1
|
Amini S, Navab F, Rouhani MH, Jamialahmadi T, Bagherniya M, Kesharwani P, Sahebkar A. The effect of vitamin E supplementation on serum low-density lipoprotein oxidization: A systematic review and meta-analysis of clinical trials. Eur J Pharmacol 2025; 997:177491. [PMID: 40057158 DOI: 10.1016/j.ejphar.2025.177491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 01/17/2025] [Accepted: 03/06/2025] [Indexed: 03/15/2025]
Abstract
Oxidation of low-density lipoprotein (LDL) accelerates atherosclerosis. Vitamin E is a powerful fat-soluble antioxidant; some studies have shown its beneficial effects in reducing oxidized LDL levels. Due to the inconsistent reports, we performed a systematic review and meta-analysis to evaluate the impact of vitamin E supplementation on oxidation of LDL levels. PubMed, Scopus, Web of Science, and Google Scholar were systematically searched to find clinical trials published in English. A total of 21 records with 29 intervention arms were included in this review. In the meta-analysis of 6 studies that reported changes in oxidized LDL levels, a significant decrease in LDL oxidation was observed (95% CI: -1.44 [-2.5, -0.38]; I2 = 95.8%, P < 0.001; Tau-squared: 1.6171). Moreover, a meta-analysis of 7 studies that reported lag time as a measure of LDL oxidation showed that vitamin E supplementation significantly increased the lag time of LDL oxidation (95% CI: 20.45 [12.46, 28.43]; I2 = 95.9%, P < 0.001; Tau-squared: 103.3545). Two studies used the thiobarbituric acid-reactive substances (TBARS) assay to evaluate the susceptibility to LDL oxidation. One of them showed a significant decrease in LDL susceptibility to oxidation after supplementation with tocopherol, while the other one did not show a significant effect. Vitamin E significantly reduced the susceptibility of LDL to oxidation and increased the lag time of LDL oxidation.
Collapse
Affiliation(s)
- Sepide Amini
- Student Research Committee, Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fatemeh Navab
- Student Research Committee, Nutrition and Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Hossein Rouhani
- Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Tannaz Jamialahmadi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Bagherniya
- Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran; Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Prashant Kesharwani
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar (M.P.), India; University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India.
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Vahdat-Lasemi F, Farhoudi L, Hosseinikhah SM, Santos RD, Sahebkar A. Angiopoietin-like protein inhibitors: Promising agents for the treatment of familial hypercholesterolemia and atherogenic dyslipidemia. Atherosclerosis 2025; 405:119235. [PMID: 40344904 DOI: 10.1016/j.atherosclerosis.2025.119235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 04/23/2025] [Accepted: 05/01/2025] [Indexed: 05/11/2025]
Abstract
BACKGROUND AND AIMS This review examines the physiological functions of Angiopoietin-like proteins (ANGPTLs) in lipid metabolism and the epidemiology of atherosclerotic cardiovascular disease (ASCVD), while discussing their potential as therapies for dyslipidemias. METHODS A review of contemporary literature on ANGPTLs was conducted. RESULTS ANGPTLs comprise eight secreted proteins that share structural similarities with the angiopoietin family and serve as key regulators of various physiological and biochemical functions. Notably, ANGPTL3, ANGPTL4, and ANGPTL8 act as physiological inhibitors of lipoprotein lipase (LPL), playing a crucial role in lipoprotein and triglyceride metabolism in response to the body's nutritional status. A deficiency in these proteins is linked to hypolipidemia, characterized by a decrease in all lipid fractions, and genetic studies indicate a reduced risk of ASCVD in individuals with loss-of-function variants in ANGPTL3 and ANGPTL4. Conversely, elevated levels of ANGPTL3, ANGPTL4, and ANGPTL8 seem to increase the risk of cardiovascular disease. The role of ANGPTLs in regulating lipid metabolism underscores their potential in targeted therapies for managing dyslipidemias and lowering ASCVD risk, particularly in patients with difficult-to-control dyslipidemia phenotypes, such as homozygous Familial Hypercholesterolemia and mixed dyslipidemia. CONCLUSIONS The development of ANGPTL inhibitors could provide an effective strategy for preventing ASCVD.
Collapse
Affiliation(s)
- Fatemeh Vahdat-Lasemi
- Department of Medical Biotechnology and Nanotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Leila Farhoudi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyedeh Maryam Hosseinikhah
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Raul D Santos
- Academic Research Organization, Hospital Israelita Albert Einstein, Sao Paulo, Brazil; Lipid Clinic Heart Institute (InCor) University of Sao Paulo Medical School Hospital, Sao Paulo, Brazil
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Mahjoubin-Tehran M, Kesharwani P, Alamahmeed W, Karav S, Sahebkar A. Nanozymes: A novel approach to upgrade atherosclerosis treatment. Pathol Res Pract 2025; 271:156005. [PMID: 40367896 DOI: 10.1016/j.prp.2025.156005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 05/07/2025] [Accepted: 05/08/2025] [Indexed: 05/16/2025]
Abstract
Atherosclerosis has become a global health concern, contributing to the rise in cardiovascular diseases and causing significant morbidity and disability. The development of atherosclerosis begins with the accumulation of low-density lipoprotein (LDL) in the subendothelial space. As LDL becomes trapped in the arterial walls, reactive oxygen species (ROS) are generated, resulting in oxidative stress, impaired endothelial function, and oxidative modification of the retained LDL, forming oxidized LDL (ox-LDL). The oxidation of LDL to form ox-LDL is considered one of the most important factors in the development of atherosclerosis. Recently, there has been a growing interest in nanomaterials with enzyme-like characteristics called nanozymes in the field of biomedicine. The use of nanozymes has become increasingly popular because they offer solutions to the limitations associated with natural enzymes, including high costs, low stability, and challenging storage requirements. Nanozymes with anti-oxidative activities, such as catalase-, SOD-, and GPx-like nanozymes, have been extensively studied for various disease therapies, including atherosclerosis. Furthermore, nanozymes can be designed to have multiple enzyme-like activities. In this review, we aim to summarize studies that have used nanozymes as a therapeutic approach for the treatment of atherosclerosis. The results of this study have shown that nanozymes have a significant impact in reducing atherosclerotic plaques in ApoE-/- mice. This effect is mainly achieved through ROS scavenging, which leads to the suppression of foam cell formation and inflammation.
Collapse
Affiliation(s)
- Maryam Mahjoubin-Tehran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar, Madhya Pradesh 470003, India; University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India.
| | - Wael Alamahmeed
- Heart and Vascular Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Canakkale Onsekiz Mart University, Canakkale 17100, Turkey
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Abavisani M, Tafti P, Khoshroo N, Ebadpour N, Khoshrou A, Kesharwani P, Sahebkar A. The heart of the matter: How gut microbiota-targeted interventions influence cardiovascular diseases. Pathol Res Pract 2025; 269:155931. [PMID: 40174272 DOI: 10.1016/j.prp.2025.155931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 03/10/2025] [Accepted: 03/26/2025] [Indexed: 04/04/2025]
Abstract
The human body is habitat to a wide spectrum of microbial populations known as microbiota, which play an important role in overall health. The considerable research has mostly focused on the gut microbiota due to its potential to impact numerous physiological functions and its correlation with a variety of disorders, such as cardiovascular diseases (CVDs). Imbalances in the gut microbiota, known as dysbiosis, have been linked to the development and progression of CVDs through various processes, including the generation of metabolites like trimethylamine-N-oxide and short-chain fatty acids. Studies have also looked at the idea of using therapeutic interventions, like changing your diet, taking probiotics or prebiotics, or even fecal microbiota transplantation (FMT), to change the gut microbiota's make-up and how it works in order to prevent or treat CVDs. Exploring the cause-and-effect connection between the gut microbiota and CVDs offers a hopeful path for creating innovative microbiome-centered strategies to prevent and cure CVDs. This review presents an in-depth review of the correlation between the gut microbiota and CVDs, as well as potential therapeutic approaches for manipulating the gut microbiota to enhance cardiovascular health.
Collapse
Affiliation(s)
- Mohammad Abavisani
- Student research committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Pourya Tafti
- Student research committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Niloofar Khoshroo
- Student research committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Negar Ebadpour
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Khoshrou
- Student research committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar, Madhya Pardesh, India; University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India.
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
5
|
Desouky DA, Nosair NA, Salama MK, El-Magd MA, Desouky MA, Sherif DE. PCSK9 and its relationship with HMGB1, TLR4, and TNFα in non-statin and statin-treated coronary artery disease patients. Mol Cell Biochem 2025; 480:2935-2949. [PMID: 39541017 DOI: 10.1007/s11010-024-05154-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024]
Abstract
Despite statin use in coronary artery disease (CAD), significant risk remains, potentially due to increased proprotein convertase subtilisin/kexin-type 9 (PCSK9) production, which raises LDL-C levels and induces inflammation. The exact relationship between PCSK9, inflammatory markers like TNFα, TLR4, CRP, and HMGB1, and monocyte subsets is poorly understood. This study aimed to explore these relationships in non-statin and statin-taking CAD patients. This case-control study included 91 controls and 91 stable CAD patients, divided into no-statin (NS, n = 25), low-dose statin (LDS, n = 25), and high-dose statin (HDS, n = 41) groups. Serum levels of LDL-C, CRP, PCSK9, TLR4, HMGB1, and TNFα were measured. Monocyte subsets were classified using flow cytometry into classical monocytes (CM), intermediate monocytes (IM), and non-classical monocytes (NCM). CAD patients showed elevated PCSK9, LDL-C, and inflammatory markers compared to controls. Statin groups (LDS, HDS) had lower LDL-C and inflammatory markers but higher PCSK9 than the NS group, with the HDS group showing the lowest LDL-C and inflammatory markers but the highest PCSK9. In the NS group, PCSK9 positively correlated with inflammatory markers (HMGB1, TNFα, TLR4, CRP) and monocyte subsets (IM%, NCM%). In the total statin group (LDS + HDS), PCSK9 negatively correlated with HMGB1, TLR4, and NCM%, for each, respectively, and positively with CM%. Multivariable linear regression showed significant associations between PCSK9 and HMGB1, NCM%, and IM% in the NS group, and HMGB1, NCM%, and TLR4 in the total statin group. In conclusion, we recommend combining PCSK9 inhibitors with statins in high-risk CAD patients. This may enhance statin efficacy, reduce LDL-C, and inhibit the TLR4/NF-кB inflammatory pathway, decreasing atherosclerotic inflammation.
Collapse
Affiliation(s)
- Dina A Desouky
- Department of Clinical Pathology, Faculty of Medicine, Kafrelshiekh University, Kafrelsheikh, Egypt.
| | - Nahla A Nosair
- Department of Clinical Pathology, Faculty of Medicine, Kafrelshiekh University, Kafrelsheikh, Egypt
| | - Mohamed K Salama
- Department of Cardiovascular, Faculty of Medicine, Kafrelshiekh University, Kafrelsheikh, Egypt
| | - Mohammed A El-Magd
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Kafrelshiekh University, Kafrelsheikh, Egypt
| | | | - Dalia E Sherif
- Department of Clinical Pathology, Faculty of Medicine, Kafrelshiekh University, Kafrelsheikh, Egypt
| |
Collapse
|
6
|
Abolfazli S, Karav S, Johnston TP, Sahebkar A. Regulatory effects of resveratrol on nitric oxide signaling in cardiovascular diseases. Pharmacol Rep 2025; 77:355-374. [PMID: 39832074 DOI: 10.1007/s43440-025-00694-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/04/2025] [Accepted: 01/06/2025] [Indexed: 01/22/2025]
Abstract
Cardiovascular illnesses are multifactorial disorders and represent the primary reasons for death worldwide, according to the World Health Organization. As a signaling molecule, nitric oxide (NO) is extremely permeable across cellular membranes owing to its unique molecular features, like its small molecular size, lipophilicity, and free radical properties. Some of the biological effects of NO are vasodilation, inhibition in the growth of vascular smooth muscle cells, and functional regulation of cardiac cells. Several therapeutic approaches have been tested to increase the production of NO or some downstream NO signaling pathways. The health benefits of red wine are typically attributed to the polyphenolic phytoalexin, resveratrol (3,5,4'-trihydroxy-trans-stilbene), which is found in several plant species. Resveratrol has beneficial cardiovascular properties, some of which are mediated through endothelial nitric oxide synthase production (eNOS). Resveratrol promotes NO generation from eNOS through various methods, including upregulation of eNOS expression, activation in the enzymatic activity of eNOS, and reversal of eNOS uncoupling. Additionally, by reducing of oxidative stress, resveratrol inhibits the formation of superoxide and inactivation NO, increasing NO bioavailability. This review discusses the scientific literature on resveratrol's beneficial impact on NO signaling and how this effect improves the function of vascular endothelium.
Collapse
Affiliation(s)
- Sajad Abolfazli
- Student Research Committee, School of Pharmacy, Mazandaran University of Medical Science, Sari, Iran
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Canakkale Onsekiz Mart University, Canakkale, 17100, Turkey
| | - Thomas P Johnston
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
7
|
Askarizadeh F, Karav S, Jamialahmadi T, Sahebkar A. Impact of statin therapy on CD40:CD40L signaling: mechanistic insights and therapeutic opportunities. Pharmacol Rep 2025; 77:43-71. [PMID: 39680334 DOI: 10.1007/s43440-024-00678-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/08/2024] [Accepted: 11/11/2024] [Indexed: 12/17/2024]
Abstract
Statins are widely utilized to reduce cholesterol levels, particularly in cardiovascular diseases. They interface with cholesterol synthesis by inhibiting the 3-hydroxy-3-methylglutaryl coenzyme-A (HMG-CoA) reductase enzyme. Besides their primary effect, statins demonstrate anti-inflammatory and immune-modulating properties in various diseases, highlighting the pleiotropic effect of these drugs. The CD40:CD40L signaling pathway is considered a prominent inflammatory pathway in multiple diseases, including autoimmune, inflammatory, and cardiovascular diseases. The findings from clinical trials and in vitro and in vivo studies suggest the potential anti-inflammatory effect of statins in modulating the CD40 signaling pathway and downstream inflammatory mediator. Accordingly, as its classic ligand, statins can suppress immune responses in autoimmune diseases by inhibiting CD40 expression and blocking its interaction with CD40L. Additionally, statins affect intracellular signaling and inhibit inflammatory mediator secretion in chronic inflammatory diseases like asthma and autoimmune disorders such as myasthenia gravis, multiple sclerosis, systemic lupus erymanthus, and cardiovascular diseases like atherosclerosis. However, it is essential to note that the anti-inflammatory effect of statins may vary depending on the specific type of statin used. In this study, we aim to explore the potential anti-inflammatory effects of statins in treating inflammatory diseases by examining their role in regulating immune responses, particularly their impact on the CD40:CD40L signaling pathway, through a comprehensive review of existing literature.
Collapse
Affiliation(s)
- Fatemeh Askarizadeh
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Canakkale Onsekiz Mart University, Canakkale, 17100, Turkey
| | - Tannaz Jamialahmadi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
8
|
Jamialahmadi T, Reiner Z, Riahi MM, Emami SA, Tayarani-Najaran Z, Salehabadi S, Kesharwani P, Al-Rasadi K, Sahebkar A. Statins and Portal Hypertension: A Systematic Review and Meta-analysis of Randomized Controlled Trials. Curr Med Chem 2025; 32:1323-1332. [PMID: 37723637 DOI: 10.2174/0929867331666230918114451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 07/20/2023] [Accepted: 08/08/2023] [Indexed: 09/20/2023]
Abstract
BACKGROUND Statins are primarily used to decrease elevated LDL-cholesterol and thus prevent atherosclerotic cardiovascular disease. Portal hypertension is one of the most important complications of chronic liver disease. Several studies indicated that statins might be beneficial for portal hypertension as well but there is still no clear answer whether this is true or not. METHODS A literature search of the major databases was performed to find eligible randomized controlled trials (RCTs) analyzing the effect of statins on portal hypertension from inception to February 5th, 2021. Six RCTs with 442 patients who received statin or statin plus carvedilol were finally included. Meta-analysis was performed using the Comprehensive Meta-Analysis V2 software. RESULTS Reduction of portal hypertension after statin treatment was not significant (WMD: -0.494, 95% CI: -1.239, 0.252, p=0.194; I2:0%). The reduction of portal hypertension was robust in the leave-one-out sensitivity analysis. CONCLUSION Treatment with statins did not decrease significantly portal hypertension.
Collapse
Affiliation(s)
- Tannaz Jamialahmadi
- International UNESCO center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zeljko Reiner
- Department of Internal Medicine, University Hospital Center Zagreb, Kišpatićeva 12, University of Zagreb, Zagreb, Croatia
| | - Maryam Matbou Riahi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Ahmad Emami
- Department of Traditional Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Tayarani-Najaran
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sepideh Salehabadi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
- Department of Pharmacology, Center for Transdisciplinary Research, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Chennai 600077, India
| | - Khalid Al-Rasadi
- Medical Research Centre, Sultan Qaboos University, Muscat P.O. Box 373, Oman
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
9
|
Razi B, Imani D, Aslani S, Reiner Z, Sahebkar A. Statin Therapy and C-reactive Protein in Patients with Kidney Disease: A Systematic Review and Meta-analysis of Randomized Clinical Trials. Curr Drug Targets 2025; 26:132-145. [PMID: 39318006 DOI: 10.2174/0113894501302428240909150925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/02/2024] [Accepted: 08/13/2024] [Indexed: 09/26/2024]
Abstract
BACKGROUND Increased levels of inflammation markers in patients with kidney disease, particularly chronic kidney disease (CKD) is an important risk factor. This study explored whether the effect of more potent statins on inflammation in CKD patients is dose-dependent, whether there is any difference between the hydrophilic and lipophilic statins concerning their effects on inflammation markers in patients with CKD, and whether the duration of treatment with statins has any effect on markers of inflammation in these patients. METHODS A systematic literature search of Scopus, PubMed, and ISI Web of Science databases from inception to August 2022 was performed. Eligible studies were stratified based on a target population, intervention duration, dosage and type of statins (high intensity statin and moderate/ low intensity), and solubility of statins. Publication bias was evaluated using Begg's regression asymmetry test for visual inspection of funnel plots. Non-linear effects of dosage of statins and treatment duration were also examined by fractional polynomial modeling. RESULTS Meta-analysis of 10 RCTs (12 studies) on 264 patients with kidney disease and 254 controls showed a significant hs-CRP lowering effect of the dose of statin. Both hydrophilic and lipophilic statins had significant hs-CRP lowering effects. Meta-analysis of 6 publications (7 studies) evaluating the impact of statins on CRP in 235 patients and 197 control subjects showed a significant negative association between treatment with statins group and CRP levels. CONCLUSION Statin treatment decreases significantly the levels of CRP and hs-CRP in patients with kidney disease.
Collapse
Affiliation(s)
- Bahman Razi
- Department of Laboratory Sciences and Hematology, Faculty of Paramedicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Danyal Imani
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeed Aslani
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, 3168, Australia
- Department of Molecular and Translational Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, 3168, Australia
| | - Zeljko Reiner
- Department of Internal Medicine, University Hospital Center Zagreb, University of Zagreb, Kišpatićeva 12, Zagreb, Croatia
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
10
|
Daliri M, Simental-Mendia LE, Jamialahmadi T, Kesharwani P, Reiner Z, Sahebkar A. Effect of Statins on Superoxide Dismutase Level: A Systematic Review. Curr Med Chem 2025; 32:1007-1016. [PMID: 37653630 DOI: 10.2174/0929867331666230831145809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 05/21/2023] [Accepted: 07/07/2023] [Indexed: 09/02/2023]
Abstract
BACKGROUND AND OBJECTIVE The literature suggests that statins may increase superoxide dismutase (SOD) levels by different mechanisms. These effects may contribute to the antioxidant and anti-inflammatory effects of statins, which are thought to be beneficial in preventing cardiovascular events. However, there are also conflicting results concerning the effect of statins on SOD levels. The goal of this systematic review was to evaluate the effect of statin therapy on SOD activity. METHODS This systematic review was performed based on the PRISMA statement. The terms ("statin" or "HMG-CoA reductase inhibitor" OR "lipid-lowering agents" OR "Atorvastatin" OR "Simvastatin" OR "Pravastatin" OR "Fluvastatin" OR "Lovastatin") AND ("superoxide dismutase" OR "SOD" OR "anti-oxidative" OR "oxidative stress") were searched in database systems Google Scholar, PubMed/MEDLINE, and Scopus from inception to April 2022. RESULTS A total of 14 controlled clinical trials - 10 randomized and 4 non-randomized - were found to be eligible. Four studies measured SOD levels in plasma, six in serum, two in red blood cells, one in venous blood, and one on both red blood cells and venous blood matrices. Seven clinical trials used atorvastatin, six used simvastatin, and four used rosuvastatin. Six studies reported an increase in SOD activity, seven found no significant changes, and one showed a reduced SOD activity. CONCLUSION Our systematic review suggests that treatment with statins has a positive effect on SOD activity. However, evidence from further randomized controlled trials is required to confirm the potential antioxidant effect of statin therapy.
Collapse
Affiliation(s)
- Mahla Daliri
- Orthopedics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Tannaz Jamialahmadi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
- Department of Pharmacology, Center for Transdisciplinary Research, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Chennai, India
| | - Zeljko Reiner
- Department of Internal Medicine, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
11
|
Gholamalizadeh H, Ensan B, Karav S, Jamialahmadi T, Sahebkar A. Regulatory effects of statins on CCL2/CCR2 axis in cardiovascular diseases: new insight into pleiotropic effects of statins. J Inflamm (Lond) 2024; 21:51. [PMID: 39696507 DOI: 10.1186/s12950-024-00420-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 11/13/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND HMG-CoA reductase inhibitors are well-known medications in the treatment of cardiovascular disorders due to their pleiotropic and lipid-lowering properties. Herein, we reviewed the effects of statins on the CCL2/CCR2 axis. METHOD Scopus and Pubmed databases were systematically searched using the following keywords:" Hydroxymethylglutaryl CoA Reductase Inhibitors"," HMG-CoA Reductase Inhibitors"," Statins", "CCL2, Chemokine", "Monocyte Chemoattractant Protein-1" and "Chemokine (C-C Motif) Ligand 2". Evidence investigating the role of statin on MCP-1 in CVD was identified and bibliographies were completely evaluated to gather further related studies. RESULTS The anti-inflammatory effects of statins on the CCL2/CCR2 pathway have been widely investigated. Despite inconclusive results, a great body of research supports the regulatory roles of statins on this pathway due to their pleiotropic effects. By disrupting the CCL2/CCR2 axis, statins attenuate the infiltration of monocytes and macrophages into the zone of inflammation and hence down-regulate the inflammatory cascades in various CVDs including atherosclerosis, cardiac remodeling, and stroke, among others. CONCLUSION CCL2 plays a major role in the pathogenesis of cardiovascular disorders. Down-regulation of CCL2 is proposed as one of the pleiotropic properties of statins. However, more investigations are required to elucidate which statin in what dose exerts a more potent effect on CCL2/CCR2 pathway.
Collapse
Affiliation(s)
- Hanieh Gholamalizadeh
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Behzad Ensan
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Canakkale Onsekiz Mart University, Canakkale, 17100, Turkey
| | - Tannaz Jamialahmadi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
12
|
Jamialahmadi T, Reiner Ž, Simental-Mendia LE, Almahmeed W, Karav S, Eid AH, Giammarile F, Sahebkar A. Effect of statins on arterial wall inflammation as assessed by 18F-FDG PET CT: an updated systematic review and meta-analysis. J Inflamm (Lond) 2024; 21:52. [PMID: 39696570 DOI: 10.1186/s12950-024-00421-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 11/13/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Pathogenesis of atherosclerosis is largely mediated by inflammatory process. Statins are lipid-lowering drugs which also have anti-inflammatory effects. 18 fluorine radiolabeled fluorodeoxyglucose (18 F-FDG) positron emission tomography-computed tomography (PET-CT) is considered to be a good indicator of arterial wall inflammation. Therefore, in this meta-analysis the role of statins on inflammatory process in the artery wall was evaluated using this method since its actual validity for this purpose is not yet well established. METHODS PubMed, Scopus, Web of Science, ClinicalTrials.gov, and Google Scholar databases were searched using MESH terms and keywords. Funnel plot, Begg's rank correlation, and Egger's weighted regression tests evaluated publication bias in the meta-analysis. In cases where funnel plot asymmetry was observed, the "trim and fill" method was used to check the input of potentially missing studies. RESULTS Findings of 10 clinical trials involving 373 subjects showed a remarkable reduction of arterial wall 18 F-FDG uptake according to target-to-background ratio (TBR) index after treatment with statins. Subgroup analysis showed a significant decrease in TBR with high-intensity and non-significant reduction of TBR with low-to-moderate-intensity statin therapy. CONCLUSION Treatment with statins suppressed arterial wall inflammation as shown by using 18 F-FDG PET-CT.
Collapse
Affiliation(s)
- Tannaz Jamialahmadi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Željko Reiner
- Department of Internal Medicine, University Hospital Center Zagreb, Zagreb, Croatia
- Polish Mother's Memorial Hospital Research Institute, Lodz, 93-338, Poland
| | | | - Wael Almahmeed
- Heart and Vascular Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Canakkale Onsekiz Mart University, Canakkale, 17100, Turkey
| | - Ali H Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Francesco Giammarile
- Nuclear Medicine and Diagnostic Imaging Section, International Atomic Energy Agency, Vienna, Austria
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Institute of Medical and Technical Sciences, Saveetha Medical College and Hospitals, Saveetha University, Chennai, India.
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
13
|
Smith DR, Lim ST, Murphy SJX, Hickey FB, Offiah C, Murphy SM, Collins DR, Coughlan T, O'Neill D, Egan B, O'Donnell JS, O'Sullivan JM, McCabe DJH. von Willebrand factor antigen, von Willebrand factor propeptide and ADAMTS13 activity in TIA or ischaemic stroke patients changing antiplatelet therapy. J Neurol Sci 2024; 463:123118. [PMID: 39024743 DOI: 10.1016/j.jns.2024.123118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/10/2024] [Accepted: 06/28/2024] [Indexed: 07/20/2024]
Abstract
Data are limited on the impact of commencing antiplatelet therapy on von Willebrand Factor Antigen (VWF:Ag) or von Willebrand Factor propeptide (VWFpp) levels and ADAMTS13 activity, and their relationship with platelet reactivity following TIA/ischaemic stroke. In this pilot, observational study, VWF:Ag and VWFpp levels and ADAMTS13 activity were quantified in 48 patients ≤4 weeks of TIA/ischaemic stroke (baseline), and 14 days (14d) and 90 days (90d) after commencing aspirin, clopidogrel or aspirin+dipyridamole. Platelet reactivity was assessed at moderately-high shear stress (PFA-100® Collagen-Epinephrine / Collagen-ADP / INNOVANCE PFA P2Y assays), and low shear stress (VerifyNow® Aspirin / P2Y12, and Multiplate® Aspirin / ADP assays). VWF:Ag levels decreased and VWFpp/VWF:Ag ratio increased between baseline and 14d and 90d in the overall population (P ≤ 0.03). In the clopidogrel subgroup, VWF:Ag levels decreased and VWFpp/VWF:Ag ratio increased between baseline and 14d and 90d (P ≤ 0.01), with an increase in ADAMTS13 activity between baseline vs. 90d (P ≤ 0.03). In the aspirin+dipyridamole subgroup, there was an inverse relationship between VWF:Ag and VWFpp levels with both PFA-100 C-ADP and INNOVANCE PFA P2Y closure times (CTs) at baseline (P ≤ 0.02), with PFA-100 C-ADP, INNOVANCE PFA P2Y and C-EPI CTs at 14d (P ≤ 0.05), and between VWF:Ag levels and PFA-100 INNOVANCE PFA P2Y CTs at 90d (P = 0.03). There was a positive relationship between ADAMTS13 activity and PFA-100 C-ADP CTs at baseline (R2 = 0.254; P = 0.04). Commencing/altering antiplatelet therapy, mainly attributed to commencing clopidogrel in this study, was associated with decreasing endothelial activation following TIA/ischaemic stroke. These data enhance our understanding of the impact of VWF:Ag and VWFpp especially on ex-vivo platelet reactivity status at high shear stress after TIA/ischaemic stroke.
Collapse
Affiliation(s)
- D R Smith
- Vascular Neurology Research Foundation, c/o Department of Neurology, Tallaght University Hospital (TUH) / The Adelaide and Meath Hospital, Dublin, incorporating the National Children's Hospital (AMNCH), Dublin, Ireland; Department of Neurology, TUH / AMNCH, Dublin, Ireland; Academic Unit of Neurology, School of Medicine, Trinity College Dublin, Ireland
| | - S T Lim
- Department of Neurology, TUH / AMNCH, Dublin, Ireland; Stroke Service, TUH / AMNCH, Dublin, Ireland; Department of Clinical and Movement Neurosciences, Royal Free Campus, UCL Queen Square Institute of Neurology, London, UK; Academic Unit of Neurology, School of Medicine, Trinity College Dublin, Ireland
| | - S J X Murphy
- Department of Neurology, TUH / AMNCH, Dublin, Ireland; Stroke Service, TUH / AMNCH, Dublin, Ireland; Academic Unit of Neurology, School of Medicine, Trinity College Dublin, Ireland
| | - F B Hickey
- Trinity Centre for Health Sciences, Dept. of Clinical Medicine, School of Medicine, Trinity College Dublin, Ireland
| | - C Offiah
- Department of Neurology, TUH / AMNCH, Dublin, Ireland; Stroke Service, TUH / AMNCH, Dublin, Ireland; Academic Unit of Neurology, School of Medicine, Trinity College Dublin, Ireland
| | - S M Murphy
- Department of Neurology, TUH / AMNCH, Dublin, Ireland; Stroke Service, TUH / AMNCH, Dublin, Ireland; Academic Unit of Neurology, School of Medicine, Trinity College Dublin, Ireland
| | - D R Collins
- Department of Age-Related Health Care, TUH / AMNCH, Dublin, Ireland; Stroke Service, TUH / AMNCH, Dublin, Ireland
| | - T Coughlan
- Department of Age-Related Health Care, TUH / AMNCH, Dublin, Ireland; Stroke Service, TUH / AMNCH, Dublin, Ireland
| | - D O'Neill
- Department of Age-Related Health Care, TUH / AMNCH, Dublin, Ireland; Stroke Service, TUH / AMNCH, Dublin, Ireland
| | - B Egan
- Department of Vascular Surgery, TUH / AMNCH, Dublin, Ireland
| | - J S O'Donnell
- National Coagulation Centre, St James's Hospital, Dublin, Ireland; Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - J M O'Sullivan
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - D J H McCabe
- Vascular Neurology Research Foundation, c/o Department of Neurology, Tallaght University Hospital (TUH) / The Adelaide and Meath Hospital, Dublin, incorporating the National Children's Hospital (AMNCH), Dublin, Ireland; Department of Neurology, TUH / AMNCH, Dublin, Ireland; Stroke Service, TUH / AMNCH, Dublin, Ireland; Department of Clinical and Movement Neurosciences, Royal Free Campus, UCL Queen Square Institute of Neurology, London, UK; Academic Unit of Neurology, School of Medicine, Trinity College Dublin, Ireland.
| |
Collapse
|
14
|
Hosseini FS, Ahmadi A, Kesharwani P, Hosseini H, Sahebkar A. Regulatory effects of statins on Akt signaling for prevention of cancers. Cell Signal 2024; 120:111213. [PMID: 38729324 DOI: 10.1016/j.cellsig.2024.111213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/01/2024] [Accepted: 05/06/2024] [Indexed: 05/12/2024]
Abstract
Statins, which are primarily used as lipid-lowering drugs, have been found to exhibit anti-tumor effects through modulating and interfering with various signaling pathways. In observational studies, statin use has been associated with a significant reduction in the progression of various cancers, including colon, lung, prostate, pancreas, and esophagus cancer, as well as melanoma and B and T cell lymphoma. The mevalonate pathway, which is affected by statins, plays a crucial role in activating Rho, Ras, and Rab proteins, thereby impacting the proliferation and apoptosis of tumor cells. Statins block this pathway, leading to the inhibition of isoprenoid units, which are critical for the activation of these key proteins, thereby affecting cancer cell behavior. Additionally, statins affect MAPK and Cdk2, which in turn reduce the expression of p21 and p27 cyclin-dependent kinase inhibitors. Akt signaling plays a crucial role in key cancer cell features like proliferation, invasion, and apoptosis by activating multiple effectors in downstream pathways such as FOXO, PTEN, NF-κB, GSK3β, and mTOR. The PI3K/Akt signaling is necessary for many events in the metastatic pathway and has been implicated in the resistance to cytostatic drugs. The Akt/PTEN axis is currently attracting great interest for its role in carcinogenesis. Statins have been shown to activate the purinergic receptor P2X7 and affect Akt signaling, which may have important anti-cancer effects. Hence, targeting Akt shows promise as an effective approach to cancer prevention and therapy. This review aims to provide a comprehensive discussion on the specific impact of statins through Akt signaling in different types of cancer.
Collapse
Affiliation(s)
- Fatemeh Sadat Hosseini
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abdolreza Ahmadi
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Hossein Hosseini
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
15
|
Moghadam SG, Ebrahimpour M, Alavizadeh SH, Kesharwani P, Sahebkar A. The association between oxidized low-density lipoprotein and cancer: An emerging targeted therapeutic approach? Bioorg Med Chem Lett 2024; 106:129762. [PMID: 38649117 DOI: 10.1016/j.bmcl.2024.129762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/06/2024] [Accepted: 04/19/2024] [Indexed: 04/25/2024]
Abstract
Lipids play an important role in varying vital cellular processes including cell growth and division. Elevated levels of low-density lipoprotein (LDL) and oxidized-LDL (ox-LDL), and overexpression of the corresponding receptors including LDL receptor (LDLR), lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1), and cluster of differentiation 36 (CD36), have shown strong correlations with different facets of carcinogenesis including proliferation, invasion, and angiogenesis. Furthermore, a high serum level of LOX-1 is considered as a poor prognostic factor in many types of cancer including colorectal cancer. Ox-LDL could contribute to cancer progression and metastasis through endothelial-to-mesenchymal transition (EMT) and autophagy. Thus, many studies have shed light on the significant role of ox-LDL as a potential therapeutic target for cancer therapy. In various repurposing approaches, anti-dyslipidemia agents, phytochemicals, autophagy modulators as well as recently developed ldl-like nanoparticles have been investigated as potential tumor therapeutic agents by targeting oxidized-LDL/LOX-1 pathways. Herein, we reviewed the role of oxidized-LDL and LOX-1 in cancer progression, invasion, metastasis, and also cancer-associated angiogenesis. Moreover, we addressed therapeutic utility of several compounds that proved to be capable of targeting the metabolic moieties in cancer. This review provides insights on the potential impact of targeting LDL and ox-LDL in cancer therapy and their future biomedical implementations.
Collapse
Affiliation(s)
- Samin Ghorbani Moghadam
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehrshad Ebrahimpour
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyedeh Hoda Alavizadeh
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
16
|
Jachs M, Hartl L, Simbrunner B, Semmler G, Balcar L, Hofer BS, Schwarz M, Bauer D, Stättermayer AF, Pinter M, Trauner M, Reiberger T, Mandorfer M. Prognostic performance of non-invasive tests for portal hypertension is comparable to that of hepatic venous pressure gradient. J Hepatol 2024; 80:744-752. [PMID: 38218352 DOI: 10.1016/j.jhep.2023.12.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/08/2023] [Accepted: 12/20/2023] [Indexed: 01/15/2024]
Abstract
BACKGROUND & AIMS Non-invasive tests to assess the probability of clinically significant portal hypertension (CSPH) - including the ANTICIPATE±NASH models based on liver stiffness measurement and platelet count±BMI, and the von Willebrand factor antigen to platelet count ratio (VITRO) - have fundamentally changed the management of compensated advanced chronic liver disease (cACLD). However, their prognostic utility has not been compared head-to-head to the gold standard for prognostication in cACLD, i.e. the hepatic venous pressure gradient (HVPG). METHODS Patients with cACLD (liver stiffness measurement ≥10 kPa) who underwent advanced characterization via same-day HVPG/non-invasive test assessment from 2007-2022 were retrospectively included. Long-term follow-up data on hepatic decompensation was recorded. RESULTS Four hundred and twenty patients with cACLD of varying etiologies, with a CSPH prevalence of 67.6%, were included. The cumulative incidence of hepatic decompensation at 1 and 2 years was 4.7% and 8.0%, respectively. HVPG, VITRO, and ANTICIPATE±NASH-CSPH-probability showed similar time-dependent prognostic value (AUROCs 0.683-0.811 at 1 year and 0.699-0.801 at 2 years). In competing risk analyses adjusted for MELD score and albumin, HVPG (adjusted subdistribution hazard ratio [aSHR] 1.099 [95% CI 1.054-1.150] per mmHg; p <0.001), or VITRO (aSHR 1.134 [95% CI 1.062-1.211] per unit; p <0.001), or ANTICIPATE±NASH-CSPH-probability (aSHR 1.232 [95% CI 1.094-1.387] per 10%; p <0.001) all predicted first decompensation during follow-up. Previously proposed cut-offs (HVPG ≥10 mmHg vs. <10 mmHg, VITRO ≥2.5 vs. <2.5, and ANTICIPATE-CSPH probability ≥60% vs. <60%) all accurately discriminated between patients at negligible risk and those at substantial risk of hepatic decompensation. CONCLUSIONS The prognostic performance of ANTICIPATE±NASH-CSPH-probability and VITRO is comparable to that of HVPG, supporting their utility for identifying patients who may benefit from medical therapies to prevent first hepatic decompensation. IMPACT AND IMPLICATIONS Non-invasive tests have revolutionized the diagnosis and management of clinically significant portal hypertension in patients with compensated advanced chronic liver disease (cACLD). However, limited data exists regarding the prognostic utility of non-invasive tests in direct comparison to the gold standard for prognostication in cACLD, i.e. the hepatic venous pressure gradient. In our study including 420 patients with cACLD, the ANTICIPATE±NASH model and VITRO yielded similar AUROCs to hepatic venous pressure gradient for hepatic decompensation within 1 to 2 years. Thus, non-invasive tests should be applied and updated in yearly intervals in clinical routine to identify patients at short-term risk, thereby identifying patients who may benefit from treatment aimed at preventing hepatic decompensation.
Collapse
Affiliation(s)
- Mathias Jachs
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria; Hepatic Hemodynamic Lab, Division of Gatroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Lukas Hartl
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria; Hepatic Hemodynamic Lab, Division of Gatroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Benedikt Simbrunner
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria; Hepatic Hemodynamic Lab, Division of Gatroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria; Christian Doppler Laboratory for Portal Hypertension and Liver Fibrosis, Medical University of Vienna, Vienna, Austria
| | - Georg Semmler
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria; Hepatic Hemodynamic Lab, Division of Gatroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Lorenz Balcar
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria; Hepatic Hemodynamic Lab, Division of Gatroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Benedikt Silvester Hofer
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria; Hepatic Hemodynamic Lab, Division of Gatroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria; Christian Doppler Laboratory for Portal Hypertension and Liver Fibrosis, Medical University of Vienna, Vienna, Austria
| | - Michael Schwarz
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria; Hepatic Hemodynamic Lab, Division of Gatroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - David Bauer
- Hepatic Hemodynamic Lab, Division of Gatroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria; Department of Internal Medicine IV, Klinik Ottakring, Vienna, Austria
| | - Albert Friedrich Stättermayer
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Matthias Pinter
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Michael Trauner
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Thomas Reiberger
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria; Christian Doppler Laboratory for Portal Hypertension and Liver Fibrosis, Medical University of Vienna, Vienna, Austria
| | - Mattias Mandorfer
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria; Hepatic Hemodynamic Lab, Division of Gatroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
17
|
Yaribeygi H, Maleki M, Rashid-Farrokhi F, Abdullahi PR, Hemmati MA, Jamialahmadi T, Sahebkar A. Modulating effects of crocin on lipids and lipoproteins: Mechanisms and potential benefits. Heliyon 2024; 10:e28837. [PMID: 38617922 PMCID: PMC11015417 DOI: 10.1016/j.heliyon.2024.e28837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/16/2024] Open
Abstract
Dyslipidemia poses a significant risk to cardiovascular health in both diabetic and non-diabetic individuals. Therefore, it is crucial to normalize lipid homeostasis in order to prevent or minimize complications associated with dyslipidemia. However, pharmacological interventions for controlling lipid metabolism often come with adverse effects. As an alternative, utilizing herbal-based agents, which typically have fewer side effects, holds promise. Crocin, a naturally occurring nutraceutical, has been shown to impact various intracellular pathways, reduce oxidative stress, and alleviate inflammatory processes. Recent evidence suggests that crocin may also confer lipid-related benefits and potentially contribute to the normalization of lipid homeostasis. However, the specific advantages and the cellular pathways involved are not yet well understood. In this review, we present the latest findings regarding the lipid benefits of crocin, which could be instrumental in preventing or reducing disorders associated with dyslipidemia. Additionally, we explore the potential cellular mechanisms and pathways that mediate these lipid benefits.
Collapse
Affiliation(s)
- Habib Yaribeygi
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
| | - Mina Maleki
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farin Rashid-Farrokhi
- CKD Research Centre, Shahid Beheshti University of Medical Science, IranNephrology Department, Masih Daneshvari Hospital, Telemedicine Research Center, National Research Institute of Tuberculosis and Lung Disease, Tehran, Iran
| | | | - Mohammad Amin Hemmati
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran
| | - Tannaz Jamialahmadi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
18
|
Pordel S, McCloskey AP, Almahmeed W, Sahebkar A. The protective effects of statins in traumatic brain injury. Pharmacol Rep 2024; 76:235-250. [PMID: 38448729 DOI: 10.1007/s43440-024-00582-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/08/2024]
Abstract
Traumatic brain injury (TBI), often referred to as the "silent epidemic", is the most common cause of mortality and morbidity worldwide among all trauma-related injuries. It is associated with considerable personal, medical, and economic consequences. Although remarkable advances in therapeutic approaches have been made, current treatments and clinical management for TBI recovery still remain to be improved. One of the factors that may contribute to this gap is that existing therapies target only a single event or pathology. However, brain injury after TBI involves various pathological mechanisms, including inflammation, oxidative stress, blood-brain barrier (BBB) disruption, ionic disturbance, excitotoxicity, mitochondrial dysfunction, neuronal necrosis, and apoptosis. Statins have several beneficial pleiotropic effects (anti-excitotoxicity, anti-inflammatory, anti-oxidant, anti-thrombotic, immunomodulatory activity, endothelial and vasoactive properties) in addition to promoting angiogenesis, neurogenesis, and synaptogenesis in TBI. Supposedly, using agents such as statins that target numerous and diverse pathological mechanisms, may be more effective than a single-target approach in TBI management. The current review was undertaken to investigate and summarize the protective mechanisms of statins against TBI. The limitations of conducted studies and directions for future research on this potential therapeutic application of statins are also discussed.
Collapse
Affiliation(s)
- Safoora Pordel
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alice P McCloskey
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Wael Almahmeed
- Heart and Vascular Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
19
|
Firouzjaei AA, Mahmoudi A, Almahmeed W, Teng Y, Kesharwani P, Sahebkar A. Identification and analysis of the molecular targets of statins in colorectal cancer. Pathol Res Pract 2024; 256:155258. [PMID: 38522123 DOI: 10.1016/j.prp.2024.155258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/05/2024] [Accepted: 03/08/2024] [Indexed: 03/26/2024]
Abstract
Colorectal cancer (CRC) is the third most common cancer in the world. According to several types of research, statins may impact the development and treatment of CRC. This work aimed to use bioinformatics to discover the relationship between statin targets and differentially expressed genes (DEGs) in CRC patients and determine the possible molecular effect of statins on CRC suppression. We used CRC datasets from the GEO database to select CRC-related DEGs. DGIdb and STITCH databases were used to identify gene targets of subtypes of statin. Further, we identified the statin target of CRC DEGs hub genes by using a Venn diagram of CRC DEGs and statin targets. Funrich and enrichr databases were carried out for the KEGG pathway and gene ontology (GO) enrichment analysis, respectively. GSE74604 and GSE10950 were used to identify CRC DEGs. After analyzing datasets,1370 genes were identified as CRC DEGs, and 345 targets were found for statins. We found that 35 genes are CRC DEGs statin targets. We found that statin targets in CRC were enriched in the receptor and metallopeptidase activity for molecular function, cytoplasm and plasma membrane for cellular component, signal transduction, and cell communication for biological process genes were substantially enriched based on FunRich enrichment. Analysis of the KEGG pathways revealed that the overexpressed DEGs were enriched in the IL-17, PPAR, and Toll-like receptor signaling pathways. Finally, CCNB1, DNMT1, AURKB, RAC1, PPARGC1A, CDKN1A, CAV1, IL1B, and HSPD1 were identified as hub CRC DEGs statin targets. The genetic and molecular aspects of our findings reveal that statins might have a therapeutic effect on CRC.
Collapse
Affiliation(s)
- Ali Ahmadizad Firouzjaei
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Mahmoudi
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Wael Almahmeed
- Heart and Vascular Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Yong Teng
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Amirhossein Sahebkar
- Center for Global health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
20
|
Alizadehasl A, Alavi MS, Boudagh S, Alavi MS, Mohebi S, Aliabadi L, Akbarian M, Ahmadi P, Mannarino MR, Sahebkar A. Lipid-lowering drugs and cancer: an updated perspective. Pharmacol Rep 2024; 76:1-24. [PMID: 38015371 DOI: 10.1007/s43440-023-00553-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 11/29/2023]
Abstract
Statins and non-statin medications used for the management of dyslipidemia have been shown to possess antitumor properties. Since the use of these drugs has steadily increased over the past decades, more knowledge is required about their relationship with cancer. Lipid-lowering agents are heterogeneous compounds; therefore, it remains to be revealed whether anticancer potential is a class effect or related to them all. Here, we reviewed the literature on the influence of lipid-lowering medications on various types of cancer during development or metastasis. We also elaborated on the underlying mechanisms associated with the anticancer effects of antihyperlipidemic agents by linking the reported in vivo and in vitro studies.
Collapse
Affiliation(s)
- Azin Alizadehasl
- Cardio-Oncology Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
- Echocardiography Research CenterRajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Sadat Alavi
- Echocardiography Research CenterRajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Shabnam Boudagh
- Echocardiography Research CenterRajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohaddeseh Sadat Alavi
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Somaye Mohebi
- Echocardiography Research CenterRajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Leila Aliabadi
- Echocardiography Research CenterRajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mahsa Akbarian
- Echocardiography Research CenterRajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Parisa Ahmadi
- Echocardiography Research CenterRajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | | | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
21
|
Gholamalizadeh H, Ensan B, Sukhorukov VN, Sahebkar A. Targeting the CCL2-CCR2 signaling pathway: potential implications of statins beyond cardiovascular diseases. J Pharm Pharmacol 2024; 76:138-153. [PMID: 38127312 DOI: 10.1093/jpp/rgad112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND The chemokine ligand CCL2 and its cognate receptor CCR2 have been implicated in the pathogenesis of a wide variety of diseases. Hence, the inhibition of the CCL2/CCR2 signaling pathway has been of great attention in recent studies. Among suggested medications, statins known as HMG-COA reductase inhibitors with their pleiotropic effects are widely under investigation. METHOD A comprehensive literature search on Scopus and PubMed databases was conducted using the keywords 'CCL2', 'CCR2', 'monocyte chemoattractant protein-1', 'HMG-COA reductase inhibitor', and 'statin'. Both experimental and clinical studies measuring CCL2/CCR2 expressions following statin therapy were identified excluding the ones focused on cardiovascular diseases. RESULTS Herein, we summarized the effects of statins on CCL2 and CCR2 expression in various pathologic conditions including immune-mediated diseases, nephropathies, diabetes, rheumatic diseases, neuroinflammation, inflammatory bowel diseases, gynecologic diseases, and cancers. CONCLUSION For the most part, statins play an inhibitory role on the CCL2-CCR2 axis which implies their potential to be further developed as therapeutic options in non-cardiovascular diseases either alone or in combination with other conventional treatments. However, the existing literature mostly focused on experimental models and is therefore inadequate to reach a conclusion.
Collapse
Affiliation(s)
- Hanieh Gholamalizadeh
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
| | - Behzad Ensan
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
| | - Vasily N Sukhorukov
- Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, Moscow 125315, Russia
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
| |
Collapse
|
22
|
Arabi SM, Chambari M, Bahrami LS, Hadi S, Sahebkar A. Statin Therapy and Flow-Mediated Dilation: A Systematic Review and Dose-Response Meta-Analysis Using the GRADE of Data from Randomized Controlled Trials. Curr Hypertens Rev 2024; 20:90-100. [PMID: 38385489 DOI: 10.2174/0115734021280797240212091416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/14/2024] [Accepted: 01/22/2024] [Indexed: 02/23/2024]
Abstract
INTRODUCTION A previous meta-analysis reported the positive effects of statin therapy on endothelial function. However, the obtained result had several limitations that necessitated updating the information in this field. Therefore, a systematic and meta-analysis review was conducted to determine whether statin therapy could improve endothelial function, as assessed by flow-- mediated dilation (FMD). METHODS MEDLINE, SciVerse Scopus, and Clarivate Analytics Web of Science were searched to identify randomized placebo-controlled trials assessing the impact of statin therapy on FMD. A random-effects model was used for meta-analysis to calculate the mean difference in weight. Meta- regression and subgroup analyses were used to identify sources of heterogeneity. In addition, nonlinear dose-response, quality of evidence, influence analysis, and publication bias evaluation were assessed using standard methods. RESULT Thirty-five trials (41 arms) involving 2178 participants were included in the meta-analysis study. Statin treatment significantly improved FMD [weighted mean difference (WMD): 1.7%, 95% CI: 1.3-2.2, p < 0.001). However, significant heterogeneity was observed (I2=97.9%, p < 0.001). The results of the subgroup analysis showed that health status can contribute to heterogeneity. Non-linear dose-response analysis revealed the most significant improvement in FMD with atorvastatin at a dose of 20 mg/day and simvastatin at 80 mg/day. CONCLUSION Statin therapy significantly improved endothelial function, as assessed by FMD. These changes are clinically significant, but their use should be approached with caution.
Collapse
Affiliation(s)
- Seyyed Mostafa Arabi
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahla Chambari
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Leila Sadat Bahrami
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeid Hadi
- Department of Health, School of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
23
|
Akbari A, Razmi M, Rafiee M, Watts GF, Sahebkar A. The Effect of Statin Therapy on Serum Uric Acid Levels: A Systematic Review and Meta-analysis. Curr Med Chem 2024; 31:1726-1739. [PMID: 36748810 DOI: 10.2174/0929867330666230207124516] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 11/17/2022] [Accepted: 11/23/2022] [Indexed: 02/08/2023]
Abstract
BACKGROUND Elevated concentrations of serum uric acid (SUA) are associated with several conditions, including cardiovascular disease. The present study aimed to estimate the impact of statin therapy on SUA levels through a systematic review and meta-analysis of clinical trials. METHODS PubMed, Embase, Web of Science, and Scopus were searched on January 14, 2022, to identify eligible clinical trials. The intervention group received statins as monotherapy or in combination with other drugs, and the control group received non-statins or placebo. Studies reporting SUA levels before and after treatment were selected for further analysis. Finally, the data were pooled, and the mean changes in SUA, total cholesterol, high-density lipoprotein (HDL), low-density lipoprotein (LDL), and triglycerides were reported. RESULTS Out of 1269 identified studies, 23 were included in the review. A total of 3928 participants received statin therapy, and 1294 were included in control groups. We found a significant reduction in SUA levels following statin therapy (mean difference (MD) = -26.67 μmol/L with 95% confidence interval (CI) [-44.75, -8.60] (P =0.004)). Atorvastatin (MD = -37.93 μmol/L [-67.71, -8.15]; P < 0.0001), pravastatin (MD = -12.64 μmol/L [-18.64, -6.65]; P < 0.0001), and simvastatin (MD = -5.95 μmol/L [-6.14, -5.80]; P < 0.0001), but not rosuvastatin, were significantly associated with a reduction in SUA levels. An analysis comparing different types of statins showed that pravastatin 20-40 mg/day could significantly reduce SUA when compared to simvastatin 10-20 mg/day (-21.86 μmol/L [-36.33,-7.39]; P =0.003). CONCLUSION Statins were significantly associated with a decrease in SUA levels, particularly atorvastatin, which was found to be most effective in lowering SUA. Atorvastatin may be the most appropriate cholesterol-lowering agent for patients with or at risk of hyperuricemia.
Collapse
Affiliation(s)
- Abolfazl Akbari
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahya Razmi
- Student Research Committee, Faculty of Paramedical Sciences, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahdi Rafiee
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gerald F Watts
- Department of Cardiology, School of Medicine, Perth, Australia and Lipid Disorders Clinic, Cardiometabolic Services, Royal Perth Hospital, University of Western Australia, Perth, Australia
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Medicine, The University of Western Australia, Perth, Australia
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
24
|
Keshavarz R, Reiner Ž, Zengin G, Eid AH, Sahebkar A. MicroRNA-mediated Regulation of LDL Receptor: Biological and Pharmacological Implications. Curr Med Chem 2024; 31:1830-1838. [PMID: 37026494 DOI: 10.2174/0929867330666230407091652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 01/04/2023] [Accepted: 02/03/2023] [Indexed: 04/08/2023]
Abstract
One of the main causes of atherosclerosis is a disruption in cellular cholesterol hemostasis. The low-density lipoprotein receptor (LDLR) is an important factor in maintaining cholesterol homeostasis by the receptor-mediated endocytosis of LDL particles. Defective hepatic LDLR activity and uptake of LDL particles lead to elevated blood levels of low-density lipoprotein cholesterol (LDL-C), which is associated with a higher risk of atherosclerotic cardiovascular disease. LDLR expression can be affected by microRNAs (miRNAs). Some miRNAs, like miR-148a, miR-185, miR-224, miR-520, miR-128-1, miR-27a/b, miR-130b, and miR-301 seem to be important post-transcriptional regulators of LDLR related genes. These findings indicate the critical role of miRNAs in regulating LDL metabolism. The aim of this review was to provide insight into the miRNAs involved in LDLR activity and their potential roles in the treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Reyhaneh Keshavarz
- Department of Genetics, Faculty of Biological Sciences, Islamic Azad University, Tehran North Branch, Tehran, Iran
| | - Željko Reiner
- Department of Internal Medicine, University Hospital Center Zagreb, University of Zagreb, Kišpatićeva 12, Zagreb, Croatia
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Konya, 42130, Turkey
| | - Ali H Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
25
|
Labib HA, Ali RM, Tharwat AI. Can statins reduce mortality in critically ill COVID-19 patients? A retrospective cohort study. EGYPTIAN JOURNAL OF ANAESTHESIA 2023. [DOI: 10.1080/11101849.2023.2173205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Affiliation(s)
- Heba A. Labib
- Department of Anesthesia, Intensive Care, and Pain Management, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Rania M. Ali
- Department of Anesthesia, Intensive Care, and Pain Management, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Ayman I. Tharwat
- Department of Anesthesia, Intensive Care, and Pain Management, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
26
|
Siniscalchi C, Basaglia M, Riva M, Meschi M, Meschi T, Castaldo G, Di Micco P. Statins Effects on Blood Clotting: A Review. Cells 2023; 12:2719. [PMID: 38067146 PMCID: PMC10706238 DOI: 10.3390/cells12232719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/16/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
Statins are powerful lipid-lowering drugs that inhibit cholesterol biosynthesis via downregulation of hydroxymethylglutaryl coenzyme-A reductase, which are largely used in patients with or at risk of cardiovascular disease. Available data on thromboembolic disease include primary and secondary prevention as well as bleeding and mortality rates in statin users during anticoagulation for VTE. Experimental studies indicate that statins alter blood clotting at various levels. Statins produce anticoagulant effects via downregulation of tissue factor expression and enhanced endothelial thrombomodulin expression resulting in reduced thrombin generation. Statins impair fibrinogen cleavage and reduce thrombin generation. A reduction of factor V and factor XIII activation has been observed in patients treated with statins. It is postulated that the mechanisms involved are downregulation of factor V and activated factor V, modulation of the protein C pathway and alteration of the tissue factor pathway inhibitor. Clinical and experimental studies have shown that statins exert antiplatelet effects through early and delayed inhibition of platelet activation, adhesion and aggregation. It has been postulated that statin-induced anticoagulant effects can explain, at least partially, a reduction in primary and secondary VTE and death. Evidence supporting the use of statins for prevention of arterial thrombosis-related cardiovascular events is robust, but their role in VTE remains to be further elucidated. In this review, we present biological evidence and experimental data supporting the ability of statins to directly interfere with the clotting system.
Collapse
Affiliation(s)
- Carmine Siniscalchi
- Angiology Unit, Department of Internal Medicine, Parma University Hospital, 43121 Parma, Italy
| | - Manuela Basaglia
- Department of Internal Medicine, Parma University Hospital, 43121 Parma, Italy
| | - Michele Riva
- Department of Internal Medicine, Parma University Hospital, 43121 Parma, Italy
| | - Michele Meschi
- UOC Internal Medicine, Fidenza Hospital, 43036 Parma, Italy
| | - Tiziana Meschi
- Department of Medicine and Surgery, Parma University Hospital, 43121 Parma, Italy
| | - Giampiero Castaldo
- Department of Medicine and Surgery, Parma University Hospital, 43121 Parma, Italy
| | - Pierpaolo Di Micco
- AFO Medicina PO Santa Maria delle Grazie, Pozzuoli Naples Hospital 2 Nord, 80078 Naples, Italy
| |
Collapse
|
27
|
Elhence A, Shalimar. Von Willebrand Factor as a Biomarker for Liver Disease - An Update. J Clin Exp Hepatol 2023; 13:1047-1060. [PMID: 37975050 PMCID: PMC10643510 DOI: 10.1016/j.jceh.2023.05.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/29/2023] [Indexed: 11/19/2023] Open
Abstract
The von Willebrand factor (vWF) is best known for its role in the hemostatic pathway, aiding platelet adhesion and aggregation, as well as circulating along with coagulation factor VIII, prolonging its half-life. However, vWF is more than a hemostatic protein and is a marker of endothelial dysfunction in patients with cirrhosis. The levels of vWF increase progressively as cirrhosis progresses. Despite its qualitative defects, it can support and carry out its hemostatic role and contribute to a pro-coagulant disbalance. Moreover, it has been shown to be a good noninvasive marker for predicting clinically significant portal hypertension (CSPH). The vWF has been shown to predict decompensation and mortality among cirrhosis patients independently of the stage of liver disease and severity of portal hypertension. Increased vWF levels in the setting of endothelial injury predict bacterial translocation and systemic inflammation. The vWF-to-thrombocyte ratio (VITRO) score adds to the diagnostic ability of vWF alone in detecting CSPH non-invasively. Not only have vWF levels been shown to help predict the risk of hepatocellular carcinoma (HCC) among cirrhosis patients, but they also predict the risk of complications post-resection for HCC and response to systemic therapies. vWF-induced portal microthrombi have been purported to contribute to the pathogenesis of acute liver failure progression as well as non-cirrhotic portal hypertension. The prospect of modulation of vWF levels using drugs such as non-selective beta-blockers, statins, anticoagulants, and non-absorbable antibiotics and its use as a predictive biomarker for the response to these drugs needs to be explored.
Collapse
Affiliation(s)
- Anshuman Elhence
- Department of Gastroenterology, National Cancer Institute- All India Institute of Medical Sciences, New Delhi, India
| | - Shalimar
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
28
|
Yen CC, Hsu PC, Lin CC, Chen SC, Hsiao CY, Hwang SJ. Effect of far-infrared radiation therapy on von Willebrand factor in patients with chronic kidney disease. Front Med (Lausanne) 2023; 10:1268212. [PMID: 37746066 PMCID: PMC10514495 DOI: 10.3389/fmed.2023.1268212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 08/28/2023] [Indexed: 09/26/2023] Open
Abstract
Background Hemostatic abnormality has contributed to vascular access thrombosis in patients with chronic kidney disease (CKD). Previous studies have demonstrated that far-infrared radiation (FIR) therapy can maintain the patency and maturity of arteriovenous fistulas of patients undergoing hemodialysis (HD). However, prolonged access bleeding is observed once FIR is conducted at the end of dialysis. FIR can block the binding of platelet and von Willebrand factor (vWF), a predictor of hemostatic abnormality and vascular access thrombosis. However, clinical studies exploring FIR and vWF are sparse. Methods We recruited 20 HD patients, 21 CKD patients, and 20 controls to examine the alteration of vWF and a disintegrin and metalloproteinase with thrombospondin type 1 repeats 13 (ADAMTS13) following a single 40-min session of FIR therapy. In addition, the alteration of these factors in the HD group was examined following a 40-min FIR session thrice a week for 3 months. Results A decreasing trend in the vWF activity-antigen ratio of participants in all groups following a single FIR session was observed. In addition, the ratio in the HD group was significantly lower following 3 months of FIR therapy. The subgroup analysis revealed a consistent trend and multiple regression analysis showed that participants not taking hydroxymethylglutaryl-coenzyme A reductase inhibitor, diabetes mellitus, and higher hemoglobin levels were the significant factors. The alteration of the vWF activity-antigen ratio correlated moderately to that of ADAMTS13 antigen and activity. Conclusion FIR may alter the ratio of ultra-large vWF multimers through ADAMTS13, contributing to inhibiting platelet-endothelium interactions of CKD patients.
Collapse
Affiliation(s)
- Cheng-Chieh Yen
- Division of Nephrology, Department of Internal Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chia-Yi, Taiwan
| | - Po-Chao Hsu
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chih-Ching Lin
- Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Szu-Chia Chen
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chih-Yen Hsiao
- Division of Nephrology, Department of Internal Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chia-Yi, Taiwan
| | - Shang-Jyh Hwang
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Institute of Population Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| |
Collapse
|
29
|
Boccatonda A, Campello E, Simion C, Simioni P. Long-term hypercoagulability, endotheliopathy and inflammation following acute SARS-CoV-2 infection. Expert Rev Hematol 2023; 16:1035-1048. [PMID: 38018136 DOI: 10.1080/17474086.2023.2288154] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 11/22/2023] [Indexed: 11/30/2023]
Abstract
INTRODUCTION both symptomatic and asymptomatic SARS-CoV-2 infections - coined Coronavirus disease 2019 (COVID-19) - have been linked to a higher risk of cardiovascular events after recovery. AREAS COVERED our review aims to summarize the latest evidence on the increased thrombotic and cardiovascular risk in recovered COVID-19 patients and to examine the pathophysiological mechanisms underlying the interplay among endothelial dysfunction, inflammatory response and coagulation in long-COVID. We performed a systematic search of studies on hypercoagulability, endothelial dysfunction and inflammation after SARS-CoV-2 infection. EXPERT OPINION endothelial dysfunction is a major pathophysiological mechanism responsible for most clinical manifestations in COVID-19. The pathological activation of endothelial cells by a virus infection results in a pro-adhesive and chemokine-secreting phenotype, which in turn promotes the recruitment of circulating leukocytes. Cardiovascular events after COVID-19 appear to be related to persistent immune dysregulation. Patients with long-lasting symptoms display higher amounts of proinflammatory molecules such as tumor necrosis factor-α, interferon γ and interleukins 2 and 6. Immune dysregulation can trigger the activation of the coagulation pathway. The formation of extensive microclots in vivo, both during acute COVID-19 and in long-COVID-19, appears to be a relevant mechanism responsible for persistent symptoms and cardiovascular events.
Collapse
Affiliation(s)
- Andrea Boccatonda
- Internal Medicine, Bentivoglio Hospital, AUSL Bologna, Bentivoglio, Italy
| | - Elena Campello
- General Medicine and Thrombotic and Hemorrhagic Diseases Unit, Department of Medicine, University Hospital of Padova, Padova, Italy
| | - Chiara Simion
- General Medicine and Thrombotic and Hemorrhagic Diseases Unit, Department of Medicine, University Hospital of Padova, Padova, Italy
| | - Paolo Simioni
- General Medicine and Thrombotic and Hemorrhagic Diseases Unit, Department of Medicine, University Hospital of Padova, Padova, Italy
| |
Collapse
|
30
|
Ahmadi Y, Fard JK, Ghafoor D, Eid AH, Sahebkar A. Paradoxical effects of statins on endothelial and cancer cells: the impact of concentrations. Cancer Cell Int 2023; 23:43. [PMID: 36899388 PMCID: PMC9999585 DOI: 10.1186/s12935-023-02890-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 03/04/2023] [Indexed: 03/12/2023] Open
Abstract
In addition to their lipid-lowering functions, statins elicit additional pleiotropic effects on apoptosis, angiogenesis, inflammation, senescence, and oxidative stress. Many of these effects have been reported in cancerous and noncancerous cells like endothelial cells (ECs), endothelial progenitor cells (EPCs) and human umbilical vein cells (HUVCs). Not surprisingly, statins' effects appear to vary largely depending on the cell context, especially as pertains to modulation of cell cycle, senescence, and apoptotic processes. Perhaps the most critical reason for this discordance is the bias in selecting the applied doses in various cells. While lower (nanomolar) concentrations of statins impose anti-senescence, and antiapoptotic effects, higher concentrations (micromolar) appear to precipitate opposite effects. Indeed, most studies performed in cancer cells utilized high concentrations, where statin-induced cytotoxic and cytostatic effects were noted. Some studies report that even at low concentrations, statins induce senescence or cytostatic impacts but not cytotoxic effects. However, the literature appears to be relatively consistent that in cancer cells, statins, in both low or higher concentrations, induce apoptosis or cell cycle arrest, anti-proliferative effects, and cause senescence. However, statins' effects on ECs depend on the concentrations; at micromolar concentrations statins cause cell senescence and apoptosis, while at nonomolar concentrations statins act reversely.
Collapse
Affiliation(s)
- Yasin Ahmadi
- College of Science, Department of Medical Laboratory Sciences, Komar University of Science and Technology, 46001, Sulaymania, Iraq.
| | - Javad Khalili Fard
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Dlzar Ghafoor
- College of Science, Department of Medical Laboratory Sciences, Komar University of Science and Technology, 46001, Sulaymania, Iraq
| | - Ali H Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
31
|
Camilleri E, van Rein N, van Vlijmen BJM, Biedermann JS, Kruip MJHA, Leebeek FW, van der Meer FJ, Cobbaert CM, Cannegieter SC, Lijfering WM. Influence of rosuvastatin on apolipoproteins and coagulation factor levels: Results from the STAtin Reduce Thrombophilia trial. Res Pract Thromb Haemost 2023; 7:100063. [PMID: 36923709 PMCID: PMC10009537 DOI: 10.1016/j.rpth.2023.100063] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/12/2022] [Accepted: 12/20/2022] [Indexed: 02/05/2023] Open
Abstract
Background The STAtins Reduce Thrombophilia trial showed that, in patients with prior venous thrombosis, rosuvastatin decreased various coagulation factor levels. Objectives Here, we investigated the hypothesis that statins decrease coagulation factor levels through shared mechanisms of synthesis or regulatory pathways with apolipoproteins. Methods We measured the levels of apolipoprotein (Apo)A-I, A-II, A-IV, (a), B-100, B-total, C-I, C-II, C-III, and E in patients (n = 126) randomized to 28 days of rosuvastatin use. We assessed the association between apolipoproteins and coagulation factors at baseline using linear regression. The mean difference in apolipoprotein levels between baseline and after 28 days of rosuvastatin use was determined through linear regression, adjusting for age, sex, and body mass index. Coagulation factors were added to this model to determine if the lowering of apolipoproteins by rosuvastatin was linked with coagulation factor levels. Results At baseline, levels of all apolipoproteins, except Apo(a), were positively associated with FVII, FIX, and FXI. Apolipoproteins levels, except for ApoA-I, A-IV, and Apo(a), were decreased after 28 days of rosuvastatin. ApoB-100 showed the largest mean decrease of -0.43 g/L (95% CI = -0.46 to -0.40). The decrease in ApoC-I and C-III levels was associated with a decrease in FVII, whereas the decrease in apoA-II, B-100, and B-total was associated with a decrease in FXI. The decrease in apolipoproteins was neither associated with FVIII or vWF decrease nor with endogenous thrombin potential changes. Conclusions Rosuvastatin decreases the level of several apolipoproteins, but this decrease was associated only with a decrease in FVII and XI and not with FVIII/vWF.
Collapse
Affiliation(s)
- Eleonora Camilleri
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Nienke van Rein
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands.,Department of Pharmacy, Leiden University Medical Center, Leiden, the Netherlands
| | - Bart J M van Vlijmen
- Department of Internal Medicine, Division of Thrombosis and Hemostasis, Leiden University Medical Center, Leiden, the Netherlands.,Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Joseph S Biedermann
- Department of Hematology, Erasmus MC, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Marieke J H A Kruip
- Department of Hematology, Erasmus MC, Erasmus University Medical Center, Rotterdam, the Netherlands.,Thrombosis Service Star-shl, Rotterdam, the Netherlands
| | - Frank W Leebeek
- Department of Hematology, Erasmus MC, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Felix J van der Meer
- Department of Internal Medicine, Division of Thrombosis and Hemostasis, Leiden University Medical Center, Leiden, the Netherlands
| | - Christa M Cobbaert
- Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Suzanne C Cannegieter
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands.,Department of Internal Medicine, Division of Thrombosis and Hemostasis, Leiden University Medical Center, Leiden, the Netherlands.,Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Willem M Lijfering
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands.,Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
32
|
Sekhavati N, Noori E, Abbasifard M, Butler AE, Sahebkar A. How statin drugs affect exosomes? J Cell Biochem 2023; 124:171-180. [PMID: 36565475 DOI: 10.1002/jcb.30363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 11/25/2022] [Accepted: 12/16/2022] [Indexed: 12/25/2022]
Abstract
Statins reduce serum cholesterol and isoprenoids by the inhibition of cholesterol synthesis in the mevalonate pathway. Exosomes are extracellular vesicles (30-200 nm) released by all cells that regulate cell-to-cell communication in health and disease by transferring functional proteins, metabolites and nucleic acids to recipient cells. There are many reports that show an effect of statins on exosomes, from their production and release to their content and performance. In this review, we have summarized existing data on the impact of statins on the biosynthesis, secretion, content, uptake and function of exosomes.
Collapse
Affiliation(s)
- Niloofar Sekhavati
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elmira Noori
- Department of Immunology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mitra Abbasifard
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Alexandra E Butler
- Research Department, Royal College of Surgeons in Ireland Bahrain, Adliya, Bahrain
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Medicine, The University of Western Australia, Perth, Australia.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
33
|
Schooling CM, Zhao JV. Insights into Causal Cardiovascular Risk Factors from Mendelian Randomization. Curr Cardiol Rep 2023; 25:67-76. [PMID: 36640254 DOI: 10.1007/s11886-022-01829-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/07/2022] [Indexed: 01/15/2023]
Abstract
PURPOSE OF THE REVIEW This review summarizes major insights into causal risk factors for cardiovascular disease (CVD) by using Mendelian randomization (MR) to obtain unconfounded estimates, contextualized within its strengths and weaknesses. RECENT FINDINGS MR studies have confirmed the role of major CVD risk factors, including alcohol, smoking, adiposity, blood pressure, type 2 diabetes, lipids, and possibly inflammation, but added that the relation with alcohol is likely linear, confirmed the role of diastolic blood pressure, identified apolipoprotein B as the major target lipid, and foreshadowed results of some trials concerning anti-inflammatories. Identifying a healthy diet and the role of early life influences, such as birth weight, has proved more difficult. Use of MR has winnowed empirically driven hypotheses about CVD into a set of genetically validated targets of intervention. Greater inclusion of global diversity in genetic studies and the use of an overarching framework would enable even more informative MR studies.
Collapse
Affiliation(s)
- C M Schooling
- School of Public Health and Health Policy, City University of New York, 55 West 125th St, NY, 10027, New York, USA. .,School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| | - J V Zhao
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
34
|
Xiang Q, Tao JS, Li JJ, Tian RB, Li XH. What is the role of Von Willebrand factor in chronic hepatitis B virus infection to hepatocellular carcinoma: a review article. Ther Adv Chronic Dis 2022; 13:20406223221125683. [PMID: 36407018 PMCID: PMC9669690 DOI: 10.1177/20406223221125683] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 08/25/2022] [Indexed: 11/12/2023] Open
Abstract
Von Willebrand factor (VWF) is a glycoprotein synthesized and secreted by vascular endothelial cells and megakaryocytes, found on plasma surface, endothelial cells, and α-granule of platelets. VWF can be interacted with collagen and platelet membrane glycoproteins GPIb and GPIb-IIa and play an important role in platelet adhesion and aggregation. Growing research evidence suggests that VWF also mediates the prevention or protesting of hepatocellular carcinoma (HCC) in chronic hepatitis B (CHB) patients from several clinical studies. While the mechanism of VWF in HCC protection or protest is still unclear, further study is required. This article aims to rationalize the role of VWF in the development of HCC, and the functional domain of VWF in cancer as well as cross-talking with platelets and miRNAs. This article also looks forward to the future development and challenges of VWF research.
Collapse
Affiliation(s)
- Qiong Xiang
- Medical Research Center, Institute of Medicine,
Jishou University, Jishou, China
| | - Jia-Sheng Tao
- Medical Research Center, Institute of Medicine,
Jishou University, Jishou, China
| | - Jing-Jing Li
- Medical Research Center, Institute of Medicine,
Jishou University, Jishou, China
| | - Rong-Bo Tian
- Medical Research Center, Institute of Medicine,
Jishou University, Jishou, China
| | - Xian-Hui Li
- Institute of Pharmaceutical Sciences, Jishou
University, 120 Ren min south road, Jishou 416000, China
| |
Collapse
|
35
|
Manz XD, Bogaard HJ, Aman J. Regulation of VWF (Von Willebrand Factor) in Inflammatory Thrombosis. Arterioscler Thromb Vasc Biol 2022; 42:1307-1320. [PMID: 36172866 DOI: 10.1161/atvbaha.122.318179] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Increasing evidence indicates that inflammation promotes thrombosis via a VWF (von Willebrand factor)-mediated mechanism. VWF plays an essential role in maintaining the balance between blood coagulation and bleeding, and inflammation can lead to aberrant regulation. VWF is regulated on a transcriptional and (post-)translational level, and its secretion into the circulation captures platelets upon endothelial activation. The significant progress that has been made in understanding transcriptional and translational regulation of VWF is described in this review. First, we describe how VWF is regulated at the transcriptional and post-translational level with a specific focus on the influence of inflammatory and immune responses. Next, we describe how changes in regulation are linked with various cardiovascular diseases. Recent insights from clinical diseases provide evidence for direct molecular links between inflammation and thrombosis, including atherosclerosis, chronic thromboembolic pulmonary hypertension, and COVID-19. Finally, we will briefly describe clinical implications for antithrombotic treatment.
Collapse
Affiliation(s)
- Xue D Manz
- Department of Pulmonary Medicine, Amsterdam UMC, VU University Medical Center, Amsterdam Cardiovascular Sciences (ACS), the Netherlands
| | - Harm Jan Bogaard
- Department of Pulmonary Medicine, Amsterdam UMC, VU University Medical Center, Amsterdam Cardiovascular Sciences (ACS), the Netherlands
| | - Jurjan Aman
- Department of Pulmonary Medicine, Amsterdam UMC, VU University Medical Center, Amsterdam Cardiovascular Sciences (ACS), the Netherlands
| |
Collapse
|
36
|
Radbakhsh S, Katsiki N, Santos RD, Mikhailidis DP, Mantzoros CS, Sahebkar A. Effects of statins on specialized pro-resolving mediators: An additional pathway leading to resolution of inflammation. Metabolism 2022; 132:155211. [PMID: 35533891 DOI: 10.1016/j.metabol.2022.155211] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 04/22/2022] [Accepted: 04/23/2022] [Indexed: 11/21/2022]
Abstract
Statins are a class of cholesterol-lowering drugs that inhibit 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase. Anti-inflammatory and antioxidant properties, as well as improvement of endothelial function and plaque stabilization have also been proposed as parts of the pleiotropic effects of statins. Specialized pro-resolving mediators (SPMs) are endogenous lipid-derived molecules originating from ω-6 and ω-3 polyunsaturated fatty acids, such as arachidonic, docosahexaenoic and eicosapentaenoic acid that trigger and modulate the resolution of inflammation. Impaired SPM biosynthesis can lead to excessive or chronic inflammation and is implicated in the pathogenesis of several diseases. Exogenous administration of SPMs, including lipoxin, maresin, protectin, have been shown to improve both bacterial and viral infections, mainly in preclinical models, thus minimizing inflammation. Statin-triggered-SPM production in several in vitro and in vivo models may represent another anti-inflammatory pathway involving these drugs. This commentary discusses scientific publications on the effects of statins on SPMs and the resolution of inflammation process.
Collapse
Affiliation(s)
- Shabnam Radbakhsh
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Biotechnology and Nanotechnology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Niki Katsiki
- First Department of Internal Medicine, Diabetes Center, Division of Endocrinology and Metabolism, AHEPA University Hospital, Thessaloniki, Greece
| | - Raul D Santos
- Lipid Clinic Heart Institute (Incor), University of São Paulo, Medical School Hospital, São Paulo, Brazil
| | - Dimitri P Mikhailidis
- Department of Clinical Biochemistry, Royal Free Hospital campus, University College London, London, UK
| | - Christos S Mantzoros
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Section of Endocrinology, Boston VA Healthcare System, Harvard Medical School, Boston, MA, USA; Section of Endocrinology, Boston VA Healthcare System, Harvard Medical School, Boston, MA, USA
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; School of Medicine, The University of Western Australia, Perth, Australia; School of Pharmacy, Mashhad University of Western Australia, Mashhad, Iran.
| |
Collapse
|
37
|
Pleiotropic Effects of PCSK9: Focus on Thrombosis and Haemostasis. Metabolites 2022; 12:metabo12030226. [PMID: 35323669 PMCID: PMC8950753 DOI: 10.3390/metabo12030226] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/21/2022] [Accepted: 02/28/2022] [Indexed: 12/21/2022] Open
Abstract
The proprotein convertase subtilisin/keying 9 (PCSK9) is a serine protease that has gained importance in recent years as a drug target, mainly due to its effect on cholesterol metabolism in promoting the degradation of the low-density lipoprotein receptor (LDLR). However, this protease may also play an important role in lipid-independent reactions, including the process of thrombogenesis. Considering this, we reviewed the effects and implications of PCSK9 on platelet function and blood coagulation. PCSK9 knockout mice exhibited reduced platelet activity and developed less agonist-induced arterial thrombi compared to the respective control animals. This is in line with known research that elevated blood levels of PCSK9 are associated with an increased platelet reactivity and total number of circulating platelets in humans. Moreover, PCSK9 also has an effect on crucial factors of the coagulation cascade, such as increasing factor VIII plasma levels, since the degradation of this blood clotting factor is promoted by the LDLR. The aforementioned pleiotropic effects of the PCSK9 are important to take into account when evaluating the clinical benefit of PCSK9 inhibitors.
Collapse
|
38
|
Radbakhsh S, Kovanen PT, Sahebkar A. Regulating NETosis: An emerging facet of statin pleiotropy. Drug Discov Today 2022; 27:675-677. [PMID: 34958959 DOI: 10.1016/j.drudis.2021.12.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 12/22/2021] [Indexed: 11/25/2022]
Abstract
NETosis has emerged as a new player in the pathogenesis of several diseases including atherosclerotic cardiovascular disease. There is accumulating evidence suggesting that NETosis is regulated by statins, thereby justifying an important lipid-independent pleiotropic action of statin drugs in reducing the risk of atherothrombosis as well as other pathologies.
Collapse
Affiliation(s)
- Shabnam Radbakhsh
- Department of Medical Biotechnology and Nanotechnology, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Petri T Kovanen
- Wihuri Research Institute, Biomedicum Helsinki 1, 00290 Helsinki, Finland
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; School of Medicine, The University of Western Australia, Perth, Australia; Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
39
|
Mansouri A, Reiner Ž, Ruscica M, Tedeschi-Reiner E, Radbakhsh S, Bagheri Ekta M, Sahebkar A. Antioxidant Effects of Statins by Modulating Nrf2 and Nrf2/HO-1 Signaling in Different Diseases. J Clin Med 2022; 11:1313. [PMID: 35268403 PMCID: PMC8911353 DOI: 10.3390/jcm11051313] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/14/2022] [Accepted: 02/21/2022] [Indexed: 02/06/2023] Open
Abstract
Statins are competitive inhibitors of hydroxymethylglutaryl-CoA (HMG-CoA) reductase and have been used to treat elevated low-density lipoprotein cholesterol (LDL-C) for almost four decades. Antioxidant and anti-inflammatory properties which are independent of the lipid-lowering effects of statins, i.e., their pleiotropic effects, might be beneficial in the prevention or treatment of many diseases. This review discusses the antioxidant effects of statins achieved by modulating the nuclear factor erythroid 2 related factor 2/ heme oxygenase-1 (Nrf2/HO-1) pathway in different organs and diseases. Nrf2 and other proteins involved in the Nrf2/HO-1 signaling pathway have a crucial role in cellular responses to oxidative stress, which is a risk factor for ASCVD. Statins can significantly increase the DNA-binding activity of Nrf2 and induce the expression of its target genes, such as HO-1 and glutathione peroxidase) GPx, (thus protecting the cells against oxidative stress. Antioxidant and anti-inflammatory properties of statins, which are independent of their lipid-lowering effects, could be partly explained by the modulation of the Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Atena Mansouri
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand 9717853577, Iran;
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
| | - Željko Reiner
- Department of Internal Medicine, School of Medicine, University Hospital Center Zagreb, University of Zagreb, 10000 Zagreb, Croatia;
| | - Massimiliano Ruscica
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20100 Milan, Italy;
| | - Eugenia Tedeschi-Reiner
- University Hospital Center Sestre Milosrdnice, University of Osijek, Vinogradska Cesta 29, 10000 Zagreb, Croatia;
| | - Shabnam Radbakhsh
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran;
- Department of Medical Biotechnology and Nanotechnology, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
| | - Mariam Bagheri Ekta
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, A.P. Avtsyn Research Institute of Human Morphology, 3 Tsyurupy Str., 117418 Moscow, Russia;
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
| |
Collapse
|
40
|
Effect of Statins on Serum level of hs-CRP and CRP in Patients with Cardiovascular Diseases: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Mediators Inflamm 2022; 2022:8732360. [PMID: 35125965 PMCID: PMC8816584 DOI: 10.1155/2022/8732360] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/17/2021] [Indexed: 12/14/2022] Open
Abstract
Background. Several studies have reported that statins have anti-inflammatory effects. Nevertheless, results of clinical trials concerning the effect of statins on the levels of C-reactive protein (CRP) and high-sensitivity CRP (hs-CRP) have been inconsistent. Therefore, we performed a systematic review and meta-analysis of randomized clinical trials (RCTs) evaluating the effect of statins on CRP and hs-CRP levels in patients with cardiovascular diseases (CVDs). Methods. Literature search of the major databases was performed to find eligible RCTs assessing the effect of statins on serum levels of CRP and hs-CRP from the inception until the last week of April 2021. The effect sizes were determined for weighted mean difference (WMD) and 95% confidence intervals (CI). Results. 26 studies were identified (3010 patients and 2968 controls) for hs-CRP and 20 studies (3026 patients and 2968 controls) for CRP. Statins reduced the serum levels of hs-CRP (
; 95% CI: -1.26 to -0.68 mg/L;
) and CRP (
; 95% CI: -4.86 to -1.25 mg/L;
) in patients with CVDs. Statins decreased the serum levels of hs-CRP in patients receiving both high-intensity and moderate/low-intensity treatments with these drugs. In addition, the duration of treatment longer than 10 weeks decreased hs-CRP levels. Only high-intensity statin treatment could marginally decrease serum levels of CRP in CVDs patients. Conclusions. This meta-analysis showed the efficacy of statins to reduce the concentrations of CRP and hs-CRP in patients with different types of CVDs.
Collapse
|
41
|
Momtazi-Borojeni AA, Abdollahi E, Jaafari MR, Banach M, Watts GF, Sahebkar A. Negatively-charged Liposome Nanoparticles Can Prevent Dyslipidemia and Atherosclerosis Progression in the Rabbit Model. Curr Vasc Pharmacol 2022; 20:69-76. [PMID: 34414873 DOI: 10.2174/1570161119666210820115150] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/13/2021] [Accepted: 06/21/2021] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND AIM Negatively charged nanoliposomes have a strong attraction towards plasma lipoprotein particles and can thereby regulate lipid metabolism. Here, the impact of such nanoliposomes on dyslipidaemia and progression of atherosclerosis was investigated in a rabbit model. METHODS Two sets of negatively-charged nanoliposome formulations including [Hydrogenated Soy Phosphatidylcholine (HSPC)/1,2-distearoyl-sn-glycero-3- phosphoglycerol (DSPG)] and [1,2- Dimyristoyl-sn-glycero-3-phosphorylcholine (DMPC)/1,2-Dimyristoyl-sn-glycero-3-phosphorylcholine (DMPG)/Cholesterol] were evaluated. Rabbits fed a high-cholesterol diet were randomly divided into 3 groups (n=5/group) intravenously administrated with HSPC/DSPG formulation (DSPG group; 100 mmol/kg), DMPC/DMPG formulation (DMPG group; 100 mmol/kg), or the normal saline (control group; 0.9% NaCl) over a 4-week period. The atherosclerotic lesions of the aortic arch wall were studied using haematoxylin and eosin staining. RESULTS Both DSPG and DMPG nanoliposome formulations showed a nano-sized range in diameter with a negatively-charged surface and a polydispersity index of <0.1. After 4 weeks administration, the nanoliposome formulations decreased triglycerides (-62±3% [DSPG group] and -58±2% [DMPG group]), total cholesterol (-58±9% [DSPG group] and -37±5% [DMPG group]), and lowdensity lipoprotein cholesterol (-64±6% [DSPG group] and -53±10% [DMPG group]) levels, and increased high-density lipoprotein cholesterol (+67±28% [DSPG group] and +35±19% [DMPG group]) levels compared with the controls. The nanoliposomes showed a significant decrease in the severity of atherosclerotic lesions: mean values of the intima to media ratio in DMPG (0.96±0.1 fold) and DSPG (0.54±0.02 fold) groups were found to be significantly lower than that in the control (1.2±0.2 fold) group (p<0.05). CONCLUSION Anionic nanoliposomes containing [HSPC/DSPG] and [DMPC/DMPG] correct dyslipidaemia and inhibit the progression of atherosclerosis.
Collapse
Affiliation(s)
| | - Elham Abdollahi
- Department of Gynecology, Woman Health Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud R Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran | Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maciej Banach
- Department of Hypertension, WAM University Hospital in Lodz, Medical University of Lodz, Zeromskiego 113, Lodz, Poland | Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland
| | - Gerald F Watts
- Lipid Disorders Clinic, Department of Cardiology, Royal Perth Hospital, School of Medicine and Pharmacology, University of Western Australia, Perth, WA, Australia
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran | Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran | School of Medicine, The University of Western Australia, Perth, Australia | School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
42
|
Vahedian-Azimi A, Shojaie S, Banach M, Heidari F, Cicero AFG, Khoshfetrat M, Jamialahmadi T, Sahebkar A. Statin therapy in chronic viral hepatitis: a systematic review and meta-analysis of nine studies with 195,602 participants. Ann Med 2021; 53:1227-1242. [PMID: 34296976 PMCID: PMC8317925 DOI: 10.1080/07853890.2021.1956686] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 07/13/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Conflicting data suggest that statins could cause chronic liver disease in certain group of patients, while improving prognosis in those with chronic viral hepatitis (CVH). PURPOSE To quantify the potential protective role of statins on some main liver-related health outcomes in clinical studies on CVH patients.Data Sources: The search strategy was explored by a medical librarian using bibliographic databases, from January 2015 to April 2020.Data synthesis: The results showed no significant difference in the risk of mortality between statin users and non-users in the overall analysis. However, the risk of mortality significantly reduced by 39% in statin users who were followed for more than three years. Moreover, the risk of HCC, fibrosis, and cirrhosis in those on statins decreased by 53%, 45% and 41%, respectively. Although ALT and AST reduced slightly following statin therapy, this reduction was not statistically significant. LIMITATIONS A significant heterogeneity among studies was observed, resulting from differences in clinical characteristics between statin users and non-users, study designs, population samples, diseases stage, comorbidities, and confounding covariates. CONCLUSION Not only long-term treatment with statins seems to be safe in patients affected by hepatitis, but also it significantly improves their prognosis.
Collapse
Affiliation(s)
- Amir Vahedian-Azimi
- Trauma Research Center, Nursing Faculty, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Sajad Shojaie
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maciej Banach
- Department of Hypertension, Chair of Nephrology and Hypertension, Medical University of Lodz, Lodz, Poland
- Cardiovascular Research Centre, University of Zielona Gora, Zielona Gora, Poland
| | - Farshad Heidari
- Nursing Care Research Center (NCRC), School of Nursing and Midwifery, Iran University of Medical Sciences, Tehran, Iran
| | - Arrigo F. G. Cicero
- Atherosclerosis Research Unit, Medical and Surgical Sciences Department, Sant’Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Masoum Khoshfetrat
- Department of Anesthesiology and Critical Care, Khatamolanbia Hospital, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Tannaz Jamialahmadi
- Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan, Iran
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Medicine, The University of Western Australia, Perth, Australia
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
43
|
Metabolomics Signatures of SARS-CoV-2 Infection. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1376:45-59. [PMID: 34735713 DOI: 10.1007/5584_2021_674] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
For a very long time, viral infections have been considered as one of the most important causes of death and disability around the world. Through the viral infection, viruses as small pathogens enter the host cells and use hosts' biosynthesis machinery to replicate and collect infectious lineages. Moreover, they can modify hosts' metabolic pathways in order to their own purposes. Nowadays (in 2019-2020), the most famous type of viral infection which was caused by a novel type of coronavirus is called COVID-19 disease. It has claimed the lives of many people around the world and is a very serious threat to health. Since investigations of the effects of viruses on host metabolism using metabolomics tools may have given focuses on novel appropriate treatments, in the current review the authors highlighted the virus-host metabolic interactions and metabolomics perspective in COVID-19.
Collapse
|
44
|
Momtazi-Borojeni AA, Pirro M, Xu S, Sahebkar A. PCSK9 inhibition-based therapeutic approaches: an immunotherapy perspective. Curr Med Chem 2021; 29:980-999. [PMID: 34711156 DOI: 10.2174/0929867328666211027125245] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 09/04/2021] [Accepted: 09/07/2021] [Indexed: 11/22/2022]
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors (PCSK9-I) are novel therapeutic tools to decrease cardiovascular risk. These agents work by lowering the low-density lipoprotein cholesterol (LDL-C) in hypercholesterolemic patients who are statin resistant/intolerant. Current clinically approved and investigational PCSK9-I act generally by blocking PCSK9 activity in the plasma or suppressing its expression or secretion by hepatocytes. The most widely investigated method is the disruption of PCSK9/LDL receptor (LDLR) interaction by fully-humanized monoclonal antibodies (mAbs), evolocumab and alirocumab, which have been approved for the therapy of hypercholesterolemia and atherosclerotic cardiovascular disease (CVD). Besides, a small interfering RNA called inclisiran, which specifically suppresses PCSK9 expression in hepatocytes, is as effective as mAbs but with administration twice a year. Because of the high costs of such therapeutic approaches, several other PCSK9-I have been surveyed, including peptide-based anti-PCSK9 vaccines and small oral anti-PCSK9 molecules, which are under investigation in preclinical and phase I clinical studies. Interestingly, anti-PCSK9 vaccination has been found to serve as a more widely feasible and more cost-effective therapeutic tool over mAb PCSK9-I for managing hypercholesterolemia. The present review will discuss LDL-lowering and cardioprotective effects of PCSK9-I, mainly immunotherapy-based inhibitors including mAbs and vaccines, in preclinical and clinical studies.
Collapse
Affiliation(s)
| | - Matteo Pirro
- Unit of Internal Medicine, Department of Medicine, University of Perugia, Perugia, 06129. Italy
| | - Suowen Xu
- Department of Endocrinology, First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei. China
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad. Iran
| |
Collapse
|
45
|
Surma S, Banach M, Lewek J. COVID-19 and lipids. The role of lipid disorders and statin use in the prognosis of patients with SARS-CoV-2 infection. Lipids Health Dis 2021; 20:141. [PMID: 34689776 PMCID: PMC8542506 DOI: 10.1186/s12944-021-01563-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/20/2021] [Indexed: 12/15/2022] Open
Abstract
The global coronavirus disease 2019 (COVID-19) pandemic caused by the SARS-CoV-2 coronavirus started in March 2020. The conclusions from numerous studies indicate that people with comorbidities, such as arterial hypertension, diabetes, obesity, underlying cardiovascular disease, are particularly vulnerable to the severe course of COVID-19. The available data also suggest that patients with dyslipidemia, the most common risk factor of cardiovascular diseases, are also at greater risk of severe course of COVID-19. On the other hand, it has been shown that COVID-19 infection has an influence on lipid profile leading to dyslipidemia, which might require appropriate treatment. Owing to antiviral, anti-inflammatory, immunomodulatory, and cardioprotective activity, statin therapy has been considered as valuable tool to improve COVID-19 outcomes. Numerous observational studies have shown potential beneficial effects of lipid-lowering treatment on the course of COVID-19 with significant improved prognosis and reduced mortality.
Collapse
Affiliation(s)
- Stanisław Surma
- Faculty of Medicial Sciences in Katowice, Medical University of Silesia in Katowice, Poland; Medyków 18, 40-752 Katowice, Poland
- Club of Young Hypertensiologists, Polish Society of Hypertension, Warsaw, Poland
| | - Maciej Banach
- Department of Preventive Cardiology and Lipidology, Medical University of Lodz, Rzgowska 281/289, 93-338 Lodz, Poland
- Cardiovascular Research Centre, University of Zielona Gora, Zielona Gora, Poland
- Department of Cardiology and Adult Congenital Heart Diseases, Polish Mother’s Memorial Hospital Research Institute (PMMHRI), Rzgowska 281/289, 93-338 Lodz, Poland
| | - Joanna Lewek
- Department of Preventive Cardiology and Lipidology, Medical University of Lodz, Rzgowska 281/289, 93-338 Lodz, Poland
- Department of Cardiology and Adult Congenital Heart Diseases, Polish Mother’s Memorial Hospital Research Institute (PMMHRI), Rzgowska 281/289, 93-338 Lodz, Poland
| |
Collapse
|
46
|
Shimizu N, Ngayama D, Watanabe Y, Yamaguchi T, Nakamura S, Ohira M, Saiki A, Onda H, Yamaoka S, Abe K, Nakaseko C, Tatsuno I. Rituximab, cyclophosphamide, doxorubicin, vincristine and prednisolone therapy increases carotid intima-media thickness and plaque score with von Willebrand factor activity elevation in patients with malignant lymphoma. J Chemother 2021; 34:258-263. [PMID: 34661507 DOI: 10.1080/1120009x.2021.1988202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
An increased risk for atherosclerosis has been noted in cancer survivors; however, studies that focus on the risk of atherosclerosis in patients treated with chemotherapy are scarce. Therefore, we evaluated 32 patients who received rituximab, cyclophosphamide, doxorubicin, vincristine and prednisolone (R-CHOP) therapy for B-cell malignant lymphoma by analysing the changes in atherosclerosis. Just before each treatment course, plasma levels of von Willebrand Factor (vWF) activity were evaluated, and carotid ultrasonography was performed at baseline and after the final treatment. Throughout the follow-up period, plasma vWF levels showed significantly transient increased by approximately 20%-40%. Both mean carotid intima-media thickness (IMT) and plaque score (PS) significantly increased during the 36.6 ± 26.0 weeks of observation (mean IMT: 0.724 ± 0.118 to 0.767 ± 0.129 mm; PS: 4.31 ± 3.53 to 4.87 ± 3.88, P < 0.001). Our study suggests that R-CHOP therapy promotes atherosclerosis.
Collapse
Affiliation(s)
- Naomi Shimizu
- Department of Hematology, Toho University Medical Center Sakura Hospital, Chiba, Japan
| | - Daiji Ngayama
- Center for Diabetes, Metabolism and Endocrinology, Toho University Medical Center Sakura Hospital, Chiba, Japan
| | - Yasuhiro Watanabe
- Center for Diabetes, Metabolism and Endocrinology, Toho University Medical Center Sakura Hospital, Chiba, Japan
| | - Takashi Yamaguchi
- Center for Diabetes, Metabolism and Endocrinology, Toho University Medical Center Sakura Hospital, Chiba, Japan
| | - Shoko Nakamura
- Center for Diabetes, Metabolism and Endocrinology, Toho University Medical Center Sakura Hospital, Chiba, Japan
| | - Masahiro Ohira
- Center for Diabetes, Metabolism and Endocrinology, Toho University Medical Center Sakura Hospital, Chiba, Japan
| | - Atsuhito Saiki
- Center for Diabetes, Metabolism and Endocrinology, Toho University Medical Center Sakura Hospital, Chiba, Japan
| | - Hiroki Onda
- Center for Diabetes, Metabolism and Endocrinology, Toho University Medical Center Sakura Hospital, Chiba, Japan
| | - Shuhei Yamaoka
- Center for Diabetes, Metabolism and Endocrinology, Toho University Medical Center Sakura Hospital, Chiba, Japan
| | - Kazuki Abe
- Center for Diabetes, Metabolism and Endocrinology, Toho University Medical Center Sakura Hospital, Chiba, Japan
| | - Chiaki Nakaseko
- Department of Hematology, International University of Health and Welfare School of Medicine, Chiba, Japan
| | - Ichiro Tatsuno
- Center for Diabetes, Metabolism and Endocrinology, Toho University Medical Center Sakura Hospital, Chiba, Japan
| |
Collapse
|
47
|
Naeini MB, Momtazi-Borojeni AA, Ganjali S, Kontush A, Jaafari MR, Sahebkar A. Phosphatidylserine-containing liposomes: Therapeutic potentials against hypercholesterolemia and atherosclerosis. Eur J Pharmacol 2021; 908:174308. [PMID: 34245747 DOI: 10.1016/j.ejphar.2021.174308] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/30/2021] [Accepted: 07/05/2021] [Indexed: 01/09/2023]
Abstract
Liposomes have been suggested as potential tools for cholesterol deposit mobilization from atherosclerotic lesions. Here, we explored the anti-atherosclerotic effects of phosphatidylserine (PS)-containing liposomes in vivo. High-fat diet-fed New Zealand white rabbits which were divided into groups receiving weekly intravenous injections of PS liposomes, atorvastatin-loaded PS (PSA) liposomes (100 μg phospholipid/kg), or control buffer for four weeks. The size and severity grade of atherosclerotic plaques as well as lipid profile were evaluated at the completion of study. In vitro, the expression and levels of anti/pro-inflammatory genes and proteins, respectively, and macrophage cholesterol efflux capacity (CEC) of nanoliposomes were evaluated. Both PS and PSA lowered serum LDL-C (P = 0.0034, P = 0.0041) and TC (P = 0.029, P = 0.0054) levels but did not alter TG and HDL-C levels. Plaque size and grade were reduced by PS (P = 0.0025, P = 0.0031) and PSA (P = 0.016, P = 0.027) versus control. Moreover, intima-media thickness was significantly reduced in the PS vs. control group (P = 0.01). In cultured cells, ICAM-1 expression in the PS (P = 0.022) and VCAM-1 expression in the PS and PSA groups (P = 0.037, P = 0.004) were suppressed while TGF-β expression was induced by both PS and PSA (P = 0.048, P = 0.046). Moreover, CEC from macrophages to nanoliposomes was enhanced by PSA (P = 0.003). Administration of anionic PS-containing liposomes could improve lipid profile and promote plaque regression through mechanisms that may involve cholesterol efflux and modulation of adhesion molecules.
Collapse
Affiliation(s)
- Mehri Bemani Naeini
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Abbas Momtazi-Borojeni
- Department of Medical Biotechnology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran; Iran's National Elites Foundation, Tehran, Iran; Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shiva Ganjali
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Anatol Kontush
- National Institute for Health and Medical Research (INSERM), Research Unit 1166, Faculty of Medicine Pitié-Salpêtrière, Sorbonne University, Paris, France
| | - Mahmoud R Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Medicine, The University of Western Australia, Perth, Australia; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
48
|
A systematic review and meta-analysis on the effects of statins on pregnancy outcomes. Atherosclerosis 2021; 336:1-11. [PMID: 34601188 DOI: 10.1016/j.atherosclerosis.2021.09.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/06/2021] [Accepted: 09/08/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND AND AIMS Statins are contraindicated in pregnancy, due to their potential teratogenicity. However, data are still inconsistent and some even suggest a potential benefit of statin use against pregnancy complications. We aimed to investigate the effects of statins on pregnancy outcomes, including stillbirth, fetal abortion, and preterm delivery, through a systematic review of the literature and a meta-analysis of the available clinical studies. METHODS A literature search was performed through PubMed, Scopus, and Web of Science up to 16 May 2020. Data were extracted from 18 clinical studies (7 cohort studies, 2 clinical trials, 3 case reports, and 6 case series). Random effect meta-analyses were conducted using the restricted maximum likelihood method. The common effect sizes were calculated as odds ratios (ORs) and their 95% confidence interval (CI) for each main outcome. RESULTS Finally, nine studies were included in the meta-analysis. There was no significant association between statin therapy and stillbirth [OR (95% CI) = 1.30 (0.56, 3.02), p=0.54; I2 = 0%]. While statin exposure was significantly associated with increased rates of spontaneous abortion [OR (95% CI) = 1.36 (1.10-1.68), p=0.004, I2 = 0%], it was non-significantly associated with increased rates of induced abortion [OR (95% CI) = 2.08 (0.81, 5.36), p=0.129, I2 = 17.33%] and elective abortion [OR (95% CI) = 1.37 (0.68, 2.76), p=0.378, I2 = 62.46%]. A non-significant numerically reduced rate of preterm delivery was observed in statin users [OR (95% CI) = 0.47 (0.06, 3.70), p=0.47, I2 = 76.35%]. CONCLUSIONS Statin therapy seems to be safe as it was not associated with stillbirth or induced and elective abortion rates. Significant increase after statin therapy was, however, observed for spontaneous abortion. These results need to be confirmed and validated in future studies.
Collapse
|
49
|
Vahedian-Azimi A, Mohammadi SM, Banach M, Beni FH, Guest PC, Al-Rasadi K, Jamialahmadi T, Sahebkar A. Improved COVID-19 Outcomes following Statin Therapy: An Updated Systematic Review and Meta-analysis. BIOMED RESEARCH INTERNATIONAL 2021; 2021:1901772. [PMID: 34568488 PMCID: PMC8463212 DOI: 10.1155/2021/1901772] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 09/03/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Although vaccine rollout for COVID-19 has been effective in some countries, there is still an urgent need to reduce disease transmission and severity. We recently carried out a meta-analysis and found that pre- and in-hospital use of statins may improve COVID-19 mortality outcomes. Here, we provide an updated meta-analysis in an attempt to validate these results and increase the statistical power of these potentially important findings. METHODS The meta-analysis investigated the effect of observational and randomized clinical studies on intensive care unit (ICU) admission, tracheal intubation, and death outcomes in COVID-19 cases involving statin treatment, by searching the scientific literature up to April 23, 2021. Statistical analysis and random effect modeling were performed to assess the combined effects of the updated and previous findings on the outcome measures. Findings. The updated literature search led to the identification of 23 additional studies on statin use in COVID-19 patients. Analysis of the combined studies (n = 47; 3,238,508 subjects) showed no significant effect of statin treatment on ICU admission and all-cause mortality but a significant reduction in tracheal intubation (OR = 0.73, 95% CI: 0.54-0.99, p = 0.04, n = 10 studies). The further analysis showed that death outcomes were significantly reduced in the patients who received statins during hospitalization (OR = 0.54, 95% CI: 0.50-0.58, p < 0.001, n = 7 studies), with no such effect of statin therapy before hospital admission (OR = 1.06, 95% CI = 0.82-1.37, p = 0.670, n = 29 studies). CONCLUSION Taken together, this updated meta-analysis extends and confirms the findings of our previous study, suggesting that in-hospital statin use leads to significant reduction of all-cause mortality in COVID-19 cases. Considering these results, statin therapy during hospitalization, while indicated, should be recommended.
Collapse
Affiliation(s)
- Amir Vahedian-Azimi
- Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Seyede Momeneh Mohammadi
- Department of Anatomical Sciences, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Maciej Banach
- Department of Hypertension, Medical University of Lodz (MUL), Poland
- Cardiovascular Research Centre, University of Zielona-Gora, Zielona-Gora, Poland
| | - Farshad Heidari Beni
- Nursing Care Research Center (NCRC), School of Nursing and Midwifery, Iran University of Medical Sciences, Tehran, Iran
| | - Paul C. Guest
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | | | - Tannaz Jamialahmadi
- Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan, Iran
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
50
|
A comprehensive review on the lipid and pleiotropic effects of pitavastatin. Prog Lipid Res 2021; 84:101127. [PMID: 34509516 DOI: 10.1016/j.plipres.2021.101127] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/31/2021] [Accepted: 09/06/2021] [Indexed: 12/29/2022]
Abstract
The 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors, or statins, are administered as first line therapy for hypercholesterolemia, both in primary and secondary prevention. There is a growing body of evidence showing that beyond their lipid-lowering effect, statins have a number of additional beneficial properties. Pitavastatin is a unique lipophilic statin with a strong effect on lowering plasma total cholesterol and triacylglycerol. It has been reported to have pleiotropic effects such as decreasing inflammation and oxidative stress, regulating angiogenesis and osteogenesis, improving endothelial function and arterial stiffness, and reducing tumor progression. Based on the available studies considering the risk of statin-associated muscle symptoms it seems to be also the safest statin. The unique lipid and non-lipid effects of pitavastatin make this molecule a particularly interesting option for the management of different human diseases. In this review, we first summarized the lipid effects of pitavastatin and then strive to unravel the diverse pleiotropic effects of this molecule.
Collapse
|