1
|
Touaitia R, Mairi A, Ibrahim NA, Basher NS, Idres T, Touati A. Staphylococcus aureus: A Review of the Pathogenesis and Virulence Mechanisms. Antibiotics (Basel) 2025; 14:470. [PMID: 40426537 PMCID: PMC12108373 DOI: 10.3390/antibiotics14050470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2025] [Revised: 04/01/2025] [Accepted: 04/26/2025] [Indexed: 05/29/2025] Open
Abstract
Staphylococcus aureus is a formidable human pathogen responsible for infections ranging from superficial skin lesions to life-threatening systemic diseases. This review synthesizes current knowledge on its pathogenesis, emphasizing colonization dynamics, virulence mechanisms, biofilm formation, and antibiotic resistance. By analyzing studies from PubMed, Scopus, and Web of Science, we highlight the pathogen's adaptability, driven by surface adhesins (e.g., ClfB, SasG), secreted toxins (e.g., PVL, TSST-1), and metabolic flexibility in iron acquisition and amino acid utilization. Nasal, skin, and oropharyngeal colonization are reservoirs for invasive infections, with biofilm persistence and horizontal gene transfer exacerbating antimicrobial resistance, particularly in methicillin-resistant S. aureus (MRSA). The review underscores the clinical challenges of multidrug-resistant strains, including vancomycin resistance and decolonization strategies' failure to target single anatomical sites. Key discussions address host-microbiome interactions, immune evasion tactics, and the limitations of current therapies. Future directions advocate for novel anti-virulence therapies, multi-epitope vaccines, and AI-driven diagnostics to combat evolving resistance. Strengthening global surveillance and interdisciplinary collaboration is critical to mitigating the public health burden of S. aureus.
Collapse
Affiliation(s)
- Rahima Touaitia
- Department of Natural and Life Sciences, Faculty of Exact Sciences and Natural and Life Sciences, University of Tebessa, Tebessa 12002, Algeria;
| | - Assia Mairi
- Laboratoire d’Ecologie Microbienne, Faculté des Sciences de la Nature et de la Vie (FSNV), Université de Bejaia, Bejaia 06000, Algeria; (A.M.); (A.T.)
| | - Nasir Adam Ibrahim
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13318, Saudi Arabia;
| | - Nosiba S. Basher
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13318, Saudi Arabia;
| | - Takfarinas Idres
- Research Laboratory for Management of Local Animal Resources, Rabie Bouchama National Veterinary School of Algiers, Issad ABBAS Street, BP 161 Oued Semar, Algiers 16059, Algeria;
| | - Abdelaziz Touati
- Laboratoire d’Ecologie Microbienne, Faculté des Sciences de la Nature et de la Vie (FSNV), Université de Bejaia, Bejaia 06000, Algeria; (A.M.); (A.T.)
| |
Collapse
|
2
|
Hajialigol A, Azizi G, Seifi Alan M, Soltani A, Arabian Z, Tamiji M, Tsilifis C, Gennery AR, Jamee M. Dominant-Negative Versus Gain-of-Function STAT3 Defects: A Systematic Review on Epidemiological, Clinical, Immunological, and Molecular Aspects. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2025:S2213-2198(25)00370-8. [PMID: 40246075 DOI: 10.1016/j.jaip.2025.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 04/04/2025] [Accepted: 04/07/2025] [Indexed: 04/19/2025]
Abstract
BACKGROUND Germline signal transducer and activator of transcription 3 (STAT3) mutations cause 2 distinct syndromes with predominant infectious or autoimmune phenotype. OBJECTIVE The objective of this study is to compile literature reports on gain-of-function (GOF) and dominant-negative (DN) mutations in the STAT3. METHODS We searched 3 main databases including PubMed, Scopus, and Web of Science from 1990 to 2023. All full-text articles and major reviews were manually searched for additional studies. RESULTS A total of 490 patients were reported in 107 articles including 265 patients with DN-STAT3 and 225 patients with GOF-STAT3 mutations. Major clinical differences between STAT3-DN and STAT3-GOF patients were observed in rates of infectious complication (98.2% vs 85.4%, P < .001), pneumonia (67.3% vs 52.1%, P = .006), sinusitis (17.5% vs 2.1%, P < .001), otitis (27.7% vs 5.2%, P < .001), abscess (52.7% vs 17.7%, P < .001), dermatologic manifestation (88.3% vs 58.4%, P < .001), atopic disorders (66.4% vs 40.2%, P < .001), interstitial lung disease (0.7% vs 17.7%, P < .001), dental/gingival disorders (38.5% vs 11.7%, P < .001), and endocrinopathies (0.9% vs 16.5%, P < .001), respectively. Most patients had normal counts of lymphocyte subsets, with the exceptions of higher CD3+ T cells and lower natural killer cells in STAT3-DN patients, and lower CD4+ T cells in STAT3-GOF patients. Most STAT3-DN patients had either normal or high serum concentrations of IgG, IgA, and IgM with almost universal raised serum IgE. Most STAT3-GOF patients had a low level of IgG, but normal levels of IgA, IgM, and IgE. CONCLUSIONS Patients with STAT3-DN had recurrent dermatological and pulmonary infections, eczema, elevated IgE, and eosinophilia, whereas patients with STAT3-GOF had early-onset polyautoimmunity and frequently require immunosuppressive therapy.
Collapse
Affiliation(s)
- Amirhossein Hajialigol
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran; Alborz Office of Universal Scientific Education and Research Network (USERN), Alborz University of Medical Sciences, Karaj, Iran
| | - Gholamreza Azizi
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran; Department of Neurology, Thomas Jefferson University, Philadelphia, Pa
| | - Mahnaz Seifi Alan
- Cardiovascular Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Afsaneh Soltani
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Arabian
- School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Mehrdad Tamiji
- Department of Computer Science, Rice University, Houston, Texas
| | - Christo Tsilifis
- Paediatric Immunology and Haematopoietic Stem Cell Transplantation Unit, Great North Children's Hospital, Newcastle upon Tyne, United Kingdom; Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Andrew R Gennery
- Paediatric Immunology and Haematopoietic Stem Cell Transplantation Unit, Great North Children's Hospital, Newcastle upon Tyne, United Kingdom; Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Mahnaz Jamee
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
3
|
Bergersen KV, Zheng Y, Rossetti M, Ruffin F, Pickering H, Parmar R, Sunga G, Chan LC, Gjertson D, Fowler VG, Yeaman MR, Reed EF. Early cytokine signatures and clinical phenotypes discriminate persistent from resolving MRSA bacteremia. BMC Infect Dis 2025; 25:231. [PMID: 39966757 PMCID: PMC11834594 DOI: 10.1186/s12879-025-10620-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 02/07/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND Staphylococcus aureus bacteremia (SAB) is a prevalent life-threatening infection often caused by methicillin-resistant S. aureus (MRSA). Up to 30% of SAB patients fail to clear infection even with gold-standard anti-MRSA antibiotics. This phenomenon is termed antibiotic-persistent MRSA bacteremia (APMB). The mechanisms driving APMB are complex and involve host phenotypes significantly impacting the immune response. Thus, defining early immune signatures and clinical phenotypes that differentiate APMB from antibiotic resolving (AR)MB could aid therapeutic success. METHODS We assessed 38 circulating cytokines and chemokines using affinity proteomics in 74 matched pairs of vancomycin-treated SAB cases identified as ARMB or APMB after 5 days of blood culture. RESULTS Unsupervised hierarchical clustering segregated APMB from ARMB based on differential levels of IL-10, IL-12p40, IL-13, CCL4, and TGFα. Additionally, CXCL1, CCL22 and IL-17A significantly differed between APMB and ARMB when correlated with diabetes, dialysis, metastatic infection, or cardiac vegetation. Combining immune signatures with these relevant clinical phenotypes sharply increased accuracy of discriminating APMB outcome to 79.1% via logistic regression modeling. Finally, classification-regression tree analysis revealed explicit analyte thresholds associated with APMB outcome at presentation especially in patients with metastatic infection. CONCLUSIONS Collectively, this study identifies previously unrecognized cytokine and chemokine signatures that distinguish APMB and ARMB at presentation and in the context of host clinical characteristics associated with increased disease severity. Validation of a biomarker signature that accurately predicts outcomes could guide early therapeutic strategies and interventions to reduce risks of persistent SAB that are associated with worsened morbidity and mortality.
Collapse
Affiliation(s)
- Kristina V Bergersen
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, 1000 Veteran Ave, Los Angeles, CA, 90095, USA
| | - Ying Zheng
- UCLA Immunogenetics Center, Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Maura Rossetti
- UCLA Immunogenetics Center, Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Felicia Ruffin
- Division of Infectious Diseases, Duke University School of Medicine, 2301 Erwin Road, Durham, NC, 27710, USA
| | - Harry Pickering
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, 1000 Veteran Ave, Los Angeles, CA, 90095, USA
- UCLA Immunogenetics Center, Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Rajesh Parmar
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, 1000 Veteran Ave, Los Angeles, CA, 90095, USA
- UCLA Immunogenetics Center, Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Gemalene Sunga
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, 1000 Veteran Ave, Los Angeles, CA, 90095, USA
| | - Liana C Chan
- Institute for Infection and Immunity, Lundquist Institute at Harbor UCLA Medical Center, Torrance, CA, USA
- Division of Molecular Medicine, Los Angeles County Harbor-UCLA Medical Center, Torrance, CA, USA
| | - David Gjertson
- UCLA Immunogenetics Center, Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Vance G Fowler
- Division of Infectious Diseases, Duke University School of Medicine, 2301 Erwin Road, Durham, NC, 27710, USA.
- Duke Clinical Research Institute, Duke University, Durham, NC, USA.
| | - Michael R Yeaman
- Institute for Infection and Immunity, Lundquist Institute at Harbor UCLA Medical Center, Torrance, CA, USA.
- Division of Molecular Medicine, Los Angeles County Harbor-UCLA Medical Center, Torrance, CA, USA.
- Division of Infectious Diseases, Los Angeles County Harbor-UCLA Medical Center, Torrance, CA, USA.
- Divisions of Molecular Medicine and Infectious Diseases, David Geffen School of Medicine and Harbor-UCLA Medical Center, 1124 West Carson Street, Building MRL / 250, Torrance, CA, 90502, USA.
| | - Elaine F Reed
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, 1000 Veteran Ave, Los Angeles, CA, 90095, USA.
- UCLA Immunogenetics Center, Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
4
|
Rasquel-Oliveira FS, Ribeiro JM, Martelossi-Cebinelli G, Costa FB, Nakazato G, Casagrande R, Verri WA. Staphylococcus aureus in Inflammation and Pain: Update on Pathologic Mechanisms. Pathogens 2025; 14:185. [PMID: 40005560 PMCID: PMC11858194 DOI: 10.3390/pathogens14020185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 01/23/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Staphylococcus aureus (S. aureus) is a Gram-positive bacterium of significant clinical importance, known for its versatility and ability to cause a wide array of infections, such as osteoarticular, pulmonary, cardiovascular, device-related, and hospital-acquired infections. This review describes the most recent evidence of the pathogenic potential of S. aureus, which is commonly part of the human microbiota but can lead to severe infections. The prevalence of pathogenic S. aureus in hospital and community settings contributes to substantial morbidity and mortality, particularly in individuals with compromised immune systems. The immunopathogenesis of S. aureus infections involves intricate interactions with the host immune and non-immune cells, characterized by various virulence factors that facilitate adherence, invasion, and evasion of the host's defenses. This review highlights the complexity of S. aureus infections, ranging from mild to life-threatening conditions, and underscores the growing public health concern posed by multidrug-resistant strains, including methicillin-resistant S. aureus (MRSA). This article aims to provide an updated perspective on S. aureus-related infections, highlighting the main diseases linked to this pathogen, how the different cell types, virulence factors, and signaling molecules are involved in the immunopathogenesis, and the future perspectives to overcome the current challenges to treat the affected individuals.
Collapse
Affiliation(s)
- Fernanda S. Rasquel-Oliveira
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Immunology, Parasitology and General Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil; (F.S.R.-O.)
| | - Jhonatan Macedo Ribeiro
- Department of Microbiology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil (G.N.)
| | - Geovana Martelossi-Cebinelli
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Immunology, Parasitology and General Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil; (F.S.R.-O.)
| | - Fernanda Barbosa Costa
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Immunology, Parasitology and General Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil; (F.S.R.-O.)
| | - Gerson Nakazato
- Department of Microbiology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil (G.N.)
| | - Rubia Casagrande
- Department of Pharmaceutical Sciences, Center of Health Science, Londrina State University, Londrina 86038-440, PR, Brazil
| | - Waldiceu A. Verri
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Immunology, Parasitology and General Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil; (F.S.R.-O.)
| |
Collapse
|
5
|
Clegg J, Mnich ME, Carignano A, Cova G, Tavarini S, Sammicheli C, Clemente B, Smith M, Siena E, Bardelli M, Brazzoli M, Bagnoli F, McLoughlin RM, Soldaini E. Staphylococcus aureus-specific TIGIT + Treg are present in the blood of healthy subjects - a hurdle for vaccination? Front Immunol 2025; 15:1500696. [PMID: 39981298 PMCID: PMC11840346 DOI: 10.3389/fimmu.2024.1500696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/12/2024] [Indexed: 02/22/2025] Open
Abstract
Staphylococcus aureus poses an enormous burden of morbidity and mortality worldwide. Making an efficacious vaccine has however proven extremely challenging. Due to colonizing interactions, pre-existing S. aureus-specific CD4+ T cells are often found in the human population and yet a detailed characterization of their phenotypes and how they might in turn impact vaccine efficacy are thus far unknown. Using an activation induced marker assay to sort for S. aureus-specific CD4+ T cells in an effector function-independent manner, single cell transcriptomic analysis was conducted. Remarkably, S. aureus-specific CD4+ T cells consisted not only of a broader spectrum of conventional T cells (Tcon) than previously described but also of regulatory T cells (Treg). As compared to polyclonally-activated CD4+ T cells, S. aureus-specific Tcon were enriched for the expression of the Th17-type cytokine genes IL17A, IL22 and IL26, while higher percentages of S. aureus-specific Treg expressed the T Cell Immunoreceptor with Ig and ITIM domains (TIGIT), a pleiotropic immune checkpoint. Notably, the antagonistic anti-TIGIT mAb Tiragolumab increased IL-1β production in response to S. aureus in vitro. Therefore, these results uncover the presence of S. aureus-specific TIGIT+ Treg in the blood of healthy subjects that could blunt responses to vaccination and indicate TIGIT as a potential targetable biomarker to overcome pre-exposure-induced immunosuppression.
Collapse
Affiliation(s)
- Jonah Clegg
- GSK, Research Center, Siena, Italy
- Host Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Malgorzata E. Mnich
- GSK, Research Center, Siena, Italy
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, Netherlands
| | | | | | | | | | | | - Megan Smith
- GSK, Research Center, Siena, Italy
- Host Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | | | | | | | | | - Rachel M. McLoughlin
- Host Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | | |
Collapse
|
6
|
Hajam IA, Tsai CM, Gonzalez C, Caldera JR, Lázaro Díez M, Du X, Aralar A, Lin B, Duong W, Liu GY. Pathobiont-induced suppressive immune imprints thwart T cell vaccine responses. Nat Commun 2024; 15:10335. [PMID: 39681568 PMCID: PMC11649901 DOI: 10.1038/s41467-024-54644-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
Pathobionts have evolved many strategies to coexist with the host, but how immune evasion mechanisms contribute to the difficulty of developing vaccines against pathobionts is unclear. Meanwhile, Staphylococcus aureus (SA) has resisted human vaccine development to date. Here we show that prior SA exposure induces non-protective CD4+ T cell imprints, leading to the blunting of protective IsdB vaccine responses. Mechanistically, these SA-experienced CD4+ T cells express IL-10, which is further amplified by vaccination and impedes vaccine protection by binding with IL-10Rα on CD4+ T cell and inhibit IL-17A production. IL-10 also mediates cross-suppression of IsdB and sdrE multi-antigen vaccine. By contrast, the inefficiency of SA IsdB, IsdA and MntC vaccines can be overcome by co-treatment with adjuvants that promote IL-17A and IFN-γ responses. We thus propose that IL-10 secreting, SA-experienced CD4+ T cell imprints represent a staphylococcal immune escaping mechanism that needs to be taken into consideration for future vaccine development.
Collapse
Affiliation(s)
- Irshad Ahmed Hajam
- Department of Pediatrics, University of California San Diego, San Diego, CA, 92093, USA
| | - Chih-Ming Tsai
- Department of Pediatrics, University of California San Diego, San Diego, CA, 92093, USA
| | - Cesia Gonzalez
- Department of Pediatrics, University of California San Diego, San Diego, CA, 92093, USA
| | - Juan Raphael Caldera
- Department of Pediatrics, University of California San Diego, San Diego, CA, 92093, USA
- Quest Diagnostics, 33608 Ortega Hwy., San Juan Capistrano, CA, 92675, USA
| | - María Lázaro Díez
- Department of Pediatrics, University of California San Diego, San Diego, CA, 92093, USA
- AIDS Research Institute (IrsiCaixa). VIRus Immune Escape and VACcine Design (VIRIEVAC) Universitary Hospital German Trias i Pujol Crta Canyet s/n 08916, Badalona, Barcelona, Spain
| | - Xin Du
- Department of Pediatrics, University of California San Diego, San Diego, CA, 92093, USA
| | - April Aralar
- Department of Pediatrics, University of California San Diego, San Diego, CA, 92093, USA
| | - Brian Lin
- Department of Pediatrics, University of California San Diego, San Diego, CA, 92093, USA
| | - William Duong
- Department of Pediatrics, University of California San Diego, San Diego, CA, 92093, USA
| | - George Y Liu
- Department of Pediatrics, University of California San Diego, San Diego, CA, 92093, USA.
- Division of Infectious Diseases, Rady Children's Hospital, San Diego, CA, 92123, USA.
| |
Collapse
|
7
|
McReynolds AKG, Pagella EA, Ridder MJ, Rippee O, Clark Z, Rekowski MJ, Pritchard MT, Bose JL. YjbH contributes to Staphylococcus aureus skin pathology and immune response through Agr-mediated α-toxin regulation. Virulence 2024; 15:2399798. [PMID: 39229975 PMCID: PMC11404607 DOI: 10.1080/21505594.2024.2399798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/31/2024] [Accepted: 08/13/2024] [Indexed: 09/05/2024] Open
Abstract
Staphylococcus aureus is the most common cause of skin and soft tissue infections (SSTIs) with Methicillin-Resistant S. aureus (MRSA) strains being a major contributor in both community and hospital settings. S. aureus relies on metabolic diversity and a large repertoire of virulence factors to cause disease. This includes α-hemolysin (Hla), an integral player in tissue damage found in various models, including SSTIs. Previously, we identified a role for the Spx adapter protein, YjbH, in the regulation of several virulence factors and as an inhibitor of pathogenesis in a sepsis model. In this study, we found that YjbH is critical for tissue damage during SSTI, and its absence leads to decreased proinflammatory chemokines and cytokines in the skin. We identified no contribution of YjbI, encoded on the same transcript as YjbH. Using a combination of reporters and quantitative hemolysis assays, we demonstrated that YjbH impacts Hla expression and activity both in vitro and in vivo. Additionally, expression of Hla from a non-native promoter reversed the tissue damage phenotype of the ΔyjbIH mutant. Lastly, we identified reduced Agr activity as the likely cause for reduced Hla production in the ΔyjbH mutant. This work continues to define the importance of YjbH in the pathogenesis of S. aureus infection as well as identify a new pathway important for Hla production.
Collapse
Affiliation(s)
- Aubrey K. G. McReynolds
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Emma A. Pagella
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Miranda J. Ridder
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Olivia Rippee
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Zachary Clark
- The Mass Spectrometry and Proteomics Core, University of Kansas Medical Center, Kansas City, KS, USA
| | - Michaella J. Rekowski
- The Mass Spectrometry and Proteomics Core, University of Kansas Medical Center, Kansas City, KS, USA
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Michele T. Pritchard
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Jeffrey L. Bose
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
8
|
Bulgur D, Moura RM, Ribot JC. Key actors in neuropathophysiology: The role of γδ T cells. Eur J Immunol 2024; 54:e2451055. [PMID: 39240039 PMCID: PMC11628923 DOI: 10.1002/eji.202451055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/07/2024]
Abstract
The neuroimmune axis has been the focus of many studies, with special emphasis on the interactions between the central nervous system and the different immune cell subsets. T cells are namely recognized to play a critical role due to their interaction with nerves, by secreting cytokines and neurotrophins, which regulate the development, function, and survival of neurons. In this context, γδ T cells are particularly relevant, as they colonize specific tissues, namely the meninges, and have a wide variety of complex functions that balance physiological systems. Notably, γδ T cells are not only key components for maintaining brain homeostasis but are also responsible for triggering or preventing inflammatory responses in various pathologies, including neurodegenerative diseases as well as neuropsychiatric and developmental disorders. Here, we provide an overview of the current state of the art on the contribution of γδ T cells in neuropathophysiology and delve into the molecular mechanisms behind it. We aim to shed light on γδ T cell functions in the central nervous system while highlighting upcoming challenges in the field and providing new clues for potential therapeutic strategies.
Collapse
Affiliation(s)
- Deniz Bulgur
- Instituto de Medicina MolecularFaculdade de Medicina da Universidade de Lisboa Avenida Professor Egas MonizLisbon1649‐028Portugal
| | - Raquel Macedo Moura
- Instituto de Medicina MolecularFaculdade de Medicina da Universidade de Lisboa Avenida Professor Egas MonizLisbon1649‐028Portugal
| | - Julie C. Ribot
- Instituto de Medicina MolecularFaculdade de Medicina da Universidade de Lisboa Avenida Professor Egas MonizLisbon1649‐028Portugal
| |
Collapse
|
9
|
Feng X, Xu Y. The recent progress of γδ T cells and its targeted therapies in rheumatoid arthritis. Int J Rheum Dis 2024; 27:e15381. [PMID: 39467001 DOI: 10.1111/1756-185x.15381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/03/2024] [Accepted: 10/08/2024] [Indexed: 10/30/2024]
Abstract
Rheumatoid arthritis (RA) is an autoimmune condition that mostly impacts the joints. During the advanced phases of the disorder, it may be accompanied by other problems. While the precise cause of RA is uncertain, various research has been conducted to gain a better understanding of the immunological processes involved in the development of RA. T cells are acknowledged as significant contributors to the progression of RA because of their roles in cytokine secretion, antigen presentation, and facilitating B cells in the manufacture of antibodies. γδ T cells are a small subset of T cells that have significant functions in the context of infection and diseases linked with tumors. γδ T cells have been the subject of investigation in autoimmune disorders in recent years. This review focused on the involvement of γδ T lymphocytes in the development of RA. In this article, we provide an analysis of the immunological capabilities of γδ T cells, intending to comprehend their significance in RA, which could be pivotal in the creation of innovative clinical treatments.
Collapse
Affiliation(s)
- Xue Feng
- Department of Bone and Joint Surgery, The First Bethune Hospital of Jilin University, Changchun, China
| | - Yan Xu
- Department of Bone and Joint Surgery, The First Bethune Hospital of Jilin University, Changchun, China
| |
Collapse
|
10
|
Söderhäll T, Kim SB, Choi GS, Kang KR, Ji JH, Lee BL, Kang JH. Protective effects of immunization with a novel 4 recombinant pore-forming toxoid combination vaccine in a rabbit model of systemic methicillin-resistant Staphylococcus aureus infection. Clin Exp Vaccine Res 2024; 13:338-347. [PMID: 39525673 PMCID: PMC11543794 DOI: 10.7774/cevr.2024.13.4.338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 09/21/2024] [Indexed: 11/16/2024] Open
Abstract
Purpose Staphylococcus aureus is a Gram-positive bacterium that most frequently acquires antibiotic resistance. As an opportunistic pathogen, it can cause conditions such as bacteremia, sepsis, and myocarditis. Due to the social need for a vaccine against methicillin-resistant Staphylococcus aureus (MRSA), many research groups have been designing and studying vaccines for decades. In this study, we developed a multivalent vaccine and evaluated its efficacy by applying a novel adjuvant, β-glucan. Materials and Methods A vaccine composed of four pore-forming toxins from S. aureus was administered to rabbits 3 times, after which they were challenged with S. aureus USA 300 LAC strain. We measured changes in the rabbits' body weight to monitor systemic adverse reactions and analyzed the total immunoglobulin G antibody titer against the four antigens using enzyme-linked immunosorbent assay. For each rabbit, the number of abscesses and colony-forming units (CFU) in the kidneys were measured. Results In all vaccinated groups, strong antibody responses against the four antigens were observed. After challenging with MRSA, the vaccinated groups showed less weight change compared to the non-vaccinated groups (average 5.7% versus 13.5%). Additionally, the number of renal abscesses was significantly lower in the vaccinated groups, with three individuals in group 1 (four antigens adjuvanted with β-glucan_PK1) showing no abscess formation. The number of bacteria identified in the kidneys was also statistically significantly lower in the vaccinated group compared to the non-vaccinated group. Conclusion We demonstrated that the four toxoid antigens we selected can protect against S. aureus infection in a rabbit model and that β-glucan could be used as an immune enhancer. Overall, our study shows that new antigen combinations can induce protective immunity in animal models and that a toxin-based vaccine can help control bacterial colonization.
Collapse
Affiliation(s)
| | | | | | - Kyu-Ri Kang
- The Vaccine Bio Research Institute, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | | | - Bok Luel Lee
- Host Defense Protein Laboratory, College of Pharmacy, Pusan National University, Busan, Korea
| | - Jin-Han Kang
- Research Center, CLIPS BnC, Seoul, Korea
- The Vaccine Bio Research Institute, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
11
|
García-Patiño MG, Marcial-Medina MC, Ruiz-Medina BE, Licona-Limón P. IL-17 in skin infections and homeostasis. Clin Immunol 2024; 267:110352. [PMID: 39218195 DOI: 10.1016/j.clim.2024.110352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/13/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Interleukin (IL) 17 is a proinflammatory cytokine belonging to a structurally related group of cytokines known as the IL-17 family. It has been profoundly studied for its contribution to the pathology of autoimmune diseases. However, it also plays an important role in homeostasis and the defense against extracellular bacteria and fungi. IL-17 is important for epithelial barriers, including the skin, where some of its cellular targets reside. Most of the research work on IL-17 has focused on its effects in the skin within the context of autoimmune diseases or sterile inflammation, despite also having impact on other skin conditions. In recent years, studies on the role of IL-17 in the defense against skin pathogens and in the maintenance of skin homeostasis mediated by the microbiota have grown in importance. Here we review and discuss the cumulative evidence regarding the main contribution of IL-17 in the maintenance of skin integrity as well as its protective or pathogenic effects during some skin infections.
Collapse
Affiliation(s)
- M G García-Patiño
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - M C Marcial-Medina
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - B E Ruiz-Medina
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - P Licona-Limón
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| |
Collapse
|
12
|
Wang X, Dou Y, Hu J, Chan CHC, Li R, Rong L, Gong H, Deng J, Yuen TTT, Lin X, He Y, Su C, Zhang BZ, Chan JFW, Yuen KY, Chu H, Huang JD. Conserved moonlighting protein pyruvate dehydrogenase induces robust protection against Staphylococcus aureus infection. Proc Natl Acad Sci U S A 2024; 121:e2321939121. [PMID: 39186649 PMCID: PMC11388329 DOI: 10.1073/pnas.2321939121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 07/15/2024] [Indexed: 08/28/2024] Open
Abstract
Developing an effective Staphylococcus aureus (S. aureus) vaccine has been a challenging endeavor, as demonstrated by numerous failed clinical trials over the years. In this study, we formulated a vaccine containing a highly conserved moonlighting protein, the pyruvate dehydrogenase complex E2 subunit (PDHC), and showed that it induced strong protective immunity against epidemiologically relevant staphylococcal strains in various murine disease models. While antibody responses contributed to bacterial control, they were not essential for protective immunity in the bloodstream infection model. Conversely, vaccine-induced systemic immunity relied on γδ T cells. It has been suggested that prior S. aureus exposure may contribute to the reduction of vaccine efficacy. However, PDHC-induced protective immunity still facilitated bacterial clearance in mice previously exposed to S. aureus. Collectively, our findings indicate that PDHC is a promising serotype-independent vaccine candidate effective against both methicillin-sensitive and methicillin-resistant S. aureus isolates.
Collapse
Affiliation(s)
- Xiaolei Wang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
- Clinical Oncology Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, People’s Republic of China
| | - Ying Dou
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Jingchu Hu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Celia Hoi-Ching Chan
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Renhao Li
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Li Rong
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Huarui Gong
- Chinese Academy of Sciences Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People’s Republic of China
| | - Jian Deng
- Key Laboratory for Experimental Teratology of Ministry of Education and Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
| | - Terrence Tsz-Tai Yuen
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Xuansheng Lin
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Yige He
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Canhui Su
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Bao-Zhong Zhang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
- Chinese Academy of Sciences Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People’s Republic of China
| | - Jasper Fuk-Woo Chan
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
- Department of Infectious Disease and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong Province, People’s Republic of China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, People’s Republic of China
| | - Kwok-Yung Yuen
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
- Department of Infectious Disease and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong Province, People’s Republic of China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, People’s Republic of China
| | - Hin Chu
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
- Department of Infectious Disease and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong Province, People’s Republic of China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, People’s Republic of China
| | - Jian-Dong Huang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
- Chinese Academy of Sciences Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People’s Republic of China
- Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen University, Guangzhou, People’s Republic of China
- Clinical Oncology Center, Shenzhen Key Laboratory for Cancer Metastasis and Personalized Therapy, The University of Hong Kong-Shenzhen Hospital, Shenzhen, People’s Republic of China
| |
Collapse
|
13
|
Lang JC, Brutscher A, Ehrström M, Melican K. Tissue resident cells differentiate S. aureus from S. epidermidis via IL-1β following barrier disruption in healthy human skin. PLoS Pathog 2024; 20:e1012056. [PMID: 39208402 PMCID: PMC11389914 DOI: 10.1371/journal.ppat.1012056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 09/11/2024] [Accepted: 08/11/2024] [Indexed: 09/04/2024] Open
Abstract
The Staphylococcus sp. are a dominant part of the human skin microbiome and present across the body. Staphylococcus epidermidis is a ubiquitous skin commensal, while S. aureus is thought to colonize at least 30% of the population. S. aureus are not only colonizers but a leading cause of skin and soft tissue infections and a critical healthcare concern. To understand how healthy human skin may differentiate commensal bacteria, such as S. epidermidis, from the potential pathogen methicillin-resistant S. aureus (MRSA), we use ex vivo human skin models that allow us to study this host-bacterial interaction in the most clinically relevant environment. Our work highlights the role of the outer stratum corneum as a protective physical barrier against invasion by colonizing Staphylococci. We show how the structural cells of the skin can internalize and respond to different Staphylococci with increasing sensitivity. In intact human skin, a discriminatory IL-1β response was identified, while disruption of the protective stratum corneum triggered an increased and more diverse immune response. We identified and localized tissue resident Langerhans cells (LCs) as a potential source of IL-1β and go on to show a dose-dependent response of MUTZ-LCs to S. aureus but not S. epidermidis. This suggests an important role of LCs in sensing and discriminating between bacteria in healthy human skin, particularly in intact skin and provides a detailed snapshot of how human skin differentiates between friend and potential foe. With the rise in antibiotic resistance, understanding the innate immune response of healthy skin may help us find ways to enhance or manipulate these natural defenses to prevent invasive infection.
Collapse
Affiliation(s)
- Julia C Lang
- AIMES-Center for the Advancement of Integrated Medical and Engineering Sciences, Karolinska Institutet and KTH Royal Institute of Technology, Stockholm, Sweden
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Andreas Brutscher
- AIMES-Center for the Advancement of Integrated Medical and Engineering Sciences, Karolinska Institutet and KTH Royal Institute of Technology, Stockholm, Sweden
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | | - Keira Melican
- AIMES-Center for the Advancement of Integrated Medical and Engineering Sciences, Karolinska Institutet and KTH Royal Institute of Technology, Stockholm, Sweden
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
14
|
Nagarajan A, Scoggin K, Adams LG, Threadgill D, Andrews-Polymenis H. Identification of a genetic region linked to tolerance to MRSA infection using Collaborative Cross mice. PLoS Genet 2024; 20:e1011378. [PMID: 39178306 PMCID: PMC11407622 DOI: 10.1371/journal.pgen.1011378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 09/17/2024] [Accepted: 07/29/2024] [Indexed: 08/25/2024] Open
Abstract
Staphylococcus aureus (S. aureus) colonizes humans asymptomatically but can also cause opportunistic infections, ranging from mild skin infections to severe life-threatening conditions. Resistance and tolerance are two ways a host can survive an infection. Resistance is limiting the pathogen burden, while tolerance is limiting the health impact of a given pathogen burden. In previous work, we established that collaborative cross (CC) mouse line CC061 is highly susceptible to Methicillin-resistant S. aureus infection (MRSA, USA300), while CC024 is tolerant. To identify host genes involved in tolerance after S. aureus infection, we crossed CC061 mice and CC024 mice to generate F1 and F2 populations. Survival after MRSA infection in the F1 and F2 generations was 65% and 55% and followed a complex dominant inheritance pattern for the CC024 increased survival phenotype. Colonization in F2 animals was more extreme than in their parents, suggesting successful segregation of genetic factors. We identified a Quantitative Trait Locus (QTL) peak on chromosome 7 for survival and weight change after infection. In this QTL, the WSB/EiJ (WSB) allele was present in CC024 mice and contributed to their MRSA tolerant phenotype. Two genes, C5ar1 and C5ar2, have high-impact variants in this region. C5ar1 and C5ar2 are receptors for the complement factor C5a, an anaphylatoxin that can trigger a massive immune response by binding to these receptors. We hypothesize that C5a may have altered binding to variant receptors in CC024 mice, reducing damage caused by the cytokine storm and resulting in the ability to tolerate a higher pathogen burden and longer survival.
Collapse
Affiliation(s)
- Aravindh Nagarajan
- Interdisciplinary Program in Genetics and Genomics, Texas A&M University, College Station, Texas, United States of America
- Department of Microbial Pathogenesis and Immunology, Texas A&M University, College Station, Texas, United States of America
| | - Kristin Scoggin
- Interdisciplinary Program in Genetics and Genomics, Texas A&M University, College Station, Texas, United States of America
- Department of Microbial Pathogenesis and Immunology, Texas A&M University, College Station, Texas, United States of America
| | - L Garry Adams
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, United States of America
| | - David Threadgill
- Interdisciplinary Program in Genetics and Genomics, Texas A&M University, College Station, Texas, United States of America
- Department of Molecular and Cellular Medicine, Texas A&M University, College Station, Texas, United States of America
- Texas A&M Institute for Genome Sciences and Society, Texas A&M University, College Station, Texas, United States of America
- Department of Biochemistry & Biophysics and Department of Nutrition, Texas A&M University, College Station, Texas, United States of America
| | - Helene Andrews-Polymenis
- Interdisciplinary Program in Genetics and Genomics, Texas A&M University, College Station, Texas, United States of America
- Department of Microbial Pathogenesis and Immunology, Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|
15
|
Abdurrahman G, Pospich R, Steil L, Gesell Salazar M, Izquierdo González JJ, Normann N, Mrochen D, Scharf C, Völker U, Werfel T, Bröker BM, Roesner LM, Gómez-Gascón L. The extracellular serine protease from Staphylococcus epidermidis elicits a type 2-biased immune response in atopic dermatitis patients. Front Immunol 2024; 15:1352704. [PMID: 38895118 PMCID: PMC11183529 DOI: 10.3389/fimmu.2024.1352704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 05/02/2024] [Indexed: 06/21/2024] Open
Abstract
Background Atopic dermatitis (AD) is a chronic, relapsing inflammatory skin disease with skin barrier defects and a misdirected type 2 immune response against harmless antigens. The skin microbiome in AD is characterized by a reduction in microbial diversity with a dominance of staphylococci, including Staphylococcus epidermidis (S. epidermidis). Objective To assess whether S. epidermidis antigens play a role in AD, we screened for candidate allergens and studied the T cell and humoral immune response against the extracellular serine protease (Esp). Methods To identify candidate allergens, we analyzed the binding of human serum IgG4, as a surrogate of IgE, to S. epidermidis extracellular proteins using 2-dimensional immunoblotting and mass spectrometry. We then measured serum IgE and IgG1 binding to recombinant Esp by ELISA in healthy and AD individuals. We also stimulated T cells from AD patients and control subjects with Esp and measured the secreted cytokines. Finally, we analyzed the proteolytic activity of Esp against IL-33 and determined the cleavage sites by mass spectrometry. Results We identified Esp as the dominant candidate allergen of S. epidermidis. Esp-specific IgE was present in human serum; AD patients had higher concentrations than controls. T cells reacting to Esp were detectable in both AD patients and healthy controls. The T cell response in healthy adults was characterized by IL-17, IL-22, IFN-γ, and IL-10, whereas the AD patients' T cells lacked IL-17 production and released only low amounts of IL-22, IFN-γ, and IL-10. In contrast, Th2 cytokine release was higher in T cells from AD patients than from healthy controls. Mature Esp cleaved and activated the alarmin IL-33. Conclusion The extracellular serine protease Esp of S. epidermidis can activate IL-33. As an antigen, Esp elicits a type 2-biased antibody and T cell response in AD patients. This suggests that S. epidermidis can aggravate AD through the allergenic properties of Esp.
Collapse
Affiliation(s)
- Goran Abdurrahman
- Institute of Immunology, University Medicine Greifswald, Greifswald, Germany
| | - Rebecca Pospich
- Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany
| | - Leif Steil
- Department of Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | | | | | - Nicole Normann
- Institute of Immunology, University Medicine Greifswald, Greifswald, Germany
| | - Daniel Mrochen
- Institute of Immunology, University Medicine Greifswald, Greifswald, Germany
| | - Christian Scharf
- Department of Otorhinolaryngology, Head and Neck Surgery, University Medicine Greifswald, Greifswald, Germany
| | - Uwe Völker
- Department of Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Thomas Werfel
- Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Barbara M. Bröker
- Institute of Immunology, University Medicine Greifswald, Greifswald, Germany
| | - Lennart M. Roesner
- Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Lidia Gómez-Gascón
- Institute of Immunology, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
16
|
Chen Y, Song Y, Wang Z, Lai Y, Yin W, Cai Q, Han M, Cai Y, Xue Y, Chen Z, Li X, Chen J, Li M, Li H, He R. The chemerin-CMKLR1 axis in keratinocytes impairs innate host defense against cutaneous Staphylococcus aureus infection. Cell Mol Immunol 2024; 21:533-545. [PMID: 38532043 PMCID: PMC11143357 DOI: 10.1038/s41423-024-01152-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 03/01/2024] [Indexed: 03/28/2024] Open
Abstract
The skin is the most common site of Staphylococcus aureus infection, which can lead to various diseases, including invasive and life-threatening infections, through evasion of host defense. However, little is known about the host factors that facilitate the innate immune evasion of S. aureus in the skin. Chemerin, which is abundantly expressed in the skin and can be activated by proteases derived from S. aureus, has both direct bacteria-killing activity and immunomodulatory effects via interactions with its receptor CMKLR1. Here, we demonstrate that a lack of the chemerin/CMKLR1 axis increases the neutrophil-mediated host defense against S. aureus in a mouse model of cutaneous infection, whereas chemerin overexpression, which mimics high levels of chemerin in obese individuals, exacerbates S. aureus cutaneous infection. Mechanistically, we identified keratinocytes that express CMKLR1 as the main target of chemerin to suppress S. aureus-induced IL-33 expression, leading to impaired skin neutrophilia and bacterial clearance. CMKLR1 signaling specifically inhibits IL-33 expression induced by cell wall components but not secreted proteins of S. aureus by inhibiting Akt activation in mouse keratinocytes. Thus, our study revealed that the immunomodulatory effect of the chemerin/CMKLR1 axis mediates innate immune evasion of S. aureus in vivo and likely increases susceptibility to S. aureus infection in obese individuals.
Collapse
Affiliation(s)
- Yu Chen
- Department of Immunology, Key Laboratory of Medical Molecular Virology (MOE/NHC), School of Basic Medical Sciences, and Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, 200032, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Yan Song
- Department of Laboratory Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Zhe Wang
- Department of Immunology, Key Laboratory of Medical Molecular Virology (MOE/NHC), School of Basic Medical Sciences, and Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, 200032, China
| | - Yangfan Lai
- Department of Immunology, Key Laboratory of Medical Molecular Virology (MOE/NHC), School of Basic Medical Sciences, and Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, 200032, China
| | - Wei Yin
- Department of Immunology, Key Laboratory of Medical Molecular Virology (MOE/NHC), School of Basic Medical Sciences, and Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, 200032, China
| | - Qian Cai
- Department of Immunology, Key Laboratory of Medical Molecular Virology (MOE/NHC), School of Basic Medical Sciences, and Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, 200032, China
| | - Miaomiao Han
- Allergy Center, Department of Otolaryngology, Affiliated Eye and ENT Hospital, Fudan University, Shanghai, 200031, China
| | - Yiheng Cai
- Department of Immunology, Key Laboratory of Medical Molecular Virology (MOE/NHC), School of Basic Medical Sciences, and Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, 200032, China
| | - Yushan Xue
- Department of Immunology, Key Laboratory of Medical Molecular Virology (MOE/NHC), School of Basic Medical Sciences, and Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, 200032, China
| | - Zhengrong Chen
- Department of Respiratory Diseases, Children's Hospital of Soochow University, Suzhou, China
| | - Xi Li
- Biology Science Institutes, Chongqing Medical University, Chongqing, 400032, China
| | - Jing Chen
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
- Department of Nephrology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Min Li
- Department of Laboratory Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
- Faculty of Medical Laboratory Science, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China
| | - Huabin Li
- Allergy Center, Department of Otolaryngology, Affiliated Eye and ENT Hospital, Fudan University, Shanghai, 200031, China.
| | - Rui He
- Department of Immunology, Key Laboratory of Medical Molecular Virology (MOE/NHC), School of Basic Medical Sciences, and Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, 200032, China.
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China.
- Research Center of Allergy and Diseases, Fudan University, 200040, Shanghai, China.
| |
Collapse
|
17
|
Xiao Z, Wang S, Luo L, Lv W, Feng P, Sun Y, Yang Q, He J, Cao G, Yin Z, Yang M. Lkb1 orchestrates γδ T-cell metabolic and functional fitness to control IL-17-mediated autoimmune hepatitis. Cell Mol Immunol 2024; 21:546-560. [PMID: 38641698 PMCID: PMC11143210 DOI: 10.1038/s41423-024-01163-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 04/02/2024] [Indexed: 04/21/2024] Open
Abstract
γδ T cells play a crucial role in immune surveillance and serve as a bridge between innate and adaptive immunity. However, the metabolic requirements and regulation of γδ T-cell development and function remain poorly understood. In this study, we investigated the role of liver kinase B1 (Lkb1), a serine/threonine kinase that links cellular metabolism with cell growth and proliferation, in γδ T-cell biology. Our findings demonstrate that Lkb1 is not only involved in regulating γδ T lineage commitment but also plays a critical role in γδ T-cell effector function. Specifically, T-cell-specific deletion of Lkb1 resulted in impaired thymocyte development and distinct alterations in γδ T-cell subsets in both the thymus and peripheral lymphoid tissues. Notably, loss of Lkb1 inhibited the commitment of Vγ1 and Vγ4 γδ T cells, promoted the maturation of IL-17-producing Vγ6 γδ T cells, and led to the occurrence of fatal autoimmune hepatitis (AIH). Notably, clearance of γδ T cells or blockade of IL-17 significantly attenuated AIH. Mechanistically, Lkb1 deficiency disrupted metabolic homeostasis and AMPK activity, accompanied by increased mTORC1 activation, thereby causing overactivation of γδ T cells and enhanced apoptosis. Interestingly, activation of AMPK or suppression of mTORC1 signaling effectively inhibited IL-17 levels and attenuated AIH in Lkb1-deficient mice. Our findings highlight the pivotal role of Lkb1 in maintaining the homeostasis of γδ T cells and preventing IL-17-mediated autoimmune diseases, providing new insights into the metabolic programs governing the subset determination and functional differentiation of thymic γδ T cells.
Collapse
Affiliation(s)
- Zhiqiang Xiao
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, 519000, China
- The Biomedical Translational Research Institute, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Shanshan Wang
- The Biomedical Translational Research Institute, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Liang Luo
- The Biomedical Translational Research Institute, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Wenkai Lv
- The Biomedical Translational Research Institute, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Peiran Feng
- Guangdong Provincial Key Laboratory of Spine and Spinal Cord Reconstruction, The Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Jinan University, Heyuan, 517000, China
| | - Yadong Sun
- The Biomedical Translational Research Institute, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Quanli Yang
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, 519000, China
| | - Jun He
- Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control (Jinan University). Guangzhou Key Laboratory for Germ-Free Animals and Microbiota Application. Institute of Laboratory Animal Science, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Guangchao Cao
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, 519000, China
- The Biomedical Translational Research Institute, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Zhinan Yin
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, 519000, China.
- The Biomedical Translational Research Institute, School of Medicine, Jinan University, Guangzhou, 510632, China.
| | - Meixiang Yang
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, 519000, China.
- The Biomedical Translational Research Institute, School of Medicine, Jinan University, Guangzhou, 510632, China.
- Guangdong Provincial Key Laboratory of Spine and Spinal Cord Reconstruction, The Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Jinan University, Heyuan, 517000, China.
- Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control (Jinan University). Guangzhou Key Laboratory for Germ-Free Animals and Microbiota Application. Institute of Laboratory Animal Science, School of Medicine, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
18
|
Kim DH, Lee WW. IL-1 Receptor Dynamics in Immune Cells: Orchestrating Immune Precision and Balance. Immune Netw 2024; 24:e21. [PMID: 38974214 PMCID: PMC11224669 DOI: 10.4110/in.2024.24.e21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/19/2024] [Accepted: 05/20/2024] [Indexed: 07/09/2024] Open
Abstract
IL-1, a pleiotropic cytokine with profound effects on various cell types, particularly immune cells, plays a pivotal role in immune responses. The proinflammatory nature of IL-1 necessitates stringent control mechanisms of IL-1-mediated signaling at multiple levels, encompassing transcriptional and translational regulation, precursor processing, as well as the involvement of a receptor accessory protein, a decoy receptor, and a receptor antagonist. In T-cell immunity, IL-1 signaling is crucial during both the priming and effector phases of immune reactions. The fine-tuning of IL-1 signaling hinges upon two distinct receptor types; the functional IL-1 receptor (IL-1R) 1 and the decoy IL-1R2, accompanied by ancillary molecules such as the IL-1R accessory protein (IL-1R3) and IL-1R antagonist. IL-1R1 signaling by IL-1β is critical for the differentiation, expansion, and survival of Th17 cells, essential for defense against extracellular bacteria or fungi, yet implicated in autoimmune disease pathogenesis. Recent investigations emphasize the physiological importance of IL-1R2 expression, particularly in its capacity to modulate IL-1-dependent responses within Tregs. The precise regulation of IL-1R signaling is indispensable for orchestrating appropriate immune responses, as unchecked IL-1 signaling has been implicated in inflammatory disorders, including Th17-mediated autoimmunity. This review provides a thorough exploration of the IL-1R signaling complex and its pivotal roles in immune regulation. Additionally, it highlights recent advancements elucidating the mechanisms governing the expression of IL-1R1 and IL-1R2, underscoring their contributions to fine-tuning IL-1 signaling. Finally, the review briefly touches upon therapeutic strategies targeting IL-1R signaling, with potential clinical applications.
Collapse
Affiliation(s)
- Dong Hyun Kim
- Laboratory of Autoimmunity and Inflammation (LAI), Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Won-Woo Lee
- Laboratory of Autoimmunity and Inflammation (LAI), Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul 03080, Korea
- Seoul National University Cancer Research Institute, Seoul 03080, Korea
- Institute of Endemic Diseases and Ischemic/Hypoxic Disease Institute, Seoul National University Medical Research Center, Seoul 03080, Korea
- Seoul National University Hospital Biomedical Research Institute, Seoul 03080, Korea
| |
Collapse
|
19
|
Kelly AM, McCarthy KN, Claxton TJ, Carlile SR, O'Brien EC, Vozza EG, Mills KH, McLoughlin RM. IL-10 inhibition during immunization improves vaccine-induced protection against Staphylococcus aureus infection. JCI Insight 2024; 9:e178216. [PMID: 38973612 PMCID: PMC11383370 DOI: 10.1172/jci.insight.178216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 05/22/2024] [Indexed: 07/09/2024] Open
Abstract
Staphylococcus aureus is a major human pathogen. An effective anti-S. aureus vaccine remains elusive as the correlates of protection are ill-defined. Targeting specific T cell populations is an important strategy for improving anti-S. aureus vaccine efficacy. Potential bottlenecks that remain are S. aureus-induced immunosuppression and the impact this might have on vaccine-induced immunity. S. aureus induces IL-10, which impedes effector T cell responses, facilitating persistence during both colonization and infection. Thus, it was hypothesized that transient targeting of IL-10 might represent an innovative way to improve vaccine efficacy. In this study, IL-10 expression was elevated in the nares of persistent carriers of S. aureus, and this was associated with reduced systemic S. aureus-specific Th1 responses. This suggests that systemic responses are remodeled because of commensal exposure to S. aureus, which negatively implicates vaccine function. To provide proof of concept that targeting immunosuppressive responses during immunization may be a useful approach to improve vaccine efficacy, we immunized mice with T cell-activating vaccines in combination with IL-10-neutralizing antibodies. Blocking IL-10 during vaccination enhanced effector T cell responses and improved bacterial clearance during subsequent systemic and subcutaneous infection. Taken together, these results reveal a potentially novel strategy for improving anti-S. aureus vaccine efficacy.
Collapse
Affiliation(s)
| | - Karen N McCarthy
- Host-Pathogen Interactions Group and
- Immune Regulation Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | | | | | | | | | - Kingston Hg Mills
- Immune Regulation Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | | |
Collapse
|
20
|
Chan JYH, Clow F, Pearson V, Langley RJ, Fraser JD, Radcliff FJ. Feasibility of using a combination of staphylococcal superantigen-like proteins 3, 7 and 11 in a fusion vaccine for Staphylococcus aureus. Immunol Cell Biol 2024; 102:365-380. [PMID: 38572664 DOI: 10.1111/imcb.12745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/07/2024] [Accepted: 03/18/2024] [Indexed: 04/05/2024]
Abstract
Staphylococcus aureus is a significant bacterial pathogen in both community and hospital settings, and the escalation of antimicrobial-resistant strains is of immense global concern. Vaccination is an inviting long-term strategy to curb staphylococcal disease, but identification of an effective vaccine has proved to be challenging. Three well-characterized, ubiquitous, secreted immune evasion factors from the staphylococcal superantigen-like (SSL) protein family were selected for the development of a vaccine. Wild-type SSL3, 7 and 11, which inhibit signaling through Toll-like receptor 2, cleavage of complement component 5 and neutrophil function, respectively, were successfully combined into a stable, active fusion protein (PolySSL7311). Vaccination of mice with an attenuated form of the PolySSL7311 protein stimulated significantly elevated specific immunoglobulin G and splenocyte proliferation responses to each component relative to adjuvant-only controls. Vaccination with PolySSL7311, but not a mixture of the individual proteins, led to a > 102 reduction in S. aureus tissue burden compared with controls after peritoneal challenge. Comparable antibody responses were elicited after coadministration of the vaccine in either AddaVax (an analog of MF59) or an Alum-based adjuvant; but only AddaVax conferred a significant reduction in bacterial load, aligning with other studies that suggest both cellular and humoral immune responses are necessary for protective immunity to S. aureus. Anti-sera from mice immunized with PolySSL7311, but not individual proteins, partially neutralized the functional activities of SSL7. This study confirms the importance of these SSLs for the survival of S. aureus in vivo and suggests that PolySSL7311 is a promising vaccine candidate.
Collapse
Affiliation(s)
- Janlin Ying Hui Chan
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Fiona Clow
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Victoria Pearson
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Ries J Langley
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - John D Fraser
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Fiona J Radcliff
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
21
|
Hajam IA, Liu GY. Linking S. aureus Immune Evasion Mechanisms to Staphylococcal Vaccine Failures. Antibiotics (Basel) 2024; 13:410. [PMID: 38786139 PMCID: PMC11117348 DOI: 10.3390/antibiotics13050410] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024] Open
Abstract
Vaccination arguably remains the only long-term strategy to limit the spread of S. aureus infections and its related antibiotic resistance. To date, however, all staphylococcal vaccines tested in clinical trials have failed. In this review, we propose that the failure of S. aureus vaccines is intricately linked to prior host exposure to S. aureus and the pathogen's capacity to evade adaptive immune defenses. We suggest that non-protective immune imprints created by previous exposure to S. aureus are preferentially recalled by SA vaccines, and IL-10 induced by S. aureus plays a unique role in shaping these non-protective anti-staphylococcal immune responses. We discuss how S. aureus modifies the host immune landscape, which thereby necessitates alternative approaches to develop successful staphylococcal vaccines.
Collapse
Affiliation(s)
- Irshad Ahmed Hajam
- Department of Pediatrics, University of California San Diego, San Diego, CA 92093, USA;
| | - George Y. Liu
- Department of Pediatrics, University of California San Diego, San Diego, CA 92093, USA;
- Division of Infectious Diseases, Rady Children’s Hospital, San Diego, CA 92123, USA
| |
Collapse
|
22
|
Zhang Y, Lu Q. Immune cells in skin inflammation, wound healing, and skin cancer. J Leukoc Biol 2024; 115:852-865. [PMID: 37718697 DOI: 10.1093/jleuko/qiad107] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/22/2023] [Accepted: 09/05/2023] [Indexed: 09/19/2023] Open
Abstract
Given the self-evident importance of cutaneous immunity in the maintenance of body-surface homeostasis, disturbance of the steady-state skin is inextricably intertwined with dysfunction in cutaneous immunity. It is often overlooked by people that skin, well-known as a solid physical barrier, is also a strong immunological barrier, considering the abundant presence of immune cells including lymphocytes, granulocytes, dendritic cells, and macrophages. What's more, humoral immune components including cytokines, immunoglobulins, and antimicrobial peptides are also rich in the skin. This review centers on skin inflammation (acute and chronic, infection and aseptic inflammation), wound healing, and skin cancer to elucidate the elaborate network of immune cells in skin diseases.
Collapse
Affiliation(s)
- Yuhan Zhang
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Jiangwangmiao Street No. 12, Xuanwu, Nanjing 210042, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Jiangwangmiao Street No. 12, Xuanwu, Nanjing 210042, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China
| | - Qianjin Lu
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Jiangwangmiao Street No. 12, Xuanwu, Nanjing 210042, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Jiangwangmiao Street No. 12, Xuanwu, Nanjing 210042, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China
| |
Collapse
|
23
|
Kurz H, Lehmberg K, Farmand S. Inborn errors of immunity with susceptibility to S. aureus infections. Front Pediatr 2024; 12:1389650. [PMID: 38720948 PMCID: PMC11078099 DOI: 10.3389/fped.2024.1389650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 03/25/2024] [Indexed: 05/12/2024] Open
Abstract
Staphylococcus aureus (S. aureus) is a significant human pathogen, in particular in patients with an underlying medical condition. It is equipped with a large variety of virulence factors enabling both colonization and invasive disease. The spectrum of manifestation is broad, ranging from superficial skin infections to life-threatening conditions like pneumonia and sepsis. As a major cause of healthcare-associated infections, there is a great need in understanding staphylococcal immunity and defense mechanisms. Patients with inborn errors of immunity (IEI) frequently present with pathological infection susceptibility, however, not all of them are prone to S. aureus infection. Thus, enhanced frequency or severity of S. aureus infections can serve as a clinical indicator of a specific underlying immunological impairment. In addition, the analysis of immunological functions in patients with susceptibility to S. aureus provides a unique opportunity of understanding the complex interplay between staphylococcal virulence and host immune predisposition. While the importance of quantitatively and qualitatively normal neutrophils is widely known, less awareness exists about the role of specific cytokines such as functional interleukin (IL)-6 signaling. This review categorizes well-known IEI in light of their susceptibility to S. aureus and discusses the relevant associated pathomechanisms. Understanding host-pathogen-interactions in S. aureus infections in susceptible individuals can pave the way for more effective management and preventive treatment options. Moreover, these insights might help to identify patients who should be screened for an underlying IEI. Ultimately, enhanced understanding of pathogenesis and immune responses in S. aureus infections may also be of relevance for the general population.
Collapse
Affiliation(s)
- Hannah Kurz
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kai Lehmberg
- Division of Pediatric Stem Cell Transplantation and Immunology, Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Susan Farmand
- Division of Pediatric Stem Cell Transplantation and Immunology, Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
24
|
Cavagnero KJ, Li F, Dokoshi T, Nakatsuji T, O’Neill AM, Aguilera C, Liu E, Shia M, Osuoji O, Hata T, Gallo RL. CXCL12+ dermal fibroblasts promote neutrophil recruitment and host defense by recognition of IL-17. J Exp Med 2024; 221:e20231425. [PMID: 38393304 PMCID: PMC10890925 DOI: 10.1084/jem.20231425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/17/2023] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
The skin provides an essential barrier for host defense through rapid action of multiple resident and recruited cell types, but the complex communication network governing these processes is incompletely understood. To define these cell-cell interactions more clearly, we performed an unbiased network analysis of mouse skin during invasive S. aureus infection and revealed a dominant role for CXCL12+ fibroblast subsets in neutrophil communication. These subsets predominantly reside in the reticular dermis, express adipocyte lineage markers, detect IL-17 and TNFα, and promote robust neutrophil recruitment through NFKBIZ-dependent release of CXCR2 ligands and CXCL12. Targeted deletion of Il17ra in mouse fibroblasts resulted in greatly reduced neutrophil recruitment and increased infection by S. aureus. Analogous human CXCL12+ fibroblast subsets abundantly express neutrophil chemotactic factors in psoriatic skin that are subsequently decreased upon therapeutic targeting of IL-17. These findings show that CXCL12+ dermal immune acting fibroblast subsets play a critical role in cutaneous neutrophil recruitment and host defense.
Collapse
Affiliation(s)
- Kellen J. Cavagnero
- Department of Dermatology, University of California, San Diego. La Jolla, CA, USA
| | - Fengwu Li
- Department of Dermatology, University of California, San Diego. La Jolla, CA, USA
| | - Tatsuya Dokoshi
- Department of Dermatology, University of California, San Diego. La Jolla, CA, USA
| | - Teruaki Nakatsuji
- Department of Dermatology, University of California, San Diego. La Jolla, CA, USA
| | - Alan M. O’Neill
- Department of Dermatology, University of California, San Diego. La Jolla, CA, USA
| | - Carlos Aguilera
- Department of Dermatology, University of California, San Diego. La Jolla, CA, USA
| | - Edward Liu
- Department of Dermatology, University of California, San Diego. La Jolla, CA, USA
| | - Michael Shia
- Department of Dermatology, University of California, San Diego. La Jolla, CA, USA
| | - Olive Osuoji
- Department of Dermatology, University of California, San Diego. La Jolla, CA, USA
| | - Tissa Hata
- Department of Dermatology, University of California, San Diego. La Jolla, CA, USA
| | - Richard L. Gallo
- Department of Dermatology, University of California, San Diego. La Jolla, CA, USA
| |
Collapse
|
25
|
Reider IE, Lin E, Krouse TE, Parekh NJ, Nelson AM, Norbury CC. γδ T Cells Mediate a Requisite Portion of a Wound Healing Response Triggered by Cutaneous Poxvirus Infection. Viruses 2024; 16:425. [PMID: 38543790 PMCID: PMC10975054 DOI: 10.3390/v16030425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 04/01/2024] Open
Abstract
Infection at barrier sites, e.g., skin, activates local immune defenses that limit pathogen spread, while preserving tissue integrity. Phenotypically distinct γδ T cell populations reside in skin, where they shape immunity to cutaneous infection prior to onset of an adaptive immune response by conventional αβ CD4+ (TCD4+) and CD8+ (TCD8+) T cells. To examine the mechanisms used by γδ T cells to control cutaneous virus replication and tissue pathology, we examined γδ T cells after infection with vaccinia virus (VACV). Resident γδ T cells expanded and combined with recruited γδ T cells to control pathology after VACV infection. However, γδ T cells did not play a role in control of local virus replication or blockade of systemic virus spread. We identified a unique wound healing signature that has features common to, but also features that antagonize, the sterile cutaneous wound healing response. Tissue repair generally occurs after clearance of a pathogen, but viral wound healing started prior to the peak of virus replication in the skin. γδ T cells contributed to wound healing through induction of multiple cytokines/growth factors required for efficient wound closure. Therefore, γδ T cells modulate the wound healing response following cutaneous virus infection, maintaining skin barrier function to prevent secondary bacterial infection.
Collapse
Affiliation(s)
- Irene E. Reider
- Department of Microbiology & Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Eugene Lin
- Department of Microbiology & Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Tracy E. Krouse
- Department of Microbiology & Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Nikhil J. Parekh
- Department of Microbiology & Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Amanda M. Nelson
- Department of Dermatology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Christopher C. Norbury
- Department of Microbiology & Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
26
|
Ribeiro IS, Muniz IPR, Galantini MPL, Gonçalves CV, Lima PHB, Silva NR, de Oliveira SL, Nunes MS, Novaes AKS, de Oliveira MES, Costa DJ, Amaral JG, da Silva RAA. Antimicrobial photodynamic therapy with Brazilian green propolis controls intradermal infection induced by methicillin-resistant Staphylococcus aureus and modulates the inflammatory response in a murine model. Photochem Photobiol Sci 2024; 23:561-573. [PMID: 38372844 DOI: 10.1007/s43630-024-00539-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 01/13/2024] [Indexed: 02/20/2024]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is one of the leading causes of skin and soft tissue infections worldwide. This microorganism has a wide range of antibiotics resistance, a fact that has made the treatment of infections caused by MRSA difficult. In this sense, antimicrobial photodynamic therapy (aPDT) with natural products has emerged as a good alternative in combating infections caused by antibiotic-resistant microorganisms. The objective of the present study was to evaluate the effects of aPDT with Brazilian green propolis against intradermal MRSA infection in a murine model. Initially, 24 Balb/c mice were infected intradermally in the ears with 1.5 × 108 colony-forming units of MRSA 43300. After infection, they were separated into 4 groups (6 animals per group) and treated with the vehicle, only Brazilian green propolis, only blue LED light or with the aPDT protocol (Brazilian green propolis + blue LED light). It was observed in this study that aPDT with Brazilian green propolis reduced the bacterial load at the site of infection. Furthermore, it was able to inhibit weight loss resulting from the infection, as well as modulate the inflammatory response through greater recruitment of polymorphonuclear cells/neutrophils to the infected tissue. Finally, aPDT induced an increase in the cytokines IL-17A and IL-12p70 in the draining retromaxillary lymph node. Thus, aPDT with Brazilian green propolis proved to be effective against intradermal MRSA infection in mice, reducing bacterial load and modulating the immune response in the animals. However, more studies are needed to assess whether such effects are repeated in humans.
Collapse
Affiliation(s)
- Israel Souza Ribeiro
- Universidade Federal da Bahia, Campus Anísio Teixeira, Instituto Multidisciplinar Em Saúde, Rua Hormindo Barros, 58, Bairro Candeias, Vitória da Conquista, Bahia, CEP: 45.029-094, Brazil
- Universidade Federal Do Sul da Bahia, Campus Paulo Freire, 250 Praça Joana Angélica, Bairro São José, Teixeira de Freitas, Bahia, 45.988-058, Brazil
| | - Igor Pereira Ribeiro Muniz
- Universidade Federal da Bahia, Campus Anísio Teixeira, Instituto Multidisciplinar Em Saúde, Rua Hormindo Barros, 58, Bairro Candeias, Vitória da Conquista, Bahia, CEP: 45.029-094, Brazil
| | - Maria Poliana Leite Galantini
- Universidade Federal da Bahia, Campus Anísio Teixeira, Instituto Multidisciplinar Em Saúde, Rua Hormindo Barros, 58, Bairro Candeias, Vitória da Conquista, Bahia, CEP: 45.029-094, Brazil
| | - Caroline Vieira Gonçalves
- Universidade Federal da Bahia, Campus Anísio Teixeira, Instituto Multidisciplinar Em Saúde, Rua Hormindo Barros, 58, Bairro Candeias, Vitória da Conquista, Bahia, CEP: 45.029-094, Brazil
| | - Paulo Henrique Bispo Lima
- Universidade Federal da Bahia, Campus Anísio Teixeira, Instituto Multidisciplinar Em Saúde, Rua Hormindo Barros, 58, Bairro Candeias, Vitória da Conquista, Bahia, CEP: 45.029-094, Brazil
| | - Nathalia Rosa Silva
- Universidade Federal da Bahia, Campus Anísio Teixeira, Instituto Multidisciplinar Em Saúde, Rua Hormindo Barros, 58, Bairro Candeias, Vitória da Conquista, Bahia, CEP: 45.029-094, Brazil
| | - Samara Lopes de Oliveira
- Universidade Federal da Bahia, Campus Anísio Teixeira, Instituto Multidisciplinar Em Saúde, Rua Hormindo Barros, 58, Bairro Candeias, Vitória da Conquista, Bahia, CEP: 45.029-094, Brazil
| | - Marlon Silva Nunes
- Universidade Federal da Bahia, Campus Anísio Teixeira, Instituto Multidisciplinar Em Saúde, Rua Hormindo Barros, 58, Bairro Candeias, Vitória da Conquista, Bahia, CEP: 45.029-094, Brazil
| | - Amanda Kelle Santos Novaes
- Universidade Federal da Bahia, Campus Anísio Teixeira, Instituto Multidisciplinar Em Saúde, Rua Hormindo Barros, 58, Bairro Candeias, Vitória da Conquista, Bahia, CEP: 45.029-094, Brazil
| | - Maria Eduarda Santos de Oliveira
- Universidade Federal da Bahia, Campus Anísio Teixeira, Instituto Multidisciplinar Em Saúde, Rua Hormindo Barros, 58, Bairro Candeias, Vitória da Conquista, Bahia, CEP: 45.029-094, Brazil
| | - Dirceu Joaquim Costa
- Universidade Estadual Do Sudoeste da Bahia, Campus Vitória da Conquista, Av. Edmundo Silveira Flores, 27-43 - Lot, Alto da Boa Vista, Vitória da Conquista, Bahia, CEP: 45029-066, Brazil
| | - Juliano Geraldo Amaral
- Universidade Federal da Bahia, Campus Anísio Teixeira, Instituto Multidisciplinar Em Saúde, Rua Hormindo Barros, 58, Bairro Candeias, Vitória da Conquista, Bahia, CEP: 45.029-094, Brazil
| | - Robson Amaro Augusto da Silva
- Universidade Federal da Bahia, Campus Anísio Teixeira, Instituto Multidisciplinar Em Saúde, Rua Hormindo Barros, 58, Bairro Candeias, Vitória da Conquista, Bahia, CEP: 45.029-094, Brazil.
| |
Collapse
|
27
|
Wu Y, Hao D, Tu Y, Chen L, Yu P, Chen A, Wan Y, Shi L. The role of ZEB1 in regulating tight junctions in antrochoanal polyp. Heliyon 2024; 10:e25653. [PMID: 38370186 PMCID: PMC10869855 DOI: 10.1016/j.heliyon.2024.e25653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/20/2024] Open
Abstract
Background Antrochoanal polyp (ACP) is a benign nasal mass of unknown etiology. Tight junctions (TJs) are essential to the epithelial barrier that protects the body from external damage. However, the phenotype of tight junction in ACP is currently unclear. Methods The samples were collected from 20 controls, 37 patients with ACP and 45 patients with chronic rhinosinusitis with nasal polyp (CRSwNP). Quantitative Real-Time PCR (qRT-PCR) and immunofluorescence staining (IF) were performed to analyze the expressions of TJs markers (ZO-1, claudin-3 and occludin) and ZEB1. hNEpCs were transfected with ZEB1 small interfering RNA (si-ZEB1) or ZEB1 over-expression plasmid (OE-ZEB1). qRT-PCR and Western blotting were used to determine the levels of TJs-related markers. Primary human nasal epithelial cells (hNECs) were stimulated with IL-17A and si-ZEB1, and the expression of epithelial barrier markers were measured by qRT-PCR and Western blotting. Results Compared to the control group, ACP group showed a significant downregulation in both mRNA and protein levels of ZO-1, occludin, and claudin-3. Furthermore, disease severity correlates positively with the degree of disruption of tight junctions. In addition, higher expression levels of ZEB1, IL-17A, and IFN-γ were observed in the ACP group compared to controls. Overexpression of ZEB1 in hNEpCs led to impairments in the levels of ZO-1, occludin, and claudin-3, while silencing of ZEB1 expression was found to enhance the barrier function of epithelial cells. Finally, IL-17 stimulation of hNECs impaired the expression of TJs-associated molecules (ZO-1, occludin, and claudin-3), which was effectively reversed by the IL-17A + si-ZEB1 group. Conclusions The tight junctions in ACP were extremely damaged and were correlated with the severity of the disease. ZEB1 was involved in the pathogenesis of ACP mediated by IL-17A through regulating tight junctions.
Collapse
Affiliation(s)
- Yisha Wu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, China
- Department of Otolaryngology, Head & Neck Surgery, Second Hospital, Shanxi Medical University, Taiyuan, China
| | - Dingqian Hao
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, China
| | - Yanyi Tu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, China
| | - Lin Chen
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, China
| | - Peng Yu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, China
| | - Aiping Chen
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, China
| | - Yuzhu Wan
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, China
| | - Li Shi
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, China
| |
Collapse
|
28
|
Nanda N, Alphonse MP. From Host Defense to Metabolic Signatures: Unveiling the Role of γδ T Cells in Bacterial Infections. Biomolecules 2024; 14:225. [PMID: 38397462 PMCID: PMC10886488 DOI: 10.3390/biom14020225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/12/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
The growth of antibiotic-resistant bacterial infections necessitates focusing on host-derived immunotherapies. γδ T cells are an unconventional T cell subset, making up a relatively small portion of healthy circulating lymphocytes but a substantially increased proportion in mucosal and epithelial tissues. γδ T cells are activated and expanded in response to bacterial infection, having the capability to produce proinflammatory cytokines to recruit neutrophils and clear infection. They also play a significant role in dampening immune response to control inflammation and protecting the host against secondary challenge, making them promising targets when developing immunotherapy. Importantly, γδ T cells have differential metabolic states influencing their cytokine profile and subsequent inflammatory capacity. Though these differential metabolic states have not been well studied or reviewed in the context of bacterial infection, they are critical in understanding the mechanistic underpinnings of the host's innate immune response. Therefore, this review will focus on the context-specific host defense conferred by γδ T cells during infection with Staphylococcus aureus, Streptococcus pneumoniae, Listeria monocytogenes, and Mycobacterium tuberculosis.
Collapse
Affiliation(s)
| | - Martin P. Alphonse
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| |
Collapse
|
29
|
Koh CH, Kim BS, Kang CY, Chung Y, Seo H. IL-17 and IL-21: Their Immunobiology and Therapeutic Potentials. Immune Netw 2024; 24:e2. [PMID: 38455465 PMCID: PMC10917578 DOI: 10.4110/in.2024.24.e2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/26/2023] [Accepted: 01/07/2024] [Indexed: 03/09/2024] Open
Abstract
Studies over the last 2 decades have identified IL-17 and IL-21 as key cytokines in the modulation of a wide range of immune responses. IL-17 serves as a critical defender against bacterial and fungal pathogens, while maintaining symbiotic relationships with commensal microbiota. However, alterations in its levels can lead to chronic inflammation and autoimmunity. IL-21, on the other hand, bridges the adaptive and innate immune responses, and its imbalance is implicated in autoimmune diseases and cancer, highlighting its important role in both health and disease. Delving into the intricacies of these cytokines not only opens new avenues for understanding the immune system, but also promises innovative advances in the development of therapeutic strategies for numerous diseases. In this review, we will discuss an updated view of the immunobiology and therapeutic potential of IL-17 and IL-21.
Collapse
Affiliation(s)
- Choong-Hyun Koh
- Laboratory of Immune Regulation, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea
| | - Byung-Seok Kim
- Division of Life Sciences, College of Life Science and Bioengineering, Incheon National University, Incheon 22012, Korea
| | - Chang-Yuil Kang
- Research & Development Center, Cellid Co., Ltd., Seoul 08826, Korea
| | - Yeonseok Chung
- Laboratory of Immune Regulation, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea
| | - Hyungseok Seo
- Laboratory of Cell & Gene Therapy, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
30
|
Kleinhenz M, Li Z, Chidella U, Picard W, Wolfe A, Popelka J, Alexander R, Montgomery CP. Toxin-neutralizing Abs are associated with improved T cell function following recovery from Staphylococcus aureus infection. JCI Insight 2024; 9:e173526. [PMID: 38236641 PMCID: PMC11143924 DOI: 10.1172/jci.insight.173526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 01/11/2024] [Indexed: 02/23/2024] Open
Abstract
BACKGROUNDT cell responses are impaired in Staphylococcus aureus-infected children, highlighting a potential mechanism of immune evasion. This study tested the hypotheses that toxin-specific antibodies protect immune cells from bacterial killing and are associated with improved T cell function following infection.METHODSS. aureus-infected and healthy children (N = 33 each) were prospectively enrolled. During acute infection and convalescence, we quantified toxin-specific IgG levels by ELISA, antibody function using a cell killing assay, and functional T cell responses by ELISPOT.RESULTSThere were no differences in toxin-specific IgG levels or ability to neutralize toxin-mediated immune cell killing between healthy and acutely infected children, but antibody levels and function increased following infection. Similarly, T cell function, which was impaired during acute infection, improved following infection. However, the response to infection was highly variable; up to half of children did not have improved antibody or T cell function. Serum from children with higher α-hemolysin-specific IgG levels more strongly protected immune cells against toxin-mediated killing. Importantly, children whose serum more strongly protected against toxin-mediated killing also had stronger immune responses to infection, characterized by more elicited antibodies and greater improvement in T cell function following infection.CONCLUSIONThis study demonstrates that, despite T cell impairment during acute infection, S. aureus elicits toxin-neutralizing antibodies. Individual antibody responses and T cell recovery are variable. These findings also suggest that toxin-neutralizing antibodies protect antigen-presenting cells and T cells, thereby promoting immune recovery. Finally, failure to elicit toxin-neutralizing antibodies may identify children at risk for prolonged T cell suppression.FUNDINGNIH National Institute of Allergy and Infectious Diseases R01AI125489 and Nationwide Children's Hospital.
Collapse
Affiliation(s)
- Maureen Kleinhenz
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute
| | - Zhaotao Li
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute
| | - Usha Chidella
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute
| | - Walissa Picard
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute
| | | | | | - Robin Alexander
- Biostatistics Resource, Nationwide Children’s Hospital, Columbus, Ohio, USA
| | - Christopher P. Montgomery
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute
- Division of Critical Care Medicine; and
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA
| |
Collapse
|
31
|
Sagar. Unraveling the secrets of γδ T cells with single-cell biology. J Leukoc Biol 2024; 115:47-56. [PMID: 38073484 DOI: 10.1093/jleuko/qiad131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 09/16/2023] [Accepted: 09/28/2023] [Indexed: 01/07/2024] Open
Abstract
Recent technological advancements have enabled us to study the molecular features of cellular states at the single-cell level, providing unprecedented resolution for comprehending the identity and function of a cell. By applying these techniques across multiple time frames, tissues, and diseases, we can delve deeper into the mechanisms governing the development and functions of cell lineages. In this review, I focus on γδ T cells, which are a unique and functionally nonredundant T cell lineage categorized under the umbrella of unconventional T cells. I discuss how single-cell biology is providing unique insights into their development and functions. Furthermore, I explore how single-cell methods can be used to answer several key questions about their biology. These investigations will be essential to fully understand their translational potential, including their role in cytotoxicity and tissue repair in cancer and regeneration.
Collapse
Affiliation(s)
- Sagar
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases), University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstraße 55, Freiburg 79106, Germany
| |
Collapse
|
32
|
Suen TK, Moorlag SJCFM, Li W, de Bree LCJ, Koeken VACM, Mourits VP, Dijkstra H, Lemmers H, Bhat J, Xu CJ, Joosten LAB, Schultze JL, Li Y, Placek K, Netea MG. BCG vaccination induces innate immune memory in γδ T cells in humans. J Leukoc Biol 2024; 115:149-163. [PMID: 37672677 DOI: 10.1093/jleuko/qiad103] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 09/08/2023] Open
Abstract
Bacillus Calmette-Guérin vaccine is well known for inducing trained immunity in myeloid and natural killer cells, which can explain its cross-protective effect against heterologous infections. Although displaying functional characteristics of both adaptive and innate immunity, γδ T-cell memory has been only addressed in a pathogen-specific context. In this study, we aimed to determine whether human γδ T cells can mount trained immunity and therefore contribute to the cross-protective effect of the Bacillus Calmette-Guérin vaccine. We investigated in vivo induction of innate memory in γδ T cells by Bacillus Calmette-Guérin vaccination in healthy human volunteers by combining single-cell RNA sequencing technology with immune functional assays. The total number of γδ T cells and membrane markers of activation was not influenced by Bacillus Calmette-Guérin vaccination. In contrast, Bacillus Calmette-Guérin changed γδ T cells' transcriptional programs and increased their responsiveness to heterologous bacterial and fungal stimuli, including lipopolysaccharide and Candida albicans, as simultaneously characterized by higher tumor necrosis factor and interferon γ production, weeks after vaccination. Human γδ T cells in adults display the potential to develop a trained immunity phenotype after Bacillus Calmette-Guérin vaccination.
Collapse
Affiliation(s)
- Tsz K Suen
- Department of Molecular Immunology and Cell Biology, Life and Medical Sciences Institute, University of Bonn, Carl-Troll-Straße 31, 53115 Bonn, Germany
| | - Simone J C F M Moorlag
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Geert Grooteplein Zuid 8, 6525 GA Nijmegen, Netherlands
| | - Wenchao Li
- Department of Computational Biology of Individualized Medicine, Centre for Individualized Infection Medicine (CiiM), a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Feodor-Lynen-Straße 7, 30625 Hannover, Germany
- TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Feodor-Lynen-Str. 7, 30625 Hannover, Germany
| | - L Charlotte J de Bree
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Geert Grooteplein Zuid 8, 6525 GA Nijmegen, Netherlands
| | - Valerie A C M Koeken
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Geert Grooteplein Zuid 8, 6525 GA Nijmegen, Netherlands
- Department of Computational Biology of Individualized Medicine, Centre for Individualized Infection Medicine (CiiM), a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Feodor-Lynen-Straße 7, 30625 Hannover, Germany
| | - Vera P Mourits
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Geert Grooteplein Zuid 8, 6525 GA Nijmegen, Netherlands
| | - Helga Dijkstra
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Geert Grooteplein Zuid 8, 6525 GA Nijmegen, Netherlands
| | - Heidi Lemmers
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Geert Grooteplein Zuid 8, 6525 GA Nijmegen, Netherlands
| | - Jaydeep Bhat
- Institute of Immunology, Christian-Albrechts-University Kiel & University Hospital Schleswig-Holstein, Campus Kiel, Arnold-Heller-Straße 3, 24105 Kiel, Germany
| | - Cheng-Jian Xu
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Geert Grooteplein Zuid 8, 6525 GA Nijmegen, Netherlands
- Department of Computational Biology of Individualized Medicine, Centre for Individualized Infection Medicine (CiiM), a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Feodor-Lynen-Straße 7, 30625 Hannover, Germany
- TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Feodor-Lynen-Str. 7, 30625 Hannover, Germany
| | - Leo A B Joosten
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Geert Grooteplein Zuid 8, 6525 GA Nijmegen, Netherlands
- Department of Medical Genetics, Iuliu Haţieganu University of Medicine and Pharmacy, Strada Victor Babeș 8, Cluj-Napoca 400347, Romania
| | - Joachim L Schultze
- Department of Genomics and Immunoregulation, Life and Medical Sciences Institute, University of Bonn, Carl-Troll-Straße 31, 53115 Bonn, Germany
- Platform for Single Cell Genomics and Epigenomics at the German Center for Neurodegenerative Diseases, University of Bonn, Venusberg-Campus 1/9953127, Bonn, Germany
| | - Yang Li
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Geert Grooteplein Zuid 8, 6525 GA Nijmegen, Netherlands
- Department of Computational Biology of Individualized Medicine, Centre for Individualized Infection Medicine (CiiM), a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Feodor-Lynen-Straße 7, 30625 Hannover, Germany
- TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Feodor-Lynen-Str. 7, 30625 Hannover, Germany
| | - Katarzyna Placek
- Department of Molecular Immunology and Cell Biology, Life and Medical Sciences Institute, University of Bonn, Carl-Troll-Straße 31, 53115 Bonn, Germany
| | - Mihai G Netea
- Department of Molecular Immunology and Cell Biology, Life and Medical Sciences Institute, University of Bonn, Carl-Troll-Straße 31, 53115 Bonn, Germany
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Geert Grooteplein Zuid 8, 6525 GA Nijmegen, Netherlands
| |
Collapse
|
33
|
Liu Y, Ouyang Y, You W, Liu W, Cheng Y, Mai X, Shen Z. Physiological roles of human interleukin-17 family. Exp Dermatol 2024; 33:e14964. [PMID: 37905720 DOI: 10.1111/exd.14964] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 10/08/2023] [Accepted: 10/13/2023] [Indexed: 11/02/2023]
Abstract
Interleukin-17 s (IL-17s) are well-known proinflammatory cytokines, and their antagonists perform excellently in the treatment of inflammatory skin diseases such as psoriasis. However, their physiological functions have not been given sufficient attention by clinicians. IL-17s can protect the host from extracellular pathogens, maintain epithelial integrity, regulate cognitive processes and modulate adipocyte activity through distinct mechanisms. Here, we present a systematic review concerning the physiological functions of IL-17s. Our goal is not to negate the therapeutic effect of IL-17 antagonists, but to ensure their safe use and reasonably explain the possible adverse events that may occur in their application.
Collapse
Affiliation(s)
- Yucong Liu
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Ye Ouyang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Wanchun You
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Wenqi Liu
- Department of Dermatology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Yufan Cheng
- Department of Dermatology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Xinming Mai
- Medical School, Shenzhen University, Shenzhen, China
| | - Zhu Shen
- Department of Dermatology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| |
Collapse
|
34
|
Pan N, Xiu L, Xu Y, Bao X, Liang Y, Zhang H, Liu B, Feng Y, Guo H, Wu J, Li H, Ma C, Sheng S, Wang T, Wang X. Mammary γδ T cells promote IL-17A-mediated immunity against Staphylococcus aureus-induced mastitis in a microbiota-dependent manner. iScience 2023; 26:108453. [PMID: 38034361 PMCID: PMC10687336 DOI: 10.1016/j.isci.2023.108453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/23/2023] [Accepted: 11/10/2023] [Indexed: 12/02/2023] Open
Abstract
Mastitis, a common disease for female during lactation period that could cause a health risk for human or huge economic losses for animals, is mainly caused by S. aureus invasion. Here, we found that neutrophil recruitment via IL-17A-mediated signaling was required for host defense against S. aureus-induced mastitis in a mouse model. The rapid accumulation and activation of Vγ4+ γδ T cells in the early stage of infection triggered the IL-17A-mediated immune response. Interestingly, the accumulation and influence of γδT17 cells in host defense against S. aureus-induced mastitis in a commensal microbiota-dependent manner. Overall, this study, focusing on γδT17 cells, clarified innate immune response mechanisms against S. aureus-induced mastitis, and provided a specific response to target for future immunotherapies. Meanwhile, a link between commensal microbiota community and host defense to S. aureus mammary gland infection may unveil potential therapeutic strategies to combat these intractable infections.
Collapse
Affiliation(s)
- Na Pan
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010000, China
| | - Lei Xiu
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010000, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Ying Xu
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010000, China
| | - Xuemei Bao
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010000, China
| | - Yanchen Liang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010000, China
| | - Haochi Zhang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010000, China
| | - Bohui Liu
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010000, China
| | - Yuanyu Feng
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010000, China
| | - Huibo Guo
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010000, China
| | - Jing Wu
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010000, China
| | - Haotian Li
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010000, China
| | - Cheng Ma
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010000, China
| | - Shouxin Sheng
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010000, China
| | - Ting Wang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010000, China
- Hohhot Inspection and Testing Center, Hohhot 010070, China
| | - Xiao Wang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010000, China
| |
Collapse
|
35
|
Singh TP, Farias Amorim C, Lovins VM, Bradley CW, Carvalho LP, Carvalho EM, Grice EA, Scott P. Regulatory T cells control Staphylococcus aureus and disease severity of cutaneous leishmaniasis. J Exp Med 2023; 220:e20230558. [PMID: 37812390 PMCID: PMC10561556 DOI: 10.1084/jem.20230558] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 08/02/2023] [Accepted: 09/19/2023] [Indexed: 10/10/2023] Open
Abstract
Cutaneous leishmaniasis causes alterations in the skin microbiota, leading to pathologic immune responses and delayed healing. However, it is not known how these microbiota-driven immune responses are regulated. Here, we report that depletion of Foxp3+ regulatory T cells (Tregs) in Staphylococcus aureus-colonized mice resulted in less IL-17 and an IFN-γ-dependent skin inflammation with impaired S. aureus immunity. Similarly, reducing Tregs in S. aureus-colonized and Leishmania braziliensis-infected mice increased IFN-γ, S. aureus, and disease severity. Importantly, analysis of lesions from L. braziliensis patients revealed that low FOXP3 gene expression is associated with high IFNG expression, S. aureus burden, and delayed lesion resolution compared to patients with high FOXP3 expression. Thus, we found a critical role for Tregs in regulating the balance between IL-17 and IFN-γ in the skin, which influences both bacterial burden and disease. These results have clinical ramifications for cutaneous leishmaniasis and other skin diseases associated with a dysregulated microbiome when Tregs are limited or dysfunctional.
Collapse
Affiliation(s)
- Tej Pratap Singh
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Camila Farias Amorim
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Victoria M. Lovins
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Charles W. Bradley
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lucas P. Carvalho
- Servico de Imunologia, Complexo Hospitalar Universitario Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil
- Laboratorio de Pesquisas Clinicas do Instituto de Pesquisas Goncalo Moniz, Fiocruz, Salvador, Brazil
| | - Edgar M. Carvalho
- Servico de Imunologia, Complexo Hospitalar Universitario Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil
- Laboratorio de Pesquisas Clinicas do Instituto de Pesquisas Goncalo Moniz, Fiocruz, Salvador, Brazil
| | - Elizabeth A. Grice
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Phillip Scott
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
36
|
Chang YH, Hsing CH, Chiu CJ, Wu YR, Hsu SM, Hsu YH. Protective role of IL-17-producing γδ T cells in a laser-induced choroidal neovascularization mouse model. J Neuroinflammation 2023; 20:279. [PMID: 38007487 PMCID: PMC10676594 DOI: 10.1186/s12974-023-02952-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 11/07/2023] [Indexed: 11/27/2023] Open
Abstract
BACKGROUND Vision loss in patients with wet/exudative age-related macular degeneration (AMD) is associated with choroidal neovascularization (CNV), and AMD is the leading cause of irreversible vision impairment in older adults. Interleukin-17A (IL-17A) is a component of the microenvironment associated with some autoimmune diseases. Previous studies have indicated that wet AMD patients have elevated serum IL-17A levels. However, the effect of IL-17A on AMD progression needs to be better understood. We aimed to investigate the role of IL-17A in a laser-induced CNV mouse model. METHODS We established a laser-induced CNV mouse model in wild-type (WT) and IL-17A-deficient mice and then evaluated the disease severity of these mice by using fluorescence angiography. We performed enzyme-linked immunosorbent assay (ELISA) and fluorescence-activated cell sorting (FACS) to analyze the levels of IL-17A and to investigate the immune cell populations in the eyes of WT and IL-17A-deficient mice. We used ARPE-19 cells to clarify the effect of IL-17A under oxidative stress. RESULTS In the laser-induced CNV model, the CNV lesions were larger in IL-17A-deficient mice than in WT mice. The numbers of γδ T cells, CD3+CD4+RORγt+ T cells, Treg cells, and neutrophils were decreased and the number of macrophages was increased in the eyes of IL-17A-deficient mice compared with WT mice. In WT mice, IL-17A-producing γδ T-cell numbers increased in a time-dependent manner from day 7 to 28 after laser injury. IL-6 levels increased and IL-10, IL-24, IL-17F, and GM-CSF levels decreased in the eyes of IL-17A-deficient mice after laser injury. In vitro, IL-17A inhibited apoptosis and induced the expression of the antioxidant protein HO-1 in ARPE-19 cells under oxidative stress conditions. IL-17A facilitated the repair of oxidative stress-induced barrier dysfunction in ARPE-19 cells. CONCLUSIONS Our findings provide new insight into the protective effect of IL-17A in a laser-induced CNV model and reveal a novel regulatory role of IL-17A-producing γδ T cells in the ocular microenvironment in wet AMD.
Collapse
Affiliation(s)
- Yu-Hsien Chang
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chung-Hsi Hsing
- Department of Anesthesiology, Chi Mei Medical Center, Tainan, Taiwan
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan
| | - Chiao-Juno Chiu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Rou Wu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Sheng-Min Hsu
- Department of Ophthalmology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Hsiang Hsu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
- Research Center of Clinical Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
- Antibody New Drug Research Center, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
37
|
Hu Y, Hu Q, Li Y, Lu L, Xiang Z, Yin Z, Kabelitz D, Wu Y. γδ T cells: origin and fate, subsets, diseases and immunotherapy. Signal Transduct Target Ther 2023; 8:434. [PMID: 37989744 PMCID: PMC10663641 DOI: 10.1038/s41392-023-01653-8] [Citation(s) in RCA: 103] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/07/2023] [Accepted: 09/12/2023] [Indexed: 11/23/2023] Open
Abstract
The intricacy of diseases, shaped by intrinsic processes like immune system exhaustion and hyperactivation, highlights the potential of immune renormalization as a promising strategy in disease treatment. In recent years, our primary focus has centered on γδ T cell-based immunotherapy, particularly pioneering the use of allogeneic Vδ2+ γδ T cells for treating late-stage solid tumors and tuberculosis patients. However, we recognize untapped potential and optimization opportunities to fully harness γδ T cell effector functions in immunotherapy. This review aims to thoroughly examine γδ T cell immunology and its role in diseases. Initially, we elucidate functional differences between γδ T cells and their αβ T cell counterparts. We also provide an overview of major milestones in γδ T cell research since their discovery in 1984. Furthermore, we delve into the intricate biological processes governing their origin, development, fate decisions, and T cell receptor (TCR) rearrangement within the thymus. By examining the mechanisms underlying the anti-tumor functions of distinct γδ T cell subtypes based on γδTCR structure or cytokine release, we emphasize the importance of accurate subtyping in understanding γδ T cell function. We also explore the microenvironment-dependent functions of γδ T cell subsets, particularly in infectious diseases, autoimmune conditions, hematological malignancies, and solid tumors. Finally, we propose future strategies for utilizing allogeneic γδ T cells in tumor immunotherapy. Through this comprehensive review, we aim to provide readers with a holistic understanding of the molecular fundamentals and translational research frontiers of γδ T cells, ultimately contributing to further advancements in harnessing the therapeutic potential of γδ T cells.
Collapse
Affiliation(s)
- Yi Hu
- Microbiology and Immunology Department, School of Medicine, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Qinglin Hu
- Microbiology and Immunology Department, School of Medicine, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong, 510632, China
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong, 519000, China
| | - Yongsheng Li
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Ligong Lu
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong, 519000, China
| | - Zheng Xiang
- Microbiology and Immunology Department, School of Medicine, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Zhinan Yin
- Biomedical Translational Research Institute, Jinan University, Guangzhou, Guangdong, 510632, China.
| | - Dieter Kabelitz
- Institute of Immunology, Christian-Albrechts-University Kiel, Kiel, Germany.
| | - Yangzhe Wu
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong, 519000, China.
| |
Collapse
|
38
|
Simpson EL, Schlievert PM, Yoshida T, Lussier S, Boguniewicz M, Hata T, Fuxench Z, De Benedetto A, Ong PY, Ko J, Calatroni A, Rudman Spergel AK, Plaut M, Quataert SA, Kilgore SH, Peterson L, Gill AL, David G, Mosmann T, Gill SR, Leung DYM, Beck LA. Rapid reduction in Staphylococcus aureus in atopic dermatitis subjects following dupilumab treatment. J Allergy Clin Immunol 2023; 152:1179-1195. [PMID: 37315812 PMCID: PMC10716365 DOI: 10.1016/j.jaci.2023.05.026] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 05/05/2023] [Accepted: 05/11/2023] [Indexed: 06/16/2023]
Abstract
BACKGROUND Atopic dermatitis (AD) is an inflammatory disorder characterized by dominant type 2 inflammation leading to chronic pruritic skin lesions, allergic comorbidities, and Staphylococcus aureus skin colonization and infections. S aureus is thought to play a role in AD severity. OBJECTIVES This study characterized the changes in the host-microbial interface in subjects with AD following type 2 blockade with dupilumab. METHODS Participants (n = 71) with moderate-severe AD were enrolled in a randomized (dupilumab vs placebo; 2:1), double-blind study at Atopic Dermatitis Research Network centers. Bioassays were performed at multiple time points: S aureus and virulence factor quantification, 16s ribosomal RNA microbiome, serum biomarkers, skin transcriptomic analyses, and peripheral blood T-cell phenotyping. RESULTS At baseline, 100% of participants were S aureus colonized on the skin surface. Dupilumab treatment resulted in significant reductions in S aureus after only 3 days (compared to placebo), which was 11 days before clinical improvement. Participants with the greatest S aureus reductions had the best clinical outcomes, and these reductions correlated with reductions in serum CCL17 and disease severity. Reductions (10-fold) in S aureus cytotoxins (day 7), perturbations in TH17-cell subsets (day 14), and increased expression of genes relevant for IL-17, neutrophil, and complement pathways (day 7) were also observed. CONCLUSIONS Blockade of IL-4 and IL-13 signaling, very rapidly (day 3) reduces S aureus abundance in subjects with AD, and this reduction correlates with reductions in the type 2 biomarker, CCL17, and measures of AD severity (excluding itch). Immunoprofiling and/or transcriptomics suggest a role for TH17 cells, neutrophils, and complement activation as potential mechanisms to explain these findings.
Collapse
Affiliation(s)
- Eric L Simpson
- Department of Dermatology, Oregon Health and Science University, Portland, Ore
| | | | - Takeshi Yoshida
- Department of Dermatology, University of Rochester School of Medicine and Dentistry, Rochester, NY
| | | | - Mark Boguniewicz
- Division of Allergy-Immunology, Department of Pediatrics, National Jewish Health and University of Colorado School of Medicine, Denver, Colo
| | - Tissa Hata
- Department of Dermatology, University of California, San Diego, Calif
| | - Zelma Fuxench
- Department of Dermatology, University of Pennsylvania, Philadelphia, Pa
| | - Anna De Benedetto
- Department of Dermatology, University of Rochester School of Medicine and Dentistry, Rochester, NY
| | - Peck Y Ong
- Department of Pediatrics, University Southern California, Los Angeles, Calif
| | - Justin Ko
- Department of Dermatology, Stanford University, Stanford, Calif
| | | | - Amanda K Rudman Spergel
- Division of Allergy, Immunology, and Transplantation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Marshall Plaut
- Division of Allergy, Immunology, and Transplantation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Sally A Quataert
- Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, NY
| | - Samuel H Kilgore
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa
| | - Liam Peterson
- Department of Dermatology, University of Rochester School of Medicine and Dentistry, Rochester, NY
| | - Ann L Gill
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY
| | | | - Tim Mosmann
- Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, NY
| | - Steven R Gill
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY
| | - Donald Y M Leung
- Division of Allergy-Immunology, Department of Pediatrics, National Jewish Health and University of Colorado School of Medicine, Denver, Colo.
| | - Lisa A Beck
- Department of Dermatology, University of Rochester School of Medicine and Dentistry, Rochester, NY.
| |
Collapse
|
39
|
Leyva-Castillo JM, McGurk A, Strakosha M, Vega-Mendoza D, Smith SEM, Stafstrom K, Elkins M, Chou J, Wang YH, Geha RS. IL-4 receptor alpha blockade dampens allergic inflammation and upregulates IL-17A expression to promote Saureus clearance in antigen sensitized mouse skin. J Allergy Clin Immunol 2023; 152:907-915. [PMID: 37315811 PMCID: PMC10592541 DOI: 10.1016/j.jaci.2023.05.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 05/16/2023] [Accepted: 05/19/2023] [Indexed: 06/16/2023]
Abstract
BACKGROUND Skin colonization with Staphylococcus aureus aggravates atopic dermatitis and exaggerates allergic skin inflammation in mice. IL-4 receptor α (IL-4Rα) blockade is beneficial in atopic dermatitis and reduces Saureus skin colonization through unknown mechanisms. The cytokine IL-17A restrains Saureus growth. OBJECTIVES This study sought to examine the effect of IL-4Rα blockade on Saureus colonization at sites of allergic skin inflammation in mice and determine the mechanism involved. METHODS BALB/c mice were epicutaneously sensitized with ovalbumin (OVA). Immediately after, PSVue 794-labeled S aureus strain SF8300 or saline was applied and a single dose of anti-IL-4Rα blocking antibody, a mixture of anti-IL-4Rα and anti-IL-17A blocking antibodies, or IgG isotype controls were administered intradermally. Saureus load was assessed 2 days later by in vivo imaging and enumeration of colony forming units. Skin cellular infiltration was examined by flow cytometry and gene expression by quantitative PCR and transcriptome analysis. RESULTS IL-4Rα blockade decreased allergic skin inflammation in OVA-sensitized skin, as well as in OVA-sensitized and Saureus-exposed skin, evidenced by significantly decreased epidermal thickening and reduced dermal infiltration by eosinophils and mast cells. This was accompanied by increased cutaneous expression of Il17a and IL-17A-driven antimicrobial genes with no change in Il4 and Il13 expression. IL-4Rα blockade significantly decreased Saureus load in OVA-sensitized and S aureus-exposed skin. IL-17A blockade reversed the beneficial effect of IL-4Rα blockade on Saureus clearance and reduced the cutaneous expression of IL-17A-driven antimicrobial genes. CONCLUSIONS IL-4Rα blockade promotes Saureus clearance from sites of allergic skin inflammation in part by enhancing IL-17A expression.
Collapse
Affiliation(s)
| | - Alex McGurk
- Division of Immunology, Boston Children's Hospital and Harvard Medical School, Boston, Mass
| | - Maria Strakosha
- Division of Immunology, Boston Children's Hospital and Harvard Medical School, Boston, Mass
| | - Daniela Vega-Mendoza
- Division of Immunology, Boston Children's Hospital and Harvard Medical School, Boston, Mass
| | - Sophia E M Smith
- Division of Immunology, Boston Children's Hospital and Harvard Medical School, Boston, Mass
| | - Kelsey Stafstrom
- Division of Immunology, Boston Children's Hospital and Harvard Medical School, Boston, Mass
| | - Megan Elkins
- Division of Immunology, Boston Children's Hospital and Harvard Medical School, Boston, Mass
| | - Janet Chou
- Division of Immunology, Boston Children's Hospital and Harvard Medical School, Boston, Mass
| | | | - Raif S Geha
- Division of Immunology, Boston Children's Hospital and Harvard Medical School, Boston, Mass.
| |
Collapse
|
40
|
Battaglia M, Sunshine AC, Luo W, Jin R, Stith A, Lindemann M, Miller LS, Sinha S, Wohlfert E, Garrett-Sinha LA. Ets1 and IL17RA cooperate to regulate autoimmune responses and skin immunity to Staphylococcus aureus. Front Immunol 2023; 14:1208200. [PMID: 37691956 PMCID: PMC10486983 DOI: 10.3389/fimmu.2023.1208200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 08/08/2023] [Indexed: 09/12/2023] Open
Abstract
Introduction Ets1 is a lymphoid-enriched transcription factor that regulates B- and Tcell functions in development and disease. Mice that lack Ets1 (Ets1 KO) develop spontaneous autoimmune disease with high levels of autoantibodies. Naïve CD4 + T cells isolated from Ets1 KO mice differentiate more readily to Th17 cells that secrete IL-17, a cytokine implicated in autoimmune disease pathogenesis. To determine if increased IL-17 production contributes to the development of autoimmunity in Ets1 KO mice, we crossed Ets1 KO mice to mice lacking the IL-17 receptor A subunit (IL17RA KO) to generate double knockout (DKO) mice. Methods In this study, the status of the immune system of DKO and control mice was assessed utilizing ELISA, ELISpot, immunofluorescent microscopy, and flow cytometric analysis of the spleen, lymph node, skin. The transcriptome of ventral neck skin was analyzed through RNA sequencing. S. aureus clearance kinetics in in exogenously infected mice was conducted using bioluminescent S. aureus and tracked using an IVIS imaging experimental scheme. Results We found that the absence of IL17RA signaling did not prevent or ameliorate the autoimmune phenotype of Ets1 KO mice but rather that DKO animals exhibited worse symptoms with striking increases in activated B cells and secreted autoantibodies. This was correlated with a prominent increase in the numbers of T follicular helper (Tfh) cells. In addition to the autoimmune phenotype, DKO mice also showed signs of immunodeficiency and developed spontaneous skin lesions colonized by Staphylococcus xylosus. When DKO mice were experimentally infected with Staphylococcus aureus, they were unable to clear the bacteria, suggesting a general immunodeficiency to staphylococcal species. γδ T cells are important for the control of skin staphylococcal infections. We found that mice lacking Ets1 have a complete deficiency of the γδ T-cell subset dendritic epidermal T cells (DETCs), which are involved in skin woundhealing responses, but normal numbers of other skin γδ T cells. To determine if loss of DETC combined with impaired IL-17 signaling might promote susceptibility to staph infection, we depleted DETC from IL17RA KO mice and found that the combined loss of DETC and impaired IL-17 signaling leads to an impaired clearance of the infection. Conclusions Our studies suggest that loss of IL-17 signaling can result in enhanced autoimmunity in Ets1 deficient autoimmune-prone mice. In addition, defects in wound healing, such as that caused by loss of DETC, can cooperate with impaired IL-17 responses to lead to increased susceptibility to skin staph infections.
Collapse
Affiliation(s)
- Michael Battaglia
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY, United States
| | - Alex C. Sunshine
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY, United States
| | - Wei Luo
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY, United States
| | - Richard Jin
- Department of Microbiology and Immunology, State University of New York at Buffalo, Buffalo, NY, United States
| | - Alifa Stith
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY, United States
| | | | - Lloyd S. Miller
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Satrajit Sinha
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY, United States
| | - Elizabeth Wohlfert
- Department of Microbiology and Immunology, State University of New York at Buffalo, Buffalo, NY, United States
| | - Lee Ann Garrett-Sinha
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY, United States
| |
Collapse
|
41
|
Wang Y, Hu Y, Liu Y, Shi C, Yu L, Lu N, Zhang C. Liver-resident CD44 hiCD27 - γδT Cells Help to Protect Against Listeria monocytogenes Infection. Cell Mol Gastroenterol Hepatol 2023; 16:923-941. [PMID: 37611663 PMCID: PMC10616555 DOI: 10.1016/j.jcmgh.2023.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 08/09/2023] [Accepted: 08/15/2023] [Indexed: 08/25/2023]
Abstract
BACKGROUND & AIMS Gamma delta (γδ) T cells are heterogeneous and functionally committed to producing interferon (IFN)-γ and interleukin (IL)-17. γδT cells are defined as tissue-resident lymphocytes in barrier tissues. Among them, IL-17-producing γδT cells are relatively abundant in the liver. However, a systematic and comprehensive understanding of the residency characteristics and function of hepatic IL-17A+ γδT cells is lacking. METHODS We undertook a single-cell analysis of γδT17 cells derived from murine livers. A parabiosis model was used to assess tissue residency. Fluorescence-activated cell sorting and adoptive transfer experiments were used to investigate the response and protective role of liver-resident CD44hiCD27- γδT cells in Listeria monocytogenes infection. Transwell assay was used to assess the role of macrophages in the chemotaxis of liver-resident CD44hiCD27- γδT cells. RESULTS We identified hepatic IL-17A-producing γδT cells as CD44hiCD27- γδT cells. They had tissue-resident characteristics and resided principally within the liver. Vγ6+ T cells also exhibited liver-resident features. Liver-resident CD44hiCD27- γδT cells had significantly increased proliferation capacity, and their proportion rapidly increased after infection. Some CD44hiCD27- γδT cells could produce IL-17A and IFN-γ simultaneously in response to Lm infection. Adoptive transfer of hepatic CD44hiCD27- γδT cells into Lm-infected TCRδ-/- mice led to markedly lower bacterial numbers in the liver. Hepatic macrophages promoted the migration and accumulation of liver-resident CD44hiCD27- γδT cells into infection sites. CONCLUSIONS Liver-resident CD44hiCD27- γδT cells protect against Lm infection. Hepatic macrophages coordinate with liver-resident CD44hiCD27- γδT cells and contribute to the clearance of Lm at the early stage of infection corporately.
Collapse
Affiliation(s)
- Yanan Wang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yuan Hu
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yuxia Liu
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chongdeng Shi
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Linyan Yu
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Nan Lu
- Institute of Diagnostics, School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| | - Cai Zhang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.
| |
Collapse
|
42
|
Battaglia M, Garrett-Sinha LA. Staphylococcus xylosus and Staphylococcus aureus as commensals and pathogens on murine skin. Lab Anim Res 2023; 39:18. [PMID: 37533118 PMCID: PMC10394794 DOI: 10.1186/s42826-023-00169-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/19/2023] [Accepted: 07/24/2023] [Indexed: 08/04/2023] Open
Abstract
Skin ulcers, skin dermatitis and skin infections are common phenomena in colonies of laboratory mice and are often found at increased prevalence in certain immunocompromised strains. While in many cases these skin conditions are mild, in other cases they can be severe and lead to animal morbidity. Furthermore, the presence of skin infections and ulcerations can complicate the interpretation of experimental protocols, including those examining immune cell activation. Bacterial species in the genus Staphylococcus are the most common pathogens recovered from skin lesions in mice. In particular, Staphylococcus aureus and Staphylococcus xylosus have both been implicated as pathogens on murine skin. Staphylococcus aureus is a well-known pathogen of human skin, but S. xylosus skin infections in humans have not been described, indicating that there is a species-specific difference in the ability of S. xylosus to serve as a skin pathogen. The aim of this review is to summarize studies that link S. aureus and S. xylosus to skin infections of mice and to describe factors involved in their adherence to tissue and their virulence. We discuss potential differences in mouse and human skin that might underlie the ability of S. xylosus to act as a pathogen on murine skin, but not human skin. Finally, we also describe mouse mutants that have shown increased susceptibility to skin infections with staphylococcal bacteria. These mutants point to pathways that are important in the control of commensal staphylococcal bacteria. The information here may be useful to researchers who are working with mouse strains that are prone to skin infections with staphylococcal bacteria.
Collapse
Affiliation(s)
- Michael Battaglia
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, 14203, USA
| | - Lee Ann Garrett-Sinha
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, 14203, USA.
| |
Collapse
|
43
|
Wang Y, Ahmadi MZ, Dikeman DA, Youn C, Archer NK. γδ T cell-intrinsic IL-1R promotes survival during Staphylococcus aureus bacteremia. Front Immunol 2023; 14:1171934. [PMID: 37483624 PMCID: PMC10361057 DOI: 10.3389/fimmu.2023.1171934] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/16/2023] [Indexed: 07/25/2023] Open
Abstract
Staphylococcus aureus is a leading cause of bacteremia, further complicated by the emergence of antibiotic-resistant strains such as methicillin-resistant S. aureus (MRSA). A better understanding of host defense mechanisms is needed for the development of host-directed therapies as an alternative approach to antibiotics. The levels of IL-1, IL-17, and TNF-α cytokines in circulation have been associated with predictive outcomes in patients with S. aureus bacteremia. However, their causative role in survival and the cell types involved in these responses during bacteremia is not entirely clear. Using a mouse model of S. aureus bacteremia, we demonstrated that IL-17A/F and TNF-α had no significant impact on survival, whereas IL-1R signaling was critical for survival during S. aureus bacteremia. Furthermore, we identified that T cells, but not neutrophils, monocytes/macrophages, or endothelial cells were the crucial cell type for IL-1R-mediated survival against S. aureus bacteremia. Finally, we determined that the expression of IL-1R on γδ T cell, but not CD4+ or CD8+ T cells was responsible for survival against the S. aureus bacteremia. Taken together, we uncovered a role for IL-1R, but not IL-17A/F and TNF-α in protection against S. aureus bacteremia. Importantly, γδ T cell-intrinsic expression of IL-1R was crucial for survival, but not on other immune cells or endothelial cells. These findings reveal potential cellular and immunological targets for host-directed therapies for improved outcomes against S. aureus bacteremia.
Collapse
Affiliation(s)
| | | | | | | | - Nathan K. Archer
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
44
|
Moos S, Regen T, Wanke F, Tian Y, Arendholz LT, Hauptmann J, Heinen AP, Bleul L, Bier K, El Malki K, Reinhardt C, Prinz I, Diefenbach A, Wolz C, Schittek B, Waisman A, Kurschus FC. IL-17 Signaling in Keratinocytes Orchestrates the Defense against Staphylococcus aureus Skin Infection. J Invest Dermatol 2023; 143:1257-1267.e10. [PMID: 36736996 DOI: 10.1016/j.jid.2023.01.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 12/05/2022] [Accepted: 01/05/2023] [Indexed: 02/04/2023]
Abstract
Keratinocytes (KCs) form the outer epithelial barrier of the body, protecting against invading pathogens. Mice lacking the IL-17RA or both IL-17A and IL-17F develop spontaneous Staphylococcusaureus skin infections. We found a marked expansion of T17 cells, comprised of RORγt-expressing γδ T cells and T helper 17 cells in the skin-draining lymph nodes of these mice. Contradictory to previous suggestions, this expansion was not a result of a direct negative feedback loop because we found no expansion of T17 cells in mice lacking IL-17 signaling specifically in T cells. Instead, we found that the T17 expansion depended on the microbiota and was observed only when KCs were deficient for IL-17RA signaling. Indeed, mice that lack IL-17RA only in KCs showed an increased susceptibility to experimental epicutaneous infection with S. aureus together with an accumulation of IL-17A-producing γδ T cells. We conclude that deficiency of IL-17RA on KCs leads to microbiota dysbiosis in the skin, which triggers the expansion of IL-17A-producing T cells. Our data show that KCs are the primary target cells of IL-17A and IL-17F, coordinating the defense against microbial invaders in the skin.
Collapse
Affiliation(s)
- Sonja Moos
- Department of Dermatology, Heidelberg University Hospital, Heidelberg, Germany; Institute for Molecular Medicine, Paul Klein Center for Immune Intervention, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Tommy Regen
- Institute for Molecular Medicine, Paul Klein Center for Immune Intervention, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Florian Wanke
- Institute for Molecular Medicine, Paul Klein Center for Immune Intervention, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany; Neuroscience and Rare Diseases (NRD), Discovery and Translational Area, Roche Pharma Research & Early Development (pRED), Roche Innovation Center, Basel, Switzerland
| | - Yizhu Tian
- Department of Dermatology, Heidelberg University Hospital, Heidelberg, Germany
| | - Lucas T Arendholz
- Department of Dermatology, Heidelberg University Hospital, Heidelberg, Germany
| | - Judith Hauptmann
- Institute for Molecular Medicine, Paul Klein Center for Immune Intervention, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - André P Heinen
- Institute for Molecular Medicine, Paul Klein Center for Immune Intervention, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Lisa Bleul
- Interfakultäres Institute for Microbiology, Infectious Diseases, Eberhard Karls University, Tübingen, Germany; Cluster of Excellence EXC 2124 "Controlling Microbes to Fight Infections", Eberhard Karls University, Tübingen, Germany
| | - Katharina Bier
- Division of Dermatooncology, Department of Dermatology, Eberhard Karls University, Tübingen, Germany
| | - Khalifa El Malki
- Institute for Molecular Medicine, Paul Klein Center for Immune Intervention, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany; Department of Pediatric Hematology/Oncology, Center for Pediatric and Adolescent Medicine, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Christoph Reinhardt
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site RhineMain, 55131 Mainz, Germany
| | - Immo Prinz
- Institute of Immunology, Hannover Medical School, Hannover, Germany; Institute of Systems Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas Diefenbach
- Institute for Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany; Institute of Microbiology, Infectious Diseases and Immunology, Charite University Medical Center Berlin, Berlin, Germany
| | - Christiane Wolz
- Interfakultäres Institute for Microbiology, Infectious Diseases, Eberhard Karls University, Tübingen, Germany; Cluster of Excellence EXC 2124 "Controlling Microbes to Fight Infections", Eberhard Karls University, Tübingen, Germany
| | - Birgit Schittek
- Division of Dermatooncology, Department of Dermatology, Eberhard Karls University, Tübingen, Germany
| | - Ari Waisman
- Institute for Molecular Medicine, Paul Klein Center for Immune Intervention, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany; Focus Program Translational Neurosciences, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany; Research Center for Immunotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Florian C Kurschus
- Department of Dermatology, Heidelberg University Hospital, Heidelberg, Germany.
| |
Collapse
|
45
|
Chen X, Wang Y, Cappuccio A, Cheng WS, Zamojski FR, Nair VD, Miller CM, Rubenstein AB, Nudelman G, Tadych A, Theesfeld CL, Vornholt A, George MC, Ruffin F, Dagher M, Chawla DG, Soares-Schanoski A, Spurbeck RR, Ndhlovu LC, Sebra R, Kleinstein SH, Letizia AG, Ramos I, Fowler VG, Woods CW, Zaslavsky E, Troyanskaya OG, Sealfon SC. Mapping disease regulatory circuits at cell-type resolution from single-cell multiomics data. NATURE COMPUTATIONAL SCIENCE 2023; 3:644-657. [PMID: 37974651 PMCID: PMC10653299 DOI: 10.1038/s43588-023-00476-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 06/06/2023] [Indexed: 11/19/2023]
Abstract
Resolving chromatin-remodeling-linked gene expression changes at cell-type resolution is important for understanding disease states. Here we describe MAGICAL (Multiome Accessibility Gene Integration Calling and Looping), a hierarchical Bayesian approach that leverages paired single-cell RNA sequencing and single-cell transposase-accessible chromatin sequencing from different conditions to map disease-associated transcription factors, chromatin sites, and genes as regulatory circuits. By simultaneously modeling signal variation across cells and conditions in both omics data types, MAGICAL achieved high accuracy on circuit inference. We applied MAGICAL to study Staphylococcus aureus sepsis from peripheral blood mononuclear single-cell data that we generated from subjects with bloodstream infection and uninfected controls. MAGICAL identified sepsis-associated regulatory circuits predominantly in CD14 monocytes, known to be activated by bacterial sepsis. We addressed the challenging problem of distinguishing host regulatory circuit responses to methicillin-resistant and methicillin-susceptible S. aureus infections. Although differential expression analysis failed to show predictive value, MAGICAL identified epigenetic circuit biomarkers that distinguished methicillin-resistant from methicillin-susceptible S. aureus infections.
Collapse
Affiliation(s)
- Xi Chen
- Center for Computational Biology, Flatiron Institute, New York, NY, USA
- Lewis-Sigler Institute of Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Yuan Wang
- Department of Computer Science, Princeton University, Princeton, NJ, USA
| | - Antonio Cappuccio
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Wan-Sze Cheng
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Venugopalan D. Nair
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Clare M. Miller
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Aliza B. Rubenstein
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - German Nudelman
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alicja Tadych
- Lewis-Sigler Institute of Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Chandra L. Theesfeld
- Lewis-Sigler Institute of Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Alexandria Vornholt
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Felicia Ruffin
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Michael Dagher
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Daniel G. Chawla
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA
| | | | | | - Lishomwa C. Ndhlovu
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Robert Sebra
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Steven H. Kleinstein
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA
- Department of Pathology and Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | | | - Irene Ramos
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Vance G. Fowler
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Christopher W. Woods
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Elena Zaslavsky
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- These authors jointly supervised this work: Elena Zaslavsky, Olga G. Troyanskaya, Stuart C. Sealfon
| | - Olga G. Troyanskaya
- Center for Computational Biology, Flatiron Institute, New York, NY, USA
- Lewis-Sigler Institute of Integrative Genomics, Princeton University, Princeton, NJ, USA
- Department of Computer Science, Princeton University, Princeton, NJ, USA
- These authors jointly supervised this work: Elena Zaslavsky, Olga G. Troyanskaya, Stuart C. Sealfon
| | - Stuart C. Sealfon
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- These authors jointly supervised this work: Elena Zaslavsky, Olga G. Troyanskaya, Stuart C. Sealfon
| |
Collapse
|
46
|
Youn C, Pontaza C, Wang Y, Dikeman DA, Joyce DP, Alphonse MP, Wu MJ, Nolan SJ, Anany MA, Ahmadi M, Young J, Tocaj A, Garza LA, Wajant H, Miller LS, Archer NK. Neutrophil-intrinsic TNF receptor signaling orchestrates host defense against Staphylococcus aureus. SCIENCE ADVANCES 2023; 9:eadf8748. [PMID: 37327341 PMCID: PMC10275602 DOI: 10.1126/sciadv.adf8748] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 05/11/2023] [Indexed: 06/18/2023]
Abstract
Staphylococcus aureus is the leading cause of skin and soft tissue infections and is a major health burden due to the emergence of antibiotic-resistant strains. To address the unmet need of alternative treatments to antibiotics, a better understanding of the protective immune mechanisms against S. aureus skin infection is warranted. Here, we report that tumor necrosis factor (TNF) promoted protection against S. aureus in the skin, which was mediated by bone marrow-derived immune cells. Furthermore, neutrophil-intrinsic TNF receptor (TNFR) signaling directed immunity against S. aureus skin infections. Mechanistically, TNFR1 promoted neutrophil recruitment to the skin, whereas TNFR2 prevented systemic bacterial dissemination and directed neutrophil antimicrobial functions. Treatment with a TNFR2 agonist showed therapeutic efficacy against S. aureus and Pseudomonas aeruginosa skin infections, which involved increased neutrophil extracellular trap formation. Our findings revealed nonredundant roles for TNFR1 and TNFR2 in neutrophils for immunity against S. aureus and can be therapeutically targeted for protection against bacterial skin infections.
Collapse
Affiliation(s)
- Christine Youn
- Department of Dermatology, Johns Hopkins University School of Medicine, 1550 Orleans Street, Baltimore, MD 21287, USA
| | - Cristina Pontaza
- Department of Dermatology, Johns Hopkins University School of Medicine, 1550 Orleans Street, Baltimore, MD 21287, USA
| | - Yu Wang
- Department of Dermatology, Johns Hopkins University School of Medicine, 1550 Orleans Street, Baltimore, MD 21287, USA
| | - Dustin A. Dikeman
- Department of Dermatology, Johns Hopkins University School of Medicine, 1550 Orleans Street, Baltimore, MD 21287, USA
| | - Daniel P. Joyce
- Department of Dermatology, Johns Hopkins University School of Medicine, 1550 Orleans Street, Baltimore, MD 21287, USA
| | - Martin P. Alphonse
- Department of Dermatology, Johns Hopkins University School of Medicine, 1550 Orleans Street, Baltimore, MD 21287, USA
| | - Meng-Jen Wu
- Department of Dermatology, Johns Hopkins University School of Medicine, 1550 Orleans Street, Baltimore, MD 21287, USA
| | - Sabrina J. Nolan
- Department of Dermatology, Johns Hopkins University School of Medicine, 1550 Orleans Street, Baltimore, MD 21287, USA
| | - Mohamed A. Anany
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Würzburg 97080, Germany
- Department of Microbial Biotechnology, Institute of Biotechnology, National Research Center, El Buhouth Street, Dokki, 12622 Giza, Egypt
| | - Michael Ahmadi
- Department of Dermatology, Johns Hopkins University School of Medicine, 1550 Orleans Street, Baltimore, MD 21287, USA
| | - Jeremy Young
- Department of Dermatology, Johns Hopkins University School of Medicine, 1550 Orleans Street, Baltimore, MD 21287, USA
| | - Aron Tocaj
- Department of Dermatology, Johns Hopkins University School of Medicine, 1550 Orleans Street, Baltimore, MD 21287, USA
| | - Luis A. Garza
- Department of Dermatology, Johns Hopkins University School of Medicine, 1550 Orleans Street, Baltimore, MD 21287, USA
| | - Harald Wajant
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Würzburg 97080, Germany
| | - Lloyd S. Miller
- Department of Dermatology, Johns Hopkins University School of Medicine, 1550 Orleans Street, Baltimore, MD 21287, USA
| | - Nathan K. Archer
- Department of Dermatology, Johns Hopkins University School of Medicine, 1550 Orleans Street, Baltimore, MD 21287, USA
| |
Collapse
|
47
|
Park HJ, Lee SW, Van Kaer L, Lee MS, Hong S. IL-7 Deficiency Exacerbates Atopic Dermatitis in NC/Nga Mice. Int J Mol Sci 2023; 24:9956. [PMID: 37373104 DOI: 10.3390/ijms24129956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Interleukin-7 (IL-7) plays a vital role in the homeostasis of CD4+ and CD8+ T cells. Although IL-7 has been implicated in T helper (Th)1- and Th17-mediated autoinflammatory diseases, its role in Th2-type allergic disorders, such as atopic dermatitis (AD), remains unclear. Thus, to elucidate the effects of IL-7 deficiency on AD development, we generated IL-7-deficient AD-prone mice by backcrossing IL-7 knockout (KO) B6 mice onto the NC/Nga (NC) mouse strain, a model for human AD. As expected, IL-7 KO NC mice displayed defective development of conventional CD4+ and CD8+ T cells compared with wild type (WT) NC mice. However, IL-7 KO NC mice presented with enhanced AD clinical scores, IgE hyperproduction, and increased epidermal thickness compared with WT NC mice. Moreover, IL-7 deficiency decreased Th1, Th17, and IFN-γ-producing CD8+ T cells but increased Th2 cells in the spleen of NC mice, indicating that a reduced Th1/Th2 ratio correlates with severity of AD pathogenesis. Furthermore, significantly more basophils and mast cells infiltrated the skin lesions of IL-7 KO NC mice. Taken together, our findings suggest that IL-7 could be a useful therapeutic target for treating Th2-mediated skin inflammations, such as AD.
Collapse
Affiliation(s)
- Hyun Jung Park
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul 05006, Republic of Korea
| | - Sung Won Lee
- Department of Biomedical Laboratory Science, College of Health and Biomedical Services, Sangji University, Wonju 26339, Republic of Korea
| | - Luc Van Kaer
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | - Seokmann Hong
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul 05006, Republic of Korea
| |
Collapse
|
48
|
Fagundes BO, de-Sousa TR, Victor JR. Gamma-delta (γδ) T cell-derived cytokines (IL-4, IL-17, IFN-γ and IL-10) and their possible implications for atopic dermatitis development. Int J Dermatol 2023; 62:443-448. [PMID: 35844012 DOI: 10.1111/ijd.16364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 05/24/2022] [Accepted: 06/29/2022] [Indexed: 11/27/2022]
Abstract
Atopic dermatitis (AD) is a chronic disease related to skin disorders that affect individuals in their childhood and can persist or start in adulthood. Patients affected by this disease commonly show skin lesions on the body surface (mainly on the upper and lower limbs) and allergic rhinitis or asthma crises. Looking at the disease from a molecular perspective, the major cytokines involved in inflammatory skin diseases, not only AD, include IL-4, IL-17, IFN-γ and IL-10. Although they can produce these cytokines and infiltrate the affected epithelia in patients with AD, γδ T cells are still almost unexplored. In this update, we briefly discuss the involvement of IL-4, IL-17, IFN-γ and IL-10 in the pathophysiology of AD and the possible role of γδ T cells during the inflammatory process.
Collapse
Affiliation(s)
- Beatriz Oliveira Fagundes
- Laboratory of Medical Investigation LIM-56, Division of Clinical Dermatology, Medical School, University of Sao Paulo, Sao Paulo, Brazil
| | - Thamires Rodrigues de-Sousa
- Laboratory of Medical Investigation LIM-56, Division of Clinical Dermatology, Medical School, University of Sao Paulo, Sao Paulo, Brazil
| | - Jefferson Russo Victor
- Laboratory of Medical Investigation LIM-56, Division of Clinical Dermatology, Medical School, University of Sao Paulo, Sao Paulo, Brazil
- Faculdades Metropolitanas Unidas (FMU), Sao Paulo, Brazil
- Medical School, Universidade Santo Amaro (Unisa), Sao Paulo, Brazil
| |
Collapse
|
49
|
Yuan Q, Peng N, Xiao F, Shi X, Zhu B, Rui K, Tian J, Lu L. New insights into the function of Interleukin-25 in disease pathogenesis. Biomark Res 2023; 11:36. [PMID: 37005677 PMCID: PMC10068183 DOI: 10.1186/s40364-023-00474-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/13/2023] [Indexed: 04/04/2023] Open
Abstract
Interleukin-25 (IL-25), also known as IL-17E, is a cytokine belonging to the IL-17 family. IL-25 is abundantly expressed by Th2 cells and various kinds of epithelial cells. IL-25 is an alarm signal generated upon cell injury or tissue damage to activate immune cells through the interaction with IL-17RA and IL-17RB receptors. The binding of IL-25 to IL-17RA/IL-17RB complex not only initiates and maintains type 2 immunity but also regulates other immune cells (e.g., macrophages and mast cells) via various signaling pathways. It has been well-documented that IL-25 is critically involved in the development of allergic disorders (e.g., asthma). However, the roles of IL-25 in the pathogenesis of other diseases and the underlying mechanisms are still unclear. This review presents current evidence on the roles of IL-25 in cancers, allergic disorders, and autoimmune diseases. Moreover, we discuss the unanswered key questions underlying IL-25-mediated disease pathology, which will provide new insights into the targeted therapy of this cytokine in clinical treatment.
Collapse
Affiliation(s)
- Qingfang Yuan
- Institute of Medical Immunology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Na Peng
- Department of Rheumatology, the Second People's Hospital, Three Gorges University, Yichang, China
| | - Fan Xiao
- Department of Pathology, Shenzhen Institute of Research and Innovation, The University of Hong Kong, Chongqing International Institute for Immunology, Chongqing, China
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong, China
| | - Xiaofei Shi
- Department of Rheumatology and Immunology, The First Affiliated Hospital, School of Medicine, Henan University of Science and Technology, Luoyang, China
| | - Bo Zhu
- Institute of Medical Immunology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Ke Rui
- Institute of Medical Immunology, Affiliated Hospital of Jiangsu University, Zhenjiang, China.
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China.
| | - Jie Tian
- Institute of Medical Immunology, Affiliated Hospital of Jiangsu University, Zhenjiang, China.
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China.
| | - Liwei Lu
- Department of Rheumatology, the Second People's Hospital, Three Gorges University, Yichang, China.
- Department of Pathology, Shenzhen Institute of Research and Innovation, The University of Hong Kong, Chongqing International Institute for Immunology, Chongqing, China.
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong, China.
| |
Collapse
|
50
|
Polasek TM, Leelasena I, Betscheider I, Marolt M, Kohlhof H, Vitt D, Fliegert F, Muehler AR. Safety, Tolerability, and Pharmacokinetics of IMU-935, a Novel Inverse Agonist of Retinoic Acid Receptor-Related Orphan Nuclear Receptor γt: Results From a Double-Blind, Placebo-Controlled, First-in-Human Phase 1 Study. Clin Pharmacol Drug Dev 2023; 12:525-534. [PMID: 36938862 DOI: 10.1002/cpdd.1243] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 02/16/2023] [Indexed: 03/21/2023]
Abstract
Retinoic acid receptor-related orphan nuclear receptor (ROR)γt regulates the transcription of interleukin-17 and other cytokines implicated in inflammatory and autoimmune diseases. We assessed the safety, tolerability, and pharmacokinetics (PK) of IMU-935, an inverse agonist of RORγt, in a first-in-human phase 1 study. This was a double-blind, placebo-controlled trial that randomly assigned healthy subjects single ascending doses (25-400 mg) or multiple ascending doses (150 mg once or twice daily for 14 days) of IMU-935 or placebo. Dose escalation was determined by the safety, tolerability, and PK. Twenty-four and 70 subjects received placebo or IMU-935, respectively. Of the 70 subjects who received IMU-935, 59 received a single dose and 11 received multiple doses. Treatment-emergent adverse events (TEAEs) occurred in 21 subjects (88%) and 58 (83%) given any dose of placebo or IMU-935, respectively. Treatment-related TEAEs occurred in 6 (30%) and 25 (42%) subjects given a single dose of placebo and IMU-935, respectively. All treatment-related TEAEs were mild except for 2 moderate TEAEs and 1 moderate TEAE in the IMU-935 group and placebo group, respectively. No treatment-related discontinuations or serious adverse events occurred. The PK of IMU-935 were dose proportional with a half-life of ≈24 hours. In conclusion, IMU-935 was safe with no dose-limiting toxicities and had a PK profile that supports once-daily dosing.
Collapse
Affiliation(s)
- Thomas M Polasek
- CMAX Clinical Research Pty Ltd, Adelaide, South Australia, Australia.,Certara, Princeton, New Jersey, USA.,Centre for Medicines Use and Safety, Monash University, Melbourne, Victoria, Australia
| | - Indika Leelasena
- University of the Sunshine Coast Clinical Trials Centre, Morayfield, Queensland, Australia
| | | | - Marija Marolt
- Immunic AG, Lochhamer Schlag 21, Gräfelfing, Germany
| | - Hella Kohlhof
- Immunic AG, Lochhamer Schlag 21, Gräfelfing, Germany
| | - Daniel Vitt
- Immunic AG, Lochhamer Schlag 21, Gräfelfing, Germany
| | | | | |
Collapse
|