1
|
Zhao H, Wu Y, Kim SM. Enhancing doxorubicin's anticancer impact in colorectal cancer by targeting the Akt/Gsk3β/mTOR-SREBP1 signaling axis with an HDAC inhibitor. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2025; 29:321-335. [PMID: 40254556 PMCID: PMC12012316 DOI: 10.4196/kjpp.24.274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/05/2024] [Accepted: 11/19/2024] [Indexed: 04/22/2025]
Abstract
Colorectal cancer ranks third in global incidence and is the second leading cause of cancer-related mortality. Doxorubicin, an anthracycline chemotherapeutic drug, is integral to current cancer treatment protocols. However, toxicity and resistance to doxorubicin poses a significant challenge to effective therapy. Panobinostat has emerged as a critical agent in colorectal cancer treatment due to its potential to overcome doxorubicin resistance and enhance the efficacy of existing therapeutic protocols. This study aimed to evaluate the capability of panobinostat to surmount doxorubicin toxicity and resistance in colorectal cancer. Specifically, we assessed the efficacy of panobinostat in enhancing the therapeutic response to doxorubicin in colorectal cancer cells and explored the potential synergistic effects of their combined treatment. Our results demonstrate that the combination treatment significantly reduces cell viability and colony-forming ability in colorectal cancer cells compared to individual treatments. The combination induces significant apoptosis, as evidenced by increased levels of cleaved PARP and cleaved caspase-9, while also resulting in a greater reduction in p-Akt/p-GSK-3β/mTOR expression, along with substantial decreases in c-Myc and SREBP-1 levels, compared to monotherapies. Consistent with the in vitro experimental results, the combination treatment significantly inhibited tumor formation in colorectal cancer xenograft nude mice compared to the groups treated with either agent alone. In conclusion, our research suggests that the panobinostat effectively enhances the effect of doxorubicin and combination of two drugs significantly reduced colorectal cancer tumor growth by targeting the Akt/GSK-3β/mTOR signaling pathway, indicating a synergistic therapeutic potential of these two drugs in colorectal cancer treatment.
Collapse
Affiliation(s)
- Huaxin Zhao
- Department of Physiology, Institute for Medical Sciences, Jeonbuk National University Medical School, Jeonju 54907, Korea
| | - Yanling Wu
- Department of Physiology, Institute for Medical Sciences, Jeonbuk National University Medical School, Jeonju 54907, Korea
| | - Soo Mi Kim
- Department of Physiology, Institute for Medical Sciences, Jeonbuk National University Medical School, Jeonju 54907, Korea
- Research Institute of Clinical Medicine, Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Korea
| |
Collapse
|
2
|
Xu C, Zhu R, Dai Q, Li Y, Hu G, Tao K, Xu Y, Xu G, Zhang G. TIMP-2 Modulates 5-Fu Resistance in Colorectal Cancer Through Regulating JAK-STAT Signalling Pathway. J Cell Mol Med 2025; 29:e70470. [PMID: 40118773 PMCID: PMC11928231 DOI: 10.1111/jcmm.70470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 01/26/2025] [Accepted: 02/21/2025] [Indexed: 03/23/2025] Open
Abstract
The main reason for the failure of chemotherapy therapies based on 5-Fluorouracil (5-Fu) is the development of resistance to 5-Fu in cancer patients, particularly those with colorectal cancer. Tissue inhibitor of metalloproteinases 2 (TIMP-2) has been shown to be associated with colorectal cancer (CRC), but its correlation with 5-Fu resistance in colorectal cancer has not been thoroughly studied. We screen the expression of different cytokines through Cytokine array. CCK-8 assay was conducted to evaluate the IC50 of 5-Fu and cell proliferation. ELISA and RT-qPCR were performed to detect TIMP-2 expression levels in cells and patient serum. Western blotting was utilised to analyse the differences in the expression of proteins related to signalling pathways in cells. Through cytokine array screening, we found that the expression of TIMP-2 was significantly increased in CRC drug-resistant cell lines. In addition, the expression of TIMP-2 in the serum of patients with CRC resistance to 5-Fu was significantly increased. Subsequent mechanistic experiments showed that TIMP-2 regulated the resistance of CRC cells to 5-Futhrough the JAK-STAT signalling pathway. Moreover, anti-TIMP-2 antibody or small molecule drug LY2784544 targeting the JAK-STAT signalling pathway can effectively reverse the resistance of CRC cells to 5-Fu. It is exactly TIMP-2 that mediates the resistance of CRC to 5-Fu through the JAK-STAT signalling pathway. Targeting drugs for TIMP-2 or the JAK-STAT signalling pathway are expected to be opportunities to reverse 5-Fu resistance in CRC.
Collapse
Affiliation(s)
- Chuchu Xu
- Department of Gastrointestinal SurgeryShaoxing People's HospitalShaoxingZhejiang ProvinceChina
| | - Renjun Zhu
- Department of EmergencyShaoxing People's HospitalShaoxingZhejiang ProvinceChina
| | - Qingfeng Dai
- Zhijiang College, Zhejiang University of TechnologShaoxingZhejiang ProvinceChina
| | - Yaoqing Li
- Department of Gastrointestinal SurgeryShaoxing People's HospitalShaoxingZhejiang ProvinceChina
| | - Gengyuan Hu
- Department of Gastrointestinal SurgeryShaoxing People's HospitalShaoxingZhejiang ProvinceChina
| | - Kelong Tao
- Department of Gastrointestinal SurgeryShaoxing People's HospitalShaoxingZhejiang ProvinceChina
| | - Yuhong Xu
- Department of GynaecologyShaoxing People's HospitalShaoxingZhejiang ProvinceChina
| | - Guangen Xu
- Department of Gastrointestinal SurgeryShaoxing People's HospitalShaoxingZhejiang ProvinceChina
| | - Guolin Zhang
- Department of Gastrointestinal SurgeryShaoxing People's HospitalShaoxingZhejiang ProvinceChina
| |
Collapse
|
3
|
Zhang Y, Gao S, Mao J, Song Y, Wang X, Jiang J, Lv L, Zhou Z, Wang J. The Inhibitory Effect and Mechanism of the Histidine-Rich Peptide rAj-HRP from Apostichopus japonicus on Human Colon Cancer HCT116 Cells. Molecules 2024; 29:5214. [PMID: 39519855 PMCID: PMC11548021 DOI: 10.3390/molecules29215214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/16/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Colon cancer is a common and lethal malignancy, ranking second in global cancer-related mortality, highlighting the urgent need for novel targeted therapies. The sea cucumber (Apostichopus japonicus) is a marine organism known for its medicinal properties. After conducting a bioinformatics analysis of the cDNA library of Apostichopus japonicus, we found and cloned a cDNA sequence encoding histidine-rich peptides, and the recombinant peptide was named rAj-HRP. Human histidine-rich peptides are known for their anti-cancer properties, raising questions as to whether rAj-HRP might exhibit similar effects. To investigate whether rAj-HRP can inhibit colon cancer, we used human colon cancer HCT116 cells as a model and studied the tumor suppressive activity in vitro and in vivo. The results showed that rAj-HRP inhibited HCT116 cell proliferation, migration, and adhesion to extracellular matrix (ECM) proteins in vitro. It also disrupted the cytoskeleton and induced apoptosis in these cells. In vivo, rAj-HRP significantly inhibited the growth of HCT116 tumors in BALB/c mice, reducing tumor volume and weight without affecting the body weight of the tumor-bearing mice. Western blot analysis showed that rAj-HRP inhibited HCT116 cell proliferation and induced apoptosis by upregulating BAX and promoting PARP zymogen degradation. Additionally, rAj-HRP inhibited HCT116 cell adhesion and migration by reducing MMP2 levels. Further research showed that rAj-HRP downregulated EGFR expression in HCT116 cells and inhibited key downstream molecules, including AKT, P-AKT, PLCγ, P38 MAPK, and c-Jun. In conclusion, rAj-HRP exhibits significant inhibitory effects on HCT116 cells in both in vitro and in vivo, primarily through the EGFR and apoptosis pathways. These findings suggest that rAj-HRP has the potential as a novel targeted therapy for colon cancer.
Collapse
Affiliation(s)
- Yuebin Zhang
- School of Life Sciences, Liaoning Normal University, Dalian 116081, China; (Y.Z.); (J.M.); (Y.S.)
| | - Shan Gao
- Liaoning Key Lab of Marine Fishery Molecular Biology, Liaoning Ocean and Fisheries Science Research Institute, Dalian 116023, China; (S.G.); (J.J.)
| | - Jiaming Mao
- School of Life Sciences, Liaoning Normal University, Dalian 116081, China; (Y.Z.); (J.M.); (Y.S.)
| | - Yuyao Song
- School of Life Sciences, Liaoning Normal University, Dalian 116081, China; (Y.Z.); (J.M.); (Y.S.)
| | - Xueting Wang
- Department of Pharmacology, College of Pharmacy, Dalian Medical University, Dalian 116044, China; (X.W.); (L.L.)
| | - Jingwei Jiang
- Liaoning Key Lab of Marine Fishery Molecular Biology, Liaoning Ocean and Fisheries Science Research Institute, Dalian 116023, China; (S.G.); (J.J.)
| | - Li Lv
- Department of Pharmacology, College of Pharmacy, Dalian Medical University, Dalian 116044, China; (X.W.); (L.L.)
| | - Zunchun Zhou
- Liaoning Key Lab of Marine Fishery Molecular Biology, Liaoning Ocean and Fisheries Science Research Institute, Dalian 116023, China; (S.G.); (J.J.)
| | - Jihong Wang
- School of Life Sciences, Liaoning Normal University, Dalian 116081, China; (Y.Z.); (J.M.); (Y.S.)
| |
Collapse
|
4
|
Maharati A, Moghbeli M. PI3K/AKT signaling pathway as a critical regulator of epithelial-mesenchymal transition in colorectal tumor cells. Cell Commun Signal 2023; 21:201. [PMID: 37580737 PMCID: PMC10424373 DOI: 10.1186/s12964-023-01225-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 07/12/2023] [Indexed: 08/16/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most frequent gastrointestinal malignancies that are considered as a global health challenge. Despite many progresses in therapeutic methods, there is still a high rate of mortality rate among CRC patients that is associated with poor prognosis and distant metastasis. Therefore, investigating the molecular mechanisms involved in CRC metastasis can improve the prognosis. Epithelial-mesenchymal transition (EMT) process is considered as one of the main molecular mechanisms involved in CRC metastasis, which can be regulated by various signaling pathways. PI3K/AKT signaling pathway has a key role in CRC cell proliferation and migration. In the present review, we discussed the role of PI3K/AKT pathway CRC metastasis through the regulation of the EMT process. It has been shown that PI3K/AKT pathway can induce the EMT process by down regulation of epithelial markers, while up regulation of mesenchymal markers and EMT-specific transcription factors that promote CRC metastasis. This review can be an effective step toward introducing the PI3K/AKT/EMT axis to predict prognosis as well as a therapeutic target among CRC patients. Video Abstract.
Collapse
Affiliation(s)
- Amirhosein Maharati
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
5
|
Tong X, Liu YS, Tong R, Tang WW, Li XM, Wang CY, Wang YP. TEAD4 predicts poor prognosis and transcriptionally targets PLAGL2 in serous ovarian cancer. Hum Cell 2023:10.1007/s13577-023-00908-4. [PMID: 37145265 DOI: 10.1007/s13577-023-00908-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 04/15/2023] [Indexed: 05/06/2023]
Abstract
The oncogenic function of TEA domain transcription factor 4 (TEAD4) has been confirmed in multiple human malignancies, while its potential role and regulatory mechanism in serous ovarian cancer progression are left unknown. By the gene expression analyses from Gene Expression Profiling Interactive Analysis (GEPIA) database, TEAD4 expression is shown to be up-regulated in serous ovarian cancer samples. Here, we confirmed the high expression of TEAD4 in clinical serous ovarian cancer specimens. In the following functional experiments, we found that TEAD4 overexpression promoted serous ovarian cancer malignant phenotypes, including proliferation, migration and invasion in serous ovarian cancer SK-OV-3 and OVCAR-3 cells, while TEAD4 knockout exerted the opposite function. The tumor growth inhibition of TEAD4 depletion was also affirmed by a Xenograft model in mice. In addition, this phenotypic deterioration induced by TEAD4 overexpression was diminished by PLAG1 like zinc finger 2 (PLAGL2) silencing. More importantly, combined with the results of the dual-luciferase assay, the transcriptional regulation of TEAD4 on PLAGL2 promoter was evidenced. Our results showed that the cancer-promoting gene TEAD4 was involved in serous ovarian cancer progression via targeting PLAGL2 at the transcriptional level.
Collapse
Affiliation(s)
- Xin Tong
- Department of Interventional, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, China
| | - Yi-Si Liu
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, 44 Xiaoheyan Road, Dadong District, Shenyang, 110042, China
| | - Rui Tong
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, 44 Xiaoheyan Road, Dadong District, Shenyang, 110042, China
| | - Wei-Wei Tang
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, 44 Xiaoheyan Road, Dadong District, Shenyang, 110042, China
| | - Xue-Mei Li
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, 44 Xiaoheyan Road, Dadong District, Shenyang, 110042, China
| | - Chun-Yan Wang
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, 44 Xiaoheyan Road, Dadong District, Shenyang, 110042, China
| | - Yong-Peng Wang
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, 44 Xiaoheyan Road, Dadong District, Shenyang, 110042, China.
| |
Collapse
|
6
|
Ren SN, Zhang ZY, Guo RJ, Wang DR, Chen FF, Chen XB, Fang XD. Application of nanotechnology in reversing therapeutic resistance and controlling metastasis of colorectal cancer. World J Gastroenterol 2023; 29:1911-1941. [PMID: 37155531 PMCID: PMC10122790 DOI: 10.3748/wjg.v29.i13.1911] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 02/02/2023] [Accepted: 03/21/2023] [Indexed: 04/06/2023] Open
Abstract
Colorectal cancer (CRC) is the most common digestive malignancy across the world. Its first-line treatments applied in the routine clinical setting include surgery, chemotherapy, radiotherapy, targeted therapy, and immunotherapy. However, resistance to therapy has been identified as the major clinical challenge that fails the treatment method, leading to recurrence and distant metastasis. An increasing number of studies have been attempting to explore the underlying mechanisms of the resistance of CRC cells to different therapies, which can be summarized into two aspects: (1) The intrinsic characters and adapted alterations of CRC cells before and during treatment that regulate the drug metabolism, drug transport, drug target, and the activation of signaling pathways; and (2) the suppressive features of the tumor microenvironment (TME). To combat the issue of therapeutic resistance, effective strategies are warranted with a focus on the restoration of CRC cells’ sensitivity to specific treatments as well as reprogramming impressive TME into stimulatory conditions. To date, nanotechnology seems promising with scope for improvement of drug mobility, treatment efficacy, and reduction of systemic toxicity. The instinctive advantages offered by nanomaterials enable the diversity of loading cargoes to increase drug concentration and targeting specificity, as well as offer a platform for trying the combination of different treatments to eventually prevent tumor recurrence, metastasis, and reversion of therapy resistance. The present review intends to summarize the known mechanisms of CRC resistance to chemotherapy, radiotherapy, immunotherapy, and targeted therapy, as well as the process of metastasis. We have also emphasized the recent application of nanomaterials in combating therapeutic resistance and preventing metastasis either by combining with other treatment approaches or alone. In summary, nanomedicine is an emerging technology with potential for CRC treatment; hence, efforts should be devoted to targeting cancer cells for the restoration of therapeutic sensitivity as well as reprogramming the TME. It is believed that the combined strategy will be beneficial to achieve synergistic outcomes contributing to control and management of CRC in the future.
Collapse
Affiliation(s)
- Sheng-Nan Ren
- Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin Province, China
| | - Zhan-Yi Zhang
- Bethune Third Clinical Medical College, Jilin University, Changchun 130021, Jilin Province, China
| | - Rui-Jie Guo
- Bethune Third Clinical Medical College, Jilin University, Changchun 130021, Jilin Province, China
| | - Da-Ren Wang
- Bethune Third Clinical Medical College, Jilin University, Changchun 130021, Jilin Province, China
| | - Fang-Fang Chen
- Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin Province, China
| | - Xue-Bo Chen
- Department of Gastrointestinal, Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin Province, China
| | - Xue-Dong Fang
- Department of Gastrointestinal, Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin Province, China
| |
Collapse
|
7
|
DiNatale A, Castelli MS, Nash B, Meucci O, Fatatis A. Regulation of Tumor and Metastasis Initiation by Chemokine Receptors. J Cancer 2022; 13:3160-3176. [PMID: 36118530 PMCID: PMC9475358 DOI: 10.7150/jca.72331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 08/10/2022] [Indexed: 12/13/2022] Open
Abstract
Tumor-initiating cells (TICs) are a rare sub-population of cells within the bulk of a tumor that are major contributors to tumor initiation, metastasis, and chemoresistance. TICs have a stem-cell-like phenotype that is dictated by the expression of master regulator transcription factors, including OCT4, NANOG, and SOX2. These transcription factors are expressed via activation of multiple signaling pathways that drive cancer initiation and progression. Importantly, these same signaling pathways can be activated by select chemokine receptors. Chemokine receptors are increasingly being revealed as major drivers of the TIC phenotype, as their signaling can lead to activation of stemness-controlling transcription factors. Additionally, the cell surface expression of chemokine receptors provides a unique therapeutic target to disrupt signaling pathways that control the expression of master regulator transcription factors and the TIC phenotype. This review summarizes the master regulator transcription factors known to dictate the TIC phenotype, along with the complex signaling pathways that can mediate their expression and the chemokine receptors that are most upstream of this phenotype.
Collapse
Affiliation(s)
- Anthony DiNatale
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA.,Present Address: Janssen Oncology, Spring House, PA, USA
| | - Maria Sofia Castelli
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA.,Present address: Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bradley Nash
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Olimpia Meucci
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA.,Program in Immune Cell Regulation & Targeting, Sidney Kimmel Cancer Center of Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Alessandro Fatatis
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA.,Program in Translational and Cellular Oncology, Sidney Kimmel Cancer Center of Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
8
|
Zou Q, Lei X, Xu A, Li Z, He Q, Huang X, Xu G, Tian F, Ding Y, Zhu W. Chemokines in progression, chemoresistance, diagnosis, and prognosis of colorectal cancer. Front Immunol 2022; 13:724139. [PMID: 35935996 PMCID: PMC9353076 DOI: 10.3389/fimmu.2022.724139] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 06/27/2022] [Indexed: 12/24/2022] Open
Abstract
Plenty of factors affect the oncogenesis and progression of colorectal cancer in the tumor microenvironment, including various immune cells, stromal cells, cytokines, and other factors. Chemokine is a member of the cytokine superfamily. It is an indispensable component in the tumor microenvironment. Chemokines play an antitumor or pro-tumor role by recruitment or polarization of recruiting immune cells. Meanwhile, chemokines, as signal molecules, participate in the formation of a cross talk among signaling pathways and non-coding RNAs, which may be involved in promoting tumor progression. In addition, they also function in immune escape. Chemokines are related to drug resistance of tumor cells and may even provide reference for the diagnosis, therapy, and prognosis of patients with colorectal cancer.
Collapse
Affiliation(s)
- Qian Zou
- Department of Pathology, Guangdong Medical University, Dongguan, China
| | - Xue Lei
- Department of Pathology, Guangdong Medical University, Dongguan, China
| | - Aijing Xu
- Department of Genetics and Endocrinology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Ziqi Li
- Department of Pathology, Guangdong Medical University, Dongguan, China
| | - Qinglian He
- Department of Pathology, Guangdong Medical University, Dongguan, China
| | - Xiujuan Huang
- Department of Pathology, Guangdong Medical University, Dongguan, China
- Department of Hematology, Longgang District People’s Hospital of Shenzhen, Shenzhen, China
| | - Guangxian Xu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Institute of Clinical Laboratory, Guangdong Medical University, Dongguan, China
| | - Faqing Tian
- Department of Pathology, Guangdong Medical University, Dongguan, China
- Department of Genetics and Endocrinology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
- *Correspondence: Faqing Tian, ; Yuanlin Ding, ; Wei Zhu,
| | - Yuanlin Ding
- School of Public Health, Guangdong Medical University, Dongguan, China
- *Correspondence: Faqing Tian, ; Yuanlin Ding, ; Wei Zhu,
| | - Wei Zhu
- Department of Pathology, Guangdong Medical University, Dongguan, China
- *Correspondence: Faqing Tian, ; Yuanlin Ding, ; Wei Zhu,
| |
Collapse
|
9
|
Almasabi S, Boyd R, Ahmed AU, Williams BRG. Integrin-Linked Kinase Expression Characterizes the Immunosuppressive Tumor Microenvironment in Colorectal Cancer and Regulates PD-L1 Expression and Immune Cell Cytotoxicity. Front Oncol 2022; 12:836005. [PMID: 35692780 PMCID: PMC9174997 DOI: 10.3389/fonc.2022.836005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/22/2022] [Indexed: 11/13/2022] Open
Abstract
Integrin-linked kinase (ILK) has been implicated as a molecular driver and mediator in both inflammation and tumorigenesis of the colon. However, a role for ILK in the tumor microenvironment (TME) and immune evasion has not been investigated. Here, we show a correlation of ILK expression with the immunosuppressive TME and cancer prognosis. We also uncover a role for ILK in the regulation of programmed death-ligand 1 (PD-L1) expression and immune cell cytotoxicity. Interrogation of web-based data-mining platforms, showed upregulation of ILK expression in tumors and adjacent-non tumor tissue of colorectal cancer (CRC) associated with poor survival and advanced stages. ILK expression was correlated with cancer-associated fibroblast (CAFs) and immunosuppressive cell infiltration including regulatory T cells (Treg) and M2 macrophages (M2) in addition to their gene markers. ILK expression was also significantly correlated with the expression of different cytokines and chemokines. ILK expression showed pronounced association with different important immune checkpoints including PD-L1. Deletion of the ILK gene in PD-L1 positive CRC cell lines using a doxycycline inducible-CRISPR/Cas9, resulted in suppression of both the basal and IFNγ-induced PD-L1 expression via downregulating NF-κB p65. This subsequently sensitized the CRC cells to NK92 immune cell cytotoxicity. These findings suggest that ILK can be used as a biomarker for prognosis and immune cell infiltration in colon cancer. Moreover, ILK could provide a therapeutic target to prevent immune evasion mediated by the expression of PD-L1.
Collapse
Affiliation(s)
- Saleh Almasabi
- Cancer and Innate Immunity, Centre for Cancer Research, Hudson Institute of Medical Research, Monash University, Clayton, VIC, Australia.,Cartherics, Hudson Institute of Medical Research, Monash University, Clayton, VIC, Australia.,Clinical Laboratory Sciences, Applied Medical Sciences, Najran University, Najran, Saudi Arabia
| | - Richard Boyd
- Cartherics, Hudson Institute of Medical Research, Monash University, Clayton, VIC, Australia
| | - Afsar U Ahmed
- Cancer and Innate Immunity, Centre for Cancer Research, Hudson Institute of Medical Research, Monash University, Clayton, VIC, Australia
| | - Bryan R G Williams
- Cancer and Innate Immunity, Centre for Cancer Research, Hudson Institute of Medical Research, Monash University, Clayton, VIC, Australia
| |
Collapse
|
10
|
Tan Z, Fu S, Huang Y, Duan X, Zuo Y, Zhu X, Wang H, Wang J. HSPB8 is a Potential Prognostic Biomarker that Correlates With Immune Cell Infiltration in Bladder Cancer. Front Genet 2022; 13:804858. [PMID: 35330734 PMCID: PMC8940282 DOI: 10.3389/fgene.2022.804858] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 02/03/2022] [Indexed: 11/17/2022] Open
Abstract
Background: Heat shock protein B8 (HSPB8) is expressed in various cancers. However, the functional and clinicopathological significance of HSPB8 expression in bladder cancer (BC) remains unclear. The present study sought to elucidate the clinicopathological features and prognostic value of HSPB8 in BC. Methods: A BC RNA-seq data set was obtained from The Cancer Genome Atlas Urothelial Bladder Carcinoma (TCGA-BLCA) database, and the external validation dataset GSE130598 was downloaded from the GEO database. Samples in the TCGA-BLCA were categorized into two groups based on HSPB8 expression. Differentially expressed genes (DEGs) between the two groups were defined as HSPB8 co-expressed genes. Gene set enrichment analysis (GSEA), protein-protein interaction networks, and mRNA-microRNA (miRNA) interaction networks were generated to predict the function and interactions of genes that are co-expressed with HSPB8. Finally, we examined immune cell infiltration and constructed a survival prediction model for BC patients. Results: The expression level of HSBP8 has a significant difference between cancer samples and normal samples, and its diagnosis effect was validated by the ROC curve. 446 differential expressed genes between HSBP8 high-expression and HSBP8 low expression groups were identified. Gene enrichment analysis and GSEA analysis show that these differential gene functions are closely related to the occurrence and development of BC and the metabolic pathways of BC. The cancer-related pathways included Cytokine-cytokine receptor Interaction, Focal adhesion, and Proteoglycans in cancer. PPI and protein-coding gene-miRNA network visualized the landscape for these tightly bounded gene interactions. Immune cell infiltration shows that B cells, CD4+T cells, and CD8+T cells have strongly different infiltration levels between the HSBP8 high exp group and low exp group. The survival prediction model shows that HSBP8 has strong prognosis power in the BLCA cohort. Conclusion: Identifying DEGs may enhance understanding of BC development’s causes and molecular mechanisms. HSPB8 may play an essential role in BC progression and prognosis and serve as a potential biomarker for BC treatment.
Collapse
Affiliation(s)
- Zhiyong Tan
- Department of Urology, the Second Affiliated Hospital of Kunming Medical University, Yunnan Institute of Urology, Kunming, China
| | - Shi Fu
- Department of Urology, the Second Affiliated Hospital of Kunming Medical University, Yunnan Institute of Urology, Kunming, China
| | - Yinglong Huang
- Department of Urology, the Second Affiliated Hospital of Kunming Medical University, Yunnan Institute of Urology, Kunming, China
| | - Xianzhong Duan
- Department of Urology, the Second People's Hospital of Baoshan, Baoshan, China
| | - Yigang Zuo
- Department of Urology, the Second Affiliated Hospital of Kunming Medical University, Yunnan Institute of Urology, Kunming, China
| | - Xiaorui Zhu
- Department of Urology, the Second People's Hospital of Baoshan, Baoshan, China
| | - Haifeng Wang
- Department of Urology, the Second Affiliated Hospital of Kunming Medical University, Yunnan Institute of Urology, Kunming, China
| | - Jiansong Wang
- Department of Urology, the Second Affiliated Hospital of Kunming Medical University, Yunnan Institute of Urology, Kunming, China
| |
Collapse
|
11
|
Wang H, Zhou H, Ni H, Shen X. COL11A1-Driven Epithelial-Mesenchymal Transition and Stemness of Pancreatic Cancer Cells Induce Cell Migration and Invasion by Modulating the AKT/GSK-3β/Snail Pathway. Biomolecules 2022; 12:391. [PMID: 35327583 PMCID: PMC8945532 DOI: 10.3390/biom12030391] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/27/2022] [Accepted: 02/28/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Collagen type XI α1 (COL11A1) is associated with tumorigenesis and development in many human malignancies. Previous reports indicate that COL11A1 may be a significant diagnostic marker for pancreatic ductal adenocarcinoma (PDAC); however, its biological role in PDAC progression remains unclear. In this study, we investigated the influence of COL11A1 on the invasion and migration abilities of pancreatic cancer cells and explored its potential molecular mechanisms. METHODS Cell migration and invasion were assessed using Transwell assays in pancreatic cancer cells transfected with siCOL11A1 and pCNV3-COL11A1 plasmids. The protein and mRNA expression levels of N-cadherin, E-cadherin, Vimentin, cluster of differentiation (CD)-24, CD44, serine-threonine kinase (AKT), glycogen synthase kinase (GSK)-3β, phospho (p)-AKTSer473, p-GSK-3βSer9, and Snail were analyzed using Western blotting and real-time polymerase chain reaction (PCR). The effect of COL11A1 on cell stemness was tested using flow cytometry and clone formation assays. RESULTS These results demonstrated that COL11A1 significantly promoted the invasion and migration abilities of PDAC cells. Furthermore, COL11A1 facilitated the occurrence of epithelial-mesenchymal transition (EMT) and cell stemness by upregulating the expression levels of p-AKTSer473, p-GSK-3βSer9, and Snail. CONCLUSIONS This study suggests that the activation of the AKT/GSK-3β/Snail signaling pathway induced by COL11A1 plays a major role in the progression of PDAC. Therefore, COL11A1 could serve as a potential target for PDAC treatment.
Collapse
Affiliation(s)
- Hui Wang
- Drug Synthesis Laboratory, Tianjin Institute of Medical & Pharmaceutical Sciences, Tianjin 300020, China;
- School of Medicine, Nankai University, Tianjin 300071, China; (H.Z.); (H.N.)
| | - Huichao Zhou
- School of Medicine, Nankai University, Tianjin 300071, China; (H.Z.); (H.N.)
| | - Hong Ni
- School of Medicine, Nankai University, Tianjin 300071, China; (H.Z.); (H.N.)
| | - Xiaohong Shen
- School of Medicine, Nankai University, Tianjin 300071, China; (H.Z.); (H.N.)
| |
Collapse
|
12
|
Emerging Therapeutic Agents for Colorectal Cancer. Molecules 2021; 26:molecules26247463. [PMID: 34946546 PMCID: PMC8707340 DOI: 10.3390/molecules26247463] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 02/07/2023] Open
Abstract
There are promising new therapeutic agents for CRC patients, including novel small-molecule inhibitors and immune checkpoint blockers. We focused on emerging CRC’s therapeutic agents that have shown the potential for progress in clinical practice. This review provides an overview of tyrosine kinase inhibitors targeting VEGF and KIT, BRAF and MEK inhibitors, TLR9 agonist, STAT3 inhibitors, and immune checkpoint blockers (PD1/PDL-1 inhibitors), for which recent advances have been reported. These new agents have the potential to provide benefits to CRC patients with unmet medical needs.
Collapse
|
13
|
Khalili-Tanha G, Moghbeli M. Long non-coding RNAs as the critical regulators of doxorubicin resistance in tumor cells. Cell Mol Biol Lett 2021; 26:39. [PMID: 34425750 PMCID: PMC8381522 DOI: 10.1186/s11658-021-00282-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 08/17/2021] [Indexed: 12/16/2022] Open
Abstract
Resistance against conventional chemotherapeutic agents is one of the main reasons for tumor relapse and poor clinical outcomes in cancer patients. Various mechanisms are associated with drug resistance, including drug efflux, cell cycle, DNA repair and apoptosis. Doxorubicin (DOX) is a widely used first-line anti-cancer drug that functions as a DNA topoisomerase II inhibitor. However, DOX resistance has emerged as a large hurdle in efficient tumor therapy. Furthermore, despite its wide clinical application, DOX is a double-edged sword: it can damage normal tissues and affect the quality of patients’ lives during and after treatment. It is essential to clarify the molecular basis of DOX resistance to support the development of novel therapeutic modalities with fewer and/or lower-impact side effects in cancer patients. Long non-coding RNAs (lncRNAs) have critical roles in the drug resistance of various tumors. In this review, we summarize the state of knowledge on all the lncRNAs associated with DOX resistance. The majority are involved in promoting DOX resistance. This review paves the way to introducing an lncRNA panel marker for the prediction of the DOX response and clinical outcomes for cancer patients.
Collapse
Affiliation(s)
- Ghazaleh Khalili-Tanha
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
14
|
Chen Q, Yin H, Pu N, Zhang J, Zhao G, Wenhui L, Wu W. Chemokine C-C motif ligand 21 synergized with programmed death-ligand 1 blockade restrains tumor growth. Cancer Sci 2021; 112:4457-4469. [PMID: 34402138 PMCID: PMC8586683 DOI: 10.1111/cas.15110] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 08/09/2021] [Accepted: 08/12/2021] [Indexed: 12/27/2022] Open
Abstract
Programmed death‐ligand 1 (PD‐L1) blockade has revolutionized the prognosis of several cancers, but shows a weak effect on pancreatic cancer (PC) due to poor effective immune infiltration. Chemokine C‐C motif ligand 21 (CCL21), a chemokine promoting T cell immunity by recruiting and colocalizing dendritic cells (DCs) and T cells, serves as a potential antitumor agent in many cancers. However, its antitumor response and mechanism combined with PD‐L1 blockade in PC remain unclear. In our study, we found CCL21 played an important role in leukocyte chemotaxis, inflammatory response, and positive regulation of PI3K‐AKT signaling in PC using Metascape and gene set enrichment analysis. The CCL21 level was verified to be positively correlated with infiltration of CD8+ T cells by the CIBERSORT algorithm, but no significant difference in survival was observed in either The Cancer Genome Atlas or the International Cancer Genome Consortium cohort when stratified by CCL21 expression. Additionally, we found the growth rate of allograft tumors was reduced and T cell infiltration was increased, but tumor PD‐L1 abundance elevated simultaneously in the CCL21‐overexpressed tumors. Then, CCL21 was further verified to increase tumor PD‐L1 level through the AKT‐glycogen synthase kinase‐3β axis in human PC cells, which partly impaired the antitumor T cell immunity. Finally, the combination of CCL21 and PD‐L1 blockade showed superior synergistic tumor suppression in vitro and in vivo. Together, our findings suggested that CCL21 in combination with PD‐L1 blockade might be an efficient and promising option for the treatment of PC.
Collapse
Affiliation(s)
- Qiangda Chen
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.,Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hanlin Yin
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.,Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ning Pu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.,Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jicheng Zhang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.,Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Guochao Zhao
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.,Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lou Wenhui
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.,Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wenchuan Wu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.,Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
15
|
Sarkaki A, Rashidi M, Ranjbaran M, Asareh Zadegan Dezfuli A, Shabaninejad Z, Behzad E, Adelipour M. Therapeutic Effects of Resveratrol on Ischemia-Reperfusion Injury in the Nervous System. Neurochem Res 2021; 46:3085-3102. [PMID: 34365594 DOI: 10.1007/s11064-021-03412-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/25/2021] [Accepted: 07/27/2021] [Indexed: 01/07/2023]
Abstract
Resveratrol is a phenol compound produced by some plants in response to pathogens, infection, or physical injury. It is well-known that resveratrol has antioxidant and protective roles in damages potentially caused by cancer or other serious disorders. Thus, it is considered as a candidate agent for the prevention and treatment of human diseases. Evidence has confirmed other bioactive impacts of resveratrol, including cardioprotective, anti-tumorigenic, anti-inflammatory, phytoestrogenic, and neuroprotective effects. Ischemia-reperfusion (IR) can result in various disorders, comprising myocardial infarction, stroke, and peripheral vascular disease, which may continue to induce debilitating conditions and even mortality. In virtue of chronic ischemia or hypoxia, cells switch to anaerobic metabolism, giving rise to some dysfunctions in mitochondria. As the result of lactate accumulation, adenosine triphosphate levels and pH decline in cells. This condition leads cells to apoptosis, necrosis, and autophagy. However, restoring oxygen level upon reperfusion after ischemia by producing reactive oxygen species is an outcome of mitochondrial dysfunction. Considering the neuroprotective effect of resveratrol and neuronal injury that comes from IR, we focused on the mechanism(s) involved in IR injury in the nervous system and also on the functions of resveratrol in the protection, inhibition, and treatment of this injury.
Collapse
Affiliation(s)
- Alireza Sarkaki
- Department of Physiology, School of Medicine, Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mojtaba Rashidi
- Department of Biochemistry, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mina Ranjbaran
- Department of Physiology, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Aram Asareh Zadegan Dezfuli
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Zahra Shabaninejad
- Department of Nanotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ebrahim Behzad
- Neurology Department, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Maryam Adelipour
- Department of Biochemistry, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
16
|
Frank MH, Wilson BJ, Gold JS, Frank NY. Clinical Implications of Colorectal Cancer Stem Cells in the Age of Single-Cell Omics and Targeted Therapies. Gastroenterology 2021; 160:1947-1960. [PMID: 33617889 PMCID: PMC8215897 DOI: 10.1053/j.gastro.2020.12.080] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 11/30/2020] [Accepted: 12/10/2020] [Indexed: 02/07/2023]
Abstract
The cancer stem cell (CSC) concept emerged from the recognition of inherent tumor heterogeneity and suggests that within a given tumor, in analogy to normal tissues, there exists a cellular hierarchy composed of a minority of more primitive cells with enhanced longevity (ie, CSCs) that give rise to shorter-lived, more differentiated cells (ie, cancer bulk populations), which on their own are not capable of tumor perpetuation. CSCs can be responsible for cancer therapeutic resistance to conventional, targeted, and immunotherapeutic treatment modalities, and for cancer progression through CSC-intrinsic molecular mechanisms. The existence of CSCs in colorectal cancer (CRC) was first established through demonstration of enhanced clonogenicity and tumor-forming capacity of this cell subset in human-to-mouse tumor xenotransplantation experiments and subsequently confirmed through lineage-tracing studies in mice. Surface markers for CRC CSC identification and their prospective isolation are now established. Therefore, the application of single-cell omics technologies to CSC characterization, including whole-genome sequencing, RNA sequencing, and epigenetic analyses, opens unprecedented opportunities to discover novel targetable molecular pathways and hence to develop novel strategies for CRC eradication. We review recent advances in this field and discuss the potential implications of next-generation CSC analyses for currently approved and experimental targeted CRC therapies.
Collapse
Affiliation(s)
- Markus H. Frank
- Transplant Research Program, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts;,Department of Dermatology, Brigham & Women’s Hospital, Harvard Medical School, Boston, Massachusetts;,Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts;,School of Medical and Health Sciences, Edith Cowan University, Perth, Western Australia, Australia
| | - Brian J. Wilson
- Transplant Research Program, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts;,Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts
| | - Jason S. Gold
- Department of Surgery, Veterans Affairs Boston Healthcare System, Boston, Massachusetts;,Department of Surgery, Brigham & Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Natasha Y. Frank
- Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts;,Department of Medicine, Veterans Affairs Boston Healthcare System, Boston, Massachusetts;,Division of Genetics, Brigham & Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
17
|
Salem A, Alotaibi M, Mroueh R, Basheer HA, Afarinkia K. CCR7 as a therapeutic target in Cancer. Biochim Biophys Acta Rev Cancer 2020; 1875:188499. [PMID: 33385485 DOI: 10.1016/j.bbcan.2020.188499] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/24/2020] [Accepted: 12/24/2020] [Indexed: 02/06/2023]
Abstract
The CCR7 chemokine axis is comprised of chemokine ligand 21 (CCL21) and chemokine ligand 19 (CCL19) acting on chemokine receptor 7 (CCR7). This axis plays two important but apparently opposing roles in cancer. On the one hand, this axis is significantly engaged in the trafficking of a number of effecter cells involved in mounting an immune response to a growing tumour. This suggests therapeutic strategies which involve potentiation of this axis can be used to combat the spread of cancer. On the other hand, the CCR7 axis plays a significant role in controlling the migration of tumour cells towards the lymphatic system and metastasis and can thus contribute to the expansion of cancer. This implies that therapeutic strategies which involve decreasing signaling through the CCR7 axis would have a beneficial effect in preventing dissemination of cancer. This dichotomy has partly been the reason why this axis has not yet been exploited, as other chemokine axes have, as a therapeutic target in cancer. Recent report of a crystal structure for CCR7 provides opportunities to exploit this axis in developing new cancer therapies. However, it remains unclear which of these two strategies, potentiation or antagonism of the CCR7 axis, is more appropriate for cancer therapy. This review brings together the evidence supporting both roles of the CCR7 axis in cancer and examines the future potential of each of the two different therapeutic approaches involving the CCR7 axis in cancer.
Collapse
Affiliation(s)
- Anwar Salem
- Institute of Cancer Therapeutics, University of Bradford; Bradford BD7 1DP, United Kingdom
| | - Mashael Alotaibi
- Institute of Cancer Therapeutics, University of Bradford; Bradford BD7 1DP, United Kingdom
| | - Rima Mroueh
- Institute of Cancer Therapeutics, University of Bradford; Bradford BD7 1DP, United Kingdom
| | - Haneen A Basheer
- Faculty of Pharmacy, Zarqa University, PO Box 132222, Zarqa 13132, Jordan
| | - Kamyar Afarinkia
- Institute of Cancer Therapeutics, University of Bradford; Bradford BD7 1DP, United Kingdom.
| |
Collapse
|
18
|
Wadhwa B, Paddar M, Khan S, Mir S, A Clarke P, Grabowska AM, Vijay DG, Malik F. AKT isoforms have discrete expression in triple negative breast cancers and roles in cisplatin sensitivity. Oncotarget 2020; 11:4178-4194. [PMID: 33227065 PMCID: PMC7665233 DOI: 10.18632/oncotarget.27746] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 09/10/2019] [Indexed: 12/12/2022] Open
Abstract
AKT, a serine threonine kinase, exists in three different isoforms and is known for regulating several biological processes including tumorigenesis. In this study, we investigated the expression and net effect of the individual isoforms in triple negative breast cancers and response to cisplatin treatment using cellular, mice models and clinical samples. Interestingly, analysis of the expressions of AKT isoforms in clinical samples showed relatively higher expression of AKT1 in primary tissues; whereas lung and liver metastatic samples showed elevated expression of AKT2. Similarly, triple-negative breast cancer cell lines, BT-549 and MDA-MB-231, with high proliferative and invasive properties, displayed higher expression levels of AKT1/2. By modulating AKT isoform expression in MCF-10A and BT-549 cell lines, we found that presence of AKT2 was associated with invasiveness, stemness and sensitivity to drug treatment. It was observed that the silencing of AKT2 suppressed the cancer stem cell populations (CD44high CD24low, ALDH1), mammosphere formation, invasive and migratory potential in MCF-10A and BT-549 cells. It was further demonstrated that loss of function of AKT1 isoform is associated with reduced sensitivity towards cisplatin treatment in triple-negative breast cancers cellular and syngeneic mice models. The decrease in cisplatin treatment response in shAKT1 cells was allied with the upregulation in the expression of transporter protein ABCG2, whereas silencing of ABCG2 restored cisplatin sensitivity in these cells through AKT/SNAIL/ABCG2 axis. In conclusion, our study demonstrated the varied expression of AKT isoforms in triple-negative breast cancers and also confirmed differential role of isoforms in stemness, invasiveness and response towards the cisplatin treatment.
Collapse
Affiliation(s)
- Bhumika Wadhwa
- Academy of Scientific and Innovative Research (AcSIR), New Delhi 110001, India.,Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Srinagar 190005, India
| | - Masroor Paddar
- Academy of Scientific and Innovative Research (AcSIR), New Delhi 110001, India.,Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Srinagar 190005, India
| | - Sameer Khan
- Academy of Scientific and Innovative Research (AcSIR), New Delhi 110001, India.,Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Srinagar 190005, India
| | - Sameer Mir
- Academy of Scientific and Innovative Research (AcSIR), New Delhi 110001, India.,Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Srinagar 190005, India
| | - Philip A Clarke
- Cancer Biology, Division of Cancer and Stem Cells, School of Medicine, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2RD, UK
| | - Anna M Grabowska
- Cancer Biology, Division of Cancer and Stem Cells, School of Medicine, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2RD, UK
| | | | - Fayaz Malik
- Academy of Scientific and Innovative Research (AcSIR), New Delhi 110001, India.,Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Srinagar 190005, India
| |
Collapse
|
19
|
Yang L, Ding C, Tang W, Yang T, Liu M, Wu H, Wen K, Yao X, Feng J, Luo J. INPP4B exerts a dual function in the stemness of colorectal cancer stem-like cells through regulating Sox2 and Nanog expression. Carcinogenesis 2020; 41:78-90. [PMID: 31179504 DOI: 10.1093/carcin/bgz110] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/28/2019] [Accepted: 06/07/2019] [Indexed: 12/16/2022] Open
Abstract
Inositol polyphosphate 4-phosphatase type II (INPP4B), a lipid phosphatase, was identified as a negative regulator of phosphatidylinositol 3-kinase (PI3K)/Akt signaling in several cancers. The expression and biological function of INPP4B in human colorectal cancer (CRC) are controversial, while the role and molecular mechanism of INPP4B in colorectal cancer stem-like cells (CR-CSLCs) remains unclear. Here, we observed that INPP4B expression was markedly decreased in primary non-metastatic CR-CSLCs and increased in highly metastatic CR-CSLCs compared with corresponding control non-CSLCs. INPP4B overexpression inhibited self-renewal, and chemoresistance of primary non-metastatic CR-CSLCs, but exerted the opposite roles in highly metastatic CR-CSLCs in vitro. Similarly, INPP4B knockdown had dual functions in the self-renewal and chemoresistance of different CR-CSLCs. In addition, we demonstrated that INPP4B overexpression suppressed the tumorigenicity of primary non-metastatic CR-CSLCs while induced the tumorigenicity of highly metastatic CR-CSLCs in nude mice. Furthermore, INPP4B was found to modulate the stemness of CR-CSLCs by regulating Sox2 and Nanog expression, which was dependent on PI3K/PTEN/Akt signaling. In conclusion, our results highlight an important role of INPP4B in the stemness of CR-CSLCs for the first time and emphasize INPP4B as a dual therapeutic target for suppressing primary cancer cell proliferation and for preventing metastasis in CRC patients.
Collapse
Affiliation(s)
- Liwen Yang
- Department of Immunology, Zunyi Medical University, Zunyi, China
| | - Chenbo Ding
- Department of Clinical Medical Laboratory, Medical School of Southeast University, Nanjing, China
| | - Wendong Tang
- Center of Clinical Laboratory Medicine, the Affiliated Jiangyin People's Hospital of Southeast University Medical College, Jiangyin, China
| | - Taoyu Yang
- Department of Invasive Technology, the Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, China
| | - Min Liu
- Department of Health, Yancheng Maternal and Child Health Care Hospital, Yancheng, China
| | - Hailu Wu
- Department of Gastroenterology, the Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| | - Kunming Wen
- Department of Gastrointestinal Surgery, the Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Xinsheng Yao
- Department of Immunology, Zunyi Medical University, Zunyi, China
| | - Jihong Feng
- Department of Oncology, Taizhou Municipal Hospital, Taizhou, China
| | | |
Collapse
|
20
|
Blondy S, David V, Verdier M, Mathonnet M, Perraud A, Christou N. 5-Fluorouracil resistance mechanisms in colorectal cancer: From classical pathways to promising processes. Cancer Sci 2020; 111:3142-3154. [PMID: 32536012 PMCID: PMC7469786 DOI: 10.1111/cas.14532] [Citation(s) in RCA: 302] [Impact Index Per Article: 60.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/06/2020] [Accepted: 06/09/2020] [Indexed: 12/11/2022] Open
Abstract
Colorectal cancer (CRC) is a public health problem. It is the third most common cancer in the world, with nearly 1.8 million new cases diagnosed in 2018. The only curative treatment is surgery, especially for early tumor stages. When there is locoregional or distant invasion, chemotherapy can be introduced, in particular 5-fluorouracil (5-FU). However, the disease can become tolerant to these pharmaceutical treatments: resistance emerges, leading to early tumor recurrence. Different mechanisms can explain this 5-FU resistance. Some are disease-specific, whereas others, such as drug efflux, are evolutionarily conserved. These mechanisms are numerous and complex and can occur simultaneously in cells exposed to 5-FU. In this review, we construct a global outline of different mechanisms from disruption of 5-FU-metabolic enzymes and classic cellular processes (apoptosis, autophagy, glucose metabolism, oxidative stress, respiration, and cell cycle perturbation) to drug transporters and epithelial-mesenchymal transition induction. Particular interest is directed to tumor microenvironment function as well as epigenetic alterations and miRNA dysregulation, which are the more promising processes that will be the subject of much research in the future.
Collapse
Affiliation(s)
- Sabrina Blondy
- Faculty of Medicine, Laboratoire EA3842 CAPTuR "Control of cell activation, Tumor progression and Therapeutic resistance", Limoges cedex, France
| | - Valentin David
- Faculty of Medicine, Laboratoire EA3842 CAPTuR "Control of cell activation, Tumor progression and Therapeutic resistance", Limoges cedex, France.,Department of pharmacy, University Hospital of Limoges, Limoges, France
| | - Mireille Verdier
- Faculty of Medicine, Laboratoire EA3842 CAPTuR "Control of cell activation, Tumor progression and Therapeutic resistance", Limoges cedex, France
| | - Muriel Mathonnet
- Faculty of Medicine, Laboratoire EA3842 CAPTuR "Control of cell activation, Tumor progression and Therapeutic resistance", Limoges cedex, France.,Service de Chirurgie Digestive, Department of Digestive, General and Endocrine Surgery, University Hospital of Limoges, Limoges, France
| | - Aurélie Perraud
- Faculty of Medicine, Laboratoire EA3842 CAPTuR "Control of cell activation, Tumor progression and Therapeutic resistance", Limoges cedex, France.,Service de Chirurgie Digestive, Department of Digestive, General and Endocrine Surgery, University Hospital of Limoges, Limoges, France
| | - Niki Christou
- Faculty of Medicine, Laboratoire EA3842 CAPTuR "Control of cell activation, Tumor progression and Therapeutic resistance", Limoges cedex, France.,Service de Chirurgie Digestive, Department of Digestive, General and Endocrine Surgery, University Hospital of Limoges, Limoges, France
| |
Collapse
|
21
|
Jiang Y, Zhuo X, Mao C. G Protein-coupled Receptors in Cancer Stem Cells. Curr Pharm Des 2020; 26:1952-1963. [DOI: 10.2174/1381612826666200305130009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/10/2020] [Indexed: 12/19/2022]
Abstract
G protein-coupled receptors (GPCRs) are highly expressed on a variety of tumour tissues while several
GPCR exogenous ligands become marketed pharmaceuticals. In recent decades, cancer stem cells (CSCs) become
widely investigated drug targets for cancer therapy but the underlying mechanism is still not fully elucidated.
There are vigorous participations of GPCRs in CSCs-related signalling and functions, such as biomarkers for
CSCs, activation of Wnt, Hedgehog (HH) and other signalling to facilitate CSCs progressions. This relationship
can not only uncover a novel molecular mechanism for GPCR-mediated cancer cell functions but also assist our
understanding of maintaining and modulating CSCs. Moreover, GPCR antagonists and monoclonal antibodies
could be applied to impair CSCs functions and consequently attenuate tumour growth, some of which have been
undergoing clinical studies and are anticipated to turn into marketed anticancer drugs. Therefore, this review
summarizes and provides sufficient evidences on the regulation of GPCR signalling in the maintenance, differentiation
and pluripotency of CSCs, suggesting that targeting GPCRs on the surface of CSCs could be potential
therapeutic strategies for cancer therapy.
Collapse
Affiliation(s)
- Yuhong Jiang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Xin Zhuo
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Canquan Mao
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| |
Collapse
|
22
|
Wang Y, Jiang XY, Yu XY. BRD9 controls the oxytocin signaling pathway in gastric cancer via CANA2D4, CALML6, GNAO1, and KCNJ5. Transl Cancer Res 2020; 9:3354-3366. [PMID: 35117701 PMCID: PMC8798819 DOI: 10.21037/tcr.2020.03.67] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 02/08/2020] [Indexed: 01/26/2023]
Abstract
Background First-line chemotherapeutic agents lead to remarkable activation treatment in cancers, but the side effects of these drugs also damage healthy cells. In some cases, drug resistance to chemotherapeutic agents is induced in cancer cells. The molecular mechanisms underlying such a side effect have been studied in a range of cancer types, yet little is known about how the adverse effects of chemotherapeutic drugs can be diminished by targeting bromodomain-containing protein 9 (BRD9) in gastric cancers. Methods We used two gastric cancer cell lines (MGC-803 and AGS) for comparison. We applied molecular and cellular techniques to measure cell survival and mRNA expression, investigated clinical data in the consensus of The Cancer Genome Atlas, and utilized high-throughput sequencing in MGC-803 cells and AGS cells for global gene expression analysis in inhibiting BRD9 conditions. Results Our studies showed that cancer cells with BRD9 overexpression, MGC-803 cells, were more sensitive to BRD9 inhibitors (i.e., BI9564 or BI7273) than AGS cells. The mechanism of BRD9 was related to the regulation of calcium voltage-gated channel auxiliary subunit alpha2 delta 4 (CANA2D4), calmodulin-like 6 (CALML6), guanine nucleotide binding protein (G protein), alpha activating activity polypeptide O (GNAO1) and Potassium Inwardly Rectifying Channel Subfamily J, Member 5 (KCNJ5) oncogenes in the oxytocin signaling pathway. BRD9 inhibitors could enhance the sensitivity of gastric cancer MGC-803 cells to adriamycin and cisplatin, so we may reduce the dosage of chemotherapeutic agents in curing gastric cancers with BRD9 over expression by combining BI9564 or BI7273 with adriamycin or cisplatin. Conclusions Our study elucidated the feasibility and effectiveness of inhibiting BRD9 to reduce the adverse effects of first-line chemotherapeutic agents in treating gastric cancer with BRD9 overexpression. This study provides a scientific theoretical basis for a chemotherapy regimen in gastric cancer with BRD9 overexpression.
Collapse
Affiliation(s)
- Yuan Wang
- Key Laboratory of Molecular Target and Clinical Pharmacology, School of Pharmaceutical Sciences and the Affiliated Fifth Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Xue-Yan Jiang
- Key Laboratory of Molecular Target and Clinical Pharmacology, School of Pharmaceutical Sciences and the Affiliated Fifth Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Xi-Yong Yu
- Key Laboratory of Molecular Target and Clinical Pharmacology, School of Pharmaceutical Sciences and the Affiliated Fifth Hospital, Guangzhou Medical University, Guangzhou 511436, China
| |
Collapse
|
23
|
Zhou X, Xiao D. Long non-coding RNA GAS5 is critical for maintaining stemness and induces chemoresistance in cancer stem-like cells derived from HCT116. Oncol Lett 2020; 19:3431-3438. [PMID: 32269616 PMCID: PMC7138034 DOI: 10.3892/ol.2020.11471] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 11/28/2019] [Indexed: 12/11/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are recognized as critical regulators of self-renewal in human cancer stem-like cells (CSCs), which are a subpopulation of cancer cells primarily responsible for the malignant features of cancer. However, most CSC-related lncRNAs remain unidentified. The results of the present study suggested that growth-arrest-specific transcript 5 (GAS5), a tumor suppressor, exhibited increased expression and was associated with malignant features in human colorectal cancer cell HCT116-derived CSCs. Phenotypic analysis indicated that GAS5 knockdown by specific siRNA significantly decreased CSC self-renewal capacity, proliferation and migration. Moreover, GAS5 knockdown sensitized CSCs to the chemotherapeutic agents 5-fluorouracil and doxorubicin by inducing apoptosis detected by Annexin V-FITC/PI double staining. Inhibition of Nodal growth differentiation factor (NODAL) signaling, which has been reported to be protected by GAS5, presented similar chemosensitivity effects to the GAS5 knockdown results. The present study also assessed the effects of GAS5 overexpression on HCT116 cells, and revealed that overexpression of GAS5 sensitized HCT116 cells to chemotherapeutic agents, which is the opposite of the effect observed in CSCs derived from HCT116 cells. Therefore, it was hypothesized that GAS5 may function as a critical factor for maintaining stemness and that it may exert protective effects on CSCs in a NODAL-dependent manner. Collectively, the results of the present study indicate that GAS5 may be a promising therapeutic target for overcoming malignant features and chemoresistance in colorectal cancer cells.
Collapse
Affiliation(s)
- Xiong Zhou
- Department of Gastrointestinal Surgery, Yongchuan Hospital of Chongqing Medical University, Chongqing 410000, P.R. China
| | - Dachun Xiao
- Department of Gastrointestinal Surgery, Yongchuan Hospital of Chongqing Medical University, Chongqing 410000, P.R. China
| |
Collapse
|
24
|
Nobili S, Lapucci A, Landini I, Coronnello M, Roviello G, Mini E. Role of ATP-binding cassette transporters in cancer initiation and progression. Semin Cancer Biol 2020; 60:72-95. [PMID: 31412294 DOI: 10.1016/j.semcancer.2019.08.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/07/2019] [Accepted: 08/07/2019] [Indexed: 12/18/2022]
Abstract
ATP Binding Cassette (ABC) transporters, widely studied in cancer for their role in drug resistance, have been more recently also considered for their contribution to cancer cell biology. To date, many data provide evidences for their potential role in all the phases of cancer development from cancer susceptibility, tumor initiation, tumor progression and metastasis. Although many evidences are based on correlative analyses, data describing a direct or indirect role of ABC transporters in cancer biology are increasing. Overall, current available information suggests a relevant molecular effector role of some ABC transporters in cancer invasion and metastasis as reported in experimental tumor models. From a therapeutic point of view, due to the physiological relevant roles that ABC transporters play in the organism, the capability to selectively inhibit the function or the expression of ABC transporters in cancer stem cells or other tumor cells, represents the main challenge for researcher scientists. A detailed and updated description of the current knowledge on the role of ABC transporters in cancer biology is provided.
Collapse
Affiliation(s)
- Stefania Nobili
- Department of Health Sciences, University of Florence, Florence, Italy.
| | - Andrea Lapucci
- Department of Health Sciences, University of Florence, Florence, Italy
| | - Ida Landini
- Department of Health Sciences, University of Florence, Florence, Italy
| | | | | | - Enrico Mini
- Department of Health Sciences, University of Florence, Florence, Italy
| |
Collapse
|
25
|
Jing L, Xia F, Du X, Jiang B, Chen Y, Li X. Identification of key candidate genes and pathways in follicular variant papillary thyroid carcinoma by integrated bioinformatical analysis. Transl Cancer Res 2020; 9:477-490. [PMID: 35117392 PMCID: PMC8798093 DOI: 10.21037/tcr.2019.11.38] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 11/01/2019] [Indexed: 11/17/2022]
Abstract
BACKGROUND Follicular variant papillary thyroid carcinoma (FVPTC) is a heterogeneous group of tumors that differ morphologically, genetically, and clinically. This study aimed to investigate the gene mutation and gene expression profiles, especially the pathways in the interaction network and the diagnostic approaches of candidate markers of FVPTC. METHODS The clinicopathological characteristics, gene mutation types, and mRNA expression profiles of patients with FVPTC were studied utilizing the data downloaded from The Cancer Genome Atlas (TCGA) database. Differentially expressed genes (DEGs) were identified, and functional enrichment analysis was applied. A protein-protein interaction (PPI) network was constructed to identify hub genes and receiver operating characteristic (ROC) analysis was used to evaluate candidate gene diagnostic values. RESULTS RAS and BRAF mutations were the predominant mutation types in FVPTC. FVPTC was significantly correlated with the absence of extrathyroidal extension, lower N stage, and the low occurrence rate of BRAF mutation compared to classical PTC. Two thousand three hundred and forty-two FVPTC-related differentially expressed mRNAs (DEGs) and 420 FVPTC-specific DEGs were identified in this study. Function enrichment analysis revealed that these DEGs were involved in some pathways in cancer, including the PI3K-Akt signaling pathway and MAPK signaling pathways. The PPI network was constructed from 420 FVPTC-specific DEGs, and a sub-network, including 12 genes and 10 hub genes, was verified. CONCLUSIONS FVPTC was identified significantly relevant to remarkable alterations of gene mutation, DEGs, related pathways and the diagnostic performance of hub genes. Our study might provide further insights into the investigation of the tumorigenesis mechanism of FVPTC and assist in the discovery of new candidate diagnostic markers for FVPTC.
Collapse
Affiliation(s)
- Lanyu Jing
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Fada Xia
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xin Du
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Bo Jiang
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yong Chen
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xinying Li
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
26
|
Yuan L, Zhou M, Huang D, Wasan HS, Zhang K, Sun L, Huang H, Ma S, Shen M, Ruan S. Resveratrol inhibits the invasion and metastasis of colon cancer through reversal of epithelial‑ mesenchymal transition via the AKT/GSK‑3β/Snail signaling pathway. Mol Med Rep 2019; 20:2783-2795. [PMID: 31524255 PMCID: PMC6691253 DOI: 10.3892/mmr.2019.10528] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 06/06/2019] [Indexed: 12/31/2022] Open
Abstract
The identification of safe and effective drugs that inhibit tumor invasion and metastasis is required to improve the clinical outcome of patients with colon cancer. The present study aimed to investigate the inhibitory effects and possible mechanisms of action of resveratrol against the invasion and metastasis of colon cancer. AKT1-knockdown SW480 and SW620 colon cancer cells were used to detect the effects of resveratrol on cell invasion and metastasis, as well as changes in the expression of epithelial-mesenchymal transition (EMT) markers and serine/threonine kinase (AKT)/glycogen synthase kinase (GSK)-3β/Snail signaling pathway-related molecules in vitro. Furthermore, nude mice were inoculated with SW480 cells in the tail vein to establish an in vivo lung metastasis model of colon cancer, to investigate the effects of resveratrol on lung metastasis in colon cancer. The results revealed that resveratrol treatment and AKT1 knockdown significantly inhibited cell migration and invasion in colon cancer, and markedly increased E-cadherin expression and decreased that of N-cadherin, phospho (p)-AKT1, p-GSK-3β, and Snail in colon cancer both in vitro and in vivo. Furthermore, the effects of resveratrol were significantly weaker in the AKT1-knockdown cells. In conclusion, resveratrol may suppress the invasion and metastasis of colon cancer through reversal of EMT via the AKT/GSK-3β/Snail signaling pathway. AKT1 may therefore be a key regulator of EMT in colon cancer cells and a potential therapeutic target for this disease.
Collapse
Affiliation(s)
- Li Yuan
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Mengmeng Zhou
- Department of Traditional Chinese Medicine, The First People's Hospital of Quzhou, Quzhou, Zhejiang 324000, P.R. China
| | - Dawei Huang
- Department of Chinese Medicine, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
| | - Harpreet S Wasan
- Department of Cancer Medicine, Hammersmith Hospital, Imperial College Healthcare NHS Trust, London W12 0HS, UK
| | - Kai Zhang
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Leitao Sun
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Hong Huang
- Teaching and Research Section of Prescription, Basic Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Shenglin Ma
- Department of Medical Oncology, The Fourth Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
| | - Minhe Shen
- Department of Medical Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
| | - Shanming Ruan
- Department of Medical Oncology, The Fourth Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
| |
Collapse
|
27
|
Gu W, Ren JH, Zheng X, Hu XY, Hu MJ. Comprehensive analysis of expression profiles of long non‑coding RNAs with associated ceRNA network involved in gastric cancer progression. Mol Med Rep 2019; 20:2209-2218. [PMID: 31322220 PMCID: PMC6691204 DOI: 10.3892/mmr.2019.10478] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 06/13/2019] [Indexed: 12/12/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) play critical roles in the development and progression of cancers. The present study aimed to identify novel lncRNAs and associated microRNAs (miRNAs or miRs) and mRNAs in gastric cancer. Differentially expressed lncRNAs (DElncRNAs) and differentially expressed mRNAs (DEmRNAs) of 6 paired gastric cancer and normal tissues were identified using microarray. The DEmiRNAs between gastric cancer and the normal control tissues were identified using miRNA-seq data from Cancer Genome Atlas. Common DElncRNAs from the Cancer RNA-Seq Nexus database and circlncRNAnet database were analyzed. A DElncRNAs-DEmiRNAs-DEmRNAs network was constructed by target prediction. Functional enrichment analysis was employed to predict the function of DEmRNAs in the network. The correlation between the expression of DElncRNAS and DEmRNAs in the network was analyzed. The expression levels of several genes were validated by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). A total of 1,297 DElncRNAs, 2,037 DEmRNAs and 171 DEmiRNAs were identified. Among the 4 lncRNAs common to the 3 datasets, prostate androgen-regulated transcript 1 (PART1) was selected for further analysis. The analysis identified 5 DEmiRNAs and 13 DEmRNAs in the PART1-mediated ceRNA network. The DEmRNAs in the ceRNA network were markedly enriched in cancer-related biological processes (response to hypoxia, positive regulation of angiogenesis and positive regulation of endothelial cell proliferation) and pathways (cGMP-PKG signaling pathway, cAMP signaling pathway and proteoglycans in cancer). Out of the 13 DEmRNAs, 11 were positively associated with PART1. The downregulation of PART1, myosin light chain 9 (MYL9), potassium calcium-activated channel subfamily M alpha 1 (KCNMA1), cholinergic receptor muscarinic 1 (CHRM1), solute carrier family 25 member 4 (SLC25A4) and ATPase Na+/K+ transporting subunit alpha 2 (ATP1A2) expression levels in gastric cancer was validated by RT-qPCR. On the whole, the current study identified a novel lncRNA and associated miRNAs and mRNAs that are involved in the pathogenesis of gastric cancer that may serve as potential therapeutic targets for the treatment of gastric cancer.
Collapse
Affiliation(s)
- Wei Gu
- Department of Gastroenterology, Ruijin Hospital, Luwan Branch, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P.R. China
| | - Jia-Hui Ren
- Department of Gastroenterology, Dapuqiao Community Health Service Center, Shanghai 200333, P.R. China
| | - Xiong Zheng
- Department of Gastroenterology, Ruijin Hospital, Luwan Branch, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P.R. China
| | - Xiao-Ying Hu
- Department of Gastroenterology, Ruijin Hospital, Luwan Branch, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P.R. China
| | - Mei-Jie Hu
- Department of Gastroenterology, Ruijin Hospital, Luwan Branch, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P.R. China
| |
Collapse
|
28
|
Liu HY, Zhang YY, Zhu BL, Feng FZ, Zhang HT, Yan H, Zhou B. MiR-203a-3p regulates the biological behaviors of ovarian cancer cells through mediating the Akt/GSK-3β/Snail signaling pathway by targeting ATM. J Ovarian Res 2019; 12:60. [PMID: 31277702 PMCID: PMC6612229 DOI: 10.1186/s13048-019-0532-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 06/12/2019] [Indexed: 02/08/2023] Open
Abstract
OBJECTIVE To investigate whether miR-203a-3p can regulate the biological behaviors of ovarian cancer cells by targeting ATM to affect the Akt/GSK-3β/Snail signaling pathway. METHODS The expression levels of miR-203a-3p and ATM were detected by qRT-PCR, immunohistochemical staining and Western blotting in ovarian cancer tissues and adjacent normal tissues obtained from 152 subjects. A dual-luciferase reporter gene assay was performed to verify the relationship between miR-203a-3p and ATM. Human ovarian cancer cell lines (A2780 and SKOV3) were used to generate the Blank, miR-NC, miR-203a-3p mimic, Control siRNA, ATM siRNA, and miR-203a-3p inhibitor + ATM siRNA groups. The biological behaviors of ovarian cancer cells were evaluated by CCK-8, wound healing, and Transwell invasion assays, annexin V-FITC/PI staining and flow cytometry. The levels of Akt/GSK-3β/Snail pathway-related proteins were assessed by Western blotting. RESULTS Ovarian cancer tissues showed lower miR-203a-3p levels and higher ATM levels than adjacent normal tissues, both of which were associated with the FIGO stage, grade and prognosis of ovarian cancer. As confirmed by a dual-luciferase reporter gene assay, miR-203a-3p could target ATM. Furthermore, the miR-203a-3p mimic had multiple effects, including the inhibition of the proliferation, invasion and migration of A2780 and SKOV3 cells, the promotion of cell apoptosis, the arrest of the cell cycle at the G1 phase, and the blockage of the Akt/GSK-3β/Snail signaling pathway. ATM siRNA had similar effects on the biological behaviors of ovarian cancer cells, and these effects could be reversed by a miR-203a-3p inhibitor. CONCLUSION miR-203a-3p was capable of hindering proliferation, migration, and invasion and facilitating the apoptosis of ovarian cancer cells through its modulation of the Akt/GSK-3β/Snail signaling pathway by targeting ATM, and therefore it could serve as a potential therapeutic option for ovarian cancer.
Collapse
Affiliation(s)
- Hong-Yun Liu
- Department of Obstetrics and Gynecology, Linyi Central Hospital, Linyi, 276400, Shandong, China
| | - Yu-Ying Zhang
- Department of Obstetrics and Gynecology, Linyi Central Hospital, Linyi, 276400, Shandong, China
| | - Bao-Lian Zhu
- Department of Infection, Linyi Central Hospital, Linyi, 276400, Shandong, China
| | - Fu-Zhong Feng
- Department of Obstetrics and Gynecology, Linyi Central Hospital, Linyi, 276400, Shandong, China
| | - Hai-Tang Zhang
- Department of Obstetrics and Gynecology, Linyi Central Hospital, Linyi, 276400, Shandong, China
| | - Hua Yan
- Department of Obstetrics and Gynecology, Linyi Central Hospital, Linyi, 276400, Shandong, China
| | - Bin Zhou
- Department of Rehabilitation Medicine, Linyi Central Hospital, No.17, Jiankang Road, Linyi, 276400, Shandong, China.
| |
Collapse
|
29
|
Acetyl-11-keto-β-boswellic acid suppresses docetaxel-resistant prostate cancer cells in vitro and in vivo by blocking Akt and Stat3 signaling, thus suppressing chemoresistant stem cell-like properties. Acta Pharmacol Sin 2019; 40:689-698. [PMID: 30171201 DOI: 10.1038/s41401-018-0157-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 07/03/2018] [Indexed: 12/16/2022]
Abstract
Acquired docetaxel-resistance of prostate cancer (PCa) remains a clinical obstacle due to the lack of effective therapies. Acetyl-11-keto-β-boswellic acid (AKBA) is a pentacyclic triterpenic acid isolated from the fragrant gum resin of the Boswellia serrata tree, which has shown intriguing antitumor activity against human cell lines established from PCa, colon cancer, malignant glioma, and leukemia. In this study, we examined the effects of AKBA against docetaxel-resistant PCa in vitro and in vivo as well as its anticancer mechanisms. We showed that AKBA dose-dependently inhibited cell proliferation and induced cell apoptosis in docetaxel-resistant PC3/Doc cells; its IC50 value in anti-proliferation was ∼17 μM. Furthermore, AKBA dose-dependently suppressed the chemoresistant stem cell-like properties of PC3/Doc cells, evidenced by significant decrease in the ability of mammosphere formation and down-regulated expression of a number of stemness-associated genes. The activation of Akt and Stat3 signaling pathways was remarkably enhanced in PC3/Doc cells, which contributed to their chemoresistant stem-like phenotype. AKBA (10-30 μM) dose-dependently suppressed the activation of Akt and Stat3 signaling pathways in PC3/Doc cells. In contrast, overexpression of Akt and Stat3 significantly attenuated the inhibition of AKBA on PC3/Doc cell proliferation. In docetaxel-resistant PCa homograft mice, treatment with AKBA significantly suppresses the growth of homograft RM-1/Doc, equivalent to its human PC3/Doc, but did not decrease their body weight. In summary, we demonstrate that AKBA inhibits the growth inhibition of docetaxel-resistant PCa cells in vitro and in vivo via blocking Akt and Stat3 signaling, thus suppressing their cancer stem cell-like properties.
Collapse
|
30
|
Huang Q, Liu F, Shen J. The significance of chemokines in diffuse large B-cell lymphoma: a systematic review and future insights. Future Oncol 2019; 15:1385-1395. [PMID: 30880459 DOI: 10.2217/fon-2018-0514] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Despite the progress made in molecular and clinical research, patients with diffuse large B-cell lymphoma (DLBCL) still have a bad prognosis. Recently, chemokines/chemokine receptors have become the subject of interest in relation to DLBCL. Studies have demonstrated the important role of chemokines/chemokine receptors in the communication between DLBCL cells and tumor microenvironment. Studies have also reported the ability of chemokines/chemokine receptors in promoting the proliferation and invasion of DLBCL cells. Here, we summarize the data on mechanisms of DLBCL supporting the involvement of chemokine/chemokine receptor changes. We focus on the available evidence regarding chemokines/chemokine receptors as biomarkers and therapeutic targets for DLBCL.
Collapse
Affiliation(s)
- Qian Huang
- Department of Hematology, Fujian Provincial Key Laboratory of Hematology, The Affiliated Union Hospital of Fujian Medical University, Fuzhou, Fujian, PR China
| | - Feifei Liu
- Department of Hematology, Fujian Provincial Key Laboratory of Hematology, The Affiliated Union Hospital of Fujian Medical University, Fuzhou, Fujian, PR China
| | - Jianzhen Shen
- Department of Hematology, Fujian Provincial Key Laboratory of Hematology, The Affiliated Union Hospital of Fujian Medical University, Fuzhou, Fujian, PR China
| |
Collapse
|
31
|
Zhao GX, Xu YY, Weng SQ, Zhang S, Chen Y, Shen XZ, Dong L, Chen S. CAPS1 promotes colorectal cancer metastasis via Snail mediated epithelial mesenchymal transformation. Oncogene 2019; 38:4574-4589. [PMID: 30742066 DOI: 10.1038/s41388-019-0740-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 12/26/2018] [Accepted: 01/15/2019] [Indexed: 01/02/2023]
Abstract
Colorectal cancer (CRC) is a common gastrointestinal cancer with high mortality rate mostly due to metastasis. Ca2+-dependent activator protein for secretion 1 (CAPS1) was originally identified as a soluble factor that reconstitutes Ca2+-dependent secretion. In this study, we discovered a novel role of CAPS1 in CRC metastasis. CAPS1 is frequently up-regulated in CRC tissues. Increased CAPS1 expression is associated with frequent metastasis and poor prognosis of CRC patients. Overexpression of CAPS1 promotes CRC cell migration and invasion in vitro, as well as liver metastasis in vivo, without affecting cell proliferation. CAPS1 induces epithelial-mesenchymal transition (EMT), including decreased E-cadherin and ZO-1, epithelial marker expression, and increased N-cadherin and Snail, mesenchymal marker expression. Snail knockdown reversed CAPS1-induced EMT, cell migration and invasion. This result indicates that Snail is required for CAPS1-mediated EMT process and metastasis in CRC. Furthermore, CAPS1 can bind with Septin2 and p85 (subunit of PI3K). LY294002 and wortmanin, PI3K/Akt inhibitors, can abolish CAPS1-induced increase of Akt/GSK3β activity, as well as increase of Snail protein level. Taken together, CAPS1 promotes colorectal cancer metastasis through PI3K/Akt/GSK3β/Snail signal pathway-mediated EMT process.
Collapse
Affiliation(s)
- Guang-Xi Zhao
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital of Fudan University, Shanghai, 200032, China.,Key Laboratory of Glycoconjugate Research Ministry of Public Health, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Ying-Ying Xu
- Key Laboratory of Glycoconjugate Research Ministry of Public Health, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Shu-Qiang Weng
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital of Fudan University, Shanghai, 200032, China
| | - Si Zhang
- Key Laboratory of Glycoconjugate Research Ministry of Public Health, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Ying Chen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Xi-Zhong Shen
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital of Fudan University, Shanghai, 200032, China.
| | - Ling Dong
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital of Fudan University, Shanghai, 200032, China.
| | - She Chen
- Key Laboratory of Glycoconjugate Research Ministry of Public Health, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
32
|
Yano K, Tomono T, Ogihara T. Advances in Studies of P-Glycoprotein and Its Expression Regulators. Biol Pharm Bull 2018; 41:11-19. [PMID: 29311472 DOI: 10.1248/bpb.b17-00725] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This review deals with recent advances in studies on P-glycoprotein (P-gp) and its expression regulators, focusing especially on our own research. Firstly, we describe findings demonstrating that the distribution of P-gp along the small intestine is heterogeneous, which explains why orally administered P-gp substrate drugs often show bimodal changes of plasma concentration. Secondly, we discuss the post-translational regulation of P-gp localization and function by the scaffold proteins ezrin, radixin and moesin (ERM proteins), together with recent reports indicating that tissue-specific differences in regulation by ERM proteins in normal tissues might be retained in corresponding cancerous tissues. Thirdly, we review evidence that P-gp activity is enhanced in the process of epithelial-to-mesenchymal transition (EMT), which is associated with cancer progression, without any increase in expression of P-gp mRNA. Finally, we describe two examples in which P-gp critically influences the brain distribution of drugs, i.e., oseltamivir, where low levels of P-gp associated with early development allow oseltamivir to enter the brain, potentially resulting in neuropsychiatric side effects in children, and cilnidipine, where impairment of P-gp function in ischemia allows cilnidipine to enter the ischemic brain, where it exerts a neuroprotective action.
Collapse
Affiliation(s)
- Kentaro Yano
- Faculty of Pharmacy, Takasaki University of Health and Welfare
| | - Takumi Tomono
- Graduate School of Pharmaceutical Sciences, Takasaki University of Health and Welfare
| | - Takuo Ogihara
- Faculty of Pharmacy, Takasaki University of Health and Welfare.,Graduate School of Pharmaceutical Sciences, Takasaki University of Health and Welfare
| |
Collapse
|
33
|
Li H, Wang Y, Yang J, Liu X, Shi J. [Impact of Cystic Fibrosis Transmembrane Conductance Regulator on Malignant
Properties of KRAS Mutant Lung Adenocarcinoma A549 Cells]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2018. [PMID: 29526175 PMCID: PMC5973018 DOI: 10.3779/j.issn.1009-3419.2018.02.03] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
背景与目的 肺癌发病率逐年上升,有必要寻找新型的治疗靶点,而最新研究发现囊状纤维化跨膜转导调节子(cystic fibrosis transmembrane conductance regulator, CFTR)与多种肿瘤的发生和恶性转化有关。本研究探讨CFTR对肺癌A549细胞恶性特性的影响。 方法 应用CCK8细胞增殖实验、细胞划痕实验、Transwell细胞侵袭实验以及克隆形成实验等方法分别检测CFTR的表达对非小细胞肺癌A549细胞的增殖、迁移、侵袭等细胞恶性特性的影响。同时通过免疫印迹(Western blot)分析CFTR基因表达对肿瘤干细胞相关转录因子表达的影响。 结果 过表达CFTR基因显著抑制A549细胞的增殖、迁移、侵袭和克隆形成等肿瘤恶性特征,而RNA干扰A549细胞CFTR的表达导致细胞上述特征的明显增强。免疫印迹实验进一步发现CFTR基因过表达抑制A549细胞中干细胞相关转录因子SOX2和OCT3/4,以及细胞表面CD133蛋白的表达;相反,RNA干扰A549细胞中CFTR基因的表达增加SOX2、OCT4和CD133的表达。然而,免疫印迹和流式细胞术发现CFTR基因表达对A549细胞肺癌干细胞标志乙醛脱氢酶1的表达和阳性细胞数量无显著影响。 结论 CFTR基因在肺癌A549细胞中具有抑制细胞恶性特征的作用,提示其可能是肺腺癌治疗的一个新的靶点,但其对其他肺腺癌细胞的作用与分子机制还有待进一步研究。
Collapse
Affiliation(s)
- Hui Li
- College of Clinical Medicine, Ningxia Medical University, Yinchuan 750004, China
| | - Ying Wang
- College of Clinical Medicine, Ningxia Medical University, Yinchuan 750004, China
| | - Jiali Yang
- General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - Xiaoming Liu
- General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - Juan Shi
- General Hospital of Ningxia Medical University, Yinchuan 750004, China
| |
Collapse
|
34
|
Bhavsar C, Momin M, Khan T, Omri A. Targeting tumor microenvironment to curb chemoresistance via novel drug delivery strategies. Expert Opin Drug Deliv 2018; 15:641-663. [PMID: 29301448 DOI: 10.1080/17425247.2018.1424825] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Tumor is a heterogeneous mass of malignant cells co-existing with non-malignant cells. This co-existence evolves from the initial developmental stages of the tumor and is one of the hallmarks of cancer providing a protumorigenic niche known as tumor microenvironment (TME). Proliferation, invasiveness, metastatic potential and maintenance of stemness through cross-talk between tumors and its stroma forms the basis of TME. AREAS COVERED The article highlights the developmental phases of a tumor from dysplasia to the formation of clinically detectable tumors. The authors discuss the mechanistic stages involved in the formation of TME and its contribution in tumor outgrowth and chemoresistance. The authors have reviewed various approaches for targeting TME and its hallmarks along with their advantages and pitfalls. The authors also highlight cancer stem cells (CSCs) that are resistant to chemotherapeutics and thus a primary reason for tumor recurrence thereby, posing a challenge for the oncologists. EXPERT OPINION Recent understanding of the cellular and molecular mechanisms involved in acquired chemoresistance has enabled scientists to target the tumor niche and TME and modulate and/or disrupt this communication leading to the transformation from a tumor-supportive niche environment to a tumor-non-supporting environment and give synergistic results towards an effective management of cancer.
Collapse
Affiliation(s)
- Chintan Bhavsar
- a Department of Pharmaceutics, SVKMs Dr. Bhanuben Nanavati College of Pharmacy , University of Mumbai , Mumbai , India
| | - Munira Momin
- a Department of Pharmaceutics, SVKMs Dr. Bhanuben Nanavati College of Pharmacy , University of Mumbai , Mumbai , India
| | - Tabassum Khan
- b Department of Quality Assurance and Pharmaceutical Chemistry, SVKMs Dr. Bhanuben Nanavati College of Pharmacy , University of Mumbai , Mumbai , India
| | - Abdelwahab Omri
- c The Novel Drug & Vaccine Delivery Systems Facility, Department of Chemistry and Biochemistry , Laurentian University , Sudbury , ON , Canada
| |
Collapse
|
35
|
AP-1 confers resistance to anti-cancer therapy by activating XIAP. Oncotarget 2018; 9:14124-14137. [PMID: 29581832 PMCID: PMC5865658 DOI: 10.18632/oncotarget.23897] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 10/30/2017] [Indexed: 02/06/2023] Open
Abstract
The underlying cause of treatment failure in many cancer patients is intrinsic and acquired resistance to chemotherapy. Recently, histone deacetylase (HDAC) inhibitors have developed into a promising cancer treatment. However, resistance mechanism induced by HDAC inhibitors remains largely unknown. Here we report that a HDAC inhibitor, JNJ-2648158 induced transcription of XIAP by activating AP-1 expression, which conferring resistance to chemotherapeutics. Our results showed that high expression of c-Fos caused by HDAC inhibitor promoted AP-1 formation during acquired resistance towards chemo-drugs, indicating an extremely poor clinical outcome in breast cancers and liver cancers. Our study reveals a novel regulatory mechanism towards chemo-drug resistance, and suggests that XIAP may serve as a potential therapeutic target in those chemo-resistant cancer cells.
Collapse
|
36
|
Zhou Y, Xia L, Wang H, Oyang L, Su M, Liu Q, Lin J, Tan S, Tian Y, Liao Q, Cao D. Cancer stem cells in progression of colorectal cancer. Oncotarget 2017; 9:33403-33415. [PMID: 30279970 PMCID: PMC6161799 DOI: 10.18632/oncotarget.23607] [Citation(s) in RCA: 164] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 11/05/2017] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer is one of the most common cancers worldwide with high mortality. Distant metastasis and relapse are major causes of patient death. Cancer stem cells (CSCs) play a critical role in the metastasis and relapse of colorectal cancer. CSCs are a subpopulation of cancer cells with unique properties of self-renewal, infinite division and multi-directional differentiation potential. Colorectal CSCs are defined with a group of cell surface markers, such as CD44, CD133, CD24, EpCAM, LGR5 and ALDH. They are highly tumorigenic, chemoresistant and radioresistant and thus are critical in the metastasis and recurrence of colorectal cancer and disease-free survival. This review article updates the colorectal CSCs with a focus on their role in tumor initiation, progression, drug resistance and tumor relapse.
Collapse
Affiliation(s)
- Yujuan Zhou
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Longzheng Xia
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Heran Wang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Linda Oyang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Min Su
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Qiang Liu
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Jingguan Lin
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Shiming Tan
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Yutong Tian
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Qianjin Liao
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Deliang Cao
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.,Department of Medical Microbiology, Immunology & Cell Biology, Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, IL, 62794, USA
| |
Collapse
|
37
|
Li Z, Chan K, Qi Y, Lu L, Ning F, Wu M, Wang H, Wang Y, Cai S, Du J. Participation of CCL1 in Snail-Positive Fibroblasts in Colorectal Cancer Contribute to 5-Fluorouracil/Paclitaxel Chemoresistance. Cancer Res Treat 2017; 50:894-907. [PMID: 28934847 PMCID: PMC6056976 DOI: 10.4143/crt.2017.356] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 09/03/2017] [Indexed: 12/13/2022] Open
Abstract
Purpose Cancer-associated fibroblasts (CAFs) activated by cancer cells has a central role in development and malignant biological behavior in colorectal cancer (CRC). Adult fibroblasts do not express Snail, but Snail-positive fibroblasts are discovered in the stroma of malignant CRC and reported to be the key role to chemoresistance. However, the reciprocal effect of CAFs expressed Snail to chemoresistance on CRC cells and the underlying molecular mechanisms are not fully characterized. Materials and Methods Snail-overexpressed 3T3 stable cell lines were generated by lipidosome and CT26 mixed with 3T3-Snail subcutaneous transplanted CRC models were established by subcutaneous injection. Cell Counting Kit-8, flow cytometry and western blotting assays were performed, and immunohistochemistry staining was studied. The cytokines participated in chemoresistance was validated with reverse transcriptase-polymerase chain reaction and heatmap. Results Snail-expression fibroblasts are discovered in human and mouse spontaneous CRCs. Overexpression of Snail induces 3T3 fibroblasts transdifferentiation to CAFs. CT26 co-cultured with 3T3-Snail resisted the impairment from 5-fluorouracil and paclitaxel in vitro. The subcutaneous transplanted tumor models included 3T3-Snail cells develop without restrictions even after treating with 5-fluorouracil or paclitaxel. Moreover, these chemoresistant processes may be mediated by CCL1 secreted by Snail-expression fibroblasts via transforming growth factor β/nuclear factor-κB signaling pathways. Conclusion Taken together, Snail-expressing 3T3 fibroblasts display CAFs properties that support 5-fluorouracil and paclitaxel chemoresistance in CRC via participation of CCL1 and suggest that inhibition of the Snail-expression fibroblasts in tumor may be a useful strategy to limit chemoresistance.
Collapse
Affiliation(s)
- Ziqian Li
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Kaying Chan
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yifei Qi
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.,Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Linlin Lu
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Fen Ning
- Department of Obstetrics, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Mengling Wu
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Haifang Wang
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yuan Wang
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shaohui Cai
- Department of Pharmacology, School of Pharmaceutical Sciences, Jinan University, Guangzhou, China
| | - Jun Du
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|