1
|
Bai M, Xu P, Cheng R, Li N, Cao S, Guo Q, Wang X, Li C, Bai N, Jiang B, Wu X, Song X, Sun C, Zhao M, Cao L. ROS-ATM-CHK2 axis stabilizes HIF-1α and promotes tumor angiogenesis in hypoxic microenvironment. Oncogene 2025; 44:1609-1619. [PMID: 40057605 PMCID: PMC12095048 DOI: 10.1038/s41388-025-03336-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 02/02/2025] [Accepted: 02/27/2025] [Indexed: 05/23/2025]
Abstract
Hypoxia is an established hallmark of tumorigenesis. HIF-1α activation may be the prime driver of adaptive regulation of tumor cells reacting to hypoxic conditions of the tumor microenvironment. Here, we report a novel regulatory mechanism in charge of the fundamental stability of HIF-1α in solid tumor. Under hypoxic conditions, the checkpoint kinase CHK2 binds to HIF-1α and inhibits its ubiquitination, which is highly likely due to phosphorylation of a threonine residue (Thr645), a formerly uncharacterized site within the inhibitory domain. Meanwhile, HIF-1α phosphorylation induced by CHK2 promotes complex formation between HIF-1-α and the deubiquitination enzyme USP7, increasing stability under hypoxic conditions. This novel modification of the crosstalk between phosphorylation and ubiquitination of HIF-1α mediated by CHK2 enriches the post-translational modification spectrum of HIF-1α, thus offering novel insights into potential anti-angiogenesis therapies.
Collapse
Affiliation(s)
- Ming Bai
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Pengzhi Xu
- Department of Orthopedics, Linyi People's Hospital, Shandong Second Medical University, Linyi, Shandong Province, China
| | - Rong Cheng
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning Province, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning Province, China
| | - Na Li
- Department of Gerontology and Geriatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Sunrun Cao
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning Province, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning Province, China
| | - Qiqiang Guo
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning Province, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning Province, China
| | - Xiaoxun Wang
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Chunlu Li
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning Province, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning Province, China
| | - Ning Bai
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning Province, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning Province, China
| | - Bo Jiang
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning Province, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning Province, China
| | - Xuan Wu
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning Province, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning Province, China
| | - Xiaoyu Song
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning Province, China.
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning Province, China.
| | - Chen Sun
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China.
| | - Mingfang Zhao
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China.
| | - Liu Cao
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning Province, China.
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning Province, China.
| |
Collapse
|
2
|
Akbarian M, Kianpour M, Yu KW, Sidow SJ, Vashaee D, Tayebi L. Synergistic Prevascularization with Proangiogenic Silica Nanoparticles and VEGF-Mimetic Aptamer in Tailored GelMA Hydrogels. ACS APPLIED BIO MATERIALS 2025; 8:3783-3800. [PMID: 40258621 DOI: 10.1021/acsabm.4c01911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2025]
Abstract
Angiogenesis is a crucial and challenging requirement for the regeneration and repair of damaged tissues, particularly for critical-sized ones. To address this challenge, in this study, we fabricated a cell-communicating gelatin methacryloyl (GelMA) hydrogel using core-shell silica nanoparticles conjugated with roxadustat (FG-4592) and a VEGF-mimetic aptamer (Apt02). This hydrogel promotes tube formation and prevascularization synergistically through both extracellular and intracellular pathways in human umbilical vein endothelial cells (HUVEC), with FG-4592 acting via the extracellular pathway and Apt02 via the intracellular pathway. Fluorophore carbon quantum dot was synthesized and used as a core for constructing core-shell amine-functionalized silica nanoparticles (CQD@MSN-NH2). Using human serum albumin (HSA) as a protein linker, FG-4592 was conjugated on the surface of the nanoparticles to the finalized CQD@MSN@HSA@FG-4592 (CMHF) theranostic proangiogenic nanoparticle. Several techniques were used to characterize structural and cytotoxic properties of CMHF nanoparticles. On the other hand, Apt02 was incorporated into the GelMA hydrogel to induce angiogenesis extracellularly. Results showed that the CMHF nanoparticle and Apt02 are cyto-compatible in periodontal ligament fibroblasts (PDLF) and HUVEC. The HUVEC tube formation assay indicated that 1.0 μM Apt02, 20 μM FG-4592, and 35 μg/mL of CMHF individually induced angiogenesis in HUVEC when 10 ng/mL VEGF was used as a positive control. Western blot and quantitative polymerase chain reaction assays of four genes revealed Apt02 to have an extracellular mechanism of action while FG-4592 increases cellular concentration of the hypoxia-inducible factor-1α (Hif-1α) transcription factor intercellularly and recruits HUVEC to form tube-like vessels both in vitro and ex ovo. In summary, our study introduces an injectable hydrogel containing a blend of 5% GelMA, 1.0 μM Apt02, and 35 μg/mL CMHF nanoparticles, which effectively enhances angiogenesis by activating both extracellular (through VEGFR) and intracellular (by Hif-1α overexpression) pathways and is more effective when targeting only one pathway.
Collapse
Affiliation(s)
- Mohsen Akbarian
- School of Dentistry, Marquette University, Milwaukee, Wisconsin 53233, United States
| | - Maryam Kianpour
- School of Dentistry, Marquette University, Milwaukee, Wisconsin 53233, United States
| | - Kevin W Yu
- Department of Surgical and Diagnostic Sciences, School of Dentistry, Marquette University, Milwaukee, Wisconsin 53233, United States
| | - Stephanie J Sidow
- Department of Surgical and Diagnostic Sciences, School of Dentistry, Marquette University, Milwaukee, Wisconsin 53233, United States
| | - Daryoosh Vashaee
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, North Carolina 27606, United States
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Lobat Tayebi
- School of Dentistry, Marquette University, Milwaukee, Wisconsin 53233, United States
| |
Collapse
|
3
|
Quelhas P, Morgado D, dos Santos J. Primary Cilia, Hypoxia, and Liver Dysfunction: A New Perspective on Biliary Atresia. Cells 2025; 14:596. [PMID: 40277920 PMCID: PMC12026149 DOI: 10.3390/cells14080596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/02/2025] [Accepted: 04/11/2025] [Indexed: 04/26/2025] Open
Abstract
Ciliopathies are disorders that affect primary or secondary cellular cilia or structures associated with ciliary function. Primary cilia (PC) are essential for metabolic regulation and embryonic development, and pathogenic variants in cilia-related genes are linked to several pediatric conditions, including renal-hepatic diseases and congenital defects. Biliary atresia (BA) is a progressive infantile cholangiopathy and the leading cause of pediatric liver transplantation. Although the exact etiology of BA remains unclear, evidence suggests a multifactorial pathogenesis influenced by both genetic and environmental factors. Patients with BA and laterality defects exhibit genetic variants associated with ciliopathies. Interestingly, even isolated BA without extrahepatic anomalies presents morphological and functional ciliary abnormalities, suggesting that environmental triggers may disrupt the ciliary function. Among these factors, hypoxia has emerged as a potential modulator of this dysfunction. Hypoxia-inducible factor 1-alpha (HIF-1α) plays a central role in hepatic responses to oxygen deprivation, influencing bile duct remodeling and fibrosis, which are key processes in BA progression. This review explores the crosstalk between hypoxia and hepatic ciliopathies, with a focus on BA. It discusses the molecular mechanisms through which hypoxia may drive disease progression and examines the therapeutic potential of targeting hypoxia-related pathways. Understanding how oxygen deprivation influences ciliary function may open new avenues for treating biliary ciliopathies and improving patient outcomes.
Collapse
Affiliation(s)
| | | | - Jorge dos Santos
- RISE-Health, Department of Medical Sciences, Faculty of Health Sciences, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; (P.Q.); (D.M.)
| |
Collapse
|
4
|
del Rocío Aguilera-Marquez J, Manzanares-Guzmán A, García-Uriostegui L, Canales-Aguirre AA, Camacho-Villegas TA, Lugo-Fabres PH. Alginate-Gelatin Hydrogel Scaffold Model for Hypoxia Induction in Glioblastoma Embedded Spheroids. Gels 2025; 11:263. [PMID: 40277699 PMCID: PMC12026674 DOI: 10.3390/gels11040263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 03/24/2025] [Accepted: 03/25/2025] [Indexed: 04/26/2025] Open
Abstract
Glioblastoma (GBM) is a highly aggressive and malignant brain tumor, characterized by hypoxia in its microenvironment, which drives its growth and resistance to treatments. Hypoxia-inducible factor 1 (HIF-1) plays a central role in GBM progression by regulating cellular adaptation to low oxygen availability, promoting processes such as angiogenesis and cell invasion. However, studying and modeling GBM under hypoxic conditions is complex, especially due to the limitations of animal models. In this study, we developed a glioma spheroid model using an alginate-gelatin hydrogel scaffold, which enabled the simulation of hypoxic conditions within the tumor. The scaffold-based model demonstrated high reproducibility, facilitating the analysis of HIF-1α expression, a key protein in the hypoxic response of GBM. Furthermore, cell viability, the microstructural features of the encapsulated spheroids, and the water absorption rate of the hydrogel were assessed. Our findings validate the three-dimensional (3D) glioblastoma spheroids model as a valuable platform for studying hypoxia in GBM and evaluating new therapies. This approach could offer a more accessible and specific alternative for studying the tumor microenvironment and therapeutic resistance in GBM.
Collapse
Affiliation(s)
- Janette del Rocío Aguilera-Marquez
- Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara 44270, Mexico; (J.d.R.A.-M.); (A.M.-G.); (A.A.C.-A.); (T.A.C.-V.)
| | - Alejandro Manzanares-Guzmán
- Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara 44270, Mexico; (J.d.R.A.-M.); (A.M.-G.); (A.A.C.-A.); (T.A.C.-V.)
| | - Lorena García-Uriostegui
- SECIHTI-Secretaría de Ciencia, Humanidades, Tecnología e Innovación-Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Guadalajara 44430, Mexico;
| | - Alejandro A. Canales-Aguirre
- Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara 44270, Mexico; (J.d.R.A.-M.); (A.M.-G.); (A.A.C.-A.); (T.A.C.-V.)
| | - Tanya A. Camacho-Villegas
- Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara 44270, Mexico; (J.d.R.A.-M.); (A.M.-G.); (A.A.C.-A.); (T.A.C.-V.)
| | - Pavel H. Lugo-Fabres
- SECIHTI-Secretaría de Ciencia, Humanidades, Tecnología e Innovación-Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara 44270, Mexico
| |
Collapse
|
5
|
Baldauf C, Wei C, Pickering TA, Grubbs B, Gjessing H, Wilson ML. Hypoxia-Inducible Factor 1-Alpha Gene Polymorphisms Impact Risk of Severespectrum Hypertensive Disorders of Pregnancy: A Case-Control Study. Reprod Sci 2025; 32:993-1002. [PMID: 40085397 PMCID: PMC11978723 DOI: 10.1007/s43032-025-01835-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 02/23/2025] [Indexed: 03/16/2025]
Abstract
Hypoxia-inducible factor 1-alpha (HIF-1α) regulates cellular responses to hypoxia. Overexpression of HIF-1α is associated with abnormal placental trophoblast invasion and hypertensive disorders of pregnancy. We evaluated the putative association between polymorphisms and haplotypes in parental and child HIF-1α genes and the risk of severe-spectrum hypertensive disorders of pregnancy. Case (N = 179) and control (N = 34) mother-father-child triads were recruited by an internet-based method. Cases were defined as HELLP (Hemolysis, Elevated Liver enzymes and Low Platelets) syndrome or pre-eclampsia with severe features. Four HIF-1α single nucleotide polymorphisms were genotyped: rs4902080, rs2057492, rs11549465, rs10144958. Relative risks and 95% confidence intervals were estimated using log-linear free response models, adjusting for correlation between familial genotypes. Relative risk of severe-spectrum hypertensive disorder of pregnancy was increased with double-dose carriage of the T allele for SNP rs4902080 in both mother [RR 6.96, p = 0.028] and child [RR 5.77, p = 0.031]. Child double-dose of the T allele for SNP rs10144958 [RR 5.52, p = 0.047] also increased risk. The heterozygous genotype (CT) for SNPs rs2057482 and rs11549465 was protective against hypertensive disorders of pregnancy when carried by mother [rs2057482: RR 0.34, p < 0.001; rs11549465: RR 0.23, p < 0.001] or child [rs2057482: RR 0.44, p < 0.001; rs11549465: RR 0.31, p < 0.001]. A single copy of the C-c-c-G haplotype (rs4902080-rs2057482-rs11549465-rs10144958, N = 147), conferred decreased risk versus the C-T-T-G haplotype in mother [RR 0.28, p < 0.001] and child [RR 0.36, p < 0.001]. No parent-of-origin effects were seen. We conclude that polymorphism changes and haplotypes in the HIF-1α gene of mothers, fathers, and children are associated with risk for severe-spectrum hypertensive disorders of pregnancy.
Collapse
Affiliation(s)
- Claire Baldauf
- Keck School of Medicine, Department of Pediatrics, University of Southern California, Los Angeles, CA, USA
- Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Chen Wei
- Keck School of Medicine, Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - Trevor A Pickering
- Keck School of Medicine, Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - Brendan Grubbs
- Keck School of Medicine, Department of Obstetrics and Gynecology, University of Southern California, Los Angeles, CA, USA
| | - Håkon Gjessing
- Center for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Melissa L Wilson
- Keck School of Medicine, Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
6
|
Malila Y, Saensa-ard S, Kunyanee C, Petpiroon N, Kosit N, Charoenlappanit S, Phaonakrop N, Srimarut Y, Aueviriyavit S, Roytrakul S. Influences of Growth-Related Myopathies on Peptide Patterns of In Vitro Digested Cooked Chicken Breast and Stress-Related Responses in an Intestinal Caco-2 Cell Model. Foods 2024; 13:4042. [PMID: 39766984 PMCID: PMC11727595 DOI: 10.3390/foods13244042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/06/2024] [Accepted: 12/09/2024] [Indexed: 01/15/2025] Open
Abstract
The objective of this study was to determine the effects of growth-related myopathies, i.e., normal, wooden breast (WB), white striping (WS), and the combined lesions of WS and WB (WS + WB), on the molecular response of Caco-2 cells. A total of 24 cooked chicken breasts (n = 6 per myopathy) was subjected to an in vitro digestion using an enzymatic process mimicking human gastrointestinal digestion. Based on peptidomics, in vitro protein digestion of the abnormal samples, particularly WB meat, resulted in more peptides with lower molecular mass relative to those of normal samples. The cooked meat hydrolysates obtained at the end of the digestion were applied to a Caco-2 cell model for 4 h. The cell viability of treated normal and abnormal samples was not different (p ≥ 0.05). Absolute transcript abundances of genes associated with primary oxidative stress response, including nuclear factor erythroid 2 like 2, superoxide dismutase, and hypoxia-inducible factor 1 were determined using a droplet digital polymerase chain reaction. No significant differences in transcript abundance of those genes in Caco-2 cells were demonstrated between normal and the abnormal samples (p ≥ 0.05). Overall, the findings supported that, compared to normal meat, the cooked chicken meat with growth-related myopathies might be digested and absorbed to a greater extent. The cooked abnormal meat did not exert significant transcriptional impacts regarding oxidative stress on the human epithelial Caco-2 cells.
Collapse
Affiliation(s)
- Yuwares Malila
- National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand; (N.K.); (S.C.); (N.P.); (Y.S.); (S.R.)
| | - Sunitta Saensa-ard
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand; (S.S.-a.); (C.K.); (N.P.); (S.A.)
| | - Chanikarn Kunyanee
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand; (S.S.-a.); (C.K.); (N.P.); (S.A.)
| | - Nalinrat Petpiroon
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand; (S.S.-a.); (C.K.); (N.P.); (S.A.)
| | - Nantanat Kosit
- National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand; (N.K.); (S.C.); (N.P.); (Y.S.); (S.R.)
| | - Sawanya Charoenlappanit
- National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand; (N.K.); (S.C.); (N.P.); (Y.S.); (S.R.)
| | - Narumon Phaonakrop
- National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand; (N.K.); (S.C.); (N.P.); (Y.S.); (S.R.)
| | - Yanee Srimarut
- National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand; (N.K.); (S.C.); (N.P.); (Y.S.); (S.R.)
| | - Sasitorn Aueviriyavit
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand; (S.S.-a.); (C.K.); (N.P.); (S.A.)
| | - Sittiruk Roytrakul
- National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand; (N.K.); (S.C.); (N.P.); (Y.S.); (S.R.)
| |
Collapse
|
7
|
Jiang N, Ying G, Yin Y, Guo J, Lozada J, Valdivia Padilla A, Gómez A, Gomes de Melo BA, Lugo Mestre F, Gansevoort M, Palumbo M, Calá N, Garciamendez-Mijares CE, Kim GA, Takayama S, Gerhard-Herman MD, Zhang YS. A closed-loop modular multiorgan-on-chips platform for self-sustaining and tightly controlled oxygenation. Proc Natl Acad Sci U S A 2024; 121:e2413684121. [PMID: 39541351 PMCID: PMC11588096 DOI: 10.1073/pnas.2413684121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024] Open
Abstract
To mimic physiological microenvironments in organ-on-a-chip systems, physiologically relevant parameters are required to precisely access drug metabolism. Oxygen level is a critical microenvironmental parameter to maintain cellular or tissue functions and modulate their behaviors. Current organ-on-a-chip setups are oftentimes subjected to the ambient incubator oxygen level at 21%, which is higher than most if not all physiological oxygen concentrations. Additionally, the physiological oxygen level in each tissue is different ranging from 0.5 to 13%. Here, a closed-loop modular multiorgan-on-chips platform is developed to enable not only real-time monitoring of the oxygen levels but, more importantly, tight control of them in the range of 4 to 20% across each connected microtissue-on-a-chip in the circulatory culture medium. This platform, which consists of microfluidic oxygen scavenger(s), an oxygen generator, a monitoring/controller system, and bioreactor(s), allows for independent, precise upregulation and downregulation of dissolved oxygen in the perfused culture medium to meet the physiological oxygen level in each modular microtissue compartment, as needed. Furthermore, drug studies using the platform demonstrate that the oxygen level affects drug metabolism in the parallelly connected liver, kidney, and arterial vessel microtissues without organ-organ interactions factored in. Overall, this platform can promote the performances of organ-on-a-chip devices in drug screening by providing more physiologically relevant and independently adjustable oxygen microenvironments for desired organ types on a single- or a multiorgan-on-chip(s) configuration.
Collapse
Affiliation(s)
- Nan Jiang
- Division of Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA02139
- Department of Physics, School of Engineering and Applied Sciences, Harvard University, Cambridge, MA02138
| | - Guoliang Ying
- Division of Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA02139
| | - Yixia Yin
- Division of Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA02139
| | - Jie Guo
- Division of Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA02139
| | - Jorge Lozada
- Division of Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA02139
| | - Alejandra Valdivia Padilla
- Division of Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA02139
| | - Ameyalli Gómez
- Division of Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA02139
| | - Bruna Alice Gomes de Melo
- Division of Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA02139
| | - Francisco Lugo Mestre
- Division of Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA02139
| | - Merel Gansevoort
- Division of Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA02139
| | - Marcello Palumbo
- Division of Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA02139
| | - Noemi Calá
- Division of Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA02139
| | - Carlos Ezio Garciamendez-Mijares
- Division of Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA02139
| | - Ge-Ah Kim
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA30318
| | - Shuichi Takayama
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA30318
| | - Marie Denis Gerhard-Herman
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA02115
| | - Yu Shrike Zhang
- Division of Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA02139
- Harvard Stem Cell Institute, Harvard University,Cambridge, MA02138
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA02142
| |
Collapse
|
8
|
Allsopp GL, Britto FA, Wright CR, Deldicque L. The Effects of Normobaric Hypoxia on the Acute Physiological Responses to Resistance Training: A Narrative Review. J Strength Cond Res 2024; 38:2001-2011. [PMID: 39178049 DOI: 10.1519/jsc.0000000000004909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2024]
Abstract
ABSTRACT Allsopp, GL, Britto, FA, Wright, CR, and Deldicque, L. The effects of normobaric hypoxia on the acute physiological responses to resistance training: a narrative review. J Strength Cond Res 38(11): 2001-2011, 2024-Athletes have used altitude training for many years as a strategy to improve endurance performance. The use of resistance training in simulated altitude (normobaric hypoxia) is a growing strategy that aims to improve the hypertrophy and strength adaptations to training. An increasing breadth of research has characterized the acute physiological responses to resistance training in hypoxia, often with the goal to elucidate the mechanisms by which hypoxia may improve the training adaptations. There is currently no consensus on the overall effectiveness of hypoxic resistance training for strength and hypertrophy adaptations, nor the underlying biochemical pathways involved. There are, however, numerous interesting physiological responses that are amplified by performing resistance training in hypoxia. These include potential changes to the energy system contribution to exercise and alterations to the level of metabolic stress, hormone and cytokine production, autonomic regulation, and other hypoxia-induced cellular pathways. This review describes the foundational exercise physiology underpinning the acute responses to resistance training in normobaric hypoxia, potential applications to clinical populations, including training considerations for athletic populations. The review also presents a summary of the ideal training parameters to promote metabolic stress and associated training adaptations. There are currently many gaps in our understanding of the physiological responses to hypoxic resistance training, partly caused by the infancy of the research field and diversity of hypoxic and training parameters.
Collapse
Affiliation(s)
- Giselle L Allsopp
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Victoria, Australia
| | | | - Craig R Wright
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Victoria, Australia
| | - Louise Deldicque
- Institute of Neuroscience, UC Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
9
|
Tumolo MR, Bodini A, Bagordo F, Leo CG, Mincarone P, De Matteis E, Sabina S, Grassi T, Scoditti E. MiRNA Expression in Long-Distance Runners with Musculoskeletal Pain: Implications for Pain Pathophysiology. Biomedicines 2024; 12:2494. [PMID: 39595060 PMCID: PMC11591860 DOI: 10.3390/biomedicines12112494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/16/2024] [Accepted: 10/25/2024] [Indexed: 11/28/2024] Open
Abstract
Background: miRNAs are short, non-coding RNAs whose deregulation has been shown in painful processes, including musculoskeletal pain. This condition, which causes disability, impacts quality of life, and contributes to substantial healthcare costs, is also a critical issue in sports. In this case-control study, we evaluated the expression of four miRNAs involved in inflammation in runners with musculoskeletal pain and elucidated their functions and pathophysiological implications. Methods: A total of 17 runners with musculoskeletal pain and 17 age- and sex-matched runners without pain participated in this study. The levels of the miRNAs were evaluated by qRT-PCR. Bioinformatic tools were employed to identify the target genes and biological processes regulated by these miRNAs. Results: Compared to the controls, the runners with musculoskeletal pain exhibited significantly higher plasma levels of miR-133b (p = 0.02), miR-155-5p (p = 0.003) and let-7a-5p (p = 0.02). Multivariable regression analysis indicated that these three miRNAs exhibit a positive correlation (p < 0.05) with the presence of musculoskeletal pain, adjusted for age. Bioinformatic analysis suggested that the miRNAs hub genes are involved in regulatory processes, neuroinflammatory pathways, and human diseases that are associated with pain pathology. Conclusions: These results enhance our understanding of the potential role of miR-133b, miR-155-5p and let-7a-5p in pain-associated biological processes. The miRNA-mediated negative regulation of genes identified could explain the inflammatory and tissue repair processes in this population. Further studies are needed to confirm and validate the role of these miRNAs in painful conditions, especially considering the significant public health implications of managing inflammatory pain in sports.
Collapse
Affiliation(s)
- Maria Rosaria Tumolo
- Department of Biological & Environmental Sciences & Technology, University of Salento, 73100 Lecce, Italy;
- Branch of Lecce, National Research Council, Institute of Clinical Physiology, 73100 Lecce, Italy or (C.G.L.); (E.S.)
| | - Antonella Bodini
- National Research Council, Institute for Applied Mathematics & Information Technologies ‘E. Magenes’, 20133 Milan, Italy;
| | - Francesco Bagordo
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, 70125 Bari, Italy;
| | - Carlo Giacomo Leo
- Branch of Lecce, National Research Council, Institute of Clinical Physiology, 73100 Lecce, Italy or (C.G.L.); (E.S.)
- MOVE-mentis s.r.l., 47522 Cesena, Italy;
| | - Pierpaolo Mincarone
- MOVE-mentis s.r.l., 47522 Cesena, Italy;
- Research Unit of Brindisi, National Research Council, Institute for Research on Population & Social Policies, 72100 Brindisi, Italy
| | | | - Saverio Sabina
- Branch of Lecce, National Research Council, Institute of Clinical Physiology, 73100 Lecce, Italy or (C.G.L.); (E.S.)
- MOVE-mentis s.r.l., 47522 Cesena, Italy;
| | - Tiziana Grassi
- Department of Experimental Medicine, University of Salento, 73100 Lecce, Italy;
| | - Egeria Scoditti
- Branch of Lecce, National Research Council, Institute of Clinical Physiology, 73100 Lecce, Italy or (C.G.L.); (E.S.)
| |
Collapse
|
10
|
Xiang S, Gong X, Qiu T, Zhou J, Yang K, Lan Y, Zhang Z, Ji Y. Insights into the mechanisms of angiogenesis in infantile hemangioma. Biomed Pharmacother 2024; 178:117181. [PMID: 39059349 DOI: 10.1016/j.biopha.2024.117181] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 07/28/2024] Open
Abstract
Infantile hemangioma (IH) is the most common benign tumor in infants and usually resolves on its own. However, a small portion of IH cases are accompanied by serious complications and other problems, impacting the physical and psychological health of the children affected. The pathogenesis of IH is highly controversial. Studies have shown that abnormal blood vessel formation is an important pathological basis for the development of IH. Compared with that in normal tissues, the equilibrium of blood vessel growth at the tumor site is disrupted, and interactions among other types of cells, such as immune cells, promote the rapid proliferation and migration of vascular tissue cells and the construction of vascular networks. Currently, propranolol is the most common systemic drug used to inhibit the growth of IHs and accelerate their regression. The purpose of this review is to provide the latest research on the mechanisms of angiogenesis in IH. We discuss the possible roles of three major factors, namely, estrogen, hypoxia, and inflammation, in the development of IH. Additionally, we summarize the key roles of tumor cell subpopulations, such as pericytes, in the proliferation and regression of IH considering evidence from the past few years, with an emphasis on the possible mechanisms of propranolol in the treatment of IH. Angiogenesis is an important event during the development of IH, and an in-depth understanding of the molecular mechanisms of angiogenesis will provide new insights into the biology and clinical treatment of IH.
Collapse
Affiliation(s)
- Shanshan Xiang
- Division of Oncology, Department of Pediatric Surgery, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Xue Gong
- Division of Oncology, Department of Pediatric Surgery, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Tong Qiu
- Division of Oncology, Department of Pediatric Surgery, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Jiangyuan Zhou
- Division of Oncology, Department of Pediatric Surgery, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Kaiying Yang
- Division of Oncology, Department of Pediatric Surgery, West China Hospital of Sichuan University, Chengdu 610041, China; Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, National Children's Medical Center for South Central Region, Guangzhou Medical University, Guangzhou 510623, China
| | - Yuru Lan
- Division of Oncology, Department of Pediatric Surgery, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Zixin Zhang
- Division of Oncology, Department of Pediatric Surgery, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yi Ji
- Division of Oncology, Department of Pediatric Surgery, West China Hospital of Sichuan University, Chengdu 610041, China.
| |
Collapse
|
11
|
Husain S, Leveckis R. Pharmacological regulation of HIF-1α, RGC death, and glaucoma. Curr Opin Pharmacol 2024; 77:102467. [PMID: 38896924 DOI: 10.1016/j.coph.2024.102467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/19/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024]
Abstract
Hypoxia can regulate oxygen-sensitive pathways that could be neuroprotective to compensate for the detrimental effects of low oxygen. However, prolonged hypoxia can activate neurodegenerative pathways. HIF-1α is upregulated/stabilized in hypoxic conditions, promoting alteration of gene expression, and ultimately leading to cell-death. Therefore, regulation of HIF-1α expression pharmacologically is a vital approach to mitigate cell death. In this review, we provide information showing the role of HIF-1α and its associated pathways in ocular retinopathies. We also discuss the beneficial roles of HIF-1α inhibitor, KC7F2, in ocular pathologies. Finally, we provided our own data demonstrating RGC neuroprotection by KC7F2 in glaucomatous animals.
Collapse
Affiliation(s)
- Shahid Husain
- Department of Ophthalmology, Storm Eye Institute, Medical University of South Carolina, Charleston, SC 29425, USA.
| | - Ryan Leveckis
- Department of Ophthalmology, Storm Eye Institute, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
12
|
Ramos-Rodríguez S, Ortega-Ramírez K, Méndez-Can L, Galindo-Sánchez C, Galindo-Torres P, Ventura-López C, Mascaro M, Caamal-Monsreal C, Rodríguez G, Díaz F, Rosas C. The hard life of an octopus embryo is seen through gene expression, energy metabolism, and its ability to neutralize radical oxygen species. Sci Rep 2024; 14:16510. [PMID: 39020012 PMCID: PMC11255218 DOI: 10.1038/s41598-024-67335-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 07/10/2024] [Indexed: 07/19/2024] Open
Abstract
The reproductive process in Octopus maya was analyzed to establish the amount of reactive oxygen species that the embryos inherit from females, during yolk synthesis. At the same time, respiratory metabolism, ROS production, and the expression of some genes of the antioxidant system were monitored to understand the ability of embryos to neutralize maternal ROS and those produced during development. The results indicate that carbonylated proteins and peroxidized lipids (LPO) were transferred from females to the embryos, presumably derived from the metabolic processes carried out during yolk synthesis in the ovary. Along with ROS, females also transferred to embryos glutathione (GSH), a key element of the antioxidant defense system, thus facilitating the neutralization of inherited ROS and those produced during development. Embryos are capable of neutralizing ROS thanks to the early expression of genes such as catalase (CAT) and superoxide dismutase (SOD), which give rise to the synthesis of enzymes when the circulatory system is activated. Also, it was observed that the levels of the routine metabolic rate of embryos are almost as high as those of the maximum activity metabolism, which leads, on the one hand, to the elevated production of ROS and suggests that, at this stage of the life cycle in octopuses, energy production is maximum and is physically limited by the biological properties inherent to the structure of embryonic life (oxygen transfer through the chorion, gill surface, pumping capacity, etc.). Due to its role in regulating vascularization, a high expression of HIf-1A during organogenesis suggests that circulatory system development has begun in this phase of embryo development. The results indicate that the routine metabolic rate and the ability of O. maya embryos to neutralize the ROS are probably the maximum possible. Under such circumstances, embryos cannot generate more energy to combat the free radicals produced by their metabolism, even when environmental factors such as high temperatures or contaminants could demand excess energy.
Collapse
Affiliation(s)
- Sadot Ramos-Rodríguez
- Laboratorio de Genómica Funcional, Departamento de Biotecnología Marina, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), CP 22860, Ensenada, BC, México
| | - Karen Ortega-Ramírez
- Unidad Multidisciplinaria de Docencia e Investigación (UMDI), Facultad de Ciencias UNAM, CP 97355, Sisal Yucatán, México
| | - Luisa Méndez-Can
- Unidad Multidisciplinaria de Docencia e Investigación (UMDI), Facultad de Ciencias UNAM, CP 97355, Sisal Yucatán, México
| | - Clara Galindo-Sánchez
- Laboratorio de Genómica Funcional, Departamento de Biotecnología Marina, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), CP 22860, Ensenada, BC, México
| | - Pavel Galindo-Torres
- Laboratorio de Genómica Funcional, Departamento de Biotecnología Marina, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), CP 22860, Ensenada, BC, México
| | - Claudia Ventura-López
- Laboratorio de Genómica Funcional, Departamento de Biotecnología Marina, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), CP 22860, Ensenada, BC, México
| | - Maite Mascaro
- Unidad Multidisciplinaria de Docencia e Investigación (UMDI), Facultad de Ciencias UNAM, CP 97355, Sisal Yucatán, México
| | - Claudia Caamal-Monsreal
- Unidad Multidisciplinaria de Docencia e Investigación (UMDI), Facultad de Ciencias UNAM, CP 97355, Sisal Yucatán, México
| | - Gabriela Rodríguez
- Unidad de Química en Sisal, Facultad de Química UNAM, CP 97355, Sisal Yucatán, México
| | - Fernando Díaz
- Unidad Multidisciplinaria de Docencia e Investigación (UMDI), Facultad de Ciencias UNAM, CP 97355, Sisal Yucatán, México
| | - Carlos Rosas
- Unidad Multidisciplinaria de Docencia e Investigación (UMDI), Facultad de Ciencias UNAM, CP 97355, Sisal Yucatán, México.
| |
Collapse
|
13
|
Scaramuzzo RT, Crucitta S, del Re M, Cammalleri M, Bagnoli P, Dal Monte M, Pini A, Filippi L. β3-adREnoceptor Analysis in CORD Blood of Neonates (β3 RECORD): Study Protocol of a Pilot Clinical Investigation. Life (Basel) 2024; 14:776. [PMID: 38929758 PMCID: PMC11204445 DOI: 10.3390/life14060776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Background and Objective: The embryo and the fetus develop in a physiologically hypoxic environment, where vascularization is sustained by HIF-1, VEGF, and the β-adrenergic system. In animals, β3-adrenoceptors (β3-ARs), up-regulated by hypoxia, favor global fetal wellness to such an extent that most diseases related to prematurity are hypothesized to be induced or aggravated by a precocious β3-AR down-regulation, due to premature exposure to a relatively hyperoxic environment. In animals, β3-AR pharmacological agonism is currently investigated as a possible new therapeutic opportunity to counteract oxygen-induced damages. Our goal is to translate the knowledge acquired in animals to humans. Recently, we have demonstrated that fetuses become progressively more hypoxemic from mid-gestation to near-term, but starting from the 33rd-34th week, oxygenation progressively increases until birth. The present paper aims to describe a clinical research protocol, evaluating whether the expression level of HIF-1, β3-ARs, and VEGF is modulated by oxygen during intrauterine and postnatal life, in a similar way to animals. Materials and Methods: In a prospective, non-profit, single-center observational study we will enroll 100 preterm (group A) and 100 full-term newborns (group B). We will collect cord blood samples (T0) and measure the RNA expression level of HIF-1, β3-ARs, and VEGF by digital PCR. In preterms, we will also measure gene expression at 48-72h (T1), 14 days (T2), and 30 days (T3) of life and at 40 ± 3 weeks of post-menstrual age (T4), regardless of the day of life. We will compare group A (T0) vs. group B (T0) and identify any correlations between the values obtained from serial samples in group A and the clinical data of the patients. Our protocol has been approved by the Pediatric Ethical Committee for Clinical Research of the Tuscany region (number 291/2022). Expected Results: The observation that in infants, the HIF-1/β3-ARs/VEGF axis shows similar modulation to that of animals could suggest that β3-ARs also promote fetal well-being in humans.
Collapse
Affiliation(s)
| | - Stefania Crucitta
- Clinical Pharmacology and Pharmacogenetics Unit, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (S.C.); (M.d.R.)
| | - Marzia del Re
- Clinical Pharmacology and Pharmacogenetics Unit, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (S.C.); (M.d.R.)
| | - Maurizio Cammalleri
- Unit of General Physiology, Department of Biology, University of Pisa, 56126 Pisa, Italy; (M.C.); (P.B.); (M.D.M.)
| | - Paola Bagnoli
- Unit of General Physiology, Department of Biology, University of Pisa, 56126 Pisa, Italy; (M.C.); (P.B.); (M.D.M.)
| | - Massimo Dal Monte
- Unit of General Physiology, Department of Biology, University of Pisa, 56126 Pisa, Italy; (M.C.); (P.B.); (M.D.M.)
| | - Alessandro Pini
- Department of Experimental and Clinical Medicine, University of Florence, 50121 Florence, Italy;
| | - Luca Filippi
- Neonatology Unit, Azienda Ospedaliero Universitaria Pisana, 56126 Pisa, Italy
- Neonatology Unit, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
14
|
Ramchandani R, Florica IT, Zhou Z, Alemi A, Baranchuk A. Review of Athletic Guidelines for High-Altitude Training and Acclimatization. High Alt Med Biol 2024; 25:113-121. [PMID: 38207236 DOI: 10.1089/ham.2023.0042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024] Open
Abstract
Ramchandani, Rashi, Ioana Tereza Florica, Zier Zhou, Aziz Alemi, and Adrian Baranchuk. Review of athletic guidelines for high-altitude training and acclimatization. High Alt Med Biol. 00:000-000, 2024. Introduction: Exposure to high altitude results in hypobaric hypoxia with physiological acclimatization changes that are thought to influence athletic performance. This review summarizes existing literature regarding implications of high-altitude training and altitude-related guidelines from major governing bodies of sports. Methods: A nonsystematic review was performed using PubMed and OVID Medline to identify articles regarding altitude training and guidelines from international governing bodies of various sports. Sports inherently involving training or competing at high altitude were excluded. Results: Important physiological compensatory mechanisms to high-altitude environments include elevations in blood pressure, heart rate, red blood cell mass, tidal volume, and respiratory rate. These responses can have varying effects on athletic performance. Governing sport bodies have limited and differing regulations for training and competition at high altitudes with recommended acclimatization periods ranging from 3 days to 3 weeks. Discussion: Physiological changes in response to high terrestrial altitude exposure can have substantial impacts on athletic performance. Major sport governing bodies have limited regulations and recommendations regarding altitude training and competition. Existing guidelines are variable and lack substantial evidence to support recommendations. Additional studies are needed to clarify the implications of high-altitude exposure on athletic ability to optimize training and competition.
Collapse
Affiliation(s)
- Rashi Ramchandani
- Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Ioana Tereza Florica
- Department of Medicine, Kingston Health Science Center, Queen's University, Kingston, Ontario, Canada
| | - Zier Zhou
- Atherosclerosis, Genomics and Vascular Biology Division, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Aziz Alemi
- Department of Cardiology, Kingston Health Science Center, Queen's University, Kingston, Ontario, Canada
| | - Adrian Baranchuk
- Department of Medicine, Kingston Health Science Center, Queen's University, Kingston, Ontario, Canada
- Department of Cardiology, Kingston Health Science Center, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
15
|
Mitroshina EV, Vedunova MV. The Role of Oxygen Homeostasis and the HIF-1 Factor in the Development of Neurodegeneration. Int J Mol Sci 2024; 25:4581. [PMID: 38731800 PMCID: PMC11083463 DOI: 10.3390/ijms25094581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 05/13/2024] Open
Abstract
Understanding the molecular underpinnings of neurodegeneration processes is a pressing challenge for medicine and neurobiology. Alzheimer's disease (AD) and Parkinson's disease (PD) represent the most prevalent forms of neurodegeneration. To date, a substantial body of experimental evidence has strongly implicated hypoxia in the pathogenesis of numerous neurological disorders, including AD, PD, and other age-related neurodegenerative conditions. Hypoxia-inducible factor (HIF) is a transcription factor that triggers a cell survival program in conditions of oxygen deprivation. The involvement of HIF-1α in neurodegenerative processes presents a complex and sometimes contradictory picture. This review aims to elucidate the current understanding of the interplay between hypoxia and the development of AD and PD, assess the involvement of HIF-1 in their pathogenesis, and summarize promising therapeutic approaches centered on modulating the activity of the HIF-1 complex.
Collapse
Affiliation(s)
- Elena V. Mitroshina
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, 603022 Nizhny Novgorod, Russia;
| | | |
Collapse
|
16
|
Borović Šunjić S, Jaganjac M, Vlainić J, Halasz M, Žarković N. Lipid Peroxidation-Related Redox Signaling in Osteosarcoma. Int J Mol Sci 2024; 25:4559. [PMID: 38674143 PMCID: PMC11050283 DOI: 10.3390/ijms25084559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Oxidative stress and lipid peroxidation play important roles in numerous physiological and pathological processes, while the bioactive products of lipid peroxidation, lipid hydroperoxides and reactive aldehydes, act as important mediators of redox signaling in normal and malignant cells. Many types of cancer, including osteosarcoma, express altered redox signaling pathways. Such redox signaling pathways protect cancer cells from the cytotoxic effects of oxidative stress, thus supporting malignant transformation, and eventually from cytotoxic anticancer therapies associated with oxidative stress. In this review, we aim to explore the status of lipid peroxidation in osteosarcoma and highlight the involvement of lipid peroxidation products in redox signaling pathways, including the involvement of lipid peroxidation in osteosarcoma therapies.
Collapse
Affiliation(s)
- Suzana Borović Šunjić
- Laboratory for Oxidative Stress, Division of Molecular Medicine, Ruder Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia; (M.J.); (J.V.); (M.H.)
| | | | | | | | - Neven Žarković
- Laboratory for Oxidative Stress, Division of Molecular Medicine, Ruder Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia; (M.J.); (J.V.); (M.H.)
| |
Collapse
|
17
|
Choi YK. Detrimental Roles of Hypoxia-Inducible Factor-1α in Severe Hypoxic Brain Diseases. Int J Mol Sci 2024; 25:4465. [PMID: 38674050 PMCID: PMC11050730 DOI: 10.3390/ijms25084465] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Hypoxia stabilizes hypoxia-inducible factors (HIFs), facilitating adaptation to hypoxic conditions. Appropriate hypoxia is pivotal for neurovascular regeneration and immune cell mobilization. However, in central nervous system (CNS) injury, prolonged and severe hypoxia harms the brain by triggering neurovascular inflammation, oxidative stress, glial activation, vascular damage, mitochondrial dysfunction, and cell death. Diminished hypoxia in the brain improves cognitive function in individuals with CNS injuries. This review discusses the current evidence regarding the contribution of severe hypoxia to CNS injuries, with an emphasis on HIF-1α-mediated pathways. During severe hypoxia in the CNS, HIF-1α facilitates inflammasome formation, mitochondrial dysfunction, and cell death. This review presents the molecular mechanisms by which HIF-1α is involved in the pathogenesis of CNS injuries, such as stroke, traumatic brain injury, and Alzheimer's disease. Deciphering the molecular mechanisms of HIF-1α will contribute to the development of therapeutic strategies for severe hypoxic brain diseases.
Collapse
Affiliation(s)
- Yoon Kyung Choi
- Department of Integrative Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
18
|
Belužić R, Šimunić E, Podgorski II, Pinterić M, Hadžija MP, Balog T, Sobočanec S. Gene Expression Profiling Reveals Fundamental Sex-Specific Differences in SIRT3-Mediated Redox and Metabolic Signaling in Mouse Embryonic Fibroblasts. Int J Mol Sci 2024; 25:3868. [PMID: 38612678 PMCID: PMC11012119 DOI: 10.3390/ijms25073868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
Sirt-3 is an important regulator of mitochondrial function and cellular energy homeostasis, whose function is associated with aging and various pathologies such as Alzheimer's disease, Parkinson's disease, cardiovascular diseases, and cancers. Many of these conditions show differences in incidence, onset, and progression between the sexes. In search of hormone-independent, sex-specific roles of Sirt-3, we performed mRNA sequencing in male and female Sirt-3 WT and KO mouse embryonic fibroblasts (MEFs). The aim of this study was to investigate the sex-specific cellular responses to the loss of Sirt-3. By comparing WT and KO MEF of both sexes, the differences in global gene expression patterns as well as in metabolic and stress responses associated with the loss of Sirt-3 have been elucidated. Significant differences in the activities of basal metabolic pathways were found both between genotypes and between sexes. In-depth pathway analysis of metabolic pathways revealed several important sex-specific phenomena. Male cells mount an adaptive Hif-1a response, shifting their metabolism toward glycolysis and energy production from fatty acids. Furthermore, the loss of Sirt-3 in male MEFs leads to mitochondrial and endoplasmic reticulum stress. Since Sirt-3 knock-out is permanent, male cells are forced to function in a state of persistent oxidative and metabolic stress. Female MEFs are able to at least partially compensate for the loss of Sirt-3 by a higher expression of antioxidant enzymes. The activation of neither Hif-1a, mitochondrial stress response, nor oxidative stress response was observed in female cells lacking Sirt-3. These findings emphasize the sex-specific role of Sirt-3, which should be considered in future research.
Collapse
|
19
|
Liu Y, Li M, Lin M, Liu X, Guo H, Tan J, Hu L, Li J, Zhou Q. ALKBH1 promotes HIF-1α-mediated glycolysis by inhibiting N-glycosylation of LAMP2A. Cell Mol Life Sci 2024; 81:130. [PMID: 38472355 DOI: 10.1007/s00018-024-05152-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/25/2024] [Accepted: 02/01/2024] [Indexed: 03/14/2024]
Abstract
ALKBH1 is a typical demethylase of nucleic acids, which is correlated with multiple types of biological processes and human diseases. Recent studies are focused on the demethylation of ALKBH1, but little is known about its non-demethylase function. Here, we demonstrate that ALKBH1 regulates the glycolysis process through HIF-1α signaling in a demethylase-independent manner. We observed that depletion of ALKBH1 inhibits glycolysis flux and extracellular acidification, which is attributable to reduced HIF-1α protein levels, and it can be rescued by reintroducing HIF-1α. Mechanistically, ALKBH1 knockdown enhances chaperone-mediated autophagy (CMA)-mediated HIF-1α degradation by facilitating the interaction between HIF-1α and LAMP2A. Furthermore, we identify that ALKBH1 competitively binds to the OST48, resulting in compromised structural integrity of oligosaccharyltransferase (OST) complex and subsequent defective N-glycosylation of LAMPs, particularly LAMP2A. Abnormal glycosylation of LAMP2A disrupts lysosomal homeostasis and hinders the efficient degradation of HIF-1α through CMA. Moreover, NGI-1, a small-molecule inhibitor that selectively targets the OST complex, could inhibit the glycosylation of LAMPs caused by ALKBH1 silencing, leading to impaired CMA activity and disruption of lysosomal homeostasis. In conclusion, we have revealed a non-demethylation role of ALKBH1 in regulating N-glycosylation of LAMPs by interacting with OST subunits and CMA-mediated degradation of HIF-1α.
Collapse
Affiliation(s)
- Yanyan Liu
- Key Laboratory of Regenerative Medicine of Ministry of Education, The First Affiliated Hospital, Jinan University, Guangzhou, 510632, Guangdong, China
- The College of Life Science and Technology, Jinan University, Guangzhou, 510632, Guangdong, China
- The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou, 510632, Guangdong, China
| | - Mengmeng Li
- The College of Life Science and Technology, Jinan University, Guangzhou, 510632, Guangdong, China
- The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou, 510632, Guangdong, China
| | - Miao Lin
- Key Laboratory of Regenerative Medicine of Ministry of Education, The First Affiliated Hospital, Jinan University, Guangzhou, 510632, Guangdong, China
- The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou, 510632, Guangdong, China
| | - Xinjie Liu
- The College of Life Science and Technology, Jinan University, Guangzhou, 510632, Guangdong, China
- The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou, 510632, Guangdong, China
| | - Haolin Guo
- The College of Life Science and Technology, Jinan University, Guangzhou, 510632, Guangdong, China
- The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou, 510632, Guangdong, China
| | - Junyang Tan
- Key Laboratory of Regenerative Medicine of Ministry of Education, The First Affiliated Hospital, Jinan University, Guangzhou, 510632, Guangdong, China
- The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou, 510632, Guangdong, China
| | - Liubing Hu
- Key Laboratory of Regenerative Medicine of Ministry of Education, The First Affiliated Hospital, Jinan University, Guangzhou, 510632, Guangdong, China
- The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou, 510632, Guangdong, China
| | - Jianshuang Li
- The College of Life Science and Technology, Jinan University, Guangzhou, 510632, Guangdong, China.
- The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou, 510632, Guangdong, China.
| | - Qinghua Zhou
- Key Laboratory of Regenerative Medicine of Ministry of Education, The First Affiliated Hospital, Jinan University, Guangzhou, 510632, Guangdong, China.
- The College of Life Science and Technology, Jinan University, Guangzhou, 510632, Guangdong, China.
- The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou, 510632, Guangdong, China.
| |
Collapse
|
20
|
Froese N, Szaroszyk M, Galuppo P, Visker JR, Werlein C, Korf‐Klingebiel M, Berliner D, Reboll MR, Hamouche R, Gegel S, Wang Y, Hofmann W, Tang M, Geffers R, Wende AR, Kühnel MP, Jonigk DD, Hansmann G, Wollert KC, Abel ED, Drakos SG, Bauersachs J, Riehle C. Hypoxia Attenuates Pressure Overload-Induced Heart Failure. J Am Heart Assoc 2024; 13:e033553. [PMID: 38293923 PMCID: PMC11056135 DOI: 10.1161/jaha.123.033553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 12/27/2023] [Indexed: 02/01/2024]
Abstract
BACKGROUND Alveolar hypoxia is protective in the context of cardiovascular and ischemic heart disease; however, the underlying mechanisms are incompletely understood. The present study sought to test the hypothesis that hypoxia is cardioprotective in left ventricular pressure overload (LVPO)-induced heart failure. We furthermore aimed to test that overlapping mechanisms promote cardiac recovery in heart failure patients following left ventricular assist device-mediated mechanical unloading and circulatory support. METHODS AND RESULTS We established a novel murine model of combined chronic alveolar hypoxia and LVPO following transverse aortic constriction (HxTAC). The HxTAC model is resistant to cardiac hypertrophy and the development of heart failure. The cardioprotective mechanisms identified in our HxTAC model include increased activation of HIF (hypoxia-inducible factor)-1α-mediated angiogenesis, attenuated induction of genes associated with pathological remodeling, and preserved metabolic gene expression as identified by RNA sequencing. Furthermore, LVPO decreased Tbx5 and increased Hsd11b1 mRNA expression under normoxic conditions, which was attenuated under hypoxic conditions and may induce additional hypoxia-mediated cardioprotective effects. Analysis of samples from patients with advanced heart failure that demonstrated left ventricular assist device-mediated myocardial recovery revealed a similar expression pattern for TBX5 and HSD11B1 as observed in HxTAC hearts. CONCLUSIONS Hypoxia attenuates LVPO-induced heart failure. Cardioprotective pathways identified in the HxTAC model might also contribute to cardiac recovery following left ventricular assist device support. These data highlight the potential of our novel HxTAC model to identify hypoxia-mediated cardioprotective mechanisms and therapeutic targets that attenuate LVPO-induced heart failure and mediate cardiac recovery following mechanical circulatory support.
Collapse
Affiliation(s)
- Natali Froese
- Department of Cardiology and AngiologyHannover Medical SchoolHannoverGermany
| | | | - Paolo Galuppo
- Department of Cardiology and AngiologyHannover Medical SchoolHannoverGermany
| | - Joseph R. Visker
- Nora Eccles Harrison Cardiovascular Research and Training Institute (CVRTI) and Division of Cardiovascular MedicineUniversity of Utah School of MedicineSalt Lake CityUTUSA
| | | | | | - Dominik Berliner
- Department of Cardiology and AngiologyHannover Medical SchoolHannoverGermany
| | - Marc R. Reboll
- Department of Cardiology and AngiologyHannover Medical SchoolHannoverGermany
| | - Rana Hamouche
- Nora Eccles Harrison Cardiovascular Research and Training Institute (CVRTI) and Division of Cardiovascular MedicineUniversity of Utah School of MedicineSalt Lake CityUTUSA
| | - Simona Gegel
- Department of Cardiology and AngiologyHannover Medical SchoolHannoverGermany
| | - Yong Wang
- Department of Cardiology and AngiologyHannover Medical SchoolHannoverGermany
| | - Winfried Hofmann
- Department of Human GeneticsHannover Medical SchoolHannoverGermany
| | - Ming Tang
- Department of Human GeneticsHannover Medical SchoolHannoverGermany
- L3S Research CenterLeibniz UniversityHannoverGermany
| | - Robert Geffers
- Helmholtz Center for Infection ResearchResearch Group Genome AnalyticsBraunschweigGermany
| | - Adam R. Wende
- Division of Molecular and Cellular Pathology, Department of PathologyUniversity of Alabama at BirminghamBirminghamALUSA
| | - Mark P. Kühnel
- Institute of PathologyHannover Medical SchoolHannoverGermany
- Biomedical Research in End‐stage and Obstructive Lung Disease Hannover (BREATH)German Lung Research Center (DZL)HannoverGermany
| | - Danny D. Jonigk
- Institute of PathologyHannover Medical SchoolHannoverGermany
- Biomedical Research in End‐stage and Obstructive Lung Disease Hannover (BREATH)German Lung Research Center (DZL)HannoverGermany
| | - Georg Hansmann
- Department of Pediatric Cardiology and Critical CareHannover Medical SchoolHannoverGermany
- Department of Pediatric CardiologyUniversity Medical Center Erlangen, Friedrich‐Alexander University Erlangen‐NürnbergErlangenGermany
| | - Kai C. Wollert
- Department of Cardiology and AngiologyHannover Medical SchoolHannoverGermany
| | - E. Dale Abel
- Department of MedicineDavid Geffen School of Medicine and UCLA HealthLos AngelesCAUSA
| | - Stavros G. Drakos
- Nora Eccles Harrison Cardiovascular Research and Training Institute (CVRTI) and Division of Cardiovascular MedicineUniversity of Utah School of MedicineSalt Lake CityUTUSA
| | - Johann Bauersachs
- Department of Cardiology and AngiologyHannover Medical SchoolHannoverGermany
| | - Christian Riehle
- Department of Cardiology and AngiologyHannover Medical SchoolHannoverGermany
| |
Collapse
|
21
|
Takeda R, Nojima H, Nishikawa T, Okudaira M, Hirono T, Watanabe K. Subtetanic neuromuscular electrical stimulation can maintain Wingate test performance but augment blood lactate accumulation. Eur J Appl Physiol 2024; 124:433-444. [PMID: 37535142 DOI: 10.1007/s00421-023-05291-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/24/2023] [Indexed: 08/04/2023]
Abstract
PURPOSE Concentration- and time-dependent effect of lactate on physiological adaptation (i.e., glycolytic adaptation and mitochondrial biogenesis) have been reported. Subtetanic neuromuscular electrical stimulation (NMES) with voluntary exercise (VOLES) can increase blood lactate accumulation. However, whether this is also true that VOLES can enhance the blood lactate accumulation during sprint exercise is unknown. Thus, we investigated whether VOLES before the Wingate test can enhance blood lactate accumulation without compromising Wingate exercise performance. METHODS Fifteen healthy young males (mean [SD], age: 23 [4] years, body mass index: 22.0 [2.1] kg/m2) volunteered. After resting measurement, participants performed a 3-min intervention: VOLES (NMES with free-weight cycling) or voluntary cycling alone, which matched exercise intensity with VOLES (VOL, 43.6 [8.0] watt). Then, they performed the Wingate test with 30 min free-weight cycling recovery. The blood lactate concentration ([La]b) was assessed at the end of resting and intervention, and recovery at 1, 3, 5, 10, 20, and 30 min. RESULTS [La]b during intervention was higher with VOLES than VOL (P = 0.011). The increase in [La]b after the Wingate test was maintained for longer with VOLES than VOL at 10- and 20-min recovery (P = 0.014 and 0.023, respectively). Based on the Wingate test, peak power, mean power, and the rate of decline were not significantly different between VOLES and VOL (P = 0.184, 0.201, and 0.483, respectively). CONCLUSION The combination of subtetanic NMES with voluntary exercise before the Wingate test has the potential to enhance blood lactate accumulation. Importantly, this combined approach does not compromise Wingate exercise performance compared to voluntary exercise alone.
Collapse
Affiliation(s)
- Ryosuke Takeda
- Laboratory of Neuromuscular Biomechanics, School of Health and Sport Science, Chukyo University, 101 Tokodachi, Kaizu-cho, Toyota, Aichi, 470-0393, Japan.
| | - Hiroya Nojima
- Laboratory of Neuromuscular Biomechanics, School of Health and Sport Science, Chukyo University, 101 Tokodachi, Kaizu-cho, Toyota, Aichi, 470-0393, Japan
| | - Taichi Nishikawa
- Laboratory of Neuromuscular Biomechanics, School of Health and Sport Science, Chukyo University, 101 Tokodachi, Kaizu-cho, Toyota, Aichi, 470-0393, Japan
- Graduate School of Health and Sport Sciences, Chukyo University, Toyota, Japan
| | - Masamichi Okudaira
- Laboratory of Neuromuscular Biomechanics, School of Health and Sport Science, Chukyo University, 101 Tokodachi, Kaizu-cho, Toyota, Aichi, 470-0393, Japan
| | - Tetsuya Hirono
- Laboratory of Neuromuscular Biomechanics, School of Health and Sport Science, Chukyo University, 101 Tokodachi, Kaizu-cho, Toyota, Aichi, 470-0393, Japan
- Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
| | - Kohei Watanabe
- Laboratory of Neuromuscular Biomechanics, School of Health and Sport Science, Chukyo University, 101 Tokodachi, Kaizu-cho, Toyota, Aichi, 470-0393, Japan
| |
Collapse
|
22
|
Lin CY, Chang YM, Tseng HY, Shih YL, Yeh HH, Liao YR, Tang HH, Hsu CL, Chen CC, Yan YT, Kao CF. Epigenetic regulator RNF20 underlies temporal hierarchy of gene expression to regulate postnatal cardiomyocyte polarization. Cell Rep 2023; 42:113416. [PMID: 37967007 DOI: 10.1016/j.celrep.2023.113416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 09/19/2023] [Accepted: 10/25/2023] [Indexed: 11/17/2023] Open
Abstract
Differentiated cardiomyocytes (CMs) must undergo diverse morphological and functional changes during postnatal development. However, the mechanisms underlying initiation and coordination of these changes remain unclear. Here, we delineate an integrated, time-ordered transcriptional network that begins with expression of genes for cell-cell connections and leads to a sequence of structural, cell-cycle, functional, and metabolic transitions in mouse postnatal hearts. Depletion of histone H2B ubiquitin ligase RNF20 disrupts this gene network and impairs CM polarization. Subsequently, assay for transposase-accessible chromatin using sequencing (ATAC-seq) analysis confirmed that RNF20 contributes to chromatin accessibility in this context. As such, RNF20 is likely to facilitate binding of transcription factors at the promoters of genes involved in cell-cell connections and actin organization, which are crucial for CM polarization and functional integration. These results suggest that CM polarization is one of the earliest events during postnatal heart development and provide insights into how RNF20 regulates CM polarity and the postnatal gene program.
Collapse
Affiliation(s)
- Chia-Yeh Lin
- Institute of Cellular and Organismic Biology, Academia Sinica, 128, Academia Road, Section 2, Nankang, Taipei, Taiwan
| | - Yao-Ming Chang
- Institute of Biomedical Sciences, Academia Sinica, 128, Academia Road, Section 2, Nankang, Taipei, Taiwan
| | - Hsin-Yi Tseng
- Institute of Cellular and Organismic Biology, Academia Sinica, 128, Academia Road, Section 2, Nankang, Taipei, Taiwan
| | - Yen-Ling Shih
- Institute of Biomedical Sciences, Academia Sinica, 128, Academia Road, Section 2, Nankang, Taipei, Taiwan
| | - Hsiao-Hui Yeh
- Institute of Biomedical Sciences, Academia Sinica, 128, Academia Road, Section 2, Nankang, Taipei, Taiwan
| | - You-Rou Liao
- Institute of Cellular and Organismic Biology, Academia Sinica, 128, Academia Road, Section 2, Nankang, Taipei, Taiwan
| | - Han-Hsuan Tang
- Institute of Cellular and Organismic Biology, Academia Sinica, 128, Academia Road, Section 2, Nankang, Taipei, Taiwan
| | - Chia-Ling Hsu
- Institute of Cellular and Organismic Biology, Academia Sinica, 128, Academia Road, Section 2, Nankang, Taipei, Taiwan
| | - Chien-Chang Chen
- Institute of Biomedical Sciences, Academia Sinica, 128, Academia Road, Section 2, Nankang, Taipei, Taiwan
| | - Yu-Ting Yan
- Institute of Biomedical Sciences, Academia Sinica, 128, Academia Road, Section 2, Nankang, Taipei, Taiwan.
| | - Cheng-Fu Kao
- Institute of Cellular and Organismic Biology, Academia Sinica, 128, Academia Road, Section 2, Nankang, Taipei, Taiwan.
| |
Collapse
|
23
|
Lauterbach AL, Slezak AJ, Wang R, Cao S, Raczy MM, Watkins EA, Jimenez CJM, Hubbell JA. Mannose-Decorated Co-Polymer Facilitates Controlled Release of Butyrate to Accelerate Chronic Wound Healing. Adv Healthc Mater 2023; 12:e2300515. [PMID: 37503634 PMCID: PMC11468131 DOI: 10.1002/adhm.202300515] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/25/2023] [Indexed: 07/29/2023]
Abstract
Butyrate is a key bacterial metabolite that plays an important and complex role in modulation of immunity and maintenance of epithelial barriers. Its translation to clinic is limited by poor bioavailability, pungent smell, and the need for high doses, and effective delivery strategies have yet to realize clinical potential. Here, a novel polymeric delivery platform for tunable and sustainable release of butyrate consisting of a methacrylamide backbone with butyryl ester or phenyl ester side chains as well as mannosyl side chains, which is also applicable to other therapeutically relevant metabolites is reported. This platform's utility in the treatment of non-healing diabetic wounds is explored. This butyrate-containing material modulated immune cell activation in vitro and induced striking changes in the milieu of soluble cytokine and chemokine signals present within the diabetic wound microenvironment in vivo. This novel therapy shows efficacy in the treatment of non-healing wounds through the modulation of the soluble signals present within the wound, and importantly accommodates the critical temporal regulation associated with the wound healing process. Currently, the few therapies to address non-healing wounds demonstrate limited efficacy. This novel platform is positioned to address this large unmet clinical need and improve the closure of otherwise non-healing wounds.
Collapse
Affiliation(s)
| | - Anna J. Slezak
- Pritzker School of Molecular EngineeringUniversity of ChicagoChicagoIL60637USA
| | - Ruyi Wang
- Pritzker School of Molecular EngineeringUniversity of ChicagoChicagoIL60637USA
| | - Shijie Cao
- Pritzker School of Molecular EngineeringUniversity of ChicagoChicagoIL60637USA
| | - Michal M. Raczy
- Pritzker School of Molecular EngineeringUniversity of ChicagoChicagoIL60637USA
| | - Elyse A. Watkins
- Pritzker School of Molecular EngineeringUniversity of ChicagoChicagoIL60637USA
| | | | - Jeffrey A. Hubbell
- Pritzker School of Molecular EngineeringUniversity of ChicagoChicagoIL60637USA
| |
Collapse
|
24
|
Jiang L, Liu T, Lyu K, Chen Y, Lu J, Wang X, Long L, Li S. Inflammation-related signaling pathways in tendinopathy. Open Life Sci 2023; 18:20220729. [PMID: 37744452 PMCID: PMC10512452 DOI: 10.1515/biol-2022-0729] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/26/2023] Open
Abstract
Tendon is a connective tissue that produces movement by transmitting the force produced by muscle contraction to the bones. Most tendinopathy is caused by prolonged overloading of the tendon, leading to degenerative disease of the tendon. When overloaded, the oxygen demand of tenocytes increases, and the tendon structure is special and lacks blood supply, which makes it easier to form an oxygen-deficient environment in tenocytes. The production of reactive oxygen species due to hypoxia causes elevation of inflammatory markers in the tendon, including PGE2, IL-1β, and TNF-α. In the process of tendon healing, inflammation is also a necessary stage. The inflammatory environment formed by cytokines and various immune cells play an important role in the clearance of necrotic material, the proliferation of tenocytes, and the production of collagen fibers. However, excessive inflammation can lead to tendon adhesions and hinder tendon healing. Some important and diverse biological functions of the body originate from intercellular signal transduction, among which cytokine mediation is an important way of signal transduction. In particular, NF-κB, NLRP3, p38/MAPK, and signal transducer and activator of transcription 3, four common signaling pathways in tendinopathy inflammatory response, play a crucial role in the regulation and transcription of inflammatory factors. Therefore, summarizing the specific mechanisms of inflammatory signaling pathways in tendinopathy is of great significance for an in-depth understanding of the inflammatory response process and exploring how to inhibit the harmful part of the inflammatory response and promote the beneficial part to improve the healing effect of the tendon.
Collapse
Affiliation(s)
- Li Jiang
- School of Physical Education, Southwest Medical University, Luzhou, 646000, China
| | - Tianzhu Liu
- Neurology Department, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Kexin Lyu
- School of Physical Education, Southwest Medical University, Luzhou, 646000, China
| | - Yixuan Chen
- School of Physical Education, Southwest Medical University, Luzhou, 646000, China
| | - Jingwei Lu
- School of Physical Education, Southwest Medical University, Luzhou, 646000, China
| | - Xiaoqiang Wang
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Longhai Long
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Sen Li
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital
of Medical School, Nanjing University, Nanjing, 210000, China
| |
Collapse
|
25
|
Yu Y, He J, Liu W, Li Z, Weng S, He J, Guo C. Molecular Characterization and Functional Analysis of Hypoxia-Responsive Factor Prolyl Hydroxylase Domain 2 in Mandarin Fish ( Siniperca chuatsi). Animals (Basel) 2023; 13:ani13091556. [PMID: 37174593 PMCID: PMC10177477 DOI: 10.3390/ani13091556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/18/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
With increased breeding density, the phenomenon of hypoxia gradually increases in aquaculture. Hypoxia is primarily mediated by the hypoxia-inducible factor 1 (HIF-1) signaling pathway. Prolyl hydroxylase domain proteins (PHD) are cellular oxygen-sensing molecules that regulate the stability of HIF-1α through hydroxylation. In this study, the characterization of the PHD2 from mandarin fish Siniperca chuatsi (scPHD2) and its roles in the HIF-1 signaling pathway were investigated. Bioinformation analysis showed that scPHD2 had the conserved prolyl 4-hydroxylase alpha subunit homolog domains at its C-terminal and was more closely related to other Perciformes PHD2 than other PHD2. Tissue-distribution results revealed that scphd2 gene was expressed in all tissues tested and more highly expressed in blood and liver than in other tested tissues. Dual-luciferase reporter gene and RT-qPCR assays showed that scPHD2 overexpression could significantly inhibit the HIF-1 signaling pathway. Co-immunoprecipitation analysis showed that scPHD2 could interact with scHIF-1α. Protein degradation experiment results suggested that scPHD2 could promote scHIF-1α degradation through the proteasome degradation pathway. This study advances our understanding of how the HIF-1 signaling pathway is regulated by scPHD2 and will help in understanding the molecular mechanisms underlying hypoxia adaptation in teleost fish.
Collapse
Affiliation(s)
- Yang Yu
- State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangdong Provincial Observation and Research Station for Marine Ranching of the Lingdingyang Bay, School of Marine Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, China
| | - Jian He
- State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangdong Provincial Observation and Research Station for Marine Ranching of the Lingdingyang Bay, School of Marine Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, China
| | - Wenhui Liu
- State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangdong Provincial Observation and Research Station for Marine Ranching of the Lingdingyang Bay, School of Marine Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, China
| | - Zhimin Li
- State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangdong Provincial Observation and Research Station for Marine Ranching of the Lingdingyang Bay, School of Marine Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, China
| | - Shaoping Weng
- Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, China
| | - Jianguo He
- State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangdong Provincial Observation and Research Station for Marine Ranching of the Lingdingyang Bay, School of Marine Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, China
| | - Changjun Guo
- State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangdong Provincial Observation and Research Station for Marine Ranching of the Lingdingyang Bay, School of Marine Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, China
- Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, China
| |
Collapse
|
26
|
Hosseini FS, Abedini AA, Chen F, Whitfield T, Ude CC, Laurencin CT. Oxygen-Generating Biomaterials for Translational Bone Regenerative Engineering. ACS APPLIED MATERIALS & INTERFACES 2023; 15:50721-50741. [PMID: 36988393 DOI: 10.1021/acsami.2c20715] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Successful regeneration of critical-size defects remains one of the significant challenges in regenerative engineering. These large-scale bone defects are difficult to regenerate and are often reconstructed with matrices that do not provide adequate oxygen levels to stem cells involved in the regeneration process. Hypoxia-induced necrosis predominantly occurs in the center of large matrices since the host tissue's local vasculature fails to provide sufficient nutrients and oxygen. Indeed, utilizing oxygen-generating materials can overcome the central hypoxic region, induce tissue in-growth, and increase the quality of life for patients with extensive tissue damage. This article reviews recent advances in oxygen-generating biomaterials for translational bone regenerative engineering. We discussed different oxygen-releasing and delivery methods, fabrication methods for oxygen-releasing matrices, biology, oxygen's role in bone regeneration, and emerging new oxygen delivery methods that could potentially be used for bone regenerative engineering.
Collapse
Affiliation(s)
- Fatemeh S Hosseini
- Connecticut Convergence Institute for Translation in Regenerative Engineering, UConn Health, Farmington, Connecticut 06030, United States
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, UConn Health, Farmington, Connecticut 06030, United States
- Department of Skeletal Biology and Regeneration, UConn Health, Farmington, Connecticut 06030, United States
- Department of Orthopedic Surgery, UConn Health, Farmington, Connecticut 06030, United States
| | - Amir Abbas Abedini
- Connecticut Convergence Institute for Translation in Regenerative Engineering, UConn Health, Farmington, Connecticut 06030, United States
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, UConn Health, Farmington, Connecticut 06030, United States
- Department of Materials Science and Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Feiyang Chen
- Connecticut Convergence Institute for Translation in Regenerative Engineering, UConn Health, Farmington, Connecticut 06030, United States
| | - Taraje Whitfield
- Connecticut Convergence Institute for Translation in Regenerative Engineering, UConn Health, Farmington, Connecticut 06030, United States
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, UConn Health, Farmington, Connecticut 06030, United States
- Department of Skeletal Biology and Regeneration, UConn Health, Farmington, Connecticut 06030, United States
| | - Chinedu C Ude
- Connecticut Convergence Institute for Translation in Regenerative Engineering, UConn Health, Farmington, Connecticut 06030, United States
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, UConn Health, Farmington, Connecticut 06030, United States
- Department of Orthopedic Surgery, UConn Health, Farmington, Connecticut 06030, United States
| | - Cato T Laurencin
- Connecticut Convergence Institute for Translation in Regenerative Engineering, UConn Health, Farmington, Connecticut 06030, United States
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, UConn Health, Farmington, Connecticut 06030, United States
- Department of Skeletal Biology and Regeneration, UConn Health, Farmington, Connecticut 06030, United States
- Department of Orthopedic Surgery, UConn Health, Farmington, Connecticut 06030, United States
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
- Department of Chemical and Bimolecular Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
- Department of Materials Science and Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| |
Collapse
|
27
|
Solanki AK, Autefage H, Rodriguez AR, Agarwal S, Penide J, Mahat M, Whittaker T, Nommeots-Nomm A, Littmann E, Payne DJ, Metcalfe AD, Quintero F, Pou J, Stevens MM, Jones JR. Cobalt containing glass fibres and their synergistic effect on the HIF-1 pathway for wound healing applications. Front Bioeng Biotechnol 2023; 11:1125060. [PMID: 36970616 PMCID: PMC10036384 DOI: 10.3389/fbioe.2023.1125060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/16/2023] [Indexed: 03/12/2023] Open
Abstract
Introduction and Methods: Chronic wounds are a major healthcare problem, but their healing may be improved by developing biomaterials which can stimulate angiogenesis, e.g. by activating the Hypoxia Inducible Factor (HIF) pathway. Here, novel glass fibres were produced by laser spinning. The hypothesis was that silicate glass fibres that deliver cobalt ions will activate the HIF pathway and promote the expression of angiogenic genes. The glass composition was designed to biodegrade and release ions, but not form a hydroxyapatite layer in body fluid.Results and Discussion: Dissolution studies demonstrated that hydroxyapatite did not form. When keratinocyte cells were exposed to conditioned media from the cobalt-containing glass fibres, significantly higher amounts of HIF-1α and Vascular Endothelial Growth Factor (VEGF) were measured compared to when the cells were exposed to media with equivalent amounts of cobalt chloride. This was attributed to a synergistic effect of the combination of cobalt and other therapeutic ions released from the glass. The effect was also much greater than the sum of HIF-1α and VEGF expression when the cells were cultured with cobalt ions and with dissolution products from the Co-free glass, and was proven to not be due to a rise in pH. The ability of the glass fibres to activate the HIF-1 pathway and promote VEGF expression shows the potential for their use in chronic wound dressings.
Collapse
Affiliation(s)
- Anu K. Solanki
- Department of Materials, Imperial College London, London, United Kingdom
- Department of Bioengineering, Imperial College London, London, United Kingdom
- Institute of Biomedical Engineering, Imperial College London, London, United Kingdom
| | - Hélène Autefage
- Department of Materials, Imperial College London, London, United Kingdom
- Department of Bioengineering, Imperial College London, London, United Kingdom
- Institute of Biomedical Engineering, Imperial College London, London, United Kingdom
| | | | - Shweta Agarwal
- Department of Materials, Imperial College London, London, United Kingdom
- Department of Bioengineering, Imperial College London, London, United Kingdom
- Institute of Biomedical Engineering, Imperial College London, London, United Kingdom
| | - Joaquin Penide
- Dpto. Fisica Aplicada, Universidad de Vigo, E.I. Industrial, Vigo, Spain
| | - Muzamir Mahat
- Department of Materials, Imperial College London, London, United Kingdom
- Department of Bioengineering, Imperial College London, London, United Kingdom
- Institute of Biomedical Engineering, Imperial College London, London, United Kingdom
- Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Malaysia
| | - Thomas Whittaker
- Department of Materials, Imperial College London, London, United Kingdom
- Department of Bioengineering, Imperial College London, London, United Kingdom
- Institute of Biomedical Engineering, Imperial College London, London, United Kingdom
| | - Amy Nommeots-Nomm
- Department of Materials, Imperial College London, London, United Kingdom
| | - Elena Littmann
- Department of Materials, Imperial College London, London, United Kingdom
- Department of Bioengineering, Imperial College London, London, United Kingdom
- Institute of Biomedical Engineering, Imperial College London, London, United Kingdom
| | - David J. Payne
- Department of Materials, Imperial College London, London, United Kingdom
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, United Kingdom
| | - Anthony D. Metcalfe
- Healthcare Technologies Institute, School of Chemical Engineering, University of Birmingham, Birmingham, United Kingdom
| | - Felix Quintero
- Dpto. Fisica Aplicada, Universidad de Vigo, E.I. Industrial, Vigo, Spain
| | - Juan Pou
- Dpto. Fisica Aplicada, Universidad de Vigo, E.I. Industrial, Vigo, Spain
| | - Molly M. Stevens
- Department of Materials, Imperial College London, London, United Kingdom
- Department of Bioengineering, Imperial College London, London, United Kingdom
- Institute of Biomedical Engineering, Imperial College London, London, United Kingdom
| | - Julian R. Jones
- Department of Materials, Imperial College London, London, United Kingdom
- *Correspondence: Julian R. Jones,
| |
Collapse
|
28
|
Abstract
BACKGROUND Retinal neovascularization is the major cause of vision loss that affects both adults and young children including premature babies. It has been a major pathology in several retinal diseases like age-related macular degeneration (AMD), diabetic retinopathy (DR) and retinopathy of prematurity (ROP). Current treatment modalities such as anti-VEGF therapy, laser are not suitable for every patient and response to these therapies is highly variable. Thus, there is a need to investigate newer therapeutic targets for DR, ROP and AMD, based on a clear understanding of disease pathology and regulatory mechanisms involved. METHOD Appropriate articles published till February 2021 were extracted from PUBMED using keywords like ocular angiogenesis, DR, ROP, AMD, miRNA, mRNA, and cirMiRNA and containvaluable information regarding the involvement of miRNA in causing neovascularization. After compiling the list of miRNA regulating mRNA expression in angiogenesis and neovascularaization, their interactions were studied using online available tool MIENTURNET (http://userver.bio.uniroma1.it/apps/mienturnet/). The pathways involved in these processes were also predicted using the same tool. RESULTS Most of the studies have explored potential targets like HIF1-α, PDGF, TGFβ, FGF, etc., for their involvement in pathological angiogenesis in different retinal diseases. The regulatory role of microRNA (miRNA) has also been explored in various retinal ocular pathologies. This review highlights regulatory mechanism of cellular and circulatory miRNAs and their interactions with the genes involved in retinal neovascularization. The role of long noncoding RNA (ncRNA) in the regulation of genes involved in different pathways is also noteworthy and discussed in this review. CONCLUSION This review highlights the potential regulatory mechanism/pathways involved in retinal neovascularization and its implications in retinal diseases and for identifying new drug targets.
Collapse
Affiliation(s)
- Sushma Vishwakarma
- Prof Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad, India.,Manipal Academy of Higher Education, Manipal, India
| | - Inderjeet Kaur
- Prof Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad, India
| |
Collapse
|
29
|
Párraga-Ros E, Latorre-Reviriego R, Aparicio-González M, Boronat-Belda T, López-Albors O. The immunolocalization of HIF-2α, GLUT1 and CAIX in porcine oviduct during the estrous cycle. Anat Rec (Hoboken) 2023; 306:176-186. [PMID: 35684983 PMCID: PMC10084220 DOI: 10.1002/ar.25014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 01/29/2023]
Abstract
Oxygen (O2 ) rates in the oviduct are essential to human and animal reproduction. These rates are regulated by the activity of hypoxia markers such as the hypoxia-inducible factors (HIFs), the glucose transporters (GLUT), and the carbonic anhydrase (CA). In the porcine model, scarce studies have been reported regarding these markers and their effects in reproduction are unknown. The objective was to characterize the immunolocalization of HIF-2α, GLUT1, and CAIX in porcine oviducts throughout the estrous cycle. Oviducts (ampulla and isthmus) of adult sows (n = 45) were collected for histological and immunohistochemical analysis with HIF-2α, GLUT1, and CAIX markers. The percentage of immunopositive area was quantified, and the differences among phases of the estrous cycle were analyzed (folicular, early luteal, and late luteal). The three markers showed epithelial presence mainly. Significantly lower expression of HIF-2α was found in the luteal phases, especially in the isthmus. GLUT1 expression did not change throughout the estrous cycle, but differences were found between the ampulla and isthmus. CAIX expression showed the highest, with a significant downward trend throughout estrous cycle. The ubiquitous expression of hypoxia markers shows the porcine oviduct physiology in relation to O2 . The differential expression of HIF-2α, GLUT1, and CAIX in different subcompartments of the oviduct throughout the estrous cycle contributes to improve the knowledge of the cell physiology of the oviduct, which can be useful in fertilization studies.
Collapse
Affiliation(s)
- Ester Párraga-Ros
- Anatomy and Comparative Pathology Department, University of Murcia, International Excellence Campus for Higher Education and Research (Campus Mare Nostrum), Murcia, Spain
| | - Rafael Latorre-Reviriego
- Anatomy and Comparative Pathology Department, University of Murcia, International Excellence Campus for Higher Education and Research (Campus Mare Nostrum), Murcia, Spain
| | - Mónica Aparicio-González
- Anatomy and Comparative Pathology Department, University of Murcia, International Excellence Campus for Higher Education and Research (Campus Mare Nostrum), Murcia, Spain
| | - Talía Boronat-Belda
- Unit of Cell Physiology and Nutrition, Miguel Hernández University, Alicante, Spain
| | - Octavio López-Albors
- Anatomy and Comparative Pathology Department, University of Murcia, International Excellence Campus for Higher Education and Research (Campus Mare Nostrum), Murcia, Spain
| |
Collapse
|
30
|
Ferrante P, Preziosi L, Scianna M. Modeling hypoxia-related inflammation scenarios. Math Biosci 2023; 355:108952. [PMID: 36528132 DOI: 10.1016/j.mbs.2022.108952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 11/26/2022] [Accepted: 12/01/2022] [Indexed: 12/15/2022]
Abstract
Cells respond to hypoxia via the activation of three isoforms of Hypoxia Inducible Factors (HIFs), that are characterized by different activation times. HIF overexpression has many effects on cell behavior, such as change in metabolism, promotion of angiogenic processes and elicitation of a pro-inflammatory response. These effects are driving forces of malignant progression in cancer cells. In this work we study in detail hypoxia-induced dynamics of HIF1α and HIF2α, which are the most studied isoforms, comparing available experimental data on their evolution in tumor cells with the results obtained integrating the deduced mathematical model. Then, we examine the possible scenarios that characterize the link between hypoxia and inflammation via the activation of NFkB (Nuclear Factor k-light-chain-enhancer of activated B cells) when the dimensionless groups of parameters of the mathematical model change. In this way we are able to discuss why and when hypoxic conditions lead to acute or chronic inflammatory states.
Collapse
Affiliation(s)
- P Ferrante
- Department Mathematical Sciences, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino, Italy; Candiolo Cancer Institute FPO-IRCCS, Candiolo, Italy.
| | - L Preziosi
- Department Mathematical Sciences, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino, Italy.
| | - M Scianna
- Department Mathematical Sciences, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino, Italy.
| |
Collapse
|
31
|
Puchowicz MA, Parveen K, Sethuraman A, Ishrat T, Xu K, LaManna J. Pro-survival Phenotype of HIF-1α: Neuroprotection Through Inflammatory Mechanisms. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1438:33-36. [PMID: 37845436 DOI: 10.1007/978-3-031-42003-0_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Hypoxia-inducible factor 1 (HIF-1) is a major player in the oxygen sensor system as well as a transcription factor. HIF-1 is also associated in the pathogenesis of many brain diseases including Alzheimer's disease (AD), epilepsy and stroke. HIF-1 regulates the expression of many genes such as those involved in glycolysis, erythropoiesis, angiogenesis and proliferation in hypoxic condition. Despite several studies, the mechanism through which HIF-1 confers neuroprotection remains unclear, one of them is modulating metabolic profiles and inflammatory pathways. Characterization of the neuroprotective role of HIF-1 may be through its stabilization and the regulation of target genes that aid in the early adaptation to the oxidative stressors. It is interesting to note that mounting data from recent years point to an additional crucial regulatory role for hypoxia-inducible factors (HIFs) in inflammation. HIFs in immune cells regulate the production of glycolytic energy as well as innate immunity, pro-inflammatory gene expression, and mediates activation of pro-survival pathways. The present review highlights the contribution of HIF-1 to neuroprotection where inflammation is the crucial factor in the pathogenesis contributing to neural death. The potential mechanisms that contribute to neuroprotection as a result of the downstream targets of HIF-1α are discussed. Such mechanisms include those mediated through IL-10, an anti-inflammatory molecule involved in activating pro-survival signaling mechanisms via AKT/ERK and JAK/STAT pathways.
Collapse
Affiliation(s)
- Michelle A Puchowicz
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, USA.
- Department of Physiology & Biophysics, Case Western Reserve University, Cleveland, OH, USA.
| | - Kehkashan Parveen
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Aarti Sethuraman
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Tauheed Ishrat
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Kui Xu
- Department of Physiology & Biophysics, Case Western Reserve University, Cleveland, OH, USA
| | - Joseph LaManna
- Department of Physiology & Biophysics, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
32
|
Zheng J, Kim SJ, Saeidi S, Kim SH, Fang X, Lee YH, Guillen-Quispe YN, Ngo HKC, Kim DH, Kim D, Surh YJ. Overactivated NRF2 induces pseudohypoxia in hepatocellular carcinoma by stabilizing HIF-1α. Free Radic Biol Med 2023; 194:347-356. [PMID: 36460215 DOI: 10.1016/j.freeradbiomed.2022.11.039] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022]
Abstract
Hypoxia-inducible factor-1α (HIF-1α) is highly expressed/activated in most hypoxic tumors including hepatocellular carcinoma (HCC). Another key transcription factor, nuclear factor erythroid 2-related factor 2 (NRF2), is also constitutively overactivated in HCC. In an attempt to determine whether HIF-1α and NRF2 could play complementary roles in HCC growth and progression, we investigated the crosstalk between these two transcription factors and underlying molecular mechanisms in cultured HCC cells and experimentally induced hepatocarcinogenesis as well as clinical settings. While silencing of HIF-1α in HepG2 human hepatoma cells did not alter the protein expression of NRF2, NRF2 knockdown markedly reduced the nuclear accumulation of HIF-1α without influencing its mRNA expression. In diethylnitrosamine-induced hepatocarcinogenesis in wild type mice, there was elevated NRF2 expression with concomitant upregulation of HIF-1α. However, this was abolished in Nrf2 knockout mice. NRF2 and HIF-1α co-localized and physically interacted with each other as assessed by in situ proximity ligation and immunoprecipitation assays. In addition, the interaction between NRF2 and HIF-1α as well as their overexpression was found in tumor specimens obtained from HCC patients. In normoxia, HIF-1α undergoes hydroxylation by a specific HIF-prolyl hydroxylase domain protein (PHD), which facilitates ubiquitination and proteasomal degradation of HIF-1α. NRF2 contributes to pseudohypoxia, by directly binding to the oxygen-dependent degradation (ODD) domain of HIF-1α, which hampers the PHD2-mediated hydroxylation, concomitant recruitment of von-Hippel-Lindau and ubiquitination of HIF-1α.
Collapse
Affiliation(s)
- Jie Zheng
- College of Pharmacy, Seoul National University, Seoul 08826, South Korea
| | - Su-Jung Kim
- Department of Molecular Medicine and Biopharmaceutical Science, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, South Korea
| | - Soma Saeidi
- Department of Molecular Medicine and Biopharmaceutical Science, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, South Korea
| | - Seong Hoon Kim
- College of Pharmacy, Seoul National University, Seoul 08826, South Korea
| | - Xizhu Fang
- College of Pharmacy, Seoul National University, Seoul 08826, South Korea
| | - Yeon-Hwa Lee
- College of Pharmacy, Seoul National University, Seoul 08826, South Korea
| | - Yanymee N Guillen-Quispe
- Department of Molecular Medicine and Biopharmaceutical Science, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, South Korea
| | - Hoang Kieu Chi Ngo
- College of Pharmacy, Seoul National University, Seoul 08826, South Korea
| | - Do-Hee Kim
- Department of Chemistry, College of Convergence and Integrated Science, Kyonggi University, Suwon 16627, South Korea
| | - Doojin Kim
- Department of Surgery, Gachon University Gil Medical Center, Gachon University School of Medicine, Incheon 21565, South Korea
| | - Young-Joon Surh
- College of Pharmacy, Seoul National University, Seoul 08826, South Korea; Cancer Research Institute, Seoul National University, Seoul 03080, South Korea.
| |
Collapse
|
33
|
Ghafoory S, Stengl C, Kopany S, Mayadag M, Mechtel N, Murphy B, Schattschneider S, Wilhelmi N, Wölfl S. Oxygen Gradient Induced in Microfluidic Chips Can Be Used as a Model for Liver Zonation. Cells 2022; 11:cells11233734. [PMID: 36496994 PMCID: PMC9738923 DOI: 10.3390/cells11233734] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022] Open
Abstract
Availability of oxygen plays an important role in tissue organization and cell-type specific metabolism. It is, however, difficult to analyze hypoxia-related adaptations in vitro because of inherent limitations of experimental model systems. In this study, we establish a microfluidic tissue culture protocol to generate hypoxic gradients in vitro, mimicking the conditions found in the liver acinus. To accomplish this, four microfluidic chips, each containing two chambers, were serially connected to obtain eight interconnected chambers. HepG2 hepatocytes were uniformly seeded in each chamber and cultivated under a constant media flow of 50 µL/h for 72 h. HepG2 oxygen consumption under flowing media conditions established a normoxia to hypoxia gradient within the chambers, which was confirmed by oxygen sensors located at the inlet and outlet of the connected microfluidic chips. Expression of Hif1α mRNA and protein was used to indicate hypoxic conditions in the cells and albumin mRNA and protein expression served as a marker for liver acinus-like zonation. Oxygen measurements performed over 72 h showed a change from 17.5% to 15.9% of atmospheric oxygen, which corresponded with a 9.2% oxygen reduction in the medium between chamber1 (inlet) and 8 (outlet) in the connected microfluidic chips after 72 h. Analysis of Hif1α expression and nuclear translocation in HepG2 cells additionally confirmed the hypoxic gradient from chamber1 to chamber8. Moreover, albumin mRNA and protein levels were significantly reduced from chamber1 to chamber8, indicating liver acinus zonation along the oxygen gradient. Taken together, microfluidic cultivation in interconnected chambers provides a new model for analyzing cells in a normoxic to hypoxic gradient in vitro. By using a well-characterized cancer cell line as a homogenous hepatocyte population, we also demonstrate that an approximate 10% reduction in oxygen triggers translocation of Hif1α to the nucleus and reduces albumin production.
Collapse
Affiliation(s)
- Shahrouz Ghafoory
- Institute for Pharmacy and Molecular Biotechnology, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - Christina Stengl
- Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- Faculty of Medicine, University of Heidelberg, Im Neuenheimer Feld 672, 69120 Heidelberg, Germany
- Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Stefan Kopany
- Institute for Pharmacy and Molecular Biotechnology, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - Mert Mayadag
- Institute for Pharmacy and Molecular Biotechnology, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - Nils Mechtel
- Institute for Pharmacy and Molecular Biotechnology, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | | | | | - Niklas Wilhelmi
- Microfluidic ChipShop, GmbH Stockholmer Str. 20, 07747 Jena, Germany
| | - Stefan Wölfl
- Institute for Pharmacy and Molecular Biotechnology, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
- Correspondence:
| |
Collapse
|
34
|
Germanova E, Khmil N, Pavlik L, Mikheeva I, Mironova G, Lukyanova L. The Role of Mitochondrial Enzymes, Succinate-Coupled Signaling Pathways and Mitochondrial Ultrastructure in the Formation of Urgent Adaptation to Acute Hypoxia in the Myocardium. Int J Mol Sci 2022; 23:ijms232214248. [PMID: 36430733 PMCID: PMC9696391 DOI: 10.3390/ijms232214248] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/21/2022] [Accepted: 11/13/2022] [Indexed: 11/19/2022] Open
Abstract
The effect of a single one-hour exposure to three modes of hypobaric hypoxia (HBH) differed in the content of O2 in inhaled air (FiO2-14%, 10%, 8%) in the development of mitochondrial-dependent adaptive processes in the myocardium was studied in vivo. The following parameters have been examined: (a) an urgent reaction of catalytic subunits of mitochondrial enzymes (NDUFV2, SDHA, Cyt b, COX2, ATP5A) in the myocardium as an indicator of the state of the respiratory chain electron transport function; (b) an urgent activation of signaling pathways dependent on GPR91, HIF-1α and VEGF, allowing us to assess their role in the formation of urgent mechanisms of adaptation to hypoxia in the myocardium; (c) changes in the ultrastructure of three subpopulations of myocardial mitochondria under these conditions. The studies were conducted on two rat phenotypes: rats with low resistance (LR) and high resistance (HR) to hypoxia. The adaptive and compensatory role of the mitochondrial complex II (MC II) in maintaining the electron transport and energy function of the myocardium in a wide range of reduced O2 concentrations in the initial period of hypoxic exposure has been established. The features of urgent reciprocal regulatory interaction of NAD- and FAD-dependent oxidation pathways in myocardial mitochondria under these conditions have been revealed. The data indicating the participation of GPR91, HIF-1a and VEGF in this process have been obtained. The ultrastructure of the mitochondrial subpopulations in the myocardium of LR and HR rats differed in normoxic conditions and reacted differently to hypoxia of varying severity. The parameters studied together are highly informative indicators of the quality of cardiac activity and metabolic biomarkers of urgent adaptation in various hypoxic conditions.
Collapse
Affiliation(s)
- Elita Germanova
- Institute of General Pathology and Pathophysiology, 8 Baltijskaya Str., Moscow 125315, Russia
| | - Natalya Khmil
- Institute of Theoretical and Experimental Biophysics RAS, 3 Institutskaya Str., Pushchino 142290, Moscow Region, Russia
| | - Lyubov Pavlik
- Institute of Theoretical and Experimental Biophysics RAS, 3 Institutskaya Str., Pushchino 142290, Moscow Region, Russia
| | - Irina Mikheeva
- Institute of Theoretical and Experimental Biophysics RAS, 3 Institutskaya Str., Pushchino 142290, Moscow Region, Russia
| | - Galina Mironova
- Institute of Theoretical and Experimental Biophysics RAS, 3 Institutskaya Str., Pushchino 142290, Moscow Region, Russia
- Correspondence: (G.M.); (L.L.)
| | - Ludmila Lukyanova
- Institute of General Pathology and Pathophysiology, 8 Baltijskaya Str., Moscow 125315, Russia
- Correspondence: (G.M.); (L.L.)
| |
Collapse
|
35
|
Promalignant effects of antiangiogenics in the tumor microenvironment. Semin Cancer Biol 2022; 86:199-206. [PMID: 35248730 DOI: 10.1016/j.semcancer.2022.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/02/2022] [Accepted: 03/02/2022] [Indexed: 02/07/2023]
Abstract
Antiangiogenic therapies are considered a promising strategy against solid tumors. Their aim is to inhibit the formation of new blood vasculature, thereby reducing the oxygen and nutrient supply to prevent further tumor growth and spreading. However, the strategy has seen limitations, as survival benefits are modest and often accompanied with increased tumor aggressiveness in form of invasion and metastasis. Antiangiogenic induced changes in the tumor microenvironment, such as hypoxia, mechanical stress or extracellular acidification can activate different receptors of tumoral and stromal cells and induce an extensive remodeling of the entire tumor microenvironment, with the overall goal to invade nearby tissues and regain access to the vasculature. In this regard, receptor tyrosine kinases have been studied intensively and especially the inhibition of c-Met has given promising results, characterized by a reduction in invasiveness and prolonged survival. Receptors that sense changes in the extracellular matrix like integrins or proteoglycans can also induce downstream signaling that stimulates the expression of remodeling factors such as new matrix components, enzymes or chemoattractants. Targeting multiple receptors and sensors of cancer cells simultaneously might represent an effective second line treatment that prevents the formation of malignant side effects.
Collapse
|
36
|
Chen Y, Wu J, Zhang S, Gao W, Liao Z, Zhou T, Li Y, Su D, Liu H, Yang X, Su P, Xu C. Hnrnpk maintains chondrocytes survival and function during growth plate development via regulating Hif1α-glycolysis axis. Cell Death Dis 2022; 13:803. [PMID: 36127325 PMCID: PMC9489716 DOI: 10.1038/s41419-022-05239-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 01/23/2023]
Abstract
The harmonious functioning of growth plate chondrocytes is crucial for skeletogenesis. These cells rely on an appropriate intensity of glycolysis to maintain survival and function in an avascular environment, but the underlying mechanism is poorly understood. Here we show that Hnrnpk orchestrates growth plate development by maintaining the appropriate intensity of glycolysis in chondrocytes. Ablating Hnrnpk causes the occurrence of dwarfism, exhibiting damaged survival and premature differentiation of growth plate chondrocytes. Furthermore, Hnrnpk deficiency results in enhanced transdifferentiation of hypertrophic chondrocytes and increased bone mass. In terms of mechanism, Hnrnpk binds to Hif1a mRNA and promotes its degradation. Deleting Hnrnpk upregulates the expression of Hif1α, leading to the increased expression of downstream glycolytic enzymes and then exorbitant glycolysis. Our study establishes an essential role of Hnrnpk in orchestrating the survival and differentiation of chondrocytes, regulating the Hif1α-glycolysis axis through a post-transcriptional mechanism during growth plate development.
Collapse
Affiliation(s)
- Yuyu Chen
- grid.412615.50000 0004 1803 6239Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080 China
| | - Jinna Wu
- grid.410737.60000 0000 8653 1072Department of Breast Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095 China
| | - Shun Zhang
- grid.412615.50000 0004 1803 6239Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080 China
| | - Wenjie Gao
- grid.412536.70000 0004 1791 7851Department of Orthopaedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120 China
| | - Zhiheng Liao
- grid.412615.50000 0004 1803 6239Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080 China
| | - Taifeng Zhou
- grid.412615.50000 0004 1803 6239Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080 China
| | - Yongyong Li
- grid.412615.50000 0004 1803 6239Precision Medicine Institute, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080 China
| | - Deying Su
- grid.284723.80000 0000 8877 7471Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515 China
| | - Hengyu Liu
- grid.412615.50000 0004 1803 6239Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080 China
| | - Xiaoming Yang
- grid.412632.00000 0004 1758 2270Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060 China
| | - Peiqiang Su
- grid.412615.50000 0004 1803 6239Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080 China
| | - Caixia Xu
- grid.412615.50000 0004 1803 6239Research Center for Translational Medicine, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080 China
| |
Collapse
|
37
|
Kundu S. Modeling ligand-macromolecular interactions as eigenvalue-based transition-state dissociation constants may offer insights into biochemical function of the resulting complexes. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2022; 19:13252-13275. [PMID: 36654045 DOI: 10.3934/mbe.2022620] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
A ligand when bound to a macromolecule (protein, DNA, RNA) will influence the biochemical function of that macromolecule. This observation is empirical and attributable to the association of the ligand with the amino acids/nucleotides that comprise the macromolecule. The binding affinity is a measure of the strength-of-association of a macromolecule for its ligand and is numerically characterized by the association/dissociation constant. However, despite being widely used, a mathematically rigorous explanation by which the association/dissociation constant can influence the biochemistry and molecular biology of the resulting complex is not available. Here, the ligand-macromolecular complex is modeled as a homo- or hetero-dimer with a finite and equal number of atoms/residues per monomer. The pairwise interactions are numeric, empirically motivated and are randomly chosen from a standard uniform distribution. The transition-state dissociation constants are the strictly positive real part of all complex eigenvalues of this interaction matrix, belong to the open interval (0,1), and form a sequence whose terms are finite, monotonic, non-increasing and convergent. The theoretical results are rigorous, presented as theorems, lemmas and corollaries and are complemented by numerical studies. An inferential analysis of the clinical outcomes of amino acid substitutions of selected enzyme homodimers is also presented. These findings are extendible to higher-order complexes such as those likely to occur in vivo. The study also presents a schema by which a ligand can be annotated and partitioned into high- and low-affinity variants. The influence of the transition-state dissociation constants on the biochemistry and molecular biology of non-haem iron (Ⅱ)- and 2-oxoglutarate-dependent dioxygenases (catalysis) and major histocompatibility complex (Ⅰ) mediated export of high-affinity peptides (non-enzymatic association/dissociation) are examined as special cases.
Collapse
Affiliation(s)
- Siddhartha Kundu
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi 110029, India
| |
Collapse
|
38
|
Kim S, Park S, Oh JH, Lee SS, Lee Y, Choi J. MicroRNA-18a regulates the metastatic properties of oral squamous cell carcinoma cells via HIF-1α expression. BMC Oral Health 2022; 22:378. [PMID: 36064348 PMCID: PMC9442921 DOI: 10.1186/s12903-022-02425-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/31/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Rapid metastasis of oral squamous cell carcinoma (OSCC) is associated with a poor prognosis and a high mortality rate. However, the molecular mechanisms underlying OSCC metastasis have not been fully elucidated. Although deregulated expression of microRNA (miRNA) has a crucial role in malignant cancer progression, the biological function of miRNA in OSCC progression remains unclear. This study aimed to investigate the function of miRNA-18a in OSCC metastatic regulation via hypoxia-inducible factor 1α (HIF-1α). METHODS miRNA-18a-5p (miRNA-18a) expressions in patients with OSCC (n = 39) and in OSCC cell lines (e.g., YD-10B and HSC-2 cells) were analyzed using quantitative real-time polymerase chain reaction. HIF-1α protein expressions in OSCC cells treated with miRNA-18a mimics or combined with cobalt chloride were analyzed using western blotting. The miRNA-18a expression-dependent proliferation and invasion abilities of OSCC cells were analyzed using MTT assay, EdU assay, and a Transwell® insert system. RESULTS miRNA-18a expression was significantly lower in OSCC tissue than in the adjacent normal tissue. In OSCC cell lines, HIF-1α expression was significantly decreased by miRNA-18a mimic treatment. Furthermore, the migration and invasion abilities of OSCC cells were significantly decreased by miRNA-18a mimics and significantly increased by the overexpression of HIF-1α under hypoxic conditions relative to those abilities in cells treated only with miRNA-18a mimics. CONCLUSIONS miRNA-18a negatively affects HIF-1α expression and inhibits the metastasis of OSCC, thereby suggesting its potential as a therapeutic target for antimetastatic strategies in OSCC.
Collapse
Affiliation(s)
- Shihyun Kim
- Department of Oral Pathology, College of Dentistry, Gangneung-Wonju National University, 7 Jukheon-gil, Gangneung-si, Gangwon-do, Republic of Korea
| | - Suyeon Park
- Department of Oral Pathology, College of Dentistry, Gangneung-Wonju National University, 7 Jukheon-gil, Gangneung-si, Gangwon-do, Republic of Korea
| | - Ji-Hyeon Oh
- Department of Oral and Maxillofacial Surgery, College of Dentistry, Gangneung-Wonju National University, Gangneung, Republic of Korea
| | - Sang Shin Lee
- Department of Oral Pathology, College of Dentistry, Gangneung-Wonju National University, 7 Jukheon-gil, Gangneung-si, Gangwon-do, Republic of Korea
| | - Yoon Lee
- Department of Conservative Dentistry, College of Dentistry, Gangneung-Wonju National University, Gangneung, Republic of Korea
| | - Jongho Choi
- Department of Oral Pathology, College of Dentistry, Gangneung-Wonju National University, 7 Jukheon-gil, Gangneung-si, Gangwon-do, Republic of Korea.
| |
Collapse
|
39
|
Dolezel M, Slavik M, Blazek T, Kazda T, Koranda P, Veverkova L, Burkon P, Cvek J. FMISO-Based Adaptive Radiotherapy in Head and Neck Cancer. J Pers Med 2022; 12:jpm12081245. [PMID: 36013194 PMCID: PMC9410424 DOI: 10.3390/jpm12081245] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/12/2022] [Accepted: 07/27/2022] [Indexed: 11/16/2022] Open
Abstract
Concurrent chemoradiotherapy represents one of the most used strategies in the curative treatment of patients with head and neck (HNC) cancer. Locoregional failure is the predominant recurrence pattern. Tumor hypoxia belongs to the main cause of treatment failure. Positron emission tomography (PET) using hypoxia radiotracers has been studied extensively and has proven its feasibility and reproducibility to detect tumor hypoxia. A number of studies confirmed that the uptake of FMISO in the recurrent region is significantly higher than that in the non-recurrent region. The escalation of dose to hypoxic tumors may improve outcomes. The technical feasibility of optimizing radiotherapeutic plans has been well documented. To define the hypoxic tumour volume, there are two main approaches: dose painting by contour (DPBC) or by number (DPBN) based on PET images. Despite amazing technological advances, precision in target coverage, and surrounding tissue sparring, radiation oncology is still not considered a targeted treatment if the “one dose fits all” approach is used. Using FMISO and other hypoxia tracers may be an important step for individualizing radiation treatment and together with future radiomic principles and a possible genome-based adjusting dose, will move radiation oncology into the precise and personalized era.
Collapse
Affiliation(s)
- Martin Dolezel
- Department of Oncology, Palacky University Medical School & Teaching Hospital, 77900 Olomouc, Czech Republic;
| | - Marek Slavik
- Department of Radiation Oncology, Masaryk Memorial Cancer Institute, 65652 Brno, Czech Republic; (T.K.); (P.B.)
- Department of Radiation Oncology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
- Correspondence:
| | - Tomas Blazek
- Department of Oncology, Faculty of Medicine, University Hospital Ostrava, 70852 Ostrava, Czech Republic; (T.B.); (J.C.)
| | - Tomas Kazda
- Department of Radiation Oncology, Masaryk Memorial Cancer Institute, 65652 Brno, Czech Republic; (T.K.); (P.B.)
- Department of Radiation Oncology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
| | - Pavel Koranda
- Department of Nuclear Medicine, Palacky University Medical School & Teaching Hospital, 77900 Olomouc, Czech Republic;
| | - Lucia Veverkova
- Department of Radiology, Palacky University Medical School & Teaching Hospital, 77900 Olomouc, Czech Republic;
| | - Petr Burkon
- Department of Radiation Oncology, Masaryk Memorial Cancer Institute, 65652 Brno, Czech Republic; (T.K.); (P.B.)
- Department of Radiation Oncology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
| | - Jakub Cvek
- Department of Oncology, Faculty of Medicine, University Hospital Ostrava, 70852 Ostrava, Czech Republic; (T.B.); (J.C.)
| |
Collapse
|
40
|
Sirtuins and Hypoxia in EMT Control. Pharmaceuticals (Basel) 2022; 15:ph15060737. [PMID: 35745656 PMCID: PMC9228842 DOI: 10.3390/ph15060737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 05/25/2022] [Accepted: 06/08/2022] [Indexed: 02/06/2023] Open
Abstract
Epithelial–mesenchymal transition (EMT), a physiological process during embryogenesis, can become pathological in the presence of different driving forces. Reduced oxygen tension or hypoxia is one of these forces, triggering a large number of molecular pathways with aberrant EMT induction, resulting in cancer and fibrosis onset. Both hypoxia-induced factors, HIF-1α and HIF-2α, act as master transcription factors implicated in EMT. On the other hand, hypoxia-dependent HIF-independent EMT has also been described. Recently, a new class of seven proteins with deacylase activity, called sirtuins, have been implicated in the control of both hypoxia responses, HIF-1α and HIF-2α activation, as well as EMT induction. Intriguingly, different sirtuins have different effects on hypoxia and EMT, acting as either activators or inhibitors, depending on the tissue and cell type. Interestingly, sirtuins and HIF can be activated or inhibited with natural or synthetic molecules. Moreover, recent studies have shown that these natural or synthetic molecules can be better conveyed using nanoparticles, representing a valid strategy for EMT modulation. The following review, by detailing the aspects listed above, summarizes the interplay between hypoxia, sirtuins, and EMT, as well as the possible strategies to modulate them by using a nanoparticle-based approach.
Collapse
|
41
|
Xin K, Hu B, Han L, Yu Q. Study on the HIF-1α regulated by glycolytic pathways and mitochondrial function in yaks of different altitudes during postmortem aging. J Food Biochem 2022; 46:e14205. [PMID: 35502450 DOI: 10.1111/jfbc.14205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 12/24/2022]
Abstract
The study investigated the glycolysis pathway mediated by hypoxia-inducible factor-1α (HIF-1α) and the mechanism of its regulation. The results indicated that HIF-1α expression initially increased before subsequently decreasing with aging time during postmortem (p < .01). Glucose transporter-1 (GLUT-1), lactate dehydrogenase (LDH), and hexokinase (HK) displayed a similar trend with aging time (p < .01) while pyruvate dehydrogenase kinase 1 (PDK-1) increased gradually within the first 12 hr before decreasing at 24-120 hr. However, after treatment with a HIF-1α inhibitor, no significant differences were observed in the mitochondrial morphology. Furthermore, lactate content decreased, along with LDH, HK, and F0F1-ATP activities as well as GLUT-1 and PDK-1 expression (p < .01). The shear force for all groups also increased during postmortem aging (p < .01), with that of the controls being significantly higher compared with the treatment groups (p < .01). These findings confirmed that, after slaughter, the hypoxic environment within the muscles provided essential conditions for HIF-1α expression, which, in turn, activated the glycolysis pathway by mediating changes in the activities of glycolytic enzymes and mitochondrial function. Moreover, in accelerating glycolysis rate, the expression of HIF-1α further played a negative role in meat tenderization during postmortem aging. This, it was concluded that HIF-1α expression plays a significant role in postmortem yak meat tenderization by regulating the glycolysis pathway. PRATICAL APPLICATIONS: While converting muscle into meat through hypoxic glycolysis during postmortem aging is undeniable, the biochemical mechanism of this process mediated remains quite obscure. However, the meat quality difference which impact muscle regulation mechanism during postmortem aging has not been reported. The study investigated the HIF-1α played a major role in both the glycolytic pathway and as well as meat tenderness during the postmortem aging of yak meat. The glycolysis pathway is mediated by hypoxia-inducible factor-1α (HIF-1α), the mechanism of its regulation, and meat tenderness during the postmortem aging of yak meat.
Collapse
Affiliation(s)
- Keqi Xin
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Bo Hu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Ling Han
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Qunli Yu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
42
|
Li YC, Wang Y, Zou W. Exploration on the Mechanism of Ubiquitin Proteasome System in Cerebral Stroke. Front Aging Neurosci 2022; 14:814463. [PMID: 35462700 PMCID: PMC9022456 DOI: 10.3389/fnagi.2022.814463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 03/14/2022] [Indexed: 12/23/2022] Open
Abstract
Stroke’s secondary damage, such as inflammation, oxidative stress, and mitochondrial dysfunction, are thought to be crucial factors in the disease’s progression. Despite the fact that there are numerous treatments for secondary damage following stroke, such as antiplatelet therapy, anticoagulant therapy, surgery, and so on, the results are disappointing and the side effects are numerous. It is critical to develop novel and effective strategies for improving patient prognosis. The ubiquitin proteasome system (UPS) is the hub for the processing and metabolism of a wide range of functional regulatory proteins in cells. It is critical for the maintenance of cell homeostasis. With the advancement of UPS research in recent years, it has been discovered that UPS is engaged in a variety of physiological and pathological processes in the human body. UPS is expected to play a role in the onset and progression of stroke via multiple targets and pathways. This paper explores the method by which UPS participates in the linked pathogenic process following stroke, in order to give a theoretical foundation for further research into UPS and stroke treatment.
Collapse
Affiliation(s)
- Yu-Chao Li
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yan Wang
- School of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan, China
| | - Wei Zou
- Heilongjiang University of Chinese Medicine, Harbin, China
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
- *Correspondence: Wei Zou,
| |
Collapse
|
43
|
Okazaki S, Boku S, Watanabe Y, Otsuka I, Horai T, Morikawa R, Kimura A, Shimmyo N, Tanifuji T, Someya T, Hishimoto A. Polymorphisms in the hypoxia inducible factor binding site of the macrophage migration inhibitory factor gene promoter in schizophrenia. PLoS One 2022; 17:e0265738. [PMID: 35324982 PMCID: PMC8946738 DOI: 10.1371/journal.pone.0265738] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 03/07/2022] [Indexed: 12/04/2022] Open
Abstract
Background Macrophage migration inhibitory factor (MIF) is a multifunctional cytokine that promotes neurogenesis and neuroprotection. MIF is predominantly expressed in astrocytes in the brain. The serum MIF level and microsatellites/single nucleotide polymorphisms (SNPs) in the MIF gene promoter region are known to be associated with schizophrenia (SCZ). Interestingly, previous studies reported that hypoxia, an environmental risk factor for SCZ, induced MIF expression through binding of the hypoxia inducible factor (HIF)-1 to the hypoxia response element (HRE) in the MIF promoter. Methods We investigated the involvement of MIF in SCZ while focusing on the HIF pathway. First, we conducted an association study of the SNP rs17004038 (C>A) in the HRE of the MIF promoter between 1758 patients with SCZ and 1507 controls. Next, we investigated the effect of hypoxia on MIF expression in primary cultured astrocytes derived from neonatal mice forebrain. Results SNP rs17004038 was significantly associated with SCZ (p = 0.0424, odds ratio = 1.445), indicating that this SNP in the HRE of the MIF promoter was a genetic risk factor for SCZ. Hypoxia induced MIF mRNA expression and MIF protein production and increased HIF-1 binding to the MIF promoter, while the activity of the MIF promoter was suppressed by mutations in the HRE and by deletion of the HRE in astrocytes. Conclusion These results suggest that SNP rs17004038 in the HRE of the MIF promoter was significantly associated with SCZ and may be involved in the pathophysiology of SCZ via suppression of hypoxia and HIF pathway-induced MIF expression.
Collapse
Affiliation(s)
- Satoshi Okazaki
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Shuken Boku
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
- Department of Neuropsychiatry, Kumamoto University Faculty of Life Sciences, Kumamoto, Japan
- * E-mail:
| | - Yuichiro Watanabe
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Ikuo Otsuka
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tadasu Horai
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Ryo Morikawa
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Atsushi Kimura
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Naofumi Shimmyo
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takaki Tanifuji
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Toshiyuki Someya
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Akitoyo Hishimoto
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
- Department of Psychiatry, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
44
|
The role of hypoxia in the pathogenesis of congenital hyperplasia of blood vessels in the head and neck in children (literature review). ACTA BIOMEDICA SCIENTIFICA 2022. [DOI: 10.29413/abs.2022-7.1.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
To date, scientists have found that stress plays an important role in the formation of congenital malformations. It can be caused by the influence of negative environmental factors on the pregnant woman or by her own diseases. One of the consequences of stress is hypoxia. It can be acute and chronic, and can have a negative impact both during pregnancy and during childbirth. They also distinguish local and general hypoxia. The consequences of the negative impact of oxygen deficiency on the embryo and fetus can manifest itself both in utero and after birth, leading to various kinds of congenital malformations, diseases, and sometimes fetal death, or increase the risk of sudden infant death syndrome. Hyperplasia of blood vessels, the so-called children’s hemangiomas, develops both in utero, especially with chronic fetal hypoxia, and during childbirth. It develops due to insufficient blood supply and oxygen deficiency in various parts of the body, most often in the head and neck. In an embryo under conditions of hypoxia, tachycardia develops – with an increase in heart rate and, if it is ineffective, local vasodilation occurs. Only then, under the condition of continuing hypoxia, does an increase in the number of blood vessels develop. This often leads to the formation of hyperplasia of the blood vessels, the so-called children’s hemangiomas.This pathology is quite common, especially among fair-skinned children, which makes its study, in particular the factors that cause this pathology, relevant today.
Collapse
|
45
|
Circular RNA hsa_circ_0004543 Aggravates Cervical Cancer Development by Sponging MicroRNA hsa-miR-217 to Upregulate Hypoxia-Inducible Factor. JOURNAL OF ONCOLOGY 2022; 2022:4031403. [PMID: 35310917 PMCID: PMC8926462 DOI: 10.1155/2022/4031403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/29/2021] [Accepted: 01/10/2022] [Indexed: 11/21/2022]
Abstract
Cervical cancer (CC) is the 4th principal source of cancer death in females with 604,000 new patients and 342,000 deaths in 2020 worldwide. It has been extensively shown that circRNAs are involved in regulating CC development. Nevertheless, the function and mechanisms of hsa_circ_0004543 in regulating CC need to be clearly elucidated. Herein, hsa_circ_0004543 expressions were compared between 40 paired paracancerous and cancerous specimens from CC patients and between 6 CC cell lines and a normal human cervical epithelial cell line based on qRT-PCR. Potential complementary binding sites between hsa-miR-217 and hsa_circ_0004543 were predicted using the interactome, while binding sites for the hypoxia-inducible factor-1a (HIF-1a) were predicted by TargetScan. The function and mechanism of hsa_circ_0004543 in the development of CC were estimated by silencing hsa_circ_0004543 with/without hsa-miR-217 or HIF-1a overexpression. The association between gene expressions was evaluated with Pearson's correlation analysis. Molecular mechanisms were explored by ribonucleic acid (RNA) pulldown, dual-luciferase activity, and rescue experimental assays. Our results revealed that the hsa_circ_0004543 expression was considerably increased in CC tissues and cells. Its silencing repressed proliferation and metastasis, while it increased apoptosis of CC cells. The investigation of the mechanism showed that hsa-miR-217 silencing or HIF-1a overexpression rescued hsa_circ_0004543, and silencing inhibited malignant phenotypes of CC cells. hsa_circ_0004543 upregulated the HIF-1α expression by sponging hsa-miR-217 in CC development. Therefore, the hsa_circ_0004543 functioned as a competing endogenous RNA (ceRNA) of hsa-miR-217 to increase CC oncogenesis and metastasis by the upregulation of the HIF-1α expression. Consequently, targeting the hsa_circ_0004543/hsa-miR-217/HIF-1α axis might be a potential treatment approach for CC.
Collapse
|
46
|
McCracken SA, Seeho SKM, Carrodus T, Park JH, Woodland N, Gallery EDM, Morris JM, Ashton AW. Dysregulation of Oxygen Sensing/Response Pathways in Pregnancies Complicated by Idiopathic Intrauterine Growth Restriction and Early-Onset Preeclampsia. Int J Mol Sci 2022; 23:ijms23052772. [PMID: 35269911 PMCID: PMC8910827 DOI: 10.3390/ijms23052772] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/01/2022] [Accepted: 03/01/2022] [Indexed: 02/01/2023] Open
Abstract
Preeclampsia (PE) and intrauterine growth restriction (IUGR) are the leading causes of maternal and fetal morbidity/mortality. The central deficit in both conditions is impaired placentation due to poor trophoblast invasion, resulting in a hypoxic milieu in which oxidative stress contributes to the pathology. We examine the factors driving the hypoxic response in severely preterm PE (n = 19) and IUGR (n = 16) placentae compared to the spontaneous preterm (SPT) controls (n = 13) using immunoblotting, RT-PCR, immunohistochemistry, proximity ligation assays, and Co-IP. Both hypoxia-inducible factor (HIF)-1α and HIF-2α are increased at the protein level and functional in pathological placentae, as target genes prolyl hydroxylase domain (PHD)2, PHD3, and soluble fms-like tyrosine kinase-1 (sFlt-1) are increased. Accumulation of HIF-α-subunits occurs in the presence of accessory molecules required for their degradation (PHD1, PHD2, and PHD3 and the E3 ligase von Hippel–Lindau (VHL)), which were equally expressed or elevated in the placental lysates of PE and IUGR. However, complex formation between VHL and HIF-α-subunits is defective. This is associated with enhanced VHL/DJ1 complex formation in both PE and IUGR. In conclusion, we establish a significant mechanism driving the maladaptive responses to hypoxia in the placentae from severe PE and IUGR, which is central to the pathogenesis of both diseases.
Collapse
Affiliation(s)
- Sharon A. McCracken
- Division of Perinatal Medicine, Faculty of Medicine and Health, The University of Sydney, Northern Sydney Local Health District Research (Kolling Institute), St. Leonards, NSW 2065, Australia; (S.K.M.S.); (T.C.); (J.H.P.); (E.D.M.G.); (J.M.M.); (A.W.A.)
- Correspondence: ; Tel.: +612-9926-4832; Fax: +612-9926-5266
| | - Sean K. M. Seeho
- Division of Perinatal Medicine, Faculty of Medicine and Health, The University of Sydney, Northern Sydney Local Health District Research (Kolling Institute), St. Leonards, NSW 2065, Australia; (S.K.M.S.); (T.C.); (J.H.P.); (E.D.M.G.); (J.M.M.); (A.W.A.)
- Department of Obstetrics and Gynaecology, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
| | - Tamara Carrodus
- Division of Perinatal Medicine, Faculty of Medicine and Health, The University of Sydney, Northern Sydney Local Health District Research (Kolling Institute), St. Leonards, NSW 2065, Australia; (S.K.M.S.); (T.C.); (J.H.P.); (E.D.M.G.); (J.M.M.); (A.W.A.)
- School of Biomedical Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia;
| | - Jenny H. Park
- Division of Perinatal Medicine, Faculty of Medicine and Health, The University of Sydney, Northern Sydney Local Health District Research (Kolling Institute), St. Leonards, NSW 2065, Australia; (S.K.M.S.); (T.C.); (J.H.P.); (E.D.M.G.); (J.M.M.); (A.W.A.)
| | - Narelle Woodland
- School of Biomedical Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia;
| | - Eileen D. M. Gallery
- Division of Perinatal Medicine, Faculty of Medicine and Health, The University of Sydney, Northern Sydney Local Health District Research (Kolling Institute), St. Leonards, NSW 2065, Australia; (S.K.M.S.); (T.C.); (J.H.P.); (E.D.M.G.); (J.M.M.); (A.W.A.)
- Department of Obstetrics and Gynaecology, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
| | - Jonathan M. Morris
- Division of Perinatal Medicine, Faculty of Medicine and Health, The University of Sydney, Northern Sydney Local Health District Research (Kolling Institute), St. Leonards, NSW 2065, Australia; (S.K.M.S.); (T.C.); (J.H.P.); (E.D.M.G.); (J.M.M.); (A.W.A.)
- Department of Obstetrics and Gynaecology, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
| | - Anthony W. Ashton
- Division of Perinatal Medicine, Faculty of Medicine and Health, The University of Sydney, Northern Sydney Local Health District Research (Kolling Institute), St. Leonards, NSW 2065, Australia; (S.K.M.S.); (T.C.); (J.H.P.); (E.D.M.G.); (J.M.M.); (A.W.A.)
- Department of Obstetrics and Gynaecology, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
| |
Collapse
|
47
|
Carroll CP, Bolland H, Vancauwenberghe E, Collier P, Ritchie AA, Clarke PA, Grabowska AM, Harris AL, McIntyre A. Targeting hypoxia regulated sodium driven bicarbonate transporters reduces triple negative breast cancer metastasis. Neoplasia 2022; 25:41-52. [PMID: 35150959 PMCID: PMC8844412 DOI: 10.1016/j.neo.2022.01.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/18/2022] [Accepted: 01/21/2022] [Indexed: 11/25/2022]
Abstract
Regions of low oxygen (hypoxia) are found in >50% of breast tumours, most frequently in the more aggressive triple negative breast cancer subtype (TNBC). Metastasis is the cause of 90% of breast cancer patient deaths. Regions of tumour hypoxia tend to be more acidic and both hypoxia and acidosis increase tumour metastasis. In line with this the metastatic process is dependent on pH regulatory mechanisms. We and others have previously identified increased hypoxic expression of Na+ driven bicarbonate transporters (NDBTs) as a major mechanism of tumour pH regulation. Hypoxia induced the expression of NDBTs in TNBC, most frequently SLC4A4 and SLC4A5. NDBT inhibition (S0859) and shRNA knockdown suppressed migration (40% reduction) and invasion (70% reduction) in vitro. Tumour xenograft metastasis in vivo was significantly reduced by NDBT knockdown. To investigate the mechanism by which NDBTs support metastasis, we investigated their role in regulation of phospho-signalling, epithelial-to-mesenchymal transition (EMT) and metabolism. NDBT knockdown resulted in an attenuation in hypoxic phospho-signalling activation; most notably LYN (Y397) reduced by 75%, and LCK (Y394) by 72%. The metastatic process is associated with EMT. We showed that NDBT knockdown inhibited EMT, modulating the expression of key EMT transcription factors and ablating the expression of vimentin whilst increasing the expression of E-cadherin. NDBT knockdown also altered metabolic activity reducing overall ATP and extracellular lactate levels. These results demonstrate that targeting hypoxia-induced NDBT can be used as an approach to modulate phospho-signalling, EMT, and metabolic activity and reduce tumour migration, invasion, and metastasis in vivo.
Collapse
Affiliation(s)
- Christopher Paul Carroll
- Hypoxia and Acidosis Group, Nottingham Breast Cancer Research Centre, School of Medicine, Biodiscovery Institute, University of Nottingham
| | - Hannah Bolland
- Hypoxia and Acidosis Group, Nottingham Breast Cancer Research Centre, School of Medicine, Biodiscovery Institute, University of Nottingham
| | - Eric Vancauwenberghe
- Hypoxia and Acidosis Group, Nottingham Breast Cancer Research Centre, School of Medicine, Biodiscovery Institute, University of Nottingham
| | - Pamela Collier
- Ex Vivo Cancer Pharmacology Centre, Biodiscovery Institute, University of Nottingham
| | - Alison A Ritchie
- Ex Vivo Cancer Pharmacology Centre, Biodiscovery Institute, University of Nottingham
| | - Philip A Clarke
- Ex Vivo Cancer Pharmacology Centre, Biodiscovery Institute, University of Nottingham
| | - Anna M Grabowska
- Ex Vivo Cancer Pharmacology Centre, Biodiscovery Institute, University of Nottingham
| | - Adrian L Harris
- Molecular Oncology Laboratories, Department of Oncology, University of Oxford, Weatherall Institute of Molecular Medicine, Oxford, United Kingdom
| | - Alan McIntyre
- Hypoxia and Acidosis Group, Nottingham Breast Cancer Research Centre, School of Medicine, Biodiscovery Institute, University of Nottingham.
| |
Collapse
|
48
|
Nava RC, McKenna Z, Fennel Z, Berkemeier Q, Ducharme J, de Castro Magalhães F, Amorim FT, Mermier C. Repeated sprint exercise in hypoxia stimulates HIF-1-dependent gene expression in skeletal muscle. Eur J Appl Physiol 2022; 122:1097-1107. [PMID: 35190865 DOI: 10.1007/s00421-022-04909-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 01/28/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE Our aim was to determine the effect of repeated sprint exercise in hypoxia on HIF-1 and HIF-1-regulated genes involved in glycolysis, mitochondrial turnover and oxygen transport. We also determined whether genes upregulated by exercise in hypoxia were dependent on the activation of HIF-1 in an in vitro model of exercise in hypoxia. METHODS Eight endurance athletes performed bouts of repeated sprint exercise in control and hypoxic conditions. Skeletal muscle was sampled pre, post and 3 h post-exercise. HIF-1α protein and HIF1A, PDK1, GLUT4, VEGFA, BNIP3, PINK1 and PGC1A mRNA were measured. C2C12 myotubes were exposed to hypoxia and muscle contraction following treatment with a HIF-1α inhibitor to determine whether hypoxia-sensitive gene expression was dependent on HIF-1α. RESULTS Sprint exercise in hypoxia increased HIF-1α protein expression immediately post-exercise [fold change (FC) = 3.5 ± 2.0]. Gene expression of PDK1 (FC = 2.1 ± 1.2), BNIP3 (FC = 2.4 ± 1.4) and VEGFA (FC = 2.7 ± 1.7) increased 3 h post-exercise in hypoxia but not control. PGC1A mRNA increased 3 h post-exercise in control (FC = 5.16) and hypoxia (FC = 5.7 ± 4.1) but there was no difference between the trials. Results from the in vitro experiment showed that hypoxia plus contraction also increased PDK1, BNIP3, and VEGFA gene expression. These responses were inhibited when HIF-1 protein activity was suppressed. CONCLUSION Repeated sprint exercise in hypoxia upregulates some genes involved in glycolytic metabolism, mitochondrial turnover, and oxygen transport. HIF-1α is necessary for the expression of these genes in skeletal muscle cells.
Collapse
Affiliation(s)
- Roberto Carlos Nava
- Department of Health, Exercise, and Sports Sciences, University of New Mexico, Albuquerque, NM, USA.
- Research Division, Joslin Diabetes Center, Boston, MA, USA.
- Harvard Medical School, Harvard University, Boston, MA, USA.
| | - Zachary McKenna
- Department of Health, Exercise, and Sports Sciences, University of New Mexico, Albuquerque, NM, USA
| | - Zachary Fennel
- Department of Health, Exercise, and Sports Sciences, University of New Mexico, Albuquerque, NM, USA
| | - Quint Berkemeier
- Department of Health, Exercise, and Sports Sciences, University of New Mexico, Albuquerque, NM, USA
| | - Jeremy Ducharme
- Department of Health, Exercise, and Sports Sciences, University of New Mexico, Albuquerque, NM, USA
| | - Flávio de Castro Magalhães
- Department of Health, Exercise, and Sports Sciences, University of New Mexico, Albuquerque, NM, USA
- Department of Physical Education, Federal University of Jequitinhonha and Mucuri Valleys (UFVJM), Diamantina, Brazil
| | - Fabiano Trigueiro Amorim
- Department of Health, Exercise, and Sports Sciences, University of New Mexico, Albuquerque, NM, USA
| | - Christine Mermier
- Department of Health, Exercise, and Sports Sciences, University of New Mexico, Albuquerque, NM, USA
| |
Collapse
|
49
|
Noh HJ, Turner-Maier J, Schulberg SA, Fitzgerald ML, Johnson J, Allen KN, Hückstädt LA, Batten AJ, Alfoldi J, Costa DP, Karlsson EK, Zapol WM, Buys ES, Lindblad-Toh K, Hindle AG. The Antarctic Weddell seal genome reveals evidence of selection on cardiovascular phenotype and lipid handling. Commun Biol 2022; 5:140. [PMID: 35177770 PMCID: PMC8854659 DOI: 10.1038/s42003-022-03089-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 01/31/2022] [Indexed: 12/24/2022] Open
Abstract
AbstractThe Weddell seal (Leptonychotes weddellii) thrives in its extreme Antarctic environment. We generated the Weddell seal genome assembly and a high-quality annotation to investigate genome-wide evolutionary pressures that underlie its phenotype and to study genes implicated in hypoxia tolerance and a lipid-based metabolism. Genome-wide analyses included gene family expansion/contraction, positive selection, and diverged sequence (acceleration) compared to other placental mammals, identifying selection in coding and non-coding sequence in five pathways that may shape cardiovascular phenotype. Lipid metabolism as well as hypoxia genes contained more accelerated regions in the Weddell seal compared to genomic background. Top-significant genes were SUMO2 and EP300; both regulate hypoxia inducible factor signaling. Liver expression of four genes with the strongest acceleration signals differ between Weddell seals and a terrestrial mammal, sheep. We also report a high-density lipoprotein-like particle in Weddell seal serum not present in other mammals, including the shallow-diving harbor seal.
Collapse
|
50
|
iASPP is essential for HIF-1α stabilization to promote angiogenesis and glycolysis via attenuating VHL-mediated protein degradation. Oncogene 2022; 41:1944-1958. [PMID: 35169254 DOI: 10.1038/s41388-022-02234-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 01/24/2022] [Accepted: 02/04/2022] [Indexed: 12/15/2022]
Abstract
Hypoxia-inducible factor-1α (HIF-1α) plays central roles in the hypoxia response. It is highly expressed in multiple cancers, but not always correlated with hypoxia. Mutation of the von Hippel-Lindau (VHL) gene, which encodes an E3 ligase, contributes to the constructive activation of HIF-1α in specific tumor types, as exemplified by renal cell carcinoma; but how VHL wild-type tumors acquire this ability is not completely understood. Here, we found that the oncogene iASPP (inhibitor of apoptosis-simulating protein of p53) plays essential roles in such a context. Genetic inhibition of iASPP reduced tumor growth, accompanied by impaired angiogenesis, increased areas of tumor necrosis, and reduced glycolysis that was HIF-1α-dependent. These abilities of iASPP were validated by in vitro assays. Mechanistically, iASPP directly binds VHL at its β domain, a region also involved in HIF-1α binding, therefore blocking VHL's binding and the subsequent degradation of HIF-1α protein under normoxia. iASPP levels correlate with HIF-1α protein and vascular endothelial growth factor (VEGF) and the glucose transporter protein type 1(GLUT1), representative HIF-1α target genes, in human colon cancer tissues. Furthermore, inhibition of iASPP expression synergizes with low toxic dose of the HIF-1α inhibitor YC-1 to inhibit HIF-1α expression and tumor growth. Our findings suggest that iASPP contributes to HIF-1α activation in cancers, and that iASPP-mediated HIF-1α stabilization has potential as a therapeutic approach against cancer.
Collapse
|