1
|
Feng ML, Sun MJ, Xu BY, Liu MY, Zhang HJ, Wu C. Mechanism of ELL-associated factor 2 and vasohibin 1 regulating invasion, migration, and angiogenesis in colorectal cancer. World J Gastroenterol 2023; 29:3770-3792. [PMID: 37426316 PMCID: PMC10324531 DOI: 10.3748/wjg.v29.i24.3770] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/08/2023] [Accepted: 05/12/2023] [Indexed: 06/28/2023] Open
Abstract
BACKGROUND As a novel endogenous anti-angiogenic molecule, vasohibin 1 (VASH1) is not only expressed in tumor stroma, but also in tumor tissue. Moreover, studies have shown that VASH1 may be a prognostic marker in colorectal cancer (CRC). Knockdown of VASH1 enhanced transforming growth factor-β1 (TGF-β1)/Smad3 pathway activity and type I/III collagen production. Our previous findings suggest that ELL-associated factor 2 (EAF2) may play a tumor suppressor and protective role in the development and progression of CRC by regulating signal transducer and activator of transcription 3 (STAT3)/TGF-β1 signaling pathway. However, the functional role and mechanism of VASH1-mediated TGF-β1 related pathway in CRC has not been elucidated.
AIM To investigate the expression of VASH1 in CRC and its correlation with the expression of EAF2. Furthermore, we studied the functional role and mechanism of VASH1 involved in the regulation and protection of EAF2 in CRC cells in vitro.
METHODS We collected colorectal adenocarcinoma and corresponding adjacent tissues to investigate the clinical expression of EAF2 protein and VASH1 protein in patients with advanced CRC. Following, we investigated the effect and mechanism of EAF2 and VASH1 on the invasion, migration and angiogenesis of CRC cells in vitro using plasmid transfection.
RESULTS Our findings indicated that EAF2 was down-regulated and VASH1 was up-regulated in advanced CRC tissue compared to normal colorectal tissue. Kaplan-Meier survival analysis showed that the higher EAF2 Level group and the lower VASH1 Level group had a higher survival rate. Overexpression of EAF2 might inhibit the activity of STAT3/TGF-β1 pathway by up-regulating the expression of VASH1, and then weaken the invasion, migration and angiogenesis of CRC cells.
CONCLUSION This study suggests that EAF2 and VASH1 may serve as new diagnostic and prognostic markers for CRC, and provide a clinical basis for exploring new biomarkers for CRC. This study complements the mechanism of EAF2 in CRC cells, enriches the role and mechanism of CRC cell-derived VASH1, and provides a new possible subtype of CRC as a therapeutic target of STAT3/TGF-β1 pathway.
Collapse
Affiliation(s)
- Ming-Liang Feng
- Department of Endoscopy, The First Hospital Affiliated to China Medical University, Shenyang 110001, Liaoning Province, China
| | - Ming-Jun Sun
- Department of Endoscopy, The First Hospital Affiliated to China Medical University, Shenyang 110001, Liaoning Province, China
| | - Bo-Yang Xu
- Department of Endoscopy, The First Hospital Affiliated to China Medical University, Shenyang 110001, Liaoning Province, China
| | - Meng-Yuan Liu
- Department of Endoscopy, The First Hospital Affiliated to China Medical University, Shenyang 110001, Liaoning Province, China
| | - Hui-Jing Zhang
- Department of Endoscopy, The First Hospital Affiliated to China Medical University, Shenyang 110001, Liaoning Province, China
| | - Can Wu
- Department of Endoscopy, The First Hospital Affiliated to China Medical University, Shenyang 110001, Liaoning Province, China
| |
Collapse
|
2
|
Liu X, Shao Y, Tu J, Sun J, Dong B, Wang Z, Zhou J, Chen L, Tao J, Chen J. TMAO-Activated Hepatocyte-Derived Exosomes Impair Angiogenesis via Repressing CXCR4. Front Cell Dev Biol 2022; 9:804049. [PMID: 35174166 PMCID: PMC8841965 DOI: 10.3389/fcell.2021.804049] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/15/2021] [Indexed: 01/10/2023] Open
Abstract
Objective: Trimethylamine-N-oxide (TMAO) was found to play crucial roles in vascular endothelial function. However, the exact molecular mechanisms are not yet entirely clear. Recently, we found that exosomes (Exos) isolated from TMAO-treated hepatocytes (TMAO-Exos) contained a distinctive profile of miRNAs compared to those from the TMAO-free group (Control-Exos). Furthermore, TMAO-Exos could notably promote inflammation, damage vascular endothelial cells (VECs), and impair endothelium-dependent vasodilation. This study aimed to further evaluate the effects of TMAO-Exos on VECs and explore the underlying mechanisms. Methods: Exos were isolated from the hepatocyte culture supernatant with or without TMAO, using differential centrifugation. Then, VECs were treated with these Exos for 48 h and subjected to RNA-sequencing for detecting the changes of alternative polyadenylation (APA) and mRNA. After validation by qPCR and western blotting, the recombinant viruses were used to mediate the overexpression of C-X-C motif chemokine receptor 4 (CXCR4). The in vitro VEC function was evaluated by cell migration and tube formation, and in vivo angiogenesis was investigated in hindlimb ischemia models. Results: Exos released from hepatocytes were differentially regulated by TMAO; both could be taken up by VECs; and furthermore, TMAO-Exos significantly reduced cell migration and tube formation in vitro and impaired perfusion recovery and angiogenesis after hindlimb ischemia, by down-regulating the CXCR4 expression. However, TMAO-Exos failed to regulate the splicing events, at least in this experimental setting, which suggested that TMAO-Exos may affect CXCR4 expression via an APA-independent manner. Conclusions: Our findings revealed a novel indirect mechanism by which TMAO impaired endothelial function through stimulating hepatocytes to produce Exos that possessed distinctive activity. The crosstalk between the liver and vascular endothelial mediated by these Exos may offer a new target for restraining the harmful effects induced by TMAO.
Collapse
Affiliation(s)
- Xiang Liu
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangzhou, China.,School of Medicine, South China University of Technology, Guangzhou, China
| | - Yijia Shao
- Department of Hypertension and Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China
| | - Jiazichao Tu
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangzhou, China.,School of Medicine, South China University of Technology, Guangzhou, China
| | - Jiapan Sun
- Department of Geriatrics, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Bing Dong
- Department of Hypertension and Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China
| | - Zhichao Wang
- Department of Hypertension and Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China
| | - Jianrong Zhou
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangzhou, China.,School of Medicine, South China University of Technology, Guangzhou, China
| | - Long Chen
- The International Medical Department of Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Jun Tao
- Department of Hypertension and Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China
| | - Jimei Chen
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangzhou, China.,School of Medicine, South China University of Technology, Guangzhou, China
| |
Collapse
|
3
|
Sun Y, Wang Y, Liu S, Han B, Sun M, Wang J. Significance of Vasohibin 1 in Cancer Patients: A Systematic Review and Meta analysis. J Cancer Res Ther 2022; 18:567-575. [DOI: 10.4103/jcrt.jcrt_281_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
4
|
Li L, Williams P, Gao Z, Wang Y. VEZF1-guanine quadruplex DNA interaction regulates alternative polyadenylation and detyrosinase activity of VASH1. Nucleic Acids Res 2020; 48:11994-12003. [PMID: 33231681 PMCID: PMC7708047 DOI: 10.1093/nar/gkaa1092] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 10/22/2020] [Accepted: 11/20/2020] [Indexed: 11/14/2022] Open
Abstract
Vascular endothelial zinc finger 1 (VEZF1) plays important roles in endothelial lineage definition and angiogenesis. Vasohibins 1 and 2 (VASH1 and VASH2) can form heterodimers with small vasohibin-binding protein (SVBP) and were recently shown to regulate angiogenesis by acting as tubulin detyrosinases. Here, we showed that VEZF1 binds directly with DNA guanine quadruplex (G quadruplex, G4) structures in vitro and in cells, which modulates the levels of the two isoforms of VASH1 mRNA. Disruption of this interaction, through genetic depletion of VEZF1 or treatment of cells with G4-stabilizing small molecules, led to increased production of the long over short isoform of VASH1 (i.e. VASH1A and VASH1B, respectively) mRNA and elevated tubulin detyrosinase activity in cells. Moreover, disruption of VEZF1-G4 interactions in human umbilical vein endothelial cells resulted in diminished angiogenesis. These results suggest that the interaction between VEZF1 and G4 structures assumes a crucial role in angiogenesis, which occurs through regulating the relative levels of the two isoforms of VASH1 mRNA and the detyrosinase activity of the VASH1-SVBP complex. Together, our work revealed VEZF1 as a G4-binding protein, identified a novel regulatory mechanism for tubulin detyrosinase, and illustrated that the VEZF1- and VASH1-mediated angiogenesis pathways are functionally connected.
Collapse
Affiliation(s)
- Lin Li
- Department of Chemistry, University of California, Riverside, CA 92521, USA
| | - Preston Williams
- Department of Chemistry, University of California, Riverside, CA 92521, USA
| | - Zi Gao
- Department of Chemistry, University of California, Riverside, CA 92521, USA
| | - Yinsheng Wang
- Department of Chemistry, University of California, Riverside, CA 92521, USA
| |
Collapse
|
5
|
Hantelys F, Godet AC, David F, Tatin F, Renaud-Gabardos E, Pujol F, Diallo LH, Ader I, Ligat L, Henras AK, Sato Y, Parini A, Lacazette E, Garmy-Susini B, Prats AC. Vasohibin1, a new mouse cardiomyocyte IRES trans-acting factor that regulates translation in early hypoxia. eLife 2019; 8:50094. [PMID: 31815666 PMCID: PMC6946400 DOI: 10.7554/elife.50094] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 12/09/2019] [Indexed: 12/16/2022] Open
Abstract
Hypoxia, a major inducer of angiogenesis, triggers major changes in gene expression at the transcriptional level. Furthermore, under hypoxia, global protein synthesis is blocked while internal ribosome entry sites (IRES) allow specific mRNAs to be translated. Here, we report the transcriptome and translatome signatures of (lymph)angiogenic genes in hypoxic HL-1 mouse cardiomyocytes: most genes are induced at the translatome level, including all IRES-containing mRNAs. Our data reveal activation of (lymph)angiogenic factor mRNA IRESs in early hypoxia. We identify vasohibin1 (VASH1) as an IRES trans-acting factor (ITAF) that is able to bind RNA and to activate the FGF1 IRES in hypoxia, but which tends to inhibit several IRESs in normoxia. VASH1 depletion has a wide impact on the translatome of (lymph)angiogenesis genes, suggesting that this protein can regulate translation positively or negatively in early hypoxia. Translational control thus appears as a pivotal process triggering new vessel formation in ischemic heart.
Collapse
Affiliation(s)
- Fransky Hantelys
- UMR 1048-I2MC, Inserm, Université de Toulouse, UPS, Toulouse, France
| | - Anne-Claire Godet
- UMR 1048-I2MC, Inserm, Université de Toulouse, UPS, Toulouse, France
| | - Florian David
- UMR 1048-I2MC, Inserm, Université de Toulouse, UPS, Toulouse, France
| | - Florence Tatin
- UMR 1048-I2MC, Inserm, Université de Toulouse, UPS, Toulouse, France
| | | | - Françoise Pujol
- UMR 1048-I2MC, Inserm, Université de Toulouse, UPS, Toulouse, France
| | - Leila H Diallo
- UMR 1048-I2MC, Inserm, Université de Toulouse, UPS, Toulouse, France
| | - Isabelle Ader
- UMR 1031-STROMALAB, Inserm, CNRS ERL5311, Etablissement Français du Sang-Occitanie (EFS), National Veterinary School of Toulouse (ENVT), Université de Toulouse, UPS, Toulouse, France
| | - Laetitia Ligat
- UMR 1037-CRCT, Inserm, CNRS, Université de Toulouse, UPS, Pôle Technologique-Plateau Protéomique, Toulouse, France
| | - Anthony K Henras
- UMR 5099-LBME, CBI, CNRS, Université de Toulouse, UPS, Toulouse, France
| | - Yasufumi Sato
- Department of Vascular Biology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Angelo Parini
- UMR 1048-I2MC, Inserm, Université de Toulouse, UPS, Toulouse, France
| | - Eric Lacazette
- UMR 1048-I2MC, Inserm, Université de Toulouse, UPS, Toulouse, France
| | | | | |
Collapse
|
6
|
Bowler E, Oltean S. Alternative Splicing in Angiogenesis. Int J Mol Sci 2019; 20:E2067. [PMID: 31027366 PMCID: PMC6540211 DOI: 10.3390/ijms20092067] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/15/2019] [Accepted: 04/23/2019] [Indexed: 12/12/2022] Open
Abstract
Alternative splicing of pre-mRNA allows the generation of multiple splice isoforms from a given gene, which can have distinct functions. In fact, splice isoforms can have opposing functions and there are many instances whereby a splice isoform acts as an inhibitor of canonical isoform function, thereby adding an additional layer of regulation to important processes. Angiogenesis is an important process that is governed by alternative splicing mechanisms. This review focuses on the alternative spliced isoforms of key genes that are involved in the angiogenesis process; VEGF-A, VEGFR1, VEGFR2, NRP-1, FGFRs, Vasohibin-1, Vasohibin-2, HIF-1α, Angiopoietin-1 and Angiopoietin-2.
Collapse
Affiliation(s)
- Elizabeth Bowler
- Institute of Biomedical and Clinical Sciences, Medical School, College of Medicine and Health, University of Exeter, Exeter EX4 4PY, UK.
| | - Sebastian Oltean
- Institute of Biomedical and Clinical Sciences, Medical School, College of Medicine and Health, University of Exeter, Exeter EX4 4PY, UK.
| |
Collapse
|
7
|
Pircher A, Schäfer G, Eigentler A, Pichler R, Puhr M, Steiner E, Horninger W, Gunsilius E, Klocker H, Heidegger I. Robo 4 - the double-edged sword in prostate cancer: impact on cancer cell aggressiveness and tumor vasculature. Int J Med Sci 2019; 16:115-124. [PMID: 30662335 PMCID: PMC6332478 DOI: 10.7150/ijms.28735] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 11/09/2018] [Indexed: 12/12/2022] Open
Abstract
Background: The magic roundabout receptor 4 (Robo 4) is a tumor endothelial marker expressed in the vascular network of various tumor entities. However, the role of Robo 4 in prostate cancer (PCa), the second common cause of cancer death among men in -developed countries, has not been described yet. Thus, the present study investigates for the first time the impact of Robo 4 in PCa both in the clinical setting and in vitro. Methods and Results: Immunohistochemical analyses of benign and malignant prostate tissue samples of 95 PCa patients, who underwent radical prostatectomy (RPE), revealed a significant elevated expression of Robo 4 as well as its ligand Slit 2 protein in cancerous tissue compared to benign. Moreover, increased Robo 4 expression was associated with higher Gleason score and pT stage. In advanced stage we observed a hypothesis-generating trend that high Robo 4 and Slit 2 expression is associated with delayed development of tumor recurrence compared to patients with low Robo 4 and Slit 2 expression, respectively. In contrast to so far described exclusive expression of Robo 4 in the tumor vascular network, our analyses showed that in PCa Robo 4 is not only expressed in the tumor stroma but also in cancer epithelial cells. This finding was also confirmed in vitro as PC3 PCa cells express Robo 4 on mRNA as well as protein level. Overexpression of Robo 4 in PC3 as well as in Robo 4 negative DU145 and LNCaP PCa cells was associated with a significant decrease in cell-proliferation and cell-viability. Conclusion: In summary we observed that Robo 4 plays a considerable role in PCa development as it is expressed in cancer epithelial cells as well as in the surrounding tumor stroma. Moreover, higher histological tumor grade was associated with increased Robo 4 expression; controversially patients with high Robo 4 tend to exert lower biochemical recurrence possibly reflecting a protective role of Robo 4.
Collapse
Affiliation(s)
- Andreas Pircher
- Department of Hematology and Oncology, Internal Medicine V, Medical University Innsbruck, Austria
| | - Georg Schäfer
- Department of Pathology, Medical University Innsbruck, Austria
| | | | - Renate Pichler
- Department of Pathology, Medical University Innsbruck, Austria
| | - Martin Puhr
- Department of Urology, Medical University Innsbruck, Austria
| | | | | | - Eberhard Gunsilius
- Department of Hematology and Oncology, Internal Medicine V, Medical University Innsbruck, Austria
| | - Helmut Klocker
- Department of Urology, Medical University Innsbruck, Austria
| | | |
Collapse
|
8
|
The Tubulin Detyrosination Cycle: Function and Enzymes. Trends Cell Biol 2019; 29:80-92. [DOI: 10.1016/j.tcb.2018.08.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/14/2018] [Accepted: 08/15/2018] [Indexed: 12/24/2022]
|
9
|
Wu M, Zhang Z, Ma F, Zhang X, Zhang Z, Tang J, Chen P, Zhou C, Wang W. Association between TAp73, p53 and VASH1 expression in lung adenocarcinoma. Oncol Lett 2018; 15:5175-5180. [PMID: 29552154 DOI: 10.3892/ol.2018.7912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 01/09/2018] [Indexed: 11/06/2022] Open
Abstract
TAp73 and p53 are involved in regulating tumor angiogenesis and vasohibin-1 (VASH1) is an anti-angiogenic factor. Whether TAp73 regulates angiogenesis positively or negatively is controversial. The status of P53 may determine the effect of TAp73 on angiogenesis. To the best of our knowledge it has not been previously reported whether TAp73, p53 and VASH1 are coexpressed in lung cancer. We profiled the association between TAp73 and p53 and VASH1 expression in lung adenocarcinoma (LAC) and investigated the function of TAp73 in regulating tumor angiogenesis. TAp73, p53 and VASH1 expression in 53 human LAC tissues and the adjacent normal tissues were evaluated using immunohistochemistry. The positive expression rates of p53, TAp73 and VASH1 were significantly higher (92.6, 97.7 and 67.4%, respectively) in LAC tissue compared with paraneoplastic lung tissue (7.4, 2.3 and 32.6%, respectively, P<0.01). Pearson's correlation coefficient showed a significant positive correlation between p53 and TAp73 (r=0.474, P<0.01) and TAp73α and VASH1 (r=0.367, P<0.01). The positive expression rate of p53 and VASH1 was almost significantly correlated (r=0.187, P=0.055). Similarly, p53 expression intensity had a significant positive correlation with TAp73α (r=0.517, P<0.01) and with VASH1 (r=0.277, P<0.01), as did TAp73α with VASH1 (r=0.351, P<0.01). TAp73, p53 (mutant) and VASH1 expression was significantly higher in LAC tissue compared with paraneoplastic lung tissue. The expression trends of the three proteins were significantly positively correlated with each other in LAC. These results suggest that TAp73 may suppress tumor angiogenesis in LAC.
Collapse
Affiliation(s)
- Meng Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education of China, Peking University, Beijing 100191, P.R. China.,Department of Respiration, First Affiliated Hospital of Hebei North University, Zhangjiakou, Heibei 075061, P.R. China
| | - Zhihua Zhang
- Department of Respiration, First Affiliated Hospital of Hebei North University, Zhangjiakou, Heibei 075061, P.R. China
| | - Fangxu Ma
- Department of Respiration, First Affiliated Hospital of Hebei North University, Zhangjiakou, Heibei 075061, P.R. China
| | - Xiulong Zhang
- Department of Respiration, First Affiliated Hospital of Hebei North University, Zhangjiakou, Heibei 075061, P.R. China
| | - Zhilin Zhang
- Department of Respiration, First Affiliated Hospital of Hebei North University, Zhangjiakou, Heibei 075061, P.R. China
| | - Jianhua Tang
- Department of Respiration, First Affiliated Hospital of Hebei North University, Zhangjiakou, Heibei 075061, P.R. China
| | - Ping Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education of China, Peking University, Beijing 100191, P.R. China
| | - Chunyan Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education of China, Peking University, Beijing 100191, P.R. China
| | - Weiping Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education of China, Peking University, Beijing 100191, P.R. China
| |
Collapse
|
10
|
Liu S, Romano V, Steger B, Kaye SB, Hamill KJ, Willoughby CE. Gene-based antiangiogenic applications for corneal neovascularization. Surv Ophthalmol 2018; 63:193-213. [DOI: 10.1016/j.survophthal.2017.10.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 10/09/2017] [Accepted: 10/12/2017] [Indexed: 12/22/2022]
|
11
|
Du H, Zhao J, Hai L, Wu J, Yi H, Shi Y. The roles of vasohibin and its family members: Beyond angiogenesis modulators. Cancer Biol Ther 2017; 18:827-832. [PMID: 28886304 PMCID: PMC5710674 DOI: 10.1080/15384047.2017.1373217] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Vasohibin-1 is an intrinsic angiogenesis inhibitor, and is expressed in endothelial cells via induction by pro-angiogenesis factors. It is known to inhibit several processes of angiogenesis, with different mechanisms from extrinsic angiogenesis inhibitors. Vasohibin-2 is mainly expressed by mononuclear cells which have been mobilized from bone marrow. It not only promotes angiogenesis, but also modulates the releases of FGF-2 and VEGF, which are the two major inducers for vasohibin1. Hypoxic environment induces the expression of hypoxia-inducible Factor 1α with a result of VEGF release nearly in all tumor cell lines and tissues. However, it has been observed that hypoxia reduces the inducible effects of VEGF on vasohibin, which indicates that a complicated mechanism exists in the angiogenesis. Vasohibin and its family members play important roles in both the physiological and pathological procedures, in contrary but complementary patterns. Furthermore, human aortic smooth muscle cells and fibroblast have also been detected to express vasohibin on a moderate to weak scale range. Recently, the results of an increasing number of studies in vivo have shown that vasohibin can also be detected in several cancers, and is associated with micro-vessel densities, histology grades, invasions, poor clinical features, metastasis, and dissemination in abdominal cavities, as well as EMT. In more recent reports, it has been confirmed that, along with being angiogenesis regulators, a variety of other roles have been associated with this family. The focus of this study was the upstream regulatory mechanisms of vasohibin expressions, and their role in regard to the downstream target proteins of vasohibin, especially in carcinoma. Vasohibin is considered to be an original angiogenesis inhibitor, and has a much broader significance in pathological processes. It can be taken as an independent prognostic factor, as well as a potential strategy for cancer therapy programs.
Collapse
Affiliation(s)
- Hua Du
- a The Department of Pathology Affiliated Hospital , Inner Mongolia Medical University Hohhot City, Inner Mongolia Autonomous Region , R. P. of China
| | - Jing Zhao
- a The Department of Pathology Affiliated Hospital , Inner Mongolia Medical University Hohhot City, Inner Mongolia Autonomous Region , R. P. of China
| | - Ling Hai
- a The Department of Pathology Affiliated Hospital , Inner Mongolia Medical University Hohhot City, Inner Mongolia Autonomous Region , R. P. of China
| | - Jing Wu
- a The Department of Pathology Affiliated Hospital , Inner Mongolia Medical University Hohhot City, Inner Mongolia Autonomous Region , R. P. of China
| | - Hua Yi
- a The Department of Pathology Affiliated Hospital , Inner Mongolia Medical University Hohhot City, Inner Mongolia Autonomous Region , R. P. of China
| | - Yonghong Shi
- a The Department of Pathology Affiliated Hospital , Inner Mongolia Medical University Hohhot City, Inner Mongolia Autonomous Region , R. P. of China
| |
Collapse
|
12
|
Zhang B, Wu Z, Xie W, Tian D, Chen F, Qin C, Du Z, Tang G, Gao Q, Qiu X, Wu C, Tian J, Hu H. The expression of vasohibin-1 and its prognostic significance in bladder cancer. Exp Ther Med 2017; 14:3477-3484. [PMID: 29042936 PMCID: PMC5639433 DOI: 10.3892/etm.2017.4969] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 05/19/2017] [Indexed: 11/05/2022] Open
Abstract
Angiogenesis is important in the development of solid tumors. Vasohibin-1 (VASH-1) is an endothelium-derived protein that acts as an inhibitor of angiogenesis in many different types of cancer. However, the expression of VASH-1 and its clinical value in bladder cancer remain unknown. The current study analyzed the expression of VASH-1, as well as the expression of the angiogenesis-related factors vascular endothelial growth factor-A, hypoxia inducible factor-1α and cluster of differentiation 34 in bladder cancer tissues from 50 patients using immunohistochemistry. The associations between the expression of these factors and the clinicopathological characteristics of the patients were assessed. The current study demonstrated that VASH-1 is primarily expressed in the cytoplasm of bladder cancer cells and in a fraction of vascular endothelial cells. Furthermore, the expression of VASH-1 was positively associated with the tumor stage (P<0.01), pathological grade (P<0.01) and distant metastasis (P<0.05) but not with patient age or sex (P>0.05). Spearman rank correlation tests indicated that levels of those four factors were positively correlated with each other. Kaplan-Meier analysis indicated that high expression of these four factors was significantly associated with lower 5-year overall survival and progression-free survival rates. Collectively, the results of the current study suggest that VASH-1 is clinically significant in bladder cancer and its high expression may predict the progression and prognosis of patients with bladder cancer. The present study also implies that VASH-1 may be a novel target for vascular targeting therapy.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Urology, Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China.,Department of Ultrasound, Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China.,Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Zhouliang Wu
- Department of Urology, Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China.,Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Wanqin Xie
- Key Laboratory of Genetics and Birth Health of Hunan, The Family Planning Research Institute of Hunan, Changsha, Hunan 410126, P.R. China
| | - Dawei Tian
- Department of Urology, Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China.,Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Feiran Chen
- Department of Urology, Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China.,Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Chuan Qin
- Department of Urology, Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China.,Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Zhiyong Du
- Department of Urology, Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China.,Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Gang Tang
- Department of Urology, Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China.,Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Qiongqiong Gao
- Department of Thoracic Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300211, P.R. China
| | - Xiaoyu Qiu
- College of Management and Economics, Tianjin University, Tianjin 300211, P.R. China
| | - Changli Wu
- Department of Urology, Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China.,Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Jing Tian
- Department of Ultrasound, Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China.,Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Hailong Hu
- Department of Urology, Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China.,Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| |
Collapse
|
13
|
武 世, 王 一, 慈 红, 陶 仪. [Expression of vasohibin-1 and MACC1 in lung squamous cell carcinoma and their clinicopathological significance]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2017; 37:952-956. [PMID: 28736375 PMCID: PMC6765526 DOI: 10.3969/j.issn.1673-4254.2017.07.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Indexed: 06/07/2023]
Abstract
OBJECTIVE To investigate the expressions of vasohibin-1 and MACC1 in lung squamous cell carcinoma (LSCC) and their associations with the clinicopathological characteristics of the patients. METHODS The expressions of vasohibin-1 and MACC1 proteins were examined with immunohistochemistry in 160 LSCC tissues and 80 normal lung tissues. RESULTS The positivity rates of vasohibin-1 and MACC1 proteins were 59.4% and 11.3% in LSCC tissues, respectively, which were significantly higher than the rates in normal lung tissues (57.5% and 8.8%, respectively; P<0.05). The expressions of vasohibin-1 and MACC1 proteins were significantly correlated with the tumor grades, lymph node metastasis, and TNM stages (all P<0.05). Spearman correlation analysis indicated a positive correlation between vasohibin-1 expression and MACC1 expressions (P<0.001). Kaplan-Meier survival analysis showed that LSCC patients with a positive expression of vasohibin-1 had significantly shorter overall survival time than those negative for vasohibin-1; the overall survival time was also significantly shorter in patients positive for MACC1 than in those negative for MACC1 (both P<0.05). Multivariate COX regression analysis indicated that positive expressions of vasohibin-1 and MACC1 protein and TNM stage were independent prognostic factors of LSCC. CONCLUSION Aberrant expressions of vasohibin-1 and MACC1 may participate in the development and promote invasion and metastasis of LSCC. The combined detection of vasohibin-1 and MACC1 expression may provide important evidence for predicting the progression and prognosis of LSCC.
Collapse
Affiliation(s)
- 世伍 武
- />蚌埠医学院第一附属医院病理科//蚌埠医学院病理学教研室,安徽 蚌埠 233004Department of Pathology, First Affiliated Hospital of Bengbu Medical College/ Department of Pathology, Bengbu Medical College, Bengbu 233004, China
| | - 一超 王
- />蚌埠医学院第一附属医院病理科//蚌埠医学院病理学教研室,安徽 蚌埠 233004Department of Pathology, First Affiliated Hospital of Bengbu Medical College/ Department of Pathology, Bengbu Medical College, Bengbu 233004, China
| | - 红非 慈
- />蚌埠医学院第一附属医院病理科//蚌埠医学院病理学教研室,安徽 蚌埠 233004Department of Pathology, First Affiliated Hospital of Bengbu Medical College/ Department of Pathology, Bengbu Medical College, Bengbu 233004, China
| | - 仪声 陶
- />蚌埠医学院第一附属医院病理科//蚌埠医学院病理学教研室,安徽 蚌埠 233004Department of Pathology, First Affiliated Hospital of Bengbu Medical College/ Department of Pathology, Bengbu Medical College, Bengbu 233004, China
| |
Collapse
|
14
|
Liu S, Han B, Zhang Q, Dou J, Wang F, Lin W, Sun Y, Peng G. Vasohibin-1 suppresses colon cancer. Oncotarget 2016; 6:7880-98. [PMID: 25797264 PMCID: PMC4480723 DOI: 10.18632/oncotarget.3493] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 02/04/2015] [Indexed: 01/01/2023] Open
Abstract
Vasohibin-1 (VASH1) is an endogenous angiogenesis inhibitor.However, the clinical relevance of VASH1 in colon cancer and its regulations on cancer angiogenesis and cancer cell biological characteristics are still unknown. Here we showed that stromal VASH1 levels were negatively correlated with tumor size, advanced clinical stage and distant metastases in colon cancer patients. Overexpression of VASH1 in colon cancer cells induced apoptosis and senescence, inhibiting cancer cell growth and colony formation in vitro and tumor growth in vivo. In addition, knockdown of VASH1 in cancer cells promoted cell growth, adhesion and migration in vitro, and enhanced tumorigenesis and metastasis in vivo.
Collapse
Affiliation(s)
- Shuai Liu
- Department of Oncology, Jinan Central Hospital, Affiliated to Shandong University, Jinan, P. R. China.,Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, MO, USA
| | - Bing Han
- Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, MO, USA.,Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, P.R. China
| | - Qunyuan Zhang
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO, USA
| | - Jie Dou
- Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, MO, USA
| | - Fang Wang
- Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, MO, USA
| | - Wenli Lin
- Department of Oncology, Jinan Central Hospital, Affiliated to Shandong University, Jinan, P. R. China
| | - Yuping Sun
- Department of Oncology, Jinan Central Hospital, Affiliated to Shandong University, Jinan, P. R. China
| | - Guangyong Peng
- Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, MO, USA
| |
Collapse
|
15
|
Distinctive role of vasohibin-1A and its splicing variant vasohibin-1B in tumor angiogenesis. Cancer Gene Ther 2016; 23:133-41. [PMID: 27080222 DOI: 10.1038/cgt.2016.13] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 03/06/2016] [Accepted: 03/09/2016] [Indexed: 11/08/2022]
Abstract
Vasohibin-1 (VASH1) was isolated as a negative-feedback regulator of angiogenesis expressed in endothelial cells (ECs). There are two transcripts of VASH1, that is, the full-length VASH1A consisting of seven exons and the splicing variant VASH1B consisting of four exons. Here, we compared the effects of VASH1A and VASH1B on tumor angiogenesis. When ECs were transfected with VASH1A or VASH1B cDNAs, VASH1B transfectants, but not VASH1A ones, induced autophagic cell death of ECs. With sonoporation, the VASH1A or VASH1B gene were transfected specifically in ECs of tumor vessels in mice. Both VASH1A and VASH1B decreased tumor vessel density and inhibited tumor growth. VASH1A normalized the remaining tumor vessels, increased their rate of perfusion, decreased tumor hypoxia and enhanced the efficacy of anticancer chemotherapy, whereas VASH1B pruned tumor vessels without causing normalization, increased tumor hypoxia and tumor necrosis and did not enhance the efficacy of anticancer chemotherapy. The alternate transfection of mice with the VASH1A and VASH1B gene showed the highest effects on antitumor activity and normalization of tumor vessels. Our present findings on VASH1A and VASH1B should provide an innovative approach that would improve the efficacy of antiangiogenic cancer therapy by balancing vascular normalization and pruning.
Collapse
|
16
|
Ukaji T, Lin Y, Banno K, Okada S, Umezawa K. Inhibition of IGF-1-Mediated Cellular Migration and Invasion by Migracin A in Ovarian Clear Cell Carcinoma Cells. PLoS One 2015; 10:e0137663. [PMID: 26360832 PMCID: PMC4567285 DOI: 10.1371/journal.pone.0137663] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 08/19/2015] [Indexed: 01/17/2023] Open
Abstract
Previously we isolated migracin A from a Streptomyces culture filtrate as an inhibitor of cancer cell migration. In the present research, we found that migracin A inhibited migration and invasion of ovarian clear cell carcinoma ES-2 cells. In the course of our mechanistic study, migracin A was shown to enhance vasohibin-1 expression in an angiogenesis array. We also confirmed that it increased the mRNA expression of this protein. Moreover, overexpression of vasohibin-1 lowered the migration but not the invasion of ES-2 cells. Then, we looked for another target protein employing a motility array, and found that migracin A lowered the IGF-1 expression. Knockdown of IGF-1 by siRNA decreased the migration and invasion of ES-2 cells. Migracin A also decreased Akt phosphorylation involved in the downstream signaling. Crosstalk analysis indicated that overexpression of vasohibin-1 decreased the IGF-1 expression. On the other hand, it showed no direct anticancer activity in terms of the ES-2 growth in agar. Migracin A inhibited the migration and IGF-1 expression in not only ES-2 but also another ovarian clear cell carcinoma JHOC-5 cells. In addition, it also inhibited capillary tube formation of human umbilical vein endothelial cells. Since its cytotoxicity is very low, migracin A may be a candidate for an anti-metastasis agent not exhibiting prominent toxicity.
Collapse
Affiliation(s)
- Tamami Ukaji
- Department of Molecular Target Medicine, Aichi Medical University School of Medicine, 1–1 Yazako-Karimata, Nagakute, 480–1195, Japan
| | - Yinzhi Lin
- Department of Molecular Target Medicine, Aichi Medical University School of Medicine, 1–1 Yazako-Karimata, Nagakute, 480–1195, Japan
| | - Kouji Banno
- Department of Obstetrics and Gynecology, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160–8582, Japan
| | - Shoshiro Okada
- Department of Pharmacology, Aichi Medical University School of Medicine, 1–1 Yazako-Karimata, Nagakute, 480–1195, Japan
| | - Kazuo Umezawa
- Department of Molecular Target Medicine, Aichi Medical University School of Medicine, 1–1 Yazako-Karimata, Nagakute, 480–1195, Japan
- * E-mail:
| |
Collapse
|
17
|
Correlation of tumor-infiltrative lymphocyte subtypes alteration with neoangiogenesis before and after neoadjuvant chemotherapy treatment in breast cancer patients. Int J Biol Markers 2014; 29:e193-203. [PMID: 24803281 DOI: 10.5301/jbm.5000082] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2014] [Indexed: 12/24/2022]
Abstract
The two most important factors in tumor-stromal interactions are tumor-infiltrating lymphocytes (TIL) and neoangiogenesis (NAng). While changes of these parameters in responders of neoadjuvant chemotherapy (NCTx) have been reported, their correlation with pathological response in breast cancer (BC) patients treated with NCTx have not been described. We therefore evaluated alterations of the TIL subtypes ratio and alterations of NAng using the vasohibin-1-positive ratio (VPR) in BC patients during the course of NCTx. To this aim we used: (i) double immunohistochemistry of CD8 cytotoxic T cells and T regulatory cells (Treg) with Foxp3, determining the CD8+/Foxp3 ratio; (ii) immunostaining of CD31 and vasohibin-1, yielding the VPR, which reflects the NAng status. Changes between the CD8+/Foxp3 ratio and VPR before and after therapy were then correlated with the pathological response of the patients. A concomitant significant decrement of Foxp3 and NAng, represented by VPR, were detected only in NCTx pathological responders (p<0.001 and p=0.044, respectively). The CD8+/Foxp3 ratio increased in both responders and non-responders, but to greater extent in responders (p=0.02). The changes of VPR in the NCTx-treated group differed from those recorded for the patients treated with aromatase inhibitors and shown in our earlier study; this indicates that the reactions of the tumor-stromal interaction to therapy were different among different treatments in BC patients. Changes in Foxp3 and VPR in responders may reflect the dynamic activity of tumor stroma and host immune response to tumor antigens in the tumor microenvironment in response to the NCTx. VPR can be a potential surrogate marker in BC specimens for predicting the response to NCTx, incorporating both features of carcinoma and stromal cells.
Collapse
|
18
|
Kelemen O, Convertini P, Zhang Z, Wen Y, Shen M, Falaleeva M, Stamm S. Function of alternative splicing. Gene 2013; 514:1-30. [PMID: 22909801 PMCID: PMC5632952 DOI: 10.1016/j.gene.2012.07.083] [Citation(s) in RCA: 548] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 07/21/2012] [Accepted: 07/30/2012] [Indexed: 12/15/2022]
Abstract
Almost all polymerase II transcripts undergo alternative pre-mRNA splicing. Here, we review the functions of alternative splicing events that have been experimentally determined. The overall function of alternative splicing is to increase the diversity of mRNAs expressed from the genome. Alternative splicing changes proteins encoded by mRNAs, which has profound functional effects. Experimental analysis of these protein isoforms showed that alternative splicing regulates binding between proteins, between proteins and nucleic acids as well as between proteins and membranes. Alternative splicing regulates the localization of proteins, their enzymatic properties and their interaction with ligands. In most cases, changes caused by individual splicing isoforms are small. However, cells typically coordinate numerous changes in 'splicing programs', which can have strong effects on cell proliferation, cell survival and properties of the nervous system. Due to its widespread usage and molecular versatility, alternative splicing emerges as a central element in gene regulation that interferes with almost every biological function analyzed.
Collapse
Affiliation(s)
- Olga Kelemen
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - Paolo Convertini
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - Zhaiyi Zhang
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - Yuan Wen
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - Manli Shen
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - Marina Falaleeva
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - Stefan Stamm
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| |
Collapse
|
19
|
Affara M, Sanders D, Araki H, Tamada Y, Dunmore BJ, Humphreys S, Imoto S, Savoie C, Miyano S, Kuhara S, Jeffries D, Print C, Charnock-Jones DS. Vasohibin-1 is identified as a master-regulator of endothelial cell apoptosis using gene network analysis. BMC Genomics 2013; 14:23. [PMID: 23324451 PMCID: PMC3570387 DOI: 10.1186/1471-2164-14-23] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 12/07/2012] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Apoptosis is a critical process in endothelial cell (EC) biology and pathology, which has been extensively studied at protein level. Numerous gene expression studies of EC apoptosis have also been performed, however few attempts have been made to use gene expression data to identify the molecular relationships and master regulators that underlie EC apoptosis. Therefore, we sought to understand these relationships by generating a Bayesian gene regulatory network (GRN) model. RESULTS ECs were induced to undergo apoptosis using serum withdrawal and followed over a time course in triplicate, using microarrays. When generating the GRN, this EC time course data was supplemented by a library of microarray data from EC treated with siRNAs targeting over 350 signalling molecules.The GRN model proposed Vasohibin-1 (VASH1) as one of the candidate master-regulators of EC apoptosis with numerous downstream mRNAs. To evaluate the role played by VASH1 in EC, we used siRNA to reduce the expression of VASH1. Of 10 mRNAs downstream of VASH1 in the GRN that were examined, 7 were significantly up- or down-regulated in the direction predicted by the GRN.Further supporting an important biological role of VASH1 in EC, targeted reduction of VASH1 mRNA abundance conferred resistance to serum withdrawal-induced EC death. CONCLUSION We have utilised Bayesian GRN modelling to identify a novel candidate master regulator of EC apoptosis. This study demonstrates how GRN technology can complement traditional methods to hypothesise the regulatory relationships that underlie important biological processes.
Collapse
Affiliation(s)
- Muna Affara
- Department of Obstetrics and Gynaecology, University of Cambridge, The Rosie Hospital, Robinson Way, Cambridge CB2 0SW, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
Angiogenesis, a formation of neovessels, is regulated by the local balance between angiogenesis stimulators and inhibitors. A number of such endogenous regulators of angiogenesis have been found in the body. Recently, vasohibin-1 (VASH1) was isolated as a negative feedback regulator of angiogenesis produced by endothelial cells (ECs) and subsequently vasohibin-2 (VASH2) as a homologue of VASH1. It was then explored that VASH1 is expressed in ECs to terminate angiogenesis, whereas VASH2 is expressed in cells other than ECs to promote angiogenesis in the mouse model of angiogenesis. This review will focus on the vasohibin family members, which are novel regulators of angiogenesis.
Collapse
Affiliation(s)
- Yasufumi Sato
- Department of Vascular Biology, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Sendai 980-8575, Japan.
| |
Collapse
|
21
|
Shirasuna K, Kobayashi A, Nitta A, Nibuno S, Sasahara K, Shimizu T, Bollwein H, Miyamoto A. Possible action of vasohibin-1 as an inhibitor in the regulation of vascularization of the bovine corpus luteum. Reproduction 2012; 143:491-500. [DOI: 10.1530/rep-11-0465] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The development of the corpus luteum (CL), which secretes large amounts of progesterone to establish pregnancy, is accompanied by active angiogenesis, vascularization, and lymphangiogenesis. Negative feedback regulation is a critical physiological mechanism. Vasohibin-1 (VASH1) was recently discovered as a novel endothelium-derived negative feedback regulator of vascularization. We therefore investigated the expression of VASH1 in the bovine CL. Expression of VASH1 mRNA and protein was predominantly localized to luteal endothelial cells (LECs). VASH1 expression in the CL was constant through the early to late luteal phases and decreased during CL regression relating with the action of luteolytic prostaglandin F2α in vivo. To investigate the role of VASH1, we determined whether VASH1 treatment affects angiogenesis and/or lymphangiogenesis using LECs and lymphatic endothelial cells (LyECs) in vitro. Vascular endothelial growth factor A (VEGFA) stimulated the expression of VASH1 in LECs but not in LyECs, and VASH1 completely blocked VEGFA-induced formation of capillary-like tube structures of LECs and LyECs in vitro. In summary, VASH1 is predominantly located on LECs in the bovine CL and inhibits the angiogenic and lymphangiogenic actions of VEGFA. Bovine CL therefore has a VEGFA–VASH1 system that may be involved in regulation of luteal function, especially in the development of the CL. The results indicate that VASH1 has the potential to act as a negative feedback regulator of angiogenesis and lymphangiogenesis in the CL in cows.
Collapse
|
22
|
Kozako T, Matsumoto N, Kuramoto Y, Sakata A, Motonagare R, Aikawa A, Imoto M, Toda A, Honda SI, Shimeno H, Soeda S. Vasohibin induces prolyl hydroxylase-mediated degradation of hypoxia-inducible factor-1α in human umbilical vein endothelial cells. FEBS Lett 2012; 586:1067-72. [DOI: 10.1016/j.febslet.2012.03.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Revised: 03/05/2012] [Accepted: 03/05/2012] [Indexed: 12/15/2022]
|
23
|
Sato Y. The vasohibin family: Novel regulators of angiogenesis. Vascul Pharmacol 2012; 56:262-6. [PMID: 22286022 DOI: 10.1016/j.vph.2012.01.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Revised: 01/05/2012] [Accepted: 01/15/2012] [Indexed: 11/25/2022]
Abstract
Angiogenesis is thought to be regulated by the local balance between angiogenesis stimulators and angiogenesis inhibitors. A number of endogenous regulators of angiogenesis have been found in the body. We recently isolated vasohibin-1 (VASH1) as a negative feedback regulator of angiogenesis produced by endothelial cells, and VASH2 as a homologue of VASH1 thereafter. We found that VASH1 was expressed in endothelial cells to terminate angiogenesis, whereas VASH2 promoted angiogenesis, in the mouse model of angiogenesis. This mini-review will focus on the vasohibin family in relation to the regulation of angiogenesis.
Collapse
Affiliation(s)
- Yasufumi Sato
- Department of Vascular Biology, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Sendai 980-8575, Japan.
| |
Collapse
|
24
|
OLFERT IMARK, BIROT OLIVIER. Importance of Anti-angiogenic Factors in the Regulation of Skeletal Muscle Angiogenesis. Microcirculation 2011; 18:316-30. [DOI: 10.1111/j.1549-8719.2011.00092.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
25
|
|
26
|
Angiopoietin-1 protects myocardial endothelial cell function blunted by angiopoietin-2 and high glucose condition. Acta Pharmacol Sin 2011; 32:45-51. [PMID: 21113176 DOI: 10.1038/aps.2010.183] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
AIM To evaluate the effects of angiopoietin-1 (Ang-1) on myocardial endothelial cell function under high glucose (HG) condition. METHODS Mouse heart myocardial endothelial cells (MHMECs) were cultured and incubated under HG (25 mmol/L) or normal glucose (NG, 5 mmol/L) conditions for 72 h. MTT was used to determine cellular viability, and TUNEL assay and caspase-3 enzyme linked immunosorbent assays were used to assay endothelial apoptosis induced by serum starvation. Immunoprecipitation and Western blot analysis were used to analyze protein phosphorylation and expression. Endothelial tube formation was used as an in vitro assay for angiogenesis. RESULTS Exposure of MHMECs to HG resulted in dramatic decreases in phosphorylation of the Tie-2 receptor and its downstream signaling partners, Akt/eNOS, compared to that under NG conditions. Ang-1 (250 ng/mL) increased Tie-2 activation, inhibited cell apoptosis, and promoted angiogenesis. Ang-1-mediated protection of endothelial function was blunted by Ang-2 (25 ng/mL). CONCLUSION Ang-1 activates the Tie-2 pathway and restores hyperglycemia-induced myocardial microvascular endothelial dysfunction. This suggests a protective role of Ang-1 in the ischemic myocardium, particularly in hearts affected by hyperglycemia or diabetes.
Collapse
|
27
|
Kishlyansky M, Vojnovic J, Roudier E, Gineste C, Decary S, Forn P, Bergeron R, Desplanches D, Birot O. Striated muscle angio-adaptation requires changes in Vasohibin-1 expression pattern. Biochem Biophys Res Commun 2010; 399:359-64. [PMID: 20659423 DOI: 10.1016/j.bbrc.2010.07.076] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2010] [Accepted: 07/21/2010] [Indexed: 02/02/2023]
Abstract
Vasohibin-1 (VASH-1) was recently identified as a negative feedback regulator of angiogenesis. Here, we analyzed how the expression of the two active anti-angiogenic VASH-1 isoforms p36 and p42 was altered during physiological and pathological muscle angio-adaptation. Our results showed that VASH-1 protein expression was muscle-type specific, with higher levels detected in less vascularized muscles. In rat plantaris and heart muscles, the expression of VASH-1 protein was decreased in response to exercise training, a physiological pro-angiogenic stimulus leading to muscle capillary growth. Interestingly, expression patterns for p36 and p42 were different between plantaris and heart muscles. Next, we analyzed the time-course expression of VASH-1 isoforms in rat soleus muscles subjected to hindlimb unloading, a model that induces muscle capillary regression. Both p36 and p42 isoforms were increased, a signal in favor of some vessel destabilization and regression. Finally, we investigated VASH-1 expression in plantaris muscles from Zucker Diabetic Fatty rats (ZDF) that develop obesity and type-2 diabetes associated with a loss of capillaries in skeletal muscle. VASH-1 expression was higher in sedentary ZDF rats when compared to lean animals, suggesting its potential role during capillary regression. Interestingly, a physiological VASH-1 level was efficiently restored in spontaneously active ZDF animals where muscle capillarization was preserved. In conclusion, our results bring evidence that endogenous VASH-1 isoforms p36 and p42 are key actors of physiological and pathological muscle angio-adaptation.
Collapse
Affiliation(s)
- Marina Kishlyansky
- York University, Faculty of Health, Muscle Health Research Center, Toronto, ON, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
The Chick Embryo Chorioallantoic Membrane as an In Vivo Assay to Study Antiangiogenesis. Pharmaceuticals (Basel) 2010; 3:482-513. [PMID: 27713265 PMCID: PMC4033966 DOI: 10.3390/ph3030482] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 01/29/2010] [Accepted: 03/02/2010] [Indexed: 12/15/2022] Open
Abstract
Antiangiogenesis, e.g., inhibition of blood vessel growth, is being investigated as a way to prevent the growth of tumors and other angiogenesis-dependent diseases. Pharmacological inhibition interferes with the angiogenic cascade or the immature neovasculature with synthetic or semi-synthetic substances, endogenous inhibitors or biological antagonists.The chick embryo chorioallantoic membrane (CAM) is an extraembryonic membrane, which serves as a gas exchange surface and its function is supported by a dense capillary network. Because its extensive vascularization and easy accessibility, CAM has been used to study morphofunctional aspects of the angiogenesis process in vivo and to study the efficacy and mechanism of action of pro- and anti-angiogenic molecules. The fields of application of CAM in the study of antiangiogenesis, including our personal experience, are illustrated in this review article.
Collapse
|
29
|
The Vasohibin Family. Pharmaceuticals (Basel) 2010; 3:433-440. [PMID: 27713261 PMCID: PMC4033919 DOI: 10.3390/ph3020433] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Revised: 01/23/2010] [Accepted: 02/03/2010] [Indexed: 12/29/2022] Open
Abstract
Angiogenesis is regulated by the local balance between angiogenesis stimulators and inhibitors. A number of endogenous angiogenesis inhibitors have been found in the body. The origin of these inhibitors is mostly extrinsic to the vasculature. Recently, however, vascular endothelial cells themselves have been found to produce angiogenesis inhibitors including vasohibin-1. These intrinsic inhibitors are thought to regulate angiogenesis by an auto-regulatory or negative-feedback mechanism. This review will focus on vasohibin-1 produced by vascular endothelial cells and on its homologue, vasohibin-2.
Collapse
|
30
|
Abstract
Antiangiogenic effects of the proteasome inhibitor bortezomib were analyzed on tumor xenografts in vivo. Bortezomib strongly inhibited angiogenesis and vascularization in the chicken chorioallantoic membrane. Bortezomib's inhibitory effects on chorioallantoic membrane vascularization were abrogated in the presence of distinct tumor xenografts, thanks to a soluble factor secreted by tumor cells. Through size-exclusion and ion-exchange chromatography as well as mass spectroscopy, we identified GRP-78, a chaperone protein of the unfolded protein response, as being responsible for bortezomib resistance. Indeed, a variety of bortezomib-resistant solid tumor cell lines (PC-3, HRT-18), but not myeloma cell lines (U266, OPM-2), were able to secrete high amounts of GRP-78. Recombinant GRP-78 conferred bortezomib resistance to endothelial cells and OPM-2 myeloma cells. Knockdown of GRP78 gene expression in tumor cells and immunodepletion of GRP-78 protein from tumor cell supernatants restored bortezomib sensitivity. GRP-78 did not bind or complex bortezomib but induced prosurvival signals by phosphorylation of extracellular signal-related kinase and inhibited p53-mediated expression of proapoptotic Bok and Noxa proteins in endothelial cells. From our data, we conclude that distinct solid tumor cells are able to secrete GRP-78 into the tumor microenvironment, thus demonstrating a hitherto unknown mechanism of resistance to bortezomib.
Collapse
|
31
|
Kern J, Steurer M, Gastl G, Gunsilius E, Untergasser G. Vasohibin inhibits angiogenic sprouting in vitro and supports vascular maturation processes in vivo. BMC Cancer 2009; 9:284. [PMID: 19682397 PMCID: PMC2739223 DOI: 10.1186/1471-2407-9-284] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Accepted: 08/17/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The murine homologue of human vasohibin (mVASH1), a putative antiangiogenic protein, was investigated for its effects on in vitro and in vivo angiogenesis. METHODS Cell growth and migration were analyzed in murine fibroblasts, smooth muscle cells and endothelial cells. Angiogenic sprouting was studied in human umbilical vein endothelial cells (HUVECs) in the spheroid sprouting assay. In vivo effects on blood vessel formation were investigated in the chorioallantoic membrane (CAM) assay and in the C57BL/6 melanoma xenograft model. RESULTS Purified murine and human VASH1 protein induced apoptosis of murine fibroblasts in vitro, but not of vascular aortic smooth muscle cells (AoSMC) or endothelial cells. Adenoviral overexpression of murine and human VASH1 inhibited capillary sprouting of HUVECs in the spheroid assay. Administration of recombinant murine and human VASH1 inhibited growth of large vessels in the CAM assay and promoted the formation of a dense, fine vascular network. Murine VASH1-overexpressing B16F10 melanomas displayed a reduction in large vessels and vascular area. Moreover, tumors showed more microvessels that stained positive for the mural cell markers alpha-smooth muscle cell actin (ASMA) and proteoglycan (NG2). CONCLUSION Our data imply that murine VASH1 causes angiogenic remodelling by inhibiting angiogenic sprouting and large vessel growth, thereby supporting the formation of a vascular bed consisting predominantly of mature microvessels.
Collapse
Affiliation(s)
- Johann Kern
- Division of Internal Medicine V, Tumor Biology & Angiogenesis Laboratory, Medical University Innsbruck, Innrain 66, A-6020 Innsbruck, Austria.
| | | | | | | | | |
Collapse
|
32
|
Naito H, Kidoya H, Sato Y, Takakura N. Induction and expression of anti-angiogenic vasohibins in the hematopoietic stem/progenitor cell population. J Biochem 2009; 145:653-9. [PMID: 19179360 DOI: 10.1093/jb/mvp021] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Haematopoiesis and blood vessel formation are closely associated, with several molecules employed by both systems. Recently, vasohibin-1 (VASH1), an endothelium-derived negative feedback regulator of angiogenesis, has been isolated and characterized. VASH1 is induced by VEGF or bFGF in endothelial cells (ECs) and inhibits their proliferation and migration. However, there are no data on the induction and expression of VASH1 in haematopoietic cells (HCs). Here, we show that the haematopoietic stem cell (HSC) population, but not haematopoietic progenitors (HPs) or mature HCs from adult bone marrow (BM) constitutively express VASH1. However, HPs, but not HSCs, can be induced to express VASH1 after BM suppression by 5-FU. Knock-down of the VASH1 gene in VASH1(+) leukaemia cells induced cell proliferation. These results suggest a role for VASH1 in negative feedback regulation of HP proliferation during recovery following BM ablation.
Collapse
Affiliation(s)
- Hisamichi Naito
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | | | | | | |
Collapse
|