients in the BRH group were additionally given oral BRH (32 mg t.i.d.) for 14 consecutive days. The efficacy and safety of BRH were evaluated. A total of 18 patients with moderate COVID‐19 were randomized into the BRH group (n = 12) or the control group (n = 6). There were suggestions of BRH advantage over placebo in improved chest computed tomography, need for oxygen therapy, and discharge rate within 20 days. However, none of these findings were statistically significant. BRH tablets may potentially have a beneficial effect in patients with COVID‐19, especially for those with lung or hepatic injury. A further definitive large‐scale clinical trial is feasible and necessary.
Collapse
Affiliation(s)
- Ting Li
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.,Clinical Research Unit, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Laifang Sun
- Department of Emergency, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wenwu Zhang
- Department of Critical Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chanfan Zheng
- Clinical Research Unit, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chenchen Jiang
- Clinical Research Unit, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Mingjing Chen
- Clinical Research Unit, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Di Chen
- Clinical Research Unit, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhijuan Dai
- Department of Endocrinology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shihui Bao
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xian Shen
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
27
|
Oscanoa TJ, Romero-Ortuno R, Carvajal A, Savarino A. A pharmacological perspective of chloroquine in SARS-CoV-2 infection: An old drug for the fight against a new coronavirus? Int J Antimicrob Agents 2020; 56:106078. [PMID: 32629115 PMCID: PMC7334645 DOI: 10.1016/j.ijantimicag.2020.106078] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/24/2020] [Accepted: 06/28/2020] [Indexed: 02/06/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is having serious consequences on health and the economy worldwide. All evidence-based treatment strategies need to be considered to combat this new virus. Drugs need to be considered on scientific grounds of efficacy, safety and cost. Chloroquine (CQ) and hydroxychloroquine (HCQ) are old drugs used in the treatment of malaria. Moreover, their antiviral properties have been previously studied, including against coronaviruses, where evidence of efficacy has been found. In the current race against time triggered by the COVID-19 pandemic, the search for new antivirals is very important. However, consideration should be given to old drugs with known anti-coronavirus activity, such as CQ and HCQ. These could be integrated into current treatment strategies while novel treatments are awaited, also in light of the fact that they display an anticoagulant effect that facilitates the activity of low-molecular-weight heparin, aimed at preventing acute respiratory distress syndrome (ARDS)-associated thrombotic events. The safety of CQ and HCQ has been studied for over 50 years, however recently published data raise concerns for cardiac toxicity of CQ/HCQ in patients with COVID-19. This review also re-examines the real information provided by some of the published alarming reports, although concluding that cardiac toxicity should in any case be stringently monitored in patients receiving CQ/HCQ.
Collapse
Affiliation(s)
- Teodoro J Oscanoa
- Department of Pharmacology, Facultad de Medicina, Universidad Nacional Mayor de San Marcos, Lima, Peru, and Drug Safety Research Center, Facultad de Medicina Humana, Universidad de San Martín de Porres, Hospital Almenara, ESSALUD, Lima, Peru.
| | - Roman Romero-Ortuno
- Discipline of Medical Gerontology, Mercer's Institute for Successful Ageing, St James's Hospital, Dublin, Ireland, and Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland
| | - Alfonso Carvajal
- Centro de Estudios sobre la Seguridad de los Medicamentos (CESME), Universidad de Valladolid, Valladolid, Spain
| | - Andrea Savarino
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
28
|
Ekrami E, Pouresmaieli M, Barati F, Asghari S, Ziarani FR, Shariati P, Mamoudifard M. Potential Diagnostic Systems for Coronavirus Detection: a Critical Review. Biol Proced Online 2020; 22:21. [PMID: 32884452 PMCID: PMC7462115 DOI: 10.1186/s12575-020-00134-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/23/2020] [Indexed: 02/06/2023] Open
Abstract
Abstract Currently there are no effective anti-viral drugs for SARS-CoV-2, so the primary line of defense is to detect infected cases as soon as possible. The high rate of contagion for this virus and the highly nonspecific symptoms of the disease (Coronovirus disease 2019, (Covid-19)) that it causes, such as respiratory symptoms, cough, dyspnea, fever, and viral pneumonia, require the urgent establishment of precise and fast diagnostic tests to verify suspected cases, screen patients, and conduct virus surveillance. Nowadays, several virus detection methods are available for viral diseases, which act on specific properties of each virus or virus family, therefore, further investigations and trials are needed to find a highly efficient and accurate detection method to detect and prevent the outcomes of the disease. Hence, there is an urgent need for more and precise studies in this field. In this review, we discussed the properties of a new generation of coronaviruses (SARS-CoV-2) following routine virus detection methods and proposed new strategies and the use of potential samples for SARS-CoV-2 detection. Graphical Abstract ![]()
Collapse
Affiliation(s)
- Elena Ekrami
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Mahdi Pouresmaieli
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Fatemeh Barati
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Sahar Asghari
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Farzad Ramezani Ziarani
- Department of Microbiology, School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Parvin Shariati
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Matin Mamoudifard
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| |
Collapse
|
29
|
Yang RX, Zheng RD, Fan JG. Etiology and management of liver injury in patients with COVID-19. World J Gastroenterol 2020; 26:4753-4762. [PMID: 32921955 PMCID: PMC7459209 DOI: 10.3748/wjg.v26.i32.4753] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/23/2020] [Accepted: 08/12/2020] [Indexed: 02/06/2023] Open
Abstract
The outbreak of novel coronavirus disease 2019 (COVID-19) has resulted in global emergence. With the expansion of related research, in addition to respiratory symptoms, digestive system involvement such as nausea, vomiting, and diarrhea have also been reported with COVID-19. Besides, abnormal liver function is also frequent in biochemical tests of COVID-19 patients, which is correlated with the severity and mortality of the disease course. The etiology of liver injury in patients with COVID-19 might include viral immunologic injury, drug-induced liver injury, the systemic inflammatory response, hypoxic hepatitis, and the exacerbation of preexisting liver disease. Although liver injuries in COVID-19 are often transient and reversible, health workers need to pay attention to preexisting liver disease, monitor liver function, strengthen supportive treatment, and reduce the chance of drug-induced liver injury. This article reviews the epidemiological characteristics, etiology, management, and preventive strategies for liver injury in patients with COVID-19.
Collapse
Affiliation(s)
- Rui-Xu Yang
- Center for Fatty Liver, Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Rui-Dan Zheng
- Diagnosis and Treatment Center for Liver Diseases, Zhengxing Hospital, Zhangzhou 363000, Fujian Province, China
| | - Jian-Gao Fan
- Center for Fatty Liver, Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Key Lab of Pediatric Gastroenterology and Nutrition, Shanghai 200092, China
| |
Collapse
|
30
|
Santhosh SB, Mohamed Sheik Tharik A, Susitra Manjari M, Balakrishnan R, Muruganandam N, Chandrasekar MJN. Coronavirus disease - COVID-19: new perceptives towards epidemic to pandemic. J Drug Target 2020; 28:755-759. [PMID: 32729367 DOI: 10.1080/1061186x.2020.1803885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The sudden outbreak and uncontrolled spread of the novel coronavirus disease 2019 (COVID-19) has shocked the world to a degree never seen before. Due to the wide spread transmission of the virus, the number of infected cases worldwide has surpassed 16,421,958 and global death toll has spiked up to 6,52,308 from December 2019 to 27 July 2020. The virus has been labelled as a pandemic by the WHO. Virologists have found that this virus outbreak is similar to past outbreaks of viruses such as severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East Respiratory Syndrome that caused severe respiratory syndrome and transmitted rapidly in humans. These single stranded RNA viruses come under the genera of β-coronaviruses which ultimately infect lungs and respiratory tract. Even though the origin, source and intermediate hosts of this virus is unknown, transmittance from human-to-human through various paths has been identified globally. As of today, there are no approved drugs and vaccines. Several clinical trials are being conducted today to evaluate vaccines against the virus. The aim of our present review is to furnish brief details about the statistics, diagnosis, epidemiology, pathogenesis, prevention and treatment of COVID-19 to assist researchers and the society at large to come to grip with the deadly disease.HighlightsCumbersome outbreak of the novel Coronavirus Disease 2019 (COVID-19) became a pandemicAt June 19, 2020, as per WHO report 8,618,787 infected cases and 457,275 dead were recorded globallyMajor spread was found to be human to human transmissionsPeople with positive COVID-19 were infected with severe respiratory syndromeMore animal and clinical studies have to be done to overcome this pandemic.
Collapse
Affiliation(s)
- S B Santhosh
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy (A Constituent College of JSS Academy of Higher Education and Research), Ooty, India.,Department of Pharmaceutical Analysis, JSS College of Pharmacy (A Constituent College of JSS Academy of Higher Education and Research), Ooty, India
| | - A Mohamed Sheik Tharik
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy (A Constituent College of JSS Academy of Higher Education and Research), Ooty, India.,Department of Pharmaceutical Analysis, JSS College of Pharmacy (A Constituent College of JSS Academy of Higher Education and Research), Ooty, India
| | - M Susitra Manjari
- SPDC Division, CSIR - Central Leather Research Institute, Chennai, India
| | - R Balakrishnan
- Department of Applied Life Sciences and Integrated Biosciences, Graduate School, Konkuk University, Chungju, Korea
| | - N Muruganandam
- Division of Virology, Regional Medical Research Centre (ICMR), Port Blair, A&N Islands, India
| | - M J N Chandrasekar
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy (A Constituent College of JSS Academy of Higher Education and Research), Ooty, India.,Department of Pharmaceutical Analysis, JSS College of Pharmacy (A Constituent College of JSS Academy of Higher Education and Research), Ooty, India
| |
Collapse
|
31
|
Barati F, Pouresmaieli M, Ekrami E, Asghari S, Ziarani FR, Mamoudifard M. Potential Drugs and Remedies for the Treatment of COVID-19: a Critical Review. Biol Proced Online 2020; 22:15. [PMID: 32754003 PMCID: PMC7377207 DOI: 10.1186/s12575-020-00129-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 07/01/2020] [Indexed: 01/08/2023] Open
Abstract
ABSTRACT COVID-19 disease with a high rate of contagious and highly nonspecific symptoms, is an infectious disease caused by a newly discovered coronavirus. Most people who fall sick with COVID-19 will experience mild to moderate symptoms such as respiratory symptoms, cough, dyspnea, fever, and viral pneumonia and recover without any special cure. However, some others need special and emergency treatment to get rid of this widespread disease. Till now, there are numbers of proposed novel compounds as well as standards therapeutics agent existed for other conditions seems to have efficacy against the 2019-nCoV. Some which are being tested for MERS-CoV and SARS-CoV are validated that could be also efficient against this new coronavirus. However, there are currently no effective specific antivirals or drug combinations introduced for 2019-nCoV specifically that be supported by high-level evidence. The main purpose of this paper is to review typical and ongoing treatments for coronavirus disease including home remedies, herbal medicine, chemical drugs, plasma therapy, and also vaccinies. In this regards, famous herbal medicines and common chemical drugs which are routinely to be prescribed for patients are introduced. Moreover, a section is assigned to the drug interactions and some outdated drugs which have been proved to be inefficient. We hope that this work could pave the way for researchers to develop faster and more reliable methods for earlier treatment of patients and rescue more people. GRAPHICAL ABSTRACT
Collapse
Affiliation(s)
- Fatemeh Barati
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Mahdi Pouresmaieli
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Elena Ekrami
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Sahar Asghari
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Farzad Ramezani Ziarani
- Department of Microbiology, School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Matin Mamoudifard
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| |
Collapse
|
32
|
Shao T, Tong Y, Lu S, Jeyarajan AJ, Su F, Dai J, Shi J, Huang J, Hu C, Wu L, Dai X, Cheng Z, Yan J, Huang P, Tian Y, Li S, Chung RT, Chen D. γ-Glutamyltransferase Elevations Are Frequent in Patients With COVID-19: A Clinical Epidemiologic Study. Hepatol Commun 2020; 4:1744-1750. [PMID: 32838106 PMCID: PMC7404935 DOI: 10.1002/hep4.1576] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/15/2020] [Accepted: 06/30/2020] [Indexed: 02/06/2023] Open
Abstract
A newly identified coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2), which causes the infectious coronavirus disease 2019 (COVID‐19), emerged in December 2019 in Wuhan, Hubei Province, China, and now poses a major threat to global public health. Previous studies have observed highly variable alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels in patients with COVID‐19. However, circulating levels of the cholangiocyte injury biomarker gamma‐glutamyltransferase (GGT) have yet to be reported in the existing COVID‐19 case studies. Herein, we describe the relationship between GGT levels and clinical and biochemical characteristics of patients with COVID‐19. Our study is a retrospective case series of 98 consecutive hospitalized patients with confirmed COVID‐19 at Wenzhou Central Hospital in Wenzhou, China, from January 17 to February 5, 2020. Clinical data were collected using a standardized case report form. Diagnosis of COVID‐19 was assessed by symptomatology, reverse‐transcription polymerase chain reaction (RT‐PCR), and computed tomography scan. The medical records of patients were analyzed by the research team. Of the 98 patients evaluated, elevated GGT levels were observed in 32.7%; increased C‐reactive protein (CRP) and elevated ALT and AST levels were observed in 22.5%, 13.3%, and 20.4%, respectively; and elevated alkaline phosphatase (ALP) and triglycerides (TGs) were found in 2% and 21.4%, respectively. Initially, in the 82 patients without chronic liver disease and alcohol history, age older than 40 years (P = 0.027); male sex (P = 0.0145); elevated CRP (P = 0.0366), ALT (P < 0.0001), and ALP (P = 0.0003); and increased TGs (P = 0.0002) were found to be associated with elevated GGT levels. Elevated GGT (P = 0.0086) and CRP (P = 0.0162) levels had a longer length of hospital stay. Conclusion: A sizable number of patients with COVID‐19 infection have elevated serum GGT levels. This elevation supports involvement of the liver in persons with COVID‐19.
Collapse
Affiliation(s)
- Tuo Shao
- Liver Center and Gastrointestinal DivisionDepartment of MedicineMassachusetts General HospitalHarvard Medical SchoolBostonMA
| | - Yu Tong
- Department of Clinical LaboratoryWenzhou People’s HospitalThe Third Clinical Institute Affiliated to Wenzhou Medical UniversityWenzhouChina
| | - Shushu Lu
- Department of Infectious DiseasesWenzhou Central Hospital and Sixth People’s Hospital of WenzhouWenzhouChina
| | - Andre J. Jeyarajan
- Liver Center and Gastrointestinal DivisionDepartment of MedicineMassachusetts General HospitalHarvard Medical SchoolBostonMA
| | - Feifei Su
- Department of Infectious DiseasesWenzhou Central Hospital and Sixth People’s Hospital of WenzhouWenzhouChina
| | - Jianyi Dai
- Department of Infectious DiseasesWenzhou Central Hospital and Sixth People’s Hospital of WenzhouWenzhouChina
| | - Jichan Shi
- Department of Infectious DiseasesWenzhou Central Hospital and Sixth People’s Hospital of WenzhouWenzhouChina
| | - Jianping Huang
- Department of Infectious DiseasesWenzhou Central Hospital and Sixth People’s Hospital of WenzhouWenzhouChina
| | - Chenchan Hu
- Department of Infectious DiseasesWenzhou Central Hospital and Sixth People’s Hospital of WenzhouWenzhouChina
| | - Lianpeng Wu
- Department of Infectious DiseasesWenzhou Central Hospital and Sixth People’s Hospital of WenzhouWenzhouChina
| | - Xianning Dai
- Department of Clinical LaboratoryWenzhou People’s HospitalThe Third Clinical Institute Affiliated to Wenzhou Medical UniversityWenzhouChina
| | - Zhimeng Cheng
- Liver Center and Gastrointestinal DivisionDepartment of MedicineMassachusetts General HospitalHarvard Medical SchoolBostonMA
| | - Jiuliang Yan
- Liver Center and Gastrointestinal DivisionDepartment of MedicineMassachusetts General HospitalHarvard Medical SchoolBostonMA
| | - Peng Huang
- Liver Center and Gastrointestinal DivisionDepartment of MedicineMassachusetts General HospitalHarvard Medical SchoolBostonMA
| | - Yanzhang Tian
- Liver Center and Gastrointestinal DivisionDepartment of MedicineMassachusetts General HospitalHarvard Medical SchoolBostonMA
| | - Shasha Li
- Department of HepatologyNo. 2 People’s Hospital of Fuyang CityFuyangChina
| | - Raymond T. Chung
- Liver Center and Gastrointestinal DivisionDepartment of MedicineMassachusetts General HospitalHarvard Medical SchoolBostonMA
| | - Dong Chen
- Department of Infectious DiseasesWenzhou Central Hospital and Sixth People’s Hospital of WenzhouWenzhouChina
| |
Collapse
|
33
|
Deyab MA. Coronaviruses widespread on nonliving surfaces: important questions and promising answers. ACTA ACUST UNITED AC 2020; 75:363-367. [DOI: 10.1515/znc-2020-0105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 06/16/2020] [Indexed: 11/15/2022]
Abstract
Abstract
The world is facing, while writing this review, a global pandemic due to one of the types of the coronaviruses (i.e., COVID-19), which is a new virus. Among the most important reasons for the transmission of infection between humans is the presence of this virus active on the surfaces and materials. Here, we addressed important questions such as do coronaviruses remain active on the inanimate surfaces? Do the types of inanimate surfaces affect the activity of coronaviruses? What are the most suitable ingredients that used to inactivate viruses? This review article addressed many of the works that were done in the previous periods on the survival of many viruses from the coronaviruses family on various surfaces such as steel, glass, plastic, Teflon, ceramic tiles, silicon rubber and stainless steel copper alloys, Al surface, sterile sponges, surgical gloves and sterile latex. The impacts of environmental conditions such as temperature and humidity were presented and discussed. The most important active ingredients that can deactivate viruses on the surfaces were reported here. We hope that these active ingredients will have the same effect on COVID-19.
Collapse
Affiliation(s)
- Mohamed A. Deyab
- Egyptian Petroleum Research Institute (EPRI) , PO Box 11727 , Nasr City , Cairo , Egypt
| |
Collapse
|
34
|
Rogers JP, Chesney E, Oliver D, Pollak TA, McGuire P, Fusar-Poli P, Zandi MS, Lewis G, David AS. Psychiatric and neuropsychiatric presentations associated with severe coronavirus infections: a systematic review and meta-analysis with comparison to the COVID-19 pandemic. Lancet Psychiatry 2020; 7:611-627. [PMID: 32437679 PMCID: PMC7234781 DOI: 10.1016/s2215-0366(20)30203-0] [Citation(s) in RCA: 1509] [Impact Index Per Article: 301.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Before the COVID-19 pandemic, coronaviruses caused two noteworthy outbreaks: severe acute respiratory syndrome (SARS), starting in 2002, and Middle East respiratory syndrome (MERS), starting in 2012. We aimed to assess the psychiatric and neuropsychiatric presentations of SARS, MERS, and COVID-19. METHODS In this systematic review and meta-analysis, MEDLINE, Embase, PsycINFO, and the Cumulative Index to Nursing and Allied Health Literature databases (from their inception until March 18, 2020), and medRxiv, bioRxiv, and PsyArXiv (between Jan 1, 2020, and April 10, 2020) were searched by two independent researchers for all English-language studies or preprints reporting data on the psychiatric and neuropsychiatric presentations of individuals with suspected or laboratory-confirmed coronavirus infection (SARS coronavirus, MERS coronavirus, or SARS coronavirus 2). We excluded studies limited to neurological complications without specified neuropsychiatric presentations and those investigating the indirect effects of coronavirus infections on the mental health of people who are not infected, such as those mediated through physical distancing measures such as self-isolation or quarantine. Outcomes were psychiatric signs or symptoms; symptom severity; diagnoses based on ICD-10, DSM-IV, or the Chinese Classification of Mental Disorders (third edition) or psychometric scales; quality of life; and employment. Both the systematic review and the meta-analysis stratified outcomes across illness stages (acute vs post-illness) for SARS and MERS. We used a random-effects model for the meta-analysis, and the meta-analytical effect size was prevalence for relevant outcomes, I2 statistics, and assessment of study quality. FINDINGS 1963 studies and 87 preprints were identified by the systematic search, of which 65 peer-reviewed studies and seven preprints met inclusion criteria. The number of coronavirus cases of the included studies was 3559, ranging from 1 to 997, and the mean age of participants in studies ranged from 12·2 years (SD 4·1) to 68·0 years (single case report). Studies were from China, Hong Kong, South Korea, Canada, Saudi Arabia, France, Japan, Singapore, the UK, and the USA. Follow-up time for the post-illness studies varied between 60 days and 12 years. The systematic review revealed that during the acute illness, common symptoms among patients admitted to hospital for SARS or MERS included confusion (36 [27·9%; 95% CI 20·5-36·0] of 129 patients), depressed mood (42 [32·6%; 24·7-40·9] of 129), anxiety (46 [35·7%; 27·6-44·2] of 129), impaired memory (44 [34·1%; 26·2-42·5] of 129), and insomnia (54 [41·9%; 22·5-50·5] of 129). Steroid-induced mania and psychosis were reported in 13 (0·7%) of 1744 patients with SARS in the acute stage in one study. In the post-illness stage, depressed mood (35 [10·5%; 95% CI 7·5-14·1] of 332 patients), insomnia (34 [12·1%; 8·6-16·3] of 280), anxiety (21 [12·3%; 7·7-17·7] of 171), irritability (28 [12·8%; 8·7-17·6] of 218), memory impairment (44 [18·9%; 14·1-24·2] of 233), fatigue (61 [19·3%; 15·1-23·9] of 316), and in one study traumatic memories (55 [30·4%; 23·9-37·3] of 181) and sleep disorder (14 [100·0%; 88·0-100·0] of 14) were frequently reported. The meta-analysis indicated that in the post-illness stage the point prevalence of post-traumatic stress disorder was 32·2% (95% CI 23·7-42·0; 121 of 402 cases from four studies), that of depression was 14·9% (12·1-18·2; 77 of 517 cases from five studies), and that of anxiety disorders was 14·8% (11·1-19·4; 42 of 284 cases from three studies). 446 (76·9%; 95% CI 68·1-84·6) of 580 patients from six studies had returned to work at a mean follow-up time of 35·3 months (SD 40·1). When data for patients with COVID-19 were examined (including preprint data), there was evidence for delirium (confusion in 26 [65%] of 40 intensive care unit patients and agitation in 40 [69%] of 58 intensive care unit patients in one study, and altered consciousness in 17 [21%] of 82 patients who subsequently died in another study). At discharge, 15 (33%) of 45 patients with COVID-19 who were assessed had a dysexecutive syndrome in one study. At the time of writing, there were two reports of hypoxic encephalopathy and one report of encephalitis. 68 (94%) of the 72 studies were of either low or medium quality. INTERPRETATION If infection with SARS-CoV-2 follows a similar course to that with SARS-CoV or MERS-CoV, most patients should recover without experiencing mental illness. SARS-CoV-2 might cause delirium in a significant proportion of patients in the acute stage. Clinicians should be aware of the possibility of depression, anxiety, fatigue, post-traumatic stress disorder, and rarer neuropsychiatric syndromes in the longer term. FUNDING Wellcome Trust, UK National Institute for Health Research (NIHR), UK Medical Research Council, NIHR Biomedical Research Centre at University College London Hospitals NHS Foundation Trust and University College London.
Collapse
Affiliation(s)
| | - Edward Chesney
- South London and Maudsley NHS Foundation Trust, London, UK; Department of Psychosis Studies, King's College London, London, UK
| | - Dominic Oliver
- Department of Psychosis Studies, King's College London, London, UK
| | - Thomas A Pollak
- South London and Maudsley NHS Foundation Trust, London, UK; Department of Psychosis Studies, King's College London, London, UK
| | - Philip McGuire
- Department of Psychosis Studies, King's College London, London, UK
| | - Paolo Fusar-Poli
- Department of Psychosis Studies, King's College London, London, UK; Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Michael S Zandi
- UCL Queen Square Institute of Neurology, University College London, London, UK; University College London Hospitals NHS Foundation Trust, London, UK
| | - Glyn Lewis
- Division of Psychiatry, University College London, London, UK
| | - Anthony S David
- UCL Institute of Mental Health, University College London, London, UK
| |
Collapse
|
35
|
Gholizadeh P, Safari R, Marofi P, Zeinalzadeh E, Pagliano P, Ganbarov K, Esposito S, Khodadadi E, Yousefi M, Samadi Kafil H. Alteration of Liver Biomarkers in Patients with SARS-CoV-2 (COVID-19). J Inflamm Res 2020; 13:285-292. [PMID: 32669866 PMCID: PMC7335895 DOI: 10.2147/jir.s257078] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/16/2020] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Coronavirus disease 2019 (COVID-19) emerged in China and spread worldwide. In this study, we assessed the characteristics of markers of the liver in patients with COVID-19 to provide new insights in improving clinical treatment. PATIENTS AND METHODS We recruited 279 patients who confirmed COVID-19 and the data of liver biomarkers and complete blood count of patients were defined as the day onset when the patients admitted to the hospital. RESULTS The average of LDH value was 621.29 U/L in all patients with COVID-19, and CPK was 286.90 U/L. The average AST was 44.03 U/L in all patients, and ALT was 31.14 U/L. The AST/ALT ratio was 1.64 in all patients. The measurement of CRP was increased by 79.93% in all patients. Average ALT and AST values of patients with elevated ALT were significantly increased in comparison to patients with normal ALT (P-value = 0.001), while AST/ALT ratio was significantly decreased compared to patients with normal ALT (P-value= 0.014). In addition, the average LDH of patients with elevated ALT was significantly increased compared to patients with normal ALT (P-value = 0.014). CONCLUSION Hepatic injury and abnormal liver enzymes related to COVID-19 infection is an acute non-specific inflammation alteration.
Collapse
Affiliation(s)
- Pourya Gholizadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rohollah Safari
- Department of Microbiology, Imam Reza Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parham Marofi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Zeinalzadeh
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Khudaverdi Ganbarov
- Department of Microbiology, Baku State University, Baku, Republic of Azerbaijan
| | | | - Ehsaneh Khodadadi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
36
|
|
37
|
Islam MS, Sobur MA, Akter M, Nazir KHMNH, Toniolo A, Rahman MT. Coronavirus Disease 2019 (COVID-19) pandemic, lessons to be learned! J Adv Vet Anim Res 2020; 7:260-280. [PMID: 32607358 PMCID: PMC7320801 DOI: 10.5455/javar.2020.g418] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 12/23/2022] Open
Abstract
Coronavirus Disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been reported as a worldwide emergency. Due to the extensiveness of spread and death, it has been declared as a pandemic. This review focused on the current pandemic situation and understanding the prevention and control strategies of COVID-19. Data presented here was by April 3, 2020. A total of 1,016,399 cases of COVID-19 with 53,238 deaths was reported from 204 countries and territories including two international conveyances over the world. After China, most of the new cases were from Europe, particularly Italy acting as the source of importation to many of the other countries around the world. China has obtained success by ascribing control strategies against COVID-19. The implementation of China's strategy, as well as the development of a vaccine, may control the pandemic of COVID-19. Further robust studies are required for a clear understanding of transmission parameters, prevention, and control strategies of SARS-CoV-2. This review paper describes the nature of COVID-19 and the possible ways for the effective controlling of the COVID-19 or similar viral diseases that may come in the future.
Collapse
Affiliation(s)
- Md. Saiful Islam
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh-2202, Bangladesh
| | - Md. Abdus Sobur
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh-2202, Bangladesh
| | - Mily Akter
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh-2202, Bangladesh
| | - K. H. M. Nazmul Hussain Nazir
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh-2202, Bangladesh
| | | | - Md. Tanvir Rahman
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh-2202, Bangladesh
| |
Collapse
|
38
|
Wang Y, Wang Y, Chen Y, Qin Q. Unique epidemiological and clinical features of the emerging 2019 novel coronavirus pneumonia (COVID-19) implicate special control measures. J Med Virol 2020; 92:568-576. [PMID: 32134116 PMCID: PMC7228347 DOI: 10.1002/jmv.25748] [Citation(s) in RCA: 849] [Impact Index Per Article: 169.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 03/02/2020] [Indexed: 02/05/2023]
Abstract
By 27 February 2020, the outbreak of coronavirus disease 2019 (COVID-19) caused 82 623 confirmed cases and 2858 deaths globally, more than severe acute respiratory syndrome (SARS) (8273 cases, 775 deaths) and Middle East respiratory syndrome (MERS) (1139 cases, 431 deaths) caused in 2003 and 2013, respectively. COVID-19 has spread to 46 countries internationally. Total fatality rate of COVID-19 is estimated at 3.46% by far based on published data from the Chinese Center for Disease Control and Prevention (China CDC). Average incubation period of COVID-19 is around 6.4 days, ranges from 0 to 24 days. The basic reproductive number (R0 ) of COVID-19 ranges from 2 to 3.5 at the early phase regardless of different prediction models, which is higher than SARS and MERS. A study from China CDC showed majority of patients (80.9%) were considered asymptomatic or mild pneumonia but released large amounts of viruses at the early phase of infection, which posed enormous challenges for containing the spread of COVID-19. Nosocomial transmission was another severe problem. A total of 3019 health workers were infected by 12 February 2020, which accounted for 3.83% of total number of infections, and extremely burdened the health system, especially in Wuhan. Limited epidemiological and clinical data suggest that the disease spectrum of COVID-19 may differ from SARS or MERS. We summarize latest literatures on genetic, epidemiological, and clinical features of COVID-19 in comparison to SARS and MERS and emphasize special measures on diagnosis and potential interventions. This review will improve our understanding of the unique features of COVID-19 and enhance our control measures in the future.
Collapse
Affiliation(s)
- Yixuan Wang
- Laboratory of Human Virology and OncologyShantou University Medical CollegeShantouGuangdongChina
| | - Yuyi Wang
- Laboratory of Human Virology and OncologyShantou University Medical CollegeShantouGuangdongChina
| | - Yan Chen
- Department of PediatricUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Qingsong Qin
- Laboratory of Human Virology and OncologyShantou University Medical CollegeShantouGuangdongChina
| |
Collapse
|
39
|
Ullah MA, Islam H, Rahman A, Masud J, Shweta DS, Araf Y, Sium SMA, Sarkar B. A Generalized Overview of SARS-CoV-2: Where Does the Current Knowledge Stand? ELECTRONIC JOURNAL OF GENERAL MEDICINE 2020. [DOI: 10.29333/ejgm/8258] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
40
|
Park MS, Kim JI, Bae JY, Park MS. Animal models for the risk assessment of viral pandemic potential. Lab Anim Res 2020; 36:11. [PMID: 32337177 PMCID: PMC7175453 DOI: 10.1186/s42826-020-00040-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 03/10/2020] [Indexed: 02/07/2023] Open
Abstract
Pandemics affect human lives severely and globally. Experience predicts that there will be a pandemic for sure although the time is unknown. When a viral epidemic breaks out, assessing its pandemic risk is an important part of the process that characterizes genomic property, viral pathogenicity, transmission in animal model, and so forth. In this review, we intend to figure out how a pandemic may occur by looking into the past influenza pandemic events. We discuss interpretations of the experimental evidences resulted from animal model studies and extend implications of viral pandemic potentials and ingredients to emerging viral epidemics. Focusing on the pandemic potential of viral infectious diseases, we suggest what should be assessed to prevent global catastrophes from influenza virus, Middle East respiratory syndrome coronavirus, dengue and Zika viruses.
Collapse
Affiliation(s)
- Mee Sook Park
- Department of Microbiology, Institute for Viral Diseases, College of Medicine, Korea University, Seoul, Republic of Korea 02841
| | - Jin Il Kim
- Department of Microbiology, Institute for Viral Diseases, College of Medicine, Korea University, Seoul, Republic of Korea 02841
| | - Joon-Yong Bae
- Department of Microbiology, Institute for Viral Diseases, College of Medicine, Korea University, Seoul, Republic of Korea 02841
| | - Man-Seong Park
- Department of Microbiology, Institute for Viral Diseases, College of Medicine, Korea University, Seoul, Republic of Korea 02841
| |
Collapse
|
41
|
Khalili JS, Zhu H, Mak NSA, Yan Y, Zhu Y. Novel coronavirus treatment with ribavirin: Groundwork for an evaluation concerning COVID-19. J Med Virol 2020; 92:740-746. [PMID: 32227493 PMCID: PMC7228408 DOI: 10.1002/jmv.25798] [Citation(s) in RCA: 201] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/23/2020] [Accepted: 03/24/2020] [Indexed: 12/15/2022]
Abstract
Confronting the challenge of the outbreak of COVID-19 should sharpen our focus on global drug access as a key issue in antiviral therapy testing. The testing and adoption of effective therapies for novel coronaviruses are hampered by the challenge of conducting controlled studies during a state of emergency. The access to direct antiviral drugs, such as ribavirin, that have an existing inventory and reliable supply chain may be a priority consideration for therapies developed for the 2019-nCoV infection outbreaks and any strain variants that may emerge. On the basis of the direct antiviral activity of ribavirin against 2019-nCoV in vitro and evidence for potency enhancement strategies developed during the prior SARS and MERS outbreaks, ribavirin may significantly impact our ability to end the lingering outbreaks in China and slow outbreaks in other countries. The apparent COVID-19 pandemic provides an opportunity to follow dosage guidelines for treatment with ribavirin, test new therapeutic concepts, and conduct controlled testing to apply the scientific rigor required to address the controversy around this mainstay of antiviral therapy.
Collapse
Affiliation(s)
| | - Hai Zhu
- SystImmune Inc, Redmond, Washington
| | | | | | - Yi Zhu
- SystImmune Inc, Redmond, Washington
| |
Collapse
|
42
|
Wang Z, Xu X. scRNA-seq Profiling of Human Testes Reveals the Presence of the ACE2 Receptor, A Target for SARS-CoV-2 Infection in Spermatogonia, Leydig and Sertoli Cells. Cells 2020; 9:E920. [PMID: 32283711 PMCID: PMC7226809 DOI: 10.3390/cells9040920] [Citation(s) in RCA: 397] [Impact Index Per Article: 79.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/30/2020] [Accepted: 04/08/2020] [Indexed: 12/12/2022] Open
Abstract
In December 2019, a novel coronavirus (SARS-CoV-2) was identified in COVID-19 patients in Wuhan, Hubei Province, China. SARS-CoV-2 shares both high sequence similarity and the use of the same cell entry receptor, angiotensin-converting enzyme 2 (ACE2), with severe acute respiratory syndrome coronavirus (SARS-CoV). Several studies have provided bioinformatic evidence of potential routes of SARS-CoV-2 infection in respiratory, cardiovascular, digestive and urinary systems. However, whether the reproductive system is a potential target of SARS-CoV-2 infection has not yet been determined. Here, we investigate the expression pattern of ACE2 in adult human testes at the level of single-cell transcriptomes. The results indicate that ACE2 is predominantly enriched in spermatogonia and Leydig and Sertoli cells. Gene Set Enrichment Analysis (GSEA) indicates that Gene Ontology (GO) categories associated with viral reproduction and transmission are highly enriched in ACE2-positive spermatogonia, while male gamete generation related terms are downregulated. Cell-cell junction and immunity-related GO terms are increased in ACE2-positive Leydig and Sertoli cells, but mitochondria and reproduction-related GO terms are decreased. These findings provide evidence that the human testis is a potential target of SARS-CoV-2 infection, which may have significant impact on our understanding of the pathophysiology of this rapidly spreading disease.
Collapse
Affiliation(s)
- Zhengpin Wang
- Laboratory of Cellular and Developmental Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Xiaojiang Xu
- Integrative Bioinformatics, ESCBL, NIEHS, National Institutes of Health, Research Triangle Park, NC 27709, USA
| |
Collapse
|
43
|
Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, Wang W, Song H, Huang B, Zhu N, Bi Y, Ma X, Zhan F, Wang L, Hu T, Zhou H, Hu Z, Zhou W, Zhao L, Chen J, Meng Y, Wang J, Lin Y, Yuan J, Xie Z, Ma J, Liu WJ, Wang D, Xu W, Holmes EC, Gao GF, Wu G, Chen W, Shi W, Tan W. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet 2020; 395:565-574. [PMID: 32007145 PMCID: PMC7159086 DOI: 10.1016/s0140-6736(20)30251-8] [Citation(s) in RCA: 7565] [Impact Index Per Article: 1513.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 01/26/2020] [Accepted: 01/27/2020] [Indexed: 12/02/2022]
Abstract
BACKGROUND In late December, 2019, patients presenting with viral pneumonia due to an unidentified microbial agent were reported in Wuhan, China. A novel coronavirus was subsequently identified as the causative pathogen, provisionally named 2019 novel coronavirus (2019-nCoV). As of Jan 26, 2020, more than 2000 cases of 2019-nCoV infection have been confirmed, most of which involved people living in or visiting Wuhan, and human-to-human transmission has been confirmed. METHODS We did next-generation sequencing of samples from bronchoalveolar lavage fluid and cultured isolates from nine inpatients, eight of whom had visited the Huanan seafood market in Wuhan. Complete and partial 2019-nCoV genome sequences were obtained from these individuals. Viral contigs were connected using Sanger sequencing to obtain the full-length genomes, with the terminal regions determined by rapid amplification of cDNA ends. Phylogenetic analysis of these 2019-nCoV genomes and those of other coronaviruses was used to determine the evolutionary history of the virus and help infer its likely origin. Homology modelling was done to explore the likely receptor-binding properties of the virus. FINDINGS The ten genome sequences of 2019-nCoV obtained from the nine patients were extremely similar, exhibiting more than 99·98% sequence identity. Notably, 2019-nCoV was closely related (with 88% identity) to two bat-derived severe acute respiratory syndrome (SARS)-like coronaviruses, bat-SL-CoVZC45 and bat-SL-CoVZXC21, collected in 2018 in Zhoushan, eastern China, but were more distant from SARS-CoV (about 79%) and MERS-CoV (about 50%). Phylogenetic analysis revealed that 2019-nCoV fell within the subgenus Sarbecovirus of the genus Betacoronavirus, with a relatively long branch length to its closest relatives bat-SL-CoVZC45 and bat-SL-CoVZXC21, and was genetically distinct from SARS-CoV. Notably, homology modelling revealed that 2019-nCoV had a similar receptor-binding domain structure to that of SARS-CoV, despite amino acid variation at some key residues. INTERPRETATION 2019-nCoV is sufficiently divergent from SARS-CoV to be considered a new human-infecting betacoronavirus. Although our phylogenetic analysis suggests that bats might be the original host of this virus, an animal sold at the seafood market in Wuhan might represent an intermediate host facilitating the emergence of the virus in humans. Importantly, structural analysis suggests that 2019-nCoV might be able to bind to the angiotensin-converting enzyme 2 receptor in humans. The future evolution, adaptation, and spread of this virus warrant urgent investigation. FUNDING National Key Research and Development Program of China, National Major Project for Control and Prevention of Infectious Disease in China, Chinese Academy of Sciences, Shandong First Medical University.
Collapse
Affiliation(s)
- Roujian Lu
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiang Zhao
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Juan Li
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an, China
| | - Peihua Niu
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Bo Yang
- Division for Viral Disease Detection, Hubei Provincial Center for Disease Control and Prevention, Wuhan, China
| | - Honglong Wu
- BGI PathoGenesis Pharmaceutical Technology, Shenzhen, China
| | - Wenling Wang
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hao Song
- Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Baoying Huang
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Na Zhu
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yuhai Bi
- Chinese Academy of Sciences Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences, Beijing, China
| | - Xuejun Ma
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Faxian Zhan
- Division for Viral Disease Detection, Hubei Provincial Center for Disease Control and Prevention, Wuhan, China
| | - Liang Wang
- Chinese Academy of Sciences Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences, Beijing, China
| | - Tao Hu
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an, China
| | - Hong Zhou
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an, China
| | - Zhenhong Hu
- Central Theater, People's Liberation Army General Hospital, Wuhan, China
| | - Weimin Zhou
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Li Zhao
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jing Chen
- Key Laboratory of Laboratory Medicine, Ministry of Education, and Zhejiang Provincial Key Laboratory of Medical Genetics, Institute of Medical Virology, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yao Meng
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ji Wang
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yang Lin
- BGI PathoGenesis Pharmaceutical Technology, Shenzhen, China
| | - Jianying Yuan
- BGI PathoGenesis Pharmaceutical Technology, Shenzhen, China
| | - Zhihao Xie
- BGI PathoGenesis Pharmaceutical Technology, Shenzhen, China
| | - Jinmin Ma
- BGI PathoGenesis Pharmaceutical Technology, Shenzhen, China
| | - William J Liu
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Dayan Wang
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Wenbo Xu
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Edward C Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Life and Environmental Sciences and School of Medical Sciences, University of Sydney, Sydney, NSW, Australia
| | - George F Gao
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China; Chinese Academy of Sciences Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences, Beijing, China
| | - Guizhen Wu
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Weijun Chen
- BGI PathoGenesis Pharmaceutical Technology, Shenzhen, China
| | - Weifeng Shi
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an, China; The First Affiliated Hospital of Shandong First Medical University (Shandong Provincial Qianfoshan Hospital), Jinan, China.
| | - Wenjie Tan
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China; Central Theater, People's Liberation Army General Hospital, Wuhan, China; Center for Biosafety Mega-Science, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
44
|
Ravi RC, Ponugubati CC, Bonu SK, Athkuri S, Uppalapati LV, Majeti C. Knowledge and awareness on novel coronavirus spread among dental fraternities in Visakhapatnam, India: A questionnaire-based survey. JOURNAL OF EDUCATION AND HEALTH PROMOTION 2020; 9:353. [PMID: 33575389 PMCID: PMC7871977 DOI: 10.4103/jehp.jehp_458_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 07/06/2020] [Indexed: 05/08/2023]
Abstract
INTRODUCTION The pandemic caused by novel coronavirus (severe acute respiratory syndrome coronavirus 2) in Wuhan, China, in December 2019 is a highly contagious disease. The World Health Organization has declared the outbreak of coronavirus diseases (COVID-19) as a global public health emergency. Currently, the research on novel coronavirus is still in the primary stage. The aim of this study is to assess the knowledge and awareness on COVID-19 disease and related infection control measures among the dental fraternity in Visakhapatnam - the smart city. METHODS A total of 808 dentists from the Visakhapatnam region completed a questionnaire-based survey on the knowledge, awareness, and infection control measures related to COVID-19 infection. The questionnaire was tailored from the guidance and information for health-care workers issued by the US Centers for Disease Control and Prevention. Suitable sampling method was used for the collection of data and the distribution of responses was presented as percentages. Explanatory statistics were performed for all groups and subgroups based on the percentage of correct responses. Individual pair-wise comparisons were done using the Chi-square test for the percentage of correct responses. RESULTS A total of 825 participated in the survey, of which 808 dentists completely answered the survey, and the response rate was 98%. Among the respondents, males and females are 46.8% and 53.2%, respectively. There was a statistically significant difference for all the questions solicited, among age groups (P = 0.001, 0.001) and occupation (P = 0.001, 0.001, 0.004). Private practitioners seem to more awareness compared to teaching faculty, undergraduates, and postgraduates, as they have answered correctly (>70%) for almost all the questions. CONCLUSION The inputs from the survey help us throw some light and fill up lacunae where required. There is a strong need to implement periodic educational interventions and training programs on infection control practices for COVID-19 among dentists in particular. The information from this survey helps us to make necessary changes in implementing periodic educational webinars and stress on areas where necessary, which is important for the dental fraternity for protecting themselves and shielding our society from COVID-19.
Collapse
Affiliation(s)
- Ravi Chandra Ravi
- Department of Conservative Dentistry and Endodontics, GITAM Dental College and Hospital, Visakhapatnam, Andhra Pradesh, India
- Address for correspondence: Dr. Ravi Chandra Ravi, Department of Conservative Dentistry and Endodontics, GITAM Dental College and Hospital, Visakhapatnam - 530 045, Andhra Pradesh, India. E-mail:
| | - Charishma Chowdary Ponugubati
- Department of Periodontics and Oral Implantology, GITAM Dental College and Hospital, Visakhapatnam, Andhra Pradesh, India
| | - Sunil Kumar Bonu
- Department of Public Health Dentistry, GITAM Dental College and Hospital, Visakhapatnam, Andhra Pradesh, India
| | - Srividya Athkuri
- Department of Conservative Dentistry and Endodontics, GSL Dental College and Hospital, Rajahmundry, Andhra Pradesh, India
| | - Lakshman Varma Uppalapati
- Department of Conservative Dentistry and Endodontics, GITAM Dental College and Hospital, Visakhapatnam, Andhra Pradesh, India
| | - Chandrakanth Majeti
- Department of Conservative Dentistry and Endodontics, Army College of Dental, Sciences, Secundrabad, Telangana, India
| |
Collapse
|
45
|
Kazuya S, Nao N, Matsuyama S, Kageyama T. Ultra-Rapid Real-Time RT-PCR Method for Detecting Middle East Respiratory Syndrome Coronavirus Using a Mobile PCR Device, PCR1100. Jpn J Infect Dis 2019; 73:181-186. [PMID: 31875608 DOI: 10.7883/yoken.jjid.2019.400] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Middle East respiratory syndrome (MERS) coronavirus (MERS-CoV) is usually diagnosed through highly sensitive and specific genetic tests such as real-time reverse transcription polymerase chain reaction (RT-PCR). Currently, two real-time RT-PCR assays targeting the upE and ORF1a regions of the MERS-CoV genome are widely used, and these are the standard assays recommended by the World Health Organization (WHO). The MERS outbreaks to date suggest that rapid diagnosis and subsequent isolation of infected patients, particularly superspreaders, are critical for containment. However, conventional real-time RT-PCR assays require large laboratory instruments, and amplification takes approximately 2 h. These disadvantages limit rapid diagnosis. Here, an ultra-rapid real-time RT-PCR test was established comprising a multiplex assay for upE and ORF1a running on a mobile PCR1100 device. As few as five copies of the MERS-CoV RNA can be detected within 20 min using the standard WHO assays in the mobile PCR device, with the sensitivity and specificity being similar to those of a conventional real-time PCR instrument such as the LightCyler, thereby enabling timely intervention to control MERS-CoV infection.
Collapse
Affiliation(s)
- Shirato Kazuya
- Laboratory of Acute Respiratory Viral Diseases and Cytokines, Department of Virology III, National Institute of Infectious Diseases
| | - Naganori Nao
- Laboratory of Acute Respiratory Viral Diseases and Cytokines, Department of Virology III, National Institute of Infectious Diseases
| | - Shutoku Matsuyama
- Laboratory of Acute Respiratory Viral Diseases and Cytokines, Department of Virology III, National Institute of Infectious Diseases
| | - Tsutomu Kageyama
- Influenza Virus Research Center, National Institute of Infectious Diseases
| |
Collapse
|
46
|
Wang W, Wang T, Deng Y, Niu P, A R, Zhao J, Peiris M, Tang S, Tan W. A novel luciferase immunosorbent assay performs better than a commercial enzyme-linked immunosorbent assay to detect MERS-CoV specific IgG in humans and animals. BIOSAFETY AND HEALTH 2019; 1:134-143. [PMID: 32501446 PMCID: PMC7148641 DOI: 10.1016/j.bsheal.2019.12.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 12/16/2019] [Accepted: 12/16/2019] [Indexed: 01/05/2023] Open
Abstract
The Middle East respiratory syndrome (MERS) is a lethal zoonosis caused by MERS coronavirus (MERS-CoV) and poses a significant threat to public health worldwide. Therefore, a rapid, sensitive, and specific serologic test for detecting anti-MERS-CoV antibodies in both humans and animals is urgently needed for the successful management of this illness. Here, we evaluated various novel luciferase immunosorbent assays (LISA) based on nucleocapsid protein (NP) as well as fragments derived from spike protein (S) including subunit 1 (S1), N terminal domain (NTD), receptor-binding domain (RBD) and subunit 2 (S2) of S for the detection of MERS-CoV-specific IgG. Fusion proteins, including nanoluciferase (NLuc) and various fragments derived from the NP or S protein of MERS-CoV, were expressed in human embryonic kidney 293 T cells. LISAs that detected anti-MERS-CoV IgG were further developed using cell lysates expressing various fusion proteins. Panels of human or animal samples infected with MERS-CoV were used to analyze the sensitivity and specificity of various LISAs in reference to a MERS-CoV RT-PCR, commercial S1-based ELISA, and pseudovirus particle neutralization test (ppNT). Our results showed that the S1-, RBD-, and NP-LISAs were more sensitive than the NTD- and S2-LISAs for the detection of anti-MERS-CoV IgG. Furthermore, the S1-, RBD-, and NP-LISAs were more sensitive (by at least 16-fold) than the commercially available S1-ELISA. Moreover, the S1-, RBD-, and NP-LISA specifically recognized anti-MERS-CoV IgG and did not cross-react with samples derived from other human CoV (OC43, 229E, HKU1, NL63)-infected patients. More importantly, these LISAs proved their applicability and reliability for detecting anti-MERS-CoV IgG in samples from camels, monkeys, and mice, among which the RBD-LISA exhibited excellent performance. The results of this study suggest that the novel MERS-CoV RBD- and S1- LISAs are highly effective platforms for the rapid and sensitive detection of anti-MERS-CoV IgG in human and animal samples. These assays have the potential to be used as serologic tests for the management and control of MERS-CoV infection.
Scientific question This study evaluated novel luciferase immunosorbent assays (LISAs) based on nucleocapsid protein (NP) as well as fragments derived from spike protein (S) for detection of MERS-CoV-specific IgG in humans and animals. Evidence before this study Enzyme-linked immunosorbent assay (ELISA), microneutralization (MN), immunofluorescence assay (IFA), and pseudovirus particle neutralization test (ppNT) have been performed to detect serum antibodies against MERS-CoV. There remains a need to develop novel serological assays independent of protein purification, special secondary antibody, virus cultivation and Biosafety Level 3 (BSL-3) laboratory. New findings In this study, novel LISAs based on the MERS-CoV S fragments and NP were developed. Human and animal samples infected with MERS-CoV were measured by the newly developed LISAs as well as reference methods including commercial S1-ELISA and ppNT. The results showed that the S1-, RBD-, and NP-LISAs were able to specifically distinguish MERS-CoV-infected samples from samples infected by other HCoV as consistent as the reference methods. Comparing with the commercially available S1-ELISA, the S1- and RBD-LISAs were 64-folds more sensitive. Moreover, the applicability and reliability of the LISAs were verified by detecting anti-MERS-CoV IgG in samples from camels, monkeys, and mice. The RBD-LISA exhibited superior sensitivity and specificity. Significance of the study The novel MERS-CoV RBD- and S1-LISAs were developed independent of protein purification and special secondary antibody, and showed super specificity and efficiency for the detection of anti-MERS-CoV IgG in human and animal samples. These assays are recommended for serological diagnosis of MERS-CoV infection in the investigation of epidemic characteristic, origin tracing and vaccine study of MERS-CoV, they would contribute to the scientific control and prevention of MERS.
Collapse
Affiliation(s)
- Wenling Wang
- MHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, China CDC, Beijing 102206, China
| | - Tianyu Wang
- MHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, China CDC, Beijing 102206, China.,Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Yao Deng
- MHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, China CDC, Beijing 102206, China
| | - Peihua Niu
- MHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, China CDC, Beijing 102206, China
| | - Ruhan A
- MHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, China CDC, Beijing 102206, China
| | - Jincun Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Disease, The first Affiliated Hospital of Guangzhou Medical University, Guangzhou 510182, China
| | - Malik Peiris
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region
| | - Shixing Tang
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Wenjie Tan
- MHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, China CDC, Beijing 102206, China.,Center for Biosafety Mega-science, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
47
|
Ramshaw RE, Letourneau ID, Hong AY, Hon J, Morgan JD, Osborne JCP, Shirude S, Van Kerkhove MD, Hay SI, Pigott DM. A database of geopositioned Middle East Respiratory Syndrome Coronavirus occurrences. Sci Data 2019; 6:318. [PMID: 31836720 PMCID: PMC6911100 DOI: 10.1038/s41597-019-0330-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 11/15/2019] [Indexed: 12/21/2022] Open
Abstract
As a World Health Organization Research and Development Blueprint priority pathogen, there is a need to better understand the geographic distribution of Middle East Respiratory Syndrome Coronavirus (MERS-CoV) and its potential to infect mammals and humans. This database documents cases of MERS-CoV globally, with specific attention paid to zoonotic transmission. An initial literature search was conducted in PubMed, Web of Science, and Scopus; after screening articles according to the inclusion/exclusion criteria, a total of 208 sources were selected for extraction and geo-positioning. Each MERS-CoV occurrence was assigned one of the following classifications based upon published contextual information: index, unspecified, secondary, mammal, environmental, or imported. In total, this database is comprised of 861 unique geo-positioned MERS-CoV occurrences. The purpose of this article is to share a collated MERS-CoV database and extraction protocol that can be utilized in future mapping efforts for both MERS-CoV and other infectious diseases. More broadly, it may also provide useful data for the development of targeted MERS-CoV surveillance, which would prove invaluable in preventing future zoonotic spillover.
Measurement(s) | Middle East Respiratory Syndrome • geographic location | Technology Type(s) | digital curation | Factor Type(s) | geographic distribution of Middle East Respiratory Syndrome Coronavirus (MERS-CoV) • year | Sample Characteristic - Organism | Middle East respiratory syndrome-related coronavirus | Sample Characteristic - Location | Earth (planet) |
Machine-accessible metadata file describing the reported data: 10.6084/m9.figshare.11108801
Collapse
Affiliation(s)
- Rebecca E Ramshaw
- Institute for Health Metrics and Evaluation, University of Washington, 2301 5th Ave., Suite 600, Seattle, WA, United States
| | - Ian D Letourneau
- Institute for Health Metrics and Evaluation, University of Washington, 2301 5th Ave., Suite 600, Seattle, WA, United States
| | - Amy Y Hong
- Bloomberg School of Public Health, Johns Hopkins University, 615N Wolfe St, Baltimore, MD, 21205, United States
| | - Julia Hon
- Institute for Health Metrics and Evaluation, University of Washington, 2301 5th Ave., Suite 600, Seattle, WA, United States
| | - Julia D Morgan
- Institute for Health Metrics and Evaluation, University of Washington, 2301 5th Ave., Suite 600, Seattle, WA, United States
| | - Joshua C P Osborne
- Institute for Health Metrics and Evaluation, University of Washington, 2301 5th Ave., Suite 600, Seattle, WA, United States
| | - Shreya Shirude
- Institute for Health Metrics and Evaluation, University of Washington, 2301 5th Ave., Suite 600, Seattle, WA, United States
| | - Maria D Van Kerkhove
- Department of Infectious Hazards Management, Health Emergencies Programme, World Health Organization, Avenue Appia 20, 1211, Geneva, Switzerland
| | - Simon I Hay
- Institute for Health Metrics and Evaluation, University of Washington, 2301 5th Ave., Suite 600, Seattle, WA, United States.,Department of Health Metrics Sciences, School of Medicine, University of Washington, 2301 5th Ave., Suite 600, Seattle, WA, United States
| | - David M Pigott
- Institute for Health Metrics and Evaluation, University of Washington, 2301 5th Ave., Suite 600, Seattle, WA, United States. .,Department of Health Metrics Sciences, School of Medicine, University of Washington, 2301 5th Ave., Suite 600, Seattle, WA, United States.
| |
Collapse
|
48
|
Ramírez-Olivencia G, Estébanez M, Membrillo FJ, Ybarra MDC. [Use of ribavirin in viruses other than hepatitis C. A review of the evidence]. Enferm Infecc Microbiol Clin 2019; 37:602-608. [PMID: 38620198 PMCID: PMC7103312 DOI: 10.1016/j.eimc.2018.05.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 04/30/2018] [Accepted: 05/08/2018] [Indexed: 12/18/2022]
Abstract
Ribavirin is a molecule with antiviral activity against different viruses. In clinical practice, it has made its niche almost exclusively for the treatment of the hepatitis C virus. However, there are other diseases in which it could be of benefit and it has the advantage of being suitable for oral, intravenous and inhaled administration. We conducted a review of the indications of the main drug agencies (Spanish, European and American) and other possible indications, mainly haemorrhagic fevers and coronavirus.
Collapse
|
49
|
Kim YS, Aigerim A, Park U, Kim Y, Rhee JY, Choi JP, Park WB, Park SW, Kim Y, Lim DG, Inn KS, Hwang ES, Choi MS, Shin HS, Cho NH. Sequential Emergence and Wide Spread of Neutralization Escape Middle East Respiratory Syndrome Coronavirus Mutants, South Korea, 2015. Emerg Infect Dis 2019; 25:1161-1168. [PMID: 30900977 PMCID: PMC6537729 DOI: 10.3201/eid2506.181722] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The unexpectedly large outbreak of Middle East respiratory syndrome in South Korea in 2015 was initiated by an infected traveler and amplified by several “superspreading” events. Previously, we reported the emergence and spread of mutant Middle East respiratory syndrome coronavirus bearing spike mutations (I529T or D510G) with reduced affinity to human receptor CD26 during the outbreak. To assess the potential association of spike mutations with superspreading events, we collected virus genetic information reported during the outbreak and systemically analyzed the relationship of spike sequences and epidemiology. We found sequential emergence of the spike mutations in 2 superspreaders. In vivo virulence of the mutant viruses seems to decline in human patients, as assessed by fever duration in affected persons. In addition, neutralizing activity against these 2 mutant viruses in serum samples from mice immunized with wild-type spike antigen were gradually reduced, suggesting emergence and wide spread of neutralization escapers during the outbreak.
Collapse
|
50
|
Chung YS, Kim JM, Man Kim H, Park KR, Lee A, Lee NJ, Kim MS, Kim JS, Kim CK, Lee JI, Kang C. Genetic Characterization of Middle East Respiratory Syndrome Coronavirus, South Korea, 2018. Emerg Infect Dis 2019; 25:958-962. [PMID: 30753126 PMCID: PMC6478226 DOI: 10.3201/eid2505.181534] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We evaluated genetic variation in Middle East respiratory syndrome coronavirus (MERS-CoV) imported to South Korea in 2018 using specimens from a patient and isolates from infected Caco-2 cells. The MERS-CoV strain in this study was genetically similar to a strain isolated in Riyadh, Saudi Arabia, in 2017.
Collapse
|