1
|
Guo F, Song Y, Dong S, Wei J, Li B, Xu T, Wang H. Characterization and anti-tuberculosis effects of γδ T cells expanded and activated by Mycobacterium tuberculosis heat-resistant antigen. Virulence 2025; 16:2462092. [PMID: 39921673 PMCID: PMC11810100 DOI: 10.1080/21505594.2025.2462092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/01/2024] [Accepted: 01/20/2025] [Indexed: 02/10/2025] Open
Abstract
Tuberculosis (TB) is a chronic infectious disease caused by Mycobacterium tuberculosis (Mtb) that poses a severe threat to human health. A variety of highly immunogenic tuberculosis proteins have been used as targets in vaccine development to mitigate the spread of TB. Although Th1-type immunity has long been considered a crucial part of resistance to Mtb, γδ T cells, the predominant source of IL-17, are not negligible in controlling the early stages of TB infection. In addition to classical phosphoantigens, Mycobacterium tuberculosis heat-resistant antigens (HAg), a complex containing 564 proteins obtained from live tuberculosis bacteria after heat treatment at 121 °C for 20 min, have been confirmed to be highly effective γδ T cell stimulators as well. Several studies have demonstrated that HAg-activated γδ T cells can participate in TB immunity by secreting multiple cytokines against Mtb or by interacting with other innate immune cells. In this review, we present a possible mechanism of HAg stimulation of γδ T cells and the role of HAg-activated γδ T cells in anti-TB immunity. We also highlight the limitations of studies on HAg activation of γδ T cells and suggest further research directions on the relationship between HAg and γδ T cells.
Collapse
Affiliation(s)
- Fangzheng Guo
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Research Center of Laboratory, School of Laboratory, Bengbu Medical University, Bengbu, China
- Department of Immunology, School of Laboratory, Bengbu Medical University, Bengbu, China
| | - Yamin Song
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Research Center of Laboratory, School of Laboratory, Bengbu Medical University, Bengbu, China
- Department of Immunology, School of Laboratory, Bengbu Medical University, Bengbu, China
| | - Sihang Dong
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Research Center of Laboratory, School of Laboratory, Bengbu Medical University, Bengbu, China
- Department of Immunology, School of Laboratory, Bengbu Medical University, Bengbu, China
| | - Jing Wei
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Research Center of Laboratory, School of Laboratory, Bengbu Medical University, Bengbu, China
- Department of Immunology, School of Laboratory, Bengbu Medical University, Bengbu, China
| | - Baiqing Li
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Research Center of Laboratory, School of Laboratory, Bengbu Medical University, Bengbu, China
- Department of Immunology, School of Laboratory, Bengbu Medical University, Bengbu, China
- Department of Clinical Laboratory, School of Laboratory, Bengbu Medical University, Bengbu, China
| | - Tao Xu
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Research Center of Laboratory, School of Laboratory, Bengbu Medical University, Bengbu, China
- Department of Immunology, School of Laboratory, Bengbu Medical University, Bengbu, China
- Department of Clinical Laboratory, School of Laboratory, Bengbu Medical University, Bengbu, China
| | - Hongtao Wang
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Research Center of Laboratory, School of Laboratory, Bengbu Medical University, Bengbu, China
- Department of Immunology, School of Laboratory, Bengbu Medical University, Bengbu, China
- Department of Clinical Laboratory, School of Laboratory, Bengbu Medical University, Bengbu, China
| |
Collapse
|
2
|
Kayongo A, Nyiro B, Siddharthan T, Kirenga B, Checkley W, Lutaakome Joloba M, Ellner J, Salgame P. Mechanisms of lung damage in tuberculosis: implications for chronic obstructive pulmonary disease. Front Cell Infect Microbiol 2023; 13:1146571. [PMID: 37415827 PMCID: PMC10320222 DOI: 10.3389/fcimb.2023.1146571] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 06/05/2023] [Indexed: 07/08/2023] Open
Abstract
Pulmonary tuberculosis is increasingly recognized as a risk factor for COPD. Severe lung function impairment has been reported in post-TB patients. Despite increasing evidence to support the association between TB and COPD, only a few studies describe the immunological basis of COPD among TB patients following successful treatment completion. In this review, we draw on well-elaborated Mycobacterium tuberculosis-induced immune mechanisms in the lungs to highlight shared mechanisms for COPD pathogenesis in the setting of tuberculosis disease. We further examine how such mechanisms could be exploited to guide COPD therapeutics.
Collapse
Affiliation(s)
- Alex Kayongo
- Department of Medicine, Center for Emerging Pathogens, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States
- Department of Immunology and Molecular Biology, College of Health Sciences, Makerere University, Kampala, Uganda
- Makerere University College of Health Sciences, Lung Institute, Makerere University, Kampala, Uganda
| | - Brian Nyiro
- Department of Medicine, Center for Emerging Pathogens, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States
- Department of Immunology and Molecular Biology, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Trishul Siddharthan
- Division of Pulmonary and Critical Care Medicine, University of Miami, Miami, FL, United States
| | - Bruce Kirenga
- Makerere University College of Health Sciences, Lung Institute, Makerere University, Kampala, Uganda
| | - William Checkley
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, United States
- Center for Global Non-Communicable Disease Research and Training, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Moses Lutaakome Joloba
- Makerere University College of Health Sciences, Lung Institute, Makerere University, Kampala, Uganda
| | - Jerrold Ellner
- Department of Medicine, Center for Emerging Pathogens, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States
| | - Padmini Salgame
- Department of Medicine, Center for Emerging Pathogens, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States
| |
Collapse
|
3
|
Immune Correlates of Disseminated BCG Infection in IL12RB1-Deficient Mice. Vaccines (Basel) 2022; 10:vaccines10071147. [PMID: 35891311 PMCID: PMC9316795 DOI: 10.3390/vaccines10071147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 02/04/2023] Open
Abstract
Interleukin-12 receptor β1 (IL12RB1)-deficient individuals show increased susceptibilities to local or disseminated BCG infection and environmental mycobacteria infection. However, the low clinical penetrance of IL12RB1 deficiency and low recurrence rate of mycobacteria infection suggest that protective immunity still exists in this population. In this study, we investigated the mechanism of tuberculosis suppression using the IL12RB1-deficient mouse model. Our results manifested that Il12rb1−/− mice had significantly increased CFU counts in spleens and lungs, especially when BCG (Danish strain) was inoculated subcutaneously. The innate TNF-a and IFN-γ responses decreased, while the IL-17 responses increased significantly in the lungs of Il12rb1−/− mice. We also found that PPD-specific IFN-γ release was impaired in Il12rb1−/− mice, but the specific TNF-a release was not compromised, and the antibody responses were significantly enhanced. Moreover, correlation analyses revealed that both the innate and PPD-specific IFN-γ responses positively correlated with CFU counts, whereas the innate IL-12a levels negatively correlated with CFU counts in Il12rb1−/− mice lungs. Collectively, these findings proved that the adaptive immunities against mycobacteria are not completely nullified in Il12rb1−/− mice. Additionally, our results imply that IFN-γ responses alone might not be able to contain BCGitis in the setting of IL12RB1 deficiency.
Collapse
|
4
|
Verma D, Chan ED, Ordway DJ. The double-edged sword of Tregs in M tuberculosis, M avium, and M absessus infection. Immunol Rev 2021; 301:48-61. [PMID: 33713043 DOI: 10.1111/imr.12959] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/24/2021] [Accepted: 01/25/2021] [Indexed: 12/12/2022]
Abstract
Immunity against different Mycobacteria species targeting the lung requires distinctly different pulmonary immune responses for bacterial clearance. Many parameters of acquired and regulatory immune responses differ quantitatively and qualitatively from immunity during infection with Mycobacteria species. Nontuberculosis Mycobacteria species (NTM) Mycobacterium avium- (M avium), Mycobacterium abscessus-(M abscessus), and the Mycobacteria species Mycobacterium tuberculosis-(Mtb). Herein, we discuss the potential implications of acquired and regulatory immune responses in the context of animal and human studies, as well as future directions for efforts to treat Mycobacteria diseases.
Collapse
Affiliation(s)
- Deepshikha Verma
- Mycobacteria Research Laboratory, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Edward D Chan
- Department of Medicine, Rocky Mountain Regional Veterans Affairs Medical Center, Denver, CO, USA.,Departments of Medicine and Academic Affairs, National Jewish Health, Denver, CO, USA.,Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Denver, CO, USA
| | - Diane J Ordway
- Mycobacteria Research Laboratory, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
5
|
IL-10 Dampens the Th1 and Tc Activation through Modulating DC Functions in BCG Vaccination. Mediators Inflamm 2019; 2019:8616154. [PMID: 31281230 PMCID: PMC6594250 DOI: 10.1155/2019/8616154] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 05/08/2019] [Indexed: 02/08/2023] Open
Abstract
BCG, the only registered vaccine against Mycobacterial Tuberculosis (TB) infection, has been questioned for its protective efficacy for decades. Although lots of efforts were made to improve the BCG antigenicity, few studies were devoted to understand the role of host factors in the variability of the BCG protection. Using the IL-10KO mice and pulmonary tuberculosis infection model, we have addressed the role of IL-10 in the BCG vaccination efficacy. The data showed that IL-10-deficient dendritic cells (DCs) could promote the immune responses through upregulation of the surface costimulatory molecule expression and play an orchestra role through activating CD4+T cell. IL-10-deficient mice had higher IFN γ, TNF α, and IL-6 production after BCG vaccination, which was consistent with the higher proportion of IFN γ+CD3+, IFN γ+CD4+, and IFN γ+CD8+ T cells in the spleen. Particularly, the BCG-vaccinated IL-10KO mice showed less inflammation after TB challenge compared to WT mice, which was supported by the promoted Th1 and Tc, as well as the downregulated Treg responses in IL-10 deficiency. In a conclusion, we demonstrated the negative relationship between Th1/Tc responses with IL-10 production. IL-10 deficiency restored the type 1 immune response through DC activation, which provided better protection against TB infection. Hence, our study offers the first experimental evidence that, contrary to the modulation of BCG, host immunity plays a critical role in the BCG protective efficacy against TB.
Collapse
|
6
|
Mycobacterium bovis BCG Surface Antigens Expressed under the Granuloma-Like Conditions as Potential Inducers of the Protective Immunity. Int J Microbiol 2019; 2019:9167271. [PMID: 31281365 PMCID: PMC6589241 DOI: 10.1155/2019/9167271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 04/11/2019] [Accepted: 04/24/2019] [Indexed: 01/27/2023] Open
Abstract
Bovine tuberculosis (bTB) is a highly transmissible infection and remains of great concern as a zoonosis. The worldwide incidence of bTB is in rise, creating potential reservoir and increased infection risk for humans and animals. In attempts to identify novel surface antigens of Mycobacterium bovis as a proof-of-concept for potential inducers of protective immunity, we investigated surface proteome of M. bovis BCG strain that was cultured under the granuloma-like condition. We also demonstrated that the pathogen exposed to the biologically relevant environment has greater binding and invasion abilities to host cells than those of bacteria incubated under regular laboratory conditions. A total of 957 surface-exposed proteins were identified for BCG cultured under laboratory condition, whereas 1,097 proteins were expressed under the granuloma-like condition. The overexpression of Mb1524, Mb01_03198, Mb1595_p3681 (PhoU1 same as phoY1_1), and Mb1595_p0530 (HbhA) surface proteins in Mycobacterium smegmatis leads to increased binding and invasion to mucosal cells. We also examined the immunogenicity of purified recombinant proteins and tested M. smegmatis overexpressing these surface antigens for the induction of protective immunity in mice. Significantly high levels of specific IgA and IgG antibodies were observed in recombinant protein immunized groups by both inhalation and intraperitoneal (IP) routes, but only IP delivery induced high total IgA and IgG levels. We did not detect major differences in antibody levels in the M. smegmatis group that overexpressed surface antigens. In addition, the bacterial load was significantly reduced in the lungs of mice immunized with the combination of inhaled recombinant proteins. Our findings suggest that the activation of the mucosal immunity can lead to increased ability to confer protection upon M. bovis BCG infection.
Collapse
|
7
|
Gao X, Wu C, Wang X, Xu H, Wu Y, Li Y, Jia Y, Wei C, He W, Wang Y, Zhang B. The DosR antigen Rv1737c from Mycobacterium tuberculosis confers inflammation regulation in tuberculosis infection. Scand J Immunol 2018; 89:e12729. [PMID: 30372549 DOI: 10.1111/sji.12729] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 10/16/2018] [Accepted: 10/22/2018] [Indexed: 12/16/2022]
Abstract
There is an urgent need to identify the potential risk factors for activating latent Mycobacterium tuberculosis infection. In this study, we evaluated the immune function of Rv1737c, which is a latency-associated antigen of dormancy survival regulator (DosR) of M. tuberculosis in a mouse model. Our data showed that mice pretreated with recombinant Rv1737c (rRv1737c) exhibited higher levels of antigen-specific antibodies (IgG, IgM and IgA) than sham-treated mice. Following Bacilli Calmette-Guerin (BCG) challenge, rRv1737c adjuvanted with cholera toxin subunit B (CTB) induced diffuse lung inflammation and fibrosis compared to the control mice. The inflammatory pathogenesis due to rRv1737c pre-exposure was associated with a switch in the macrophage phenotype from M1 to activated M2 and was characterized by IL-10 production. Intracellular cytokine analysis further showed that the rRv1737c-pretreated mice exhibited an increased frequency of Th2 cells in the lungs, lymph nodes and spleen after BCG challenge. Furthermore, IFN-γ expression increased in the lungs after rRv1737c pretreatment compared to that in the sham mice. Accordingly, lung cells from rRv1737c-immunized mice stimulated with killed BCG produced higher levels of multiple cytokines, such as IFN-γ, IL-10 and IL-6. The results confirmed that the pathological features of rRv1737c promoted inflammation. Overall, our findings provide direct evidence of the pro-inflammatory function of rRv1737c in a murine model of BCG infection, indicating that Rv1737c is a pathogenic antigen of M. tuberculosis and may be key to the recurrence of latent infection.
Collapse
Affiliation(s)
- Xiaoling Gao
- The Institute of Clinical Research and Translational Medicine, Gansu Provincial Hospital, Lanzhou, China
| | - Cong Wu
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Xiaoxia Wang
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Hui Xu
- The Institute of Clinical Research and Translational Medicine, Gansu Provincial Hospital, Lanzhou, China
| | - Yu Wu
- The Institute of Clinical Research and Translational Medicine, Gansu Provincial Hospital, Lanzhou, China
| | - Yonghong Li
- The Institute of Clinical Research and Translational Medicine, Gansu Provincial Hospital, Lanzhou, China
| | - Yanjuan Jia
- The Institute of Clinical Research and Translational Medicine, Gansu Provincial Hospital, Lanzhou, China
| | - Chaojun Wei
- The Institute of Clinical Research and Translational Medicine, Gansu Provincial Hospital, Lanzhou, China
| | - Wenhua He
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Yongxiang Wang
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Benzhong Zhang
- School of Public Health, Lanzhou University, Lanzhou, China
| |
Collapse
|
8
|
Gao C, Ye TH, Peng CT, Shi YJ, You XY, Xiong L, Ran K, Zhang LD, Zeng XX, Wang NY, Yu LT, Wei YQ. A novel benzothiazinethione analogue SKLB-TB1001 displays potent antimycobacterial activities in a series of murine models. Biomed Pharmacother 2017; 88:603-609. [PMID: 28142116 DOI: 10.1016/j.biopha.2017.01.098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 01/16/2017] [Accepted: 01/16/2017] [Indexed: 02/05/2023] Open
Abstract
New chemotherapeutic compounds and regimens are needed to combat multidrug-resistant Mycobacterium tuberculosis. Here, we used a series of murine models to assess an antitubercular lead compound SKLB-TB1001. In the Mycobacterium bovis bacillus Calmette-Guérin and the acute M. tuberculosis H37Rv infection mouse models, SKLB-TB1001 significantly attenuated the mycobacterial load in lungs and spleens. The colony forming unit counts and histological examination of lungs from H37Rv infected mice revealed that the benzothiazinethione analogue SKLB-TB1001 as a higher dose level was as effective as isoniazid. Moreover, in a multidrug-resistant (MDR)-TB mouse model, SKLB-TB1001 showed significant activity in a dose-dependent manner and was more effective than streptomycin. These results suggested that SKLB-TB1001 could be an antitubercular drug candidate worth further investigation.
Collapse
Affiliation(s)
- Chao Gao
- Department of Liver Surgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University/Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, PR China
| | - Ting-Hong Ye
- Department of Liver Surgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University/Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, PR China.
| | - Cui-Ting Peng
- Department of Liver Surgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University/Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, PR China; Department of Pharmaceutical and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, PR China
| | - Yao-Jie Shi
- Department of Liver Surgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University/Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, PR China
| | - Xin-Yu You
- Department of Liver Surgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University/Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, PR China; Department of Pharmaceutical and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, PR China
| | - Lu Xiong
- Department of Liver Surgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University/Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, PR China
| | - Kai Ran
- Department of Liver Surgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University/Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, PR China
| | - Li-Dan Zhang
- Department of Liver Surgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University/Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, PR China; Department of Pharmaceutical and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, PR China
| | - Xiu-Xiu Zeng
- Department of Pharmaceutical and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, PR China
| | - Ning-Yu Wang
- Department of Liver Surgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University/Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, PR China
| | - Luo-Ting Yu
- Department of Liver Surgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University/Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, PR China.
| | - Yu-Quan Wei
- Department of Liver Surgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University/Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, PR China
| |
Collapse
|
9
|
Kishi H, Sato M, Shibata Y, Sato K, Inoue S, Abe S, Kimura T, Nishiwaki M, Yamauchi K, Nemoto T, Igarashi A, Tokairin Y, Nakajima O, Kubota I. Role of chemokine C-C motif ligand-1 in acute and chronic pulmonary inflammations. SPRINGERPLUS 2016; 5:1241. [PMID: 27536524 PMCID: PMC4970990 DOI: 10.1186/s40064-016-2904-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 07/25/2016] [Indexed: 12/02/2022]
Abstract
Background Chemokine C-C motif ligand 1 (CCL1) accumulates C-C motif chemokine receptor 8 positive leukocytes to the inflammatory sites. Single-nucleotide polymorphisms in the chemokine CCL1 gene are associated with exacerbation of chronic obstructive lung disease. However, it is unclear whether CCL1 has immunomodulatory functions during pulmonary inflammation. This study aimed to elucidate this issue using newly generated transgenic mice that express CCL1 in the lungs (SPC-CCL1 mice). Methods To evaluate the phenotypes of these mice, lung section and bronchoalveolar lavage (BAL) fluid analyses were performed. We intratracheally administered lipopolysaccharide (LPS) or Mycobacterium bovis as a model of acute or chronic lung inflammation, respectively. Results No histological differences were observed between lung tissue from SPC-CCL1 Tg and wild-type mice in the resting condition and after LPS administration. In the resting condition, the total BAL cell concentration was lower in SPC-CCL1 Tg mice than in wild-type mice (P = 0.0097). Flow cytometric analyses showed that SPC-CCL1 Tg mice had fewer F4/80-positive cells than wild-type mice (P = 0.0278). After intratracheal LPS administration, CCL1 overexpression changed neither the total numbers nor population of BAL cells. After mycobacterial administration, pulmonary granuloma formation was significantly enhanced. The degree of Immunostaining for endoplasmic reticulum to nucleus signaling 1, a molecule associated with granuloma formation and endoplasmic reticulum stress, was significantly enhanced in the granuloma regions of SPC-CCL1 mice treated with Mycobacterium, compared to those of wild-type mice. Conclusions CCL1 overexpression in the lungs did not change the acute inflammatory response induced by LPS, but enhanced granuloma formation after mycobacterial treatment, possibly through enhancing endoplasmic reticulum stress.
Collapse
Affiliation(s)
- Hiroyuki Kishi
- Department of Cardiology, Pulmonology, and Nephrology, School of Medicine, Yamagata University, Yamagata City, Yamagata 990-9585 Japan
| | - Masamichi Sato
- Department of Cardiology, Pulmonology, and Nephrology, School of Medicine, Yamagata University, Yamagata City, Yamagata 990-9585 Japan
| | - Yoko Shibata
- Department of Cardiology, Pulmonology, and Nephrology, School of Medicine, Yamagata University, Yamagata City, Yamagata 990-9585 Japan
| | - Kento Sato
- Department of Cardiology, Pulmonology, and Nephrology, School of Medicine, Yamagata University, Yamagata City, Yamagata 990-9585 Japan
| | - Sumito Inoue
- Department of Cardiology, Pulmonology, and Nephrology, School of Medicine, Yamagata University, Yamagata City, Yamagata 990-9585 Japan
| | - Shuichi Abe
- Department of Cardiology, Pulmonology, and Nephrology, School of Medicine, Yamagata University, Yamagata City, Yamagata 990-9585 Japan
| | - Tomomi Kimura
- Department of Cardiology, Pulmonology, and Nephrology, School of Medicine, Yamagata University, Yamagata City, Yamagata 990-9585 Japan
| | - Michiko Nishiwaki
- Department of Cardiology, Pulmonology, and Nephrology, School of Medicine, Yamagata University, Yamagata City, Yamagata 990-9585 Japan
| | - Keiko Yamauchi
- Department of Cardiology, Pulmonology, and Nephrology, School of Medicine, Yamagata University, Yamagata City, Yamagata 990-9585 Japan
| | - Takako Nemoto
- Department of Cardiology, Pulmonology, and Nephrology, School of Medicine, Yamagata University, Yamagata City, Yamagata 990-9585 Japan
| | - Akira Igarashi
- Department of Cardiology, Pulmonology, and Nephrology, School of Medicine, Yamagata University, Yamagata City, Yamagata 990-9585 Japan
| | - Yoshikane Tokairin
- Department of Cardiology, Pulmonology, and Nephrology, School of Medicine, Yamagata University, Yamagata City, Yamagata 990-9585 Japan
| | - Osamu Nakajima
- Research Laboratory for Molecular Genetics, School of Medicine, Yamagata University, Yamagata City, Yamagata Japan
| | - Isao Kubota
- Department of Cardiology, Pulmonology, and Nephrology, School of Medicine, Yamagata University, Yamagata City, Yamagata 990-9585 Japan
| |
Collapse
|
10
|
Grace PS, Ernst JD. Suboptimal Antigen Presentation Contributes to Virulence of Mycobacterium tuberculosis In Vivo. THE JOURNAL OF IMMUNOLOGY 2015; 196:357-64. [PMID: 26573837 DOI: 10.4049/jimmunol.1501494] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 10/22/2015] [Indexed: 12/16/2022]
Abstract
Mycobacterium tuberculosis commonly causes persistent or chronic infection, despite the development of Ag-specific CD4 T cell responses. We hypothesized that M. tuberculosis evades elimination by CD4 T cell responses by manipulating MHC class II Ag presentation and CD4 T cell activation and tested this hypothesis by comparing activation of Ag85B-specific CD4 T cell responses to M. tuberculosis and M. bovis bacillus Calmette-Guérin (BCG) Pasteur in vivo and in vitro. We found that, although M. tuberculosis persists in lungs of immunocompetent mice, M. bovis BCG is cleared, and clearance is T cell dependent. We further discovered that M. tuberculosis-infected macrophages and dendritic cells activate Ag85B-specific CD4 T cells less efficiently and less effectively than do BCG-infected cells, in vivo and in vitro, despite higher production and secretion of Ag85B by M. tuberculosis. During BCG infection, activation of Ag85B-specific CD4 T cells requires fewer infected dendritic cells and fewer Ag-producing bacteria than during M. tuberculosis infection. When dendritic cells containing equivalent numbers of M. tuberculosis or BCG were transferred to mice, BCG-infected cells activated proliferation of more Ag85B-specific CD4 T cells than did M. tuberculosis-infected cells. Differences in Ag85B-specific CD4 T cell activation were attributable to differential Ag presentation rather than differential expression of costimulatory or inhibitory molecules. These data indicate that suboptimal Ag presentation contributes to persistent infection and that limiting Ag presentation is a virulence property of M. tuberculosis.
Collapse
Affiliation(s)
- Patricia S Grace
- Department of Pathology, New York University School of Medicine, New York, NY 10016
| | - Joel D Ernst
- Department of Pathology, New York University School of Medicine, New York, NY 10016; Division of Infectious Diseases, Department of Medicine, New York University School of Medicine, New York, NY 10016; and Department of Microbiology, New York University School of Medicine, New York, NY 10016
| |
Collapse
|
11
|
Boule LA, Winans B, Lambert K, Vorderstrasse BA, Topham DJ, Pavelka MS, Lawrence BP. Activation of the aryl hydrocarbon receptor during development enhances the pulmonary CD4+ T-cell response to viral infection. Am J Physiol Lung Cell Mol Physiol 2015; 309:L305-13. [PMID: 26071552 DOI: 10.1152/ajplung.00135.2015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 06/03/2015] [Indexed: 12/13/2022] Open
Abstract
Respiratory infections are a threat to health and economies worldwide, yet the basis for striking variation in the severity of infection is not completely understood. Environmental exposures during development are associated with increased severity and incidence of respiratory infection later in life. Many of these exposures include ligands of the aryl hydrocarbon receptor (AHR), a transcription factor expressed by immune and nonimmune cells. In adult animals, AHR activation alters CD4(+) T cells and changes immunopathology. Developmental AHR activation impacts CD4(+) T-cell responses in lymphoid tissues, but whether skewed responses are also present in the infected lung is unknown. To determine whether pulmonary CD4(+) T-cell responses are modified by developmental AHR activation, mice were exposed to the prototypical AHR ligand 2,3,7,8-tetrachlorodibenzo-p-dioxin during development and infected with influenza virus as adults. Lungs of exposed offspring had greater bronchopulmonary inflammation compared with controls, and activated, virus-specific CD4(+) T cells contributed to the infiltrating leukocytes. These effects were CD4(+) T cell subset specific, with increases in T helper type 1 and regulatory T cells, but no change in the frequency of T helper type 17 cells in the infected lung. This is in direct contrast to prior reports of suppressed conventional CD4(+) T-cell responses in the lymph node. Using adoptive transfers and manipulating the pathogen properties, we determined that developmental exposure influenced factors intrinsic and extrinsic to CD4(+) T cells and may involve developmentally induced changes in signals from infected lung epithelial cells. Thus developmental exposures lead to context-dependent changes in pulmonary CD4(+) T-cell subsets, which may contribute to differential responses to respiratory infection.
Collapse
Affiliation(s)
- Lisbeth A Boule
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York
| | - Bethany Winans
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York; and
| | - Kris Lambert
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York
| | - Beth A Vorderstrasse
- Department of Public Health and Preventive Medicine, Oregon Health Sciences University, Portland, Oregon
| | - David J Topham
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York
| | - Martin S Pavelka
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York
| | - B Paige Lawrence
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York; Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York; and
| |
Collapse
|
12
|
Role for Gr-1+ cells in the control of high-dose Mycobacterium bovis recombinant BCG. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2014; 21:1120-7. [PMID: 24920602 DOI: 10.1128/cvi.00363-14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Mycobacterium bovis bacillus Calmette-Guérin (BCG) is an attractive target for development as a live vaccine vector delivering transgenic antigens from HIV and other pathogens. Most studies aimed at defining the clearance of BCG have been performed at doses between 10(2) and 10(4) CFU. Interestingly, however, recombinant BCG (rBCG) administered at doses of >10(6) CFU effectively generates antigen-specific T-cell responses and primes for heterologous boost responses. Thus, defining clearance at high doses might aid in the optimization of rBCG as a vector. In this study, we used bioluminescence imaging to examine the kinetics of rBCG transgene expression and clearance in mice immunized with 5 × 10(7) CFU rBCG expressing luciferase. Similar to studies using low-dose rBCG, our results demonstrate that the adaptive immune response is necessary for long-term control of rBCG beginning 9 days after immunizing mice. However, in contrast to these reports, we observed that the majority of mycobacterial antigen was eliminated prior to day 9. By examining knockout and antibody-mediated depletion mouse models, we demonstrate that the rapid clearance of rBCG occurs in the first 24 h and is mediated by Gr-1(+) cells. As Gr-1(+) granulocytes have been described as having no impact on BCG clearance at low doses, our results reveal an unappreciated role for Gr-1(+) neutrophils and inflammatory monocytes in the clearance of high-dose rBCG. This work demonstrates the potential of applying bioluminescence imaging to rBCG in order to gain an understanding of the immune response and increase the efficacy of rBCG as a vaccine vector.
Collapse
|
13
|
Lai R, Jeyanathan M, Shaler CR, Damjanovic D, Khera A, Horvath C, Ashkar AA, Xing Z. Restoration of innate immune activation accelerates Th1-cell priming and protection following pulmonary mycobacterial infection. Eur J Immunol 2014; 44:1375-86. [PMID: 24519467 DOI: 10.1002/eji.201344300] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Revised: 01/12/2014] [Accepted: 02/06/2014] [Indexed: 02/06/2023]
Abstract
The immune mechanisms underlying delayed induction of Th1-type immunity in the lungs following pulmonary mycobacterial infection remain poorly understood. We have herein investigated the underlying immune mechanisms for such delayed responses and whether a selected innate immune-modulating strategy can accelerate Th1-type responses. We have found that, in the early stage of pulmonary infection with attenuated Mycobacterium tuberculosis (M.tb H37Ra), the levels of infection in the lung continue to increase logarithmically until days 14 and 21 postinfection in C57BL/6 mice. The activation of innate immune responses, particularly DCs, in the lung is delayed. This results in a delay in the subsequent downstream immune responses including the migration of antigen-bearing DCs to the draining lymph node (dLN), the Th1-cell priming in dLN, and the recruitment of Th1 cells to the lung. However, single lung mucosal exposure to the TLR agonist FimH postinfection is able to accelerate protective Th1-type immunity via facilitating DC migration to the lung and draining lymph nodes, enhancing DC antigen presentation and Th1-cell priming. These findings hold implications for the development of immunotherapeutic and vaccination strategies and suggest that enhancement of early innate immune activation is a viable option for improving Th1-type immunity against pulmonary mycobacterial diseases.
Collapse
Affiliation(s)
- Rocky Lai
- McMaster Immunology Research Centre, M. G. DeGroote Institute for Infectious Disease Research, and Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Nel HJ, du Plessis N, Kleynhans L, Loxton AG, van Helden PD, Walzl G. Mycobacterium bovis BCG infection severely delays Trichuris muris expulsion and co-infection suppresses immune responsiveness to both pathogens. BMC Microbiol 2014; 14:9. [PMID: 24433309 PMCID: PMC3898725 DOI: 10.1186/1471-2180-14-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 01/10/2014] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The global epidemiology of parasitic helminths and mycobacterial infections display extensive geographical overlap, especially in the rural and urban communities of developing countries. We investigated whether co-infection with the gastrointestinal tract-restricted helminth, Trichuris muris, and the intracellular bacterium, Mycobacterium bovis (M. bovis) BCG, would alter host immune responses to, or the pathological effect of, either infection. RESULTS We demonstrate that both pathogens are capable of negatively affecting local and systemic immune responses towards each other by modifying cytokine phenotypes and by inducing general immune suppression. T. muris infection influenced non-specific and pathogen-specific immunity to M. bovis BCG by down-regulating pulmonary TH1 and Treg responses and inducing systemic TH2 responses. However, co-infection did not alter mycobacterial multiplication or dissemination and host pulmonary histopathology remained unaffected compared to BCG-only infected mice. Interestingly, prior M. bovis BCG infection significantly delayed helminth clearance and increased intestinal crypt cell proliferation in BALB/c mice. This was accompanied by a significant reduction in systemic helminth-specific TH1 and TH2 cytokine responses and significantly reduced local TH1 and TH2 responses in comparison to T. muris-only infected mice. CONCLUSION Our data demonstrate that co-infection with pathogens inducing opposing immune phenotypes, can have differential effects on compartmentalized host immune protection to either pathogen. In spite of local and systemic decreases in TH1 and increases in TH2 responses co-infected mice clear M. bovis BCG at the same rate as BCG only infected animals, whereas prior mycobacterial infection initiates prolonged worm infestation in parallel to decreased pathogen-specific TH2 cytokine production.
Collapse
Affiliation(s)
- Hendrik J Nel
- Division of Molecular Biology and Human Genetics, MRC Centre for Molecular and Cellular Biology, NRF/DST Centre of Excellence in Biomedical TB Research, Faculty Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
- University of Queensland Diamantina Institute, Brisbane, QLD, Australia
| | - Nelita du Plessis
- Division of Molecular Biology and Human Genetics, MRC Centre for Molecular and Cellular Biology, NRF/DST Centre of Excellence in Biomedical TB Research, Faculty Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Leanie Kleynhans
- Division of Molecular Biology and Human Genetics, MRC Centre for Molecular and Cellular Biology, NRF/DST Centre of Excellence in Biomedical TB Research, Faculty Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - André G Loxton
- Division of Molecular Biology and Human Genetics, MRC Centre for Molecular and Cellular Biology, NRF/DST Centre of Excellence in Biomedical TB Research, Faculty Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Paul D van Helden
- Division of Molecular Biology and Human Genetics, MRC Centre for Molecular and Cellular Biology, NRF/DST Centre of Excellence in Biomedical TB Research, Faculty Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Gerhard Walzl
- Division of Molecular Biology and Human Genetics, MRC Centre for Molecular and Cellular Biology, NRF/DST Centre of Excellence in Biomedical TB Research, Faculty Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| |
Collapse
|
15
|
du Plessis N, Kleynhans L, Thiart L, van Helden PD, Brombacher F, Horsnell WGC, Walzl G. Acute helminth infection enhances early macrophage mediated control of mycobacterial infection. Mucosal Immunol 2013; 6:931-41. [PMID: 23250274 DOI: 10.1038/mi.2012.131] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2012] [Accepted: 11/20/2012] [Indexed: 02/04/2023]
Abstract
Co-infection with mycobacteria and helminths is widespread in developing countries, but how this alters host immunological control of each pathogen is not comprehensively understood. In this study, we demonstrate that acute Nippostrongylus brasiliensis (Nb) murine infection reduce early pulmonary mycobacterial colonization. This Nb-associated reduction in pulmonary Mycobacterium tuberculosis colony-forming units was associated with early and increased activation of pulmonary CD4 T cells and increased T helper type 1 (Th1) and Th2 cytokine secretion. An accelerated and transient augmentation of neutrophils and alveolar macrophages (AMs) was also observed in co-infected animals. AMs displayed markers of both classical and alternative activation. Intranasal transfer of pulmonary macrophages obtained from donor mice 5 days after Nb infection significantly reduced pulmonary Mycobacterium bovis Bacille Calmette-Guérin clearance in recipient mice. These data demonstrate that early stage Nb infection elicits a macrophage response, which is protective during the early stages of subsequent mycobacterial infection.
Collapse
Affiliation(s)
- N du Plessis
- Division of Molecular Biology and Human Genetics, MRC Centre for Molecular and Cellular Biology, DST/NRF Centre of Excellence for Biomedical TB Research, Faculty of Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | | | | | | | | | | | | |
Collapse
|
16
|
Flórido M, Grima MA, Gillis CM, Xia Y, Turner SJ, Triccas JA, Stambas J, Britton WJ. Influenza A Virus Infection Impairs Mycobacteria-Specific T Cell Responses and Mycobacterial Clearance in the Lung during Pulmonary Coinfection. THE JOURNAL OF IMMUNOLOGY 2013; 191:302-11. [DOI: 10.4049/jimmunol.1202824] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
17
|
Llamas-González YY, Pedroza-Roldán C, Cortés-Serna MB, Márquez-Aguirre AL, Gálvez-Gastélum FJ, Flores-Valdez MA. The synthetic cathelicidin HHC-10 inhibits Mycobacterium bovis BCG in vitro and in C57BL/6 mice. Microb Drug Resist 2012; 19:124-9. [PMID: 23231581 DOI: 10.1089/mdr.2012.0149] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Tuberculosis causes close to 1.5 million deaths in the world, with new cases exceeding 9 million in recent years. Coinfection with HIV further worsens the global situation. New molecules that overcome the limitations of currently used drugs are needed. We aimed to determine whether HHC-10 is active against the Mycobacterium tuberculosis complex bacteria Mycobacterium bovis bacille calmette guerin (BCG) in vitro and in vivo. For this, HHC-10 was tested in vitro using different peptide concentrations, and in vivo, in C57BL/6 mice infected intratracheally, at two doses (1.25 and 2.5 mg kg(-1), once a week, 4 weeks). Interferon (IFN)-γ, TNF-α, interleukin (IL)-4, and IL-10 mRNA transcript levels were compared between treated and nontreated mice. In vitro, HHC-10 decreased 69% and 88% the number of colony-forming units (CFU) per millileter recovered after 24-hr treatment at 50 and 100 μg/ml, respectively. In vivo, BCG CFUs in mouse lungs were reduced 77.8% and 95.8% at 1.25 and 2.5 mg kg(-1), respectively. IFN-γ expression was lower in the HHC-10-treated group than that of nontreated animals. Considering genomic conservation between BCG and M. tuberculosis, the in vitro and in vivo activities of HHC-10 observed in this study suggest that the use of this peptide may be useful as therapeutic agent against tuberculosis.
Collapse
Affiliation(s)
- Yessica Yadira Llamas-González
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y diseño del Estado de Jalisco, A.C., Guadalajara, Jalisco, México
| | | | | | | | | | | |
Collapse
|
18
|
Leversen NA, Sviland L, Wiker HG, Mustafa T. Long-Term Persistence of BCG Pasteur in Lungs of C57BL/6 Mice Following Intranasal Infection. Scand J Immunol 2012; 75:489-99. [DOI: 10.1111/j.1365-3083.2012.02683.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
Neutrophils in tuberculosis: friend or foe? Trends Immunol 2011; 33:14-25. [PMID: 22094048 DOI: 10.1016/j.it.2011.10.003] [Citation(s) in RCA: 235] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 10/06/2011] [Accepted: 10/17/2011] [Indexed: 12/22/2022]
Abstract
Neutrophils are rapidly recruited to sites of mycobacterial infection, where they phagocytose bacilli. Whether neutrophils can kill mycobacteria in vivo probably depends on the tissue microenvironment, stage of infection, individual host, and infecting organism. The interaction of neutrophils with macrophages, as well as the downstream effects on T cell activity, could result in a range of outcomes from early clearance of infection to dissemination of viable bacteria together with an attenuated acquired immune response. In established disease, neutrophils accumulate in situations of high pathogen load or immunological dysfunction, and are likely to contribute to pathology. These activities may have clinical importance in terms of new treatments, targeted interventions and vaccine strategies.
Collapse
|
20
|
Shaler CR, Kugathasan K, McCormick S, Damjanovic D, Horvath C, Small CL, Jeyanathan M, Chen X, Yang PC, Xing Z. Pulmonary mycobacterial granuloma increased IL-10 production contributes to establishing a symbiotic host-microbe microenvironment. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 178:1622-34. [PMID: 21406169 PMCID: PMC3078470 DOI: 10.1016/j.ajpath.2010.12.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Revised: 12/07/2010] [Accepted: 12/09/2010] [Indexed: 01/09/2023]
Abstract
The granuloma, a hallmark of host defense against pulmonary mycobacterial infection, has long been believed to be an active type 1 immune environment. However, the mechanisms regarding why granuloma fails to eliminate mycobacteria even in immune-competent hosts, have remained largely unclear. By using a model of pulmonary Mycobacterium bovis Bacillus Calmette-Guerin (BCG) infection, we have addressed this issue by comparing the immune responses within the airway luminal and granuloma compartments. We found that despite having a similar immune cellular profile to that in the airway lumen, the granuloma displayed severely suppressed type 1 immune cytokine but enhanced chemokine responses. Both antigen-presenting cells (APCs) and T cells in granuloma produced fewer type 1 immune molecules including tumor necrosis factor-α (TNF-α), interferon-γ (IFN-γ), and nitric oxide. As a result, the granuloma APCs developed a reduced capacity to phagocytose mycobacteria and to induce T-cell proliferation. To examine the molecular mechanisms, we compared the levels of immune suppressive cytokine IL-10 in the airway lumen and granuloma and found that both granuloma APCs and T cells produced much more IL-10. Thus, IL-10 deficiency restored type 1 immune activation within the granuloma while having a minimal effect within the airway lumen. Hence, our study provides the first experimental evidence that, contrary to the conventional belief, the BCG-induced lung granuloma represents a symbiotic host-microbe microenvironment characterized by suppressed type 1 immune activation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Zhou Xing
- Department of Pathology and Molecular Medicine, Centre for Gene Therapeutics, and M.G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
21
|
Connor LM, Harvie MC, Rich FJ, Quinn KM, Brinkmann V, Le Gros G, Kirman JR. A key role for lung-resident memory lymphocytes in protective immune responses after BCG vaccination. Eur J Immunol 2010; 40:2482-92. [PMID: 20602436 DOI: 10.1002/eji.200940279] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The immune mechanisms that orchestrate protection against tuberculosis as a result of BCG vaccination are not fully understood. We used the immunomodulatory properties of fingolimod (FTY720) treatment to test whether the lung-resident memory T lymphocytes generated by BCG vaccination were sufficient to maintain immunity against challenge infection with mycobacteria (BCG). Mice were given daily fingolimod treatment, starting either immediately before s.c. BCG vaccination or during subsequent BCG i.n. challenge, to prevent LN effector and memory lymphocytes from entering the periphery either during priming or challenge, respectively. Treatment with fingolimod during vaccination reduced vaccine-mediated protection against subsequent infection. By contrast, BCG-vaccinated mice were protected when fingolimod was given during the infectious challenge, suggesting that memory lymphocytes that migrate to the lung following vaccination are sufficient for protection. Notably, the antigen-reactive IFN-gamma or multicytokine-producing CD4(+) T cells present in the lung when fingolimod was given during BCG challenge did not correlate with protection; however, expression of MHC class II on macrophages isolated from the lungs post BCG challenge was increased in the protected mice. We conclude that protection conferred by BCG vaccination is dependent on memory lymphocytes retained in the lung, although IFN-gamma production by this population is not correlated with vaccine-mediated protection.
Collapse
Affiliation(s)
- Lisa M Connor
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | | | | | | | | | | | | |
Collapse
|
22
|
Harding CV, Canaday D, Ramachandra L. Choosing and preparing antigen-presenting cells. CURRENT PROTOCOLS IN IMMUNOLOGY 2010; Chapter 16:16.1.1-16.1.30. [PMID: 20143315 DOI: 10.1002/0471142735.im1601s88] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The first issue in selecting a system for antigen-presentation experiments is to define the appropriate type of antigen-presenting cell (APC) to study. For some experiments, crude preparations such as splenocytes or peripheral blood mononuclear cells (PBMCs) may suffice to provide APC function for stimulating T cells. This unit develops approaches for preparation of more defined APC populations, including dendritic cells (DCs), macrophages, and B lymphocytes, the three types of "professional" APC. Each of these cell types exists in different stages of differentiation, maturation, and activation, or in some cases different lineages. For example, dendritic cells may be divided into subsets, including myeloid DCs (mDCs) and plasmacytoid DCs (pDCs). Each APC type has an important antigen-presentation function, although they contribute to different aspects of the immune response. Therefore, selection of an APC type for study must include consideration of the stage or aspect of immune response that is to be modeled in the experiment.
Collapse
|
23
|
Whelan KT, Pathan AA, Sander CR, Fletcher HA, Poulton I, Alder NC, Hill AVS, McShane H. Safety and immunogenicity of boosting BCG vaccinated subjects with BCG: comparison with boosting with a new TB vaccine, MVA85A. PLoS One 2009; 4:e5934. [PMID: 19529780 PMCID: PMC2694271 DOI: 10.1371/journal.pone.0005934] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Accepted: 04/04/2009] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVES To investigate the safety and immunogenicity of a booster BCG vaccination delivered intradermally in healthy, BCG vaccinated subjects and to compare with a previous clinical trial where BCG vaccinated subjects were boosted with a new TB vaccine, MVA85A. DESIGN Phase I open label observational trial, in the UK. Healthy, HIV-negative, BCG vaccinated adults were recruited and vaccinated with BCG. The primary outcome was safety; the secondary outcome was cellular immune responses to antigen 85, overlapping peptides of antigen 85A and tuberculin purified protein derivative (PPD) detected by ex vivo interferon-gamma (IFN-gamma) ELISpot assay and flow cytometry. RESULTS AND CONCLUSIONS BCG revaccination (BCG-BCG) was well tolerated, and boosting of pre-existing PPD-specific T cell responses was observed. However, when these results were compared with data from a previous clinical trial, where BCG was boosted with MVA85A (BCG-MVA85A), MVA85A induced significantly higher levels (>2-fold) of antigen 85-specific CD4+ T cells (both antigen and peptide pool responses) than boosting with BCG, up to 52 weeks post-vaccination (p = 0.009). To identify antigen 85A-specific CD8+ T cells that were not detectable by ex vivo ELISpot and flow cytometry, dendritic cells (DC) were used to amplify CD8+ T cells from PBMC samples. We observed low, but detectable levels of antigen 85A-specific CD8+ T cells producing IFNgamma (1.5% of total CD8 population) in the BCG primed subjects after BCG boosting in 1 (20%) of 5 subjects. In contrast, in BCG-MVA85A vaccinated subjects, high levels of antigen 85A-specific CD8+ T cells (up to 14% total CD8 population) were observed after boosting with MVA85A, in 4 (50%) of 8 subjects evaluated. In conclusion, revaccination with BCG resulted in modest boosting of pre-existing immune responses to PPD and antigen 85, but vaccination with BCG-MVA85A induced a significantly higher response to antigen 85 and generated a higher frequency of antigen 85A-specific CD8+ T cells. TRIAL REGISTRATION ClinicalTrials.gov NCT00654316 NCT00427830.
Collapse
Affiliation(s)
- Kathryn T. Whelan
- Jenner Institute, University of Oxford, Churchill Hospital, Oxford, United Kingdom
| | - Ansar A. Pathan
- Jenner Institute, University of Oxford, Churchill Hospital, Oxford, United Kingdom
| | - Clare R. Sander
- Jenner Institute, University of Oxford, Churchill Hospital, Oxford, United Kingdom
| | - Helen A. Fletcher
- Jenner Institute, University of Oxford, Churchill Hospital, Oxford, United Kingdom
| | - Ian Poulton
- Centre for Clinical Vaccinology and Tropical Medicine, Churchill Hospital, Oxford, United Kingdom
| | - Nicola C. Alder
- Centre for Statistics in Medicine, University of Oxford, Oxford, United Kingdom
| | - Adrian V. S. Hill
- Jenner Institute, University of Oxford, Churchill Hospital, Oxford, United Kingdom
| | - Helen McShane
- Jenner Institute, University of Oxford, Churchill Hospital, Oxford, United Kingdom
| |
Collapse
|
24
|
Bachvarova M, Stefanova T, Nikolaeva S, Chouchkova M. Tuberculin sensitivity and morphological immune response in guinea pigs after application of minimal sensitizing dose of BCG vaccine, substrain Sofia SL222. Int Immunopharmacol 2009; 9:1010-5. [PMID: 19393344 DOI: 10.1016/j.intimp.2009.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2009] [Revised: 04/16/2009] [Accepted: 04/18/2009] [Indexed: 11/25/2022]
Abstract
During the investigation of the BCG allergenic potency it is advisable to vaccinate with decreasing doses, estimating the lowest dose that induces tuberculin sensitivity and specific morphological inflammation. Although the biological test does not reveal the mathematical correlation of dose-effect relationships, it is important to look for the determination of the minimal sensitizing dose for every BCG vaccine. In this study, three groups of twenty four guinea pigs were vaccinated with decreasing doses of reconstituted BCG vaccine: 120 ng, 12 ng and 1.2 ng. Tuberculin tests were performed in different groups at the 30th, 60th, 90th and 120th day after BCG injection. The negative tuberculin reactions converted to positive between the 60th and 90th day. The dose of 12 ng elicited the largest tuberculin reactions in the animals. This dose contains 65 viable bacteria and could be regarded as the smallest effective sensitizing dose of the BCG vaccine, substrain Sofia SL222. The morphological examination demonstrated that very low inoculums (1.2 ng or 6 viable cells) were sufficient to induce a specific inflammation after BCG vaccination. The immune response in lungs and bronchus-associated lymphoid tissue (BALT) of all BCG doses applied was strongest on the day 60. In the same term, lymph nodes and spleens were characterized with blast transformed lymphoid follicles with epitheloid and Langhans giant cells even with the smallest injected dose of 1.2 ng.
Collapse
Affiliation(s)
- M Bachvarova
- Laboratory of Immunomorphology, NCIPD, Sofia, Bulgaria.
| | | | | | | |
Collapse
|
25
|
Rodrigues MF, Barsante MM, Alves CCS, Souza MA, Ferreira AP, Amarante-Mendes GP, Teixeira HC. Apoptosis of macrophages during pulmonary Mycobacterium bovis infection: correlation with intracellular bacillary load and cytokine levels. Immunology 2009; 128:e691-9. [PMID: 19740330 DOI: 10.1111/j.1365-2567.2009.03062.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Apoptosis of macrophages infected with pathogenic mycobacteria is an alternative host defence capable of removing the environment supporting bacterial growth. In this work the influence of virulence and bacterial load on apoptosis of alveolar macrophages during the initial phase of infection by Mycobacterium bovis was investigated. BALB/c mice were infected intratracheally with high or low doses of the virulent (ATCC19274) or attenuated (bacillus Calmette-Guérin Moreau) strains of M. bovis. The frequency of macrophage apoptosis, the growth of mycobacteria in macrophages, and the in situ levels of the cytokines tumour necrosis factor-alpha (TNF-alpha), interleukin-10 (IL-10) and IL-12 and of the anti-apoptotic protein Bcl-2 were measured at day 3 and day 7 post-infection. An increase of macrophage apoptosis was observed after infection with both strains but the virulent strain induced less apoptosis than the attenuated strain. On the 3rd day after infection with the virulent strain macrophage apoptosis was reduced in the high-dose group, while on the 7th day post-infection macrophage apoptosis was reduced in the low-dose group. Inhibition of apoptosis was correlated with increased production of IL-10, reduced production of TNF-alpha and increased production of Bcl-2. In addition, the production of IL-12 was reduced at points where the lowest levels of macrophage apoptosis were observed. Our results indicate that virulent mycobacteria are able to modulate macrophage apoptosis to an extent dependent on the intracellular bacterial burden, which benefits its intracellular growth and dissemination to adjacent cells.
Collapse
Affiliation(s)
- Michele F Rodrigues
- Department of Parasitology, Microbiology and Immunology, Biological Sciences Institute, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | | | | | | | | | | | | |
Collapse
|
26
|
Shinohara T, Pantuso T, Shinohara S, Kogiso M, Myrvik QN, Henriksen RA, Shibata Y. Persistent inactivation of macrophage cyclooxygenase-2 in mycobacterial pulmonary inflammation. Am J Respir Cell Mol Biol 2008; 41:146-54. [PMID: 19097981 DOI: 10.1165/rcmb.2008-0230oc] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The induction of cyclooxygenase-2 (COX-2) in tissue macrophages (MØ) increases prostaglandin E(2) (PGE(2)) release, potentially down-regulating granulomatous inflammation. In response to Mycobacteria, local MØ express COX-2, which is either nuclear envelope (NE)-associated or NE-dissociated. Persistent mycobacterial pulmonary inflammation is characterized by alveolar MØ expressing NE-dissociated (inactive) COX-2 without release of PGE(2). In this study, we examined COX-2 in alveolar MØ after intranasal exposure to heat-killed Mycobacterium bovis BCG (HK-BCG). After administration, whole lungs of C57Bl/6 mice were lavaged with saline; COX-2 expression and PGE(2) release by alveolar MØ and tumor necrosis factor (TNF)-alpha and nitric oxide levels in the lung lavage were monitored. Normal alveolar MØ had undetectable levels of COX-2 on Western blots. However, 1 day after intranasal administration, almost all alveolar MØ had phagocytosed HK-BCG and expressed NE-dissociated COX-2 without any increase in the release of PGE(2). At 28 days after intranasal administration, 68% of alveolar MØ still contained both BCG and the NE-dissociated form of COX-2. NE-associated (active) COX-2 was not observed in alveolar MØ. In contrast, 7 days after intraperitoneal injection of HK-BCG, peritoneal MØ containing HK-BCG were no longer detected. At 28 days after intranasal administration, TNF-alpha and nitrite levels in the lung lavage fluid were significantly higher than those in controls. Our results indicate that mycobacterial pulmonary inflammation is associated with suppressed PGE(2) production by alveolar MØ, with expression of COX-2 dissociated from the NE.
Collapse
Affiliation(s)
- Tsutomu Shinohara
- College of Biomedical Sciences, Florida Atlantic University, 777 Glades Rd, PO Box 3091, Boca Raton, FL 33431-0991, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Gomez SA, Argüelles CL, Guerrieri D, Tateosian NL, Amiano NO, Slimovich R, Maffia PC, Abbate E, Musella RM, Garcia VE, Chuluyan HE. Secretory leukocyte protease inhibitor: a secreted pattern recognition receptor for mycobacteria. Am J Respir Crit Care Med 2008; 179:247-53. [PMID: 19011154 DOI: 10.1164/rccm.200804-615oc] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
RATIONALE Human secretory leukocyte protease inhibitor (SLPI) displays bactericidal activity against pathogens such as Escherichia coli and Streptococcus. Furthermore, it has been reported that murine SLPI shows potent antimycobacterial activity. OBJECTIVES The aim of the present study was to investigate whether human recombinant SLPI not only kills mycobacteria but also acts as a pattern recognition receptor for the host immune system. METHODS For the in vivo experiment, BALB/c mice were infected by intranasal instillation with Mycobacterium bovis BCG and viable BCG load in lung homogenates was later determined. For the in vitro experiments, SLPI was incubated overnight with a suspension of M. bovis BCG or the virulent strain Mycobacterium tuberculosis H37Rv, and the percentage survival as well as the binding of SLPI to mycobacteria was determined. Furthermore, bacteria phagocytosis was also determined by flow cytometry. MEASUREMENTS AND MAIN RESULTS Intranasal SLPI treatment decreased the number of colony-forming units recovered from lung homogenates, indicating that SLPI interfered with M. bovis BCG infection. Moreover, SLPI decreased the viability of both M. bovis BCG and H37Rv. We demonstrated that SLPI attached to the surface of the mycobacteria by binding to pathogen-associated molecular pattern mannan-capped lipoarabinomannans and phosphatidylinositol mannoside. Furthermore, we found that in the sputum of patients with tuberculosis, mycobacteria were coated with endogenous SLPI. Finally, we showed that phagocytosis of SLPI-coated mycobacteria was faster than that of uncoated bacteria. CONCLUSIONS The present results demonstrate for the first time that human SLPI kills mycobacteria and is a new pattern recognition receptor for them.
Collapse
Affiliation(s)
- Sonia A Gomez
- Department of Pharmacology, University of Buenos Aires School of Medicine, Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Méndez-Samperio P. Expression and regulation of chemokines in mycobacterial infection. J Infect 2008; 57:374-84. [PMID: 18838171 DOI: 10.1016/j.jinf.2008.08.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Revised: 08/19/2008] [Accepted: 08/26/2008] [Indexed: 11/26/2022]
Abstract
Chemokines are the key molecules that recruit immune cells by chemotaxis and act in leukocyte activation during mycobacterial diseases. Currently, tuberculosis is a leading infectious disease affecting millions of people worldwide. The purpose of this review is to describe a series of recent scientific evidence concerning to the protective role of some members of the CC- and the CXC chemokine subfamilies for the control of mycobacterial infection. The discussion will (1) highlight the effectiveness of some chemokines as potent immunoprophylactic tool for controlling the mycobacterial establishment within the host, (2) describe recent work on the relevance of cellular signaling pathways by which mycobacterial antigens mediate chemokine induction, and (3) summarize current progress in the understanding of the potential use of chemokines as potent adjuvants in antimycobacterial immune responses.
Collapse
Affiliation(s)
- Patricia Méndez-Samperio
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, IPN., Prol. Carpio y Plan de Ayala, México D.F. 11340, Mexico.
| |
Collapse
|
29
|
D'Avila H, Roque NR, Cardoso RM, Castro-Faria-Neto HC, Melo RCN, Bozza PT. Neutrophils recruited to the site of Mycobacterium bovis BCG infection undergo apoptosis and modulate lipid body biogenesis and prostaglandin E production by macrophages. Cell Microbiol 2008; 10:2589-604. [PMID: 18771558 DOI: 10.1111/j.1462-5822.2008.01233.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Neutrophil influx to sites of mycobacterial infections is one of the first events of tuberculosis pathogenesis. However, the role of early neutrophil recruitment in mycobacterial infection is not completely understood. We investigated the rate of neutrophil apoptosis and the role of macrophage uptake of apoptotic neutrophils in a pleural tuberculosis model induced by BCG. Recruited neutrophils were shown to phagocyte BCG and a large number of neutrophils undergo apoptosis within 24 h. Notably, the great majority of apoptotic neutrophils were infected by BCG. Increased lipid body (lipid droplets) formation, accompanied by prostaglandin E(2) (PGE(2)) and TGF-beta1 synthesis, occurred in parallel to macrophage uptake of apoptotic cells. Lipid body and PGE(2) formation was observed after macrophage exposure to apoptotic, but not necrotic or live neutrophils. Blockage of BCG-induced lipid body formation significantly inhibited PGE(2) synthesis. Pre-treatment with the pan-caspase inhibitor zVAD inhibited BCG-induced neutrophil apoptosis and lipid body formation, indicating a role for apoptotic neutrophils in macrophage lipid body biogenesis in infected mice. In conclusion, BCG infection induced activation and apoptosis of infected neutrophils at the inflammatory site. The uptake of apoptotic neutrophils by macrophages leads to TGF-beta1 generation and PGE(2)-derived lipid body formation, and may have modulator roles in mycobacterial pathogenesis.
Collapse
Affiliation(s)
- Heloisa D'Avila
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | |
Collapse
|
30
|
Pecora ND, Fulton SA, Reba SM, Drage MG, Simmons DP, Urankar-Nagy NJ, Boom WH, Harding CV. Mycobacterium bovis BCG decreases MHC-II expression in vivo on murine lung macrophages and dendritic cells during aerosol infection. Cell Immunol 2008; 254:94-104. [PMID: 18762288 PMCID: PMC2653222 DOI: 10.1016/j.cellimm.2008.07.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Revised: 07/11/2008] [Accepted: 07/15/2008] [Indexed: 12/20/2022]
Abstract
Mycobacterium tuberculosis and M. bovis BCG infect APCs. In vitro, mycobacteria inhibit IFN-gamma-induced MHC-II expression by macrophages, but the effects of mycobacteria on lung APCs in vivo remain unclear. To assess MHC-II expression on APCs infected in vivo, mice were aerosol-infected with GFP-expressing BCG. At 28 d, approximately 1% of lung APCs were GFP+ by flow cytometry and CFU data. Most GFP+ cells were CD11b(high)/CD11c(neg-mid) lung macrophages (58-68%) or CD11b(high)/CD11c(high) DCs (28-31%). Lung APC MHC-II expression was higher in infected mice than naïve mice. Within infected lungs, however, MHC-II expression was lower in GFP+ cells than GFP- cells for both macrophages and DCs. MHC-II expression was also inhibited on purified lung macrophages and DCs that were infected with BCG in vitro. Thus, lung APCs that harbor mycobacteria in vivo have decreased MHC-II expression relative to uninfected APCs from the same lung, possibly contributing to evasion of T cell responses.
Collapse
Affiliation(s)
- Nicole D Pecora
- Department of Pathology, Case Western Reserve University, Wolstein 6534, 10900 Euclid Avenue, Cleveland, OH 44106-7288, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Wagner C, Kotsougiani D, Pioch M, Prior B, Wentzensen A, Hänsch GM. T lymphocytes in acute bacterial infection: increased prevalence of CD11b(+) cells in the peripheral blood and recruitment to the infected site. Immunology 2008; 125:503-9. [PMID: 18479349 DOI: 10.1111/j.1365-2567.2008.02863.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
T-cell activation, particularly of CD8(+) cells, is invariably associated with viral infections. We now provide evidence for the activation of T cells in patients with localized bacterial soft tissue infections. During acute disease we detected in the peripheral blood of these patients, small though conspicuous populations of CD4(+) CD28(+) CD11b(+) and CD8(+) CD28(+) CD11b(+) cells, indicative of an expansion of effector T cells. Moreover, we identified CD4(+) and CD8(+) cells at the infected site, in addition to highly activated polymorphonuclear neutrophils (PMN). In keeping with their role as first-line defence, PMN were preponderant, but T cells amounted to 20% of the infiltrated cells. The majority of the infiltrated T cells expressed CXCR6, a homing receptor for non-lymphoid tissue. The infiltrated T cells produced interferon-gamma (IFN-gamma), while the peripheral blood cells obtained at the same time did not. In conclusion, in response to localized bacterial infections, T cells are activated and recruited to the infected site. We propose that these T cells, e.g. by producing IFN-gamma, enhance the efficiency of the infiltrated phagocytic cells, particularly of the PMN, thereby supporting the local host defence.
Collapse
|
32
|
Ngai P, McCormick S, Small C, Zhang X, Zganiacz A, Aoki N, Xing Z. Gamma interferon responses of CD4 and CD8 T-cell subsets are quantitatively different and independent of each other during pulmonary Mycobacterium bovis BCG infection. Infect Immun 2007; 75:2244-52. [PMID: 17307945 PMCID: PMC1865770 DOI: 10.1128/iai.00024-07] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Gamma interferon (IFN-gamma) is a key cytokine in host defense against intracellular mycobacterial infection. It has been believed that both CD4 and CD8 T cells are the primary sources of IFN-gamma. However, the relative contributions of CD4 and CD8 T-cell subsets to IFN-gamma production and the relationship between CD4 and CD8 T-cell activation have not been examined. By using a model of pulmonary mycobacterial infection and various immunodetection assays, we found that CD4 T cells mounted a much stronger IFN-gamma response than CD8 T cells at various times after mycobacterial infection, and this pronounced IFN-gamma production by CD4 T cells was attributed to both greater numbers of antigen-specific CD4 T cells and a greater IFN-gamma secretion capacity of these cells. By using major histocompatibility complex class II-deficient or CD4-deficient mice, we found that the lack of CD4 T cells did not negatively affect primary or secondary CD8 T-cell IFN-gamma responses. The CD8 T cells activated in the absence of CD4 T cells were capable of immune protection against secondary mycobacterial challenge. Our results suggest that, whereas both CD4 and CD8 T cells are capable of IFN-gamma production, the former represent a much greater cellular source of IFN-gamma. Moreover, during mycobacterial infection, CD8 T-cell IFN-gamma responses and activation are independent of CD4 T-cell activation.
Collapse
Affiliation(s)
- Patricia Ngai
- Department of Pathology and Molecular Medicine, McMaster University, 1200 Main St. West, Hamilton, Ontario L8N 3Z5, Canada
| | | | | | | | | | | | | |
Collapse
|
33
|
Anis MM, Fulton SA, Reba SM, Harding CV, Boom WH. Modulation of naive CD4+ T-cell responses to an airway antigen during pulmonary mycobacterial infection. Infect Immun 2007; 75:2260-8. [PMID: 17296758 PMCID: PMC1865791 DOI: 10.1128/iai.01709-06] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During pulmonary mycobacterial infection, there is increased trafficking of dendritic cells from the lungs to the draining lymph nodes. We hypothesized that ongoing mycobacterial infection would modulate recruitment and activation of antigen-specific naive CD4+ T cells after airway antigen challenge. BALB/c mice were infected by aerosol with Mycobacterium bovis BCG. At peak bacterial burden in the lungs (4 to 6 weeks postinfection), carboxy-fluorescein diacetate succinimidyl ester-labeled naive ovalbumin-specific DO11.10 T cells were adoptively transferred into infected and uninfected mice. Recipient mice were challenged intranasally with soluble ovalbumin (OVA), and OVA-specific T-cell responses were measured in the lungs, draining mediastinal lymph nodes (MLN), and spleens. OVA challenge resulted in increased activation and proliferation of OVA-specific T cells in the draining MLN of both infected and uninfected mice. However, only BCG-infected mice had prominent OVA-specific T-cell activation, proliferation, and Th1 differentiation in the lungs. BCG infection caused greater distribution of airway OVA to pulmonary dendritic cells and enhanced presentation of OVA peptide by lung CD11c+ cells. Together, these data suggest that an existing pulmonary mycobacterial infection alters the phenotype of lung dendritic cells so that they can activate antigen-specific naive CD4+ T cells in the lungs in response to airway antigen challenge.
Collapse
Affiliation(s)
- Mursalin M Anis
- Department of Pathology, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106-4984, USA
| | | | | | | | | |
Collapse
|
34
|
Sun JG, Deng YM, Wu X, Tang HF, Deng JF, Chen JQ, Yang SY, Xie QM. Inhibition of phosphodiesterase activity, airway inflammation and hyperresponsiveness by PDE4 inhibitor and glucocorticoid in a murine model of allergic asthma. Life Sci 2006; 79:2077-85. [PMID: 16875702 DOI: 10.1016/j.lfs.2006.07.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2005] [Revised: 06/28/2006] [Accepted: 07/03/2006] [Indexed: 11/16/2022]
Abstract
Phosphodiesterase 4 (PDE4) isozyme plays important roles in inflammatory and immunomodulatory cells. In this study, piclamilast, a selective PDE4 inhibitor, was used to investigate the role of PDE4 in respiratory function and inflammation in a murine asthma model. Sensitized mice were challenged with aerosolized ovalbumin for 7 days, piclamilast (1, 3 and 10 mg/kg) and dexamethasone (2 mg/kg) were orally administered once daily during the period of challenge. Twenty-four hours after the last challenge, airway hyperresponsiveness to methacholine was determined by whole-body plethysmography, airway inflammation and mucus secretion by histomorphometry, pulmonary cAMP-PDE activity by HPLC, cytokine levels in bronchoalveolar lavage fluid and their mRNA expression in lung by ELISA and RT-PCR, respectively. In control mice, significant induction of cAMP-PDE activity was parallel to the increases of hyperresponsiveness, inflammatory cells, cytokine levels, mRNA expression as well as goblet cell hyperplasia. However, piclamilast dose-dependently and significantly improved airway resistance and dynamic compliance, and the maximal effect was similar to that of dexamethasone. Piclamilast treatment dose-dependently and significantly prevented the increase in inflammatory cell number and goblet cell hyperplasia, as well as production of cytokines, including eotaxin, TNFalpha and IL-4. Piclamilast exerted a weaker inhibitory effect than dexamethasone on eosinophils and neutrophils, had no effect on lymphocyte accumulation. Moreover, piclamilast inhibited up-regulation of cAMP-PDE activity and cytokine mRNA expression; the maximal inhibition of cAMP-PDE was greater than that exerted by dexamethasone, and was similar to dexamethasone on cytokine mRNA expression. This study suggests that inhibition of PDE4 by piclamilast robustly improves the pulmonary function, airway inflammation and goblet cell hyperplasia in murine allergenic asthma.
Collapse
Affiliation(s)
- Jian-Gang Sun
- Zhejiang Respiratory Drugs Research Laboratory of State Food and Drug Administration, Medical Science College of Zhejiang University, Hangzhou 310031, PR China
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Kuchtey J, Fulton SA, Reba SM, Harding CV, Boom WH. Interferon-alphabeta mediates partial control of early pulmonary Mycobacterium bovis bacillus Calmette-Guérin infection. Immunology 2006; 118:39-49. [PMID: 16630021 PMCID: PMC1782276 DOI: 10.1111/j.1365-2567.2006.02337.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The role of type I interferon (IFN-alphabeta) in modulating innate or adaptive immune responses against mycobacterial infection in the lung is unclear. In this study we investigated the susceptibility of IFN-alphabeta-receptor-deficient (IFN-alphabetaR-/-) mice to pulmonary infection with aerosolized Mycobacterium bovis bacillus Calmette-Guérin (BCG). During early infection (2-3 weeks), enhanced growth of BCG was measured in the lungs of IFN-alphabetaR-/- mice compared to wild-type mice. However, during late infection the burden of BCG was similar in the lungs of IFN-alphabetaR-/- and wild-type mice. Although control of BCG growth was delayed, recruitment and activation of T and natural killer cells, production of IFN-gamma, and cytokine expression were all similar in wild-type and IFN-alphabetaR-/- mice. However, decreased expression of nitric oxide in bronchoalveolar lavage fluids from IFN-alphabetaR-/- mice correlated with enhanced growth of BCG. Bone marrow-derived macrophages from IFN-alphabetaR-/- mice also produced less nitric oxide following infection with BCG in vitro. These findings suggest that IFN-alphabeta contributes to innate immunity to pulmonary mycobacterial infection by augmenting production of nitric oxide.
Collapse
MESH Headings
- Animals
- Bronchoalveolar Lavage Fluid/immunology
- Cells, Cultured
- Female
- Immunity, Innate
- Interferon-gamma/biosynthesis
- Killer Cells, Natural/immunology
- Lung/immunology
- Lymphocyte Activation/immunology
- Macrophages/metabolism
- Male
- Membrane Proteins/deficiency
- Membrane Proteins/immunology
- Mice
- Mice, Knockout
- Mycobacterium bovis/growth & development
- Nitric Oxide/metabolism
- Receptor, Interferon alpha-beta
- Receptors, Interferon/deficiency
- Receptors, Interferon/immunology
- T-Lymphocyte Subsets/immunology
- Tuberculosis, Pulmonary/immunology
- Tuberculosis, Pulmonary/microbiology
- Tuberculosis, Pulmonary/prevention & control
Collapse
Affiliation(s)
- John Kuchtey
- Institute of Pathology, Case Western Reserve University and University Hospitals of Cleveland, Cleveland, Ohio 44106-4984, USA
| | | | | | | | | |
Collapse
|
36
|
Ordway D, Harton M, Henao-Tamayo M, Montoya R, Orme IM, Gonzalez-Juarrero M. Enhanced macrophage activity in granulomatous lesions of immune mice challenged with Mycobacterium tuberculosis. THE JOURNAL OF IMMUNOLOGY 2006; 176:4931-9. [PMID: 16585589 DOI: 10.4049/jimmunol.176.8.4931] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In this study, we evaluated the cellular influx and cytokine environment in the lungs of mice made immune by prior vaccination with Mycobacterium bovis bacillus Calmette-Guérin compared with control mice after infection with Mycobacterium tuberculosis to characterize composition of protective lesions in the lungs. Immune mice controlled the growth of the M. tuberculosis challenge more efficiently than control mice. In immune animals, granulomatous lesions were smaller and had a more lymphocytic core, less foamy cells, less parenchymal inflammation, and slower progression of lung pathology than in lungs of control mice. During the chronic stage of the infection, the bacterial load in the lungs of immune mice remained at a level 10 times lower than control mice, and this was associated with reduced numbers of CD4P(+P) and CD8P(+P) T cells, and the lower expression of protective (IL-12, IFN-gamma), inflammatory (TNF-alpha), immunoregulatory (GM-CSF), and immunosuppressive (IL-10) cytokines. The immune mice had higher numbers of CD11b- CD11c(high) DEC-205(low) alveolar macrophages, but lower numbers of CD11b+ CD11c(high) DEC-205(high) dendritic cells, with the latter expressing significantly lower levels of the antiapoptotic marker TNFR-associated factor-1. Moreover, during the early stage of chronic infection, lung dendritic cells from immune mice expressed higher levels of MHC class II and CD40 molecules than similar cells from control mice. These results indicate that while a chronic disease state is the eventual outcome in both control and immune mice infected with M. tuberculosis by aerosol exposure, immune mice develop a protective granulomatous lesion by increasing macrophage numbers and reduced expression of protective and inflammatory cytokines.
Collapse
Affiliation(s)
- Diane Ordway
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA.
| | | | | | | | | | | |
Collapse
|
37
|
Widdison S, Schreuder LJ, Villarreal-Ramos B, Howard CJ, Watson M, Coffey TJ. Cytokine expression profiles of bovine lymph nodes: effects of Mycobacterium bovis infection and bacille Calmette-Guérin vaccination. Clin Exp Immunol 2006; 144:281-9. [PMID: 16634802 PMCID: PMC1809664 DOI: 10.1111/j.1365-2249.2006.03053.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2006] [Indexed: 12/01/2022] Open
Abstract
Cytokine expression in lymph nodes from cattle inoculated intranasally with Mycobacterium bovis was compared to that of non-infected animals using real-time polymerase chain reaction. The effect of M. bovis infection, 4 months post-challenge, was to suppress the expression of anti-inflammatory cytokines interleukin (IL)-4 and IL-10 as well as the pro-inflammatory cytokines tumour necrosis factor (TNF) and IL-6. Expression of interferon (IFN)-gamma and IL-12 was maintained. Animals vaccinated with bacille Calmette-Guérin responded differently to challenge with M. bovis. In particular, no decrease in expression of IL-4 or IL-6 was observed following challenge of vaccinated animals and decreased IFN-gamma was detected. Also, vaccinated animals had higher levels of IL-4 and IL-10 transcripts compared to unvaccinated animals following challenge. These changes in cytokine expression levels led to a significant shift in the IFN-gamma/IL-4 or IFN-gamma/IL-10 ratio within the lymph node following challenge. Challenged animals generally showed a strong Th1 bias that was not seen in animals vaccinated prior to challenge. An inverse correlation between the level of pathology and bacterial load within the lymph node and the expression of IL-4, IL-10 and TNF was also observed. These results suggest that in the lymph nodes of cattle with established tuberculosis and a persisting bacterial infection, maintenance of the pro-inflammatory response in combination with a suppressed anti-inflammatory response may control the infection but contribute to host-induced tissue damage. Vaccination, which reduces the bacterial load and consequently the IFN-gamma response, may result in less suppression of anti-inflammatory cytokines.
Collapse
Affiliation(s)
- S Widdison
- Institute for Animal Health, Compton, Newbury, Berkshire, UK
| | | | | | | | | | | |
Collapse
|
38
|
Chen ZW. Immune regulation of gammadelta T cell responses in mycobacterial infections. Clin Immunol 2005; 116:202-7. [PMID: 16087145 PMCID: PMC2869281 DOI: 10.1016/j.clim.2005.04.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2004] [Revised: 04/07/2005] [Accepted: 04/07/2005] [Indexed: 11/20/2022]
Abstract
Antigen-specific gammadelta T cells may play a role in anti-mycobacterial immunity. Studies done in humans and animal models have demonstrated complex patterns of gammadelta T cell immune responses during early mycobacterial infections and chronic tuberculosis. Recent studies have also shown a clinical correlation between major recall expansion of antigen-specific gammadelta T cells and immunity against fatal early mycobacterial diseases. Multiple host and microbial factors can regulate diverse immune responses of phosphoantigen-specific gammadelta T cells during mycobacterial infections.
Collapse
Affiliation(s)
- Zheng W Chen
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine Chicago, 835 South Wolcott Avenue, MC790, Chicago, IL 60612, USA.
| |
Collapse
|
39
|
Godaly G, Young DB. Mycobacterium bovis bacille Calmette Guerin infection of human neutrophils induces CXCL8 secretion by MyD88-dependent TLR2 and TLR4 activation. Cell Microbiol 2005; 7:591-601. [PMID: 15760459 DOI: 10.1111/j.1462-5822.2004.00489.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
To investigate the potential role of neutrophils in initiation of immune responses to mycobacteria, we have characterized the response of human neutrophils to infection with Mycobacterium bovis bacille Calmette Guerin, the BCG vaccine. BCG induced transcription and secretion of the chemokine CXCL8, by signalling through Toll-like receptors TLR2 and TLR4, in conjunction with the adaptor protein myeloid differentiation factor 88 (MyD88). Blocking of responses with antibodies revealed a difference in the kinetics of signalling through the different TLRs. Anti-TLR2 antibody blocked the early phase of CXCL8 and MyD88 induction. Anti-TLR4 antibody blocked the late phase of induction occurring 2 h after infection. The existence of a TLR/MyD88 pathway for recognition and response to mycobacterial ligands provides neutrophils with the ability to drive the recruitment and activation of inflammatory cells during the early phase of mycobacterial infection and immunization.
Collapse
Affiliation(s)
- Gabriela Godaly
- Department of Infectious Diseases and Microbiology, Division of Investigative Science, Faculty of Medicine, Imperial College London, UK.
| | | |
Collapse
|
40
|
Rhoades ER, Geisel RE, Butcher BA, McDonough S, Russell DG. Cell wall lipids from Mycobacterium bovis BCG are inflammatory when inoculated within a gel matrix: characterization of a new model of the granulomatous response to mycobacterial components. Tuberculosis (Edinb) 2005; 85:159-76. [PMID: 15850754 DOI: 10.1016/j.tube.2004.10.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2004] [Indexed: 10/25/2022]
Abstract
The chronic inflammatory response to Mycobacterium generates complex granulomatous lesions that balance containment with destruction of infected tissues. To study the contributing factors from host and pathogen, we developed a model wherein defined mycobacterial components and leukocytes are delivered in a gel, eliciting a localized response that can be retrieved and analysed. We validated the model by comparing responses to the cell wall lipids from Mycobacterium bovis bacillus Calmette-Guerin (BCG) to reported activities in other models. BCG lipid-coated beads and bone marrow-derived macrophages (input macrophages) were injected intraperitoneally into BALB/c mice. Input macrophages and recruited peritoneal exudate cells took up fluorescently tagged BCG lipids, and matrix-associated macrophages and neutrophils produced tumor necrosis factor, interleukin-1alpha, and interleukin-6. Leukocyte numbers and cytokine levels were greater in BCG lipid-bearing matrices than matrices containing non-coated or phosphatidylglycerol-coated beads. Leukocytes arrived in successive waves of neutrophils, macrophages and eosinophils, followed by NK and T cells (CD4(+), CD8(+), or gammadelta) at 7 days and B cells within 12 days. BCG lipids also predisposed matrices for adherence and vascularization, enhancing cellular recruitment. We submit that the matrix model presents pertinent features of the murine granulomatous response that will prove to be an adaptable method for study of this complex response.
Collapse
Affiliation(s)
- Elizabeth R Rhoades
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA.
| | | | | | | | | |
Collapse
|
41
|
Ponticiello A, Perna F, Maione S, Stradolini M, Testa G, Terrazzano G, Ruggiero G, Malerba M, Sanduzzi A. Analysis of local T lymphocyte subsets upon stimulation with intravesical BCG: a model to study tuberculosis immunity. Respir Med 2004; 98:509-14. [PMID: 15191035 DOI: 10.1016/j.rmed.2003.12.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cell-mediated immune response can control tuberculosis infection. A significant role for immune cells like CD4, CD8 and gammadelta T lymphocytes have been recognized, but little is known about the kinetics of activation and accumulation of these cells in course of Tuberculosis infection in humans. This is due to both the difficult to access to human lung and the fact that most subjects are examined in different periods of infection which may condition T cell changes. To overcome these problems, we have used intravesical BCG (Bacillus Calmette-Guerin) treatment for preventing the recurrences of bladder cancer as an in vivo experimental model of human tuberculosis infection. 20 male caucasian patients with proven bladder superficial transitional cell carcinoma treated with transurethral resection followed by six weekly intravesical instillations of BCG (T0-T6) were enrolled. Changes in T lymphocyte subsets were assessed by flow cytometry in the bladder wash recovered after each BCG instillation. Our study shows that the action of BCG appears to be T cell dependent. Lymphocytes increase at any new instillation and tend towards the reduction with the suspension of the stimulus. BCG induces a massive increase in the proportion of CD4 Th1 subset followed by an increase in gammadelta T cells, while no significant variation for CD8 and NK cells is found. Our results suggest that BCG infection model represents a valid experimental tool to study the immunological events evoked in vivo by Mycobacterium tuberculosis in humans at the site of infection.
Collapse
Affiliation(s)
- Antonio Ponticiello
- Institute of Respiratory Diseases, University Federico II of Naples, UNESCO Unit for Research, Diagnosis and Prevention of Tuberculosis, Monaldi Hospital, Naples, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Fulton SA, Reba SM, Pai RK, Pennini M, Torres M, Harding CV, Boom WH. Inhibition of major histocompatibility complex II expression and antigen processing in murine alveolar macrophages by Mycobacterium bovis BCG and the 19-kilodalton mycobacterial lipoprotein. Infect Immun 2004; 72:2101-10. [PMID: 15039332 PMCID: PMC375182 DOI: 10.1128/iai.72.4.2101-2110.2004] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Alveolar macrophages constitute a primary defense against Mycobacterium tuberculosis, but they are unable to control M. tuberculosis without acquired T-cell immunity. This study determined the antigen-presenting cell function of murine alveolar macrophages and the ability of the model mycobacterium, Mycobacterium bovis BCG, to modulate it. The majority (80 to 85%) of alveolar macrophages expressed both CD80 (B7.1) and CD11c, and 20 to 30% coexpressed major histocompatibility complex II (MHC-II). Gamma interferon (IFN-gamma) enhanced MHC-II but not B7.1 expression. Naive or IFN-gamma-treated alveolar macrophages did not express CD86 (B7.2), CD11b, Mac-3, CD40, or F4/80. M. bovis BCG and the 19-kDa mycobacterial lipoprotein inhibited IFN-gamma-regulated MHC-II expression on alveolar macrophages, and inhibition was dependent on Toll-like receptor 2. The inhibition of MHC-II expression by the 19-kDa lipoprotein was associated with decreased presentation of soluble antigen to T cells. Thus, susceptibility to tuberculosis may result from the ability of mycobacteria to interfere with MHC-II expression and antigen presentation by alveolar macrophages.
Collapse
Affiliation(s)
- Scott A Fulton
- Division of Infectious Diseases. Institute of Pathology, Case Western Reserve University and University Hospitals of Cleveland, Cleveland, Ohio 44106-4984
| | | | | | | | | | | | | |
Collapse
|
43
|
Dieli F, Ivanyi J, Marsh P, Williams A, Naylor I, Sireci G, Caccamo N, Di Sano C, Salerno A. Characterization of lung gamma delta T cells following intranasal infection with Mycobacterium bovis bacillus Calmette-Guérin. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:463-9. [PMID: 12496432 DOI: 10.4049/jimmunol.170.1.463] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The lungs are considered to have an impaired capacity to contain infection by pathogenic mycobacteria, even in the presence of effective systemic immunity. In an attempt to understand the underlying cellular mechanisms, we characterized the gammadelta T cell population following intranasal infection with Mycobacterium bovis bacillus Calmette-Guérin (BCG). The peak of gammadelta T cell expansion at 7 days postinfection preceded the 30 day peak of alphabeta T cell expansion and bacterial count. The expanded population of gammadelta T cells in the lungs of BCG-infected mice represents an expansion of the resident Vgamma2 T cell subset as well as an influx of Vgamma1 and of four different Vdelta gene-bearing T cell subsets. The gammadelta T cells in the lungs of BCG-infected mice secreted IFN-gamma following in vitro stimulation with ionomycin and PMA and were cytotoxic against BCG-infected peritoneal macrophages as well as against the uninfected J774 macrophage cell line. The cytotoxicity was selectively blocked by anti-gammadelta TCR mAb and strontium ions, suggesting a granule-exocytosis killing pathway. Depletion of gammadelta T cells by injection of specific mAb had no effect on the subsequent developing CD4 T cell response in the lungs of BCG-infected mice, but significantly reduced cytotoxic activity and IFN-gamma production by lung CD8 T cells. Thus, gammadelta T cells in the lungs might help to control mycobacterial infection in the period between innate and classical adaptive immunity and may also play an important regulatory role in the subsequent onset of alphabeta T lymphocytes.
Collapse
MESH Headings
- Administration, Intranasal
- Animals
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/microbiology
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/microbiology
- Cell Division/immunology
- Cells, Cultured
- Cytokines/biosynthesis
- Cytotoxicity, Immunologic
- Epitopes, T-Lymphocyte/immunology
- Flow Cytometry
- Gene Rearrangement, delta-Chain T-Cell Antigen Receptor
- Gene Rearrangement, gamma-Chain T-Cell Antigen Receptor
- Lung/cytology
- Lung/immunology
- Lung/metabolism
- Lymphocyte Activation
- Lymphocyte Depletion
- Mice
- Mice, Inbred C57BL
- Mycobacterium bovis/immunology
- Receptors, Antigen, T-Cell, gamma-delta/analysis
- Receptors, Antigen, T-Cell, gamma-delta/biosynthesis
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- T-Lymphocyte Subsets/cytology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- T-Lymphocyte Subsets/microbiology
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
- T-Lymphocytes, Cytotoxic/microbiology
- Tuberculosis/immunology
- Tuberculosis/microbiology
Collapse
Affiliation(s)
- Francesco Dieli
- Department of Biopathology, University of Palermo, Palermo, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Fulton SA, Reba SM, Martin TD, Boom WH. Neutrophil-mediated mycobacteriocidal immunity in the lung during Mycobacterium bovis BCG infection in C57BL/6 mice. Infect Immun 2002; 70:5322-7. [PMID: 12183593 PMCID: PMC128293 DOI: 10.1128/iai.70.9.5322-5327.2002] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Although neutrophils have been identified as sources of inflammatory cytokines and chemokines, little is known about their immunologic function during mycobacterial infection in the lungs. In this study, we examined the growth of Mycobacterium bovis BCG in the lungs under experimental conditions that altered neutrophil recruitment to the lungs. Depletion and recruitment of neutrophils was associated with respective increases and decreases in M. bovis BCG growth. Thus, neutrophils may enhance mycobacteriocidal immunity in the lungs.
Collapse
Affiliation(s)
- S A Fulton
- Division of Infectious Diseases, Case Western Reserve University and University Hospitals of Cleveland, Cleveland, Ohio 44106-4984, USA.
| | | | | | | |
Collapse
|
45
|
Saxena RK, Weissman D, Saxena QB, Simpson J, Lewis DM. Kinetics of changes in lymphocyte sub-populations in mouse lungs after intrapulmonary infection with M. bovis (Bacillus Calmette-Guerin) and identity of cells responsible for IFNgamma responses. Clin Exp Immunol 2002; 128:405-10. [PMID: 12067293 PMCID: PMC1906272 DOI: 10.1046/j.1365-2249.2002.01839.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gamma interferon (IFNgamma) plays a key role in host defense against pulmonary mycobacterial infections. A variety of lymphocyte subsets may participate in producing pulmonary IFNgamma responses, but their relative contributions after mycobacterial infection have not been clearly elucidated. To address this question, C57Bl/6 female mice were infected by intrapulmonary instillation of 2.5 x 104 BCG (Mycobacterium bovis Bacillus Calmette-Guerin). Lymphocyte populations in lung interstitium were examined at different time points after the infection. BCG load in lungs peaked between 4 and 6 weeks post-infection and declined to very low levels by the 12th week of infection. Recovery of lung interstitial lymphocytes doubled by 4-6 weeks after infection and declined thereafter. Flow cytometric analysis of the lung-derived lymphocytes revealed that about 5% of the these cells made IFNgamma in control mice, and this baseline IFNgamma production involved T (CD3+NK1.1-), NK (CD3-NK1.1+) and NKT (CD3+NK1.1+) cells. As the BCG lung infection peaked, the total number of CD3+ T cells in the lungs increased threefold at 5-6 weeks post-infection. There was a marked increase (sixfold) in the number of T cells secreting IFNgamma 5-6 weeks post-infection. Some increase was also noted in the NKT cells making IFNgamma, but the numbers of NK cells making IFNgamma in BCG-infected lungs remained unaltered. Our results suggest that whereas NK and NKT cells contribute to baseline IFNgamma secretion in control lungs, expansion in the IFNgamma-producing T-cell population was essentially responsible for the augmented response seen in lungs of BCG-infected mice.
Collapse
Affiliation(s)
- R K Saxena
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | | | | | | |
Collapse
|
46
|
Saxena RK, Weissman D, Simpson J, Lewis DM. Murine model of BCG lung infection: dynamics of lymphocyte subpopulations in lung interstitium and tracheal lymph nodes. J Biosci 2002; 27:143-53. [PMID: 11937685 DOI: 10.1007/bf02703771] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
C57Bl/6 female mice were infected with an intrapulmonary dose of 2.5 x 10(4) BCG (Mycobacterium bovis Bacillus Calmette-Guerin). Lymphocyte populations in lung interstitium and lung-associated tracheal lymph nodes (LN) were examined at 1, 2, 4, 5, 6, 8 and 12 weeks after infection. BCG load in lungs peaked between 4-6 weeks post-infection and declined to very low levels by the 12th week of infection. Lung leukocytes were obtained over the course of infection by enzyme digestion of lung tissue followed by centrifugation over Percoll discontinuous density gradients. By 4 to 6 weeks after infection, numbers of lung leukocytes had more than doubled but the proportions of lymphocytes (about 70%), macrophages (about 18%) and granulocytes (about 12%) remained essentially unaltered. Flow cytometric studies indicated: (i) the total number of CD3+ T cells in lungs increased by 3-fold relative to uninfected controls at 5 to 6 weeks post-infection, but the relative proportions of CD4 and CD8 cells within the T cell compartment remained unaltered; (ii) relative proportion of NK cells in lungs declined by 30% but the total number of NK cells (NK1.1+) per lung increased by about 50%, 5-6 weeks post infection; (iii) tracheal LN underwent marked increase in size and cell recoveries (6-10-fold increase) beginning 4 weeks after infection. While both T and B cells contributed to the increase in cell recoveries from infected tracheal LNs, the T/B ratio declined significantly but CD4/CD8 ratio remained unaltered. In control mice, IFNgamma producing non-T cells outnumbered T cells producing IFNgamma. However, as the adaptive response to infection evolves, marked increase occur in the number of IFNgamma producing T cells, but not NK cells in the lungs. Thus, T cells are the primary cell type responsible for the adaptive IFNgamma response to pulmonary BCG infection. Few T cells in tracheal LN of BCG infected mice produce IFNgamma, suggesting that maturational changes associated with migration to the lungs or residence in the lungs enhance the capability of some T cells to produce this cytokine.
Collapse
Affiliation(s)
- Rajiv K Saxena
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110 067, India.
| | | | | | | |
Collapse
|
47
|
Lyadova IV, Vordermeier HM, Eruslanov EB, Khaidukov SV, Apt AS, Hewinson RG. Intranasal BCG vaccination protects BALB/c mice against virulent Mycobacterium bovis and accelerates production of IFN-gamma in their lungs. Clin Exp Immunol 2001; 126:274-9. [PMID: 11703371 PMCID: PMC1906185 DOI: 10.1046/j.1365-2249.2001.01667.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Local immune reactivity in the lungs of BALB/c mice was studied following (i) intranasal (i.n.) vaccination with Mycobacterium bovis BCG, (ii) intravenous (i.v.) challenge with a virulent M. bovis field isolate and (iii) i.n. vaccination with M. bovis BCG followed by i.v. challenge with an M. bovis field isolate. The results demonstrated that i.n. vaccination with BCG induced a high degree of protection against systemic M. bovis challenge, and that this protection correlated with a rapid production of IFN-gamma after M. bovis challenge by lung T cells from vaccinated mice.
Collapse
Affiliation(s)
- I V Lyadova
- Central Institute for Tuberculosis, Moscow, Russia.
| | | | | | | | | | | |
Collapse
|
48
|
Neufert C, Pai RK, Noss EH, Berger M, Boom WH, Harding CV. Mycobacterium tuberculosis 19-kDa lipoprotein promotes neutrophil activation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:1542-9. [PMID: 11466375 DOI: 10.4049/jimmunol.167.3.1542] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Certain microbial substances, e.g., LPS, can activate neutrophils or prime them to enhance their response to other activating agents, e.g., fMLP. We investigated the role of the Mycobacterium tuberculosis (MTB) 19-kDa lipoprotein in activation of human neutrophils. MTB 19-kDa lipoprotein initiated phenotypic changes characteristic of neutrophil activation, including down-regulation of CD62 ligand (L-selectin) and up-regulation of CD35 (CR1) and CD11b/CD18 (CR3, Mac-1). In addition, exposure of neutrophils to MTB 19-kDa lipoprotein enhanced the subsequent oxidative burst in response to fMLP as assessed by oxidation of dihydrorhodamine 123 (determined by flow cytometry). LPS also produced these effects with similar kinetics, but an oligodeoxynucleotide containing a CpG motif failed to induce any priming or activation response. Although the effects of LPS required the presence of serum, neutrophil activation by MTB 19-kDa lipoprotein occurred independently of serum factors, suggesting the involvement of different receptors and signaling mechanisms for LPS and MTB 19-kDa lipoprotein. Thus, MTB 19-kDa lipoprotein serves as a pathogen-associated molecular pattern that promotes neutrophil priming and activation.
Collapse
Affiliation(s)
- C Neufert
- Department of Pathology, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | | | | | | | | | | |
Collapse
|
49
|
Toossi Z. The Inflammatory Response in Mycobacterium Tuberculosis Infection. Inflammation 2001. [DOI: 10.1007/978-94-015-9702-9_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
50
|
Wilkinson KA, Martin TD, Reba SM, Aung H, Redline RW, Boom WH, Toossi Z, Fulton SA. Latency-associated peptide of transforming growth factor beta enhances mycobacteriocidal immunity in the lung during Mycobacterium bovis BCG infection in C57BL/6 mice. Infect Immun 2000; 68:6505-8. [PMID: 11035768 PMCID: PMC97742 DOI: 10.1128/iai.68.11.6505-6508.2000] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2000] [Accepted: 08/24/2000] [Indexed: 11/20/2022] Open
Abstract
Latency-associated peptide of transforming growth factor beta (TGF-beta) (LAP) was used to determine whether in vivo modulation of TGF-beta bioactivity enhanced pulmonary immunity to Mycobacterium bovis BCG infection in C57BL/6 mice. LAP decreased BCG growth in the lung and enhanced antigen-specific T-cell proliferation and gamma interferon mRNA expression. Thus, susceptibility of the lung to primary BCG infection may be partially mediated by the immunosuppressive effects of TGF-beta.
Collapse
Affiliation(s)
- K A Wilkinson
- Division of Infectious Diseases, Case Western Reserve University, Cleveland, Ohio 44106-4984, USA
| | | | | | | | | | | | | | | |
Collapse
|