1
|
Oberoi A, Giezenaar C, Jensen C, Lange K, Hausken T, Jones KL, Horowitz M, Chapman I, Soenen S. Acute effects of whey protein on energy intake, appetite and gastric emptying in younger and older, obese men. Nutr Diabetes 2020; 10:37. [PMID: 33004790 PMCID: PMC7531014 DOI: 10.1038/s41387-020-00139-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 08/26/2020] [Accepted: 09/07/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Obesity is becoming more prevalent in older people. A management strategy in obese, young adults is to increase dietary protein relative to other macronutrients. It is not clear if this is effective in obese, older individuals. Obesity may be associated with diminished sensitivity to nutrients. We have reported that a 30-g whey protein drink slows gastric emptying more, and suppresses energy intake less, in older, than younger, non-obese men. The aim of this study was to determine the effect of a 30 g whey protein drink on energy intake, GE and glycaemia in obese, older and younger men. METHODS In randomized, double-blind order, 10 younger (age: 27 ± 2 years; BMI: 36 ± 2 kg/m²), and 10 older (72 ± 1 years; 33 ± 1 kg/m²), obese men were studied twice. After an overnight fast, subjects ingested a test drink containing 30 g whey protein (120 kcal) or control (2 kcal). Postprandial gastric emptying (antral area, 2D Ultrasound) and blood glucose concentrations were measured for 180 min. At t = 180 min subjects were given a buffet meal and ad libitum energy intake was assessed. RESULTS Older subjects ate non-significantly less (~20%) that the younger subjects (effect of age, P = 0.16). Whey protein had no effect on subsequent energy intake (kcal) compared to control in either the younger (decrease 3 ± 8%) or older (decrease 2 ± 8%) obese men (age effect P > 0.05, protein effect P = 0.46, age × protein interaction effect P = 0.84). Whey protein slowed gastric emptying, to a similar degree in both age groups (50% emptying time: control vs. protein young men: 255 ± 5 min vs. 40 ± 7 min; older men: 16 ± 5 min vs. 50 ± 8 min; protein effect P = 0.001, age effect P = 0.93, age × protein interaction effect P = 0.13). CONCLUSIONS Our data suggest that obesity may blunt/abolish the age-related effect of whey protein on suppression of energy intake.
Collapse
Affiliation(s)
- Avneet Oberoi
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Royal Adelaide Hospital, South-Australia, SA, Australia
| | | | - Caroline Jensen
- Centre for Nutrition, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Kylie Lange
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Royal Adelaide Hospital, South-Australia, SA, Australia
| | - Trygve Hausken
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Karen L Jones
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Royal Adelaide Hospital, South-Australia, SA, Australia
| | - Michael Horowitz
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Royal Adelaide Hospital, South-Australia, SA, Australia
| | - Ian Chapman
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Royal Adelaide Hospital, South-Australia, SA, Australia
| | - Stijn Soenen
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Royal Adelaide Hospital, South-Australia, SA, Australia.
- Faculty of Health Sciences and Medicine, Bond University, Gold Coast, Queensland, Australia.
| |
Collapse
|
2
|
Idrizaj E, Garella R, Squecco R, Baccari MC. Can adiponectin have an additional effect on the regulation of food intake by inducing gastric motor changes? World J Gastroenterol 2020; 26:2472-2478. [PMID: 32523305 PMCID: PMC7265147 DOI: 10.3748/wjg.v26.i20.2472] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 04/13/2020] [Accepted: 05/12/2020] [Indexed: 02/06/2023] Open
Abstract
The regulation of food intake is a complex mechanism, and the hypothalamus is the main central structure implicated. In particular, the arcuate nucleus appears to be the most critical area in the integration of multiple peripheral signals. Among these signals, those originating from the white adipose tissue and the gastrointestinal tract are known to be involved in the regulation of food intake. The present paper focuses on adiponectin, an adipokine secreted by white adipose tissue, which is reported to have a role in the control of feeding by acting centrally. The recent observation that adiponectin is also able to influence gastric motility raises the question of whether this action represents an additional peripheral mechanism that concurs with the central effects of the hormone on food intake. This possibility, which represents an emerging aspect correlating the central and peripheral effects of adiponectin in the hunger-satiety cycle, is discussed in the present paper.
Collapse
Affiliation(s)
- Eglantina Idrizaj
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, Florence 50134, Italy
| | - Rachele Garella
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, Florence 50134, Italy
| | - Roberta Squecco
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, Florence 50134, Italy
| | - Maria Caterina Baccari
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, Florence 50134, Italy
| |
Collapse
|
3
|
Ullrich SS, Fitzgerald PCE, Giesbertz P, Steinert RE, Horowitz M, Feinle-Bisset C. Effects of Intragastric Administration of Tryptophan on the Blood Glucose Response to a Nutrient Drink and Energy Intake, in Lean and Obese Men. Nutrients 2018; 10:463. [PMID: 29642492 PMCID: PMC5946248 DOI: 10.3390/nu10040463] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 04/03/2018] [Accepted: 04/05/2018] [Indexed: 02/07/2023] Open
Abstract
Tryptophan stimulates plasma cholecystokinin and pyloric pressures, both of which slow gastric emptying. Gastric emptying regulates postprandial blood glucose. Tryptophan has been reported to decrease energy intake. We investigated the effects of intragastric tryptophan on the glycaemic response to, and gastric emptying of, a mixed-nutrient drink, and subsequent energy intake. Lean and obese participants (n = 16 each) received intragastric infusions of 1.5 g ("Trp-1.5g") or 3.0 g ("Trp-3.0g") tryptophan, or control, and 15 min later consumed a mixed-nutrient drink (56 g carbohydrates). Gastric emptying (13C-acetate breath-test), blood glucose, plasma C-peptide, glucagon, cholecystokinin and tryptophan concentrations were measured (t = 0-60 min). Energy intake was assessed between t = 60-90 min. In lean individuals, Trp-3.0g, but not Trp-1.5g, slowed gastric emptying, reduced C-peptideAUC and increased glucagonAUC (all P < 0.05), but did not significantly decrease the blood glucose response to the drink, stimulate cholecystokinin or reduce mean energy intake, compared with control. In obese individuals, Trp-3.0g, but not Trp-1.5g, tended to slow gastric emptying (P = 0.091), did not affect C-peptideAUC, increased glucagonAUC (P < 0.001) and lowered blood glucose at t = 30 min (P < 0.05), and did not affect cholecystokinin or mean energy intake. In obese individuals, intragastrically administered tryptophan may reduce postprandial blood glucose by slowing gastric emptying; the lack of effect on mean energy intake requires further investigation.
Collapse
Affiliation(s)
- Sina S Ullrich
- Adelaide Medical School and National Health and Medical Research Council of Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, Level 5 Adelaide Health and Medical Sciences Building, Corner North Terrace and George Street, Adelaide 5005, Australia.
| | - Penelope C E Fitzgerald
- Adelaide Medical School and National Health and Medical Research Council of Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, Level 5 Adelaide Health and Medical Sciences Building, Corner North Terrace and George Street, Adelaide 5005, Australia.
| | - Pieter Giesbertz
- Department of Nutritional Physiology, Technical University of Munich, Gregor-Mendel Strasse 2, 85354 Freising, Germany.
| | - Robert E Steinert
- Adelaide Medical School and National Health and Medical Research Council of Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, Level 5 Adelaide Health and Medical Sciences Building, Corner North Terrace and George Street, Adelaide 5005, Australia.
- Department of Surgery, Division of Visceral and Transplantation Surgery, University Hospital Zürich, Rämistrasse 100, 8091 Zürich, Switzerland.
| | - Michael Horowitz
- Adelaide Medical School and National Health and Medical Research Council of Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, Level 5 Adelaide Health and Medical Sciences Building, Corner North Terrace and George Street, Adelaide 5005, Australia.
| | - Christine Feinle-Bisset
- Adelaide Medical School and National Health and Medical Research Council of Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, Level 5 Adelaide Health and Medical Sciences Building, Corner North Terrace and George Street, Adelaide 5005, Australia.
| |
Collapse
|
4
|
Gridneva Z, Kugananthan S, Hepworth AR, Tie WJ, Lai CT, Ward LC, Hartmann PE, Geddes DT. Effect of Human Milk Appetite Hormones, Macronutrients, and Infant Characteristics on Gastric Emptying and Breastfeeding Patterns of Term Fully Breastfed Infants. Nutrients 2016; 9:nu9010015. [PMID: 28036041 PMCID: PMC5295059 DOI: 10.3390/nu9010015] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 12/16/2016] [Accepted: 12/22/2016] [Indexed: 12/17/2022] Open
Abstract
Human milk (HM) components influence infant feeding patterns and nutrient intake, yet it is unclear how they influence gastric emptying (GE), a key component of appetite regulation. This study analyzed GE of a single breastfeed, HM appetite hormones/macronutrients and demographics/anthropometrics/body composition of term fully breastfed infants (n = 41, 2 and/or 5 mo). Stomach volumes (SV) were calculated from pre-/post-feed ultrasound scans, then repeatedly until the next feed. Feed volume (FV) was measured by the test-weigh method. HM samples were analyzed for adiponectin, leptin, fat, lactose, total carbohydrate, lysozyme, and total/whey/casein protein. Linear regression/mixed effect models were used to determine associations between GE/feed variables and HM components/infant anthropometrics/adiposity. Higher FVs were associated with faster (−0.07 [−0.10, −0.03], p < 0.001) GE rate, higher post-feed SVs (0.82 [0.53, 1.12], p < 0.001), and longer GE times (0.24 [0.03, 0.46], p = 0.033). Higher whey protein concentration was associated with higher post-feed SVs (4.99 [0.84, 9.13], p = 0.023). Longer GE time was associated with higher adiponectin concentration (2.29 [0.92, 3.66], p = 0.002) and dose (0.02 [0.01, 0.03], p = 0.005), and lower casein:whey ratio (−65.89 [−107.13, −2.66], p = 0.003). FV and HM composition influence GE and breastfeeding patterns in term breastfed infants.
Collapse
Affiliation(s)
- Zoya Gridneva
- School of Chemistry and Biochemistry, The University of Western Australia, Crawley, Perth, Western Australia 6009, Australia.
| | - Sambavi Kugananthan
- School of Chemistry and Biochemistry, The University of Western Australia, Crawley, Perth, Western Australia 6009, Australia.
- School of Anatomy, Physiology and Human Biology, The University of Western Australia, Crawley, Perth, Western Australia 6009, Australia.
| | - Anna R Hepworth
- School of Chemistry and Biochemistry, The University of Western Australia, Crawley, Perth, Western Australia 6009, Australia.
| | - Wan J Tie
- School of Chemistry and Biochemistry, The University of Western Australia, Crawley, Perth, Western Australia 6009, Australia.
| | - Ching T Lai
- School of Chemistry and Biochemistry, The University of Western Australia, Crawley, Perth, Western Australia 6009, Australia.
| | - Leigh C Ward
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia.
| | - Peter E Hartmann
- School of Chemistry and Biochemistry, The University of Western Australia, Crawley, Perth, Western Australia 6009, Australia.
| | - Donna T Geddes
- School of Chemistry and Biochemistry, The University of Western Australia, Crawley, Perth, Western Australia 6009, Australia.
| |
Collapse
|
5
|
Bartholomé R, Salden B, Vrolijk MF, Troost FJ, Masclee A, Bast A, Haenen GR. Paracetamol as a Post Prandial Marker for Gastric Emptying, A Food-Drug Interaction on Absorption. PLoS One 2015; 10:e0136618. [PMID: 26352940 PMCID: PMC4564199 DOI: 10.1371/journal.pone.0136618] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 07/22/2015] [Indexed: 11/23/2022] Open
Abstract
The use of paracetamol as tool to determine gastric emptying was evaluated in a cross over study. Twelve healthy volunteers were included and each of them consumed two low and two high caloric meals. Paracetamol was mixed with a liquid meal and administered by a nasogastric feeding tube. The post prandial paracetamol plasma concentration time curve in all participants and the paracetamol concentration in the stomach content in six participants were determined. It was found that after paracetamol has left the stomach, based on analysis of the stomach content, there was still a substantial rise in the plasma paracetamol concentration time curve. Moreover, the difference in gastric emptying between high and low caloric meals was missed using the plasma paracetamol concentration time curve. The latter curves indicate that (i) part of the paracetamol may leave the stomach much quicker than the meal and (ii) part of the paracetamol may be relatively slowly absorbed in the duodenum. This can be explained by the partition of the homogenous paracetamol-meal mixture in the stomach in an aqueous phase and a solid bolus. The aqueous phase leaves the stomach quickly and the paracetamol in this phase is quickly absorbed in the duodenum, giving rise to the relatively steep increase of the paracetamol concentration in the plasma. The bolus leaves the stomach relatively slowly, and encapsulation by the bolus results in relatively slow uptake of paracetamol from the bolus in the duodenum. These findings implicate that paracetamol is not an accurate post prandial marker for gastric emptying. The paracetamol concentration time curve rather illustrates the food-drug interaction on absorption, which is not only governed by gastric emptying.
Collapse
Affiliation(s)
- R. Bartholomé
- Department of Toxicology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - B. Salden
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - M. F. Vrolijk
- Department of Toxicology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - F. J. Troost
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - A. Masclee
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - A. Bast
- Department of Toxicology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - G. R. Haenen
- Department of Toxicology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
- * E-mail:
| |
Collapse
|
6
|
Jahan-Mihan A, Luhovyy BL, El Khoury D, Anderson GH. Dietary proteins as determinants of metabolic and physiologic functions of the gastrointestinal tract. Nutrients 2011; 3:574-603. [PMID: 22254112 PMCID: PMC3257691 DOI: 10.3390/nu3050574] [Citation(s) in RCA: 143] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Revised: 04/29/2011] [Accepted: 05/09/2011] [Indexed: 02/07/2023] Open
Abstract
Dietary proteins elicit a wide range of nutritional and biological functions. Beyond their nutritional role as the source of amino acids for protein synthesis, they are instrumental in the regulation of food intake, glucose and lipid metabolism, blood pressure, bone metabolism and immune function. The interaction of dietary proteins and their products of digestion with the regulatory functions of the gastrointestinal (GI) tract plays a dominant role in determining the physiological properties of proteins. The site of interaction is widespread, from the oral cavity to the colon. The characteristics of proteins that influence their interaction with the GI tract in a source-dependent manner include their physico-chemical properties, their amino acid composition and sequence, their bioactive peptides, their digestion kinetics and also the non-protein bioactive components conjugated with them. Within the GI tract, these products affect several regulatory functions by interacting with receptors releasing hormones, affecting stomach emptying and GI transport and absorption, transmitting neural signals to the brain, and modifying the microflora. This review discusses the interaction of dietary proteins during digestion and absorption with the physiological and metabolic functions of the GI tract, and illustrates the importance of this interaction in the regulation of amino acid, glucose, lipid metabolism, and food intake.
Collapse
Affiliation(s)
- Alireza Jahan-Mihan
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
| | | | | | | |
Collapse
|
7
|
Stevens JE, Doran S, Russo A, O'Donovan D, Feinle-Bisset C, Rayner CK, Horowitz M, Jones KL. Effects of intravenous fructose on gastric emptying and antropyloroduodenal motility in healthy subjects. Am J Physiol Gastrointest Liver Physiol 2009; 297:G1274-G1280. [PMID: 19808656 DOI: 10.1152/ajpgi.00214.2009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Gastric emptying (GE) of glucose is regulated closely, not only as a result of inhibitory feedback arising from the small intestine, but also because of the resulting hyperglycemia. Fructose is used widely in the diabetic diet and is known to empty from the stomach slightly faster than glucose but substantially slower than water. The aims of this study were to determine whether intravenous (iv) fructose affects GE and antropyloroduodenal motility and how any effects compare to those induced by iv glucose. Six healthy males (age: 26.7 +/- 3.8 yr) underwent concurrent measurements of GE of a solid meal (100 g ground beef labeled with 20 MBq (99m)Tc-sulfur colloid) and antropyloroduodenal motility on three separate days in randomized order during iv infusion of either fructose (0.5 g/kg), glucose (0.5 g/kg), or isotonic saline for 20 min. GE (scintigraphy), antropyloroduodenal motility (manometry), and blood glucose (glucometer) were measured for 120 min. There was a rise in blood glucose (P < 0.001) after iv glucose (peak 16.4 +/- 0.6 mmol/l) but not after fructose or saline. Intravenous glucose and fructose both slowed GE substantially (P < 0.005 for both), without any significant difference between them. Between t = 0 and 30 min, the number of antral pressure waves was less after both glucose and fructose (P < 0.002 for both) than saline, and there were more isolated pyloric pressure waves during iv glucose (P = 0.003) compared with fructose and saline (P = NS for both) infusions. In conclusion, iv fructose slows GE and modulates gastric motility in healthy subjects, and the magnitude of slowing of GE is comparable to that induced by iv glucose.
Collapse
Affiliation(s)
- Julie E Stevens
- University of Adelaide, Royal Adelaide Hospital, SA, Australia
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Reinwald S, Weaver CM, Kester JJ. The health benefits of calcium citrate malate: a review of the supporting science. ADVANCES IN FOOD AND NUTRITION RESEARCH 2008; 54:219-346. [PMID: 18291308 DOI: 10.1016/s1043-4526(07)00006-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
There has been considerable investigation into the health benefits of calcium citrate malate (CCM) since it was first patented in the late 1980s. This chapter is a comprehensive summary of the supporting science and available evidence on the bioavailability and health benefits of consuming CCM. It highlights the important roles that CCM can play during various life stages. CCM has been shown to facilitate calcium retention and bone accrual in children and adolescents. In adults, it effectively promotes the consolidation and maintenance of bone mass. In conjunction with vitamin D, CCM also decreases bone fracture risk in the elderly, slows the rate of bone loss in old age, and is of benefit to the health and well-being of postmenopausal women. CCM is exceptional in that it confers many unique benefits that go beyond bone health. Unlike other calcium sources that necessitate supplementation be in conjunction with a meal to ensure an appreciable benefit is derived, CCM can be consumed with or without food and delivers a significant nutritional benefit to individuals of all ages. The chemistry of CCM makes it a particularly beneficial calcium source for individuals with hypochlorydia or achlorydia, which generally includes the elderly and those on medications that decrease gastric acid secretion. CCM is also recognized as a calcium source that does not increase the risk of kidney stones, and in fact it protects against stone-forming potential. The versatile nature of CCM makes it a convenient and practical calcium salt for use in moist foods and beverages. The major factor that may preclude selection of CCM as a preferred calcium source is the higher cost compared to other sources of calcium commonly used for fortification (e.g., calcium carbonate and tricalcium phosphate). However, formation of CCM directly within beverages or other fluid foods and/or preparations, and the addition of a concentrated CCM solution or slurry, are relatively cost-effective methods by which CCM can be incorporated into finished food and beverage products.
Collapse
Affiliation(s)
- Susan Reinwald
- Department of Foods and Nutrition, Purdue University, West Lafayette, IN 47907, USA
| | | | | |
Collapse
|
9
|
Faro CJ, Reidelberger RD, Palmer JM. Suppression of food intake is linked to enteric inflammation in nematode-infected rats. Am J Physiol Regul Integr Comp Physiol 2000; 278:R118-24. [PMID: 10644629 DOI: 10.1152/ajpregu.2000.278.1.r118] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Our aim was to investigate the cause-effect relationship between intestinal inflammation induced by infection with enteric stages of Trichinella spiralis and decreased host food intake. A suppression of food intake in T. spiralis-infected rats occurred within the first 24 h postinfection (PI) and was maximized by day 6 PI. Food intake, cumulated over an 8-day PI period, decreased by 59% compared with uninfected animals. The anti-inflammatory glucocorticoid betamethasone 21-phosphate was orally administered to rats in their drinking water to suppress T. spiralis-induced jejunal inflammation. When treated with a low dose of glucocorticoid (5.2 microg/ml), food intake in infected rats was still significantly reduced, but only by 21% compared with glucocorticoid-treated, uninfected rats. At the highest glucocorticoid dose (10.4 microg/ml) administered, infection-induced reduction in food intake was not different from that of glucocorticoid-treated, uninfected counterparts. The elevation in jejunal myeloperoxidase activity caused by infection was also significantly blunted by oral glucocorticoid treatment. Our results suggest that suppressed host food intake during enteric T. spiralis infection is directly linked to intestinal inflammation.
Collapse
Affiliation(s)
- C J Faro
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha 68178, Nebraska
| | | | | |
Collapse
|
10
|
Glasbrenner B, Pieramico O, Brecht-Krauss D, Baur M, Malfertheiner P. Gastric emptying of solids and liquids in obesity. THE CLINICAL INVESTIGATOR 1993; 71:542-6. [PMID: 8374247 DOI: 10.1007/bf00208478] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The purpose of this study was to determine whether obese patients have different rates of solid and liquid gastric emptying compared to healthy controls. Twenty-four obese patients (7 males, 17 females) were investigated prior to dietary restriction. The patients had a weight excess above ideal weight ranging from 25% to 216% (mean weight 118.1 +/- 6.5 kg). The control group consisted of 8 healthy subjects (4 males, 4 females), within 10% of the ideal weight. The solid phase of the test meal consisted of 40 g bread, 30 g ham, 10 g margarine, and two scrambled eggs labeled with 99mTc. For the liquid phase, 200 ml orange juice was labeled with 201Tl. Three-minute counts of both tracers were taken for 106 min using a large field-of-view gamma camera. In obese patients, a significantly shortened lag phase for the emptying of solids was observed (27.0 +/- 3.3 versus 38.4 +/- 4.1 min; P < 0.05). Half-emptying time (105.9 +/- 6.7 versus 100.7 +/- 5.7 min), emptying rate (0.60 +/- 0.04 versus 0.71 +/- 0.07%/min), and total emptying of solids (49.4 +/- 3.6 versus 50.5 +/- 5.0%) were not different from controls. Obese subjects had a trend to slowed liquid emptying (half-time 82.7 +/- 4.8 versus 69.9 +/- 6.9 min; emptying rate 0.59 +/- 0.03 versus 0.65 +/- 0.03%/min; total emptying 59.8 +/- 2.9 versus 66.0 +/- 3.3%), but this was not statistically significant. There was no correlation between weight or body surface area and rate of solid or liquid gastric emptying.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|