1
|
Sato A, Okada M, Tago K, Nakazawa Y, Mizuno M, Miyauchi T, Kobashi Y. Multiparametric gadoxetic acid-enhanced MR versus dual-layer spectral detector CT for differentiating hepatocellular carcinoma from hypervascular pseudolesions. Acta Radiol 2025:2841851251323965. [PMID: 40105509 DOI: 10.1177/02841851251323965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
BackgroundIt can be difficult to differentiate hypervascular hepatocellular carcinoma (HCC) from hypervascular pseudolesion (HPL) such as arteriovenous shunts.PurposeTo determine retrospectively whether double-layer detector computed tomography (DLCT) can differentiate HCC from HPL compared to gadoxetate-enhanced magnetic resonance imaging (EOB-MRI).Material and MethodsWe retrospectively analyzed 46 patients who underwent EOB-MRI and DLCT for suspected HCCs. Arterial/portal phase and hepatobiliary phase (HBP) on EOB-MRI, T2-weighted (T2W) imaging, diffusion-weighted imaging (DWI), apparent diffusion coefficient (ADC), CT value, iodine-density (ID), atomic-number (Zeff), and electron-density (ED) of the lesion and liver were evaluated. The reduction rates of ID (R-ID) between each phase of the arterial/portal phase on EOB-MRI were calculated. ROC analysis was performed to determine the accuracy for differentiating HCC from HPL.ResultsThere were 55 HCCs and 14 HPLs. On DWI, 42, 11, and two HCCs showed high, slightly high, and iso intensity, respectively. However, all 14 HPLs showed iso intensity on DWI. Area under ROC curve (AUC) of DWI (0.982, 95% confidence interval [CI]=0.957-1) was significantly higher than that of HBP (AUC=0.714; 95% CI=0.580-0.849; P < 0.001), R-ID (AUC=0.742, 95% CI=0.580-0.903; P = 0.004), and ED of portal phase (AUC=0.786, 95% CI=0.640-0.891; P = 0.001) in differentiating HCC and HPL. ADC (<0.001), T2W imaging (<0.001), HBP (<0.001), ED-arterial-phase (<0.001), ED-portal-phase (=0.003), ED-equilibrium-phase (=0.001), R-ID-between-arterial/equilibrium-phase (=0.032), and R-ID-between-portal/equilibrium-phase (=0.042) showed significant differences between HPL and HCC.ConclusionDWI is most useful for differentiating HCC from HPL, although ADC, T2W, HBP, R-ID, and ED may also be relatively useful to differentiate between HPLs and HCCs.
Collapse
Affiliation(s)
- Akahiko Sato
- Department of Radiology, Nihon University School of Medicine, Itabashi-ku, Tokyo, Japan
| | - Masahiro Okada
- Department of Radiology, Nihon University School of Medicine, Itabashi-ku, Tokyo, Japan
| | - Kenichiro Tago
- Department of Radiology, Nihon University School of Medicine, Itabashi-ku, Tokyo, Japan
| | - Yujiro Nakazawa
- Department of Radiology, Nihon University School of Medicine, Itabashi-ku, Tokyo, Japan
| | - Mariko Mizuno
- Department of Radiology, Nihon University School of Medicine, Itabashi-ku, Tokyo, Japan
| | - Takahiro Miyauchi
- Department of Radiology, Nihon University School of Medicine, Itabashi-ku, Tokyo, Japan
| | - Yuko Kobashi
- Department of Radiology, Nihon University School of Medicine, Itabashi-ku, Tokyo, Japan
| |
Collapse
|
2
|
Harper KC, Ronot M, Wells ML, Luna A, Ba-Ssalamah A, Wang J, Welle CL, Silva AC, Fidler J, Venkatesh SK. Hypointense Findings on Hepatobiliary Phase MR Images. Radiographics 2025; 45:e240090. [PMID: 39883575 DOI: 10.1148/rg.240090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
Hepatobiliary (HB) contrast agents are increasingly valuable diagnostic tools in MRI, offering a wider range of applications as their clinical use expands. Normal hepatocytes take up HB contrast agents, which are subsequently excreted in bile. This property creates a distinct HB phase providing valuable insights into liver function and biliary anatomy. HB contrast agents can assist in diagnosing a broad spectrum of HB diseases ranging from diffuse liver disease to focal hepatic lesions and can delineate anatomic details of the biliary tree. Understanding the pharmacodynamics of HB contrast agents is paramount to their appropriate clinical application and troubleshooting. HB phase hypointensity can arise from various diffuse and focal abnormalities that may or may not be associated with biliary excretion. Hypointensity during the HB phase can be broadly grouped into diffuse hypointensity, regional hypointensity, and focal lesions for better evaluation of the underlying cause. Abnormalities may arise from hepatic parenchymal, biliary, or vascular causes, or a combination thereof in each of the broad groups. Recognition of a suboptimal hypointense HB phase is important in the evaluation of focal lesions in patients with cirrhosis of the liver and particularly in those with hepatocellular carcinoma. Furthermore, hypointensity can also suggest the aggressiveness of malignancies such as hepatocellular carcinoma or colorectal metastases, which may affect the prognosis. It is essential to consider all imaging findings relative to the clinical context and the complete set of the MRI sequences performed for diagnosis of liver abnormalities. This comprehensive approach minimizes the risk of misinterpretation or pitfalls. The authors aim to equip radiologists with key insights for accurately understanding hypointensity in the HB phase, ultimately leading to more accurate diagnoses. ©RSNA, 2025 Supplemental material is available for this article.
Collapse
Affiliation(s)
- Kelly C Harper
- From the Department of Radiology, Division of Abdominal Imaging, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905 (K.C.H., M.L.W., C.L.W., J.F., S.K.V.); Department of Medical Imaging, University of Ottawa, Ottawa, Ontario, Canada (K.C.H.); Department of Medical Imaging, Beaujon University Hospital, Clichy, France (M.R.); HT Medica, Madrid, Spain (A.L.); Department of Radiology, University of Vienna, Vienna, Austria (A.B.S.); Department of Radiology, Sun Yat Sen University, Guangzhou, China (J.W.); and Department of Radiology, Division of Abdominal Imaging, Mayo Clinic, Scottsdale, Ariz (A.C.S.)
| | - Maxime Ronot
- From the Department of Radiology, Division of Abdominal Imaging, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905 (K.C.H., M.L.W., C.L.W., J.F., S.K.V.); Department of Medical Imaging, University of Ottawa, Ottawa, Ontario, Canada (K.C.H.); Department of Medical Imaging, Beaujon University Hospital, Clichy, France (M.R.); HT Medica, Madrid, Spain (A.L.); Department of Radiology, University of Vienna, Vienna, Austria (A.B.S.); Department of Radiology, Sun Yat Sen University, Guangzhou, China (J.W.); and Department of Radiology, Division of Abdominal Imaging, Mayo Clinic, Scottsdale, Ariz (A.C.S.)
| | - Michael L Wells
- From the Department of Radiology, Division of Abdominal Imaging, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905 (K.C.H., M.L.W., C.L.W., J.F., S.K.V.); Department of Medical Imaging, University of Ottawa, Ottawa, Ontario, Canada (K.C.H.); Department of Medical Imaging, Beaujon University Hospital, Clichy, France (M.R.); HT Medica, Madrid, Spain (A.L.); Department of Radiology, University of Vienna, Vienna, Austria (A.B.S.); Department of Radiology, Sun Yat Sen University, Guangzhou, China (J.W.); and Department of Radiology, Division of Abdominal Imaging, Mayo Clinic, Scottsdale, Ariz (A.C.S.)
| | - Antonio Luna
- From the Department of Radiology, Division of Abdominal Imaging, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905 (K.C.H., M.L.W., C.L.W., J.F., S.K.V.); Department of Medical Imaging, University of Ottawa, Ottawa, Ontario, Canada (K.C.H.); Department of Medical Imaging, Beaujon University Hospital, Clichy, France (M.R.); HT Medica, Madrid, Spain (A.L.); Department of Radiology, University of Vienna, Vienna, Austria (A.B.S.); Department of Radiology, Sun Yat Sen University, Guangzhou, China (J.W.); and Department of Radiology, Division of Abdominal Imaging, Mayo Clinic, Scottsdale, Ariz (A.C.S.)
| | - Ahmed Ba-Ssalamah
- From the Department of Radiology, Division of Abdominal Imaging, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905 (K.C.H., M.L.W., C.L.W., J.F., S.K.V.); Department of Medical Imaging, University of Ottawa, Ottawa, Ontario, Canada (K.C.H.); Department of Medical Imaging, Beaujon University Hospital, Clichy, France (M.R.); HT Medica, Madrid, Spain (A.L.); Department of Radiology, University of Vienna, Vienna, Austria (A.B.S.); Department of Radiology, Sun Yat Sen University, Guangzhou, China (J.W.); and Department of Radiology, Division of Abdominal Imaging, Mayo Clinic, Scottsdale, Ariz (A.C.S.)
| | - Jin Wang
- From the Department of Radiology, Division of Abdominal Imaging, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905 (K.C.H., M.L.W., C.L.W., J.F., S.K.V.); Department of Medical Imaging, University of Ottawa, Ottawa, Ontario, Canada (K.C.H.); Department of Medical Imaging, Beaujon University Hospital, Clichy, France (M.R.); HT Medica, Madrid, Spain (A.L.); Department of Radiology, University of Vienna, Vienna, Austria (A.B.S.); Department of Radiology, Sun Yat Sen University, Guangzhou, China (J.W.); and Department of Radiology, Division of Abdominal Imaging, Mayo Clinic, Scottsdale, Ariz (A.C.S.)
| | - Christopher L Welle
- From the Department of Radiology, Division of Abdominal Imaging, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905 (K.C.H., M.L.W., C.L.W., J.F., S.K.V.); Department of Medical Imaging, University of Ottawa, Ottawa, Ontario, Canada (K.C.H.); Department of Medical Imaging, Beaujon University Hospital, Clichy, France (M.R.); HT Medica, Madrid, Spain (A.L.); Department of Radiology, University of Vienna, Vienna, Austria (A.B.S.); Department of Radiology, Sun Yat Sen University, Guangzhou, China (J.W.); and Department of Radiology, Division of Abdominal Imaging, Mayo Clinic, Scottsdale, Ariz (A.C.S.)
| | - Alvin C Silva
- From the Department of Radiology, Division of Abdominal Imaging, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905 (K.C.H., M.L.W., C.L.W., J.F., S.K.V.); Department of Medical Imaging, University of Ottawa, Ottawa, Ontario, Canada (K.C.H.); Department of Medical Imaging, Beaujon University Hospital, Clichy, France (M.R.); HT Medica, Madrid, Spain (A.L.); Department of Radiology, University of Vienna, Vienna, Austria (A.B.S.); Department of Radiology, Sun Yat Sen University, Guangzhou, China (J.W.); and Department of Radiology, Division of Abdominal Imaging, Mayo Clinic, Scottsdale, Ariz (A.C.S.)
| | - Jeff Fidler
- From the Department of Radiology, Division of Abdominal Imaging, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905 (K.C.H., M.L.W., C.L.W., J.F., S.K.V.); Department of Medical Imaging, University of Ottawa, Ottawa, Ontario, Canada (K.C.H.); Department of Medical Imaging, Beaujon University Hospital, Clichy, France (M.R.); HT Medica, Madrid, Spain (A.L.); Department of Radiology, University of Vienna, Vienna, Austria (A.B.S.); Department of Radiology, Sun Yat Sen University, Guangzhou, China (J.W.); and Department of Radiology, Division of Abdominal Imaging, Mayo Clinic, Scottsdale, Ariz (A.C.S.)
| | - Sudhakar K Venkatesh
- From the Department of Radiology, Division of Abdominal Imaging, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905 (K.C.H., M.L.W., C.L.W., J.F., S.K.V.); Department of Medical Imaging, University of Ottawa, Ottawa, Ontario, Canada (K.C.H.); Department of Medical Imaging, Beaujon University Hospital, Clichy, France (M.R.); HT Medica, Madrid, Spain (A.L.); Department of Radiology, University of Vienna, Vienna, Austria (A.B.S.); Department of Radiology, Sun Yat Sen University, Guangzhou, China (J.W.); and Department of Radiology, Division of Abdominal Imaging, Mayo Clinic, Scottsdale, Ariz (A.C.S.)
| |
Collapse
|
3
|
Jia X, Li X, Wei X, Sun J, Han Y, Guo M, Tong W, Qu Y, Zhu S, Guo J. Reducing transient severe motion artifacts of gadoxetate disodium-enhanced MRI by oxygen inhalation: effective for pleural effusion but not ascites. Abdom Radiol (NY) 2024; 49:4584-4591. [PMID: 38995402 DOI: 10.1007/s00261-024-04465-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/12/2024] [Accepted: 06/15/2024] [Indexed: 07/13/2024]
Abstract
OBJECTIVES To evaluate the efficacy of low-flow oxygen inhalation in mitigating transient severe motion (TSM) artifacts associated with gadoxetate disodium-enhanced hepatic magnetic resonance imaging (MRI). METHODS Patients undergoing gadoxetate disodium-enhanced MRI were included. During the examination, the experimental group received oxygen at 2 L/min via nasal cannula, while the control group did not. Images and TSM scores were evaluated and compared across precontrast, arterial, venous, and hepatobiliary phases. Subgroup analyses were conducted based on the presence of pleural effusion or ascites. RESULTS A total of 325 patients were included. The motion scores were highest in the arterial phase and lowest in the hepatobiliary phase in both groups, but were significantly lower in the experimental group (p < 0.05). The incidence of TSM was significantly lower in the experimental group (3.29%) compared to the control group (13.29%, p = 0.01). While pleural effusion was associated with reduced image quality in both groups (p < 0.05), the image quality in the pleural effusion category was higher in the experimental group than in the control group. Oxygen inhalation showed limited efficacy in mitigating TSM related to ascites. CONCLUSIONS Low-flow oxygen inhalation can effectively reduce the occurrence of gadoxetate disodium-related TSM. Pleural effusion may impair respiratory function and contribute to TSM, which can be alleviated by oxygen supplementation. However, Oxygen inhalation is less effective under the condition of ascites.
Collapse
Affiliation(s)
- Xiaoqian Jia
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Xianjun Li
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Xiaocheng Wei
- MR Research China, GE Healthcare, Beijing, 100176, China
| | - Jingtao Sun
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Yangyang Han
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Ming Guo
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Wei Tong
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Yuan Qu
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Shumeng Zhu
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Jianxin Guo
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China.
| |
Collapse
|
4
|
Nagata H, Ohno Y, Yoshikawa T, Yamamoto K, Shinohara M, Ikedo M, Yui M, Matsuyama T, Takahashi T, Bando S, Furuta M, Ueda T, Ozawa Y, Toyama H. Compressed sensing with deep learning reconstruction: Improving capability of gadolinium-EOB-enhanced 3D T1WI. Magn Reson Imaging 2024; 108:67-76. [PMID: 38309378 DOI: 10.1016/j.mri.2024.01.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/20/2024] [Accepted: 01/26/2024] [Indexed: 02/05/2024]
Abstract
PURPOSE The purpose of this study was to determine the utility of compressed sensing (CS) with deep learning reconstruction (DLR) for improving spatial resolution, image quality and focal liver lesion detection on high-resolution contrast-enhanced T1-weighted imaging (HR-CE-T1WI) obtained by CS with DLR as compared with conventional CE-T1WI with parallel imaging (PI). METHODS Seventy-seven participants with focal liver lesions underwent conventional CE-T1WI with PI and HR-CE-T1WI, surgical resection, transarterial chemoembolization, and radiofrequency ablation, followed by histopathological or >2-year follow-up examinations in our hospital. Signal-to-noise ratios (SNRs) of liver, spleen and kidney were calculated for each patient, after which each SNR was compared by means of paired t-test. To compare focal lesion detection capabilities of the two methods, a 5-point visual scoring system was adopted for a per lesion basis analysis. Jackknife free-response receiver operating characteristic (JAFROC) analysis was then performed, while sensitivity and false positive rates (/data set) for consensus assessment of the two methods were also compared by using McNemar's test or the signed rank test. RESULTS Each SNR of HR-CE-T1WI was significantly higher than that of conventional CE-T1WI with PI (p < 0.05). Sensitivities for consensus assessment showed that HR-CE-MRI had significantly higher sensitivity than conventional CE-T1WI with PI (p = 0.004). Moreover, there were significantly fewer FP/cases for HR-CE-T1WI than for conventional CE-T1WI with PI (p = 0.04). CONCLUSION CS with DLR are useful for improving spatial resolution, image quality and focal liver lesion detection capability of Gd-EOB-DTPA enhanced 3D T1WI without any need for longer breath-holding time.
Collapse
Affiliation(s)
- Hiroyuki Nagata
- Joint Research Laboratory of Advanced Medical Imaging, Fujita Health University School of Medicine, Toyoake, Aichi, 470-1192, Japan
| | - Yoshiharu Ohno
- Joint Research Laboratory of Advanced Medical Imaging, Fujita Health University School of Medicine, Toyoake, Aichi, 470-1192, Japan; Department of Diagnostic Radiology, Fujita Health University School of Medicine, Toyoake, Aichi, 470-1192, Japan.
| | - Takeshi Yoshikawa
- Department of Diagnostic Radiology, Fujita Health University School of Medicine, Toyoake, Aichi, 470-1192, Japan; Department of Radiology, Fujita Health University School of Medicine, Toyoake, Aichi, 470-1192, Japan; Department of Diagnostic Radiology, Hyogo Cancer Center, Akashi, Hyogo, 673-0021, Japan
| | - Kaori Yamamoto
- Canon Medical Systems Corporation, Otawara, Tochigi, 324-8550, Japan
| | - Maiko Shinohara
- Canon Medical Systems Corporation, Otawara, Tochigi, 324-8550, Japan
| | - Masato Ikedo
- Canon Medical Systems Corporation, Otawara, Tochigi, 324-8550, Japan
| | - Masao Yui
- Canon Medical Systems Corporation, Otawara, Tochigi, 324-8550, Japan
| | - Takahiro Matsuyama
- Department of Radiology, Fujita Health University School of Medicine, Toyoake, Aichi, 470-1192, Japan
| | - Tomoki Takahashi
- Department of Radiology, Fujita Health University School of Medicine, Toyoake, Aichi, 470-1192, Japan
| | - Shuji Bando
- Department of Radiology, Fujita Health University School of Medicine, Toyoake, Aichi, 470-1192, Japan
| | - Minami Furuta
- Department of Radiology, Fujita Health University School of Medicine, Toyoake, Aichi, 470-1192, Japan
| | - Takahiro Ueda
- Department of Diagnostic Radiology, Fujita Health University School of Medicine, Toyoake, Aichi, 470-1192, Japan
| | - Yoshiyuki Ozawa
- Department of Diagnostic Radiology, Fujita Health University School of Medicine, Toyoake, Aichi, 470-1192, Japan
| | - Hiroshi Toyama
- Department of Radiology, Fujita Health University School of Medicine, Toyoake, Aichi, 470-1192, Japan
| |
Collapse
|
5
|
Zhou S, Wang S, Xiang J, Han Z, Wang W, Zhang S, Opara NC, Ju S, Cui Y, Wang YC. Diagnostic performance of MRI for residual or recurrent hepatocellular carcinoma after locoregional treatment according to contrast agent type: a systematic review and meta‑analysis. Abdom Radiol (NY) 2024; 49:471-483. [PMID: 38200213 DOI: 10.1007/s00261-023-04143-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 01/12/2024]
Abstract
PURPOSE The ideal contrast agent for imaging patients with hepatocellular carcinoma (HCC) following locoregional therapies (LRT) remains uncertain. We conducted a meta-analysis to assess the diagnostic performance of magnetic resonance imaging with extracellular contrast agent (ECA-MRI) and hepatobiliary agent (EOB-MRI) in detecting residual or recurrence HCC following LRT. METHODS Original studies comparing the diagnostic performance of ECA-MRI and EOB-MRI were systematically identified through comprehensive searches in PubMed, EMBASE, Cochrane Library and Web of Science databases. The pooled sensitivity and specificity of ECA-MRI and EOB-MRI were calculated using a bivariate-random-effects model. Subgroup-analyses were conducted to compare the diagnostic performance of ECA-MRI and EOB-MRI according to different variables. Meta-regression analysis was employed to explore potential sources of study heterogeneity. RESULTS A total of 15 eligible studies encompassing 803 patients and 1018 lesions were included. Comparative analysis revealed no significant difference between ECA-MRI and EOB-MRI in the overall pooled sensitivity (87% vs. 79%) and specificity (92% vs. 96%) for the detection of residual or recurrent HCC after LRT (P = 0.41), with comparable areas under the HSROC of 0.95 and 0.92. Subgroup analyses indicated no significant diagnostic performance differences between ECA-MRI and EOB-MRI according to study design, type of LRT, most common etiology of liver disease, baseline lesion size, time of post-treated examination and MRI field strength (All P > 0.05). CONCLUSION ECA-MRI exhibited overall comparable diagnostic performance to EOB-MRI in assessing residual or recurrent HCC after LRT.
Collapse
Affiliation(s)
- Shuwei Zhou
- Department of Radiology, Zhongda Hospital, Jiangsu Key Laboratory of Molecular and Functional Imaging, School of Medicine, Southeast University, 87 Ding Jia Qiao Road, Nanjing, 210009, China
| | - Siyu Wang
- Department of Gastroenterology, The First Hospital of Hunan University of Chinese Medicine, 95 Shaoshan Middle Road, Yuhua District, Changsha, 410007, Hunan, China
| | - Jian Xiang
- Department of Radiology, The First Hospital of Hunan University of Chinese Medicine, 95 Shaoshan Middle Road, Yuhua District, Changsha, 410007, Hunan, China
| | - Zhongyu Han
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 610000, China
| | - Weilang Wang
- Department of Radiology, Zhongda Hospital, Jiangsu Key Laboratory of Molecular and Functional Imaging, School of Medicine, Southeast University, 87 Ding Jia Qiao Road, Nanjing, 210009, China
| | - Shuhang Zhang
- Department of Radiology, Zhongda Hospital, Jiangsu Key Laboratory of Molecular and Functional Imaging, School of Medicine, Southeast University, 87 Ding Jia Qiao Road, Nanjing, 210009, China
| | - Noble Chibuike Opara
- Department of Radiology, Zhongda Hospital, Jiangsu Key Laboratory of Molecular and Functional Imaging, School of Medicine, Southeast University, 87 Ding Jia Qiao Road, Nanjing, 210009, China
| | - Shenghong Ju
- Department of Radiology, Zhongda Hospital, Jiangsu Key Laboratory of Molecular and Functional Imaging, School of Medicine, Southeast University, 87 Ding Jia Qiao Road, Nanjing, 210009, China
| | - Ying Cui
- Department of Radiology, Zhongda Hospital, Jiangsu Key Laboratory of Molecular and Functional Imaging, School of Medicine, Southeast University, 87 Ding Jia Qiao Road, Nanjing, 210009, China.
| | - Yuan-Cheng Wang
- Department of Radiology, Zhongda Hospital, Jiangsu Key Laboratory of Molecular and Functional Imaging, School of Medicine, Southeast University, 87 Ding Jia Qiao Road, Nanjing, 210009, China.
| |
Collapse
|
6
|
Brandi N, Renzulli M. Liver Lesions at Risk of Transformation into Hepatocellular Carcinoma in Cirrhotic Patients: Hepatobiliary Phase Hypointense Nodules without Arterial Phase Hyperenhancement. J Clin Transl Hepatol 2024; 12:100-112. [PMID: 38250460 PMCID: PMC10794268 DOI: 10.14218/jcth.2023.00130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/04/2023] [Accepted: 07/25/2023] [Indexed: 01/23/2024] Open
Abstract
Recent technical advances in liver imaging and surveillance for patients at high risk for developing hepatocellular carcinoma (HCC) have led to an increase in the detection of borderline hepatic nodules in the gray area of multistep carcinogenesis, particularly in those that are hypointense at the hepatobiliary phase (HBP) and do not show arterial phase hyperenhancement. Given their potential to transform and advance into hypervascular HCC, these nodules have progressively attracted the interest of the scientific community. To date, however, no shared guidelines have been established for the decision management of these borderline hepatic nodules. It is therefore extremely important to identify features that indicate the malignant potential of these nodules and the likelihood of vascularization. In fact, a more complete knowledge of their history and evolution would allow outlining shared guidelines for their clinical-surgical management, to implement early treatment programs and decide between a preventive curative treatment or a watchful follow-up. This review aims to summarize the current knowledge on hepatic borderline nodules, particularly focusing on those imaging features which are hypothetically correlated with their malignant evolution, and to discuss current guidelines and ongoing management in clinical practice.
Collapse
Affiliation(s)
- Nicolò Brandi
- Department of Radiology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Matteo Renzulli
- Department of Radiology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| |
Collapse
|
7
|
Nishioka E, Sofue K, Maruyama K, Ueshima E, Ueno Y, Tsurusaki M, Komatsu S, Fukumoto T, Murakami T. Improved diagnosis of histological capsule in hepatocallular carcinoma by using nonenhancing capsule appearance in addition to enhancing capsule appearance in gadoxetic acid-enhanced MRI. Sci Rep 2023; 13:6113. [PMID: 37059750 PMCID: PMC10104865 DOI: 10.1038/s41598-023-33048-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 04/06/2023] [Indexed: 04/16/2023] Open
Abstract
To assess the value of nonenhancing capsule by adding to enhancing capsule in gadoxetic acid-enhanced MRI (EOB-MRI) in comparison with contrast-enhanced CT (CE-CT) for diagnosing histological capsule in hepatocellular carcinoma (HCC). One-hundred fifty-one patients with HCC who underwent both CE-CT and EOB-MRI were retrospectively reviewed. Liver Imaging-Reporting and Data System (LI-RADS) v2018 imaging features, including enhancing and nonenhancing capsule were evaluated by two readers in CE-CT and EOB-MRI. Frequencies of each imaging feature were compared between CE-CT and EOB-MRI. The area under the receiver operating characteristic (AUC) curve for the diagnosis of histological capsule was compared across the following three imaging criteria: (1) enhancing capsule in CE-CT, (2) enhancing capsule in EOB-MRI, and (3) enhancing/nonenhancing capsule in EOB-MRI. Enhancing capsule in EOB-MRI was significantly less frequently depicted than that in CE-CT (p < 0.001 and = 0.016 for reader 1 and 2). Enhancing/nonenhancing capsule in EOB-MRI achieved a similar frequency of enhancing in CE-CT (p = 0.590 and 0.465 for reader 1 and 2). Adding nonenhancing capsule to enhancing capsule in EOB-MRI significantly increased AUCs (p < 0.001 for both readers) and achieved similar AUCs compared with enhancing capsule in CE-CT (p = 0.470 and 0.666 for reader 1 and 2). Adding nonenhancing capsule to the definition of capsule appearance can improve the diagnosis of capsule in EOB-MRI for the diagnosis of histological capsule in HCC and decrease discordance of capsule appearance between EOB-MRI and CE-CT.
Collapse
Affiliation(s)
- Eiko Nishioka
- Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Keitaro Sofue
- Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Japan.
| | - Koji Maruyama
- Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Eisuke Ueshima
- Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yoshiko Ueno
- Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Masakatsu Tsurusaki
- Department of Radiology, Faculty of Medicine, Kindai University, Osaka-Sayama, Japan
| | - Shohei Komatsu
- Division of Hepato-Biliary-Pancreatic Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takumi Fukumoto
- Division of Hepato-Biliary-Pancreatic Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takamichi Murakami
- Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
8
|
Narita K, Nakamura Y, Higaki T, Kondo S, Honda Y, Kawashita I, Mitani H, Fukumoto W, Tani C, Chosa K, Tatsugami F, Awai K. Iodine maps derived from sparse-view kV-switching dual-energy CT equipped with a deep learning reconstruction for diagnosis of hepatocellular carcinoma. Sci Rep 2023; 13:3603. [PMID: 36869102 PMCID: PMC9984536 DOI: 10.1038/s41598-023-30460-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 02/23/2023] [Indexed: 03/05/2023] Open
Abstract
Deep learning-based spectral CT imaging (DL-SCTI) is a novel type of fast kilovolt-switching dual-energy CT equipped with a cascaded deep-learning reconstruction which completes the views missing in the sinogram space and improves the image quality in the image space because it uses deep convolutional neural networks trained on fully sampled dual-energy data acquired via dual kV rotations. We investigated the clinical utility of iodine maps generated from DL-SCTI scans for assessing hepatocellular carcinoma (HCC). In the clinical study, dynamic DL-SCTI scans (tube voltage 135 and 80 kV) were acquired in 52 patients with hypervascular HCCs whose vascularity was confirmed by CT during hepatic arteriography. Virtual monochromatic 70 keV images served as the reference images. Iodine maps were reconstructed using three-material decomposition (fat, healthy liver tissue, iodine). A radiologist calculated the contrast-to-noise ratio (CNR) during the hepatic arterial phase (CNRa) and the equilibrium phase (CNRe). In the phantom study, DL-SCTI scans (tube voltage 135 and 80 kV) were acquired to assess the accuracy of iodine maps; the iodine concentration was known. The CNRa was significantly higher on the iodine maps than on 70 keV images (p < 0.01). The CNRe was significantly higher on 70 keV images than on iodine maps (p < 0.01). The estimated iodine concentration derived from DL-SCTI scans in the phantom study was highly correlated with the known iodine concentration. It was underestimated in small-diameter modules and in large-diameter modules with an iodine concentration of less than 2.0 mgI/ml. Iodine maps generated from DL-SCTI scans can improve the CNR for HCCs during hepatic arterial phase but not during equilibrium phase in comparison with virtual monochromatic 70 keV images. Also, when the lesion is small or the iodine concentration is low, iodine quantification may result in underestimation.
Collapse
Affiliation(s)
- Keigo Narita
- Diagnostic Radiology, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Yuko Nakamura
- Diagnostic Radiology, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.
| | - Toru Higaki
- Diagnostic Radiology, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
- Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8527, Japan
| | - Shota Kondo
- Diagnostic Radiology, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Yukiko Honda
- Diagnostic Radiology, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Ikuo Kawashita
- Diagnostic Radiology, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Hidenori Mitani
- Diagnostic Radiology, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Wataru Fukumoto
- Diagnostic Radiology, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Chihiro Tani
- Diagnostic Radiology, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Keigo Chosa
- Diagnostic Radiology, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Fuminari Tatsugami
- Diagnostic Radiology, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Kazuo Awai
- Diagnostic Radiology, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| |
Collapse
|
9
|
Added value of contrast enhancement boost images in routine multiphasic contrast-enhanced CT for the diagnosis of small (<20 mm) hypervascular hepatocellular carcinoma. Eur J Radiol 2023; 160:110696. [PMID: 36680909 DOI: 10.1016/j.ejrad.2023.110696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/30/2022] [Accepted: 01/10/2023] [Indexed: 01/13/2023]
Abstract
PURPOSE To investigate the added value of contrast enhancement boost (CE-boost) images in multiphasic contrast-enhanced CT (CE-CT) for diagnosing small (<20 mm) hypervascular hepatocellular carcinoma (HCC). MATERIALS AND METHODS This retrospective study included 69 patients (age, 74 ± 8 years; 52 men) with 70 hypervascular HCCs (<20 mm) who underwent multiphasic CE-CT (pre-contrast, late arterial phase [LAP], portal venous phase [PVP], and equilibrium phase). Two types of CE-boost images were generated by subtracting PVP from LAP (LA-PV) images and LAP from PVP (PV-LA) images to enhance the contrast effect of hepatic arterial and portal venous perfusion more selectively. Tumor-to-liver contrast-to-noise ratios (CNRs) in CE-boost images were compared with those in CE-CT images using the Wilcoxon signed-rank test. Two independent readers reviewed the imaging datasets: CE-CT alone and CE-CT with CE-boost images. The diagnostic performance of each dataset was compared using jackknife alternative free-response receiver operating characteristics (JAFROC-1). RESULTS The tumor-to-liver CNRs in the LA-PV (6.4 ± 3.0) and PV-LA (-3.3 ± 2.1) images were greater than those in the LAP (3.2 ± 1.7) and PVP images (-1.1 ± 1.4) (p <.001 for both). The reader-averaged figures of merit were 0.751 for CE-CT alone and 0.807 for CE-CT with CE-boost images (p <.001). Sensitivities increased by adding CE-boost images for both readers (p <.001 and = 0.03), while positive predictive values were equivalent (p >.99). CONCLUSION Adding CE-boost images to multiphasic CE-CT can improve the diagnostic accuracy and sensitivity for small hypervascular HCC by increasing the tumor-to-liver CNR.
Collapse
|
10
|
Gatti M, Maino C, Darvizeh F, Serafini A, Tricarico E, Guarneri A, Inchingolo R, Ippolito D, Ricardi U, Fonio P, Faletti R. Role of gadoxetic acid-enhanced liver magnetic resonance imaging in the evaluation of hepatocellular carcinoma after locoregional treatment. World J Gastroenterol 2022; 28:3116-3131. [PMID: 36051340 PMCID: PMC9331537 DOI: 10.3748/wjg.v28.i26.3116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/25/2022] [Accepted: 06/16/2022] [Indexed: 02/06/2023] Open
Abstract
Locoregional treatments, as alternatives to surgery, play a key role in the management of hepatocellular carcinoma (HCC). Liver magnetic resonance imaging (MRI) enables a multiparametric assessment, going beyond the traditional dynamic computed tomography approach. Moreover, the use of hepatobiliary agents can improve diagnostic accuracy and are becoming important in the diagnosis and follow-up of HCC. However, the main challenge is to quickly identify classical responses to loco-regional treatments in order to determine the most suitable management strategy for each patient. The aim of this review is to provide a summary of the most common and uncommon liver MRI findings in patients who underwent loco-regional treatments for HCC, with a special focus on ablative therapies (radiofrequency, microwaves and cryoablation), trans-arterial chemoembolization, trans-arterial radio-embolization and stereotactic ablative radiotherapy techniques, considering the usefulness of gadoxetate disodium (Gd-EOB-DTPA) contrast agent.
Collapse
Affiliation(s)
- Marco Gatti
- Department of Surgical Sciences, University of Turin, Turin 10126, Italy
| | - Cesare Maino
- Department of Diagnostic Radiology, University of Milano-Bicocca, Monza 20900, Italy
- Department of Diagnostic Radiology, Ospedale San Gerardo, Monza 20900, Italy
| | - Fatemeh Darvizeh
- School of Medicine, Vita-Salute San Raffaele University, Milan 20121, Italy
| | | | - Eleonora Tricarico
- Department of Radiology, "F. Perinei" Hospital, Altamura (BA) 70022, Italy
| | | | - Riccardo Inchingolo
- Interventional Radiology Unit, “F. Miulli” Regional General Hospital, Acquaviva delle Fonti (BA) 70021, Italy
| | - Davide Ippolito
- Department of Diagnostic Radiology, University of Milano-Bicocca, Monza 20900, Italy
- Department of Diagnostic Radiology, Ospedale San Gerardo, Monza 20900, Italy
| | - Umberto Ricardi
- Department of Oncology, University of Turin, Turin 10126, Italy
| | - Paolo Fonio
- Department of Surgical Sciences, University of Turin, Turin 10126, Italy
| | - Riccardo Faletti
- Department of Surgical Sciences, University of Turin, Turin 10126, Italy
| |
Collapse
|
11
|
De Muzio F, Grassi F, Dell’Aversana F, Fusco R, Danti G, Flammia F, Chiti G, Valeri T, Agostini A, Palumbo P, Bruno F, Cutolo C, Grassi R, Simonetti I, Giovagnoni A, Miele V, Barile A, Granata V. A Narrative Review on LI-RADS Algorithm in Liver Tumors: Prospects and Pitfalls. Diagnostics (Basel) 2022; 12:1655. [PMID: 35885561 PMCID: PMC9319674 DOI: 10.3390/diagnostics12071655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/27/2022] [Accepted: 07/05/2022] [Indexed: 11/16/2022] Open
Abstract
Liver cancer is the sixth most detected tumor and the third leading cause of tumor death worldwide. Hepatocellular carcinoma (HCC) is the most common primary liver malignancy with specific risk factors and a targeted population. Imaging plays a major role in the management of HCC from screening to post-therapy follow-up. In order to optimize the diagnostic-therapeutic management and using a universal report, which allows more effective communication among the multidisciplinary team, several classification systems have been proposed over time, and LI-RADS is the most utilized. Currently, LI-RADS comprises four algorithms addressing screening and surveillance, diagnosis on computed tomography (CT)/magnetic resonance imaging (MRI), diagnosis on contrast-enhanced ultrasound (CEUS) and treatment response on CT/MRI. The algorithm allows guiding the radiologist through a stepwise process of assigning a category to a liver observation, recognizing both major and ancillary features. This process allows for characterizing liver lesions and assessing treatment. In this review, we highlighted both major and ancillary features that could define HCC. The distinctive dynamic vascular pattern of arterial hyperenhancement followed by washout in the portal-venous phase is the key hallmark of HCC, with a specificity value close to 100%. However, the sensitivity value of these combined criteria is inadequate. Recent evidence has proven that liver-specific contrast could be an important tool not only in increasing sensitivity but also in diagnosis as a major criterion. Although LI-RADS emerges as an essential instrument to support the management of liver tumors, still many improvements are needed to overcome the current limitations. In particular, features that may clearly distinguish HCC from cholangiocarcinoma (CCA) and combined HCC-CCA lesions and the assessment after locoregional radiation-based therapy are still fields of research.
Collapse
Affiliation(s)
- Federica De Muzio
- Department of Medicine and Health Sciences V. Tiberio, University of Molise, 86100 Campobasso, Italy;
| | - Francesca Grassi
- Division of Radiology, Università degli Studi della Campania Luigi Vanvitelli, 81100 Naples, Italy; (F.G.); (F.D.); (R.G.)
| | - Federica Dell’Aversana
- Division of Radiology, Università degli Studi della Campania Luigi Vanvitelli, 81100 Naples, Italy; (F.G.); (F.D.); (R.G.)
| | - Roberta Fusco
- Medical Oncology Division, Igea SpA, 80013 Naples, Italy
| | - Ginevra Danti
- Division of Radiology, Azienda Ospedaliera Universitaria Careggi, 50134 Florence, Italy; (G.D.); (F.F.); (G.C.); (V.M.)
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, 20122 Milan, Italy; (P.P.); (F.B.)
| | - Federica Flammia
- Division of Radiology, Azienda Ospedaliera Universitaria Careggi, 50134 Florence, Italy; (G.D.); (F.F.); (G.C.); (V.M.)
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, 20122 Milan, Italy; (P.P.); (F.B.)
| | - Giuditta Chiti
- Division of Radiology, Azienda Ospedaliera Universitaria Careggi, 50134 Florence, Italy; (G.D.); (F.F.); (G.C.); (V.M.)
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, 20122 Milan, Italy; (P.P.); (F.B.)
| | - Tommaso Valeri
- Department of Clinical Special and Dental Sciences, University Politecnica delle Marche, 60126 Ancona, Italy; (T.V.); (A.A.); (A.G.)
- Department of Radiological Sciences, University Hospital Ospedali Riuniti, Via Tronto 10/a, 60126 Torrette, Italy
| | - Andrea Agostini
- Department of Clinical Special and Dental Sciences, University Politecnica delle Marche, 60126 Ancona, Italy; (T.V.); (A.A.); (A.G.)
- Department of Radiological Sciences, University Hospital Ospedali Riuniti, Via Tronto 10/a, 60126 Torrette, Italy
| | - Pierpaolo Palumbo
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, 20122 Milan, Italy; (P.P.); (F.B.)
- Area of Cardiovascular and Interventional Imaging, Department of Diagnostic Imaging, Abruzzo Health Unit 1, 67100 L’Aquila, Italy
| | - Federico Bruno
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, 20122 Milan, Italy; (P.P.); (F.B.)
- Emergency Radiology, San Salvatore Hospital, Via Lorenzo Natali 1, 67100 L’Aquila, Italy;
| | - Carmen Cutolo
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84084 Fisciano, Italy;
| | - Roberta Grassi
- Division of Radiology, Università degli Studi della Campania Luigi Vanvitelli, 81100 Naples, Italy; (F.G.); (F.D.); (R.G.)
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, 20122 Milan, Italy; (P.P.); (F.B.)
| | - Igino Simonetti
- Radiology Division, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Via Mariano Semmola, 80131 Naples, Italy; (I.S.); (V.G.)
| | - Andrea Giovagnoni
- Department of Clinical Special and Dental Sciences, University Politecnica delle Marche, 60126 Ancona, Italy; (T.V.); (A.A.); (A.G.)
- Department of Radiological Sciences, University Hospital Ospedali Riuniti, Via Tronto 10/a, 60126 Torrette, Italy
| | - Vittorio Miele
- Division of Radiology, Azienda Ospedaliera Universitaria Careggi, 50134 Florence, Italy; (G.D.); (F.F.); (G.C.); (V.M.)
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, 20122 Milan, Italy; (P.P.); (F.B.)
| | - Antonio Barile
- Emergency Radiology, San Salvatore Hospital, Via Lorenzo Natali 1, 67100 L’Aquila, Italy;
| | - Vincenza Granata
- Radiology Division, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Via Mariano Semmola, 80131 Naples, Italy; (I.S.); (V.G.)
| |
Collapse
|
12
|
Luo L, Wang T, Cheng M, Ge X, Song S, Zhu G, Xiao Y, Deng W, Xie J, Shan R. Rare benign liver tumors that require differentiation from hepatocellular carcinoma: focus on diagnosis and treatment. J Cancer Res Clin Oncol 2022:10.1007/s00432-022-04169-w. [PMID: 35789428 DOI: 10.1007/s00432-022-04169-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 06/21/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND/AIM Recently, an increase in the number of asymptomatic rare benign liver tumors (BLTs) has been reported during health check-ups. It is difficult to determine the nature of partial rare BLTs and not easy to distinguish from malignant liver tumors. This study aimed to analysis clinical features, diagnosis and treatment of rare BLTs to reduce misdiagnosis and provide reference for clinical practice. METHODS From January 2012 to January 2021, we treated 112 rare BLTs by hepatectomy, including 54 focal nodular hyperplasias, 14 hepatocellular adenomas, 28 hepatic angiomyolipomas, 3 hepatic granulomas, 2 inflammatory pseudotumors of the liver, 2 nodular regenerative hyperplasia, 2 hepatic lipomas, 1 solitary fibrous tumor of the liver, 1 hepatic schwannoma and 1 hepatic myelolipoma. RESULTS The majority of patients were middle-aged female and asymptomatic. Single tumors were dominant. The diagnostic accuracies of computed tomography (CT) and magnetic resonance imaging (MRI) were 32.5% and 44.2%, respectively. The majority of tumors were likely to be misdiagnosed as hepatocellular carcinoma (HCC) or difficult to distinguish from HCC. All patients underwent surgical treatment. Postoperative pathological and immunohistochemical examination can confirm the diagnosis. No patients without tumor recurrence or metastasis during follow-up period. CONCLUSION Altogether, the clinical symptoms of rare BLTs lack specificity, and their preoperative diagnosis largely depends on imaging examination, with a low diagnostic accuracy rate and high chances of misdiagnosis as HCC. Diagnosis is confirmed by pathological and immunohistochemical examination. Surgical resection for rare BLT is safe and effective, regular postoperative follow-up is necessary.
Collapse
Affiliation(s)
- Laihui Luo
- Department of General Surgery, First Affiliated Hospital of Nanchang University, 17 Yong Wai Zheng Street, Nanchang, 330006, Jiangxi, China
| | - Tao Wang
- Department of Day Surgery Ward, First Affiliated Hospital of Nanchang University, 17 Yong Wai Zheng Street, Nanchang, 330006, Jiangxi, China
| | - Mengting Cheng
- Department of General Surgery, First Affiliated Hospital of Nanchang University, 17 Yong Wai Zheng Street, Nanchang, 330006, Jiangxi, China
| | - Xian Ge
- Department of Pathology, First Affiliated Hospital of Nanchang University, 17 Yong Wai Zheng Street, Nanchang, 330006, Jiangxi, China
| | - Shengjiang Song
- Department of General Surgery, First Affiliated Hospital of Nanchang University, 17 Yong Wai Zheng Street, Nanchang, 330006, Jiangxi, China
| | - Guoqing Zhu
- Department of General Surgery, First Affiliated Hospital of Nanchang University, 17 Yong Wai Zheng Street, Nanchang, 330006, Jiangxi, China
| | - Yongqiang Xiao
- Department of General Surgery, First Affiliated Hospital of Nanchang University, 17 Yong Wai Zheng Street, Nanchang, 330006, Jiangxi, China
| | - Wei Deng
- Department of General Surgery, First Affiliated Hospital of Nanchang University, 17 Yong Wai Zheng Street, Nanchang, 330006, Jiangxi, China
| | - Jin Xie
- Department of General Surgery, First Affiliated Hospital of Nanchang University, 17 Yong Wai Zheng Street, Nanchang, 330006, Jiangxi, China
| | - Renfeng Shan
- Department of General Surgery, First Affiliated Hospital of Nanchang University, 17 Yong Wai Zheng Street, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
13
|
Yoon J, Park SH, Ahn SJ, Shim YS. Atypical Manifestation of Primary Hepatocellular Carcinoma and Hepatic Malignancy Mimicking Lesions. JOURNAL OF THE KOREAN SOCIETY OF RADIOLOGY 2022; 83:808-829. [PMID: 36238905 PMCID: PMC9514587 DOI: 10.3348/jksr.2021.0178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/27/2021] [Accepted: 01/27/2022] [Indexed: 11/22/2022]
Abstract
Hepatocellular carcinoma (HCC) can be diagnosed noninvasively on multiphasic CT and MRI based on its distinctive imaging findings. These features include arterial phase hyperenhancement and washout on portal or delayed phase images. However, radiologists face significant diagnostic challenges because some HCCs exhibit atypical imaging characteristics. In addition to many HCC-mimicking lesions, such as arterioportal shunts, combined HCC-cholangiocarcinoma, intrahepatic cholangiocarcinoma, and hemangioma present a challenge for radiologists in actual clinical practice. The ability to distinguish HCCs from mimickers on initial imaging examinations is crucial for appropriate management and treatment decisions. Therefore, this pictorial review presents the imaging findings of atypical HCCs and HCCs mimicking malignant and benign lesions and discusses important clues that may help narrow down the differential diagnosis.
Collapse
|
14
|
Qiong L, Jie Z, Zhong Z, Wen S, Jun Z, Liping L, Jinkui C. Detection of hepatocellular carcinoma in a population at risk: iodine-enhanced multidetector CT and/or gadoxetic acid-enhanced 3.0 T MRI. BMJ Open 2022; 12:e058461. [PMID: 35177466 PMCID: PMC8860074 DOI: 10.1136/bmjopen-2021-058461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
OBJECTIVE To evaluate the diagnostic performance of iodine-enhanced multidetector CT and gadoxetic acid-enhanced 3.0 Tesla (T) MRI for detection of hepatocellular carcinoma of patients. DESIGN Retrospective, multicentre cohort study. SETTING The Gong'an County People's Hospital, Gong'an County, China and the First People's Hospital of Jingzhou City, China. PARTICIPANTS Reports of CT, MRI and liver biopsies/histopathology data of a total of 815 patients who at risk were reviewed. PRIMARY AND SECONDARY OUTCOME MEASURES The lesions that possessed detection in the plain scan phase, enhanced arterial phase and/or enhanced portal phase of CT images and the lesions that possessed enhancements in the plain scan phase, enhanced arterial phase, enhanced portal phase and/or hepatobiliary phases of MRI were considered hepatocellular carcinoma. The decision of hepatocellular carcinoma was made based on the current Liver Imaging and Data Reporting System for diagnosing hepatocellular carcinoma. RESULTS True positive hepatocellular carcinoma (563 vs 521, p=0.0314), true negative hepatocellular carcinoma (122 vs 91, p=0.0275), false positive hepatocellular carcinoma (88 vs 123, p=0.0121), false negative hepatocellular carcinoma (42 vs 80, p=0.0005), specificity (58.10 vs 42.52, p=0.0478) and negative clinical utility (0.1 vs 0.073, p=0.0386) were superior for gadoxetic acid-enhanced 3.0 T MRI than those of iodine-enhanced multidetector CT. Sensitivity and accuracy for gadoxetic acid-enhanced 3.0 T MRI were 93.06% and 77.40 %, respectively, and those for iodine-enhanced multidetector CT were 86.69% and 75.09 %, respectively. Likelihood to detect hepatocellular carcinoma for gadoxetic acid-enhanced 3.0 T MRI was 0-0.894 diagnostic confidence/lesion, and that for iodine-enhanced multidetector CT was 0-0.887 diagnostic confidence/lesion. CONCLUSION Gadoxetic acid-enhanced 3.0 T MRI facilitates the confidence of initiation of treatment of hepatocellular carcinoma. LEVEL OF EVIDENCE III. TECHNICAL EFFICACY STAGE 4.
Collapse
Affiliation(s)
- Lan Qiong
- Department of Radiology Imaging, Gong'an County People's Hospital, Gong'an County, Hubei, China
| | - Zhao Jie
- Department of Rehabilitation, Gong'an County People's Hospital, Gong'an County, Hubei, China
| | - Zheng Zhong
- Department of Radiology Imaging, Gong'an County People's Hospital, Gong'an County, Hubei, China
| | - Sheng Wen
- Department of Radiology Imaging, Gong'an County People's Hospital, Gong'an County, Hubei, China
| | - Zhao Jun
- Department of Radiology Imaging, Gong'an County People's Hospital, Gong'an County, Hubei, China
| | - Lu Liping
- Department of Radiology Imaging, Gong'an County People's Hospital, Gong'an County, Hubei, China
| | - Cheng Jinkui
- Department of Ophthalmology, The First People's Hospital of Jingzhou, Jingzhou, Hubei, China
| |
Collapse
|
15
|
Renzulli M, Brandi N, Argalia G, Brocchi S, Farolfi A, Fanti S, Golfieri R. Morphological, dynamic and functional characteristics of liver pseudolesions and benign lesions. Radiol Med 2022; 127:129-144. [PMID: 35028886 DOI: 10.1007/s11547-022-01449-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 12/30/2021] [Indexed: 12/21/2022]
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related deaths worldwide and one of the most common causes of death among patients with cirrhosis, developing in 1-8% of them every year, regardless of their cirrhotic stage. The radiological features of HCC are almost always sufficient for reaching the diagnosis; thus, histological confirmation is rarely needed. However, the study of cirrhotic livers remains a challenge for radiologists due to the developing of fibrous and regenerative tissue that cause the distortion of normal liver parenchyma, changing the typical appearances of benign lesions and pseudolesions, which therefore may be misinterpreted as malignancies. In addition, a correct distinction between pseudolesions and malignancy is crucial to allow appropriate targeted therapy and avoid treatment delays.The present review encompasses technical pitfalls and describes focal benign lesions and pseudolesions that may be misinterpreted as HCC in cirrhotic livers, providing the imaging features of regenerative nodules, large regenerative nodules, siderotic nodules, hepatic hemangiomas (including rapidly filling and sclerosed hemangiomas), segmental hyperplasia, arterioportal shunts, focal confluent fibrosis and focal fatty changes. Lastly, the present review explores the most promising new imaging techniques that are emerging and that could help radiologists differentiate benign lesions and pseudolesions from overt HCC.
Collapse
Affiliation(s)
- Matteo Renzulli
- Department of Radiology, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Via Albertoni 15, Bologna, Italia.
| | - Nicolò Brandi
- Department of Radiology, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Via Albertoni 15, Bologna, Italia
| | - Giulia Argalia
- Division of Nuclear Medicine, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy
| | - Stefano Brocchi
- Department of Radiology, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Via Albertoni 15, Bologna, Italia
| | - Andrea Farolfi
- Division of Nuclear Medicine, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy
| | - Stefano Fanti
- Division of Nuclear Medicine, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy
| | - Rita Golfieri
- Department of Radiology, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Via Albertoni 15, Bologna, Italia
| |
Collapse
|
16
|
Consul N, Sirlin CB, Chernyak V, Fetzer DT, Masch WR, Arora SS, Do RKG, Marks RM, Fowler KJ, Borhani AA, Elsayes KM. Imaging Features at the Periphery: Hemodynamics, Pathophysiology, and Effect on LI-RADS Categorization. Radiographics 2021; 41:1657-1675. [PMID: 34559586 DOI: 10.1148/rg.2021210019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Liver lesions have different enhancement patterns at dynamic contrast-enhanced imaging. The Liver Imaging Reporting and Data System (LI-RADS) applies the enhancement kinetic of liver observations in its algorithms for imaging-based diagnosis of hepatocellular carcinoma (HCC) in at-risk populations. Therefore, careful analysis of the spatial and temporal features of these enhancement patterns is necessary to increase the accuracy of liver mass characterization. The authors focus on enhancement patterns that are found at or around the margins of liver observations-many of which are recognized and defined by LI-RADS, such as targetoid appearance, rim arterial phase hyperenhancement, peripheral washout, peripheral discontinuous nodular enhancement, enhancing capsule appearance, nonenhancing capsule appearance, corona enhancement, and periobservational arterioportal shunts-as well as peripheral and periobservational enhancement in the setting of posttreatment changes. Many of these are considered major or ancillary features of HCC, ancillary features of malignancy in general, features of non-HCC malignancy, features associated with benign entities, or features related to treatment response. Distinction between these different patterns of enhancement can help with achieving a more specific diagnosis of HCC and better assessment of response to local-regional therapy. ©RSNA, 2021.
Collapse
Affiliation(s)
- Nikita Consul
- From the Department of Radiology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 (N.C.); University of California San Diego Health, San Diego, Calif (C.B.S., K.J.F.); Montefiore Medical Center, Bronx, NY (V.C.); University of Texas Southwestern Medical Center, Dallas, Tex (D.T.F.); University of Michigan Medical School, Ann Arbor, Mich (W.R.M.); Yale School of Medicine, New Haven, Conn (S.S.A.); Memorial Sloan Kettering Cancer Center, New York, NY (R.K.G.D.); Naval Medical Center San Diego, San Diego, Calif (R.M.M.); Northwestern University, Chicago, Ill (A.A.B.); and University of Texas MD Anderson Cancer Center, Houston, Tex (K.M.E.)
| | - Claude B Sirlin
- From the Department of Radiology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 (N.C.); University of California San Diego Health, San Diego, Calif (C.B.S., K.J.F.); Montefiore Medical Center, Bronx, NY (V.C.); University of Texas Southwestern Medical Center, Dallas, Tex (D.T.F.); University of Michigan Medical School, Ann Arbor, Mich (W.R.M.); Yale School of Medicine, New Haven, Conn (S.S.A.); Memorial Sloan Kettering Cancer Center, New York, NY (R.K.G.D.); Naval Medical Center San Diego, San Diego, Calif (R.M.M.); Northwestern University, Chicago, Ill (A.A.B.); and University of Texas MD Anderson Cancer Center, Houston, Tex (K.M.E.)
| | - Victoria Chernyak
- From the Department of Radiology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 (N.C.); University of California San Diego Health, San Diego, Calif (C.B.S., K.J.F.); Montefiore Medical Center, Bronx, NY (V.C.); University of Texas Southwestern Medical Center, Dallas, Tex (D.T.F.); University of Michigan Medical School, Ann Arbor, Mich (W.R.M.); Yale School of Medicine, New Haven, Conn (S.S.A.); Memorial Sloan Kettering Cancer Center, New York, NY (R.K.G.D.); Naval Medical Center San Diego, San Diego, Calif (R.M.M.); Northwestern University, Chicago, Ill (A.A.B.); and University of Texas MD Anderson Cancer Center, Houston, Tex (K.M.E.)
| | - David T Fetzer
- From the Department of Radiology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 (N.C.); University of California San Diego Health, San Diego, Calif (C.B.S., K.J.F.); Montefiore Medical Center, Bronx, NY (V.C.); University of Texas Southwestern Medical Center, Dallas, Tex (D.T.F.); University of Michigan Medical School, Ann Arbor, Mich (W.R.M.); Yale School of Medicine, New Haven, Conn (S.S.A.); Memorial Sloan Kettering Cancer Center, New York, NY (R.K.G.D.); Naval Medical Center San Diego, San Diego, Calif (R.M.M.); Northwestern University, Chicago, Ill (A.A.B.); and University of Texas MD Anderson Cancer Center, Houston, Tex (K.M.E.)
| | - William R Masch
- From the Department of Radiology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 (N.C.); University of California San Diego Health, San Diego, Calif (C.B.S., K.J.F.); Montefiore Medical Center, Bronx, NY (V.C.); University of Texas Southwestern Medical Center, Dallas, Tex (D.T.F.); University of Michigan Medical School, Ann Arbor, Mich (W.R.M.); Yale School of Medicine, New Haven, Conn (S.S.A.); Memorial Sloan Kettering Cancer Center, New York, NY (R.K.G.D.); Naval Medical Center San Diego, San Diego, Calif (R.M.M.); Northwestern University, Chicago, Ill (A.A.B.); and University of Texas MD Anderson Cancer Center, Houston, Tex (K.M.E.)
| | - Sandeep S Arora
- From the Department of Radiology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 (N.C.); University of California San Diego Health, San Diego, Calif (C.B.S., K.J.F.); Montefiore Medical Center, Bronx, NY (V.C.); University of Texas Southwestern Medical Center, Dallas, Tex (D.T.F.); University of Michigan Medical School, Ann Arbor, Mich (W.R.M.); Yale School of Medicine, New Haven, Conn (S.S.A.); Memorial Sloan Kettering Cancer Center, New York, NY (R.K.G.D.); Naval Medical Center San Diego, San Diego, Calif (R.M.M.); Northwestern University, Chicago, Ill (A.A.B.); and University of Texas MD Anderson Cancer Center, Houston, Tex (K.M.E.)
| | - Richard K G Do
- From the Department of Radiology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 (N.C.); University of California San Diego Health, San Diego, Calif (C.B.S., K.J.F.); Montefiore Medical Center, Bronx, NY (V.C.); University of Texas Southwestern Medical Center, Dallas, Tex (D.T.F.); University of Michigan Medical School, Ann Arbor, Mich (W.R.M.); Yale School of Medicine, New Haven, Conn (S.S.A.); Memorial Sloan Kettering Cancer Center, New York, NY (R.K.G.D.); Naval Medical Center San Diego, San Diego, Calif (R.M.M.); Northwestern University, Chicago, Ill (A.A.B.); and University of Texas MD Anderson Cancer Center, Houston, Tex (K.M.E.)
| | - Robert M Marks
- From the Department of Radiology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 (N.C.); University of California San Diego Health, San Diego, Calif (C.B.S., K.J.F.); Montefiore Medical Center, Bronx, NY (V.C.); University of Texas Southwestern Medical Center, Dallas, Tex (D.T.F.); University of Michigan Medical School, Ann Arbor, Mich (W.R.M.); Yale School of Medicine, New Haven, Conn (S.S.A.); Memorial Sloan Kettering Cancer Center, New York, NY (R.K.G.D.); Naval Medical Center San Diego, San Diego, Calif (R.M.M.); Northwestern University, Chicago, Ill (A.A.B.); and University of Texas MD Anderson Cancer Center, Houston, Tex (K.M.E.)
| | - Kathryn J Fowler
- From the Department of Radiology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 (N.C.); University of California San Diego Health, San Diego, Calif (C.B.S., K.J.F.); Montefiore Medical Center, Bronx, NY (V.C.); University of Texas Southwestern Medical Center, Dallas, Tex (D.T.F.); University of Michigan Medical School, Ann Arbor, Mich (W.R.M.); Yale School of Medicine, New Haven, Conn (S.S.A.); Memorial Sloan Kettering Cancer Center, New York, NY (R.K.G.D.); Naval Medical Center San Diego, San Diego, Calif (R.M.M.); Northwestern University, Chicago, Ill (A.A.B.); and University of Texas MD Anderson Cancer Center, Houston, Tex (K.M.E.)
| | - Amir A Borhani
- From the Department of Radiology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 (N.C.); University of California San Diego Health, San Diego, Calif (C.B.S., K.J.F.); Montefiore Medical Center, Bronx, NY (V.C.); University of Texas Southwestern Medical Center, Dallas, Tex (D.T.F.); University of Michigan Medical School, Ann Arbor, Mich (W.R.M.); Yale School of Medicine, New Haven, Conn (S.S.A.); Memorial Sloan Kettering Cancer Center, New York, NY (R.K.G.D.); Naval Medical Center San Diego, San Diego, Calif (R.M.M.); Northwestern University, Chicago, Ill (A.A.B.); and University of Texas MD Anderson Cancer Center, Houston, Tex (K.M.E.)
| | - Khaled M Elsayes
- From the Department of Radiology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 (N.C.); University of California San Diego Health, San Diego, Calif (C.B.S., K.J.F.); Montefiore Medical Center, Bronx, NY (V.C.); University of Texas Southwestern Medical Center, Dallas, Tex (D.T.F.); University of Michigan Medical School, Ann Arbor, Mich (W.R.M.); Yale School of Medicine, New Haven, Conn (S.S.A.); Memorial Sloan Kettering Cancer Center, New York, NY (R.K.G.D.); Naval Medical Center San Diego, San Diego, Calif (R.M.M.); Northwestern University, Chicago, Ill (A.A.B.); and University of Texas MD Anderson Cancer Center, Houston, Tex (K.M.E.)
| |
Collapse
|
17
|
Ramanathan S, Raghu V, Virmani V, Sheikh A, Al Heidous M, Tirumani S. Unveiling the unreal: Comprehensive imaging review of hepatic pseudolesions. Clin Imaging 2021; 80:439-453. [PMID: 34560516 DOI: 10.1016/j.clinimag.2021.09.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/06/2021] [Accepted: 09/06/2021] [Indexed: 12/25/2022]
Abstract
Hepatic pseudolesions are defined as non-neoplastic focal abnormalities of the liver which can mimic or conceal true liver lesions. It is particularly common in liver due to its unique dual blood supply and the existence of multilevel anastomosis between them. Because of the recent advances in CT and MRI technology, they are being increasingly encountered in daily practice. Broadly they can be categorised in to (1) Focal parenchymal abnormalities like focal fatty change, focal fat sparing, focal confluent fibrosis, segmental hypertrophy and regenerative nodules, (2) Perfusion abnormalities which include transient hepatic parenchymal enhancement in portal vein obstruction, third inflow, intrahepatic shunts, hepatic arterial occlusion and hepatic venous obstruction, (3) Imaging pitfalls like parenchymal compression, unenhanced vessels and pseudolipoma. It is essential for the radiologists to be familiar with the typical and atypical imaging features of pseudolesions to avoid mistaking them for sinister pathologies and also to avoid overlooking underlying hidden pathologies.
Collapse
Affiliation(s)
- Subramaniyan Ramanathan
- Department of Clinical imaging, Al-Wakra Hospital, Hamad Medical Corporation, PO Box: 82228, Doha, Qatar; Department of Radiology, Weil Cornell Medical College, Doha, Qatar.
| | - Vineetha Raghu
- Department of Radiology, Columbia Asia Referral Hospital, Yeshwanthpur, India
| | - Vivek Virmani
- Department of Radiology, Dr. Everett Chalmers Hospital, Fredericton, Canada
| | - Adnan Sheikh
- Department of Emergency and Trauma Radiology, University of British Columbia, Vancouver, Canada
| | - Mahmoud Al Heidous
- Department of Clinical imaging, Al-Wakra Hospital, Hamad Medical Corporation, PO Box: 82228, Doha, Qatar; Department of Radiology, Weil Cornell Medical College, Doha, Qatar
| | - SreeHarsha Tirumani
- Department of Radiology, University Hospitals Cleveland Medical Centre, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
18
|
Abstract
Gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid (Gd-EOB-DTPA; Gadoxetic acid; Gadoxetate disodium) is a hepatocyte-specific MR contrast agent. It acts as an extracellular contrast agent in the early phase after intravenous injection, and then is taken up by hepatocytes later. Using this contrast agent, we can evaluate the hemodynamics of the liver and liver tumors, and can therefore improve the detection and characterization of hepatocellular carcinoma (HCC). Gd-EOB-DTPA helps in the more accurate detection of hypervascular HCC than by other agents. In addition, Gd-EOB-DTPA can detect hypovascular HCC, which is an early stage of the multi-stage carcinogenesis, with a low signal in the hepatobiliary phase. In addition to tumor detection and characterization, Gd-EOB-DTPA contrast-enhanced MR imaging can be applied for liver function evaluation and prognoses evaluation. Thus, Gd-EOB-DTPA plays an important role in the diagnosis of HCC. However, we have to employ optimal imaging techniques to improve the diagnostic ability. In this review, we aimed to discuss the characteristics of the contrast media, optimal imaging techniques, diagnosis, and applications.
Collapse
Affiliation(s)
| | - Keitaro Sofue
- Department of Radiology, Kobe University Graduate School of Medicine
| | - Masatoshi Hori
- Department of Radiology, Kobe University Graduate School of Medicine
| |
Collapse
|
19
|
Aslam A, Kamath A, Spieler B, Maschiocchi M, Sabottke CF, Chernyak V, Lewis SC. Assessing locoregional treatment response to Hepatocellular Carcinoma: comparison of hepatobiliary contrast agents to extracellular contrast agents. Abdom Radiol (NY) 2021; 46:3565-3578. [PMID: 33856509 DOI: 10.1007/s00261-021-03076-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 03/22/2021] [Accepted: 03/27/2021] [Indexed: 12/17/2022]
Abstract
Cross-sectional imaging with contrast-enhanced magnetic resonance imaging (MRI) is routinely performed in patients with hepatocellular carcinoma (HCC) to assess tumor response to locoregional therapy (LRT). Current response assessment algorithms, such as the Liver Imaging Reporting and Data System (LI-RADS) treatment response algorithm (TRA), allow assessment using conventional gadolinium-based extracellular contrast agents (ECA) for accurate tumor response assessment following LRT. MRI with hepatobiliary agents (HBA) allows an acquisition of hepatobiliary phase (HBP), which is proven to increase sensitivity for detection of observations in at-risk patients, particularly for findings < 2 cm. The use of HBA is not yet incorporated into the TRA; however, it is increasingly used in clinical practice. Few published studies have evaluated the performance of LI-RADS TRA by applying ancillary features related to HBP that has resulted in category adjustment, enabling more sensitive and unequivocal diagnosis. This may help timely management of viable cases, without a significant loss of specificity in comparison with the ECA-based LI-RADS TRA assessment. In this review, we will describe and compare the imaging appearance of treated HCC on MRI using extracellular and hepatobiliary contrast agents and discuss emerging evidence and pitfalls in the assessment of tumor response following LRT with HBA.
Collapse
Affiliation(s)
- Anum Aslam
- Department of Radiology, University of Michigan Health System, 1500 E. Medical Center Dr, Ann Arbor, MI, 48109-5030, USA.
| | - Amita Kamath
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine At Mount Sinai, New York, NY, USA
| | - Bradley Spieler
- Department of Radiology, Louisiana State University Health Sciences Center, 1542 Tulane Avenue, Rm 343, New Orleans, LA, 70112, USA
| | - Mark Maschiocchi
- Umass Memorial Medical Center- University Campus, 55 Lake Avenue North, Worcester, MA, 01655, USA
| | - Carl F Sabottke
- Department of Medical Imaging, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Victoria Chernyak
- Department of Radiology and Urology, Albert Einstein College of Medicine, New York, 10467, USA
| | - Sara C Lewis
- Department of Diagnostic, Molecular and Interventional Radiology, BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
20
|
Kudo M, Kawamura Y, Hasegawa K, Tateishi R, Kariyama K, Shiina S, Toyoda H, Imai Y, Hiraoka A, Ikeda M, Izumi N, Moriguchi M, Ogasawara S, Minami Y, Ueshima K, Murakami T, Miyayama S, Nakashima O, Yano H, Sakamoto M, Hatano E, Shimada M, Kokudo N, Mochida S, Takehara T. Management of Hepatocellular Carcinoma in Japan: JSH Consensus Statements and Recommendations 2021 Update. Liver Cancer 2021; 10:181-223. [PMID: 34239808 PMCID: PMC8237791 DOI: 10.1159/000514174] [Citation(s) in RCA: 434] [Impact Index Per Article: 108.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 12/23/2020] [Indexed: 02/06/2023] Open
Abstract
The Clinical Practice Manual for Hepatocellular Carcinoma was published based on evidence confirmed by the Evidence-based Clinical Practice Guidelines for Hepatocellular Carcinoma along with consensus opinion among a Japan Society of Hepatology (JSH) expert panel on hepatocellular carcinoma (HCC). Since the JSH Clinical Practice Guidelines are based on original articles with extremely high levels of evidence, expert opinions on HCC management in clinical practice or consensus on newly developed treatments are not included. However, the practice manual incorporates the literature based on clinical data, expert opinion, and real-world clinical practice currently conducted in Japan to facilitate its use by clinicians. Alongside each revision of the JSH Guidelines, we issued an update to the manual, with the first edition of the manual published in 2007, the second edition in 2010, the third edition in 2015, and the fourth edition in 2020, which includes the 2017 edition of the JSH Guideline. This article is an excerpt from the fourth edition of the HCC Clinical Practice Manual focusing on pathology, diagnosis, and treatment of HCC. It is designed as a practical manual different from the latest version of the JSH Clinical Practice Guidelines. This practice manual was written by an expert panel from the JSH, with emphasis on the consensus statements and recommendations for the management of HCC proposed by the JSH expert panel. In this article, we included newly developed clinical practices that are relatively common among Japanese experts in this field, although all of their statements are not associated with a high level of evidence, but these practices are likely to be incorporated into guidelines in the future. To write this article, coauthors from different institutions drafted the content and then critically reviewed each other's work. The revised content was then critically reviewed by the Board of Directors and the Planning and Public Relations Committee of JSH before publication to confirm the consensus statements and recommendations. The consensus statements and recommendations presented in this report represent measures actually being conducted at the highest-level HCC treatment centers in Japan. We hope this article provides insight into the actual situation of HCC practice in Japan, thereby affecting the global practice pattern in the management of HCC.
Collapse
Affiliation(s)
- Masatoshi Kudo
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka, Japan,*Masatoshi Kudo,
| | | | - Kiyoshi Hasegawa
- Hepato-Biliary-Pancreatic Surgery Division, Department of Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ryosuke Tateishi
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazuya Kariyama
- Department of Gastroenterology, Okayama City Hospital, Okayama, Japan
| | - Shuichiro Shiina
- Department of Gastroenterology, Juntendo University, Tokyo, Japan
| | - Hidenori Toyoda
- Department of Gastroenterology and Hepatology, Ogaki Municipal Hospital, Gifu, Japan
| | - Yasuharu Imai
- Department of Gastroenterology, Ikeda Municipal Hospital, Osaka, Japan
| | - Atsushi Hiraoka
- Gastroenterology Center, Ehime Prefectural Central Hospital, Matsuyama, Japan
| | - Masafumi Ikeda
- Department of Hepatobiliary and Pancreatic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Namiki Izumi
- Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Tokyo, Japan
| | - Michihisa Moriguchi
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Sadahisa Ogasawara
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yasunori Minami
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Kazuomi Ueshima
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Takamichi Murakami
- Department of Radiology, Kobe University Graduate School of Medicine, Hyogo, Japan
| | - Shiro Miyayama
- Department of Diagnostic Radiology, Fukui-ken Saiseikai Hospital, Fukui, Japan
| | - Osamu Nakashima
- Department of Clinical Laboratory Medicine, Kurume University Hospital, Kurume, Japan
| | - Hirohisa Yano
- Department of Pathology, Kurume University School of Medicine, Kurume, Japan
| | - Michiie Sakamoto
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Etsuro Hatano
- Department of Gastroenterological Surgery, Hyogo College of Medicine, Nishinomiya, Japan
| | - Mitsuo Shimada
- Department of Surgery, Tokushima University, Tokushima, Japan
| | - Norihiro Kokudo
- Department of Surgery, National Center for Global Health and Medicine, Tokyo, Japan
| | - Satoshi Mochida
- Department of Gastroenterology and Hepatology, Saitama Medical University, Saitama, Japan
| | - Tetsuo Takehara
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
21
|
Morisaka H, Motosugi U, Ichikawa S, Ichikawa T, Kondo T, Onishi H. Uptake of gadoxetic acid in hepatobiliary phase magnetic resonance imaging and transporter expression in hypovascular hepatocellular nodules. Eur J Radiol 2021; 138:109669. [PMID: 33770738 DOI: 10.1016/j.ejrad.2021.109669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/04/2021] [Accepted: 03/10/2021] [Indexed: 11/30/2022]
Abstract
AIMS To evaluate the association between contrast patterns on gadoxetic acid-enhanced hepatobiliary phase (HBP) MR images and transporter expression in surgically resected hypovascular hepatocellular nodules including early hepatocellular carcinomas (HCCs). METHODS Forty-two hypovascular hepatic nodules and 43 hypervascular HCCs as a control were included in this retrospective study. Contrast of the nodules on HBP images was graded as hypo-, iso-, or hyperintense. Histopathological assessment was performed in the context of multistep hepatocarcinogenesis. Immunohistochemical staining of organic anion transporter 1B3 (OATP1B3) and multidrug resistance protein 2 (MRP2) was performed. Cramer's coefficient was used to determine the linear relationship between contrast grades and transporter expression, and the Cochran-Armitage trend test was used to determine the relationship between transporter expression and progression of multistep hepatocarcinogenesis. RESULTS Moderate linear relationships between contrast grades and OATP1B3 expression were observed for both hypo- and hypervascular nodules. OATP1B3 expression was negatively correlated with the progression of multistep hepatocarcinogenesis. MRP2 expression was not associated with the contrast grades or histopathological results. CONCLUSION OATP1B3 expression was associated with contrast grades of hepatocellular nodules observed in HBP image of gadoxetic acid-enhanced MRI in the hypovascular hepatocellular nodules and was negatively correlated with hepatocarcinogenesis.
Collapse
Affiliation(s)
- Hiroyuki Morisaka
- Department of Radiology, University of Yamanashi, 409-3898, Shimokato, Chuo, Yamanashi, Japan.
| | - Utaroh Motosugi
- Department of Radiology, University of Yamanashi, 409-3898, Shimokato, Chuo, Yamanashi, Japan; Department of Radiology, Kofu-Kyoritsu Hospital, 400-0034, Takara, Kofu, Yamanashi, Japan
| | - Shintaro Ichikawa
- Department of Radiology, University of Yamanashi, 409-3898, Shimokato, Chuo, Yamanashi, Japan
| | - Tomoaki Ichikawa
- Department of Diagnostic Radiology and Nuclear Medicine, Gunma University, 371-8511, Showa, Maebashi, Gunma, Japan
| | - Tetsuo Kondo
- Department of Human Pathology, University of Yamanashi, 409-3898, Shimokato, Chuo, Yamanashi, Japan
| | - Hiroshi Onishi
- Department of Radiology, University of Yamanashi, 409-3898, Shimokato, Chuo, Yamanashi, Japan
| |
Collapse
|
22
|
Subramanian M, Low HM, Kim MJ, Tan CH. Benign focal liver lesions masquerading as primary liver cancers on MRI. ACTA ACUST UNITED AC 2021; 26:168-175. [PMID: 32229432 DOI: 10.5152/dir.2019.19235] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC) are the most common primary liver malignancies. HCC and ICC have characteristic imaging findings, but a number of benign entities can appear similar and can cause diagnostic dilemma. Ideally, accurate and timely diagnosis of these conditions can help the patient to avoid a needle biopsy or even unnecessary treatment. In this article, we present various benign liver lesions that display imaging characteristics that are similar to HCC and ICC on magnetic resonance imaging (MRI) and discuss salient features that may assist in accurate diagnosis.
Collapse
Affiliation(s)
| | - Hsien Min Low
- Department of Diagnostic Radiology, Tan Tock Seng Hospital, Novena, Singapore
| | - Myeong-Jin Kim
- Department of Diagnostic Radiology, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Cher Heng Tan
- Department of Diagnostic Radiology, Tan Tock Seng Hospital, Novena, Singapore
| |
Collapse
|
23
|
Renzulli M, Brocchi S, Ierardi AM, Milandri M, Pettinari I, Lucidi V, Balacchi C, Muratori P, Marasco G, Vara G, Tovoli F, Granito A, Carrafiello G, Piscaglia F, Golfieri R. Imaging-based diagnosis of benign lesions and pseudolesions in the cirrhotic liver. Magn Reson Imaging 2021; 75:9-20. [PMID: 32926993 DOI: 10.1016/j.mri.2020.09.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 02/07/2023]
Abstract
Liver cirrhosis is a leading cause of death worldwide, with 1-year mortality rates of up to 57% in decompensated patients. Hepatocellular carcinoma (HCC) is the most common primary tumor in cirrhotic livers and the second leading cause of cancer-related mortality worldwide. Annually, up to 8% of patients with cirrhosis develop HCC. The diagnosis of HCC rarely requires histological confirmation: in fact, according to the most recent guidelines, the imaging features of HCC are almost always sufficient for a certain diagnosis. Thus, the role of the radiologist is pivotal because the accurate detection and characterization of focal liver lesions in patients with cirrhosis are essential in improving clinical outcomes. Despite recent technical innovations in liver imaging, several issues remain for radiologists regarding the differentiation of HCC from other hepatic lesions, particularly benign lesions and pseudolesions. It is important to avoid misdiagnosis of benign liver lesions as HCC (false-positive cases) because this diagnostic misinterpretation may lead to ineligibility of a patient for potentially curative treatments or inappropriate assignment of high priority scores to patients on waiting lists for liver transplantation. This review presents a pocket guide that could be useful for the radiologist in the diagnosis of benign lesions and pseudolesions in cirrhotic livers, highlighting the imaging features that help in making the correct diagnosis of macroregenerative nodules; siderotic nodules; arterioportal shunts; hemangiomas, including fast-filling hemangiomas, hemangiomas with pseudowashout, and sclerosed hemangiomas; confluent fibrosis; pseudomasses in chronic portal vein thrombosis; and focal fatty changes.
Collapse
Affiliation(s)
- Matteo Renzulli
- Department of Radiology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni 15, Bologna, Italy.
| | - Stefano Brocchi
- Department of Radiology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni 15, Bologna, Italy
| | - Anna Maria Ierardi
- Unit of Radiology, IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Matteo Milandri
- Department of Radiology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni 15, Bologna, Italy
| | - Irene Pettinari
- Department of Radiology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni 15, Bologna, Italy
| | - Vincenzo Lucidi
- Department of Radiology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni 15, Bologna, Italy
| | - Caterina Balacchi
- Department of Radiology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni 15, Bologna, Italy
| | - Paolo Muratori
- Department of the Science for the quality of life (QUVI), University of Bologna, Bologna, Italy
| | - Giovanni Marasco
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Giulio Vara
- Department of Radiology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni 15, Bologna, Italy
| | - Francesco Tovoli
- Unit of Internal Medicine, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Alessandro Granito
- Unit of Internal Medicine, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | | | - Fabio Piscaglia
- Unit of Internal Medicine, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Rita Golfieri
- Department of Radiology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni 15, Bologna, Italy
| |
Collapse
|
24
|
Park SH, Kim B, Kim SY, Choi SJ, Huh J, Kim HJ, Kim KW, Lee SS. Characterizing Computed Tomography-Detected Arterial Hyperenhancing-Only Lesions in Patients at Risk of Hepatocellular Carcinoma: Can Non-Contrast Magnetic Resonance Imaging Be Used for Sequential Imaging? Korean J Radiol 2020; 21:280-289. [PMID: 32090520 PMCID: PMC7039718 DOI: 10.3348/kjr.2019.0447] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 11/04/2019] [Indexed: 12/28/2022] Open
Abstract
Objective To test the feasibility of non-contrast magnetic resonance imaging (MRI) in a sequential imaging study for characterizing computed tomography (CT)-detected arterial-enhancing nodules that do not washout in patients at risk of hepatocellular carcinoma (HCC). Materials and Methods In this retrospective study, 134 patients (mean age ± standard deviation, 56.8 ± 10.0 years) with 151 arterial enhancing-only nodules measuring up to 2 cm during multiphasic CT that were subsequently evaluated using gadoxetic acid-enhanced MRI in treatment-naïve at-risk patients from three tertiary referral centers were included. Tentative diagnostic criteria for HCC and hepatic malignancy were defined as the presence of one of eight MRI features favoring HCC in combinations of the following sequences: T2-weighted imaging (T2WI), diffusion-weighted imaging (DWI), T1-weighted dual gradient-echo in-phase and out-of-phase imaging (Dual-GRE), and hepatobiliary phase imaging (HBP). Typical hemangiomas and arterioportal shunts were excluded from the analysis. Diagnostic performance for HCC and hepatic malignancy was calculated and compared between the abbreviated MRI and full-sequence gadoxetic acid-enhanced MRI. Results Of 151 nodules (mean size, 1.2 cm) 68 HCCs and 83 non-HCC benignities and malignancies were included. The combination of T2WI, DWI, and Dual-GRE showed per-lesion sensitivity, specificity, and accuracy of 88.2%, 90.4%, and 89.4%, respectively, comparable to those of full-sequence MRI. Applying the same sequence combination to diagnose hepatic malignancy had per-lesion sensitivity, specificity, and accuracy of 86.8%, 97.3%, and 92.1%. In nodules < 1 cm, adding HBP increased sensitivity by up to 13% without compromising the specificity or accuracy. Conclusion The non-contrast MRI protocol comprising T2WI, DWI, and Dual-GRE showed reasonable and comparable performance to full-sequence MRI for discriminating HCC and primary liver malignancies in CT-detected indeterminate arterial enhancing-only nodules in at-risk patients, and can be potentially used for sequential imaging in place of a full-sequence MRI. In nodules < 1 cm, HBP may still be needed to preserve sensitivity.
Collapse
Affiliation(s)
- So Hyun Park
- Department of Radiology, Gil Medical Center, Gachon University College of Medicine, Incheon, Korea
| | - Bohyun Kim
- Department of Radiology, Ajou University Hospital, Ajou University School of Medicine, Suwon, Korea.
| | - So Yeon Kim
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Seung Joon Choi
- Department of Radiology, Gil Medical Center, Gachon University College of Medicine, Incheon, Korea
| | - Jimi Huh
- Department of Radiology, Ajou University Hospital, Ajou University School of Medicine, Suwon, Korea
| | - Hye Jin Kim
- Department of Radiology, Ajou University Hospital, Ajou University School of Medicine, Suwon, Korea
| | - Kyung Won Kim
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Seung Soo Lee
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
25
|
Kim JH, Joo I, Lee JM. Atypical Appearance of Hepatocellular Carcinoma and Its Mimickers: How to Solve Challenging Cases Using Gadoxetic Acid-Enhanced Liver Magnetic Resonance Imaging. Korean J Radiol 2020; 20:1019-1041. [PMID: 31270973 PMCID: PMC6609440 DOI: 10.3348/kjr.2018.0636] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 03/17/2019] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) can be diagnosed noninvasively with contrast-enhanced dynamic computed tomography, magnetic resonance imaging, or ultrasonography on the basis of its hallmark imaging features of arterial phase hyperenhancement and washout on portal or delayed phase images. However, approximately 40% of HCCs show atypical imaging features, posing a significant diagnostic challenge for radiologists. Another challenge for radiologists in clinical practice is the presentation of many HCC mimickers such as intrahepatic cholangiocarcinoma, combined HCC-cholangiocarcinoma, arterioportal shunt, and hemangioma in the cirrhotic liver. The differentiation of HCCs from these mimickers on preoperative imaging studies is of critical importance. Hence, we will review the typical and atypical imaging features of HCCs and the imaging features of its common mimickers. In addition, we will discuss how to solve these challenges in practice.
Collapse
Affiliation(s)
- Jae Hyun Kim
- Department of Radiology, Seoul National University Hospital, Seoul, Korea.,Department of Radiology, Seoul National University College of Medicine, Seoul, Korea
| | - Ijin Joo
- Department of Radiology, Seoul National University Hospital, Seoul, Korea.,Department of Radiology, Seoul National University College of Medicine, Seoul, Korea
| | - Jeong Min Lee
- Department of Radiology, Seoul National University Hospital, Seoul, Korea.,Department of Radiology, Seoul National University College of Medicine, Seoul, Korea.,Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Korea.
| |
Collapse
|
26
|
Ichikawa S, Motosugi U, Morisaka H, Kozaka K, Goshima S, Ichikawa T. Optimal Combination of Features on Gadoxetate Disodium-enhanced MR Imaging for Non-invasive Differential Diagnosis of Hepatocellular Carcinoma: The JAMP-HCC Study. Magn Reson Med Sci 2020; 20:47-59. [PMID: 32101818 PMCID: PMC7952206 DOI: 10.2463/mrms.mp.2019-0193] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Purpose: To determine the optimal combination of gadoxetate disodium-enhanced magnetic resonance imaging (MRI) findings for the diagnosis of hepatocellular carcinoma (HCC) and to compare its diagnostic ability to that of dynamic computed tomography (CT) in patients with chronic liver disease. Methods: This multi-institutional study consisted of two parts: Study 1, a retrospective study to determine the optimal combination of gadoxetate disodium-enhanced MRI findings (decision tree and logistic model) to distinguish HCC (n = 199) from benign (n = 81) or other malignant lesions (n = 95) (375 nodules in 269 patients) and Study 2, a prospective study to compare the diagnostic ability of gadoxetate disodium-enhanced MRI to distinguish HCC (n = 73) from benign (n = 15) or other malignant lesions (n = 12) with that of dynamic CT (100 nodules in 83 patients). Two radiologists independently evaluated the imaging findings (Study 1 and 2) and made a practical diagnosis (Study 2). Results: In Study 1, rim or whole enhancement on arterial phase images, signal intensities on T2-weighted/diffusion-weighted/portal venous/transitional/hepatobiliary phase images, and signal drop on opposed-phase images were independently useful for differential diagnosis. In Study 2, the accuracy, sensitivity, negative predictive value, and negative likelihood ratio of the CT decision tree (reader 2) were higher than those of MRI Model 2 (P = 0.015–0.033). There were no other significant differences in diagnostic ability (P = 0.059–1.000) and radiologist-made practical diagnosis (P = 0.059–1.000) between gadoxetate disodium-enhanced MRI and CT. Conclusion: We identified the optimal combination of gadoxetate disodium-enhanced MRI findings for HCC diagnosis. However, its diagnostic ability was not superior to that of dynamic CT.
Collapse
Affiliation(s)
| | | | - Hiroyuki Morisaka
- Department of Diagnostic Radiology, Saitama Medical University International Medical Center
| | - Kazuto Kozaka
- Department of Radiology, Kanazawa University Graduate School of Medical Sciences
| | - Satoshi Goshima
- Department of Diagnostic Radiology and Nuclear Medicine, Hamamatsu University School of Medicine.,Department of Radiology, Gifu University
| | - Tomoaki Ichikawa
- Department of Diagnostic Radiology, Saitama Medical University International Medical Center
| |
Collapse
|
27
|
Kim SW, Joo I, Kim HC, Ahn SJ, Kang HJ, Jeon SK, Lee JM. LI-RADS treatment response categorization on gadoxetic acid-enhanced MRI: diagnostic performance compared to mRECIST and added value of ancillary features. Eur Radiol 2020; 30:2861-2870. [DOI: 10.1007/s00330-019-06623-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/17/2019] [Accepted: 12/12/2019] [Indexed: 12/14/2022]
|
28
|
Vernuccio F, Cannella R, Porrello G, Calandra A, Midiri M, Furlan A, Brancatelli G. Uncommon imaging evolutions of focal liver lesions in cirrhosis. Abdom Radiol (NY) 2019; 44:3069-3077. [PMID: 31222462 DOI: 10.1007/s00261-019-02101-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The purpose of this article is to describe and illustrate uncommon imaging evolutions of benign (i.e., cyst, hemangioma, focal nodular hyperplasia-like nodules, and hepatic angiomyolipoma) and malignant (i.e., HCC and non HCC malignancies) lesions in a cirrhotic liver. The content highlights relevant pathogenesis and imaging clues for proper differential diagnosis. Revision of prior imaging and knowledge of these scenarios may help the abdominal radiologist to reach a noninvasive diagnosis and direct the patient to the most appropriate clinical management. CONCLUSION Uncommon imaging evolutions of focal liver lesions in cirrhosis may represent a challenge for the abdominal radiologist, with atypical changes in size, and internal vascularization changes that may lead to misdiagnoses.
Collapse
Affiliation(s)
- Federica Vernuccio
- Dipartimento Promozione della Salute, Materno-Infantile, Medicina Interna e Specialistica di Eccellenza "G.D'Alessandro" (PROMISE), University of Palermo, Piazza delle Cliniche n.2, 90127, Palermo, Italy.
- University Paris Diderot, Sorbonne Paris Cité, Paris, France.
- I.R.C.C.S. Centro Neurolesi Bonino Pulejo, Contrada Casazza, SS113, 98124, Messina, Italy.
| | - Roberto Cannella
- Dipartimento di Biomedicina, Neuroscienze e Diagnostica avanzata (BIND), University Hospital of Palermo, Via del Vespro 129, 90127, Palermo, Italy
| | - Giorgia Porrello
- Dipartimento di Biomedicina, Neuroscienze e Diagnostica avanzata (BIND), University Hospital of Palermo, Via del Vespro 129, 90127, Palermo, Italy
| | - Alberto Calandra
- Dipartimento di Biomedicina, Neuroscienze e Diagnostica avanzata (BIND), University Hospital of Palermo, Via del Vespro 129, 90127, Palermo, Italy
| | - Massimo Midiri
- Dipartimento di Biomedicina, Neuroscienze e Diagnostica avanzata (BIND), University Hospital of Palermo, Via del Vespro 129, 90127, Palermo, Italy
| | - Alessandro Furlan
- Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Giuseppe Brancatelli
- Dipartimento di Biomedicina, Neuroscienze e Diagnostica avanzata (BIND), University Hospital of Palermo, Via del Vespro 129, 90127, Palermo, Italy
| |
Collapse
|
29
|
Park HJ, Kim YK, Min JH, Lee J, Lee SJ, Lee ES, Ahn S. Differentiation of hypervascular primary hepatic tumors showing hepatobiliary hypointensity on gadoxetic acid-enhanced magnetic resonance imaging. Abdom Radiol (NY) 2019; 44:3115-3126. [PMID: 31134313 DOI: 10.1007/s00261-019-02068-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE To determine the imaging features that help differentiate hypervascular primary hepatic tumors showing hepatobiliary hypointensity on gadoxetic acid MRI. METHODS This study comprised 148 patients with pathologically proven hypervascular hepatic tumors who underwent gadoxetic acid MRI. Tumors included 23 atypical focal nodular hyperplasias (FNHs), 11 hepatocellular adenomas (HCAs), 15 neuroendocrine tumors (NETs), 25 intrahepatic cholangiocarcinomas (ICCs), and 74 hepatocellular carcinomas (HCCs). MRIs were analyzed for morphologic features, signal intensity, and enhancement pattern of the tumors to determine the differential features using multivariate logistic regression analysis. We evaluated the diagnostic performance of the MRI features for differentiating the five tumor types upon review by two observers. RESULTS Multivariate analysis revealed that reverse target sign on hepatobiliary phase in FNHs (p = 0.009), iso or hyperintensity on ADC map in FNHs and HCAs (p = 0.009, < 0.001, respectively), central hypointensity on arterial phase in NETs (p = 0.001), hepatobiliary target sign in ICCs (p = 0.002), the presence of septum and capsule in HCCs (all p < 0.001) were significant independent features of each tumor group over other tumor groups. Diagnostic accuracy for both observers was 98-98.6% for FNHs, 96.6-98% for HCAs, 97.3-98.6% for NETs, 90.5-94.6% for ICCs, and 85.8-93.2% for HCCs. CONCLUSIONS Ancillary MRI features established in our study can be helpful in the differentiation of hypervascular and hepatobiliary hypointense primary hepatic tumors on gadoxetic acid MRI.
Collapse
Affiliation(s)
- Hyun Jeong Park
- Department of Radiology, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Young Kon Kim
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50, Ilwon-Dong, Kangnam-Ku, Seoul, 135-710, Republic of Korea.
| | - Ji Hye Min
- Department of Radiology, Chungnam National University Hospital, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Jisun Lee
- Department of Radiology, Chungbuk National University Hospital, Cheongju, Republic of Korea
| | - Soon Jin Lee
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50, Ilwon-Dong, Kangnam-Ku, Seoul, 135-710, Republic of Korea
| | - Eun Sun Lee
- Department of Radiology, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Soohyun Ahn
- Department of Mathematics, Ajou University, Suwon, Republic of Korea
| |
Collapse
|
30
|
Performance of gadoxetic acid MRI and diffusion-weighted imaging for the diagnosis of early recurrence of hepatocellular carcinoma. Eur Radiol 2019; 30:186-194. [DOI: 10.1007/s00330-019-06351-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/17/2019] [Accepted: 07/01/2019] [Indexed: 02/07/2023]
|
31
|
Diagnosis of recurrent HCC: intraindividual comparison of gadoxetic acid MRI and extracellular contrast-enhanced MRI. Abdom Radiol (NY) 2019; 44:2366-2376. [PMID: 30847566 DOI: 10.1007/s00261-019-01968-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
PURPOSE To compare the efficacy of magnetic resonance imaging (MRI) with hepatobiliary agents (HBA-MRI) and MRI with extracellular contrast agents (ECA-MRI) for detection of recurrent hepatocellular carcinoma (HCC) after multiple treatments. METHODS The institutional review board approved this retrospective study and waived the requirement for informed patient consent. A total of 135 patients with suspected HCC recurrence after 2-5 treatments (surgery, transarterial chemoembolization, and/or radiofrequency ablation) underwent both HBA-MRI and ECA-MRI within a 1 month interval. HBA-MRI and ECA-MRI were analyzed for HCC detection by two observers using a five-point scale. The diagnostic performances according to MRI modality were compared. RESULTS A total of 136 liver lesions (121 HCCs and 15 benign lesions; median size, 1.9 cm) were identified. ECA-MRI showed greater sensitivity (90.9% vs. 76.9% for observer 1; 91.7% vs. 78.5% for observer 2) and accuracy (91.2% vs. 78.7% for observer 1; 91.9% vs. 80.2% for observer 2) than HBA-MRI for both observers (P = 0.002, 0.003). Fifteen (12.4%) HCCs were correctly diagnosed with ECA-MRI but not with HBA-MRI by both observers. Interobserver agreement was excellent (0.885) for ECA-MRI and substantial (0.749) for HBA-MRI. CONCLUSIONS For detection of recurrent HCC, ECA-MRI was superior to HBA-MRI in terms of sensitivity and accuracy. Therefore, ECA-MRI could be the preferred imaging modality over HBA-MRI for assessing HCC recurrence following multiple treatments.
Collapse
|
32
|
Fowler KJ, Sirlin CB. Is It Time to Expand the Definition of Washout Appearance in LI-RADS? Radiology 2019; 291:658-659. [DOI: 10.1148/radiol.2019190552] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Kathryn J. Fowler
- From the Liver Imaging Group, University of California San Diego, 200 W Arbor Dr, San Diego, CA 92103
| | - Claude B. Sirlin
- From the Liver Imaging Group, University of California San Diego, 200 W Arbor Dr, San Diego, CA 92103
| |
Collapse
|
33
|
Chernyak V, Fowler KJ, Heiken JP, Sirlin CB. Use of gadoxetate disodium in patients with chronic liver disease and its implications for liver imaging reporting and data system (LI-RADS). J Magn Reson Imaging 2019; 49:1236-1252. [PMID: 30609194 DOI: 10.1002/jmri.26540] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/23/2018] [Accepted: 09/26/2018] [Indexed: 01/04/2025] Open
Abstract
Use of gadoxetate disodium, a hepatobiliary gadolinium-based agent, in patients with chronic parenchymal liver disease offers the advantage of improved sensitivity for detecting hepatocellular carcinoma (HCC). Imaging features of liver observations on gadoxetate-enhanced MRI may also serve as biomarkers of recurrence-free and overall survival following definitive treatment of HCC. A number of technical and interpretative pitfalls specific to gadoxetate exist, however, and needs to be recognized when protocoling and interpreting MRI exams with this agent. This article reviews the advantages and pitfalls of gadoxetate use in patients at risk for HCC, and the potential impact on Liver Imaging Reporting and Data System (LI-RADS) imaging feature assessment and categorization. Level of Evidence: 5 Technical Efficacy Stage: 2 J. Magn. Reson. Imaging 2019;49:1236-1252.
Collapse
Affiliation(s)
- Victoria Chernyak
- Department of Radiology, Montefiore Medical Center, Bronx, New York, USA
| | - Kathryn J Fowler
- Liver Imaging Group, Department of Radiology, University of California - San Diego, California, USA
| | - Jay P Heiken
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Claude B Sirlin
- Liver Imaging Group, Department of Radiology, University of California - San Diego, California, USA
| |
Collapse
|
34
|
Rao SX, Wang J, Wang J, Jiang XQ, Long LL, Li ZP, Li ZL, Shen W, Zhao XM, Hu DY, Zhang HM, Zhang L, Huan Y, Liang CH, Song B, Zeng MS. Chinese consensus on the clinical application of hepatobiliary magnetic resonance imaging contrast agent: Gadoxetic acid disodium. J Dig Dis 2019; 20:54-61. [PMID: 30693659 DOI: 10.1111/1751-2980.12707] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 01/27/2019] [Indexed: 02/05/2023]
Affiliation(s)
- Sheng Xiang Rao
- Department of Radiology, Zhongshan Hospital, Fudan University, and Shanghai Institute of Medical Imaging, Shanghai, China
| | - Jin Wang
- Department of Radiology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Jian Wang
- Department of Radiology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xin Qing Jiang
- Department of Radiology, Guangzhou First People's Hospital, Guangzhou, Guangdong Province, China
| | - Li Ling Long
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Zi Ping Li
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Zhen Lin Li
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Wen Shen
- Department of Radiology, Tianjin First Central Hospital, Tianjin, China
| | - Xin Ming Zhao
- Department of Diagnostic Imaging, Chinese Academy of Medical Sciences Cancer Hospital, Beijing, China
| | - Dao Yu Hu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Hui Mao Zhang
- Department of Radiology, The First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Lin Zhang
- Department of Radiology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Yi Huan
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Chang Hong Liang
- Department of Radiology, Guangdong Provincial People's Hospital, Guanggong Academy of Medical Sciences, Guangzhou, Guangdong Province, China
| | - Bin Song
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Meng Su Zeng
- Department of Radiology, Zhongshan Hospital, Fudan University, and Shanghai Institute of Medical Imaging, Shanghai, China
| |
Collapse
|
35
|
Kim YY, Park MS, Aljoqiman KS, Choi JY, Kim MJ. Gadoxetic acid-enhanced magnetic resonance imaging: Hepatocellular carcinoma and mimickers. Clin Mol Hepatol 2019; 25:223-233. [PMID: 30661336 PMCID: PMC6759431 DOI: 10.3350/cmh.2018.0107] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 12/14/2018] [Indexed: 12/11/2022] Open
Abstract
Gadoxetic acid, a hepatocyte-specific magnetic resonance imaging (MRI) contrast agent, has emerged as an important tool for hepatocellular carcinoma (HCC) diagnosis. Gadoxetic acid-enhanced MRI is useful for the evaluation of early-stage HCC, diagnosis of HCC precursor lesions, and highly sensitive diagnosis of HCC. Furthermore, functional information provided by gadoxetic acid-enhanced MRI can aid in the characterization of focal liver lesions. For example, whereas lesions lack functioning hepatocytes appear hypointense in the hepatobiliary phase, preserved or enhanced expression of organic anion transporting polypeptides in some HCCs as well as focal nodular hyperplasia lead to hyperintensity in the hepatobiliary phase; and a targetoid appearance on transitional phase or hepatobiliary phase imaging can be helpful for identifying the histopathological composition of tumors. While gadoxetic acid-enhanced MRI may improve the sensitivity of HCC diagnosis and provide new insights into the characterization of focal liver lesions, there are many challenges associated with its use. This article reviews the pros and cons of HCC diagnosis with gadoxetic acid-enhanced MRI and discuss some clues in the radiological differentiation of HCC from HCC mimickers.
Collapse
Affiliation(s)
- Yeun-Yoon Kim
- Department of Radiology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.,Research Institute of Radiological Science, Yonsei University College of Medicine, Seoul, Korea
| | - Mi-Suk Park
- Department of Radiology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.,Research Institute of Radiological Science, Yonsei University College of Medicine, Seoul, Korea
| | - Khalid Suliman Aljoqiman
- Department of Radiology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.,Research Institute of Radiological Science, Yonsei University College of Medicine, Seoul, Korea.,Department of Radiology, King Faisal University College of Medicine, Al-Ahsa, Saudi Arabia
| | - Jin-Young Choi
- Department of Radiology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.,Research Institute of Radiological Science, Yonsei University College of Medicine, Seoul, Korea
| | - Myeong-Jin Kim
- Department of Radiology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.,Research Institute of Radiological Science, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
36
|
Dual-Energy Computed Tomography in Patients With Small Hepatocellular Carcinoma: Utility of Noise-Reduced Monoenergetic Images for the Evaluation of Washout and Image Quality in the Equilibrium Phase. J Comput Assist Tomogr 2018; 42:937-943. [PMID: 29659425 DOI: 10.1097/rct.0000000000000752] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE This study aimed to evaluate the utility of virtual monoenergetic images for detecting washout of small (≤2 cm) hepatocellular carcinoma (HCC) in the equilibrium phase. METHODS We performed 120-kVp-equivalent linear-blended (M120) and monoenergetic reconstructions from 40 to 90 keV by standard (40, 50, 60, 70, 80, 90) and novel noise-reduced (nMERA: 40+, 50+, 60+, 70+, 80+, 90+) monoenergetic reconstruction algorithms. Image quality and tumor visibility of delayed washout of HCCs in the equilibrium phase were compared between standard monoenergetic reconstruction algorithm and nMERA by objective and subjective analyses. RESULTS Contrast-to-noise ratio of the tumor at 40+ was the highest, whereas the score of tumor visibility peaked at 50+. The score of overall image quality at 40+ was significantly lower than those on all other image series, and the image quality among other image series were not significantly different. CONCLUSIONS Virtual monoenergetic image reconstructed with nMERA 50+ was most appropriate to detect washout of small HCCs.
Collapse
|
37
|
Torrisi C, Picone D, Cabibbo G, Matranga D, Midiri M, Brancatelli G. Gadoxetic acid-enhanced MRI of transient hepatic enhancement differences: Another cause of hypointense observation on hepatobiliary phase. Eur J Radiol 2018; 107:39-45. [PMID: 30292271 DOI: 10.1016/j.ejrad.2018.08.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 08/10/2018] [Accepted: 08/13/2018] [Indexed: 01/19/2023]
Abstract
PURPOSE To retrospectively determine the frequency, natural history and factors associated with the presence of transient hepatic enhancement difference showing hypointensity on hepatobiliary phase images of gadoxetic acid-enhanced MRI. MATERIALS AND METHODS Gadoxetic acid-enhanced MRI of 125 patients (91 men; 34 women) with transient hepatic enhancement difference were retrospectively reviewed. Three readers qualitatively and quantitatively evaluated MR imaging features and evolution at follow up. The Chi-square test, Fisher's exact test and Kruskall-Wallis rank test were used for statistical analysis. RESULTS Transient hepatic enhancement difference were hypointense on hepatobiliary phase images in 20 of 125 cases (16%). At univariate analysis there was association with wedge-shape morphology (p < 0.001), size ≥21 mm (p < 0.001), hyperintensity on T2-weighted imaging (p < 0.001), restricted diffusion (p < 0.001) and previous treatment (p < 0.005). At multivariate analysis, the following factors were associated: previous treatment (p < 0.05), hyperintensity on T2-weighted imaging (p < 0.001) and size ≥21 mm (p < 0.001). Of 12 patients with hypointense transient hepatic enhancement difference on hepatobiliary phase images who had follow-up MRI, nine showed reduction in size. CONCLUSION Transient hepatic enhancement difference observations showing hypointensity on hepatobiliary phase images of gadoxetic acid-enhanced MRI are not infrequent and may shrink at follow-up. They are more likely associated with size ≥21 mm, hyperintensity on T2-weighted images and previous treatment of adjacent tumor.
Collapse
Affiliation(s)
- Chiara Torrisi
- Section of Radiological Sciences, Department of Biopathology and Medical Biotechnologies, University of Palermo, Via del Vespro, 129 - 90127, Palermo, Italy.
| | - Dario Picone
- Section of Radiological Sciences, Department of Biopathology and Medical Biotechnologies, University of Palermo, Via del Vespro, 129 - 90127, Palermo, Italy.
| | - Giuseppe Cabibbo
- Section of Gastroenterology, Biomedical Department of Internal Medicine and Specialties, DiBiMIS, University of Palermo, Via del Vespro, 129 - 90127, Palermo, Italy.
| | - Domenica Matranga
- Department of Sciences for Health Promotion and Mother-Child Care "G. D'Alessandro", University of Palermo, Via del Vespro, 129 - 90127, Palermo, Italy.
| | - Massimo Midiri
- Section of Radiological Sciences, Department of Biopathology and Medical Biotechnologies, University of Palermo, Via del Vespro, 129 - 90127, Palermo, Italy. massimo.midiri.@unipa.it
| | - Giuseppe Brancatelli
- Section of Radiological Sciences, Department of Biopathology and Medical Biotechnologies, University of Palermo, Via del Vespro, 129 - 90127, Palermo, Italy.
| |
Collapse
|
38
|
McNamara MM, Thomas JV, Alexander LF, Little MD, Bolus DN, Li YE, Morgan DE. Diffusion-weighted MRI as a screening tool for hepatocellular carcinoma in cirrhotic livers: correlation with explant data-a pilot study. Abdom Radiol (NY) 2018; 43:2686-2692. [PMID: 29500648 DOI: 10.1007/s00261-018-1535-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
OBJECTIVE The purpose of this study was to compare the sensitivity and specificity of diffusion-weighted liver MRI alone with complete, multiphasic gadoteridol-enhanced MRI for the detection of hepatocellular carcinoma in cirrhotic patients before liver transplant. MATERIALS AND METHODS This single institution retrospective study was performed after IRB approval and was HIPAA compliant. MRI scans of 37 patients who underwent liver transplant were evaluated and findings correlated with liver explant (36) or biopsy (1). All MRI scans were obtained within six months of explant. MRI from 17 patients with liver lesions by report at imaging subsequently proven to be HCC at pathology and 20 controls without liver lesions by imaging and pathology were reviewed in random order on the radiology PACS by three independent readers blinded to the MRI reports and pathology reports in two separate sittings. First, only the diffusion-weighted images (DWI) were interpreted. Second, the complete multiphasic MRI exam with DWI was reviewed. A consensus read was obtained by two separate radiologists who had access to the patients' explant data in order to map lesions. Reader-specific and pooled classification was assessed using sensitivity, specificity, positive predictive value, and negative predictive values and corresponding 95% confidence intervals (CI) for both DWI and complete MRI examination readings compared to pathology. McNemar's test and Kappa coefficient were used to assess differences (agreement) in DWI and complete examination readings. RESULTS A total of 37 patients have been studied (25M 12F age range 21-70). Averaged results of the three independent readers demonstrated a sensitivity of 78% (95% CI 65-89%) and specificity of 88% (95% CI 77-95%) for DWI alone for detection of liver lesions, with a positive predictive value of 85% (95% CI 72-94%) and a negative predictive value of 83% (95% CI 71-91%). Review of the complete MRI exam showed a sensitivity of 90% (95% CI 76-97%) and a specificity of 82% (95% CI 66-92%) with a positive predictive value of 83% (95% CI 69-93%) and a negative predictive value of 89% (95% CI 74-97%). McNemar's agreement test revealed no significant difference between the DWI and complete multiphasic interpretations (p = 0.3458), with simple Kappa coefficient of 0.6716 (95% CI 0.5332-0.8110). Lesions identified on DWI ranged in size from 1.5 to 5 cm. Detection of lesions was decreased in the presence of artifact from motion, large ascites, and technical issues. CONCLUSION Diffusion-weighted MRI has NPV and PPV comparable to complete multiphasic MRI examination for liver lesion detection in cirrhotic patients and may have a role in screening.
Collapse
Affiliation(s)
- M M McNamara
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - J V Thomas
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - L F Alexander
- Department of Radiology, Mayo Clinic Florida, Jacksonville, FL, USA
| | - M D Little
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - D N Bolus
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Yufeng E Li
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - D E Morgan
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
39
|
Lee Y, Kim SY, Lee SS, Park SH, Kim KW, Byun JH, Lee M. Pitfalls in Gd-EOB-DTPA-Enhanced Liver Magnetic Resonance Imaging With an Emphasis on Nontumorous Lesions. Clin Liver Dis (Hoboken) 2018; 12:50-59. [PMID: 30988911 PMCID: PMC6385906 DOI: 10.1002/cld.723] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 03/01/2018] [Accepted: 04/08/2018] [Indexed: 02/04/2023] Open
Affiliation(s)
- Yedaun Lee
- Department of Radiology, Haeundae Paik HospitalInje University College of MedicineBusanRepublic of Korea
| | - So Yeon Kim
- Department of Radiology and Research Institute of RadiologyUniversity of Ulsan College of MedicineAsan Medical Center, 88, Olympic‐ro 43‐gil, Songpa‐guSeoul138‐736Korea
| | - Seung Soo Lee
- Department of Radiology and Research Institute of RadiologyUniversity of Ulsan College of MedicineAsan Medical Center, 88, Olympic‐ro 43‐gil, Songpa‐guSeoul138‐736Korea
| | - Seong Ho Park
- Department of Radiology and Research Institute of RadiologyUniversity of Ulsan College of MedicineAsan Medical Center, 88, Olympic‐ro 43‐gil, Songpa‐guSeoul138‐736Korea
| | - Kyoung Won Kim
- Department of Radiology and Research Institute of RadiologyUniversity of Ulsan College of MedicineAsan Medical Center, 88, Olympic‐ro 43‐gil, Songpa‐guSeoul138‐736Korea
| | - Jae Ho Byun
- Department of Radiology and Research Institute of RadiologyUniversity of Ulsan College of MedicineAsan Medical Center, 88, Olympic‐ro 43‐gil, Songpa‐guSeoul138‐736Korea
| | - Moon‐Gyu Lee
- Department of Radiology and Research Institute of RadiologyUniversity of Ulsan College of MedicineAsan Medical Center, 88, Olympic‐ro 43‐gil, Songpa‐guSeoul138‐736Korea
| |
Collapse
|
40
|
Ippolito D, Inchingolo R, Grazioli L, Drago SG, Nardella M, Gatti M, Faletti R. Recent advances in non-invasive magnetic resonance imaging assessment of hepatocellular carcinoma. World J Gastroenterol 2018; 24:2413-2426. [PMID: 29930464 PMCID: PMC6010944 DOI: 10.3748/wjg.v24.i23.2413] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 04/27/2018] [Accepted: 05/11/2018] [Indexed: 02/06/2023] Open
Abstract
Magnetic resonance (MR) imaging of the liver is an important tool for the detection and characterization of focal liver lesions and for assessment of diffuse liver disease, having several intrinsic characteristics, represented by high soft tissue contrast, avoidance of ionizing radiation or iodinated contrast media, and more recently, by application of several functional imaging techniques (i.e., diffusion-weighted sequences, hepatobiliary contrast agents, perfusion imaging, magnetic resonance (MR)-elastography, and radiomics analysis). MR functional imaging techniques are extensively used both in routine practice and in the field of clinical and pre-clinical research because, through a qualitative rather than quantitative approach, they can offer valuable information about tumor tissue and tissue architecture, cellular biomarkers related to the hepatocellular functions, or tissue vascularization profiles related to tumor and tissue biology. This kind of approach offers in vivo physiological parameters, capable of evaluating physiological and pathological modifications of tissues, by the analysis of quantitative data that could be used in tumor detection, characterization, treatment selection, and follow-up, in addition to those obtained from standard morphological imaging. In this review we provide an overview of recent advanced techniques in MR for the diagnosis and staging of hepatocellular carcinoma, and their role in the assessment of response treatment evaluation.
Collapse
Affiliation(s)
- Davide Ippolito
- School of Medicine, University of Milano-Bicocca, Milan 20126, Italy
- Department of Diagnostic Radiology, HS Gerardo Monza, Monza (MB) 20900, Italy
| | - Riccardo Inchingolo
- Division of Interventional Radiology, Department of Radiology, Madonna delle Grazie Hospital, Matera 75100, Italy
| | - Luigi Grazioli
- Department of Radiology, University of Brescia “Spedali Civili”, Brescia 25123, Italy
| | - Silvia Girolama Drago
- School of Medicine, University of Milano-Bicocca, Milan 20126, Italy
- Department of Diagnostic Radiology, HS Gerardo Monza, Monza (MB) 20900, Italy
| | - Michele Nardella
- Division of Interventional Radiology, Department of Radiology, Madonna delle Grazie Hospital, Matera 75100, Italy
| | - Marco Gatti
- Department of Surgical Sciences, Radiology Unit, University of Turin, Turin 10126, Italy
| | - Riccardo Faletti
- Department of Surgical Sciences, Radiology Unit, University of Turin, Turin 10126, Italy
| |
Collapse
|
41
|
Jiang HY, Chen J, Xia CC, Cao LK, Duan T, Song B. Noninvasive imaging of hepatocellular carcinoma: From diagnosis to prognosis. World J Gastroenterol 2018; 24:2348-2362. [PMID: 29904242 PMCID: PMC6000290 DOI: 10.3748/wjg.v24.i22.2348] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 04/18/2018] [Accepted: 04/23/2018] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver cancer and a major public health problem worldwide. Hepatocarcinogenesis is a complex multistep process at molecular, cellular, and histologic levels with key alterations that can be revealed by noninvasive imaging modalities. Therefore, imaging techniques play pivotal roles in the detection, characterization, staging, surveillance, and prognosis evaluation of HCC. Currently, ultrasound is the first-line imaging modality for screening and surveillance purposes. While based on conclusive enhancement patterns comprising arterial phase hyperenhancement and portal venous and/or delayed phase wash-out, contrast enhanced dynamic computed tomography and magnetic resonance imaging (MRI) are the diagnostic tools for HCC without requirements for histopathologic confirmation. Functional MRI techniques, including diffusion-weighted imaging, MRI with hepatobiliary contrast agents, perfusion imaging, and magnetic resonance elastography, show promise in providing further important information regarding tumor biological behaviors. In addition, evaluation of tumor imaging characteristics, including nodule size, margin, number, vascular invasion, and growth patterns, allows preoperative prediction of tumor microvascular invasion and patient prognosis. Therefore, the aim of this article is to review the current state-of-the-art and recent advances in the comprehensive noninvasive imaging evaluation of HCC. We also provide the basic key concepts of HCC development and an overview of the current practice guidelines.
Collapse
Affiliation(s)
- Han-Yu Jiang
- Department of Radiology, Sichuan University West China Hospital, Chengdu 610041, Sichuan Province, China
| | - Jie Chen
- Department of Radiology, Sichuan University West China Hospital, Chengdu 610041, Sichuan Province, China
| | - Chun-Chao Xia
- Department of Radiology, Sichuan University West China Hospital, Chengdu 610041, Sichuan Province, China
| | - Li-Kun Cao
- Department of Radiology, Sichuan University West China Hospital, Chengdu 610041, Sichuan Province, China
| | - Ting Duan
- Department of Radiology, Sichuan University West China Hospital, Chengdu 610041, Sichuan Province, China
| | - Bin Song
- Department of Radiology, Sichuan University West China Hospital, Chengdu 610041, Sichuan Province, China
| |
Collapse
|
42
|
Pan S, Wang XQ, Guo QY. Quantitative assessment of hepatic fibrosis in chronic hepatitis B and C: T1 mapping on Gd-EOB-DTPA-enhanced liver magnetic resonance imaging. World J Gastroenterol 2018; 24:2024-2035. [PMID: 29760545 PMCID: PMC5949715 DOI: 10.3748/wjg.v24.i18.2024] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 04/06/2018] [Accepted: 04/15/2018] [Indexed: 02/06/2023] Open
Abstract
AIM To assess the accuracy of Look-Locker on gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid (Gd-EOB-DTPA)-enhanced magnetic resonance imaging (MRI) for staging liver fibrosis in chronic hepatitis B/C (CHB/C).
METHODS We prospectively included 109 patients with CHB or CHC who underwent a 3.0-Tesla MRI examination, including T1-weighted and Look-Locker sequences for T1 mapping. Hepatocyte fractions (HeF) and relaxation time reduction rate (RE) were measured for staging liver fibrosis. A receiver operating characteristic analysis using the area under the receiver operating characteristic curve (AUC) was used to compare the diagnostic performance in predicting liver fibrosis between HeF and RE.
RESULTS A total of 73 patients had both pathological results and MRI information. The number of patients in each fibrosis stage was evaluated semiquantitatively according to the METAVIR scoring system: F0, n = 23 (31.5%); F1, n = 19 (26.0%); F2, n = 13 (17.8%); F3, n = 6 (8.2%), and F4, n = 12 (16.4%). HeF by EOB enhancement imaging was significantly correlated with fibrosis stage (r = -0.808, P < 0.05). AUC values for diagnosis of any (≥ F1), significant (≥ F2) or advanced (≥ F3) fibrosis, and cirrhosis (F4) using HeF were 0.837 (0.733-0.913), 0.890 (0.795-0.951), 0.957 (0.881-0.990), and 0.957 (0.882-0.991), respectively. HeF measurement was more accurate than use of RE in establishing liver fibrosis staging, suggesting that calculation of HeF is a superior noninvasive liver fibrosis staging method.
CONCLUSION A T1 mapping-based HeF method is an efficient diagnostic tool for the staging of liver fibrosis.
Collapse
Affiliation(s)
- Shen Pan
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Xiao-Qi Wang
- Department of Clinical Science, Philips Healthcare, Beijing 100600, China
| | - Qi-Yong Guo
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| |
Collapse
|
43
|
Furlan A, Borhani AA. Problematic lesions in cirrhosis. Clin Liver Dis (Hoboken) 2018; 11:43-47. [PMID: 30992786 PMCID: PMC6314281 DOI: 10.1002/cld.689] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 12/05/2017] [Accepted: 12/13/2017] [Indexed: 02/04/2023] Open
|
44
|
Min JH, Kim YK, Kang TW, Jeong WK, Lee WJ, Ahn S, Hwang NY. Artifacts during the arterial phase of gadoxetate disodium-enhanced MRI: Multiple arterial phases using view-sharing from two different vendors versus single arterial phase imaging. Eur Radiol 2018; 28:3335-3346. [DOI: 10.1007/s00330-018-5307-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 11/27/2017] [Accepted: 01/02/2018] [Indexed: 12/15/2022]
|
45
|
Abstract
Chronic liver disease, irrespective of cause, can eventually lead to cirrhosis, which is the primary risk factor for developing hepatocellular carcinoma (HCC). In patients with cirrhosis or appropriate risk factors, HCC can be diagnosed by imaging with high specificity using liver imaging reporting and data system v2017, obviating the need for histologic confirmation. Confident recognition of cirrhosis by conventional imaging alone can be challenging, as radiologists are not always provided with the requisite information to determine if the patient has cirrhosis or other risk factors for HCC. Moreover, cirrhosis-associated abnormalities may impair the diagnostic accuracy of imaging for HCC. This article addresses the diagnosis of cirrhosis by non-invasive imaging and the implications of cirrhosis for imaging interpretation and accuracy.
Collapse
|
46
|
Kim YK, Lin WC, Sung K, Raman SS, Margolis D, Lim Y, Gu S, Lu D. Reducing Artifacts during Arterial Phase of Gadoxetate Disodium-enhanced MR Imaging: Dilution Method versus Reduced Injection Rate. Radiology 2016; 283:429-437. [PMID: 27977329 DOI: 10.1148/radiol.2016160241] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Purpose To compare two contrast material-administration protocols (dilution vs slow injection) in terms of their effectiveness in arterial phase artifact reduction at gadoxetic acid-enhanced magnetic resonance (MR) imaging. Materials and Methods This HIPAA-compliant retrospective case-controlled cohort study was approved by the institutional review board, with a waiver of informed patient consent. A total of 318 consecutive patients undergoing gadoxetic acid-enhanced MR imaging were placed into one of two subcohorts of 159 consecutive patients each: the dilution subcohort (gadoxetic acid was diluted 1:1 with saline and injected at a rate of 2.0 mL/sec) and the slow injection subcohort (gadoxetic acid was not diluted and was injected at a rate of 1.0 mL/sec). Eighty-nine patients in the dilution subcohort also underwent follow-up MR imaging with the slow injection method, and 34 patients in the slow injection subcohort underwent follow-up MR imaging with the dilution method. Both patient- and image-based analyses, as well as intraindividual analysis, were used to compare two parameters-mean artifact score rated by two observers using a five-point scale and frequency of severe artifact-between the dilution and slow injection subcohorts with the Wilcoxon Mann-Whitney test, χ2 test, and generalized estimating equation. Results In both patient- and image-based analyses, the mean artifact score and frequency of severe artifact were lower in the dilution subcohort (mean, 1.46% and 3.8% [six of 159]) than in the slow injection subcohort (mean, 1.95% and 15.1% [24 of 159]) (P ≤ .001 and P < .001, respectively). In intraindividual analysis, both variables were also decreased in the dilution subcohort (P = .007 and P = .001, respectively). We found the two variables to be significantly increased in the slow injection subcohort when compared with that in the dilution subcohort for three different MR platforms (P < .05). Conclusion In comparison with slow injection of undiluted contrast material at a rate of 1.0 mL/sec, gadoxetic acid diluted to 50% and injected at a rate of 2 mL/sec had a significantly less severe ghosting artifact in the arterial phase of gadoxetic acid-enhanced MR imaging. © RSNA, 2016 Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Young Kon Kim
- From the Department of Radiological Sciences, University of California, 10833 Le Conte Ave, Los Angeles, CA 90095-1721 (Y.K.K., W.C.L., K.S., S.S.R., D.M., D.L.); and Biostatistics and Clinical Epidemiology Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, Korea (Y.L., S.G.)
| | - Wei-Chan Lin
- From the Department of Radiological Sciences, University of California, 10833 Le Conte Ave, Los Angeles, CA 90095-1721 (Y.K.K., W.C.L., K.S., S.S.R., D.M., D.L.); and Biostatistics and Clinical Epidemiology Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, Korea (Y.L., S.G.)
| | - Kyunghyun Sung
- From the Department of Radiological Sciences, University of California, 10833 Le Conte Ave, Los Angeles, CA 90095-1721 (Y.K.K., W.C.L., K.S., S.S.R., D.M., D.L.); and Biostatistics and Clinical Epidemiology Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, Korea (Y.L., S.G.)
| | - Steven S Raman
- From the Department of Radiological Sciences, University of California, 10833 Le Conte Ave, Los Angeles, CA 90095-1721 (Y.K.K., W.C.L., K.S., S.S.R., D.M., D.L.); and Biostatistics and Clinical Epidemiology Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, Korea (Y.L., S.G.)
| | - Daniel Margolis
- From the Department of Radiological Sciences, University of California, 10833 Le Conte Ave, Los Angeles, CA 90095-1721 (Y.K.K., W.C.L., K.S., S.S.R., D.M., D.L.); and Biostatistics and Clinical Epidemiology Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, Korea (Y.L., S.G.)
| | - Yaeji Lim
- From the Department of Radiological Sciences, University of California, 10833 Le Conte Ave, Los Angeles, CA 90095-1721 (Y.K.K., W.C.L., K.S., S.S.R., D.M., D.L.); and Biostatistics and Clinical Epidemiology Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, Korea (Y.L., S.G.)
| | - Seonhye Gu
- From the Department of Radiological Sciences, University of California, 10833 Le Conte Ave, Los Angeles, CA 90095-1721 (Y.K.K., W.C.L., K.S., S.S.R., D.M., D.L.); and Biostatistics and Clinical Epidemiology Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, Korea (Y.L., S.G.)
| | - David Lu
- From the Department of Radiological Sciences, University of California, 10833 Le Conte Ave, Los Angeles, CA 90095-1721 (Y.K.K., W.C.L., K.S., S.S.R., D.M., D.L.); and Biostatistics and Clinical Epidemiology Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, Korea (Y.L., S.G.)
| |
Collapse
|
47
|
Peng J, Li JJ, Li J, Li HW, Xu GP, Jia RR, Zhang XN, Zhao Y. Could ADC values be a promising diagnostic criterion for differentiating malignant and benign hepatic lesions in Asian populations: A meta-analysis. Medicine (Baltimore) 2016; 95:e5470. [PMID: 27902599 PMCID: PMC5134810 DOI: 10.1097/md.0000000000005470] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Liver cancer exhibits geographic and ethnic differences in its prevalence and biology, which implies that it is impractical to develop universal guidelines for all patients. Thus, a meta-analysis was conducted to identify the accuracy of apparent diffusion coefficients (ADCs) for discriminating malignant from benign liver lesions in Asians. METHODS Eligible studies published in PubMed, Ovid, and Embase/Medline were updated onto October 2014. STATA 12.0 and Meta-Disc 1.4 were used to perform this meta-analysis. RESULTS Eight studies comprising 661 benign liver lesions and 598 malignant liver lesions fulfilled all the inclusion criteria. The pooled sensitivity, specificity, positive likelihood ratio, negative likelihood ratio, and diagnostic odds ratio were 0.88 (95% confidence interval [CI] 0.75-0.95), 0.93 (95% CI 0.86-0.97), 12.42 (95% CI 6.09-25.31), 0.13 (95% CI 0.06-0.29), and 95.58 (95% CI 35.29-258.89), respectively. Overall, the area under the summary receiver-operating characteristic curve was 0.96 (95% CI 0.94-0.98). Heterogeneity was found to originate potentially from the type of benign lesion. A subgroup analysis showed that differentiating between hemangiomas, cysts, and malignant liver lesions produced a significantly higher diagnostic accuracy than that of solid liver lesions. CONCLUSION Our meta-analysis indicated that ADC could be promising for characterizing liver lesions among Asians, indicating that the ADC value is a promising diagnostic criterion candidate. Meanwhile, the use of dual b values could be sufficient for liver lesion characterization. However, large-scale, high-quality trials should be conducted to identify specific standards, including cut-off values for further development of diffusion-weighted imaging as a routine clinical application among Asian populations.
Collapse
|
48
|
Sano K. [8.Imaging of Hepatocellular Carcinoma]. Nihon Hoshasen Gijutsu Gakkai Zasshi 2016; 72:930-938. [PMID: 27647600 DOI: 10.6009/jjrt.2016_jsrt_72.9.930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Affiliation(s)
- Katsuhiro Sano
- Department of Diagnostic Radiology, Saitama Medical University International Medical Center
| |
Collapse
|
49
|
Carrilho FJ, Mattos AAD, Vianey AF, Vezozzo DCP, Marinho F, Souto FJ, Cotrim HP, Coelho HSM, Silva I, Garcia JHP, Kikuchi L, Lofego P, Andraus W, Strauss E, Silva G, Altikes I, Medeiros JE, Bittencourt PL, Parise ER. Brazilian society of hepatology recommendations for the diagnosis and treatment of hepatocellular carcinoma. ARQUIVOS DE GASTROENTEROLOGIA 2016; 52 Suppl 1:2-14. [PMID: 26959803 DOI: 10.1590/s0004-28032015000500001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hepatocellular carcinoma is a malignancy of global importance and is associated with a high rate of mortality. Recent advances in the diagnosis and treatment of this disease make it imperative to update the recommendations on the management of the disease. In order to draw evidence-based recommendations concering the diagnosis and management of hepatocellular carcinoma, the Brazilian Society of Hepatology has sponsored a single-topic meeting in João Pessoa (PB). All the invited pannelists were asked to make a systematic review of the literature and to present topics related to the risk factors for its development, methods of screening, radiological diagnosis, staging systems, curative and palliative treatments and hepatocellular carcinoma in noncirrhotic liver. After the meeting, all panelists gathered together for the discussion of the topics and the elaboration of those recommendations. The text was subsequently submitted for suggestions and approval of all members of the Brazilian Society of Hepatology through its homepage. The present paper is the final version of the reviewed manuscript containing the recommendations of the Brazilian Society of Hepatology.
Collapse
Affiliation(s)
| | | | | | | | - Fábio Marinho
- Hospital Português de Beneficiência, Recife, PE, Brazil
| | | | | | | | - Ivonete Silva
- Faculdade de Medicina, Universidade Federal de São Paulo, SP, Brazil
| | | | - Luciana Kikuchi
- Faculdade de Medicina, Universidade de São Paulo, SP, Brazil
| | - Patricia Lofego
- Faculdade de Medicina, Universidade Federal do Espírito Santo, ES, Brazil
| | | | - Edna Strauss
- Faculdade de Medicina, Universidade de São Paulo, SP, Brazil
| | | | | | | | | | - Edison R Parise
- Faculdade de Medicina, Universidade Federal de São Paulo, SP, Brazil
| |
Collapse
|
50
|
Kim SY, Wu EH, Park SH, Wang ZJ, Hope TA, Yee J, Zhao LQ, Chang WC, Yeh BM. Comparison of hepatocellular carcinoma conspicuity on hepatobiliary phase images with gadoxetate disodium vs. delayed phase images with extracellular cellular contrast agent. Abdom Radiol (NY) 2016; 41:1522-31. [PMID: 26971341 DOI: 10.1007/s00261-016-0703-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVE To compare the conspicuity of hepatocellular carcinoma (HCC) on hepatobiliary phase of gadoxetate disodium-enhanced vs. delayed phase of gadodiamide-enhanced MR images, relative to liver function. METHODS AND MATERIALS We retrospectively identified 86 patients with newly diagnosed HCC between 2010 and 2013 and recorded the severity of liver disease by Child-Pugh class (CPC). 38 patients had gadodiamide-enhanced 5-min delayed and 48 had gadoxetate disodium-enhanced 20-min delayed hepatobiliary MR images. The conspicuity of 86 HCCs (mean size, 2.7 cm) was graded visually on a 3-point scale and quantified by liver-to-tumor contrast ratios (LTC). The relative liver parenchymal enhancement (RPE) was measured. For different CPCs, we compared the conspicuity of HCC and RPE between gadodiamide and gadoxetate. RESULTS In patients with CPC A, the visual conspicuity and LTC of the 27 HCCs imaged with gadodiamide were significantly lower than those of the 38 HCCs with gadoxetate (P < 0.01, <0.01, respectively). RPE was lower in gadodiamide scans than gadoxetate scans (P < 0.01). Conversely, in patients with CPC B and C, HCCs appeared more frequently as definite hypointensity when imaged with gadodiamide (72.7%, 8/11) than gadoxetate (20%, 2/10, P = 0.03). LTC (mean 18.1 vs. 7.5, P = 0.04) and RPE (mean 75.5 vs. 45.4, P = 0.04) was significantly higher in the gadodiamide than gadoxetate scans. CONCLUSION In patients with compromised liver function, hypointensity of HCC is more conspicuous in the gadodiamide delayed phase than the gadoxetate hepatobiliary phase. This likely reflects the high extracellular accumulation of gadodiamide and poor hepatocyte uptake of gadoxetate in patients with compromised liver function.
Collapse
Affiliation(s)
- So Yeon Kim
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, 388-1, Pungnap 2-dong, Songpa-ku, Seoul, 138-736, Korea
| | - En-Haw Wu
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital, Linkou and Chang Gung University College of Medicine, No. 5, Fuxing St, Guishan Township, Taoyuan, Taoyuan County, 333, Taiwan
| | - Seong Ho Park
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, 388-1, Pungnap 2-dong, Songpa-ku, Seoul, 138-736, Korea
| | - Z Jane Wang
- Department of Radiology and Biomedical Imaging, University of California San Francisco, 505 Parnassus Ave, San Francisco, CA, 94143-0628, USA
| | - Thomas A Hope
- Department of Radiology and Biomedical Imaging, University of California San Francisco, 505 Parnassus Ave, San Francisco, CA, 94143-0628, USA
| | - Judy Yee
- Department of Radiology and Biomedical Imaging, University of California San Francisco, 505 Parnassus Ave, San Francisco, CA, 94143-0628, USA
| | - Li-Qin Zhao
- Beijing Friendship Hospital, Capital Medical University, No 95, Yong'an Road, Xicheng District, Beijing, 100050, China
| | - Wei-Chou Chang
- Tri-Service General Hospital and National Defense Medical Center, No.325, Sec. 2, Cheng-Kung Road, Neihu, Taipei, Taiwan
| | - Benjamin M Yeh
- Department of Radiology and Biomedical Imaging, University of California San Francisco, 505 Parnassus Ave, San Francisco, CA, 94143-0628, USA.
| |
Collapse
|