1
|
Dong N, Du M, Wu Q. Molecular insights into the corin function at the uteroplacental interface. Placenta 2025:S0143-4004(25)00159-6. [PMID: 40360315 DOI: 10.1016/j.placenta.2025.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 04/24/2025] [Accepted: 05/08/2025] [Indexed: 05/15/2025]
Abstract
In pregnancy, cell-cell interactions and tissue remodeling are important physiological processes at the uteroplacental interface. To date, molecular mechanisms governing cell activities at the uteroplacental interface are not fully understood. Corin is a proteolytic enzyme responsible for activating atrial natriuretic peptide (ANP), a multifunctional hormone essential for cardiovascular and metabolic homeostasis. Upon progesterone stimulation, corin expression is induced in the uterus via a specific set of transcription factors. Uterine corin activates ANP to enhance decidualization and cell-cell interactions within the vasculature, leading to sequential vascular smooth muscle and endothelial cell death in spiral arteries. These events are crucial for uterine vascular remodeling and trophoblast invasion. Corin also functions in the decidua to regulate macrophage distribution and function in response to placental ischemia. In mice, Corin knockout impairs endometrial decidualization, vascular remodeling, and macrophage function at the uteroplacental interface, causing a preeclampsia (PE)-like phenotype. In humans, deleterious variants and impaired epigenetic modifications in the CORIN gene have been reported in women with PE, indicating that corin deficiency may be a contributing factor in the pathogenesis of PE. In this review, we describe the corin function at the uteroplacental interface and underlying molecular mechanisms. We also discuss potential implications of corin deficiency in pregnancy-associated diseases.
Collapse
Affiliation(s)
- Ningzheng Dong
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, China; Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| | - Meirong Du
- Laboratory of Reproduction Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University Shanghai Medical College, China
| | - Qingyu Wu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China.
| |
Collapse
|
2
|
Copur S, Burlacu A, Kanbay M. Novel approaches in antihypertensive pharmacotherapeutics. Curr Opin Nephrol Hypertens 2025:00041552-990000000-00228. [PMID: 40265521 DOI: 10.1097/mnh.0000000000001081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
PURPOSE OF REVIEW The management of hypertension remains suboptimal despite the widespread use of multiple antihypertensive medication groups. We hereby aim to evaluate the novel therapeutic approaches for the management of hypertension. RECENT FINDINGS As the decline in SBP and/or DBP is associated with a significant decline in major adverse cardiovascular events and all-cause mortality, the optimal management of hypertension is at most importance. The high prevalence of resistant hypertension, approximately 10% of hypertensive population, remains a major concern associated with high morbidity and mortality. Recently, multiple novel pharmacotherapeutic approaches have been implicated in the management of hypertension on various pathophysiological mechanisms, including aldosterone synthetase inhibitors, RNA-based therapies such as antisense oligonucleotides and small-interfering RNA, atrial natriuretic peptide analogs, dual endothelin antagonists, intestinal sodium-hydrogen exchanger-3 inhibitors, compound 17b and nonsteroidal mineralocorticoid receptor antagonists. SUMMARY Pharmacotherapeutic management options for hypertension is a growing field of research with potential clinical implications for multiple agents in upcoming years. Such novel approaches have the potential to improve clinical outcomes of hypertension management.
Collapse
Affiliation(s)
- Sidar Copur
- Department of Internal Medicine, Division of Internal Medicine, Koç University School of Medicine, Istanbul, Turkey
| | - Alexandru Burlacu
- Faculty of Medicine, University of Medicine and Pharmacy "Grigore T Popa,"
- Institute of Cardiovascular Diseases "Prof. Dr George I.M. Georgescu," Iasi, Romania
| | - Mehmet Kanbay
- Department of Internal Medicine, Division of Nephrology, Koc University School of Medicine, Istanbul, Turkey
| |
Collapse
|
3
|
Lac M, Moro C. [Atrial natriuretic peptide: A protective factor against type 2 diabetes?]. Med Sci (Paris) 2025; 41:323-325. [PMID: 40293149 DOI: 10.1051/medsci/2025058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025] Open
Affiliation(s)
- Marlène Lac
- Institut des maladies métaboliques et cardiovasculaires (I2MC), Inserm, Université de Toulouse, UMR1297, Toulouse, France
| | - Cédric Moro
- Institut des maladies métaboliques et cardiovasculaires (I2MC), Inserm, Université de Toulouse, UMR1297, Toulouse, France
| |
Collapse
|
4
|
Liu S, Payne AM, Wang J, Zhu L, Paknejad N, Eng ET, Liu W, Miao Y, Hite RK, Huang XY. Architecture and activation of single-pass transmembrane receptor guanylyl cyclase. Nat Struct Mol Biol 2025; 32:469-478. [PMID: 39543315 DOI: 10.1038/s41594-024-01426-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 10/15/2024] [Indexed: 11/17/2024]
Abstract
The heart, in addition to its primary role in blood circulation, functions as an endocrine organ by producing cardiac hormone natriuretic peptides. These hormones regulate blood pressure through the single-pass transmembrane receptor guanylyl cyclase A (GC-A), also known as natriuretic peptide receptor 1. The binding of the peptide hormones to the extracellular domain of the receptor activates the intracellular guanylyl cyclase domain of the receptor to produce the second messenger cyclic guanosine monophosphate. Despite their importance, the detailed architecture and domain interactions within full-length GC-A remain elusive. Here we present cryo-electron microscopy structures, functional analyses and molecular dynamics simulations of full-length human GC-A, in both the absence and the presence of atrial natriuretic peptide. The data reveal the architecture of full-length GC-A, highlighting the spatial arrangement of its various functional domains. This insight is crucial for understanding how different parts of the receptor interact and coordinate during activation. The study elucidates the molecular basis of how extracellular signals are transduced across the membrane to activate the intracellular guanylyl cyclase domain.
Collapse
Affiliation(s)
- Shian Liu
- Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University, New York, NY, USA
| | - Alexander M Payne
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Tri-Institutional Ph.D. Program in Chemical Biology, Weill Cornell Medical College of Cornell University, New York, NY, USA
| | - Jinan Wang
- Computational Medicine Program and Department of Pharmacology, University of North Carolina, Chapel Hill, Chapel Hill, NC, USA
| | - Lan Zhu
- Cancer Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Navid Paknejad
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Edward T Eng
- Simons Electron Microscopy Center, National Resource for Automated Molecular Microscopy, New York Structural Biology Center, New York, NY, USA
| | - Wei Liu
- Cancer Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Yinglong Miao
- Computational Medicine Program and Department of Pharmacology, University of North Carolina, Chapel Hill, Chapel Hill, NC, USA
| | - Richard K Hite
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Xin-Yun Huang
- Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University, New York, NY, USA.
| |
Collapse
|
5
|
Xiao Y, Meng X, Luo Q, Hou X, Jin J, Zhong X, Gong W, Li X, Chen M. Real-world safety of linaclotide in Chinese patients with irritable bowel syndrome with constipation: a multicenter, single-arm, prospective observational study. Therap Adv Gastroenterol 2025; 18:17562848251314819. [PMID: 39917729 PMCID: PMC11800259 DOI: 10.1177/17562848251314819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 01/06/2025] [Indexed: 02/09/2025] Open
Abstract
Background Linaclotide, a guanylate cyclase-C agonist, is indicated for irritable bowel syndrome with constipation (IBS-C). However, real-world data on the safety and patient-reported outcomes (PROs) of linaclotide are scarce in Chinese patients with IBS-C. Objectives To assess the real-world safety and PROs of linaclotide in the Chinese IBS-C population. Design Multicenter, prospective observational study. Methods Adults with IBS-C who had taken or planned to take at least one dose of linaclotide 290 μg were enrolled and followed up for 3 months. Face-to-face visits were conducted at baseline (V1), Week 4 ± 7 days (V2), and Week 12 ± 7 days (V3). Primary endpoints included the incidences of adverse events (AEs), AEs by severity, adverse drug reactions (ADRs), serious AEs (SAEs), and AEs leading to treatment interruption, discontinuation, and death. Secondary endpoints included mean treatment satisfaction at V2 and V3, and mean overall Irritable Bowel Syndrome-Quality of Life (IBS-QoL) at V2. Results Out of 3000 enrolled patients, 2963 took at least one dose of linaclotide and were analyzed. Overall, 712 patients (24.0%) reported 1095 AEs, which were mostly mild (89.9%). Diarrhea, reported in 297 out of the 2963 patients analyzed (10.0%), was the most common AE. No severe diarrhea was reported. Totally, 319 patients (10.8%) reported ADRs. Forty-six patients (1.6%) reported 50 SAEs and two cases were considered related to linaclotide treatment. Fifty-one (1.7%) and 70 patients (2.4%) interrupted and discontinued treatment due to AEs, respectively. One patient died of hepatic cancer, which was considered unrelated to linaclotide treatment. During the follow-up, the mean (±SD) treatment satisfaction increased numerically and continuously (V1, 2.8 ± 1.3 (n = 1721); V2, 3.5 ± 1.1 (n = 1705); V3, 3.9 ± 1.0 (n = 833)). The mean (±SD) overall IBS-QoL increased numerically from 73.2 ± 16.6 (n = 1924) at V1 to 80.2 ± 15.5 (n = 1738) at V2. Conclusion In the Chinese real-world setting, linaclotide was safe and well tolerated in patients with IBS-C. Numerically, there are trends toward improvement in PROs with linaclotide treatment.
Collapse
Affiliation(s)
- Yinglian Xiao
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xianmei Meng
- Department of Gastroenterology, The Second Affiliated Hospital of Baotou Medical College, Baotou, China
| | - Qingfeng Luo
- Department of Gastroenterology, Beijing Hospital, Beijing, China
| | - Xiaohua Hou
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jie Jin
- Department of Gastroenterology, Wenzhou Central Hospital, Wenzhou, China
| | - Xianfei Zhong
- Department of Gastroenterology, The People’s Hospital of Leshan, Leshan, China
| | - Wei Gong
- Department of Gastroenterology, Shenzhen Hospital of Southern Medical University, Shenzhen, China
| | - Xiuling Li
- Department of Gastroenterology, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Minhu Chen
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Sun Yat-sen University, No. 58 Zhongshan 2nd Road, Yuexiu District, Guangzhou, China
| |
Collapse
|
6
|
Mishra S, Chander V, Kass DA. Cardiac cGMP Regulation and Therapeutic Applications. Hypertension 2025; 82:185-196. [PMID: 39660453 PMCID: PMC11732264 DOI: 10.1161/hypertensionaha.124.21709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
cGMP plays a central role in cardiovascular regulation in health and disease. It is synthesized by NO or natriuretic peptide activated cyclases and hydrolyzed to 5'GMP by select members of the PDEs (phosphodiesterase) superfamily. The primary downstream effector is cGMP-dependent protein kinase, primarily cGK-1a (cyclic GMP-dependent protein kinase 1 alpha) also known as protein kinase G 1a in the heart and vasculature. cGMP signaling is controlled in intracellular nanodomains to regulate myocyte growth, survival, metabolism, protein homeostasis, G-protein-coupled receptor signaling, and other critical functions. The vascular effects of cGMP signaling have been dominated by its lowering of smooth muscle tone, but other cellular processes are also engaged. Localization of cyclases and corresponding PDEs within intracellular domains, along with their varying expression across different cell types, adds multiorgan complexity to cGMP signaling. This diversity can be leveraged therapeutically by targeting selective pathway components to impact some but not other cGMP signaling effects. Here, we review the generation and regulation of cGMP by PDEs and cyclases, focusing mainly on their role in cardiac physiology and pathophysiology. Current therapeutic uses of cGMP modulation and ongoing trials testing new potential applications are discussed.
Collapse
Affiliation(s)
- Sumita Mishra
- Center for Exercise Medicine Research, Fralin Biomedical Research Institute, (S.M., V.C.), Virginia Tech, Blacksburg, VA
- Center for Vascular and Heart Research, Fralin Biomedical Research Institute, (S.M.), Virginia Tech, Blacksburg, VA
- Department of Human Nutrition, Foods, and Exercise, College of Life Sciences (S.M.), Virginia Tech, Blacksburg, VA
- Department of Surgery, Virginia Tech Carilion School of Medicine, Roanoke, VA (S.M.)
| | - Vivek Chander
- Center for Exercise Medicine Research, Fralin Biomedical Research Institute, (S.M., V.C.), Virginia Tech, Blacksburg, VA
| | - David A. Kass
- Division of Cardiology, Department of Medicine (D.A.K.), Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Pharmacology and Molecular Sciences (D.A.K.), Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
7
|
Lehners M, Schmidt H, Zaldivia MTK, Stehle D, Krämer M, Peter A, Adler J, Lukowski R, Feil S, Feil R. Single-cell analysis identifies the CNP/GC-B/cGMP axis as marker and regulator of modulated VSMCs in atherosclerosis. Nat Commun 2025; 16:429. [PMID: 39814746 PMCID: PMC11735800 DOI: 10.1038/s41467-024-55687-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 12/20/2024] [Indexed: 01/18/2025] Open
Abstract
A balanced activity of cGMP signaling contributes to the maintenance of cardiovascular homeostasis. Vascular smooth muscle cells (VSMCs) can generate cGMP via three ligand-activated guanylyl cyclases, the NO-sensitive guanylyl cyclase, the atrial natriuretic peptide (ANP)-activated GC-A, and the C-type natriuretic peptide (CNP)-stimulated GC-B. Here, we study natriuretic peptide signaling in murine VSMCs and atherosclerotic lesions. Correlative profiling of pathway activity and VSMC phenotype at the single-cell level shows that phenotypic modulation of contractile VSMCs to chondrocyte-like plaque cells during atherogenesis is associated with a switch from ANP/GC‑A to CNP/GC‑B signaling. Silencing of the CNP/GC-B axis in VSMCs results in an increase of chondrocyte-like plaque cells. These findings indicate that the CNP/GC-B/cGMP pathway is a marker and atheroprotective regulator of modulated VSMCs, limiting their transition to chondrocyte-like cells. Overall, this study highlights the plasticity of cGMP signaling in VSMCs and suggests analogies between CNP-dependent remodeling of bone and blood vessels.
Collapse
MESH Headings
- Animals
- Cyclic GMP/metabolism
- Natriuretic Peptide, C-Type/metabolism
- Natriuretic Peptide, C-Type/genetics
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/cytology
- Signal Transduction
- Mice
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Receptors, Atrial Natriuretic Factor/metabolism
- Receptors, Atrial Natriuretic Factor/genetics
- Single-Cell Analysis
- Male
- Mice, Inbred C57BL
- Biomarkers/metabolism
Collapse
Affiliation(s)
- Moritz Lehners
- Interfakultäres Institut für Biochemie, University of Tübingen, Tübingen, Germany
| | - Hannes Schmidt
- Interfakultäres Institut für Biochemie, University of Tübingen, Tübingen, Germany
| | - Maria T K Zaldivia
- Interfakultäres Institut für Biochemie, University of Tübingen, Tübingen, Germany
| | - Daniel Stehle
- Interfakultäres Institut für Biochemie, University of Tübingen, Tübingen, Germany
| | - Michael Krämer
- Interfakultäres Institut für Biochemie, University of Tübingen, Tübingen, Germany
| | - Andreas Peter
- Department for Diagnostic Laboratory Medicine, Institute for Clinical Chemistry and Pathobiochemistry, University Hospital Tübingen, Tübingen, Germany
| | - Julia Adler
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Robert Lukowski
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Susanne Feil
- Interfakultäres Institut für Biochemie, University of Tübingen, Tübingen, Germany
| | - Robert Feil
- Interfakultäres Institut für Biochemie, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
8
|
Gawrys O, Kala P, Sadowski J, Melenovský V, Sandner P, Červenka L. Soluble guanylyl cyclase stimulators and activators: Promising drugs for the treatment of hypertension? Eur J Pharmacol 2025; 987:177175. [PMID: 39645219 DOI: 10.1016/j.ejphar.2024.177175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/21/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024]
Abstract
Nitric oxide (NO)-stimulated cyclic guanosine monophosphate (cGMP) is a key regulator of cardiovascular health, as NO-cGMP signalling is impaired in diseases like pulmonary hypertension, heart failure and chronic kidney disease. The development of NO-independent sGC stimulators and activators provide a novel therapeutic option to restore altered NO signalling. sGC stimulators have been already approved for the treatment of pulmonary arterial hypertension (PAH), chronic thromboembolic pulmonary hypertension (CTEPH), and chronic heart failure (HFrEF), while sGC activators are currently in phase-2 clinical trials for CKD. The best characterized effect of increased cGMP via the NO-sGC-cGMP pathway is vasodilation. However, to date, none of the sGC agonists are in development for hypertension (HTN). According to WHO, the global prevalence of uncontrolled HTN continues to rise, contributing significantly to cardiovascular mortality. While there are effective antihypertensive treatments, many patients require multiple drugs, and some remain resistant to all therapies. Thus, in addition to improved diagnosis and lifestyle changes, new pharmacological strategies remain in high demand. In this review we explore the potential of sGC stimulators and activators as novel antihypertensive agents, starting with the overview of NO-sGC-cGMP signalling, followed by potential mechanisms by which the increase in cGMP may regulate vascular tone and BP. These effects may encompass not only acute vasodilation, but also mid-term and chronic effects, such as the regulation of salt and water balance, as well as mitigation of vascular ageing and remodelling. The main section summarizes the preclinical and clinical evidence supporting the BP-lowering efficacy of sGC agonists.
Collapse
Affiliation(s)
- Olga Gawrys
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic.
| | - Petr Kala
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic; Department of Cardiology, Motol University Hospital and Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Janusz Sadowski
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Vojtěch Melenovský
- Department of Cardiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Peter Sandner
- Bayer AG, Pharmaceuticals, Drug Discovery, Pharma Research Centre, 42113, Wuppertal, Germany; Hannover Medical School, Institute of Pharmacology, 30625, Hannover, Germany
| | - Luděk Červenka
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic; First Department of Internal Medicine, Cardiology, Olomouc University Hospital and Palacký University, Olomouc, Czech Republic
| |
Collapse
|
9
|
Rager C, Klöpper T, Tasch S, Whittaker MR, Exintaris B, Mietens A, Middendorff R. The Influence of Cell Isolation and Culturing on Natriuretic Peptide Receptors in Aortic Vascular Smooth Muscle Cells. Cells 2025; 14:51. [PMID: 39791752 PMCID: PMC11720613 DOI: 10.3390/cells14010051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/22/2024] [Accepted: 01/02/2025] [Indexed: 01/12/2025] Open
Abstract
Vascular smooth muscle cell (SMC) relaxation by guanylyl cyclases (GCs) and cGMP is mediated by NO and its receptor soluble GC (sGC) or natriuretic peptides (NPs) ANP/BNP and CNP with the receptors GC-A and GC-B, respectively. It is commonly accepted that cultured SMCs differ from those in intact vessels. Nevertheless, cell culture often remains the first step for signaling investigations and drug testing. Previously, we showed that even popular reference genes changed dramatically after SMC isolation from aorta. Regarding NP receptors, a substantial amount of data relies on cell culture. We hypothesize that the NP/cGMP system in intact aortic tunica media differs from isolated and cultured aortic SMCs. Therefore, we studied isolation and culturing effects on the expression of NP receptors GC-A, GC-B, and NP clearance receptor (NPRC) compared to sGC. We investigated intact tunica media and primary SMCs from the longitudinal halves of the same rat aorta. GC activity was monitored by cyclic guanosine monophosphate (cGMP). In addition, we hypothesize that there are sex-dependent differences in the NP/cGMP cascade in both intact tissue and cultured cells. We, therefore, analyzed a male and female cohort. Expression was quantified by RT-qPCR comparing aortic media and SMCs with our recently validated reference gene (RG) small nuclear ribonucleoprotein 2 (U2). Only GC-A was stably expressed. In intact media, GC-A exceeded GC-B and NPRC. However, GC-B, NPRC, and sGC were dramatically upregulated in cultured SMCs of the same aortae different from the stable GC-A. The expression was mirrored by NP-induced GC activity. In cultured cells, changes in GC activity were delayed compared to receptor expression. Minor differences between both sexes could also be revealed. Thus, isolation and culture fundamentally alter the cGMP system in vascular SMCs with potential impact on drug testing and scRNAseq. Especially, the dramatic increase in the clearance receptor NPRC in culture might distort all physiological ANP, BNP, and CNP effects.
Collapse
MESH Headings
- Animals
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Receptors, Atrial Natriuretic Factor/metabolism
- Receptors, Atrial Natriuretic Factor/genetics
- Male
- Rats
- Female
- Aorta/cytology
- Aorta/metabolism
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/cytology
- Cells, Cultured
- Cyclic GMP/metabolism
- Cell Separation
- Rats, Wistar
- Cell Culture Techniques/methods
Collapse
Affiliation(s)
- Christine Rager
- Institute of Anatomy & Cell Biology, Faculty of Medicine, Justus-Liebig-University, Aulweg 123, 35392 Giessen, Germany; (C.R.)
- Drug Delivery, Disposition, and Dynamics (D4), Monash Institute of Pharmacy & Pharmaceutical Sciences (MIPS), Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia;
| | - Tobias Klöpper
- Institute of Anatomy & Cell Biology, Faculty of Medicine, Justus-Liebig-University, Aulweg 123, 35392 Giessen, Germany; (C.R.)
| | - Sabine Tasch
- Institute of Anatomy & Cell Biology, Faculty of Medicine, Justus-Liebig-University, Aulweg 123, 35392 Giessen, Germany; (C.R.)
| | - Michael Raymond Whittaker
- Drug Delivery, Disposition, and Dynamics (D4), Monash Institute of Pharmacy & Pharmaceutical Sciences (MIPS), Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia;
| | - Betty Exintaris
- Pharmacy and Pharmaceutical Sciences Education, Monash Institute of Pharmacy & Pharmaceutical Sciences (MIPS), Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Andrea Mietens
- Institute of Anatomy & Cell Biology, Faculty of Medicine, Justus-Liebig-University, Aulweg 123, 35392 Giessen, Germany; (C.R.)
| | - Ralf Middendorff
- Institute of Anatomy & Cell Biology, Faculty of Medicine, Justus-Liebig-University, Aulweg 123, 35392 Giessen, Germany; (C.R.)
| |
Collapse
|
10
|
Nakayamada T, Taguchi K, Natori C, Nakamura N, Fujii M, Yamashita Y, Ito S, Fukami K. Takayasu arteritis-associated refractory hypertension induces nephrotic syndrome through glomerular microangiopathy. CEN Case Rep 2024:10.1007/s13730-024-00952-5. [PMID: 39648265 DOI: 10.1007/s13730-024-00952-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 11/12/2024] [Indexed: 12/10/2024] Open
Abstract
Takayasu arteritis (TAK) is a systemic inflammatory condition characterized by vasculitis in mainly the aorta and their branches; however, few reports have demonstrated glomerulonephritis and subsequent nephrotic syndrome in patients with TAK. We encountered a 69-year-old woman with TAK who developed nephrotic syndrome owing to uncontrolled hypertension. Kidney biopsy demonstrated endotheliosis, aberrant proliferation of vascular smooth muscle cells, and concentric intimal hyperplasia without any clues of vasculitis. Treatment with sacubitril/valsartan reduced proteinuria and increased serum albumin without affecting renal function, which continued to suppress blood pressure and prevent recurrence of nephrotic syndrome over 2 years.
Collapse
Affiliation(s)
- Tomoya Nakayamada
- Division of Nephrology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-Machi, Kurume, 830-0011, Japan
| | - Kensei Taguchi
- Division of Nephrology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-Machi, Kurume, 830-0011, Japan.
- Research Institute of Medical Mass Spectrometry, Kurume University School of Medicine, Kurume, 830-0011, Japan.
| | - Chikei Natori
- Division of Nephrology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-Machi, Kurume, 830-0011, Japan
| | - Nao Nakamura
- Division of Nephrology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-Machi, Kurume, 830-0011, Japan
| | - Makiko Fujii
- Division of Nephrology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-Machi, Kurume, 830-0011, Japan
| | - Yuya Yamashita
- Division of Nephrology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-Machi, Kurume, 830-0011, Japan
| | - Sakuya Ito
- Division of Nephrology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-Machi, Kurume, 830-0011, Japan
| | - Kei Fukami
- Division of Nephrology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-Machi, Kurume, 830-0011, Japan
| |
Collapse
|
11
|
Winner G J, Jain S, Gupta D. Unveiling novel molecules and therapeutic targets in hypertension - A narrative review. Eur J Pharmacol 2024; 984:177053. [PMID: 39393666 DOI: 10.1016/j.ejphar.2024.177053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/18/2024] [Accepted: 10/07/2024] [Indexed: 10/13/2024]
Abstract
Hypertension is a prevalent non-communicable disease with serious cardiovascular complications, including heart failure, myocardial infarction, and stroke, often resulting from uncontrolled hypertension. While current treatments primarily target the renin-angiotensin-aldosterone pathway, the therapeutic response remains modest in many patients, with some developing resistant hypertension. Newer therapeutic approaches aim to address hypertension from various aspects beyond conventional drugs, including targeting central nervous system pathways, inflammatory pathways, vascular smooth muscle function, and baroreceptors. Despite these advancements, each therapy faces unique clinical and mechanistic challenges that influence its clinical translatability and long-term viability. This review explores the mechanisms of novel molecules in preclinical and clinical development, highlights potential therapeutic targets, and discusses the challenges and ethical considerations related to hypertension therapeutics and their development.
Collapse
Affiliation(s)
| | - Surbhi Jain
- Aligarh Muslim University, Uttar Pradesh, India
| | | |
Collapse
|
12
|
Li XC, Wang CH, Hassan R, Katsurada A, Sato R, Zhuo JL. Deletion of AT 1a receptors selectively in the proximal tubules of the kidney alters the hypotensive and natriuretic response to atrial natriuretic peptide via NPR A/cGMP/NO signaling. Am J Physiol Renal Physiol 2024; 327:F946-F956. [PMID: 39361722 PMCID: PMC11687850 DOI: 10.1152/ajprenal.00160.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/10/2024] [Accepted: 09/24/2024] [Indexed: 10/05/2024] Open
Abstract
In the proximal tubules of the kidney, angiotensin II (ANG II) binds and activates ANG II type 1 (AT1a) receptors to stimulate proximal tubule Na+ reabsorption, whereas atrial natriuretic peptide (ANP) binds and activates natriuretic peptide receptors (NPRA) to inhibit ANG II-induced proximal tubule Na+ reabsorption. These two vasoactive systems play important counteracting roles to control Na+ reabsorption in the proximal tubules and help maintain blood pressure homeostasis. However, how AT1a and NPRA receptors interact in the proximal tubules and whether natriuretic effects of NPRA receptor activation by ANP may be potentiated by deletion of AT1 (AT1a) receptors selectively in the proximal tubules have not been studied previously. The present study used a novel mouse model with proximal tubule-specific knockout of AT1a receptors, PT-Agtr1a-/-, to test the hypothesis that deletion of AT1a receptors selectively in the proximal tubules augments the hypotensive and natriuretic responses to ANP. Basal blood pressure was about 16 ± 3 mmHg lower (P < 0.01), fractional proximal tubule Na+ reabsorption was significantly lower (P < 0.05), whereas 24-h urinary Na+ excretion was significantly higher, in PT-Agtr1a-/- mice than in wild-type mice (P < 0.01). Infusion of ANP via osmotic minipump for 2 wk (0.5 mg/kg/day ip) further significantly decreased blood pressure and increased the natriuretic response in PT-Agtr1a-/- mice by inhibiting proximal tubule Na+ reabsorption compared with wild-type mice (P < 0.01). These augmented hypotensive and natriuretic responses to ANP in PT-Agtr1a-/- mice were associated with increased plasma and kidney cGMP levels (P < 0.01), kidney cortical NPRA and NPRC mRNA expression (P < 0.05), endothelial nitric oxide (NO) synthase (eNOS) and phosphorylated eNOS proteins (P < 0.01), and urinary NO excretion (P < 0.01). Taken together, the results of the present study provide further evidence for important physiological roles of intratubular ANG II/AT1a and ANP/NPRA signaling pathways in the proximal tubules to regulate proximal tubule Na+ reabsorption and maintain blood pressure homeostasis.NEW & NOTEWORTHY This study used a mutant mouse model with proximal tubule-selective deletion of angiotensin II (ANG II) type 1 (AT1a) receptors to study, for the first time, important interactions between ANG II/AT1 (AT1a) receptor/Na+/H+ exchanger 3 and atrial natriuretic peptide (ANP)/natriuretic peptide receptor (NPRA)/cGMP/nitric oxide signaling pathways in the proximal tubules. The results of the present study provide further evidence for important physiological roles of proximal tubule ANG II/AT1a and ANP/NPRA signaling pathways in the regulation of proximal tubule Na+ reabsorption and blood pressure homeostasis.
Collapse
MESH Headings
- Animals
- Kidney Tubules, Proximal/metabolism
- Kidney Tubules, Proximal/drug effects
- Cyclic GMP/metabolism
- Atrial Natriuretic Factor/metabolism
- Atrial Natriuretic Factor/genetics
- Receptors, Atrial Natriuretic Factor/metabolism
- Receptors, Atrial Natriuretic Factor/genetics
- Receptors, Atrial Natriuretic Factor/deficiency
- Receptor, Angiotensin, Type 1/metabolism
- Receptor, Angiotensin, Type 1/genetics
- Mice, Knockout
- Signal Transduction
- Nitric Oxide/metabolism
- Blood Pressure/drug effects
- Male
- Natriuresis/drug effects
- Sodium/metabolism
- Sodium/urine
- Hypotension/metabolism
- Hypotension/genetics
- Hypotension/physiopathology
- Renal Reabsorption/drug effects
- Mice
- Nitric Oxide Synthase Type III/metabolism
- Mice, Inbred C57BL
Collapse
Affiliation(s)
- Xiao Chun Li
- Tulane Hypertension and Renal Center of Excellence and Department of Physiology, Tulane University School of Medicine, New Orleans, Louisiana, United States
| | - Chih-Hong Wang
- Tulane Hypertension and Renal Center of Excellence and Department of Physiology, Tulane University School of Medicine, New Orleans, Louisiana, United States
| | - Rumana Hassan
- Tulane Hypertension and Renal Center of Excellence and Department of Physiology, Tulane University School of Medicine, New Orleans, Louisiana, United States
| | - Akemi Katsurada
- Tulane Hypertension and Renal Center of Excellence and Department of Physiology, Tulane University School of Medicine, New Orleans, Louisiana, United States
| | - Ryosuke Sato
- Tulane Hypertension and Renal Center of Excellence and Department of Physiology, Tulane University School of Medicine, New Orleans, Louisiana, United States
| | - Jia Long Zhuo
- Tulane Hypertension and Renal Center of Excellence and Department of Physiology, Tulane University School of Medicine, New Orleans, Louisiana, United States
| |
Collapse
|
13
|
Jalali P, Aliyari S, Etesami M, Saeedi Niasar M, Taher S, Kavousi K, Nazemalhosseini Mojarad E, Salehi Z. GUCA2A dysregulation as a promising biomarker for accurate diagnosis and prognosis of colorectal cancer. Clin Exp Med 2024; 24:251. [PMID: 39485546 PMCID: PMC11530487 DOI: 10.1007/s10238-024-01512-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 10/21/2024] [Indexed: 11/03/2024]
Abstract
Colorectal cancer is a leading cause of global mortality and presents a significant barrier to improving life expectancy. The primary objective of this study was to discern a unique differentially expressed gene (DEG) that exhibits a strong association with colorectal cancer. By achieving this goal, the research aims to contribute valuable insights to the field of translational medicine. We performed analysis of colorectal cancer microarray and the TCGA colon adenoma carcinoma (COAD) datasets to identify DEGs associated with COAD and common DEGs were selected. Furthermore, a pan-cancer analysis encompassing 33 different cancer types was performed to identify differential genes significantly expressed only in COAD. Then, comprehensively in-silico analysis including gene set enrichment analysis, constructing Protein-Protein interaction, co-expression, and competing endogenous RNA (ceRNA) networks, investigating the correlation between tumor-immune signatures in distinct tumor microenvironment and also the potential interactions between the identified gene and various drugs was executed. Further, the candidate gene was experimentally validated in tumoral colorectal tissues and colorectal adenomatous polyps by qRael-Time PCR. GUCA2A emerged as a significant DEG specific to colorectal cancer (|log2FC|> 1 and adjusted q-value < 0.05). Importantly, GUCA2A exhibited excellent diagnostic performance for COAD, with a 99.6% and 78% area under the curve (AUC) based on TCGA-COAD and colon cancer patients. In addition, GUCA2A expression in adenomatous polyps equal to or larger than 5 mm was significantly lower compared to smaller than 5 mm. Moreover, low expression of GUCA2A significantly impacted overall patient survival. Significant correlations were observed between tumor-immune signatures and GUCA2A expression. The ceRNA constructed included GUCA2A, 8 shared miRNAs, and 61 circRNAs. This study identifies GUCA2A as a promising prognostic and diagnostic biomarker for colorectal cancer. Further investigations are warranted to explore the potential of GUCA2A as a therapeutic biomarker.
Collapse
Affiliation(s)
- Pooya Jalali
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Centre, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, P.O. Box: 19857-17411, Tehran, Iran
| | - Shahram Aliyari
- Department of Bioinformatics, Kish International Campus University of Tehran, Kish, Iran
- Division of Applied Bioinformatics, German Cancer Research Center DKFZ, Heidelberg, Germany
| | - Marziyeh Etesami
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Centre, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, P.O. Box: 19857-17411, Tehran, Iran
| | - Mahsa Saeedi Niasar
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Centre, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, P.O. Box: 19857-17411, Tehran, Iran
| | - Sahar Taher
- Islamic Azad University, Tabriz Branch, Tabriz, Iran
| | - Kaveh Kavousi
- Laboratory of Complex Biological Systems and Bioinformatics (CBB), Department of Bioinformatics, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Ehsan Nazemalhosseini Mojarad
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Centre, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, P.O. Box: 19857-17411, Tehran, Iran.
- Department of Surgery, Leiden University Medical Center, Leiden, Netherlands.
| | - Zahra Salehi
- Hematology, Oncology and Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
14
|
Sandner P, Follmann M, Becker-Pelster E, Hahn MG, Meier C, Freitas C, Roessig L, Stasch JP. Soluble GC stimulators and activators: Past, present and future. Br J Pharmacol 2024; 181:4130-4151. [PMID: 34600441 DOI: 10.1111/bph.15698] [Citation(s) in RCA: 48] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 08/30/2021] [Indexed: 12/20/2022] Open
Abstract
The discovery of soluble GC (sGC) stimulators and sGC activators provided valuable tools to elucidate NO-sGC signalling and opened novel pharmacological opportunities for cardiovascular indications and beyond. The first-in-class sGC stimulator riociguat was approved for pulmonary hypertension in 2013 and vericiguat very recently for heart failure. sGC stimulators enhance sGC activity independent of NO and also act synergistically with endogenous NO. The sGC activators specifically bind to, and activate, the oxidised haem-free form of sGC. Substantial research efforts improved on the first-generation sGC activators such as cinaciguat, culminating in the discovery of runcaciguat, currently in clinical Phase II trials for chronic kidney disease and diabetic retinopathy. Here, we highlight the discovery and development of sGC stimulators and sGC activators, their unique modes of action, their preclinical characteristics and the clinical studies. In the future, we expect to see more sGC agonists in new indications, reflecting their unique therapeutic potential.
Collapse
Affiliation(s)
- Peter Sandner
- Pharmaceuticals Research & Development, Bayer AG, Wuppertal, Germany
- Institute of Pharmacology, Hannover Medical School, Hanover, Germany
| | - Markus Follmann
- Pharmaceuticals Research & Development, Bayer AG, Wuppertal, Germany
| | | | - Michael G Hahn
- Pharmaceuticals Research & Development, Bayer AG, Wuppertal, Germany
| | - Christian Meier
- Pharmaceuticals Medical Affairs and Pharmacovigilance, Bayer AG, Berlin, Germany
| | - Cecilia Freitas
- Pharmaceuticals Research & Development, Bayer AG, Wuppertal, Germany
| | - Lothar Roessig
- Pharmaceuticals Research & Development, Bayer AG, Wuppertal, Germany
| | - Johannes-Peter Stasch
- Pharmaceuticals Research & Development, Bayer AG, Wuppertal, Germany
- Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
15
|
Lowe VJ, Aubdool AA, Moyes AJ, Dignam JP, Perez-Ternero C, Baliga RS, Smart N, Hobbs AJ. Cardiomyocyte-derived C-type natriuretic peptide diminishes myocardial ischaemic injury by promoting revascularisation and limiting fibrotic burden. Pharmacol Res 2024; 209:107447. [PMID: 39374886 DOI: 10.1016/j.phrs.2024.107447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 10/01/2024] [Indexed: 10/09/2024]
Abstract
BACKGROUND C-type natriuretic peptide (CNP) is a significant player in the maintenance of cardiac and vascular homeostasis regulating local blood flow, platelet and leukocyte activation, heart structure and function, angiogenesis and metabolic balance. Since such processes are perturbed in myocardial infarction (MI), we explored the role of cardiomyocyte-derived CNP, and pharmacological administration of the peptide, in offsetting the pathological consequences of MI. METHODS Wild type (WT) and cardiomyocyte-restricted CNP null (cmCNP-/-) mice were subjected to left anterior descending coronary artery (LADCA) ligation and acute effects on infarct size and longer-term outcomes of cardiac repair explored. Heart structure and function were assessed by combined echocardiographic and molecular analyses. Pharmacological administration of CNP (0.2 mg/kg/day; s.c.) was utilized to assess therapeutic potential. RESULTS Compared to WT littermates, cmCNP-/- mice had a modestly increased infarct size following LADCA ligation but without significant deterioration of cardiac structural and functional indices. However, cmCNP-/- animals exhibited overtly worse heart morphology and contractility 6 weeks following MI, with particularly deleterious reductions in left ventricular ejection fraction, dilatation, fibrosis and revascularization. This phenotype was largely recapitulated in animals with global deletion of natriuretic peptide receptor (NPR)-C (NPR-C-/-). Pharmacological administration of CNP rescued the deleterious pathology in WT and cmCNP-/-, but not NPR-C-/-, animals. CONCLUSIONS AND IMPLICATIONS Cardiomyocytes synthesize and release CNP as an intrinsic protective mechanism in response to MI that reduces cardiac structural and functional deficits; these salutary actions are primarily NPR-C-dependent. Pharmacological targeting of CNP may represent a new therapeutic option for MI.
Collapse
Affiliation(s)
- Vanessa J Lowe
- William Harvey Research Institute, Faculty of Medicine & Dentistry, Barts & The London, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Aisah A Aubdool
- William Harvey Research Institute, Faculty of Medicine & Dentistry, Barts & The London, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Amie J Moyes
- William Harvey Research Institute, Faculty of Medicine & Dentistry, Barts & The London, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Joshua P Dignam
- William Harvey Research Institute, Faculty of Medicine & Dentistry, Barts & The London, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - C Perez-Ternero
- William Harvey Research Institute, Faculty of Medicine & Dentistry, Barts & The London, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Reshma S Baliga
- William Harvey Research Institute, Faculty of Medicine & Dentistry, Barts & The London, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Nicola Smart
- Institute of Developmental and Regenerative Medicine, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX3 7TY, UK
| | - Adrian J Hobbs
- William Harvey Research Institute, Faculty of Medicine & Dentistry, Barts & The London, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK.
| |
Collapse
|
16
|
Li W, Zhang X, Zhou Z, Guo W, Wang M, Zhou T, Liu M, Wu Q, Dong N. Cardiac corin and atrial natriuretic peptide regulate liver glycogen metabolism and glucose homeostasis. Cardiovasc Diabetol 2024; 23:383. [PMID: 39468553 PMCID: PMC11520433 DOI: 10.1186/s12933-024-02475-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/15/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND Cardiovascular function and metabolic homeostasis are closely linked, but the underlying mechanisms are not fully understood. Corin is a protease that activates atrial natriuretic peptide (ANP), an essential hormone for normal blood pressure and cardiac function. The goal of this study is to investigate a potential corin and ANP function in regulating liver glycogen metabolism and glucose homeostasis. METHODS Liver glycogen and blood glucose levels were analyzed in Corin or Nppa (encoding ANP) knockout (KO) mice. ANP signaling was examined in livers from Corin and Nppa KO mice and in cultured human and mouse hepatocytes by western blotting. RESULTS We found that Corin and Nppa KO mice had reduced liver glycogen contents and increased blood glucose levels. By analyzing conditional KO mice lacking either cardiac or renal Corin, we showed that cardiac corin and ANP act in an endocrine manner to enhance cGMP-protein kinase G (PKG)-AKT-GSK3 signaling in hepatocytes. In cultured hepatocytes, ANP treatment stimulated PKG signaling, glucose uptake, and glycogen production, which could be blocked by small molecule PKG and AKT inhibitors. CONCLUSIONS Our results indicate that corin and ANP are important regulators in liver glycogen metabolism and glucose homeostasis, suggesting that defects in the corin and ANP pathway may contribute to both cardiovascular and metabolic diseases.
Collapse
Affiliation(s)
- Wenguo Li
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, China
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| | - Xianrui Zhang
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, China
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| | - Zibin Zhou
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
- Department of Orthopedics, the Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Wenjun Guo
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, China
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| | - Mengting Wang
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, China
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| | - Tiantian Zhou
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| | - Meng Liu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| | - Qingyu Wu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China.
| | - Ningzheng Dong
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, China.
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China.
| |
Collapse
|
17
|
Zhou Z, Mao X, Jiang C, Li W, Zhou T, Liu M, Sun S, Wang M, Dong N, Wu Q, Zhou H. Deficiencies in corin and atrial natriuretic peptide-mediated signaling impair endochondral ossification in bone development. Commun Biol 2024; 7:1380. [PMID: 39443661 PMCID: PMC11500007 DOI: 10.1038/s42003-024-07077-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024] Open
Abstract
Corin is a protease that activates atrial natriuretic peptide (ANP), a hormone in cardiovascular homeostasis. Structurally, ANP is similar to C-type natriuretic peptide (CNP) crucial in bone development. Here, we examine the role of corin and ANP in chondrocyte differentiation and bone formation. We show that in Corin and Nppa (encoding ANP) knockout (KO) mice, chondrocyte differentiation is impaired, resulting in shortened limb long bones. In adult mice, Corin and Nppa deficiency impairs bone density and microarchitecture. Molecular studies in cartilages from newborn Corin and Nppa KO mice and in cultured chondrocytes indicate that corin and ANP act in chondrocytes via cGMP-dependent protein kinase G signaling to inhibit mitogen-activated protein kinase phosphorylation and stimulate glycogen synthase kinase-3β phosphorylation and β-catenin upregulation. These results indicate that corin and ANP signaling regulates chondrocyte differentiation in bone development and homeostasis, suggesting that enhancing ANP signaling may improve bone quality in patients with osteoporosis.
Collapse
Affiliation(s)
- Zibin Zhou
- Department of Orthopedics, the Second Affiliated Hospital of Soochow University, Suzhou, China
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| | - Xiaoyu Mao
- Department of Orthopedics, the Second Affiliated Hospital of Soochow University, Suzhou, China
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| | - Chun Jiang
- Department of Orthopedics, the Second Affiliated Hospital of Soochow University, Suzhou, China
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| | - Wenguo Li
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| | - Tiantian Zhou
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| | - Meng Liu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| | - Shijin Sun
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| | - Mengting Wang
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
- NHC Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ningzheng Dong
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China.
- NHC Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China.
| | - Qingyu Wu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China.
| | - Haibin Zhou
- Department of Orthopedics, the Second Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
18
|
Carper D, Lac M, Coue M, Labour A, Märtens A, Banda JAA, Mazeyrie L, Mechta M, Ingerslev LR, Elhadad M, Petit JV, Maslo C, Monbrun L, Del Carmine P, Sainte-Marie Y, Bourlier V, Laurens C, Mithieux G, Joanisse DR, Coudray C, Feillet-Coudray C, Montastier E, Viguerie N, Tavernier G, Waldenberger M, Peters A, Wang-Sattler R, Adamski J, Suhre K, Gieger C, Kastenmüller G, Illig T, Lichtinghagen R, Seissler J, Mounier R, Hiller K, Jordan J, Barrès R, Kuhn M, Pesta D, Moro C. Loss of atrial natriuretic peptide signaling causes insulin resistance, mitochondrial dysfunction, and low endurance capacity. SCIENCE ADVANCES 2024; 10:eadl4374. [PMID: 39383215 PMCID: PMC11463261 DOI: 10.1126/sciadv.adl4374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 09/06/2024] [Indexed: 10/11/2024]
Abstract
Type 2 diabetes (T2D) and obesity are strongly associated with low natriuretic peptide (NP) plasma levels and a down-regulation of NP guanylyl cyclase receptor-A (GCA) in skeletal muscle and adipose tissue. However, no study has so far provided evidence for a causal link between atrial NP (ANP)/GCA deficiency and T2D pathogenesis. Here, we show that both systemic and skeletal muscle ANP/GCA deficiencies in mice promote metabolic disturbances and prediabetes. Skeletal muscle insulin resistance is further associated with altered mitochondrial function and impaired endurance running capacity. ANP/GCA-deficient mice exhibit increased proton leak and reduced content of mitochondrial oxidative phosphorylation proteins. We further show that GCA is related to several metabolic traits in T2D and positively correlates with markers of oxidative capacity in human skeletal muscle. Together, these results indicate that ANP/GCA signaling controls muscle mitochondrial integrity and oxidative capacity in vivo and plays a causal role in the development of prediabetes.
Collapse
Affiliation(s)
- Deborah Carper
- Institute of Metabolic and Cardiovascular Diseases, INSERM/Paul Sabatier University, UMR1297, Team MetaDiab, Toulouse, France
| | - Marlène Lac
- Institute of Metabolic and Cardiovascular Diseases, INSERM/Paul Sabatier University, UMR1297, Team MetaDiab, Toulouse, France
| | - Marine Coue
- Institute of Metabolic and Cardiovascular Diseases, INSERM/Paul Sabatier University, UMR1297, Team MetaDiab, Toulouse, France
| | - Axel Labour
- Institute of Metabolic and Cardiovascular Diseases, INSERM/Paul Sabatier University, UMR1297, Team MetaDiab, Toulouse, France
| | - Andre Märtens
- Department of Bioinformatics and Biochemistry, Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig and Physikalisch-Technische Bundesanstalt, Brunswick, Germany
| | - Jorge Alberto Ayala Banda
- Institute of Metabolic and Cardiovascular Diseases, INSERM/Paul Sabatier University, UMR1297, Team MetaDiab, Toulouse, France
| | - Laurène Mazeyrie
- Institute of Metabolic and Cardiovascular Diseases, INSERM/Paul Sabatier University, UMR1297, Team MetaDiab, Toulouse, France
| | - Mie Mechta
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lars Roed Ingerslev
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mohamed Elhadad
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | | | - Claire Maslo
- Institute of Metabolic and Cardiovascular Diseases, INSERM/Paul Sabatier University, UMR1297, Team MetaDiab, Toulouse, France
| | - Laurent Monbrun
- Institute of Metabolic and Cardiovascular Diseases, INSERM/Paul Sabatier University, UMR1297, Team MetaDiab, Toulouse, France
| | - Peggy Del Carmine
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, INSERM U1315, CNRS UMR, 5261 Lyon, France
| | - Yannis Sainte-Marie
- Institute of Metabolic and Cardiovascular Diseases, INSERM/Paul Sabatier University, UMR1297, Team MetaDiab, Toulouse, France
| | - Virginie Bourlier
- Institute of Metabolic and Cardiovascular Diseases, INSERM/Paul Sabatier University, UMR1297, Team MetaDiab, Toulouse, France
| | - Claire Laurens
- Institute of Metabolic and Cardiovascular Diseases, INSERM/Paul Sabatier University, UMR1297, Team MetaDiab, Toulouse, France
| | | | - Denis R. Joanisse
- Department of Kinesiology, Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Canada
| | - Charles Coudray
- Dynamique Musculaire Et Métabolisme, INRAE, UMR866, Université Montpellier, Montpellier, France
| | | | - Emilie Montastier
- Institute of Metabolic and Cardiovascular Diseases, INSERM/Paul Sabatier University, UMR1297, Team MetaDiab, Toulouse, France
| | - Nathalie Viguerie
- Institute of Metabolic and Cardiovascular Diseases, INSERM/Paul Sabatier University, UMR1297, Team MetaDiab, Toulouse, France
| | - Geneviève Tavernier
- Institute of Metabolic and Cardiovascular Diseases, INSERM/Paul Sabatier University, UMR1297, Team MetaDiab, Toulouse, France
| | - Melanie Waldenberger
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Rui Wang-Sattler
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Jerzy Adamski
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore 117597, Singapore
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Karsten Suhre
- Bioinformatics Core, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Christian Gieger
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Gabi Kastenmüller
- Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Thomas Illig
- Hannover Unified Biobank, Hannover Medical School, Hanover, Germany
| | - Ralf Lichtinghagen
- Department of Clinical Chemistry, Hannover Medical School, Hannover, Germany
| | - Jochen Seissler
- Diabetes Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU, München, Germany
| | - Remy Mounier
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, INSERM U1315, CNRS UMR, 5261 Lyon, France
| | - Karsten Hiller
- Department of Bioinformatics and Biochemistry, Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig and Physikalisch-Technische Bundesanstalt, Brunswick, Germany
| | - Jens Jordan
- Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
- Medical Faculty, University of Cologne, Cologne, Germany
| | - Romain Barrès
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michaela Kuhn
- Institute of Physiology, University of Würzburg, Würzburg, Germany
| | - Dominik Pesta
- Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
- Medical Faculty, University of Cologne, Cologne, Germany
- Center for Endocrinology, Diabetes, and Preventive Medicine (CEDP), University Hospital Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Cedric Moro
- Institute of Metabolic and Cardiovascular Diseases, INSERM/Paul Sabatier University, UMR1297, Team MetaDiab, Toulouse, France
| |
Collapse
|
19
|
Lewis CM, Griffith TN. Ion channels of cold transduction and transmission. J Gen Physiol 2024; 156:e202313529. [PMID: 39051992 PMCID: PMC11273221 DOI: 10.1085/jgp.202313529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 06/04/2024] [Accepted: 07/12/2024] [Indexed: 07/27/2024] Open
Abstract
Thermosensation requires the activation of a unique collection of ion channels and receptors that work in concert to transmit thermal information. It is widely accepted that transient receptor potential melastatin 8 (TRPM8) activation is required for normal cold sensing; however, recent studies have illuminated major roles for other ion channels in this important somatic sensation. In addition to TRPM8, other TRP channels have been reported to contribute to cold transduction mechanisms in diverse sensory neuron populations, with both leak- and voltage-gated channels being identified for their role in the transmission of cold signals. Whether the same channels that contribute to physiological cold sensing also mediate noxious cold signaling remains unclear; however, recent work has found a conserved role for the kainite receptor, GluK2, in noxious cold sensing across species. Additionally, cold-sensing neurons likely engage in functional crosstalk with nociceptors to give rise to cold pain. This Review will provide an update on our understanding of the relationship between various ion channels in the transduction and transmission of cold and highlight areas where further investigation is required.
Collapse
Affiliation(s)
- Cheyanne M Lewis
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA, USA
| | - Theanne N Griffith
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA, USA
| |
Collapse
|
20
|
Dickinson YA, Moyes AJ, Hobbs AJ. C-type natriuretic peptide (CNP): The cardiovascular system and beyond. Pharmacol Ther 2024; 262:108708. [PMID: 39154787 DOI: 10.1016/j.pharmthera.2024.108708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/30/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
C-type natriuretic peptide (CNP) represents the 'local' member of the natriuretic peptide family, functioning in an autocrine or paracrine capacity to modulate a hugely diverse portfolio of physiological processes. Whilst the best-characterised of these regulatory roles are in the cardiovascular system, akin to its predominantly endocrine siblings atrial (ANP) and brain (BNP) natriuretic peptides, CNP governs many additional, unrelated mechanisms including bone growth, gamete maturation, auditory processing, and neuronal integrity. Furthermore, there is currently great interest in mimicking the biological activity of CNP for therapeutic gain in many of these disparate organ systems. Herein, we provide an overview of the physiology, pathophysiology and pharmacology of CNP in both cardiovascular and non-cardiovascular settings.
Collapse
Affiliation(s)
- Yasmin A Dickinson
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Barts & The London, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Amie J Moyes
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Barts & The London, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Adrian J Hobbs
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Barts & The London, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK.
| |
Collapse
|
21
|
Burnett JC. Long-lasting heart-failure treatment could be a game-changer. Nature 2024; 633:534-535. [PMID: 39261684 DOI: 10.1038/d41586-024-02660-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
|
22
|
Scott NJA, Prickett TCR, Charles CJ, Espiner EA, Richards AM, Rademaker MT. Haemodynamic, hormonal and renal actions of osteocrin in normal sheep. Exp Physiol 2024; 109:1305-1316. [PMID: 38890799 PMCID: PMC11291853 DOI: 10.1113/ep091826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/20/2024] [Indexed: 06/20/2024]
Abstract
Osteocrin (OSTN) is an endogenous protein sharing structural similarities with the natriuretic peptides [NPs; atrial (ANP), B-type (BNP) and C-type (CNP) NP], which are hormones known for their crucial role in maintaining pressure/volume homeostasis. Osteocrin competes with the NPs for binding to the receptor involved in their clearance (NPR-C). In the present study, having identified, for the first time, the major circulating form of OSTN in human and ovine plasma, we examined the integrated haemodynamic, endocrine and renal effects of vehicle-controlled incremental infusions of ovine proOSTN (83-133) and its metabolism in eight conscious normal sheep. Incremental i.v. doses of OSTN produced stepwise increases in circulating concentrations of the peptide, and its metabolic clearance rate was inversely proportional to the dose. Osteocrin increased plasma levels of ANP, BNP and CNP in a dose-dependent manner, together with concentrations of their intracellular second messenger, cGMP. Increases in plasma cGMP were associated with progressive reductions in arterial pressure and central venous pressure. Plasma cAMP, renin and aldosterone were unchanged. Despite significant increases in urinary cGMP levels, OSTN administration was not associated with natriuresis or diuresis in normal sheep. These results support OSTN as an endogenous ligand for NPR-C in regulating plasma concentrations of NPs and associated cGMP-mediated bioactivity. Collectively, our findings support a role for OSTN in maintaining cardiovascular homeostasis.
Collapse
Affiliation(s)
- Nicola J. A. Scott
- Department of Medicine, Christchurch Heart InstituteUniversity of Otago ChristchurchChristchurchNew Zealand
| | - Timothy C. R. Prickett
- Department of Medicine, Christchurch Heart InstituteUniversity of Otago ChristchurchChristchurchNew Zealand
| | - Christopher J. Charles
- Department of Medicine, Christchurch Heart InstituteUniversity of Otago ChristchurchChristchurchNew Zealand
| | - Eric A. Espiner
- Department of Medicine, Christchurch Heart InstituteUniversity of Otago ChristchurchChristchurchNew Zealand
| | - A. Mark Richards
- Department of Medicine, Christchurch Heart InstituteUniversity of Otago ChristchurchChristchurchNew Zealand
- Cardiovascular Research Institute, National University Health SystemsCentre for Translational MedicineSingaporeSingapore
| | - Miriam T. Rademaker
- Department of Medicine, Christchurch Heart InstituteUniversity of Otago ChristchurchChristchurchNew Zealand
| |
Collapse
|
23
|
Werner F, Naruke T, Sülzenbrück L, Schäfer S, Rösch M, Völker K, Krebes L, Abeßer M, Möllmann D, Baba HA, Schweda F, Zernecke A, Kuhn M. Auto/Paracrine C-Type Natriuretic Peptide/Cyclic GMP Signaling Prevents Endothelial Dysfunction. Int J Mol Sci 2024; 25:7800. [PMID: 39063044 PMCID: PMC11277478 DOI: 10.3390/ijms25147800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/05/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Endothelial dysfunction is cause and consequence of cardiovascular diseases. The endothelial hormone C-type natriuretic peptide (CNP) regulates vascular tone and the vascular barrier. Its cGMP-synthesizing guanylyl cyclase-B (GC-B) receptor is expressed in endothelial cells themselves. To characterize the role of endothelial CNP/cGMP signaling, we studied mice with endothelial-selective GC-B deletion. Endothelial EC GC-B KO mice had thicker, stiffer aortae and isolated systolic hypertension. This was associated with increased proinflammatory E-selectin and VCAM-1 expression and impaired nitric oxide bioavailability. Atherosclerosis susceptibility was evaluated in such KO and control littermates on Ldlr (low-density lipoprotein receptor)-deficient background fed a Western diet for 10 weeks. Notably, the plaque areas and heights within the aortic roots were markedly increased in the double EC GC-B/Ldlr KO mice. This was accompanied by enhanced macrophage infiltration and greater necrotic cores, indicating unstable plaques. Finally, we found that EC GC-B KO mice had diminished vascular regeneration after critical hind-limb ischemia. Remarkably, all these genotype-dependent changes were only observed in female and not in male mice. Auto/paracrine endothelial CNP/GC-B/cGMP signaling protects from arterial stiffness, systolic hypertension, and atherosclerosis and improves reparative angiogenesis. Interestingly, our data indicate a sex disparity in the connection of diminished CNP/GC-B activity to endothelial dysfunction.
Collapse
MESH Headings
- Animals
- Natriuretic Peptide, C-Type/metabolism
- Natriuretic Peptide, C-Type/genetics
- Cyclic GMP/metabolism
- Mice
- Male
- Mice, Knockout
- Signal Transduction
- Female
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/pathology
- Atherosclerosis/metabolism
- Atherosclerosis/genetics
- Atherosclerosis/pathology
- Receptors, Atrial Natriuretic Factor/metabolism
- Receptors, Atrial Natriuretic Factor/genetics
- Endothelial Cells/metabolism
- Receptors, LDL/metabolism
- Receptors, LDL/genetics
- Paracrine Communication
- Hypertension/metabolism
- Hypertension/genetics
- Mice, Inbred C57BL
- Aorta/metabolism
- Aorta/pathology
Collapse
Affiliation(s)
- Franziska Werner
- Institute of Physiology, University Würzburg, 97070 Würzburg, Germany; (F.W.); (T.N.); (L.S.); (K.V.); (L.K.)
| | - Takashi Naruke
- Institute of Physiology, University Würzburg, 97070 Würzburg, Germany; (F.W.); (T.N.); (L.S.); (K.V.); (L.K.)
| | - Lydia Sülzenbrück
- Institute of Physiology, University Würzburg, 97070 Würzburg, Germany; (F.W.); (T.N.); (L.S.); (K.V.); (L.K.)
| | - Sarah Schäfer
- Institute of Experimental Biomedicine, University Hospital Würzburg, 97080 Würzburg, Germany; (S.S.); (M.R.); (A.Z.)
| | - Melanie Rösch
- Institute of Experimental Biomedicine, University Hospital Würzburg, 97080 Würzburg, Germany; (S.S.); (M.R.); (A.Z.)
| | - Katharina Völker
- Institute of Physiology, University Würzburg, 97070 Würzburg, Germany; (F.W.); (T.N.); (L.S.); (K.V.); (L.K.)
| | - Lisa Krebes
- Institute of Physiology, University Würzburg, 97070 Würzburg, Germany; (F.W.); (T.N.); (L.S.); (K.V.); (L.K.)
| | - Marco Abeßer
- Institute of Physiology, University Würzburg, 97070 Würzburg, Germany; (F.W.); (T.N.); (L.S.); (K.V.); (L.K.)
| | - Dorothe Möllmann
- Institute of Pathology, University Hospital Essen, 45147 Essen, Germany; (D.M.); (H.A.B.)
| | - Hideo A. Baba
- Institute of Pathology, University Hospital Essen, 45147 Essen, Germany; (D.M.); (H.A.B.)
| | - Frank Schweda
- Institute of Physiology, University of Regensburg, 93053 Regensburg, Germany;
| | - Alma Zernecke
- Institute of Experimental Biomedicine, University Hospital Würzburg, 97080 Würzburg, Germany; (S.S.); (M.R.); (A.Z.)
| | - Michaela Kuhn
- Institute of Physiology, University Würzburg, 97070 Würzburg, Germany; (F.W.); (T.N.); (L.S.); (K.V.); (L.K.)
| |
Collapse
|
24
|
Al-Mualem ZA, Chen X, Shafieenezhad A, Senning EN, Baiz CR. Binding-induced lipid domains: Peptide-membrane interactions with PIP 2 and PS. Biophys J 2024; 123:2001-2011. [PMID: 38142298 PMCID: PMC11309973 DOI: 10.1016/j.bpj.2023.12.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/08/2023] [Accepted: 12/20/2023] [Indexed: 12/25/2023] Open
Abstract
Cell signaling is an important process involving complex interactions between lipids and proteins. The myristoylated alanine-rich C-kinase substrate (MARCKS) has been established as a key signaling regulator, serving a range of biological roles. Its effector domain (ED), which anchors the protein to the plasma membrane, induces domain formation in membranes containing phosphatidylinositol 4,5-bisphosphate (PIP2) and phosphatidylserine (PS). The mechanisms governing the MARCKS-ED binding to membranes remain elusive. Here, we investigate the composition-dependent affinity and MARCKS-ED-binding-induced changes in interfacial environments using two-dimensional infrared spectroscopy and fluorescence anisotropy. Both negatively charged lipids facilitate the MARCKS-ED binding to lipid vesicles. Although the hydrogen-bonding structure at the lipid-water interface remains comparable across vesicles with varied lipid compositions, the dynamics of interfacial water show divergent patterns due to specific interactions between lipids and peptides. Our findings also reveal that PIP2 becomes sequestered by bound peptides, while the distribution of PS exhibits no discernible change upon peptide binding. Interestingly, PIP2 and PS become colocalized into domains both in the presence and absence of MARCKS-ED. More broadly, this work offers molecular insights into the effects of membrane composition on binding.
Collapse
Affiliation(s)
| | - Xiaobing Chen
- Department of Chemistry, The University of Texas at Austin, Austin, Texas
| | - Azam Shafieenezhad
- Department of Neuroscience, The University of Texas at Austin, Austin, Texas
| | - Eric N Senning
- Department of Neuroscience, The University of Texas at Austin, Austin, Texas.
| | - Carlos R Baiz
- Department of Chemistry, The University of Texas at Austin, Austin, Texas.
| |
Collapse
|
25
|
Dabral S, Noh M, Werner F, Krebes L, Völker K, Maier C, Aleksic I, Novoyatleva T, Hadzic S, Schermuly RT, Perez VADJ, Kuhn M. C-type natriuretic peptide/cGMP/FoxO3 signaling attenuates hyperproliferation of pericytes from patients with pulmonary arterial hypertension. Commun Biol 2024; 7:693. [PMID: 38844781 PMCID: PMC11156916 DOI: 10.1038/s42003-024-06375-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 05/23/2024] [Indexed: 06/09/2024] Open
Abstract
Pericyte dysfunction, with excessive migration, hyperproliferation, and differentiation into smooth muscle-like cells contributes to vascular remodeling in Pulmonary Arterial Hypertension (PAH). Augmented expression and action of growth factors trigger these pathological changes. Endogenous factors opposing such alterations are barely known. Here, we examine whether and how the endothelial hormone C-type natriuretic peptide (CNP), signaling through the cyclic guanosine monophosphate (cGMP) -producing guanylyl cyclase B (GC-B) receptor, attenuates the pericyte dysfunction observed in PAH. The results demonstrate that CNP/GC-B/cGMP signaling is preserved in lung pericytes from patients with PAH and prevents their growth factor-induced proliferation, migration, and transdifferentiation. The anti-proliferative effect of CNP is mediated by cGMP-dependent protein kinase I and inhibition of the Phosphoinositide 3-kinase (PI3K)/AKT pathway, ultimately leading to the nuclear stabilization and activation of the Forkhead Box O 3 (FoxO3) transcription factor. Augmentation of the CNP/GC-B/cGMP/FoxO3 signaling pathway might be a target for novel therapeutics in the field of PAH.
Collapse
Affiliation(s)
- Swati Dabral
- Institute of Physiology, University of Würzburg, Würzburg, Germany.
| | - Minhee Noh
- Institute of Physiology, University of Würzburg, Würzburg, Germany
| | - Franziska Werner
- Institute of Physiology, University of Würzburg, Würzburg, Germany
| | - Lisa Krebes
- Institute of Physiology, University of Würzburg, Würzburg, Germany
| | - Katharina Völker
- Institute of Physiology, University of Würzburg, Würzburg, Germany
| | - Christopher Maier
- Department of Thoracic and Cardiovascular Surgery, University hospital Würzburg, Würzburg, Germany
| | - Ivan Aleksic
- Department of Thoracic and Cardiovascular Surgery, University hospital Würzburg, Würzburg, Germany
| | - Tatyana Novoyatleva
- Justus-Liebig-University Giessen (JLU), Giessen, Germany
- Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Stefan Hadzic
- Justus-Liebig-University Giessen (JLU), Giessen, Germany
- Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Ralph Theo Schermuly
- Justus-Liebig-University Giessen (JLU), Giessen, Germany
- Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Vinicio A de Jesus Perez
- Divisions of Pulmonary and Critical Care Medicine and Stanford Cardiovascular Institute, Stanford University, California, USA
| | - Michaela Kuhn
- Institute of Physiology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
26
|
Prickett TCR, Espiner EA, Pearson JF. Association of natriuretic peptides and receptor activity with cardio-metabolic health at middle age. Sci Rep 2024; 14:9919. [PMID: 38689031 PMCID: PMC11061163 DOI: 10.1038/s41598-024-60677-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/25/2024] [Indexed: 05/02/2024] Open
Abstract
Natriuretic peptides (NP) have multiple actions benefitting cardiovascular and metabolic health. Although many of these are mediated by Guanylyl Cyclase (GC) receptors NPR1 and NPR2, their role and relative importance in vivo is unclear. The intracellular mediator of NPR1 and NPR2, cGMP, circulates in plasma and can be used to examine relationships between receptor activity and tissue responses targeted by NPs. Plasma cGMP was measured in 348 participants previously recruited in a multidisciplinary community study (CHALICE) at age 50 years at a single centre. Associations between bio-active NPs and bio-inactive aminoterminal products with cGMP, and of cGMP with tissue response, were analysed using linear regression. Mediation of associations by NPs was assessed by Causal Mediation Analysis (CMA). ANP's contribution to cGMP far exceed those of other NPs. Modelling across three components (demographics, NPs and cardiovascular function) shows that ANP and CNP are independent and positive predictors of cGMP. Counter intuitively, findings from CMA imply that in specific tissues, NPR1 responds more to BNP stimulation than ANP. Collectively these findings align with longer tissue half-life of BNP, and direct further therapeutic interventions towards extending tissue activity of ANP and CNP.
Collapse
Affiliation(s)
- Timothy C R Prickett
- Departments of Medicine, University of Otago, Christchurch, PO Box 4345, Christchurch, 8140, New Zealand.
| | - Eric A Espiner
- Departments of Medicine, University of Otago, Christchurch, PO Box 4345, Christchurch, 8140, New Zealand
| | - John F Pearson
- Departments of Medicine, University of Otago, Christchurch, PO Box 4345, Christchurch, 8140, New Zealand
- Biostatistics and Computational Biology Unit, University of Otago, Christchurch, New Zealand
| |
Collapse
|
27
|
Hill TJ, Sengupta P. Feedforward and feedback mechanisms cooperatively regulate rapid experience-dependent response adaptation in a single thermosensory neuron type. Proc Natl Acad Sci U S A 2024; 121:e2321430121. [PMID: 38530893 PMCID: PMC10998601 DOI: 10.1073/pnas.2321430121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/27/2024] [Indexed: 03/28/2024] Open
Abstract
Sensory adaptation allows neurons to adjust their sensitivity and responses based on recent experience. The mechanisms that mediate continuous adaptation to stimulus history over seconds- to hours-long timescales, and whether these mechanisms can operate within a single sensory neuron type, are unclear. The single pair of AFD thermosensory neurons in Caenorhabditis elegans exhibits experience-dependent plasticity in their temperature response thresholds on both minutes- and hours-long timescales upon a temperature upshift. While long-term response adaptation requires changes in gene expression in AFD, the mechanisms driving rapid response plasticity are unknown. Here, we show that rapid thermosensory response adaptation in AFD is mediated via cGMP and calcium-dependent feedforward and feedback mechanisms operating at the level of primary thermotransduction. We find that either of two thermosensor receptor guanylyl cyclases (rGCs) alone is sufficient to drive rapid adaptation, but that each rGC drives adaptation at different rates. rGC-driven adaptation is mediated in part via phosphorylation of their intracellular domains, and calcium-dependent feedback regulation of basal cGMP levels via a neuronal calcium sensor protein. In turn, cGMP levels feedforward via cGMP-dependent protein kinases to phosphorylate a specific subunit of the cGMP-gated thermotransduction channel to further regulate rapid adaptation. Our results identify multiple molecular pathways that act in AFD to ensure rapid adaptation to a temperature change and indicate that the deployment of both transcriptional and nontranscriptional mechanisms within a single sensory neuron type can contribute to continuous sensory adaptation.
Collapse
Affiliation(s)
- Tyler J. Hill
- Department of Biology, Brandeis University, Waltham, MA02454
| | - Piali Sengupta
- Department of Biology, Brandeis University, Waltham, MA02454
| |
Collapse
|
28
|
Zhang Y, Li J, Han X, Jiang H, Wang J, Wang M, Zhang X, Zhang L, Hu J, Fu Z, Shi L. Qingchang Wenzhong Decoction ameliorates intestinal inflammation and intestinal barrier dysfunction in ulcerative colitis via the GC-C signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 322:117503. [PMID: 38043755 DOI: 10.1016/j.jep.2023.117503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ulcerative colitis (UC) is an idiopathic, chronic inflammatory disorder of the colonic mucosa, accompanied with abdominal pain, and bloody diarrhea. Currently, clinical treatment options for UC are limited. Qingchang Wenzhong Decoction (QCWZD) is an effective prescription of traditional Chinese medicine for the treatment of UC. However, the mechanism of QCWZD in alleviating intestinal barrier dysfunction in UC has not been clearly explained. AIM OF THE STUDY To determine the mechanism whereby QCWZD promotes the recovery of intestinal barrier dysfunction in UC. MATERIALS AND METHODS A secondary analysis of colonic mucosa from UC patients acquired from a prior RCT clinical trial was performed. The effects of QCWZD on intestinal mucus and mechanical barriers in UC patients were evaluated using colon tissue paraffin-embedded sections from UC patients. The mechanism was further investigated by in vivo and in vitro experiments. UC mice were established in sterile water with 3.0% dextran sodium sulfate (DSS). Meanwhile, mice in the treatment group were dosed with QCWZD or mesalazine. In vitro, an intestinal barrier model was constructed using Caco-2 and HT29 cells in co-culture. GC-C plasmid was used to overexpress/knock down GC-C to clarify the target of QCWZD. HE, AB-PAS, ELISA, immunohistochemistry and immunofluorescence assays were used to assess the level of colonic inflammation and intestinal barrier integrity. Rt-qPCR, Western Blot were used to detect the expression of genes and proteins related to GC-C signaling pathway. Molecular docking was used to simulate the binding sites of major components of QCWZD to GC-C. RESULTS In UC patients, QCWZD increased mucus secretion, goblet cell number, and promoted MUC2 and ZO-1 expression. QCWZD accelerated the recovery of UC mice from DSS-induced inflammation, including weight gain, reduced disease activity index (DAI) scores, colon length recovery, and histological healing. QCWZD promoted mucus secretion and increased ZO-1 expression in in vivo and in vitro experiments, thereby repairing mucus mechanical barrier damage. The effects of QCWZD are mediated through regulation of the GC-C signaling pathway, which in turn affects CFTR phosphorylation and MUC2 expression to promote mucus secretion, while inhibiting the over-activation of MLCK and repairing tight junctions to maintain the integrity of the mechanical barrier. Molecular docking results demonstrate the binding of the main components of QCWZD to GC-C. CONCLUSION Our study demonstrated that QCWZD modulates the GC-C signaling pathway to promote remission of mucus-mechanical barrier damage in the UC. The clarification of the mechanism of QCWZD holds promise for the development of new therapies for UC.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Gastroenterology, Dong Fang Hospital, Beijing University of Chinese Medicine, Beijing, China; Beijing University of Chinese Medicine, Beijing, China
| | - Junxiang Li
- Department of Gastroenterology, Dong Fang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xiao Han
- Department of Gastroenterology, Dong Fang Hospital, Beijing University of Chinese Medicine, Beijing, China; Beijing University of Chinese Medicine, Beijing, China
| | - Hui Jiang
- Department of Gastroenterology, Dong Fang Hospital, Beijing University of Chinese Medicine, Beijing, China; Beijing University of Chinese Medicine, Beijing, China
| | - Jiali Wang
- Department of Gastroenterology, Dong Fang Hospital, Beijing University of Chinese Medicine, Beijing, China; Beijing University of Chinese Medicine, Beijing, China
| | - MuYuan Wang
- Department of Gastroenterology, Dong Fang Hospital, Beijing University of Chinese Medicine, Beijing, China; Beijing University of Chinese Medicine, Beijing, China
| | - Xiaosi Zhang
- Department of Gastroenterology, Dong Fang Hospital, Beijing University of Chinese Medicine, Beijing, China; Beijing University of Chinese Medicine, Beijing, China
| | - Liming Zhang
- Department of Gastroenterology, Dong Fang Hospital, Beijing University of Chinese Medicine, Beijing, China; Beijing University of Chinese Medicine, Beijing, China
| | - Juncong Hu
- Department of Gastroenterology, Dong Fang Hospital, Beijing University of Chinese Medicine, Beijing, China; Beijing University of Chinese Medicine, Beijing, China
| | - ZhiHao Fu
- Department of Gastroenterology, Dong Fang Hospital, Beijing University of Chinese Medicine, Beijing, China; Beijing University of Chinese Medicine, Beijing, China
| | - Lei Shi
- Department of Gastroenterology, Dong Fang Hospital, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
29
|
Yang Q, Yang Q, Wu X, Zheng R, Lin H, Wang S, Joseph J, Sun YV, Li M, Wang T, Zhao Z, Xu M, Lu J, Chen Y, Ning G, Wang W, Bi Y, Zheng J, Xu Y. Sex-stratified genome-wide association and transcriptome-wide Mendelian randomization studies reveal drug targets of heart failure. Cell Rep Med 2024; 5:101382. [PMID: 38237596 PMCID: PMC10897518 DOI: 10.1016/j.xcrm.2023.101382] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/31/2023] [Accepted: 12/19/2023] [Indexed: 02/23/2024]
Abstract
The prevalence of heart failure (HF) subtypes, which are classified by left ventricular ejection fraction (LVEF), demonstrate significant sex differences. Here, we perform sex-stratified genome-wide association studies (GWASs) on LVEF and transcriptome-wide Mendelian randomization (MR) on LVEF, all-cause HF, HF with reduced ejection fraction (HFrEF), and HF with preserved ejection fraction (HFpEF). The sex-stratified GWASs of LVEF identified three sex-specific loci that were exclusively detected in the sex-stratified GWASs. Three drug target genes show sex-differential effects on HF/HFrEF via influencing LVEF, with NPR2 as the target gene for the HF drug Cenderitide under phase 2 clinical trial. Our study highlights the importance of considering sex-differential genetic effects in sex-balanced diseases such as HF and emphasizes the value of sex-stratified GWASs and MR in identifying putative genetic variants, causal genes, and candidate drug targets for HF, which is not identifiable using a sex-combined strategy.
Collapse
Affiliation(s)
- Qianqian Yang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qian Yang
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK
| | - Xueyan Wu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ruizhi Zheng
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hong Lin
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Shuangyuan Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jacob Joseph
- Cardiology Section, VA Providence Healthcare System, 830 Chalkstone Avenue, Providence, RI 02908, USA; Department of Medicine, Warren Alpert Medical School of Brown University, 222 Richmond Street, Providence, RI 02903, USA
| | - Yan V Sun
- Emory University Rollins School of Public Health, Atlanta, GA, USA; Atlanta VA Health Care System, Decatur, GA, USA
| | - Mian Li
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Tiange Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhiyun Zhao
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Min Xu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jieli Lu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yuhong Chen
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Guang Ning
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Weiqing Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Yufang Bi
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Jie Zheng
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Yu Xu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| |
Collapse
|
30
|
Ensho T, Hino J, Ueda Y, Miyazato M, Iwakura H. Vascular endothelial cell-specific overexpression of CNP did not improve liver fibrosis in HFFCD-induced NASH, but did improve renal lesions. Peptides 2024; 172:171146. [PMID: 38157939 DOI: 10.1016/j.peptides.2023.171146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/15/2023] [Accepted: 12/23/2023] [Indexed: 01/03/2024]
Abstract
Mice with endothelial-cell-specific overexpression of C-type natriuretic peptide (E-CNP Tg mice) were shown to be protected against hepatic fibrosis and inflammation induced by high fat diet (HFD) feeding, with improved insulin sensitivity and attenuated weight gain. A recently developed high-fat, high-fructose, high-cholesterol diet (HFFCD) is considered to be a superior model to HFD, owing to the resemblance to human non-alcoholic steatohepatitis (NASH). In this study, we therefore aimed to reveal whether these previous findings with E-CNP Tg mice on HFD can be observed in a newly developed NASH model. Patients with NASH have been suggested to be at higher risk of developing chronic kidney disease, so we also assessed the kidney histology of these mice. After 8 months of HFFCD feeding, the livers of E-CNP Tg mice and controls showed progressive fibrosis, which resembled the features of human NASH. However, no significant differences were observed in NAFLD activity scores between E-CNP Tg mice and controls, although there was a tendency for improvement in E-CNP Tg mice. The reduced levels of GCB, a receptor for CNP, may have weakened the action of CNP in the current model. In the kidneys, HFFCD showed glomerular hypertrophy and tubular atrophy in the cortical region, which were suppressed in E-CNP Tg mice. The present study did not prove the therapeutic effect of CNP on NASH in the HFFCD model, but provided evidence of its potential beneficial effects on NASH-associated renal damage.
Collapse
Affiliation(s)
- Takuya Ensho
- Department of Pharmacotherapeutics, School of Pharmaceutical Science, Wakayama Medical University, Wakayama, Japan
| | - Jun Hino
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Yoko Ueda
- Department of Pharmacotherapeutics, School of Pharmaceutical Science, Wakayama Medical University, Wakayama, Japan
| | - Mikiya Miyazato
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Hiroshi Iwakura
- Department of Pharmacotherapeutics, School of Pharmaceutical Science, Wakayama Medical University, Wakayama, Japan.
| |
Collapse
|
31
|
Egbert JR, Silbern I, Uliasz TF, Lowther KM, Yee SP, Urlaub H, Jaffe LA. Phosphatases modified by LH signaling in ovarian follicles: testing their role in regulating the NPR2 guanylyl cyclase†. Biol Reprod 2024; 110:102-115. [PMID: 37774352 PMCID: PMC10790345 DOI: 10.1093/biolre/ioad130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2023] Open
Abstract
In response to luteinizing hormone (LH), multiple proteins in rat and mouse granulosa cells are rapidly dephosphorylated, but the responsible phosphatases remain to be identified. Because the phosphorylation state of phosphatases can regulate their interaction with substrates, we searched for phosphatases that might function in LH signaling by using quantitative mass spectrometry. We identified all proteins in rat ovarian follicles whose phosphorylation state changed detectably in response to a 30-min exposure to LH, and within this list, identified protein phosphatases or phosphatase regulatory subunits that showed changes in phosphorylation. Phosphatases in the phosphoprotein phosphatase (PPP) family were of particular interest because of their requirement for dephosphorylating the natriuretic peptide receptor 2 (NPR2) guanylyl cyclase in the granulosa cells, which triggers oocyte meiotic resumption. Among the PPP family regulatory subunits, PPP1R12A and PPP2R5D showed the largest increases in phosphorylation, with 4-10 fold increases in signal intensity on several sites. Although follicles from mice in which these phosphorylations were prevented by serine-to-alanine mutations in either Ppp1r12a or Ppp2r5d showed normal LH-induced NPR2 dephosphorylation, these regulatory subunits and others could act redundantly to dephosphorylate NPR2. Our identification of phosphatases and other proteins whose phosphorylation state is rapidly modified by LH provides clues about multiple signaling pathways in ovarian follicles.
Collapse
Affiliation(s)
- Jeremy R Egbert
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT, USA
| | - Ivan Silbern
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, Goettingen, Germany
- Institute of Clinical Chemistry, University Medical Center Goettingen, Goettingen, Germany
| | - Tracy F Uliasz
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT, USA
| | - Katie M Lowther
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT, USA
- Center for Mouse Genome Modification, University of Connecticut Health Center, Farmington CT, USA
| | - Siu-Pok Yee
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT, USA
- Center for Mouse Genome Modification, University of Connecticut Health Center, Farmington CT, USA
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, Goettingen, Germany
- Institute of Clinical Chemistry, University Medical Center Goettingen, Goettingen, Germany
- Cluster of Excellence “Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells” (MBExC), University of Göttingen, Göttingen, Germany
| | - Laurinda A Jaffe
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT, USA
| |
Collapse
|
32
|
Huang S, Cai J, Ma L, Zhang Q, Sun Y, Zhang Q, Qin L. Effects of grafting on chemical constituents, toxicological properties, antithrombotic activity, and myocardial infarction protection of styrax secreted from the trunk of Liquidambar orientalis Mill. PLoS One 2024; 19:e0289894. [PMID: 38181063 PMCID: PMC10769069 DOI: 10.1371/journal.pone.0289894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/27/2023] [Indexed: 01/07/2024] Open
Abstract
Styrax, the balsam refined from the trunk of Liquidambar orientalis Mill. has a variety of applications in the perfumery and medical industry, especially for use in traditional Chinese medicine. However, the resources of styrax are in shortage due to being endangered of this plant. Grafting can improve the adaptability of plants to unfavorable environmental conditions. We tried to graft the L. orientalis Mill. on L. formosana Hance which was widely distributed in Jiangsu and Zhejiang provinces of China in an attempt to obtain styrax from grafted L. orientalis Mill. (grafted styrax, SG). Whether SG can become an alternative application of commercially available styrax (SC) need be further investigated. The components of SG were analyzed by GC-MS, and the results showed that the chromatograms of SG, SC, and styrax standard (SS) were consistent. The ration of 12 major chemical components based peak area in SG, SC, and SS were 93.95%, 94.24%, and 95.86% respectively. The assessment of toxicity, antithrombotic activity, and myocardial infarction protection of SG and SC was evaluated by using the zebrafish model, the results showed that SG and SC have the similar toxicological properties as evidenced by acute toxicity test, developmental toxicity and teratogenicity, and long-term toxicity test. Both SG and SC significantly decreased the thrombosis and increased blood flow velocity of zebrafish induced by adrenaline hydrochloride, inhibited myocardial apoptosis, myocardial infarction and myocardial inflammation in zebrafish induced by isoproterenol hydrochloride. Moreover, SG had an obvious improvement effect on cardiac output, while SC has no effect. Collectively, SG is similar to SC in chemical composition, toxicological properties, antithrombotic activity, and myocardial infarction protection effects, and may be used as a substitute for styrax to reduce the collection for wild L. orientalis Mill. and increase the available styrax resources.
Collapse
Affiliation(s)
- Shen Huang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiayi Cai
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Li Ma
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Quanlong Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yiqi Sun
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qiaoyan Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Luping Qin
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
33
|
Ohara H, Takeuchi F, Kato N, Nabika T. Genotypes of Stim1 and the proximal region on chromosome 1 exert opposite effects on stroke susceptibility in stroke-prone spontaneously hypertensive rat. J Hypertens 2024; 42:118-128. [PMID: 37711097 DOI: 10.1097/hjh.0000000000003566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
BACKGROUND The stroke-prone spontaneously hypertensive rat (SHRSP) is a genetic model for cerebral stroke. Although a recent study on a congenic SHRSP suggested that a nonsense mutation in stromal interaction molecule 1 ( Stim1 ) encoding a major component of store-operated Ca 2+ entry was a causal variant for stroke in SHRSP, this was not conclusive because the congenic region including Stim1 in that rat was too wide. On the other hand, we demonstrated that the Wistar-Kyoto (WKY)-derived congenic fragment adjacent to Stim1 exacerbated stroke susceptibility in a congenic SHRSP called SPwch1.71. In the present study, we directly examined the effects of the Stim1 genotype on stroke susceptibility using SHRSP in which wild-type Stim1 was knocked in (called Stim1 -KI SHRSP). The combined effects of Stim1 and the congenic fragment of SPwch1.71 were also investigated. METHODS Stroke susceptibility was assessed by the stroke symptom-free and survival periods based on observations of behavioral symptoms and reductions in body weight. RESULTS Stim1 -KI SHRSP was more resistant to, while SPwch1.71 was more susceptible to stroke than the original SHRSP. Introgression of the wild-type Stim1 of Stim1 -KI SHRSP into SPwch1.71 by the generation of F1 rats ameliorated stroke susceptibility in SPwch1.71. Gene expression, whole-genome sequencing, and biochemical analyses identified Art2b , Folr1 , and Pde2a as possible candidate genes accelerating stroke in SPwch1.71. CONCLUSION The substitution of SHRSP-type Stim1 to wild-type Stim1 ameliorated stroke susceptibility in both SHRSP and SPwch1.71, indicating that the nonsense mutation in Stim1 is causally related to stroke susceptibility in SHRSP.
Collapse
Affiliation(s)
- Hiroki Ohara
- Department of Functional Pathology, Faculty of Medicine, Shimane University, Izumo
| | - Fumihiko Takeuchi
- Department of Gene Diagnostics and Therapeutics
- Medical Genomics Center, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Norihiro Kato
- Department of Gene Diagnostics and Therapeutics
- Medical Genomics Center, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Toru Nabika
- Department of Functional Pathology, Faculty of Medicine, Shimane University, Izumo
| |
Collapse
|
34
|
Ma X, McKie PM, Iyer SR, Scott C, Bailey K, Johnson BK, Benike SL, Chen H, Miller WL, Cabassi A, Burnett JC, Cannone V. MANP in Hypertension With Metabolic Syndrome: Proof-of-Concept Study of Natriuretic Peptide-Based Therapy for Cardiometabolic Disease. JACC Basic Transl Sci 2024; 9:18-29. [PMID: 38362338 PMCID: PMC10864980 DOI: 10.1016/j.jacbts.2023.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/24/2023] [Accepted: 08/29/2023] [Indexed: 02/17/2024]
Abstract
Hypertension and metabolic syndrome frequently coexist to increase the risk for adverse cardiometabolic outcomes. To date, no drug has been proven to be effective in treating hypertension with metabolic syndrome. M-atrial natriuretic peptide is a novel atrial natriuretic peptide analog that activates the particulate guanylyl cyclase A receptor. This study conducted a double-blind, placebo-controlled trial in 22 patients and demonstrated that a single subcutaneous injection of M-atrial natriuretic peptide was safe, well-tolerated, and exerted pleiotropic properties including blood pressure-lowering, lipolytic, and insulin resistance-improving effects. (MANP in Hypertension and Metabolic Syndrome [MANP-HTN-MS]; NCT03781739).
Collapse
Affiliation(s)
- Xiao Ma
- Cardiorenal Research Laboratory, Mayo Clinic, Rochester, Minnesota, USA
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Paul M. McKie
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Seethalakshmi R. Iyer
- Cardiorenal Research Laboratory, Mayo Clinic, Rochester, Minnesota, USA
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Christopher Scott
- Department of Health Science Research, Mayo Clinic, Rochester, Minnesota, USA
| | - Kent Bailey
- Department of Health Science Research, Mayo Clinic, Rochester, Minnesota, USA
| | - Bradley K. Johnson
- Department of Health Science Research, Mayo Clinic, Rochester, Minnesota, USA
| | - Sherry L. Benike
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Horng Chen
- Cardiorenal Research Laboratory, Mayo Clinic, Rochester, Minnesota, USA
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Wayne L. Miller
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Aderville Cabassi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - John C. Burnett
- Cardiorenal Research Laboratory, Mayo Clinic, Rochester, Minnesota, USA
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Valentina Cannone
- Cardiorenal Research Laboratory, Mayo Clinic, Rochester, Minnesota, USA
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| |
Collapse
|
35
|
Yin Q, Zheng X, Song Y, Wu L, Li L, Tong R, Han L, Bian Y. Decoding signaling mechanisms: unraveling the targets of guanylate cyclase agonists in cardiovascular and digestive diseases. Front Pharmacol 2023; 14:1272073. [PMID: 38186653 PMCID: PMC10771398 DOI: 10.3389/fphar.2023.1272073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 12/08/2023] [Indexed: 01/09/2024] Open
Abstract
Soluble guanylate cyclase agonists and guanylate cyclase C agonists are two popular drugs for diseases of the cardiovascular system and digestive systems. The common denominator in these conditions is the potential therapeutic target of guanylate cyclase. Thanks to in-depth explorations of their underlying signaling mechanisms, the targets of these drugs are becoming clearer. This review explains the recent research progress regarding potential drugs in this class by introducing representative drugs and current findings on them.
Collapse
Affiliation(s)
- Qinan Yin
- Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xingyue Zheng
- Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yujie Song
- Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Liuyun Wu
- Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Lian Li
- Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Rongsheng Tong
- Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Lizhu Han
- Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yuan Bian
- Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
36
|
Hill TJ, Sengupta P. Feedforward and feedback mechanisms cooperatively regulate rapid experience-dependent response adaptation in a single thermosensory neuron type. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.05.570166. [PMID: 38168209 PMCID: PMC10760192 DOI: 10.1101/2023.12.05.570166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Sensory adaptation allows neurons to adjust their sensitivity and responses based on recent experience. The mechanisms that mediate continuous adaptation to stimulus history over seconds to hours long timescales, and whether these mechanisms can operate within a single sensory neuron type, are unclear. The single pair of AFD thermosensory neurons in C. elegans exhibits experience-dependent plasticity in their temperature response thresholds on both minutes- and hours-long timescales upon a temperature upshift. While long-term response adaptation requires changes in gene expression in AFD, the mechanisms driving rapid response plasticity are unknown. Here, we show that rapid thermosensory response adaptation in AFD is mediated via cGMP and calcium-dependent feedforward and feedback mechanisms operating at the level of primary thermotransduction. We find that either of two thermosensor receptor guanylyl cyclases (rGCs) alone is sufficient to drive rapid adaptation, but that each rGC drives adaptation at different rates. rGC-driven adaptation is mediated in part via phosphorylation of their intracellular domains, and calcium-dependent feedback regulation of basal cGMP levels via a neuronal calcium sensor protein. In turn, cGMP levels feedforward via cGMP-dependent protein kinases to phosphorylate a specific subunit of the cGMP-gated thermotransduction channel to further regulate rapid adaptation. Our results identify multiple molecular pathways that act in AFD to ensure rapid adaptation to a temperature change, and indicate that the deployment of both transcriptional and non-transcriptional mechanisms within a single sensory neuron type can contribute to continuous sensory adaptation.
Collapse
Affiliation(s)
- Tyler J. Hill
- Department of Biology, Brandeis University, Waltham, MA 02454
| | - Piali Sengupta
- Department of Biology, Brandeis University, Waltham, MA 02454
| |
Collapse
|
37
|
Bork NI, Subramanian H, Kurelic R, Nikolaev VO, Rybalkin SD. Role of Phosphodiesterase 1 in the Regulation of Real-Time cGMP Levels and Contractility in Adult Mouse Cardiomyocytes. Cells 2023; 12:2759. [PMID: 38067187 PMCID: PMC10706287 DOI: 10.3390/cells12232759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/19/2023] [Accepted: 12/01/2023] [Indexed: 12/18/2023] Open
Abstract
In mouse cardiomyocytes, the expression of two subfamilies of the calcium/calmodulin-regulated cyclic nucleotide phosphodiesterase 1 (PDE1)-PDE1A and PDE1C-has been reported. PDE1C was found to be the major subfamily in the human heart. It is a dual substrate PDE and can hydrolyze both 3',5'-cyclic adenosine monophosphate (cAMP) and 3',5'-cyclic guanosine monophosphate (cGMP). Previously, it has been reported that the PDE1 inhibitor ITI-214 shows positive inotropic effects in heart failure patients which were largely attributed to the cAMP-dependent protein kinase (PKA) signaling. However, the role of PDE1 in the regulation of cardiac cGMP has not been directly addressed. Here, we studied the effect of PDE1 inhibition on cGMP levels in adult mouse ventricular cardiomyocytes using a highly sensitive fluorescent biosensor based on Förster resonance energy transfer (FRET). Live-cell imaging in paced and resting cardiomyocytes showed an increase in cGMP after PDE1 inhibition with ITI-214. Furthermore, PDE1 inhibition and PDE1A knockdown amplified the cGMP-FRET responses to the nitric oxide (NO)-donor sodium nitroprusside (SNP) but not to the C-type natriuretic peptide (CNP), indicating a specific role of PDE1 in the regulation of the NO-sensitive guanylyl cyclase (NO-GC)-regulated cGMP microdomain. ITI-214, in combination with CNP or SNP, showed a positive lusitropic effect, improving the relaxation of isolated myocytes. Immunoblot analysis revealed increased phospholamban (PLN) phosphorylation at Ser-16 in cells treated with a combination of SNP and PDE1 inhibitor but not with SNP alone. Our findings reveal a previously unreported role of PDE1 in the regulation of the NO-GC/cGMP microdomain and mouse ventricular myocyte contractility. Since PDE1 serves as a cGMP degrading PDE in cardiomyocytes and has the highest hydrolytic activities, it can be expected that PDE1 inhibition might be beneficial in combination with cGMP-elevating drugs for the treatment of cardiac diseases.
Collapse
Affiliation(s)
- Nadja I. Bork
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (N.I.B.); (H.S.); (R.K.)
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Hariharan Subramanian
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (N.I.B.); (H.S.); (R.K.)
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Roberta Kurelic
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (N.I.B.); (H.S.); (R.K.)
| | - Viacheslav O. Nikolaev
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (N.I.B.); (H.S.); (R.K.)
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Sergei D. Rybalkin
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (N.I.B.); (H.S.); (R.K.)
| |
Collapse
|
38
|
Bany Bakar R, Reimann F, Gribble FM. The intestine as an endocrine organ and the role of gut hormones in metabolic regulation. Nat Rev Gastroenterol Hepatol 2023; 20:784-796. [PMID: 37626258 DOI: 10.1038/s41575-023-00830-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/25/2023] [Indexed: 08/27/2023]
Abstract
Gut hormones orchestrate pivotal physiological processes in multiple metabolically active tissues, including the pancreas, liver, adipose tissue, gut and central nervous system, making them attractive therapeutic targets in the treatment of obesity and type 2 diabetes mellitus. Most gut hormones are derived from enteroendocrine cells, but bioactive peptides that are derived from other intestinal epithelial cell types have also been implicated in metabolic regulation and can be considered gut hormones. A deeper understanding of the complex inter-organ crosstalk mediated by the intestinal endocrine system is a prerequisite for designing more effective drugs that are based on or target gut hormones and their receptors, and extending their therapeutic potential beyond obesity and diabetes mellitus. In this Review, we present an overview of gut hormones that are involved in the regulation of metabolism and discuss their action in the gastrointestinal system and beyond.
Collapse
Affiliation(s)
- Rula Bany Bakar
- Wellcome Trust-MRC Institute of Metabolic Science Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | - Frank Reimann
- Wellcome Trust-MRC Institute of Metabolic Science Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | - Fiona M Gribble
- Wellcome Trust-MRC Institute of Metabolic Science Metabolic Research Laboratories, University of Cambridge, Cambridge, UK.
| |
Collapse
|
39
|
Juraver-Geslin H, Devotta A, Saint-Jeannet JP. Developmental roles of natriuretic peptides and their receptors. Cells Dev 2023; 176:203878. [PMID: 37742795 PMCID: PMC10841480 DOI: 10.1016/j.cdev.2023.203878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 09/26/2023]
Abstract
Natriuretic peptides and their receptors are implicated in the physiological control of blood pressure, bone growth, and cardiovascular and renal homeostasis. They mediate their action through the modulation of intracellular levels of cGMP and cAMP, two second-messengers that have broad biological roles. In this review, we briefly describe the major players of this signaling pathway and their physiological roles in the adult, and discuss several reports describing their activity in the control of various aspects of embryonic development in several species. While the core components of this signaling pathway are well conserved, their functions have diverged in the embryo and the adult to control a diverse array of biological processes.
Collapse
Affiliation(s)
- Hugo Juraver-Geslin
- Department of Molecular Pathobiology, New York University, College of Dentistry, New York, NY 10010, USA
| | - Arun Devotta
- Department of Molecular Pathobiology, New York University, College of Dentistry, New York, NY 10010, USA
| | - Jean-Pierre Saint-Jeannet
- Department of Molecular Pathobiology, New York University, College of Dentistry, New York, NY 10010, USA.
| |
Collapse
|
40
|
Londregan A, Alexander TD, Covarrubias M, Waldman SA. Fundamental Neurochemistry Review: The role of enteroendocrine cells in visceral pain. J Neurochem 2023; 167:719-732. [PMID: 38037432 PMCID: PMC10917140 DOI: 10.1111/jnc.16022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/03/2023] [Accepted: 11/15/2023] [Indexed: 12/02/2023]
Abstract
While visceral pain is commonly associated with disorders of the gut-brain axis, underlying mechanisms are not fully understood. Dorsal root ganglion (DRG) neurons innervate visceral structures and undergo hypersensitization in inflammatory models. The characterization of peripheral DRG neuron terminals is an active area of research, but recent work suggests that they communicate with enteroendocrine cells (EECs) in the gut. EECs sense stimuli in the intestinal lumen and communicate information to the brain through hormonal and electrical signaling. In that context, EECs are a target for developing therapeutics to treat visceral pain. Linaclotide is an FDA-approved treatment for chronic constipation that activates the intestinal membrane receptor guanylyl cyclase C (GUCY2C). Clinical trials revealed that linaclotide relieves both constipation and visceral pain. We recently demonstrated that the analgesic effect of linaclotide reflects the overexpression of GUCY2C on neuropod cells, a specialized subtype of EECs. While this brings some clarity to the relationship between linaclotide and visceral analgesia, questions remain about the intracellular signaling mechanisms and neurotransmitters mediating this communication. In this Fundamental Neurochemistry Review, we discuss what is currently known about visceral nociceptors, enteroendocrine cells, and the gut-brain axis, and ongoing areas of research regarding that axis and visceral pain.
Collapse
Affiliation(s)
- Annie Londregan
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Tyler D. Alexander
- Department of Neuroscience, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
- Vicki & Jack Farber Institute of Neuroscience at Jefferson Health, Philadelphia, Pennsylvania 19107
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Manuel Covarrubias
- Department of Neuroscience, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
- Vicki & Jack Farber Institute of Neuroscience at Jefferson Health, Philadelphia, Pennsylvania 19107
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Scott A. Waldman
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| |
Collapse
|
41
|
Ichiki T, Cannone V, Scott CG, Iyer SR, Sangaralingham SJ, Bailey KR, Goetze JP, Tsuji Y, Rodeheffer RJ, Burnett JC. Sex-based differences in metabolic protection by the ANP genetic variant rs5068 in the general population. Am J Physiol Heart Circ Physiol 2023; 325:H545-H552. [PMID: 37417873 PMCID: PMC10538992 DOI: 10.1152/ajpheart.00321.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/26/2023] [Accepted: 06/30/2023] [Indexed: 07/08/2023]
Abstract
Atrial natriuretic peptide (ANP) and B-type natriuretic peptide (BNP) are produced in the heart and secreted into the circulation. As hormones, both peptides activate the guanylyl cyclase receptor A (GC-A), playing a role in blood pressure (BP) regulation. A significant role for ANP and BNP includes favorable actions in metabolic homeostasis. Sex-based high prevalence of risk factors for cardiovascular disease in males compared with females is well established, but sex-based differences on cardiometabolic protection have not been investigated in relation to ANP (NPPA) and BNP (NPPB) gene variants. We included 1,146 subjects in the general population from Olmsted County, Minnesota. Subjects were genotyped for the ANP gene variant rs5068 and BNP gene variant rs198389. Cardiometabolic parameters and medical records were reviewed. In the presence of the minor allele of rs5068, diastolic BP, creatinine, body mass index (BMI), waist measurement, insulin, and prevalence of obesity and metabolic syndrome were lower, whereas HDL was higher in males with only trends observed in females. We observed no associations of the minor allele with echocardiographic parameters in either males or females. Regarding rs198389 genotype, the minor allele was not associated with any BP, metabolic, renal, or echocardiographic parameters in either sex. In the general community, the minor allele of the ANP gene variant rs5068 is associated with a favorable metabolic phenotype in males. No associations were observed with the BNP gene variant rs198389. These studies support a protective role of the ANP pathway on metabolic function and underscore the importance of sex in relationship to natriuretic peptide responses.NEW & NOTEWORTHY Males are characterized by lower ANP and BNP with greater prevalence of cardiometabolic disease. The ANP genetic variant rs5068 was associated with less metabolic dysfunction in males, whereas no metabolic profile was related to the BNP genetic variant rs198389 in the general population. ANP may play a more biological role in metabolic homeostasis compared with BNP in the general population with greater physiological metabolic actions in males compared with females.
Collapse
Affiliation(s)
- Tomoko Ichiki
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, United States
- Department of Community and General Medicine, School of Medicine, Sapporo Medical University, Sapporo, Japan
| | - Valentina Cannone
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, United States
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Christopher G Scott
- Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota, United States
| | - Seethalakshmi R Iyer
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - S Jeson Sangaralingham
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Kent R Bailey
- Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota, United States
| | - Jens P Goetze
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Yoshihisa Tsuji
- Department of Community and General Medicine, School of Medicine, Sapporo Medical University, Sapporo, Japan
| | - Richard J Rodeheffer
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - John C Burnett
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, United States
| |
Collapse
|
42
|
Gambaryan S, Mohagaonkar S, Nikolaev VO. Regulation of the renin-angiotensin-aldosterone system by cyclic nucleotides and phosphodiesterases. Front Endocrinol (Lausanne) 2023; 14:1239492. [PMID: 37674612 PMCID: PMC10478253 DOI: 10.3389/fendo.2023.1239492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/02/2023] [Indexed: 09/08/2023] Open
Abstract
The renin-angiotensin-aldosterone system (RAAS) is one of the key players in the regulation of blood volume and blood pressure. Dysfunction of this system is connected with cardiovascular and renal diseases. Regulation of RAAS is under the control of multiple intracellular mechanisms. Cyclic nucleotides and phosphodiesterases are the major regulators of this system since they control expression and activity of renin and aldosterone. In this review, we summarize known mechanisms by which cyclic nucleotides and phosphodiesterases regulate renin gene expression, secretion of renin granules from juxtaglomerular cells and aldosterone production from zona glomerulosa cells of adrenal gland. We also discuss several open questions which deserve future attention.
Collapse
Affiliation(s)
- Stepan Gambaryan
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Saint Petersburg, Russia
| | - Sanika Mohagaonkar
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Viacheslav O. Nikolaev
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| |
Collapse
|
43
|
Lessey AJ, Mirczuk SM, Chand AN, Kurrasch DM, Korbonits M, Niessen SJM, McArdle CA, McGonnell IM, Fowkes RC. Pharmacological and Genetic Disruption of C-Type Natriuretic Peptide ( nppcl) Expression in Zebrafish ( Danio rerio) Causes Stunted Growth during Development. Int J Mol Sci 2023; 24:12921. [PMID: 37629102 PMCID: PMC10454581 DOI: 10.3390/ijms241612921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/12/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Human patients with mutations within NPPC or NPR2 genes (encoding C-type natriuretic peptide (CNP) and guanylyl cyclase-B (GC-B), respectively) display clinical signs associated with skeletal abnormalities, such as overgrowth or short stature. Mice with induced models of Nppc or Npr2 deletion display profound achondroplasia, dwarfism and early death. Recent pharmacological therapies to treat short stature are utilizing long-acting CNP analogues, but the effects of manipulating CNP expression during development remain unknown. Here, we use Danio rerio (zebrafish) as a model for vertebrate development, employing both pharmacological and reverse genetics approaches to alter expression of genes encoding CNP in zebrafish. Four orthologues of CNP were identified in zebrafish, and spatiotemporal expression profiling confirmed their presence during development. Bioinformatic analyses suggested that nppcl is the most likely the orthologue of mammalian CNP. Exogenous CNP treatment of developing zebrafish embryos resulted in impaired growth characteristics, such as body length, head width and eye diameter. This reduced growth was potentially caused by increased apoptosis following CNP treatment. Expression of endogenous nppcl was downregulated in these CNP-treated embryos, suggesting that negative feedback of the CNP system might influence growth during development. CRISPR knock-down of endogenous nppcl in developing zebrafish embryos also resulted in impaired growth characteristics. Collectively, these data suggest that CNP in zebrafish is crucial for normal embryonic development, specifically with regard to growth.
Collapse
Affiliation(s)
- Andrew J. Lessey
- Endocrine Signalling Group, Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK; (A.J.L.); (S.M.M.); (A.N.C.)
- Comparative Biomedical Sciences, Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK
| | - Samantha M. Mirczuk
- Endocrine Signalling Group, Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK; (A.J.L.); (S.M.M.); (A.N.C.)
- Comparative Biomedical Sciences, Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK
| | - Annisa N. Chand
- Endocrine Signalling Group, Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK; (A.J.L.); (S.M.M.); (A.N.C.)
- Comparative Biomedical Sciences, Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK
| | - Deborah M. Kurrasch
- Department of Medical Genetics, University of Calgary, Calgary, AB T2N 4N2, Canada;
| | - Márta Korbonits
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK;
| | - Stijn J. M. Niessen
- Clinical Sciences & Services, Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Hertfordshire AL9 7TA, UK;
- Veterinary Specialist Consultations, Loosdrechtseweg 56, 1215 JX Hilversum, The Netherlands
| | - Craig A. McArdle
- Department of Translational Science, Bristol Medical School, University of Bristol, Whitson Street, Bristol BS1 3NY, UK;
| | - Imelda M. McGonnell
- Comparative Biomedical Sciences, Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK
| | - Robert C. Fowkes
- Endocrine Signalling Group, Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK; (A.J.L.); (S.M.M.); (A.N.C.)
- Comparative Biomedical Sciences, Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK
- Endocrine Signaling Group, Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, Wilson Road, East Lansing, MI 48824, USA
| |
Collapse
|
44
|
Brønstad I, von Volkmann HL, Sakkestad ST, Steinsland H, Hanevik K. Reduced Plasma Guanylin Levels Following Enterotoxigenic Escherichia coli-Induced Diarrhea. Microorganisms 2023; 11:1997. [PMID: 37630557 PMCID: PMC10458898 DOI: 10.3390/microorganisms11081997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/20/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023] Open
Abstract
The intestinal peptide hormones guanylin (GN) and uroguanylin (UGN) interact with the epithelial cell receptor guanylate cyclase C to regulate fluid homeostasis. Some enterotoxigenic Escherichia coli (ETEC) produce heat-stable enterotoxin (ST), which induces diarrhea by mimicking GN and UGN. Plasma concentrations of prohormones of GN (proGN) and UGN (proUGN) are reportedly decreased during chronic diarrheal diseases. Here we investigate whether prohormone concentrations also drop during acute diarrhea caused by ST-producing ETEC strains TW10722 and TW11681. Twenty-one volunteers were experimentally infected with ETEC. Blood (n = 21) and urine (n = 9) specimens were obtained immediately before and 1, 2, 3, and 7 days after ETEC ingestion. Concentrations of proGN and proUGN were measured by ELISA. Urine electrolyte concentrations were measured by photometry and mass spectrometry. Ten volunteers developed diarrhea (D group), and eleven did not (ND group). In the D group, plasma proGN, but not proUGN, concentrations were substantially reduced on days 2 and 3, coinciding with one day after diarrhea onset. No changes were seen in the ND group. ETEC diarrhea also seemed to affect diuresis, the zinc/creatinine ratio, and sodium and chloride secretion levels in urine. ETEC-induced diarrhea causes a reduction in plasma proGN and could potentially be a useful marker for intestinal isotonic fluid loss.
Collapse
Affiliation(s)
- Ingeborg Brønstad
- National Centre for Ultrasound in Gastroenterology, Haukeland University Hospital, 5021 Bergen, Norway; (I.B.); (H.L.v.V.)
- Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
| | - Hilde Løland von Volkmann
- National Centre for Ultrasound in Gastroenterology, Haukeland University Hospital, 5021 Bergen, Norway; (I.B.); (H.L.v.V.)
- Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
| | - Sunniva Todnem Sakkestad
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway;
- National Center for Tropical Infectious Diseases, Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
| | - Hans Steinsland
- Centre for Intervention Science in Maternal and Child Health (CISMAC), Centre of International Health, Department of Global Public Health and Primary Care, University of Bergen, 5020 Bergen, Norway;
- Department of Biomedicine, University of Bergen, 5020 Bergen, Norway
| | - Kurt Hanevik
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway;
- National Center for Tropical Infectious Diseases, Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
| |
Collapse
|
45
|
Friebe A, Kraehling JR, Russwurm M, Sandner P, Schmidtko A. The 10th International Conference on cGMP 2022: recent trends in cGMP research and development-meeting report. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:1669-1686. [PMID: 37079081 PMCID: PMC10338386 DOI: 10.1007/s00210-023-02484-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/31/2023] [Indexed: 04/21/2023]
Abstract
Increasing cGMP is a unique therapeutic principle, and drugs inhibiting cGMP-degrading enzymes or stimulating cGMP production are approved for the treatment of various diseases such as erectile dysfunction, coronary artery disease, pulmonary hypertension, chronic heart failure, irritable bowel syndrome, or achondroplasia. In addition, cGMP-increasing therapies are preclinically profiled or in clinical development for quite a broad set of additional indications, e.g., neurodegenerative diseases or different forms of dementias, bone formation disorders, underlining the pivotal role of cGMP signaling pathways. The fundamental understanding of the signaling mediated by nitric oxide-sensitive (soluble) guanylyl cyclase and membrane-associated receptor (particulate) guanylyl cyclase at the molecular and cellular levels, as well as in vivo, especially in disease models, is a key prerequisite to fully exploit treatment opportunities and potential risks that could be associated with an excessive increase in cGMP. Furthermore, human genetic data and the clinical effects of cGMP-increasing drugs allow back-translation into basic research to further learn about signaling and treatment opportunities. The biannual international cGMP conference, launched nearly 20 years ago, brings all these aspects together as an established and important forum for all topics from basic science to clinical research and pivotal clinical trials. This review summarizes the contributions to the "10th cGMP Conference on cGMP Generators, Effectors and Therapeutic Implications," which was held in Augsburg in 2022 but will also provide an overview of recent key achievements and activities in the field of cGMP research.
Collapse
Affiliation(s)
- Andreas Friebe
- Institute of Physiology, University of Würzburg, Röntgenring 9, D-97070 Würzburg, Germany
| | - Jan R. Kraehling
- Pharmaceuticals, Research and Early Development, Pharma Research Center, Bayer AG, Aprather Weg 18a, D-42096 Wuppertal, Germany
| | - Michael Russwurm
- Institute of Pharmacology, Ruhr-University Bochum, Universitätsstr. 150, D-44801 Bochum, Germany
| | - Peter Sandner
- Pharmaceuticals, Research and Early Development, Pharma Research Center, Bayer AG, Aprather Weg 18a, D-42096 Wuppertal, Germany
- Institute of Pharmacology, Hannover Medical School, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany
| | - Achim Schmidtko
- Institute of Pharmacology and Clinical Pharmacy, Goethe University, Max-Von-Laue-Str. 9, D-60438 Frankfurt Am Main, Germany
| |
Collapse
|
46
|
Wu Q. Natriuretic Peptide Signaling in Uterine Biology and Preeclampsia. Int J Mol Sci 2023; 24:12309. [PMID: 37569683 PMCID: PMC10418983 DOI: 10.3390/ijms241512309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/30/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
Endometrial decidualization is a uterine process essential for spiral artery remodeling, embryo implantation, and trophoblast invasion. Defects in endometrial decidualization and spiral artery remodeling are important contributing factors in preeclampsia, a major disorder in pregnancy. Atrial natriuretic peptide (ANP) is a cardiac hormone that regulates blood volume and pressure. ANP is also generated in non-cardiac tissues, such as the uterus and placenta. In recent human genome-wide association studies, multiple loci with genes involved in natriuretic peptide signaling are associated with gestational hypertension and preeclampsia. In cellular experiments and mouse models, uterine ANP has been shown to stimulate endometrial decidualization, increase TNF-related apoptosis-inducing ligand expression and secretion, and enhance apoptosis in arterial smooth muscle cells and endothelial cells. In placental trophoblasts, ANP stimulates adenosine 5'-monophosphate-activated protein kinase and the mammalian target of rapamycin complex 1 signaling, leading to autophagy inhibition and protein kinase N3 upregulation, thereby increasing trophoblast invasiveness. ANP deficiency impairs endometrial decidualization and spiral artery remodeling, causing a preeclampsia-like phenotype in mice. These findings indicate the importance of natriuretic peptide signaling in pregnancy. This review discusses the role of ANP in uterine biology and potential implications of impaired ANP signaling in preeclampsia.
Collapse
Affiliation(s)
- Qingyu Wu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou 215123, China
| |
Collapse
|
47
|
Gu X, Wang K, Li W, He M, Zhou T, Liu M, Wu Q, Dong N. Corin Deficiency Diminishes Intestinal Sodium Excretion in Mice. BIOLOGY 2023; 12:945. [PMID: 37508377 PMCID: PMC10376046 DOI: 10.3390/biology12070945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 06/27/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023]
Abstract
Sodium excretion, a critical process in sodium homeostasis, occurs in many tissues, including the kidney and intestine. Unlike in the kidney, the hormonal regulation of intestinal sodium excretion remains unclear. Atrial natriuretic peptide (ANP) is a crucial hormone in renal natriuresis. Corin is a protease critical for ANP activation. Corin and ANP are expressed mainly in the heart. In this study, we investigated corin, ANP, and natriuretic peptide receptor A (Npra) expression in mouse intestines. Corin and ANP expression was co-localized in enteroendocrine cells, whereas Npra expression was on the luminal epithelial cells. In Corin knockout (KO) mice, fecal Na+ and Cl- excretion decreased compared with that in wild-type (WT) mice. Such a decrease was not found in conditional Corin KO mice lacking cardiac corin selectively. In kidney conditional Corin KO mice lacking renal corin, fecal Na+ and Cl- excretion increased, compared to that in WT mice. When WT, Corin KO, and the kidney conditional KO mice were treated with aldosterone, the differences in fecal Na+ and Cl- levels disappeared. These results suggest that intestinal corin may promote fecal sodium excretion in a paracrine mechanism independent of the cardiac corin function. The increased fecal sodium excretion in the kidney conditional Corin KO mice likely reflected an intestinal compensatory response to renal corin deficiency. Our results also suggest that intestinal corin activity may antagonize aldosterone action in the promotion of fecal sodium excretion. These findings help us understand the hormonal mechanism controlling sodium excretion the intestinal tract.
Collapse
Affiliation(s)
- Xiabing Gu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou 215123, China
- NHC Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, Medical School, Suzhou 215006, China
| | - Kun Wang
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou 215123, China
| | - Wenguo Li
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou 215123, China
- NHC Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, Medical School, Suzhou 215006, China
| | - Meiling He
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou 215123, China
| | - Tiantian Zhou
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou 215123, China
| | - Meng Liu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou 215123, China
| | - Qingyu Wu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou 215123, China
| | - Ningzheng Dong
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou 215123, China
- NHC Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, Medical School, Suzhou 215006, China
| |
Collapse
|
48
|
Ajay A, Rasoul D, Abdullah A, Lee Wei En B, Mashida K, Al-Munaer M, Ajay H, Duvva D, Mathew J, Adenaya A, Lip GYH, Sankaranarayanan R. Augmentation of natriuretic peptide (NP) receptor A and B (NPR-A and NPR-B) and cyclic guanosine monophosphate (cGMP) signalling as a therapeutic strategy in heart failure. Expert Opin Investig Drugs 2023; 32:1157-1170. [PMID: 38032188 DOI: 10.1080/13543784.2023.2290064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 11/28/2023] [Indexed: 12/01/2023]
Abstract
INTRODUCTION Heart failure is a complex, debilitating condition and despite advances in treatment, it remains a significant cause of morbidity and mortality worldwide. Therefore, the need for alternative treatment strategies is essential. In this review, we explore the therapeutic strategies of augmenting natriuretic peptide receptors (NPR-A and NPR-B) and cyclic guanosine monophosphate (cGMP) in heart failure. AREAS COVERED We aim to provide an overview of the evidence of preclinical and clinical studies on novel heart failure treatment strategies. Papers collected in this review have been filtered and screened following PubMed searches. This includes epigenetics, modulating enzyme activity in natriuretic peptide (NP) synthesis, gene therapy, modulation of downstream signaling by augmenting soluble guanylate cyclase (sGC) and phosphodiesterase (PDE) inhibition, nitrates, c-GMP-dependent protein kinase, synthetic and designer NP and RNA therapy. EXPERT OPINION The novel treatment strategies mentioned above have shown great potential, however, large randomized controlled trials are still lacking. The biggest challenge is translating the results seen in preclinical trials into clinical trials. We recommend a multi-disciplinary team approach with cardiologists, geneticist, pharmacologists, bioengineers, researchers, regulators, and patients to improve heart failure outcomes. Future management can involve telemedicine, remote monitoring, and artificial intelligence to optimize patient care.
Collapse
Affiliation(s)
- Ashwin Ajay
- Cardiology Department, Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom
| | - Debar Rasoul
- Cardiology Department, Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom
| | - Alend Abdullah
- General Medicine, The Dudley Group NHS Foundation Trust Dudley, Dudley, United Kingdom
| | - Benjamin Lee Wei En
- Cardiology Department, Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom
| | - Knievel Mashida
- Cedar House, University of Liverpool, Liverpool, United Kingdom
| | | | - Hanan Ajay
- General Medicine, Southport and Ormskirk Hospital NHS Trust, Southport, United Kingdom
| | - Dileep Duvva
- Cardiology Department, Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom
| | - Jean Mathew
- Cardiology Department, Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom
| | - Adeoye Adenaya
- Cardiology Department, Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom
| | - Gregory Y H Lip
- Cedar House, University of Liverpool, Liverpool, United Kingdom
- Cardiology Department, Liverpool Heart & Chest Hospital NHS Trust, Liverpool, United Kingdom
- Cardiology Department, Liverpool John Moores University, Liverpool, United Kingdom
| | - Rajiv Sankaranarayanan
- Cardiology Department, Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom
- Cedar House, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
49
|
Ma X, Iyer SR, Ma X, Reginauld SH, Chen Y, Pan S, Zheng Y, Moroni DG, Yu Y, Zhang L, Cannone V, Chen HH, Ferrario CM, Sangaralingham SJ, Burnett JC. Evidence for Angiotensin II as a Naturally Existing Suppressor for the Guanylyl Cyclase A Receptor and Cyclic GMP Generation. Int J Mol Sci 2023; 24:8547. [PMID: 37239899 PMCID: PMC10218449 DOI: 10.3390/ijms24108547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/03/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
The natriuretic peptide system (NPS) and renin-angiotensin-aldosterone system (RAAS) function oppositely at multiple levels. While it has long been suspected that angiotensin II (ANGII) may directly suppress NPS activity, no clear evidence to date supports this notion. This study was designed to systematically investigate ANGII-NPS interaction in humans, in vivo, and in vitro. Circulating atrial, b-type, and c-type natriuretic peptides (ANP, BNP, CNP), cyclic guanosine monophosphate (cGMP), and ANGII were simultaneously investigated in 128 human subjects. Prompted hypothesis was validated in vivo to determine the influence of ANGII on ANP actions. The underlying mechanisms were further explored via in vitro approaches. In humans, ANGII demonstrated an inverse relationship with ANP, BNP, and cGMP. In regression models predicting cGMP, adding ANGII levels and the interaction term between ANGII and natriuretic peptides increased the predictive accuracy of the base models constructed with either ANP or BNP, but not CNP. Importantly, stratified correlation analysis further revealed a positive association between cGMP and ANP or BNP only in subjects with low, but not high, ANGII levels. In rats, co-infusion of ANGII even at a physiological dose attenuated cGMP generation mediated by ANP infusion. In vitro, we found the suppressive effect of ANGII on ANP-stimulated cGMP requires the presence of ANGII type-1 (AT1) receptor and mechanistically involves protein kinase C (PKC), as this suppression can be substantially rescued by either valsartan (AT1 blocker) or Go6983 (PKC inhibitor). Using surface plasmon resonance (SPR), we showed ANGII has low binding affinity to the guanylyl cyclase A (GC-A) receptor compared to ANP or BNP. Our study reveals ANGII is a natural suppressor for the cGMP-generating action of GC-A via AT1/PKC dependent manner and highlights the importance of dual-targeting RAAS and NPS in maximizing beneficial properties of natriuretic peptides in cardiovascular protection.
Collapse
Affiliation(s)
- Xiao Ma
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Seethalakshmi R. Iyer
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Xiaoyu Ma
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Shawn H. Reginauld
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Yang Chen
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Shuchong Pan
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Ye Zheng
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Dante G. Moroni
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Yue Yu
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55902, USA
| | - Lianwen Zhang
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55902, USA
| | - Valentina Cannone
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Horng H. Chen
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Carlos M. Ferrario
- Department of Surgery, Wake Forest School of Medicine, Winston Salem, NC 27157, USA
| | - S. Jeson Sangaralingham
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55902, USA
| | - John C. Burnett
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55902, USA
| |
Collapse
|
50
|
Menges L, Giesen J, Yilmaz K, Mergia E, Füchtbauer A, Füchtbauer EM, Koesling D, Russwurm M. It takes two to tango: cardiac fibroblast-derived NO-induced cGMP enters cardiac myocytes and increases cAMP by inhibiting PDE3. Commun Biol 2023; 6:504. [PMID: 37165086 PMCID: PMC10172304 DOI: 10.1038/s42003-023-04880-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 04/27/2023] [Indexed: 05/12/2023] Open
Abstract
The occurrence of NO/cGMP signalling in cardiac cells is a matter of debate. Recent measurements with a FRET-based cGMP indicator in isolated cardiac cells revealed NO-induced cGMP signals in cardiac fibroblasts while cardiomyocytes were devoid of these signals. In a fibroblast/myocyte co-culture model though, cGMP formed in fibroblasts in response to NO entered cardiomyocytes via gap junctions. Here, we demonstrate gap junction-mediated cGMP transfer from cardiac fibroblasts to myocytes in intact tissue. In living cardiac slices of mice with cardiomyocyte-specific expression of a FRET-based cGMP indicator (αMHC/cGi-500), NO-dependent cGMP signals were shown to occur in myocytes, to depend on gap junctions and to be degraded mainly by PDE3. Stimulation of NO-sensitive guanylyl cyclase enhanced Forskolin- and Isoproterenol-induced cAMP and phospholamban phosphorylation. Genetic inactivation of NO-GC in Tcf21-expressing cardiac fibroblasts abrogated the synergistic action of NO-GC stimulation on Iso-induced phospholamban phosphorylation, identifying fibroblasts as cGMP source and substantiating the necessity of cGMP-transfer to myocytes. In sum, NO-stimulated cGMP formed in cardiac fibroblasts enters cardiomyocytes in native tissue where it exerts an inhibitory effect on cAMP degradation by PDE3, thereby increasing cAMP and downstream effects in cardiomyocytes. Hence, enhancing β-receptor-induced contractile responses appears as one of NO/cGMP's functions in the non-failing heart.
Collapse
Affiliation(s)
- Lukas Menges
- Institute of Pharmacology and Toxicology, Ruhr-University Bochum, 44780, Bochum, Germany
| | - Jan Giesen
- Institute of Pharmacology and Toxicology, Ruhr-University Bochum, 44780, Bochum, Germany
| | - Kerem Yilmaz
- Institute of Pharmacology and Toxicology, Ruhr-University Bochum, 44780, Bochum, Germany
| | - Evanthia Mergia
- Institute of Pharmacology and Toxicology, Ruhr-University Bochum, 44780, Bochum, Germany
| | - Annette Füchtbauer
- Department of Molecular Biology and Genetics, Aarhus University, 8000, Aarhus C, Denmark
| | | | - Doris Koesling
- Institute of Pharmacology and Toxicology, Ruhr-University Bochum, 44780, Bochum, Germany
| | - Michael Russwurm
- Institute of Pharmacology and Toxicology, Ruhr-University Bochum, 44780, Bochum, Germany.
| |
Collapse
|