1
|
Metzner M, Longarino FK, Ackermann B, Schlechter A, Saphörster M, Xu Y, Schlecker J, Wohlfahrt P, Richter C, Brons S, Debus J, Jäkel O, Martišíková M, Gehrke T. Accuracy of a helium-beam radiography system based on thin pixel detectors for an anthropomorphic head phantom. Med Phys 2025; 52:4757-4768. [PMID: 40143574 DOI: 10.1002/mp.17786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 02/10/2025] [Accepted: 03/17/2025] [Indexed: 03/28/2025] Open
Abstract
BACKGROUND Ion-beam radiography is a promising technique to verify the range of ion-beam radiotherapy treatments regularly. To detect and quantify the water-equivalent thickness (WET) of potential anatomical changes, ion-beam radiographs must provide a sufficient WET accuracy on the level of 1%. PURPOSE In this work, we show an energy-painted helium-beam radiograph of an anthropomorphic head phantom acquired with thin silicon pixel detectors for the first time. Furthermore, we determine the WET accuracy of our helium-beam radiography system for the especially heterogeneous skull base region, which is highly relevant for the treatment of head and neck and skull base tumors. METHODS With a detection system based on pixelated semiconducting Timepix detectors, we track single ions upstream and downstream of the head phantom. Furthermore, we measure their energy deposition in a thin Timepix detector behind the anthropomorphic phantom. To ensure a high precision of the image, we acquired a radiograph by using helium beams with five initial energies between 146.84 and 188.07 MeV/u following the energy painting algorithm. With a Siemens SOMATOM Confidence CT scanner, a single- and dual-energy CT were acquired with clinical protocols and translated to relative stopping power (RSP) values. After projecting these scans, the resulting WET maps were compared to the helium-beam radiograph. To evaluate the accuracy of all three modalities, a reference data set based on range-pullback measurements and a segmentation of a high-resolution CT scan was taken into account. RESULTS The mean absolute percentage error (MAPE) of all modalities was determined to be between 0.95% and 1.16%. Also, the root-mean-square percentage error (RMSPE) was similar for all modalities ranging from 1.19% to 1.46%. These deviations from the reference scan were found to mainly stem from an overestimation of air and sinus tissue and underestimation of cortical bone. CONCLUSIONS The helium-beam radiograph was shown to achieve a WET accuracy competitive with that of clinically used imaging methods. If certain technical aspects are addressed, helium-beam radiography may emerge as an auspicious imaging modality for on-couch range verification of ion-beam radiotherapy treatments allowing for regular detection and quantification of anatomical changes.
Collapse
Affiliation(s)
- Margareta Metzner
- Heidelberg Institute for Radiation Oncology (HIRO) and National Center for Research in Radiation Oncology (NCRO), Heidelberg, Germany
- German Cancer Research Center (DKFZ) Heidelberg, Division of Medical Physics in Radiation Oncology, Heidelberg, Germany
- Department of Physics and Astronomy, Heidelberg University, Heidelberg, Germany
| | - Friderike K Longarino
- Heidelberg Institute for Radiation Oncology (HIRO) and National Center for Research in Radiation Oncology (NCRO), Heidelberg, Germany
- German Cancer Research Center (DKFZ) Heidelberg, Clinical Cooperation Unit Translational Radiation Oncology, Heidelberg, Germany
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Benjamin Ackermann
- Heidelberg Ion Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Annika Schlechter
- Heidelberg Institute for Radiation Oncology (HIRO) and National Center for Research in Radiation Oncology (NCRO), Heidelberg, Germany
- German Cancer Research Center (DKFZ) Heidelberg, Division of Medical Physics in Radiation Oncology, Heidelberg, Germany
- Department of Physics and Astronomy, Heidelberg University, Heidelberg, Germany
| | - Maike Saphörster
- Heidelberg Institute for Radiation Oncology (HIRO) and National Center for Research in Radiation Oncology (NCRO), Heidelberg, Germany
- German Cancer Research Center (DKFZ) Heidelberg, Division of Medical Physics in Radiation Oncology, Heidelberg, Germany
- Department of Physics and Astronomy, Heidelberg University, Heidelberg, Germany
- EP Department, CERN, Geneva, Switzerland
| | - Yanting Xu
- Heidelberg Institute for Radiation Oncology (HIRO) and National Center for Research in Radiation Oncology (NCRO), Heidelberg, Germany
- German Cancer Research Center (DKFZ) Heidelberg, Division of Medical Physics in Radiation Oncology, Heidelberg, Germany
- Department of Physics and Astronomy, Heidelberg University, Heidelberg, Germany
| | - Julian Schlecker
- Heidelberg Institute for Radiation Oncology (HIRO) and National Center for Research in Radiation Oncology (NCRO), Heidelberg, Germany
- Department of Physics and Astronomy, Heidelberg University, Heidelberg, Germany
- German Cancer Research Center (DKFZ) Heidelberg, Division of Radiooncology/Radiobiology, Heidelberg, Germany
| | - Patrick Wohlfahrt
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universitat Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany
| | - Christian Richter
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universitat Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, Dresden, Germany
| | - Stephan Brons
- Heidelberg Ion Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Jürgen Debus
- Heidelberg Institute for Radiation Oncology (HIRO) and National Center for Research in Radiation Oncology (NCRO), Heidelberg, Germany
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- German Cancer Research Center (DKFZ) Heidelberg, Clinical Cooperation Unit Radiation Oncology, Heidelberg, Germany
| | - Oliver Jäkel
- Heidelberg Institute for Radiation Oncology (HIRO) and National Center for Research in Radiation Oncology (NCRO), Heidelberg, Germany
- German Cancer Research Center (DKFZ) Heidelberg, Division of Medical Physics in Radiation Oncology, Heidelberg, Germany
- Heidelberg Ion Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
| | - Mária Martišíková
- Heidelberg Institute for Radiation Oncology (HIRO) and National Center for Research in Radiation Oncology (NCRO), Heidelberg, Germany
- German Cancer Research Center (DKFZ) Heidelberg, Division of Medical Physics in Radiation Oncology, Heidelberg, Germany
| | - Tim Gehrke
- Heidelberg Institute for Radiation Oncology (HIRO) and National Center for Research in Radiation Oncology (NCRO), Heidelberg, Germany
- German Cancer Research Center (DKFZ) Heidelberg, Division of Medical Physics in Radiation Oncology, Heidelberg, Germany
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
2
|
Yabe T, Nitta M, Yamaguchi M, Pinto M, Kawachi N, Parodi K. Patient CT-based simulation study of secondary-electron-bremsstrahlung imaging for range verification in proton therapy: comparison with prompt gamma and PET imaging for simplified proton pencil beam and SOBP irradiation scenarios. Phys Med Biol 2025; 70:115003. [PMID: 40329884 DOI: 10.1088/1361-6560/add4b7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 05/06/2025] [Indexed: 05/08/2025]
Abstract
Objective.Secondary electron bremsstrahlung (SEB) imaging, along with prompt gamma (PG) and positron emission tomography (PET) imaging, has been proposed as anin vivorange verification tool for proton therapy. This study presents the first simulation based on patient computed tomography (CT) data to investigate the feasibility of SEB imaging for range verification in proton therapy, while comparing the characteristics of SEB imaging with those of PG and PET imaging.Approach.A Monte Carlo simulation was performed using patient CT data for the irradiation of monoenergetic pencil beams and spread-out Bragg peak proton beams. The physical characteristics of SEB imaging were analyzed at three different anatomical sites and compared with those of PG and PET imaging.Main results. In all the treatment cases, SEB imaging exhibited higher production rates than PG and PET imaging, particularly in the regions with high CT values along the beam path. Although the SEB signal was more affected by scattering and absorption than the PET or PG signals, sufficient statistical counts for range verification (∼3 × 10-3SEBs/proton) could potentially be detected outside the patient geometry. For pencil beam cases, the SEB and PET fall-offs were located 4-5 mm proximal to the dose fall-off, while the PG fall-off was located 0-1 mm distal to it.Significance.Results suggest that SEB imaging has the potential to offer a real-time range verification tool (by comparing measured and expected images), particularly for treating shallow-seated tumors using proton pencil-beam scanning delivery. Thus, this study represents a significant step towards the clinical application of range verification based on SEB imaging and promotes future efforts in this direction.
Collapse
Affiliation(s)
- Takuya Yabe
- Takasaki Institute for Advanced Quantum Science, National Institutes for Quantum Science and Technology (QST), Takasaki, Japan
- Postdoctoral Research Fellow of the Japan Society for the Promotion of Science (JSPS), Tokyo, Japan
- Department for Medical Physics, Ludwig-Maximilians-Universität München, Garching, Germany
| | - Munetaka Nitta
- Department for Medical Physics, Ludwig-Maximilians-Universität München, Garching, Germany
| | - Mitsutaka Yamaguchi
- Takasaki Institute for Advanced Quantum Science, National Institutes for Quantum Science and Technology (QST), Takasaki, Japan
| | - Marco Pinto
- Department for Medical Physics, Ludwig-Maximilians-Universität München, Garching, Germany
| | - Naoki Kawachi
- Takasaki Institute for Advanced Quantum Science, National Institutes for Quantum Science and Technology (QST), Takasaki, Japan
| | - Katia Parodi
- Department for Medical Physics, Ludwig-Maximilians-Universität München, Garching, Germany
| |
Collapse
|
3
|
Tattenberg S, Liu P, Mulhem A, Cong X, Thome C, Hoehr C, Ding X. Range uncertainty reductions in proton therapy and resulting improvements in quality-adjusted life expectancy (QALE) for head-and-neck cancer patients. Phys Med Biol 2025; 70:105001. [PMID: 40273946 DOI: 10.1088/1361-6560/add07d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 04/24/2025] [Indexed: 04/26/2025]
Abstract
Objective. Due to higher dose conformality to the target, proton radiotherapy for cancer has received rapidly-growing interest. However, uncertainties in thein vivoproton range and methods to reduce them remain active areas of research. Based on 20 patients with head-and-neck cancer, this study aims to quantify the benefits of proton range uncertainty reductions in terms of the resulting improvements in quality-adjusted life expectancy (QALE).Approach. For each patient, two different proton therapy treatment plans were created, which assumed a current clinical range uncertainty of approximately 3.5% (IMPT3.5%) and a potentially achievable range uncertainty of 1.0% (IMPT1%). A Markov model considering the probability of tumor control and the development of xerostomia, larynx edema, secondary cancer, and/or metastases as well as death from primary cancer, secondary cancer, metastases, or unrelated causes was constructed, and for every patient and treatment plan, 10 000 simulations of the patient's entire lifetime from the time of treatment until death were performed.Main results.A 3.5%-1% range uncertainty reduction increased QALE by up to 0.4 quality-adjusted life years (QALYs) in the nominal and up to 0.6 QALY in the worst-case scenario, equivalent to 4.8 months and 7.2 months of life in perfect health. This was largely the result of a reduction in healthy tissue toxicity rates, which were reduced by up to 8.5 percentage points (pp) and 10.0 pp in the nominal and worst-case scenario, respectively.Significance. The benefits of a 3.5%-1% range uncertainty reduction in 20 patients with head-and-neck cancer were quantified in terms of the associated improvement in QALE. The highest QALE improvements were observed in patients in the top quartile of youngest patients at the time of treatment, due to the longer potential lifespan over which prevented healthy tissue toxicities would have impacted the patients' quality of life.
Collapse
Affiliation(s)
- Sebastian Tattenberg
- Laurentian University, Sudbury P3E 2C6, Ontario, Canada
- Northern Ontario School of Medicine University, Sudbury P3E 2C6, Ontario, Canada
- TRIUMF, 4004 Wesbrook Mall, Vancouver V6T 2A3, British Columbia, Canada
| | - Peilin Liu
- Department of Radiation Oncology, William Beaumont University Hospital, Corewell Health, 3601 W 13 Mile Road, Royal Oak, MI, United States of America
| | - Anthony Mulhem
- Department of Radiation Oncology, William Beaumont University Hospital, Corewell Health, 3601 W 13 Mile Road, Royal Oak, MI, United States of America
- Department of Human Biology, Michigan State University, Natural Science Building, 288 Farm Ln, East Lansing, MI 48824, United States of America
| | - Xiaoda Cong
- Department of Radiation Oncology, William Beaumont University Hospital, Corewell Health, 3601 W 13 Mile Road, Royal Oak, MI, United States of America
| | - Christopher Thome
- Laurentian University, Sudbury P3E 2C6, Ontario, Canada
- Northern Ontario School of Medicine University, Sudbury P3E 2C6, Ontario, Canada
| | - Cornelia Hoehr
- TRIUMF, 4004 Wesbrook Mall, Vancouver V6T 2A3, British Columbia, Canada
| | - Xuanfeng Ding
- Department of Radiation Oncology, William Beaumont University Hospital, Corewell Health, 3601 W 13 Mile Road, Royal Oak, MI, United States of America
| |
Collapse
|
4
|
Zapien-Campos B, Ahmadi Ganjeh Z, Perotti-Bernardini G, Free J, Both S, Dendooven P. Instantaneous in vivo distal edge verification in intensity-modulated proton therapy by means of PET imaging. Med Phys 2025. [PMID: 40317734 DOI: 10.1002/mp.17850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 04/09/2025] [Accepted: 04/10/2025] [Indexed: 05/07/2025] Open
Abstract
BACKGROUND Intensity-modulated proton therapy (IMPT) holds promise for improving outcomes in head-and-neck cancer (HNC) patients by enhancing organ-at-risk (OAR) sparing. A key challenge in IMPT is ensuring an accurate dose delivery at the distal edge of the tumor, where the steep dose gradients make treatment precision highly sensitive to uncertainties in both proton range and patient setup. Thus, IMPT conformality is increased by incorporating robust margins in the treatment optimization. However, an increment in the plan robustness could lead to an OAR overdosing. Therefore, an accurate distal edge verification during dose delivery is crucial to increase IMPT conformality by reducing optimization settings in treatment planning. PURPOSE This work aims to evaluate, in a quasi-clinical setting, a novel approach for accurate instantaneous proton beam distal edge verification in IMPT by means of spot-by-spot positron emission tomography (PET) imaging. METHODS An anthropomorphic head and neck phantom CIRS-731 HN was irradiated at the head and neck region. The targets were defined as 4 cm diameter spheres. A 60-ms delay was introduced between the proton beam spots in order to enable the spot-by-spot coincidence detection of the 511-keV photons resulting from positron annihilation following the positron emission from very short-lived positron-emitting, mainly 12N (T1/2 = 11.0 ms). Additionally, modified irradiations were carried out using solid water slabs of 2 and 5 mm thickness in the beam path to assess the precision of the approach for detecting range deviations. The positron activity range (PAR) was determined from the 50% distal fall-off position of the 1D longitudinal positron activity profile derived from the 2D image reconstructions. Furthermore, Monte Carlo (MC) simulations were performed using an in-house RayStation/GATE MC framework to predict the positron activity images and verify the PAR measurements. RESULTS PAR measurements achieved a precision between 1.5 and 3.6 mm (at 1.5σ clinical level) at the beam spot level within sub-second time scales. Measured PAR shifts of 1.6-2.1 and 4.2--.7 mm were observed with the 2- and 5-mm thickness range shifters, respectively, aligning with the corresponding proton dose range (PDR) shifts of 1.3-1.8 and 3.9-4.3 mm. The simulated PAR agrees with the measured PARs, showing an average range difference of ∼0.4 mm. CONCLUSION This study demonstrated the feasibility of instantaneous distal edge verification using PET imaging by introducing beam spot delays during dose delivery. The findings represent a first step toward the clinical implementation of instantaneous in vivo distal edge verification. The approach contributes to the development of real-time range verification aimed at improving IMPT treatments by mitigating range and setup uncertainties, thereby reducing dose to organs-at-risk and ultimately enhancing patient outcomes.
Collapse
Affiliation(s)
- Brian Zapien-Campos
- Particle Therapy Research Center (PARTREC), Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Zahra Ahmadi Ganjeh
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Giuliano Perotti-Bernardini
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jeffrey Free
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Stefan Both
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Peter Dendooven
- Particle Therapy Research Center (PARTREC), Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
5
|
Brás M, Freitas H, Gonçalves P, Seco J. In vivo dosimetry for proton therapy: A Monte Carlo study of the Gadolinium spectral response throughout the course of treatment. Med Phys 2025; 52:2412-2424. [PMID: 39838583 PMCID: PMC11972047 DOI: 10.1002/mp.17625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/03/2024] [Accepted: 12/22/2024] [Indexed: 01/23/2025] Open
Abstract
BACKGROUND In proton radiotherapy, the steep dose deposition profile near the end of the proton's track, the Bragg peak, ensures a more conformed deposition of dose to the tumor region when compared with conventional radiotherapy while reducing the probability of normal tissue complications. However, uncertainties, as in the proton range, patient geometry, and positioning pose challenges to the precise and secure delivery of the treatment plan (TP). In vivo range determination and dose distribution are pivotal for mitigation of uncertainties, opening the possibility to reduce uncertainty margins and for adaptation of the TP. PURPOSE This study aims to explore the feasibility of utilizing gadolinium (Gd), a highly used contrast agent in MRI, as a surrogate for in vivo dosimetry during the course of scanning proton therapy, tracking the delivery of a TP and the impact of uncertainties intra- and inter-fraction in the course of treatment. METHODS Monte Carlo simulations (Geant4 11.1.1) were performed, where a Gd-filled volume was placed within a water phantom and underwent treatment with a scanning proton TP delivering 4 Gy. The secondary photons emitted upon proton-Gd interaction were recorded and assessed for various tumor displacements. The spectral response of Gd to each pencil beam irradiation is therefore used as a surrogate for dose measurements during treatment. RESULTS Results show that the deposited dose at the target volume can be tracked for each TP scanning point by correlating it with the recorded Gd signal. The analyzed Gd spectral line corresponded to the characteristic X-rayk α $\text{k}_\alpha$ line at 43 keV. Displacements from the planned geometry could be distinguished by observing changes in the Gd signal induced by each pencil beam. Moreover, the total 43 keV signal recorded subsequently to the full TP delivery reflected deviations from the planned integral dose to the target. CONCLUSIONS The study suggests that the spectral response of a Gd-based contrast agent can be used for in vivo dosimetry, providing insights into the TP delivery. The Gd 43 keV spectral line was correlated with the dose at the tumor, its volume, and its position. Other variables that can impact the method, such as the kinetic energy of the incident protons and Gd concentration in the target were also discussed.
Collapse
Affiliation(s)
- Mariana Brás
- German Cancer Research CentreHeidelbergGermany
- Laboratório de Intrumentação e Física Experimental de PartículasLisbonPortugal
- Department of PhysicsInstituto Superior Técnico University of LisbonLisbonPortugal
| | - Hugo Freitas
- German Cancer Research CentreHeidelbergGermany
- Department of Physics and AstronomyUniversity of HeidelbergHeidelbergGermany
| | - Patrícia Gonçalves
- Laboratório de Intrumentação e Física Experimental de PartículasLisbonPortugal
- Department of PhysicsInstituto Superior Técnico University of LisbonLisbonPortugal
| | - João Seco
- German Cancer Research CentreHeidelbergGermany
- Department of Physics and AstronomyUniversity of HeidelbergHeidelbergGermany
| |
Collapse
|
6
|
Schilling A, Aehle M, Alme J, Barnaföldi GG, Bíró G, Bodova T, Borshchov V, Brink AVD, Eikeland V, Feofilov G, Garth C, Gauger NR, Grøttvik O, Helstrup H, Igolkin S, Johansen JG, Keidel R, Kobdaj C, Kortus T, Leonhardt V, Mehendale S, Mulawade RN, Odland OH, O'Neill G, Papp G, Peitzmann T, Pettersen HES, Piersimoni P, Protsenko M, Rauch M, Rehman AU, Richter M, Röhrich D, Santana J, Seco J, Songmoolnak A, Sudár Á, Tambave G, Tymchuk I, Ullaland K, Varga-Kofarago M, Wagner B, Xiao R, Yang S. Modeling charge collection in silicon pixel detectors for proton therapy applications. Biomed Phys Eng Express 2025; 11:035005. [PMID: 40073455 DOI: 10.1088/2057-1976/adbf9c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 03/12/2025] [Indexed: 03/14/2025]
Abstract
Objective.Monolithic active pixel sensors are used for charged particle tracking in many applications, from medical physics to astrophysics. The Bergen pCT collaboration designed a sampling calorimeter for proton computed tomography, based entirely on the ALICE PIxel DEtector (ALPIDE). The same telescope can be used for in-situ range verification in particle therapy. An accurate charge diffusion model is required to convert the deposited energy from Monte Carlo simulations to a cluster of pixels, and to estimate the deposited energy, given an experimentally observed cluster.Approach.We optimize the parameters of different charge diffusion models to experimental data for both proton computed tomography and proton range verification, collected at the Danish Centre for Particle Therapy. We then evaluate the performance of downstream tasks to investigate the impact of charge diffusion modeling.Main results.We find that it is beneficial to optimize application-specific models, with a power law working best for proton computed tomography, and a model based on a 2D Cauchy-Lorentz distribution giving better agreement for range verification. We further highlight the importance of evaluating the downstream tasks with multiple approaches to obtain a range of expected performance metrics for the application.Significance.This work demonstrates the influence of the charge diffusion model on downstream tasks, and recommends a new model for proton range verification with an ALPIDE-based pixel telescope.
Collapse
Affiliation(s)
- Alexander Schilling
- Chair for Scientific Computing, University of Kaiserslautern-Landau (RPTU), 67663 Kaiserslautern, Germany
| | - Max Aehle
- Chair for Scientific Computing, University of Kaiserslautern-Landau (RPTU), 67663 Kaiserslautern, Germany
| | - Johan Alme
- Department of Physics and Technology, University of Bergen, 5007 Bergen, Norway
| | | | - Gábor Bíró
- HUN-REN Wigner Research Centre for Physics, Budapest, Hungary
- Institute for Physics, Eötvös Loránd University, 1/A Pázmány P. Sétány, H-1117 Budapest, Hungary
| | - Tea Bodova
- Department of Physics and Technology, University of Bergen, 5007 Bergen, Norway
| | | | | | - Viljar Eikeland
- Department of Physics and Technology, University of Bergen, 5007 Bergen, Norway
| | | | - Christoph Garth
- Scientific Visualization Lab, University of Kaiserslautern-Landau (RPTU), 67663 Kaiserslautern, Germany
| | - Nicolas R Gauger
- Chair for Scientific Computing, University of Kaiserslautern-Landau (RPTU), 67663 Kaiserslautern, Germany
| | - Ola Grøttvik
- Department of Physics and Technology, University of Bergen, 5007 Bergen, Norway
| | - Håvard Helstrup
- Department of Computer Science, Electrical Engineering and Mathematical Sciences, Western Norway University of Applied Sciences, 5020 Bergen, Norway
| | | | - Jacob G Johansen
- Danish Centre for Particle Therapy, Aarhus University Hospital, 8200 Aarhus, Denmark
- Department of Clinical Medicine, Faculty of Health, Aarhus University, 8000 Aarhus, Denmark
| | - Ralf Keidel
- Chair for Scientific Computing, University of Kaiserslautern-Landau (RPTU), 67663 Kaiserslautern, Germany
| | - Chinorat Kobdaj
- Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Tobias Kortus
- Chair for Scientific Computing, University of Kaiserslautern-Landau (RPTU), 67663 Kaiserslautern, Germany
| | - Viktor Leonhardt
- Scientific Visualization Lab, University of Kaiserslautern-Landau (RPTU), 67663 Kaiserslautern, Germany
| | - Shruti Mehendale
- Department of Physics and Technology, University of Bergen, 5007 Bergen, Norway
| | - Raju Ningappa Mulawade
- Center for Technology and Transfer (ZTT), University of Applied Sciences Worms, 67549 Worms, Germany
| | - Odd Harald Odland
- Department of Physics and Technology, University of Bergen, 5007 Bergen, Norway
- Department of Oncology and Medical Physics, Haukeland University Hospital, 5021 Bergen, Norway
| | - George O'Neill
- Department of Physics and Technology, University of Bergen, 5007 Bergen, Norway
| | - Gábor Papp
- Institute for Physics, Eötvös Loránd University, 1/A Pázmány P. Sétány, H-1117 Budapest, Hungary
| | - Thomas Peitzmann
- Institute for Subatomic Physics, Utrecht University/Nikhef, Utrecht, The Netherlands
| | | | - Pierluigi Piersimoni
- Department of Physics and Technology, University of Bergen, 5007 Bergen, Norway
- UniCamillus-Saint Camillus International University of Health Sciences, Rome, Italy
| | - Maksym Protsenko
- Research and Production Enterprise 'LTU' (RPELTU), Kharkiv, Ukraine
| | - Max Rauch
- Department of Physics and Technology, University of Bergen, 5007 Bergen, Norway
| | - Attiq Ur Rehman
- Department of Physics and Technology, University of Bergen, 5007 Bergen, Norway
| | - Matthias Richter
- Department of Physics and Technology, University of Bergen, 5007 Bergen, Norway
| | - Dieter Röhrich
- Department of Physics and Technology, University of Bergen, 5007 Bergen, Norway
| | - Joshua Santana
- Center for Technology and Transfer (ZTT), University of Applied Sciences Worms, 67549 Worms, Germany
| | - Joao Seco
- Department of Biomedical Physics in Radiation Oncology, DKFZ-German Cancer Research Center, Heidelberg, Germany
- Department of Physics and Astronomy, Heidelberg University, Heidelberg, Germany
| | - Arnon Songmoolnak
- Department of Physics and Technology, University of Bergen, 5007 Bergen, Norway
- Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Ákos Sudár
- HUN-REN Wigner Research Centre for Physics, Budapest, Hungary
- Budapest University of Technology and Economics, Budapest, Hungary
| | - Ganesh Tambave
- Center for Medical and Radiation Physics (CMRP), National Institute of Science Education and Research (NISER), Bhubaneswar, India
| | - Ihor Tymchuk
- Research and Production Enterprise 'LTU' (RPELTU), Kharkiv, Ukraine
| | - Kjetil Ullaland
- Department of Physics and Technology, University of Bergen, 5007 Bergen, Norway
| | | | - Boris Wagner
- Department of Physics and Technology, University of Bergen, 5007 Bergen, Norway
| | - RenZheng Xiao
- Department of Physics and Technology, University of Bergen, 5007 Bergen, Norway
- College of Mechanical & Power Engineering, China Three Gorges University, Yichang, People's Republic of China
| | - Shiming Yang
- Department of Physics and Technology, University of Bergen, 5007 Bergen, Norway
| |
Collapse
|
7
|
Guo Z, Liu S, Zhou B, Liu J, Wang H, Pi Y, Wang X, Mo Y, Guo B, Hua J, Wan Y, Lu W. Preclinical tumor control with a laser-accelerated high-energy electron radiotherapy prototype. Nat Commun 2025; 16:1895. [PMID: 39988613 PMCID: PMC11847918 DOI: 10.1038/s41467-025-57122-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 02/11/2025] [Indexed: 02/25/2025] Open
Abstract
Radiotherapy using very-high-energy electron (VHEE) beams (50-300 MeV) has attracted considerable attention due to its advantageous dose deposition characteristics, enabling deep penetration and easy manipulation by magnetic components. One promising approach to compactly delivering these high energy electron beams in a cost-effective manner is laser wakefield acceleration (LWFA), which offers ultra-strong accelerating gradients. However, the transition from this concept to a functional machine intended for tumor treatment remains elusive. Here we present the self-developed pro- totype for LWFA-based VHEE radiotherapy, exhibiting compactness (occupying less than 5 m2) and long-term operational stability (validated over a period of one month). Subsequently, we employ this device to irradiate a tumor implanted in a mouse model. Following a dose delivery of 5.8 ± 0.2 Gy with precise tumor conformity, all irradiated mice exhibit pronounced control of tumor growth. For comparison, this tumor-control efficacy is similar to that achieved using commercial X-ray radiotherapy equipment operating at equivalent doses. These results demonstrate a compact and stable laser-driven VHEE system dedicated for preclinical studies involving small animal models and its promising prospects for future clinical translation in cancer therapy.
Collapse
Affiliation(s)
- Zhiyuan Guo
- Department of Engineering Physics, Tsinghua University, Beijing, China
| | - Shuang Liu
- Department of Engineering Physics, Tsinghua University, Beijing, China
| | - Bing Zhou
- Department of Engineering Physics, Tsinghua University, Beijing, China
- Laboratory of Zhongyuan Light, School of Physics, Zhengzhou University, Zhengzhou, China
| | - Junqi Liu
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Haiyang Wang
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yifei Pi
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaoyan Wang
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yingyi Mo
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bo Guo
- Beijing Academy of Quantum Information Sciences, Beijing, China
| | - Jianfei Hua
- Department of Engineering Physics, Tsinghua University, Beijing, China
| | - Yang Wan
- Department of Engineering Physics, Tsinghua University, Beijing, China.
- Laboratory of Zhongyuan Light, School of Physics, Zhengzhou University, Zhengzhou, China.
- Beijing Academy of Artificial Intelligence, Beijing, China.
| | - Wei Lu
- Department of Engineering Physics, Tsinghua University, Beijing, China.
- Beijing Academy of Quantum Information Sciences, Beijing, China.
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
8
|
Nguyen VK, Tsai SW, Cho IC, Chao TC, Hsiao IT, Huang HC, Liaw JW. Gold Nanoparticle-Enhanced Production of Reactive Oxygen Species for Radiotherapy and Phototherapy. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:317. [PMID: 39997879 PMCID: PMC11858237 DOI: 10.3390/nano15040317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/12/2025] [Accepted: 02/15/2025] [Indexed: 02/26/2025]
Abstract
Gold nanoparticles (GNPs) have gained significant attention as multifunctional agents in biomedical applications, particularly for enhancing radiotherapy. Their advantages, including low toxicity, high biocompatibility, and excellent conductivity, make them promising candidates for improving treatment outcomes across various radiation sources, such as femtosecond lasers, X-rays, Cs-137, and proton beams. However, a deeper understanding of their precise mechanisms in radiotherapy is essential for maximizing their therapeutic potential. This review explores the role of GNPs in enhancing reactive oxygen species (ROS) generation through plasmon-induced hot electrons or radiation-induced secondary electrons, leading to cellular damage in organelles such as mitochondria and the cytoskeleton. This additional pathway enhances radiotherapy efficacy, offering new therapeutic possibilities. Furthermore, we discuss emerging trends and future perspectives, highlighting innovative strategies for integrating GNPs into radiotherapy. This comprehensive review provides insights into the mechanisms, applications, and potential clinical impact of GNPs in cancer treatment.
Collapse
Affiliation(s)
- Viet-Khang Nguyen
- Department of Mechanical Engineering, Chang Gung University, Taoyuan City 33302, Taiwan;
| | - Shiao-Wen Tsai
- Department of Biomedical Engineering, Chang Gung University, Taoyuan City 33302, Taiwan;
| | - I-Chun Cho
- Radiation Research Core Laboratory, Chang Gung Memorial Hospital, Taoyuan City 333034, Taiwan; (I.-C.C.); (T.-C.C.)
- Research Center for Radiation Medicine, Chang Gung University, Taoyuan City 33302, Taiwan
| | - Tsi-Chian Chao
- Radiation Research Core Laboratory, Chang Gung Memorial Hospital, Taoyuan City 333034, Taiwan; (I.-C.C.); (T.-C.C.)
- Department of Medical Imaging and Radiological Science, Chang Gung University, Taoyuan City 33302, Taiwan;
| | - Ing-Tsung Hsiao
- Department of Medical Imaging and Radiological Science, Chang Gung University, Taoyuan City 33302, Taiwan;
| | - Hsiao-Chieh Huang
- Proton and Radiation Therapy Center, Chang Gung Memorial Hospital, Taoyuan City 333034, Taiwan;
| | - Jiunn-Woei Liaw
- Department of Mechanical Engineering, Chang Gung University, Taoyuan City 33302, Taiwan;
- Proton and Radiation Therapy Center, Chang Gung Memorial Hospital, Taoyuan City 333034, Taiwan;
- Department of Mechanical Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan
| |
Collapse
|
9
|
Li S, Gao N, Cheng B, Liu J, Chang Y, Pei X, Xu XG. A new GPU-based Monte Carlo code for helium ion therapy. Strahlenther Onkol 2025:10.1007/s00066-024-02357-w. [PMID: 39920366 DOI: 10.1007/s00066-024-02357-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 12/15/2024] [Indexed: 02/09/2025]
Abstract
PURPOSE This work presents an effort to extend the capabilities of the previously introduced GPU-based Monte Carlo code ARCHER for helium ion therapy. METHODS ARCHER performs helium ion transport simulations in voxelized geometry, covering kinetic energy levels up to 220 MeV/u. The physical processes are modeled using a class II condensed-history algorithm, considering ionization, energy straggling, multiple scattering, and elastic and inelastic nuclear interactions. A new nuclear-event-repeat algorithm is proposed to generate inelastic nuclear reaction products. Secondary protons, deuterons, tritons, and 3He particles are tracked, while other particles either deposit their energy locally or are ignored. The code is developed under the compute unified device architecture (CUDA) platform to improve computational efficiency. Validations are conducted by benchmarking our code against TOPAS in different phantoms. RESULTS Dose distribution comparisons demonstrate strong agreement between our code and TOPAS. The mean point-by-point local relative errors in the region where the dose exceeds 10% of the maximum dose range from 0.25% to 1.31% for all phantoms. In the strict 1%/1 mm criterion, gamma passing rates for a head-neck case, chest case, and prostate case are 99.8%, 96.9%, and 99.6%, respectively. Except for the lung phantom, ARCHER takes less than 10 s to simulate 10 million primary helium ions using a single NVIDIA GeForce RTX 3080 card (NVIDIA Corporation, Santa Clara, USA), while TOPAS requires several minutes on a computational platform with two Intel Xeon Gold 6348 CPUs (Intel Corporation, Santa Clara, USA) with 56 cores. CONCLUSION This work presents the development and benchmarking of the first GPU-based dose engine for helium ion therapy. The code has been proven to achieve high levels of accuracy and efficiency.
Collapse
Affiliation(s)
- Shijun Li
- School of Nuclear Science and Technology, University of Science and Technology of China, 230026, Hefei, China
| | - Ning Gao
- School of Nuclear Science and Technology, University of Science and Technology of China, 230026, Hefei, China
| | - Bo Cheng
- School of Nuclear Science and Technology, University of Science and Technology of China, 230026, Hefei, China
| | - Junyi Liu
- School of Nuclear Science and Technology, University of Science and Technology of China, 230026, Hefei, China
| | - Yankui Chang
- School of Nuclear Science and Technology, University of Science and Technology of China, 230026, Hefei, China
| | - Xi Pei
- Anhui Wisdom Technology Company Limited, 230088, Hefei, Anhui, China
| | - Xie George Xu
- School of Nuclear Science and Technology, University of Science and Technology of China, 230026, Hefei, China.
- Department of Radiation Oncology, The First Affiliated Hospital of USTC, University of Science and Technology of China, 230001, Hefei, China.
- College of Nuclear Science and Technology and Department of Radiation Oncology of the 1st Affiliated Hospital, Director, Institute of Nuclear Medical Physics, University of Science and Technology of China (USTC), Hefei, Anhui Province, China.
| |
Collapse
|
10
|
Guo Y, Li P, Zhang J, Hao S, Zhou X, Di C, Long F, Zhang H, Si J. Carbon ion irradiation conquers the radioresistance by inducing complex DNA damage and apoptosis in U251 human glioblastomas cells. Med Oncol 2025; 42:64. [PMID: 39903402 DOI: 10.1007/s12032-025-02616-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 01/22/2025] [Indexed: 02/06/2025]
Abstract
Glioblastoma multiforme (GBM) is the most malignant brain tumor, with radiotherapy frequently employed following surgical resection. However, conventional radiation therapies often yield suboptimal results. This study investigated the effects of X-ray and carbon ion irradiation on the glioblastoma cell line U251 to assess the distinctive advantages of carbon ion treatment and explore mechanisms for overcoming radiation resistance. The findings indicated that carbon ion irradiation more effectively inhibited colony formation and induced more severe apoptosis and cell cycle disorder in U251 cells. Immunofluorescence assays revealed larger and more abundant ϒ-H2AX and 53BP1 foci in the carbon ion irradiation group. Western blot analysis demonstrated that carbon ion-induced DNA damage repair involved a complex array of pathways, with the RAD51-mediated homologous recombination (HR) pathway being predominant, while the Rad23B-mediated nucleotide excision repair (NER) pathway and XRCC1-mediated base excision repair (BER) were more relevant in response to X-ray irradiation. These results suggest that carbon ion irradiation may overcome radioresistance by inducing more complex DNA damage and apoptosis, thus providing insights for targeting new strategies in combining gene therapy with radiotherapy.
Collapse
Affiliation(s)
- Yulu Guo
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou, 730000, Gansu, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Pingping Li
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou, 730000, Gansu, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jinhua Zhang
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou, 730000, Gansu, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Sijia Hao
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou, 730000, Gansu, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xuan Zhou
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Cuixia Di
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou, 730000, Gansu, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
| | - Feng Long
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Hong Zhang
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou, 730000, Gansu, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China.
| | - Jing Si
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou, 730000, Gansu, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China.
| |
Collapse
|
11
|
Dosanjh M, Degiovanni A, Necchi MM, Benedetto E. Multidisciplinary Collaboration and Novel Technological Advances in Hadron Therapy. Technol Cancer Res Treat 2025; 24:15330338241311859. [PMID: 39895029 PMCID: PMC11789126 DOI: 10.1177/15330338241311859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 12/04/2024] [Accepted: 12/18/2024] [Indexed: 02/04/2025] Open
Abstract
The battle against cancer remains a top priority for society, with an urgent need to develop therapies capable of targeting challenging tumours while preserving patient's quality of life. Hadron Therapy (HT), which employs accelerated beams of protons, carbon ions, and other charged particles, represents a significant frontier in cancer treatment. This modality offers superior precision and efficacy compared to conventional methods, delivering therapeutic the dose directly to tumours while sparing healthy tissue. Even though 350,000 patients have already been treated worldwide with protons and 50,000 with carbon ions, HT is still a relatively young field and more research as well as novel, cost-effective and compact accelerator technologies are needed to make this treatment more readily available globally. Interestingly the very first patient was irradiated with protons in September 1954, the same month and year CERN was founded. Both of these endeavours are embedded in cutting edge technologies and multidisciplinary collaboration. HT is finally gaining ground and, even after 70 years, the particle therapy field continues innovating and improving for the benefits of patients globally. Developing technologies that are both affordable and easy to use is key and would allow access to more patients. Advances in accelerator-driven Boron Neutron Capture Therapy (BNCT), image-guided hadron beams delivery, clinical trials and immunotherapy, together with the recent interest and advances in FLASH therapy, which is currently an experimental treatment modality that involves ultrahigh-dose rate delivery, are just a few examples of innovation that may eventually help to provide access to a larger number of patients.
Collapse
Affiliation(s)
- Manjit Dosanjh
- University of Oxford, Oxford, UK
- CERN, Geneva, Switzerland
| | - Alberto Degiovanni
- RTU (Riga Technical University) c/o CERN, Switzerland
- HUG (Geneva University Hospital), Geneva, Switzerland
| | | | - Elena Benedetto
- Fondation Tera-Care, c/o CERN, Switzerland
- South East Europe International Institute for Sustainable Technology (SEEIIST) Association, Geneva, Switzerland
| |
Collapse
|
12
|
Powers C, Kaya E, Bertinetti A, Hung A. The current state of proton radiotherapy. Curr Probl Cancer 2024; 53:101153. [PMID: 39413574 DOI: 10.1016/j.currproblcancer.2024.101153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 08/14/2024] [Accepted: 10/04/2024] [Indexed: 10/18/2024]
Abstract
Radiotherapy is indicated for nearly all cancers and at all stages in one form or another. More than half of all cancer patients are treated with radiation at some point in their cancer treatment. Conventional X-ray (photon) based radiotherapy does have a number of physical limitations which were theorized to be overcome by instead employing proton based radiotherapy. The late 1990s and early 2000s saw a rapid adoption in proton therapy as many speculated a greatly improved therapeutic window compared with photon therapy. Only a few randomized clinical trials have been reported, but to-date proton therapy has not shown to improve cancer control metrics. There is improved treatment related toxicity which may be clinically meaningful in some scenarios, but further expansion and wide spread utilization of the technology may be drastically limited by the substantially higher start up and operational costs of a proton center. Nonetheless, proton therapy may be beneficial in select scenarios which warrant individualized consideration.
Collapse
Affiliation(s)
- Colton Powers
- Department of Radiation Medicine, Oregon Health & Science University, Portland, OR, USA.
| | - Erin Kaya
- Department of Radiation Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Andrew Bertinetti
- Department of Radiation Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Arthur Hung
- Department of Radiation Medicine, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
13
|
Mossahebi S, Molitoris JK, Poirier Y, Jatczak J, Zhang B, Mohindra P, Ferris M, Regine WF, Yi B. Clinical Implementation and Dosimetric Evaluation of a Robust Proton Lattice Planning Strategy Using Primary and Robust Complementary Beams. Int J Radiat Oncol Biol Phys 2024; 120:1149-1158. [PMID: 38936634 DOI: 10.1016/j.ijrobp.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 05/17/2024] [Accepted: 06/15/2024] [Indexed: 06/29/2024]
Abstract
PURPOSE Pencil-beam scanning proton therapy has been considered a potential modality for the 3D form of spatially fractionated radiation therapy called lattice therapy. However, few practical solutions have been introduced in the clinic. Existing limitations include degradation in plan quality and robustness when using single-field versus multifield lattice plans, respectively. We propose a practical and robust proton lattice (RPL) planning method using multifield and evaluate its dosimetric characteristics compared to clinically acceptable photon lattice plans. METHODS AND MATERIALS Seven cases previously treated with photon lattice therapy were used to evaluate a novel RPL planning technique using 2-orthogonal beams: a primary beam (PB) and a robust complementary beam (RCB) that deliver 67% and 33%, respectively, of the prescribed dose to vertices inside the gross target volume (GTV). Only RCB is robustly optimized for setup and range uncertainties. The number and volume of vertices, peak-to-valley dose ratios (PVDRs), and volume of low dose to GTV of proton and photon plans were compared. The RPL technique was then used in the treatment of 2 patients and their dosimetric parameters were reported. RESULTS The RPL strategy was able to achieve the clinical planning goals. Compared to previously treated photon plans, the average number of vertices increased by 30%, the average vertex volume by 49% (18.2 ± 25.9 cc vs 12.2 ± 14.5 cc, P = .21), and higher PVDR (10.5 ± 4.8 vs 2.5 ± 0.9, P < .005) was achieved. In addition, RPL plans show more conformal dose with less low dose to GTV (V30%, 60.9% ± 7.2% vs 81.6% ± 13.9% and V10%, 88.3% ± 4.5% vs 98.6% ± 3.6% [P < .01]). The RPL plan for 2 treated patients showed PVDRs of 4.61 and 14.85 with vertices-to-GTV ratios of 1.52% and 1.30%, respectively. CONCLUSIONS A novel RPL planning strategy using a pair of orthogonal beams was developed and successfully translated to the clinic. The proposed method can generate better quality plans, a higher number of vertices, and higher PVDRs than currently used photon lattice plans.
Collapse
Affiliation(s)
- Sina Mossahebi
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland; Maryland Proton Treatment Center, Baltimore, Maryland.
| | - Jason K Molitoris
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland; Maryland Proton Treatment Center, Baltimore, Maryland
| | - Yannick Poirier
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Jenna Jatczak
- Maryland Proton Treatment Center, Baltimore, Maryland
| | - Baoshe Zhang
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland; Maryland Proton Treatment Center, Baltimore, Maryland
| | - Pranshu Mohindra
- Department of Radiation Oncology, University Hospitals Cleveland Medical Center, Cleveland, Ohio
| | - Matthew Ferris
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland; Maryland Proton Treatment Center, Baltimore, Maryland
| | - William F Regine
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland; Maryland Proton Treatment Center, Baltimore, Maryland
| | - ByongYong Yi
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland; Maryland Proton Treatment Center, Baltimore, Maryland
| |
Collapse
|
14
|
Malouff TD, Newpower M, Bush A, Seneviratne D, Ebner DK. A Practical Primer on Particle Therapy. Pract Radiat Oncol 2024; 14:590-602. [PMID: 38844118 DOI: 10.1016/j.prro.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 06/22/2024]
Abstract
PURPOSE Particle therapy is a promising treatment technique that is becoming more commonly used. Although proton beam therapy remains the most commonly used particle therapy, multiple other heavier ions have been used in the preclinical and clinical settings, each with its own unique properties. This practical review aims to summarize the differences between the studied particles, discussing their radiobiological and physical properties with additional review of the available clinical data. METHODS AND MATERIALS A search was carried out on the PubMed databases with search terms related to each particle. Relevant radiobiology, physics, and clinical studies were included. The articles were summarized to provide a practical resource for practicing clinicians. RESULTS A total of 113 articles and texts were included in our narrative review. Currently, proton beam therapy has the most data and is the most widely used, followed by carbon, helium, and neutrons. Although oxygen, neon, silicon, and argon have been used clinically, their future use will likely remain limited as monotherapy. CONCLUSIONS This review summarizes the properties of each of the clinically relevant particles. Protons, helium, and carbon will likely remain the most commonly used, although multi-ion therapy is an emerging technique.
Collapse
Affiliation(s)
- Timothy D Malouff
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota.
| | - Mark Newpower
- Department of Radiation Oncology, University of Oklahoma, OU Health Stephenson Cancer Center, Oklahoma City, Oklahoma
| | - Aaron Bush
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, Florida
| | - Danushka Seneviratne
- Department of Radiation Oncology, University of Oklahoma, OU Health Stephenson Cancer Center, Oklahoma City, Oklahoma
| | - Daniel K Ebner
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
15
|
Witt M, Weber U, Flatten V, Stolzenberg J, Engenhart-Cabillic R, Zink K, Baumann KS. On the Way to Accounting for Lung Modulation Effects in Particle Therapy of Lung Cancer Patients-A Review. Cancers (Basel) 2024; 16:3598. [PMID: 39518037 PMCID: PMC11545780 DOI: 10.3390/cancers16213598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Particle therapy presents a promising alternative to conventional photon therapy for treating non-small cell lung cancer (NSCLC). However, the heterogeneous structure of lung tissue leads to the degradation of the Bragg peak and thereby to the degradation of the dose distribution. This review offers a comprehensive overview of the models developed to account for these modulation effects. It summarizes studies focused on determining modulation power as a predictor of this so-called lung modulation. In addition, the review covers early investigations on dose uncertainties caused by lung modulation in CT-based lung phantoms and patient anatomies and discusses future challenges in integrating these solutions into clinical treatment planning routines.
Collapse
Affiliation(s)
- Matthias Witt
- Institute of Medical Physics and Radiation Protection, University of Applied Sciences, 35390 Giessen, Germany; (U.W.); (J.S.); (K.Z.); (K.-S.B.)
- Department of Radiotherapy and Radiation Oncology, Marburg University Hospital, 35043 Marburg, Germany;
- Marburg Ion-Beam Therapy Center (MIT), 35043 Marburg, Germany
| | - Uli Weber
- Institute of Medical Physics and Radiation Protection, University of Applied Sciences, 35390 Giessen, Germany; (U.W.); (J.S.); (K.Z.); (K.-S.B.)
- Biophysics Division, GSI Helmholtzzentrum fuer Schwerionenforschung, 64291 Darmstadt, Germany
- LOEWE Research Cluster for Advanced Medical Physics in Imaging and Therapy (ADMIT), TH Mittelhessen University of Applied Sciences, 35390 Giessen, Germany
| | | | - Jessica Stolzenberg
- Institute of Medical Physics and Radiation Protection, University of Applied Sciences, 35390 Giessen, Germany; (U.W.); (J.S.); (K.Z.); (K.-S.B.)
- Department of Radiotherapy and Radiation Oncology, Marburg University Hospital, 35043 Marburg, Germany;
| | - Rita Engenhart-Cabillic
- Department of Radiotherapy and Radiation Oncology, Marburg University Hospital, 35043 Marburg, Germany;
- Marburg Ion-Beam Therapy Center (MIT), 35043 Marburg, Germany
- LOEWE Research Cluster for Advanced Medical Physics in Imaging and Therapy (ADMIT), TH Mittelhessen University of Applied Sciences, 35390 Giessen, Germany
| | - Klemens Zink
- Institute of Medical Physics and Radiation Protection, University of Applied Sciences, 35390 Giessen, Germany; (U.W.); (J.S.); (K.Z.); (K.-S.B.)
- Department of Radiotherapy and Radiation Oncology, Marburg University Hospital, 35043 Marburg, Germany;
- Marburg Ion-Beam Therapy Center (MIT), 35043 Marburg, Germany
- LOEWE Research Cluster for Advanced Medical Physics in Imaging and Therapy (ADMIT), TH Mittelhessen University of Applied Sciences, 35390 Giessen, Germany
| | - Kilian-Simon Baumann
- Institute of Medical Physics and Radiation Protection, University of Applied Sciences, 35390 Giessen, Germany; (U.W.); (J.S.); (K.Z.); (K.-S.B.)
- Department of Radiotherapy and Radiation Oncology, Marburg University Hospital, 35043 Marburg, Germany;
- Marburg Ion-Beam Therapy Center (MIT), 35043 Marburg, Germany
- LOEWE Research Cluster for Advanced Medical Physics in Imaging and Therapy (ADMIT), TH Mittelhessen University of Applied Sciences, 35390 Giessen, Germany
| |
Collapse
|
16
|
Ahmad R, Barcellini A, Baumann K, Benje M, Bender T, Bragado P, Charalampopoulou A, Chowdhury R, Davis AJ, Ebner DK, Eley J, Kloeber JA, Mutter RW, Friedrich T, Gutierrez-Uzquiza A, Helm A, Ibáñez-Moragues M, Iturri L, Jansen J, Morcillo MÁ, Puerta D, Kokko AP, Sánchez-Parcerisa D, Scifoni E, Shimokawa T, Sokol O, Story MD, Thariat J, Tinganelli W, Tommasino F, Vandevoorde C, von Neubeck C. Particle Beam Radiobiology Status and Challenges: A PTCOG Radiobiology Subcommittee Report. Int J Part Ther 2024; 13:100626. [PMID: 39258166 PMCID: PMC11386331 DOI: 10.1016/j.ijpt.2024.100626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/02/2024] [Indexed: 09/12/2024] Open
Abstract
Particle therapy (PT) represents a significant advancement in cancer treatment, precisely targeting tumor cells while sparing surrounding healthy tissues thanks to the unique depth-dose profiles of the charged particles. Furthermore, their linear energy transfer and relative biological effectiveness enhance their capability to treat radioresistant tumors, including hypoxic ones. Over the years, extensive research has paved the way for PT's clinical application, and current efforts aim to refine its efficacy and precision, minimizing the toxicities. In this regard, radiobiology research is evolving toward integrating biotechnology to advance drug discovery and radiation therapy optimization. This shift from basic radiobiology to understanding the molecular mechanisms of PT aims to expand the therapeutic window through innovative dose delivery regimens and combined therapy approaches. This review, written by over 30 contributors from various countries, provides a comprehensive look at key research areas and new developments in PT radiobiology, emphasizing the innovations and techniques transforming the field, ranging from the radiobiology of new irradiation modalities to multimodal radiation therapy and modeling efforts. We highlight both advancements and knowledge gaps, with the aim of improving the understanding and application of PT in oncology.
Collapse
Affiliation(s)
- Reem Ahmad
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Amelia Barcellini
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
- Clinical Department Radiation Oncology Unit, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Kilian Baumann
- Institute of Medical Physics and Radiation Protection, University of Applied Sciences Giessen, Giessen, Germany
- Marburg Ion-Beam Therapy Center, Marburg, Germany
| | - Malte Benje
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Tamara Bender
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Paloma Bragado
- Biochemistry and Molecular Biology Department, Complutense University of Madrid, Madrid, Spain
| | - Alexandra Charalampopoulou
- University School for Advanced Studies (IUSS), Pavia, Italy
- Radiobiology Unit, Development and Research Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Reema Chowdhury
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Anthony J. Davis
- University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Daniel K. Ebner
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - John Eley
- Department of Radiation Oncology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Jake A. Kloeber
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Robert W. Mutter
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Thomas Friedrich
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | | | - Alexander Helm
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Marta Ibáñez-Moragues
- Medical Applications of Ionizing Radiation Unit, Technology Department, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
| | - Lorea Iturri
- Institut Curie, Université PSL, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Orsay, France
| | - Jeannette Jansen
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Miguel Ángel Morcillo
- Medical Applications of Ionizing Radiation Unit, Technology Department, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
| | - Daniel Puerta
- Departamento de Física Atómica, Molecular y Nuclear, Universidad de Granada, Granada, Spain
- Instituto de Investigación Biosanitaria (ibs.GRANADA), Complejo Hospitalario Universitario de Granada/Universidad de Granada, Granada, Spain
| | | | | | - Emanuele Scifoni
- TIFPA-INFN - Trento Institute for Fundamental Physics and Applications, Trento, Italy
| | - Takashi Shimokawa
- National Institutes for Quantum Science and Technology (QST), Chiba, Japan
| | - Olga Sokol
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | | | - Juliette Thariat
- Centre François Baclesse, Université de Caen Normandie, ENSICAEN, CNRS/IN2P3, LPC Caen UMR6534, Caen, France
| | - Walter Tinganelli
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Francesco Tommasino
- TIFPA-INFN - Trento Institute for Fundamental Physics and Applications, Trento, Italy
- Department of Physics, University of Trento, Trento, Italy
| | - Charlot Vandevoorde
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Cläre von Neubeck
- Department of Particle Therapy, University Hospital Essen, University of Duisburg-Essen, Duisburg, Germany
| |
Collapse
|
17
|
Bae SH, Jang WI, Mortensen HR, Weber B, Kim MS, Høyer M. Recent update of proton beam therapy for hepatocellular carcinoma: a systematic review and meta-analysis. JOURNAL OF LIVER CANCER 2024; 24:286-302. [PMID: 38961722 PMCID: PMC11449586 DOI: 10.17998/jlc.2024.06.26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 06/26/2024] [Indexed: 07/05/2024]
Abstract
BACKGROUNDS/AIMS Although access to proton beam therapy (PBT) is limited worldwide, its use for the treatment of hepatocellular carcinoma (HCC) is gradually increasing with the expansion of new facilities. Therefore, we conducted a systematic review and metaanalysis to investigate the updated evidence of PBT for HCC. METHODS The MEDLINE, EMBASE, Cochrane Library, and Web of Science databases were systematically searched for studies that enrolled patients with liver-confined HCC that were treated with PBT for a cure up to February 2024. RESULTS A total of 1,858 HCC patients receiving PBT from 22 studies between 2004 and 2023 were selected for this meta-analysis. The median proportion of Child-Pugh class A was 86% (range, 41-100), and the median tumor size was 3.6 cm (range, 1.2-9.0). The median total dose ranged from 55 GyE to 76 GyE (median, 69). The pooled rates of 3- and 5-year local progression-free survival after PBT were 88% (95% confidence interval [CI], 85-91) and 86% (95% CI, 82-90), respectively. The pooled 3- and 5-year overall rates were 60% (95% CI, 54-66) and 46% (95% CI, 38-54), respectively. The pooled rates of grade 3 hepatic toxicity, classic radiationinduced liver disease (RILD), and non-classic RILD were 1%, 2%, and 1%, respectively. CONCLUSIONS The current study supports PBT for HCC and demonstrates favorable long-term survival and low hepatic toxicities compared with other published studies on other radiotherapy modalities. However, further studies are needed to identify the subgroups that will benefit from PBT.
Collapse
Affiliation(s)
- Sun Hyun Bae
- Department of Radiation Oncology, Soonchunhyang University Hospital Bucheon, Soonchunhyang University College of Medicine, Bucheon, Korea
| | - Won Il Jang
- Department of Radiation Oncology, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | | | - Britta Weber
- Danish Center for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
| | - Mi Sook Kim
- Department of Radiation Oncology, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - Morten Høyer
- Danish Center for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
18
|
Frank SJ, Das IJ, Simone CB, Davis BJ, Deville C, Liao Z, Lo SS, McGovern SL, Parikh RR, Reilly M, Small W, Schechter NR. ACR-ARS Practice Parameter for the Performance of Proton Beam Therapy. Int J Part Ther 2024; 13:100021. [PMID: 39347377 PMCID: PMC11437389 DOI: 10.1016/j.ijpt.2024.100021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 10/01/2024] Open
Abstract
Purpose This practice parameter for the performance of proton beam radiation therapy was revised collaboratively by the American College of Radiology (ACR) and the American Radium Society (ARS). This practice parameter was developed to serve as a tool in the appropriate application of proton therapy in the care of cancer patients or other patients with conditions in which radiation therapy is indicated. It addresses clinical implementation of proton radiation therapy, including personnel qualifications, quality assurance (QA) standards, indications, and suggested documentation. Materials and Methods This practice parameter for the performance of proton beam radiation therapy was developed according to the process described under the heading The Process for Developing ACR Practice Parameters and Technical Standards on the ACR website (https://www.acr.org/Clinical-Resources/Practice-Parameters-and-Technical-Standards) by the Committee on Practice Parameters - Radiation Oncology of the ACR Commission on Radiation Oncology in collaboration with the ARS. Results The qualifications and responsibilities of personnel, such as the proton center Chief Medical Officer or Medical Director, Radiation Oncologist, Radiation Physicist, Dosimetrist and Therapist, are outlined, including the necessity for continuing medical education. Proton therapy standard clinical indications and methodologies of treatment management are outlined by disease site and treatment group (e.g. pediatrics) including documentation and the process of proton therapy workflow and equipment specifications. Additionally, this proton therapy practice parameter updates policies and procedures related to a quality assurance and performance improvement program (QAPI), patient education, infection control, and safety. Conclusion As proton therapy becomes more accessible to cancer patients, policies and procedures as outlined in this practice parameter will help ensure quality and safety programs are effectively implemented to optimize clinical care.
Collapse
Affiliation(s)
- Steven J. Frank
- The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Indra J. Das
- Northwestern Memorial Hospital, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | | | - Curtiland Deville
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Zhongxing Liao
- The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Simon S. Lo
- University of Washington Medical Center, Seattle, WA 98195, USA
| | - Susan L. McGovern
- The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Rahul R. Parikh
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA
| | | | - William Small
- Department of Radiation Oncology, Stritch School of Medicine, Cardinal Bernardin Cancer Center, Loyola University Chicago, Maguire Center, Maywood, IL 60153, USA
| | | |
Collapse
|
19
|
Taleei R, Rahmanian S, Nikjoo H. Modelling Cellular Response to Ionizing Radiation: Mechanistic, Semi-Mechanistic, and Phenomenological Approaches - A Historical Perspective. Radiat Res 2024; 202:143-160. [PMID: 38916125 DOI: 10.1667/rade-24-00019.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/23/2024] [Indexed: 06/26/2024]
Abstract
Radiation research is a multidisciplinary field, and among its many branches, mathematical and computational modelers have played a significant role in advancing boundaries of knowledge. A fundamental contribution is modelling cellular response to ionizing radiation as that is the key to not only understanding how radiation can kill cancer cells, but also cause cancer and other health issues. The invention of microdosimetry in the 1950s by Harold Rossi paved the way for brilliant scientists to study the mechanism of radiation at cellular and sub-cellular scales. This paper reviews some snippets of ingenious mathematical and computational models published in microdosimetry symposium proceedings and publications of the radiation research community. Among these are simulations of radiation tracks at atomic and molecular levels using Monte Carlo methods, models of cell survival, quantification of the amount of energy required to create a single strand break, and models of DNA-damage-repair. These models can broadly be categorized into mechanistic, semi-mechanistic, and phenomenological approaches, and this review seeks to provide historical context of their development. We salute pioneers of the field and great teachers who supported and educated the younger members of the community and showed them how to build upon their work.
Collapse
Affiliation(s)
- Reza Taleei
- Medical Physics Division, Department of Radiation Oncology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, 19107
| | | | - Hooshang Nikjoo
- Department of Physiology, Anatomy and Genetics (DPAG) Oxford University, Oxford, OX1 3PT, United Kingdom
| |
Collapse
|
20
|
Gogineni E, Chen H, Cruickshank IK, Koempel A, Gogineni A, Li H, Deville C. In Silico Comparison of Three Different Beam Arrangements for Intensity-Modulated Proton Therapy for Postoperative Whole Pelvic Irradiation of Prostate Cancer. Cancers (Basel) 2024; 16:2702. [PMID: 39123430 PMCID: PMC11311848 DOI: 10.3390/cancers16152702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/17/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Background and purpose: Proton therapy has been shown to provide dosimetric benefits in comparison with IMRT when treating prostate cancer with whole pelvis radiation; however, the optimal proton beam arrangement has yet to be established. The aim of this study was to evaluate three different intensity-modulated proton therapy (IMPT) beam arrangements when treating the prostate bed and pelvis in the postoperative setting. Materials and Methods: Twenty-three post-prostatectomy patients were planned using three different beam arrangements: two-field (IMPT2B) (opposed laterals), three-field (IMPT3B) (opposed laterals inferiorly matched to a posterior-anterior beam superiorly), and four-field (IMPT4B) (opposed laterals inferiorly matched to two posterior oblique beams superiorly) arrangements. The prescription was 50 Gy radiobiological equivalent (GyE) to the pelvis and 70 GyE to the prostate bed. Comparisons were made using paired two-sided Wilcoxon signed-rank tests. Results: CTV coverages were met for all IMPT plans, with 99% of CTVs receiving ≥ 100% of prescription doses. All organ at risk (OAR) objectives were met with IMPT3B and IMPT4B plans, while several rectum objectives were exceeded by IMPT2B plans. IMPT4B provided the lowest doses to OARs for the majority of analyzed outcomes, with significantly lower doses than IMPT2B +/- IMPT3B for bladder V30-V50 and mean dose; bowel V15-V45 and mean dose; sigmoid maximum dose; rectum V40-V72.1, maximum dose, and mean dose; femoral head V37-40 and maximum dose; bone V40 and mean dose; penile bulb mean dose; and skin maximum dose. Conclusion: This study is the first to compare proton beam arrangements when treating the prostate bed and pelvis. four-field plans provided better sparing of the bladder, bowel, and rectum than 2- and three-field plans. The data presented herein may help inform the future delivery of whole pelvis IMPT for prostate cancer.
Collapse
Affiliation(s)
- Emile Gogineni
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (A.K.); (A.G.)
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (H.C.); (I.K.C.J.); (H.L.); (C.D.J.)
| | - Hao Chen
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (H.C.); (I.K.C.J.); (H.L.); (C.D.J.)
| | - Ian K. Cruickshank
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (H.C.); (I.K.C.J.); (H.L.); (C.D.J.)
| | - Andrew Koempel
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (A.K.); (A.G.)
| | - Aarush Gogineni
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (A.K.); (A.G.)
| | - Heng Li
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (H.C.); (I.K.C.J.); (H.L.); (C.D.J.)
| | - Curtiland Deville
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (H.C.); (I.K.C.J.); (H.L.); (C.D.J.)
| |
Collapse
|
21
|
Huang Z, Tian L, Janssens G, Smeets J, Xie Y, Kevin Teo BK, Nilsson R, Traneus E, Parodi K, Pinto M. An experimental validation of a filtering approach for prompt gamma prediction in a research proton treatment planning system. Phys Med Biol 2024; 69:155025. [PMID: 38981589 DOI: 10.1088/1361-6560/ad6116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 07/09/2024] [Indexed: 07/11/2024]
Abstract
Objective.Prompt gamma (PG) radiation generated from nuclear reactions between protons and tissue nuclei can be employed for range verification in proton therapy. A typical clinical workflow for PG range verification compares the detected PG profile with a predicted one. Recently, a novel analytical PG prediction algorithm based on the so-called filtering formalism has been proposed and implemented in a research version of RayStation (RaySearch Laboratories AB), which is a widely adopted treatment planning system. This work validates the performance of the filtering PG prediction approach.Approach.The said algorithm is validated against experimental data and benchmarked with another well-established PG prediction algorithm implemented in a MATLAB-based software REGGUI. Furthermore, a new workflow based on several PG profile quality criteria and analytical methods is proposed for data selection. The workflow also calculates sensitivity and specificity information, which can help practitioners to decide on irradiation course interruption during treatment and monitor spot selection at the treatment planning stage. With the proposed workflow, the comparison can be performed on a limited number of selected high-quality irradiation spots without neighbouring-spot aggregation.Main results.The mean shifts between the experimental data and the predicted PG detection (PGD) profiles (ΔPGD) by the two algorithms are estimated to be1.5±2.1mm and-0.6±2.2mm for the filtering and REGGUI prediction methods, respectively. The ΔPGD difference between two algorithms is observed to be consistent with the beam model difference within uncertainty. However, the filtering approach requires a much shorter computation time compared to the REGGUI approach.Significance.The novel filtering approach is successfully validated against experimental data and another widely used PG prediction algorithm. The workflow designed in this work selects spots with high-quality PGD shift calculation results, and performs sensitivity and specificity analyses to assist clinical decisions.
Collapse
Affiliation(s)
- Ze Huang
- Department of Medical Physics, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Liheng Tian
- Department of Medical Physics, Ludwig-Maximilians-Universität München, Munich, Germany
| | | | | | - Yunhe Xie
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, United States of America
| | - Boon-Keng Kevin Teo
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, United States of America
| | | | | | - Katia Parodi
- Department of Medical Physics, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Marco Pinto
- Department of Medical Physics, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
22
|
Badiu V, Trier Taasti V, Defraene G, van Elmpt W, Sterpin E. Balancing robustness and adaptation rate for proton therapy of lung cancer patients. Radiother Oncol 2024; 196:110290. [PMID: 38643807 DOI: 10.1016/j.radonc.2024.110290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/22/2024] [Accepted: 04/15/2024] [Indexed: 04/23/2024]
Abstract
INTRODUCTION An increase in plan robustness leads to a higher dose to organs-at-risk (OARs), and an increased chance of post-treatment toxicities. In contrast, more conformal plans lead to sparing of healthy surrounding tissue at the expense of a higher sensitivity to anatomical changes, requiring costly adaptations. In this study, we assess the trade-off and impact of treatment plan robustness on the adaptation rate. METHOD Treatment planning was performed for 40 lung cancer patients, each having a planning 4DCT and up to eight weekly repeated 4DCTs (reCTs). For each patient, plans were made with three different levels of robustness based on setup uncertainty of 3, 6 and 9 mm. These plans were robustly re-evaluated on all reCTs to assess whether the clinical constraints were met. RESULTS For the 3, 6 and 9 mm robustness levels, adaptation rates of 87.5 %, 70.0 % and 57.5 %, respectively, were observed. A mean absolute normal tissue complication probability (NTCP) gain of 2.9 percentage points (pp) was calculated for pneumonitis grade ≥ 2 when transitioning from 9 mm plans to 3 mm plans, 7.6 pp for esophagitis grade ≥ 2, and 2.5 pp for mortality risk 2 years post-treatment. CONCLUSION The lowered risk of post treatment toxicities at lower robustness levels is clinically relevant but comes at the expense of more treatment adaptations, particularly in cases where meeting our clinical goals is not compromised by having a dose that is more conformal to the target. The trade-off between workload and reduced NTCP needs to be individually assessed.
Collapse
Affiliation(s)
- Vlad Badiu
- KU Leuven, Department of Oncology, Laboratory of Experimental Radiotherapy, Leuven, Belgium; UZ Leuven, Particle Therapy Interuniversity Center Leuven - PARTICLE, Leuven, Belgium
| | - Vicki Trier Taasti
- Maastricht University Medical Centre+, Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht, The Netherlands
| | - Gilles Defraene
- KU Leuven, Department of Oncology, Laboratory of Experimental Radiotherapy, Leuven, Belgium
| | - Wouter van Elmpt
- Maastricht University Medical Centre+, Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht, The Netherlands
| | - Edmond Sterpin
- KU Leuven, Department of Oncology, Laboratory of Experimental Radiotherapy, Leuven, Belgium; UZ Leuven, Particle Therapy Interuniversity Center Leuven - PARTICLE, Leuven, Belgium; Université Catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Center of Molecular Imaging, Radiotherapy and Oncology (MIRO), Brussels, Belgium
| |
Collapse
|
23
|
Talebi A, Rajabi H. Spread-out of Bragg peak of proton beam using Au nanoparticles: A Monte Carlo simulation study. INT J RADIAT RES 2024; 22:697-701. [DOI: 10.61186/ijrr.22.3.697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
|
24
|
Li H, Mayr NA, Griffin RJ, Zhang H, Pokhrel D, Grams M, Penagaricano J, Chang S, Spraker MB, Kavanaugh J, Lin L, Sheikh K, Mossahebi S, Simone CB, Roberge D, Snider JW, Sabouri P, Molineu A, Xiao Y, Benedict SH. Overview and Recommendations for Prospective Multi-institutional Spatially Fractionated Radiation Therapy Clinical Trials. Int J Radiat Oncol Biol Phys 2024; 119:737-749. [PMID: 38110104 PMCID: PMC11162930 DOI: 10.1016/j.ijrobp.2023.12.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/30/2023] [Accepted: 12/09/2023] [Indexed: 12/20/2023]
Abstract
PURPOSE The highly heterogeneous dose delivery of spatially fractionated radiation therapy (SFRT) is a profound departure from standard radiation planning and reporting approaches. Early SFRT studies have shown excellent clinical outcomes. However, prospective multi-institutional clinical trials of SFRT are still lacking. This NRG Oncology/American Association of Physicists in Medicine working group consensus aimed to develop recommendations on dosimetric planning, delivery, and SFRT dose reporting to address this current obstacle toward the design of SFRT clinical trials. METHODS AND MATERIALS Working groups consisting of radiation oncologists, radiobiologists, and medical physicists with expertise in SFRT were formed in NRG Oncology and the American Association of Physicists in Medicine to investigate the needs and barriers in SFRT clinical trials. RESULTS Upon reviewing the SFRT technologies and methods, this group identified challenges in several areas, including the availability of SFRT, the lack of treatment planning system support for SFRT, the lack of guidance in the physics and dosimetry of SFRT, the approximated radiobiological modeling of SFRT, and the prescription and combination of SFRT with conventional radiation therapy. CONCLUSIONS Recognizing these challenges, the group further recommended several areas of improvement for the application of SFRT in cancer treatment, including the creation of clinical practice guidance documents, the improvement of treatment planning system support, the generation of treatment planning and dosimetric index reporting templates, and the development of better radiobiological models through preclinical studies and through conducting multi-institution clinical trials.
Collapse
Affiliation(s)
- Heng Li
- Department of Radiation Oncology, John Hopkins University, Baltimore, Maryland.
| | - Nina A Mayr
- College of Human Medicine, Michigan State University, East Lansing, Michigan
| | - Robert J Griffin
- Department of Radiation Oncology, University of Arkansas for Medical Science, Little Rock, Arkansas
| | - Hualin Zhang
- Department of Radiation Oncology, University of Southern California, Los Angeles, California
| | - Damodar Pokhrel
- Department of Radiation Medicine, University of Kentucky, Lexington, Kentucky
| | - Michael Grams
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | - Jose Penagaricano
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa, Florida
| | - Sha Chang
- Department of Radiation Oncology, University of North Carolina, Chapel Hill, North Carolina
| | | | - James Kavanaugh
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | - Liyong Lin
- Department of Radiation Oncology, Emory University, Atlanta, Georgia
| | - Khadija Sheikh
- Department of Radiation Oncology, John Hopkins University, Baltimore, Maryland
| | - Sina Mossahebi
- Department of Radiation Oncology, University of Maryland, Baltimore, Maryland
| | - Charles B Simone
- Department of Radiation Oncology, New York Proton Center, New York, New York
| | - David Roberge
- Department of Radiation Oncology, Centre Hospitalier de l'Université de Montréal (CHUM), Montréal, Québec, Canada
| | - James W Snider
- South Florida Proton Therapy Institute, 5280 Linton Blvd, Delray Beach, Florida
| | - Pouya Sabouri
- Department of Radiation Oncology, University of Arkansas for Medical Science, Little Rock, Arkansas
| | - Andrea Molineu
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ying Xiao
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Stanley H Benedict
- Department of Radiation Oncology, University of California, Davis, Sacramento, California
| |
Collapse
|
25
|
Wang K, Yuan S. Current status and prospect of particle therapy for esophageal cancer. PRECISION RADIATION ONCOLOGY 2024; 8:92-98. [PMID: 40336644 PMCID: PMC11935211 DOI: 10.1002/pro6.1232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 05/29/2024] [Accepted: 05/29/2024] [Indexed: 05/09/2025] Open
Abstract
Esophageal cancer is among the top causes of cancer-related mortality worldwide, and the main treatment modality for locally advanced esophageal cancer is concurrent chemoradiotherapy. The current photon-based radiotherapy modalities and procedures have increased the incidence of treatment-related cardiac and pulmonary complications. Additionally, anatomical changes in the esophagus resulting from diaphragmatic movement, weight loss, and tumor progression present challenges for radiotherapy. These challenges have spurred interest in particle therapies, such as proton beam therapy (PBT) and heavy-ion therapy, for esophageal cancer. This paper comprehensively reviews the dosimetric advantages, clinical efficacy, and limitations of PBT and heavy-ion therapy for esophageal cancer and discusses their prospects. This highlights the unique dosimetric benefits of these therapies, particularly their ability to deliver high-dose radiation precisely to the tumor while sparing the surrounding normal organs and tissues. Although PBT and heavy-ion therapy demonstrate superior clinical efficacy compared to photon therapy, they are not without limitations. Multiple studies are needed to further validate and supplement the existing clinical and preclinical data to better exploit the benefits of PBT and thereby provide improved survival advantages to these patients.
Collapse
Affiliation(s)
- Kang Wang
- Department of Radiation OncologyShandong Cancer Hospital and InstituteShandong First Medical University and Shandong Academy of Medical SciencesJinanShandongChina
| | - Shuanghu Yuan
- Department of Radiation OncologyShandong Cancer Hospital and InstituteShandong First Medical University and Shandong Academy of Medical SciencesJinanShandongChina
- Department of Radiation OncologyFirst Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhuiChina
| |
Collapse
|
26
|
Gogineni E, Chen H, Hu C, Boudadi K, Engle J, Levine A, Deville C. Prospective phase II trial of preoperative hypofractionated proton therapy for extremity and truncal soft tissue sarcoma: the PRONTO study rationale and design. Radiat Oncol 2024; 19:56. [PMID: 38745333 PMCID: PMC11095023 DOI: 10.1186/s13014-024-02447-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/30/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Oncologic surgical resection is the standard of care for extremity and truncal soft tissue sarcoma (STS), often accompanied by the addition of pre- or postoperative radiation therapy (RT). Preoperative RT may decrease the risk of joint stiffness and fibrosis at the cost of higher rates of wound complications. Hypofractionated, preoperative RT has been shown to provide acceptable outcomes in prospective trials. Proton beam therapy (PBT) provides the means to decrease dose to surrounding organs at risk, such as the skin, bone, soft tissues, and adjacent joint(s), and has not yet been studied in patients with extremity and truncal sarcoma. METHODS Our study titled "PROspective phase II trial of preoperative hypofractionated protoN therapy for extremity and Truncal soft tissue sarcOma (PRONTO)" is a non-randomized, prospective phase II trial evaluating the safety and efficacy of preoperative, hypofractionated PBT for patients with STS of the extremity and trunk planned for surgical resection. Adult patients with Eastern Cooperative Group Performance Status ≤ 2 with resectable extremity and truncal STS will be included, with the aim to accrue 40 patients. Treatment will consist of 30 Gy radiobiological equivalent of PBT in 5 fractions delivered every other day, followed by surgical resection 2-12 weeks later. The primary outcome is rate of major wound complications as defined according to the National Cancer Institute of Canada Sarcoma2 (NCIC-SR2) Multicenter Trial. Secondary objectives include rate of late grade ≥ 2 toxicity, local recurrence-free survival and distant metastasis-free survival at 1- and 2-years, functional outcomes, quality of life, and pathologic response. DISCUSSION PRONTO represents the first trial evaluating the use of hypofractionated PBT for STS. We aim to prove the safety and efficacy of this approach and to compare our results to historical outcomes established by previous trials. Given the low number of proton centers and limited availability, the short course of PBT may provide the opportunity to treat patients who would otherwise be limited when treating with daily RT over several weeks. We hope that this trial will lead to increased referral patterns, offer benefits towards patient convenience and clinic workflow efficiency, and provide evidence supporting the use of PBT in this setting. TRIAL REGISTRATION NCT05917301 (registered 23/6/2023).
Collapse
Affiliation(s)
- Emile Gogineni
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, 460 W 10 Ave, Columbus, OH, 43210, USA.
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Hao Chen
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Chen Hu
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Karim Boudadi
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jessica Engle
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Adam Levine
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Curtiland Deville
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
27
|
Song G, Zheng Z, Zhu Y, Wang Y, Xue S. A review and bibliometric analysis of global research on proton radiotherapy. Medicine (Baltimore) 2024; 103:e38089. [PMID: 38728501 PMCID: PMC11081588 DOI: 10.1097/md.0000000000038089] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/11/2024] [Indexed: 05/12/2024] Open
Abstract
Proton beam therapy (PBT) has great advantages as tumor radiotherapy and is progressively becoming a more prevalent choice for individuals undergoing radiation therapy. The objective of this review is to pinpoint collaborative efforts among countries and institutions, while also exploring the hot topics and future outlook in the field of PBT. Data from publications were downloaded from the Web of Science Core Collection. CiteSpace and Excel 2016 were used to conduct the bibliometric and knowledge map analysis. A total of 6516 publications were identified, with the total number of articles steadily increasing and the United States being the most productive country. Harvard University took the lead in contributing the highest number of publications. Paganetti Harald published the most articles and had the most cocitations. PHYS MED BIOL published the greatest number of PBT-related articles, while INT J RADIAT ONCOL received the most citations. Paganetti Harald, 2012, PHYS MED BIOL can be classified as classic literature due to its high citation rate. We believe that research on technology development, dose calculation and relative biological effectiveness were the knowledge bases in this field. Future research hotspots may include clinical trials, flash radiotherapy, and immunotherapy.
Collapse
Affiliation(s)
- Ge Song
- Department of Critical Care Medicine, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
| | - Zhi Zheng
- Department of Stomatology, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
| | - Yingming Zhu
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yaoting Wang
- Department of Oncology, Dongying People’s Hospital, Dongying, China
| | - Song Xue
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
28
|
Niedermayer P, Singh R. Excitation signal optimization for minimizing fluctuations in knock out slow extraction. Sci Rep 2024; 14:10310. [PMID: 38705915 PMCID: PMC11070430 DOI: 10.1038/s41598-024-60966-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/29/2024] [Indexed: 05/07/2024] Open
Abstract
The synchrotron is a circular particle accelerator used for high energy physics experiments, material and life science, as well as hadron cancer therapy. After acceleration to the desired energies, particle beams are commonly extracted from the synchrotron using the method of resonant slow extraction. The goal is to deliver a steady particle flux-referred to as spill-to experiments and treatment facilities over the course of seconds while slowly emptying the storage ring. Any uncontrolled intensity fluctuations in the spill are detrimental to the efficiency of beam usage, as they lead to detector pileups or detector interlocks, hindering experiments and cancer treatment. Among the most widely used extraction scheme in medical facilities is the Radio Frequency Knock Out (RF-KO) driven resonant slow extraction, where the stored beam is transversely excited with a radio frequency (RF) field and the spill intensity is controlled by the excitation signal strength. This article presents particle dynamics simulations of the RF-KO system with the focus on finding effective mechanism for minimizing the intensity fluctuations while maintaining a good extraction efficiency and other advantages of KO extraction. An improved beam excitation signal which optimizes these main objectives is found, and is rigorously compared experimentally with other commonly applied techniques.
Collapse
Affiliation(s)
| | - Rahul Singh
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| |
Collapse
|
29
|
Vennarini S, Colombo F, Mirandola A, Orlandi E, Pecori E, Chiaravalli S, Massimino M, Casanova M, Ferrari A. Proton Therapy in Non-Rhabdomyosarcoma Soft Tissue Sarcomas of Children and Adolescents. Cancers (Basel) 2024; 16:1694. [PMID: 38730646 PMCID: PMC11083115 DOI: 10.3390/cancers16091694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
This paper provides insights into the use of Proton Beam Therapy (PBT) in pediatric patients with non-rhabdomyosarcoma soft tissue sarcomas (NRSTS). NRSTS are a heterogeneous group of rare and aggressive mesenchymal extraskeletal tumors, presenting complex and challenging clinical management scenarios. The overall survival rate for patients with NRSTS is around 70%, but the outcome is strictly related to the presence of various variables, such as the histological subtype, grade of malignancy and tumor stage at diagnosis. Multimodal therapy is typically considered the preferred treatment for high-grade NRSTS. Radiotherapy plays a key role in the treatment of children and adolescents with NRSTS. However, the potential for radiation-induced side effects partially limits its use. Therefore, PBT represents a very suitable therapeutic option for these patients. The unique depth-dose characteristics of protons can be leveraged to minimize doses to healthy tissue significantly, potentially allowing for increased tumor doses and enhanced preservation of surrounding tissues. These benefits suggest that PBT may improve local control while reducing toxicity and improving quality of life. While clear evidence of therapeutic superiority of PBT over other modern photon techniques in NRSTS is still lacking-partly due to the limited data available-PBT can be an excellent treatment option for young patients with these tumors. A dedicated international comprehensive collaborative approach is essential to better define its role within the multidisciplinary management of NRSTS. Shared guidelines for PBT indications-based on the patient's age, estimated outcome, and tumor location-and centralization in high-level referral centers are needed to optimize the use of resources, since access to PBT remains a challenge due to the limited number of available proton therapy facilities.
Collapse
Affiliation(s)
- Sabina Vennarini
- Pediatric Radiotherapy Unit, Fondazione IRCCS Istituto Nazionale Tumori, 20133 Milan, Italy; (S.V.); (E.P.)
| | - Francesca Colombo
- Radiation Oncology Unit, Clinical Department, CNAO National Center for Oncological Hadrontherapy, 27100 Pavia, Italy; (F.C.); (E.O.)
| | - Alfredo Mirandola
- Medical Physics Unit, Clinical Department, CNAO National Center for Oncological Hadrontherapy, 27100 Pavia, Italy;
| | - Ester Orlandi
- Radiation Oncology Unit, Clinical Department, CNAO National Center for Oncological Hadrontherapy, 27100 Pavia, Italy; (F.C.); (E.O.)
- Department of Clinical, Surgical, Diagnostic, and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| | - Emilia Pecori
- Pediatric Radiotherapy Unit, Fondazione IRCCS Istituto Nazionale Tumori, 20133 Milan, Italy; (S.V.); (E.P.)
| | - Stefano Chiaravalli
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale Tumori, 20133 Milano, Italy; (S.C.); (M.M.); (M.C.)
| | - Maura Massimino
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale Tumori, 20133 Milano, Italy; (S.C.); (M.M.); (M.C.)
| | - Michela Casanova
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale Tumori, 20133 Milano, Italy; (S.C.); (M.M.); (M.C.)
| | - Andrea Ferrari
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale Tumori, 20133 Milano, Italy; (S.C.); (M.M.); (M.C.)
| |
Collapse
|
30
|
Liu Y, Zhu K, Peng X, Luo S, Zhu J, Xiao W, He L, Wang X. Proton relative biological effectiveness for the induction of DNA double strand breaks based on Geant4. Biomed Phys Eng Express 2024; 10:035018. [PMID: 38181453 DOI: 10.1088/2057-1976/ad1bb9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/05/2024] [Indexed: 01/07/2024]
Abstract
Uncertainties in the relative biological effectiveness (RBE) of proton remains a major barrier to the biological optimization of proton therapy. A large amount of experimental data suggest that proton RBE is variable. As an evolving Monte Carlo code toolkit, Geant4-DNA is able to simulate the initial DNA damage caused by particle beams through physical and chemical interactions at the nanometer scale over a short period of time. This contributes to evaluating the radiobiological effects induced by ionizing radiation. Based on the Geant4-DNA toolkit, this study constructed a DNA geometric model containing 6.32Gbp, simulated the relationship between radiochemical yields (G-values) and their corresponding chemical constructors, and calculated a detailed calculation of the sources of damage and the complexity of damage in DNA strand breaks. The damage model constructed in this study can simulate the relative biological effectiveness (RBE) in the proton Bragg peak region. The results indicate that: (1) When the electron energy is below 400 keV, the yield of OH·account for 18.1% to 25.3% of the total water radiolysis yields. (2) Under the influence of histone clearance function, the yield of indirect damage account for over 72.93% of the yield of DNA strand breaks (SBs). When linear energy transfer (LET) increased from 29.79 (keV/μm) to 64.29 (keV/μm), the yield of double strand breaks (DSB) increased from 17.27% to 32.65%. (3) By investigating the effect of proton Bragg peak depth on the yield of direct DSB (DSBdirect) and total DSB (DSBtotal), theRBEDSBtotandRBEDSBdirlevels of cells show that the RBE value of protons reaches 2.2 in the Bragg peak region.
Collapse
Affiliation(s)
- Yuchen Liu
- School of Nuclear Science and Technology, University of South China, Hengyang 421001, People's Republic of China
| | - Kun Zhu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou 215123, People's Republic of China
| | - Xiaoyu Peng
- School of Nuclear Science and Technology, University of South China, Hengyang 421001, People's Republic of China
| | - Siyuan Luo
- School of Nuclear Science and Technology, University of South China, Hengyang 421001, People's Republic of China
| | - Jin Zhu
- School of Nuclear Science and Technology, University of South China, Hengyang 421001, People's Republic of China
| | - Wancheng Xiao
- School of Nuclear Science and Technology, University of South China, Hengyang 421001, People's Republic of China
| | - Lie He
- School of Nuclear Science and Technology, University of South China, Hengyang 421001, People's Republic of China
| | - Xiaodong Wang
- School of Nuclear Science and Technology, University of South China, Hengyang 421001, People's Republic of China
| |
Collapse
|
31
|
Dong S, Sun J, Ming X, Weber U, Schuy C, Hu W, Sheng Y. Development of porous structure for broadening Bragg-peak in scanning carbon-ion radiotherapy: Monte Carlo simulation and experimental validation. Phys Med 2024; 120:103325. [PMID: 38493583 DOI: 10.1016/j.ejmp.2024.103325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/15/2024] [Accepted: 03/04/2024] [Indexed: 03/19/2024] Open
Abstract
PURPOSE The present study aimed to develop a porous structure with plug-ins (PSP) to broaden the Bragg peak width (BPW, defined as the distance in water between the proximal and distal 80% dose) of the carbon ion beam while maintaining a sharp distal falloff width (DFW, defined as the distance along the beam axis where the dose in water reduces from 80% to 20%). METHODS The binary voxel models of porous structure (PS) and PSP were established in the Monte Carlo code FLUKA and the corresponding physical models were manufactured by 3D printing. Both experiment and simulation were performed for evaluating the modulation capacity of PS and PSP. BPWs and DFWs derived from each integral depth dose curves were compared. Fluence homogeneity of 430 MeV/u carbon-ion beam passing through the PSP was recorded by analyzing radiochromic films at six different locations downstream the PSP in the experiment. Additionally, by changing the beam spot size and incident position on the PSP, totally 48 different carbon-ion beams were simulated and corresponding deviations of beam metrics were evaluated to test the modulating stability of PSP. RESULTS According to the measurement data, the use of PSP resulted in an average increase of 0.63 mm in BPW and a decrease of 0.74 mm in DFW compared to PS. The 2D radiation field inhomogeneities were lower than 3 % when the beam passing through a ≥ 10 cm PMMA medium. Furthermore, employing a spot size of ≥ 6 mm ensures that beam metric deviations, including BPW, DFW, and range, remain within a deviation of 0.1 mm across various incident positions. CONCLUSION The developed PSP demonstrated its capability to effectively broaden the BPW of carbon ion beams while maintaining a sharp DFW comparing to PS. The superior performance of PSP, indicates its potential for clinical use in the future.
Collapse
Affiliation(s)
- Sixue Dong
- Department of Medical Physics, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai 201315, China; Shanghai Key Laboratory of radiation oncology(20dz2261000); Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy
| | - Jiayao Sun
- Department of Medical Physics, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai 201315, China; Shanghai Key Laboratory of radiation oncology(20dz2261000); Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy
| | - Xue Ming
- Department of Medical Physics, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai 201315, China; Shanghai Key Laboratory of radiation oncology(20dz2261000); Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy
| | - Uli Weber
- Biophysics GSI Helmholtz Center for Heavy Ion Research GmbH, Darmstadt, Germany
| | - Christoph Schuy
- Biophysics GSI Helmholtz Center for Heavy Ion Research GmbH, Darmstadt, Germany
| | - Weigang Hu
- Shanghai Key Laboratory of radiation oncology(20dz2261000); Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Clinical Research Center for Radiation Oncology.
| | - Yinxiangzi Sheng
- Department of Medical Physics, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai 201315, China; Shanghai Key Laboratory of radiation oncology(20dz2261000); Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy.
| |
Collapse
|
32
|
Thwaites DI, Prokopovich DA, Garrett RF, Haworth A, Rosenfeld A, Ahern V. The rationale for a carbon ion radiation therapy facility in Australia. J Med Radiat Sci 2024; 71 Suppl 2:59-76. [PMID: 38061984 PMCID: PMC11011608 DOI: 10.1002/jmrs.744] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/17/2023] [Indexed: 04/13/2024] Open
Abstract
Australia has taken a collaborative nationally networked approach to achieve particle therapy capability. This supports the under-construction proton therapy facility in Adelaide, other potential proton centres and an under-evaluation proposal for a hybrid carbon ion and proton centre in western Sydney. A wide-ranging overview is presented of the rationale for carbon ion radiation therapy, applying observations to the case for an Australian facility and to the clinical and research potential from such a national centre.
Collapse
Affiliation(s)
- David I. Thwaites
- Institute of Medical Physics, School of PhysicsUniversity of SydneySydneyNew South WalesAustralia
- Department of Radiation OncologySydney West Radiation Oncology NetworkWestmeadNew South WalesAustralia
- Radiotherapy Research Group, Institute of Medical ResearchSt James's Hospital and University of LeedsLeedsUK
| | | | - Richard F. Garrett
- Australian Nuclear Science and Technology OrganisationLucas HeightsNew South WalesAustralia
| | - Annette Haworth
- Institute of Medical Physics, School of PhysicsUniversity of SydneySydneyNew South WalesAustralia
- Department of Radiation OncologySydney West Radiation Oncology NetworkWestmeadNew South WalesAustralia
| | - Anatoly Rosenfeld
- Centre for Medical Radiation Physics, School of PhysicsUniversity of WollongongSydneyNew South WalesAustralia
| | - Verity Ahern
- Department of Radiation OncologySydney West Radiation Oncology NetworkWestmeadNew South WalesAustralia
- Westmead Clinical School, Faculty of Medicine and HealthUniversity of SydneySydneyNew South WalesAustralia
| |
Collapse
|
33
|
Stolen E, Fullarton R, Hein R, Conner RL, Jacobsohn LG, Collins-Fekete CA, Beddar S, Akgun U, Robertson D. High-Density Glass Scintillators for Proton Radiography-Relative Luminosity, Proton Response, and Spatial Resolution. SENSORS (BASEL, SWITZERLAND) 2024; 24:2137. [PMID: 38610351 PMCID: PMC11014246 DOI: 10.3390/s24072137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/19/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024]
Abstract
Proton radiography is a promising development in proton therapy, and researchers are currently exploring optimal detector materials to construct proton radiography detector arrays. High-density glass scintillators may improve integrating-mode proton radiography detectors by increasing spatial resolution and decreasing detector thickness. We evaluated several new scintillators, activated with europium or terbium, with proton response measurements and Monte Carlo simulations, characterizing relative luminosity, ionization quenching, and proton radiograph spatial resolution. We applied a correction based on Birks's analytical model for ionization quenching. The data demonstrate increased relative luminosity with increased activation element concentration, and higher relative luminosity for samples activated with europium. An increased glass density enables more compact detector geometries and higher spatial resolution. These findings suggest that a tungsten and gadolinium oxide-based glass activated with 4% europium is an ideal scintillator for testing in a full-size proton radiography detector.
Collapse
Affiliation(s)
- Ethan Stolen
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ 85054, USA;
| | - Ryan Fullarton
- Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, UK; (R.F.); (C.-A.C.-F.)
| | - Rain Hein
- Department of Physics, Coe College, Cedar Rapids, IA 52402, USA; (R.H.); (U.A.)
| | - Robin L. Conner
- Department of Materials Science and Engineering, Clemson University, Clemson, SC 29634, USA; (R.L.C.); (L.G.J.)
| | - Luiz G. Jacobsohn
- Department of Materials Science and Engineering, Clemson University, Clemson, SC 29634, USA; (R.L.C.); (L.G.J.)
| | - Charles-Antoine Collins-Fekete
- Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, UK; (R.F.); (C.-A.C.-F.)
| | - Sam Beddar
- Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Ugur Akgun
- Department of Physics, Coe College, Cedar Rapids, IA 52402, USA; (R.H.); (U.A.)
| | - Daniel Robertson
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ 85054, USA;
| |
Collapse
|
34
|
Kazemi Kozani M. Machine learning approach for proton range verification using real-time prompt gamma imaging with Compton cameras: addressing the total deposited energy information gap. Phys Med Biol 2024; 69:075019. [PMID: 38417182 DOI: 10.1088/1361-6560/ad2e6a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 02/28/2024] [Indexed: 03/01/2024]
Abstract
Objective.Compton camera imaging shows promise as a range verification technique in proton therapy. This work aims to assess the performance of a machine learning model in Compton camera imaging for proton beam range verification improvement.Approach.The presented approach was used to recognize Compton events and estimate more accurately the prompt gamma (PG) energy in the Compton camera to reconstruct the PGs emission profile during proton therapy. This work reports the results obtained from the Geant4 simulation for a proton beam impinging on a polymethyl methacrylate (PMMA) target. To validate the versatility of such an approach, the produced PG emissions interact with a scintillating fiber-based Compton camera.Main results.A trained multilayer perceptron (MLP) neural network shows that it was possible to achieve a notable three-fold increase in the signal-to-total ratio. Furthermore, after event selection by the trained MLP, the loss of full-energy PGs was compensated by means of fitting an MLP energy regression model to the available data from true Compton (signal) events, predicting more precisely the total deposited energy for Compton events with incomplete energy deposition.Significance.A considerable improvement in the Compton camera's performance was demonstrated in determining the distal falloff and identifying a few millimeters of target displacements. This approach has shown great potential for enhancing online proton range monitoring with Compton cameras in future clinical applications.
Collapse
Affiliation(s)
- Majid Kazemi Kozani
- Department of Radiology, University of Pennsylvania, Philadelphia, United States of America
| |
Collapse
|
35
|
Tattenberg S, Liu P, Mulhem A, Cong X, Thome C, Ding X. Impact of and interplay between proton arc therapy and range uncertainties in proton therapy for head-and-neck cancer. Phys Med Biol 2024; 69:055015. [PMID: 38324904 DOI: 10.1088/1361-6560/ad2718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 02/07/2024] [Indexed: 02/09/2024]
Abstract
Objective. Proton therapy reduces the integral dose to the patient compared to conventional photon treatments. However,in vivoproton range uncertainties remain a considerable hurdle. Range uncertainty reduction benefits depend on clinical practices. During intensity-modulated proton therapy (IMPT), the target is irradiated from only a few directions, but proton arc therapy (PAT), for which the target is irradiated from dozens of angles, may see clinical implementation by the time considerable range uncertainty reductions are achieved. It is therefore crucial to determine the impact of PAT on range uncertainty reduction benefits.Approach. For twenty head-and-neck cancer patients, four different treatment plans were created: an IMPT and a PAT treatment plan assuming current clinical range uncertainties of 3.5% (IMPT3.5%and PAT3.5%), and an IMPT and a PAT treatment plan assuming that range uncertainties can be reduced to 1% (IMPT1%and PAT1%). Plans were evaluated with respect to target coverage and organ-at-risk doses as well as normal tissue complication probabilities (NTCPs) for parotid glands (endpoint: parotid gland flow <25%) and larynx (endpoint: larynx edema).Main results. Implementation of PAT (IMPT3.5%-PAT3.5%) reduced mean NTCPs in the nominal and worst-case scenario by 3.2 percentage points (pp) and 4.2 pp, respectively. Reducing range uncertainties from 3.5% to 1% during use of IMPT (IMPT3.5%-IMPT1%) reduced evaluated NTCPs by 0.9 pp and 2.0 pp. Benefits of range uncertainty reductions subsequently to PAT implementation (PAT3.5%-PAT1%) were 0.2 pp and 1.0 pp, with considerably higher benefits in bilateral compared to unilateral cases.Significance. The mean clinical benefit of implementing PAT was more than twice as high as the benefit of a 3.5%-1% range uncertainty reduction. Range uncertainty reductions are expected to remain beneficial even after PAT implementation, especially in cases with target positions allowing for full leveraging of the higher number of gantry angles during PAT.
Collapse
Affiliation(s)
- Sebastian Tattenberg
- Laurentian University, Sudbury P3E 2C6, Ontario, Canada
- Northern Ontario School of Medicine University, Sudbury P3E 2C6, Ontario, Canada
- TRIUMF, 4004 Wesbrook Mall, Vancouver V6T 2A3, British Columbia, Canada
| | - Peilin Liu
- Department of Radiation Oncology, William Beaumont University Hospital, Corewell Health, 3601 W 13 Mile Road, MI, United States of America
| | - Anthony Mulhem
- Department of Radiation Oncology, William Beaumont University Hospital, Corewell Health, 3601 W 13 Mile Road, MI, United States of America
- Department of Human Biology, Michigan State University, Natural Science Building, 288 Farm Ln, East Lansing, MI 48824, United States of America
| | - Xiaoda Cong
- Department of Radiation Oncology, William Beaumont University Hospital, Corewell Health, 3601 W 13 Mile Road, MI, United States of America
| | - Christopher Thome
- Laurentian University, Sudbury P3E 2C6, Ontario, Canada
- Northern Ontario School of Medicine University, Sudbury P3E 2C6, Ontario, Canada
| | - Xuanfeng Ding
- Department of Radiation Oncology, William Beaumont University Hospital, Corewell Health, 3601 W 13 Mile Road, MI, United States of America
| |
Collapse
|
36
|
Beaudier P, Vilotte F, Simon M, Muggiolu G, Le Trequesser Q, Devès G, Plawinski L, Mikael A, Caron J, Kantor G, Dupuy D, Delville MH, Barberet P, Seznec H. Sarcoma cell-specific radiation sensitization by titanate scrolled nanosheets: insights from physicochemical analysis and transcriptomic profiling. Sci Rep 2024; 14:3295. [PMID: 38332121 PMCID: PMC10853196 DOI: 10.1038/s41598-024-53847-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/06/2024] [Indexed: 02/10/2024] Open
Abstract
This study aimed to explore the potential of metal oxides such as Titanate Scrolled Nanosheets (TNs) in improving the radiosensitivity of sarcoma cell lines. Enhancing the response of cancer cells to radiation therapy is crucial, and one promising approach involves utilizing metal oxide nanoparticles. We focused on the impact of exposing two human sarcoma cell lines to both TNs and ionizing radiation (IR). Our research was prompted by previous in vitro toxicity assessments, revealing a correlation between TNs' toxicity and alterations in intracellular calcium homeostasis. A hydrothermal process using titanium dioxide powder in an alkaline solution produced the TNs. Our study quantified the intracellular content of TNs and analyzed their impact on radiation-induced responses. This assessment encompassed PIXE analysis, cell proliferation, and transcriptomic analysis. We observed that sarcoma cells internalized TNs, causing alterations in intracellular calcium homeostasis. We also found that irradiation influence intracellular calcium levels. Transcriptomic analysis revealed marked disparities in the gene expression patterns between the two sarcoma cell lines, suggesting a potential cell-line-dependent nano-sensitization to IR. These results significantly advance our comprehension of the interplay between TNs, IR, and cancer cells, promising potential enhancement of radiation therapy efficiency.
Collapse
Affiliation(s)
- Pierre Beaudier
- UMR 5797, LP2I Bordeaux, CNRS, University of Bordeaux, 33170, Gradignan, France
- U1212, IECB, INSERM, University of Bordeaux, 33607, Pessac, France
| | - Florent Vilotte
- UMR 5797, LP2I Bordeaux, CNRS, University of Bordeaux, 33170, Gradignan, France
- Radiation Oncology Unit, Institut Bergonié, 33076, Bordeaux, France
| | - Marina Simon
- UMR 5797, LP2I Bordeaux, CNRS, University of Bordeaux, 33170, Gradignan, France
| | - Giovanna Muggiolu
- UMR 5797, LP2I Bordeaux, CNRS, University of Bordeaux, 33170, Gradignan, France
| | | | - Guillaume Devès
- UMR 5797, LP2I Bordeaux, CNRS, University of Bordeaux, 33170, Gradignan, France
| | - Laurent Plawinski
- UMR 5797, LP2I Bordeaux, CNRS, University of Bordeaux, 33170, Gradignan, France
| | - Antoine Mikael
- Radiation Oncology Unit, Institut Bergonié, 33076, Bordeaux, France
| | - Jérôme Caron
- Radiation Oncology Unit, Institut Bergonié, 33076, Bordeaux, France
| | - Guy Kantor
- Radiation Oncology Unit, Institut Bergonié, 33076, Bordeaux, France
| | - Denis Dupuy
- U1212, IECB, INSERM, University of Bordeaux, 33607, Pessac, France
| | | | - Philippe Barberet
- UMR 5797, LP2I Bordeaux, CNRS, University of Bordeaux, 33170, Gradignan, France
| | - Hervé Seznec
- UMR 5797, LP2I Bordeaux, CNRS, University of Bordeaux, 33170, Gradignan, France.
| |
Collapse
|
37
|
Takagi M, Hasegawa Y, Tateoka K, Takada Y, Hareyama M. Dosimetric Comparison Study of Proton Therapy Using Line Scanning versus Passive Scattering and Volumetric Modulated Arc Therapy for Localized Prostate Cancer. Cancers (Basel) 2024; 16:403. [PMID: 38254892 PMCID: PMC10814771 DOI: 10.3390/cancers16020403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND The proton irradiation modality has transitioned from passive scattering (PS) to pencil beam scanning. Nevertheless, the documented outcomes predominantly rely on PS. METHODS Thirty patients diagnosed with prostate cancer were selected to assess treatment planning across line scanning (LS), PS, and volumetric modulated arc therapy (VMAT). Dose constraints encompassed clinical target volume (CTV) D98 ≥ 73.0 Gy (RBE), rectal wall V65 < 17% and V40 < 35%, and bladder wall V65 < 25% and V40 < 50%. The CTV, rectal wall, and bladder wall dose volumes were calculated and evaluated using the Freidman test. RESULTS The LS technique adhered to all dose limitations. For the rectal and bladder walls, 10 (33.3%) and 21 (70.0%) patients in the PS method and 5 (16.7%) and 1 (3.3%) patients in VMAT, respectively, failed to meet the stipulated requirements. The wide ranges of the rectal and bladder wall volumes (V10-70) were lower with LS than with PS and VMAT. LS outperformed VMAT across all dose-volume rectal and bladder wall indices. CONCLUSION The LS method demonstrated a reduction in rectal and bladder doses relative to PS and VMAT, thereby suggesting the potential for mitigating toxicities.
Collapse
Affiliation(s)
- Masaru Takagi
- Department of Radiation Oncology, Sapporo Teishinkai Hospital, Sapporo 065-0033, Japan
| | - Yasuhiro Hasegawa
- Department of Radiation Physics, Sapporo Teishinkai Hospital, Sapporo 065-0033, Japan
| | - Kunihiko Tateoka
- Department of Radiation Physics, Sapporo Teishinkai Hospital, Sapporo 065-0033, Japan
| | - Yu Takada
- Department of Radiation Oncology, Sapporo Teishinkai Hospital, Sapporo 065-0033, Japan
| | - Masato Hareyama
- Department of Radiation Oncology, Sapporo Teishinkai Hospital, Sapporo 065-0033, Japan
| |
Collapse
|
38
|
Sheng C, Ding Y, Qi Y, Hu M, Zhang J, Cui X, Zhang Y, Huo W. A denoising method based on deep learning for proton radiograph using energy resolved dose function. Phys Med Biol 2024; 69:025015. [PMID: 38096569 DOI: 10.1088/1361-6560/ad15c4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 12/14/2023] [Indexed: 01/12/2024]
Abstract
Objective.Proton radiograph has been broadly applied in proton radiotherapy which is affected by scattered protons which result in the lower spatial resolution of proton radiographs than that of x-ray images. Traditional image denoising method may lead to the change of water equivalent path length (WEPL) resulting in the lower WEPL measurement accuracy. In this study, we proposed a new denoising method of proton radiographs based on energy resolved dose function curves.Approach.Firstly, the corresponding relationship between the distortion of WEPL characteristic curve, and energy and proportion of scattered protons was established. Then, to improve the accuracy of proton radiographs, deep learning technique was used to remove scattered protons and correct deviated WEPL values. Experiments on a calibration phantom to prove the effectiveness and feasibility of this method were performed. In addition, an anthropomorphic head phantom was selected to demonstrate the clinical relevance of this technology and the denoising effect was analyzed.Main results.The curves of WEPL profiles of proton radiographs became smoother and deviated WEPL values were corrected. For the calibration phantom proton radiograph, the average absolute error of WEPL values decreased from 2.23 to 1.72, the mean percentage difference of all materials of relative stopping power decreased from 1.24 to 0.39, and the average relative WEPL corrected due to the denoising process was 1.06%. In addition, WEPL values correcting were also observed on the proton radiograph for anthropomorphic head phantom due to this denoising process.Significance.The experiments showed that this new method was effective for proton radiograph denoising and had greater advantages than end-to-end image denoising methods, laying the foundation for the implementation of precise proton radiotherapy.
Collapse
Affiliation(s)
- Cong Sheng
- Key Laboratory of Electromagnetic Wave Information Technology and Metrology of Zhejiang Province, College of Information Engineering, China Jiliang University, Hangzhou, 310018, People's Republic of China
| | - Yu Ding
- Key Laboratory of Electromagnetic Wave Information Technology and Metrology of Zhejiang Province, College of Information Engineering, China Jiliang University, Hangzhou, 310018, People's Republic of China
| | - Yaping Qi
- Division of lonizing Radiation Metrology, National Institute of Metrology, Beijing, 100029, People's Republic of China
| | - Man Hu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, People's Republic of China
| | - Jianguang Zhang
- Departments of Radiation Oncology, Zibo Wanjie Cancer Hospital, Zibo, 255000, People's Republic of China
| | - Xiangli Cui
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China
| | - Yingying Zhang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | - Wanli Huo
- Key Laboratory of Electromagnetic Wave Information Technology and Metrology of Zhejiang Province, College of Information Engineering, China Jiliang University, Hangzhou, 310018, People's Republic of China
| |
Collapse
|
39
|
Barrientos L, Borja-Lloret M, Casaña JV, Dendooven P, García López J, Hueso-González F, Jiménez-Ramos MC, Pérez-Curbelo J, Ros A, Roser J, Senra C, Viegas R, Llosá G. Gamma-ray sources imaging and test-beam results with MACACO III Compton camera. Phys Med 2024; 117:103199. [PMID: 38142615 DOI: 10.1016/j.ejmp.2023.103199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/05/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023] Open
Abstract
Hadron therapy is a radiotherapy modality which offers a precise energy deposition to the tumors and a dose reduction to healthy tissue as compared to conventional methods. However, methods for real-time monitoring are required to ensure that the radiation dose is deposited on the target. The IRIS group of IFIC-Valencia developed a Compton camera prototype for this purpose, intending to image the Prompt Gammas emitted by the tissue during irradiation. The system detectors are composed of Lanthanum (III) bromide scintillator crystals coupled to silicon photomultipliers. After an initial characterization in the laboratory, in order to assess the system capabilities for future experiments in proton therapy centers, different tests were carried out in two facilities: PARTREC (Groningen, The Netherlands) and the CNA cyclotron (Sevilla, Spain). Characterization studies performed at PARTREC indicated that the detectors linearity was improved with respect to the previous version and an energy resolution of 5.2 % FWHM at 511 keV was achieved. Moreover, the imaging capabilities of the system were evaluated with a line source of 68Ge and a point-like source of 241Am-9Be. Images at 4.439 MeV were obtained from irradiation of a graphite target with an 18 MeV proton beam at CNA, to perform a study of the system potential to detect shifts at different intensities. In this sense, the system was able to distinguish 1 mm variations in the target position at different beam current intensities for measurement times of 1800 and 600 s.
Collapse
Affiliation(s)
- L Barrientos
- Instituto de Física Corpuscular (IFIC), CSIC-UV, Valencia, Spain.
| | - M Borja-Lloret
- Instituto de Física Corpuscular (IFIC), CSIC-UV, Valencia, Spain
| | - J V Casaña
- Instituto de Física Corpuscular (IFIC), CSIC-UV, Valencia, Spain
| | - P Dendooven
- Particle Therapy Research Center (PARTREC), Department of Radiation Oncology, University Medical Center Groningen, Groningen, The Netherlands
| | - J García López
- Centro Nacional de Aceleradores (Universidad de Sevilla, CSIC and Junta de Andalucía), E-41092 Sevilla, Spain; Departamento de Física Atómica, Molecular y Nuclear, Universidad de Sevilla, Sevilla, Spain
| | - F Hueso-González
- Instituto de Física Corpuscular (IFIC), CSIC-UV, Valencia, Spain
| | - M C Jiménez-Ramos
- Centro Nacional de Aceleradores (Universidad de Sevilla, CSIC and Junta de Andalucía), E-41092 Sevilla, Spain; Departamento de Física Aplicada II, Universidad de Sevilla, 41012 Sevilla, Spain
| | - J Pérez-Curbelo
- Instituto de Física Corpuscular (IFIC), CSIC-UV, Valencia, Spain
| | - A Ros
- Instituto de Física Corpuscular (IFIC), CSIC-UV, Valencia, Spain
| | - J Roser
- Instituto de Física Corpuscular (IFIC), CSIC-UV, Valencia, Spain
| | - C Senra
- Instituto de Física Corpuscular (IFIC), CSIC-UV, Valencia, Spain
| | - R Viegas
- Instituto de Física Corpuscular (IFIC), CSIC-UV, Valencia, Spain
| | - G Llosá
- Instituto de Física Corpuscular (IFIC), CSIC-UV, Valencia, Spain.
| |
Collapse
|
40
|
Ma M, Gong Y, Tang X, Deng P, Qian J, Hu X, Wu J, Ding Z. Solitary fibrous tumor in the saddle area treated with neuroendoscopic surgery and proton therapy: A case report and literature review. Oncol Lett 2023; 26:505. [PMID: 37920432 PMCID: PMC10618926 DOI: 10.3892/ol.2023.14092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 09/15/2023] [Indexed: 11/04/2023] Open
Abstract
Solitary fibrous tumor (SFT) of the central nervous system is a rare fibroblastic tumor of mesenchymal origin. SFTs in the saddle area are much less common. In January 2022, a 43-year-old female patient was admitted with SFT 3 months following partial resection of a microscopic transsphenoidal saddle area tumor at a different hospital. Magnetic resonance imaging indicated that the unresected part of the tumor was significantly enhanced on T1 enhancement, which strongly indicated a recurrence. Subsequently, the patient underwent transnasal endoscopic saddle area tumor resection at our hospital and the tumor was successfully removed. By using postoperative pathology examination, immunohistochemical analysis of Bcl-2, cluster of differentiation 99, STAT6 and vimentin, and a fusion gene test performed by high-throughput sequencing technology, the SFT was definitively diagnosed. Following 3 months of follow-up, the patient was found to have tumor recurrence in the cavernous sinus and absence of tumor growth in the pituitary fossa. Therefore, the patient received proton therapy and tumor growth was controlled effectively.
Collapse
Affiliation(s)
- Mian Ma
- Department of Neurosurgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215002, P.R. China
| | - Yuhui Gong
- Department of Neurosurgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215002, P.R. China
| | - Xiaoyu Tang
- Department of Neurosurgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215002, P.R. China
| | - Peng Deng
- Department of Neurosurgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215002, P.R. China
| | - Jinhong Qian
- Department of Neurosurgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215002, P.R. China
| | - Xiaolong Hu
- Department of Neurosurgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215002, P.R. China
| | - Jiandong Wu
- Department of Neurosurgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215002, P.R. China
| | - Zhiliang Ding
- Department of Neurosurgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215002, P.R. China
| |
Collapse
|
41
|
Abouzahr F, Cesar JP, Crespo P, Gajda M, Hu Z, Klein K, Kuo AS, Majewski S, Mawlawi O, Morozov A, Ojha A, Poenisch F, Proga M, Sahoo N, Seco J, Takaoka T, Tavernier S, Titt U, Wang X, Zhu XR, Lang K. The first probe of a FLASH proton beam by PET. Phys Med Biol 2023; 68:235004. [PMID: 37918021 DOI: 10.1088/1361-6560/ad0901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/02/2023] [Indexed: 11/04/2023]
Abstract
The recently observed FLASH effect related to high doses delivered with high rates has the potential to revolutionize radiation cancer therapy if promising results are confirmed and an underlying mechanism understood. Comprehensive measurements are essential to elucidate the phenomenon. We report the first-ever demonstration of measurements of successive in-spill and post-spill emissions of gammas arising from irradiations by a FLASH proton beam. A small positron emission tomography (PET) system was exposed in an ocular beam of the Proton Therapy Center at MD Anderson Cancer Center to view phantoms irradiated by 3.5 × 1010protons with a kinetic energy of 75.8 MeV delivered in 101.5 ms-long spills yielding a dose rate of 164 Gy s-1. Most in-spill events were due to prompt gammas. Reconstructed post-spill tomographic events, recorded for up to 20 min, yielded quantitative imaging and dosimetric information. These findings open a new and novel modality for imaging and monitoring of FLASH proton therapy exploiting in-spill prompt gamma imaging followed by post-spill PET imaging.
Collapse
Affiliation(s)
- F Abouzahr
- Department of Physics, University of Texas at Austin, Austin, TX 78712, United States of America
| | - J P Cesar
- Department of Physics, University of Texas at Austin, Austin, TX 78712, United States of America
| | - P Crespo
- Laboratório de Instrumentação e Física Experimental de Partículas, 3004-516 Coimbra, Portugal
- Departamento de Física, Universidade de Coimbra, 3004-516 Coimbra, Portugal
| | - M Gajda
- Department of Physics, University of Texas at Austin, Austin, TX 78712, United States of America
| | - Z Hu
- Department of Radiation Physics, MD Anderson Cancer Center, University of Texas, Houston, TX 77030, United States of America
| | - K Klein
- Department of Physics, University of Texas at Austin, Austin, TX 78712, United States of America
| | - A S Kuo
- Department of Physics, University of Texas at Austin, Austin, TX 78712, United States of America
| | - S Majewski
- Department of Physics, University of Texas at Austin, Austin, TX 78712, United States of America
- Biomedical Engineering, University of California Davis, CA 96616, United States of America
| | - O Mawlawi
- Department of Imaging Physics, MD Anderson Cancer Center, University of Texas, Houston, TX, 77054, United States of America
| | - A Morozov
- Laboratório de Instrumentação e Física Experimental de Partículas, 3004-516 Coimbra, Portugal
| | - A Ojha
- Department of Physics, University of Texas at Austin, Austin, TX 78712, United States of America
| | - F Poenisch
- Proton Therapy Center, MD Anderson Cancer Center, University of Texas, Houston, TX 77054, United States of America
| | - M Proga
- Department of Physics, University of Texas at Austin, Austin, TX 78712, United States of America
| | - N Sahoo
- Proton Therapy Center, MD Anderson Cancer Center, University of Texas, Houston, TX 77054, United States of America
| | - J Seco
- Div. of Biomed. Physics in Rad. Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Physics and Astronomy, University of Heidelberg, Heidelberg, Germany
| | - T Takaoka
- Particle Therapy Division, Hitachi America Ltd, Houston, TX 77054, United States of America
| | - S Tavernier
- PETsys Electronics, SA, 2740-257 Taguspark, Portugal
| | - U Titt
- Department of Radiation Physics, MD Anderson Cancer Center, University of Texas, Houston, TX 77030, United States of America
| | - X Wang
- Proton Therapy Center, MD Anderson Cancer Center, University of Texas, Houston, TX 77054, United States of America
| | - X R Zhu
- Proton Therapy Center, MD Anderson Cancer Center, University of Texas, Houston, TX 77054, United States of America
| | - K Lang
- Department of Physics, University of Texas at Austin, Austin, TX 78712, United States of America
| |
Collapse
|
42
|
Gebauer B, Pawelke J, Hoffmann A, Lühr A. Technical note: Experimental dosimetric characterization of proton pencil beam distortion in a perpendicular magnetic field of an in-beam MR scanner. Med Phys 2023; 50:7294-7303. [PMID: 37161832 DOI: 10.1002/mp.16448] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/25/2023] [Accepted: 04/21/2023] [Indexed: 05/11/2023] Open
Abstract
BACKGROUND As it promises more precise and conformal radiation treatments, magnetic resonance imaging-integrated proton therapy (MRiPT) is seen as a next step in image guidance for proton therapy. The Lorentz force, which affects the course of the proton pencil beams, presents a problem for beam delivery in the presence of a magnetic field. PURPOSE To investigate the influence of the 0.32-T perpendicular magnetic field of an MR scanner on the delivery of proton pencil beams inside an MRiPT prototype system. METHODS An MRiPT prototype comprising of a horizontal pencil beam scanning beam line and an open 0.32-T MR scanner was used to evaluate the impact of the vertical magnetic field on proton beam deflection and dose spot pattern deformation. Three different proton energies (100, 150, and 220 MeV) and two spot map sizes (15 × 15 and 30 × 20 cm2 ) at four locations along the beam path without and with magnetic field were measured. Pencil-beam dose spots were measured using EBT3 films and a 2D scintillation detector. To study the magnetic field effects, a 2D Gaussian fit was applied to each individual dose spot to determine the central position( X , Y ) $(X,Y)$ , minimum and maximum lateral standard deviation (σ m i n $\sigma _{min}$ andσ m a x $\sigma _{max}$ ), orientation (θ), and the eccentricity (ε). RESULTS The dose spots were subjected to three simultaneous effects: (a) lateral horizontal beam deflection, (b) asymmetric trapezoidal deformation of the dose spot pattern, and (c) deformation and rotation of individual dose spots. The strongest effects were observed at a proton energy of 100 MeV with a horizontal beam deflection of 14-186 mm along the beam path. Within the central imaging field of the MR scanner, the maximum relative dose spot sizeσ m a x $\sigma _{max}$ decreased by up to 3.66%, whileσ m i n $\sigma _{min}$ increased by a maximum of 2.15%. The largest decrease and increase in the eccentricity of the dose spots were 0.08 and 0.02, respectively. The spot orientation θ was rotated by a maximum of 5.39°. At the higher proton energies, the same effects were still seen, although to a lesser degree. CONCLUSIONS The effect of an MRiPT prototype's magnetic field on the proton beam path, dose spot pattern, and dose spot form has been measured for the first time. The findings show that the impact of the MF must be appropriately recognized in a future MRiPT treatment planning system. The results emphasize the need for additional research (e.g., effect of magnetic field on proton beams with range shifters and impact of MR imaging sequences) before MRiPT applications can be employed to treat patients.
Collapse
Affiliation(s)
- Benjamin Gebauer
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Institute of Radiooncology-OncoRay, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Jörg Pawelke
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Institute of Radiooncology-OncoRay, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Aswin Hoffmann
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Institute of Radiooncology-OncoRay, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Armin Lühr
- Department of Physics, TU Dortmund University, Dortmund, Germany
| |
Collapse
|
43
|
Smulders B, Stolarczyk L, Seiersen K, Nørrevang O, Sommer Kristensen B, Schut DA, Thomsen K, Lassen-Ramshad Y, Høyer M, Muhic A, Vestergaard A. Prediction of dose-sparing by protons assessed by a knowledge-based planning tool in radiotherapy of brain tumours. Acta Oncol 2023; 62:1541-1545. [PMID: 37793798 DOI: 10.1080/0284186x.2023.2264482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 09/22/2023] [Indexed: 10/06/2023]
Affiliation(s)
- Bob Smulders
- Danish Centre for Particle Therapy (DCPT), Aarhus University Hospital, Aarhus, Denmark
- Department of Oncology, University Hospital of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Liliana Stolarczyk
- Danish Centre for Particle Therapy (DCPT), Aarhus University Hospital, Aarhus, Denmark
| | - Klaus Seiersen
- Danish Centre for Particle Therapy (DCPT), Aarhus University Hospital, Aarhus, Denmark
| | - Ole Nørrevang
- Danish Centre for Particle Therapy (DCPT), Aarhus University Hospital, Aarhus, Denmark
| | - Bente Sommer Kristensen
- Department of Oncology, University Hospital of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Deborah Anne Schut
- Department of Oncology, University Hospital of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Karsten Thomsen
- Department of Oncology, University Hospital of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Yasmin Lassen-Ramshad
- Danish Centre for Particle Therapy (DCPT), Aarhus University Hospital, Aarhus, Denmark
| | - Morten Høyer
- Danish Centre for Particle Therapy (DCPT), Aarhus University Hospital, Aarhus, Denmark
| | - Aida Muhic
- Danish Centre for Particle Therapy (DCPT), Aarhus University Hospital, Aarhus, Denmark
- Department of Oncology, University Hospital of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Anne Vestergaard
- Danish Centre for Particle Therapy (DCPT), Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
44
|
Winter SF, Vaios EJ, Shih HA, Grassberger C, Parsons MW, Gardner MM, Ehret F, Kaul D, Boehmerle W, Endres M, Dietrich J. Mitigating Radiotoxicity in the Central Nervous System: Role of Proton Therapy. Curr Treat Options Oncol 2023; 24:1524-1549. [PMID: 37728819 DOI: 10.1007/s11864-023-01131-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2023] [Indexed: 09/21/2023]
Abstract
OPINION STATEMENT Central nervous system (CNS) radiotoxicity remains a challenge in neuro-oncology. Dose distribution advantages of protons over photons have prompted increased use of brain-directed proton therapy. While well-recognized among pediatric populations, the benefit of proton therapy among adults with CNS malignancies remains controversial. We herein discuss the role of protons in mitigating late CNS radiotoxicities in adult patients. Despite limited clinical trials, evidence suggests toxicity profile advantages of protons over conventional radiotherapy, including retention of neurocognitive function and brain volume. Modelling studies predict superior dose conformality of protons versus state-of-the-art photon techniques reduces late radiogenic vasculopathies, endocrinopathies, and malignancies. Conversely, potentially higher brain tissue necrosis rates following proton therapy highlight a need to resolve uncertainties surrounding the impact of variable biological effectiveness of protons on dose distribution. Clinical trials comparing best photon and particle-based therapy are underway to establish whether protons substantially improve long-term treatment-related outcomes in adults with CNS malignancies.
Collapse
Affiliation(s)
- Sebastian F Winter
- Department of Neurology and MGH Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Department of Neurology and Experimental Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117, Berlin, Germany.
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Junior Clinician Scientist Program, 10117, Berlin, Germany.
| | - Eugene J Vaios
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| | - Helen A Shih
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Clemens Grassberger
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Michael W Parsons
- Department of Psychiatry, Psychology Assessment Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Melissa M Gardner
- Department of Psychiatry, Psychology Assessment Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Felix Ehret
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Junior Clinician Scientist Program, 10117, Berlin, Germany
- Department of Radiation Oncology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Berlin, Germany; German Cancer Consortium (DKTK), partner site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - David Kaul
- Department of Radiation Oncology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Berlin, Germany; German Cancer Consortium (DKTK), partner site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Wolfgang Boehmerle
- Department of Neurology and Experimental Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117, Berlin, Germany
| | - Matthias Endres
- Department of Neurology and Experimental Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117, Berlin, Germany
- Center for Stroke Research Berlin, Berlin, Germany
- ExcellenceCluster NeuroCure, Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE), partner site Berlin, Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Berlin, Berlin, Germany
| | - Jorg Dietrich
- Department of Neurology and MGH Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
45
|
Melia E, Parsons J. DNA damage and repair dependencies of ionising radiation modalities. Biosci Rep 2023; 43:BSR20222586. [PMID: 37695845 PMCID: PMC10548165 DOI: 10.1042/bsr20222586] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/18/2023] [Accepted: 09/11/2023] [Indexed: 09/13/2023] Open
Abstract
Radiotherapy is utilised in the treatment of ∼50% of all human cancers, which predominantly employs photon radiation. However, particle radiotherapy elicits significant benefits over conventional photons due to more precise dose deposition and increased linear energy transfer (LET) that generates an enhanced therapeutic response. Specifically, proton beam therapy (PBT) and carbon ion radiotherapy (CIRT) are characterised by a Bragg peak, which generates a low entrance radiation dose, with the majority of the energy deposition being defined within a small region which can be specifically targeted to the tumour, followed by a low exit dose. PBT is deemed relatively low-LET whereas CIRT is more densely ionising and therefore high LET. Despite the radiotherapy type, tumour cell killing relies heavily on the introduction of DNA damage that overwhelms the repair capacity of the tumour cells. It is known that DNA damage complexity increases with LET that leads to enhanced biological effectiveness, although the specific DNA repair pathways that are activated following the different radiation sources is unclear. This knowledge is required to determine whether specific proteins and enzymes within these pathways can be targeted to further increase the efficacy of the radiation. In this review, we provide an overview of the different radiation modalities and the DNA repair pathways that are responsive to these. We also provide up-to-date knowledge of studies examining the impact of LET and DNA damage complexity on DNA repair pathway choice, followed by evidence on how enzymes within these pathways could potentially be therapeutically exploited to further increase tumour radiosensitivity, and therefore radiotherapy efficacy.
Collapse
Affiliation(s)
- Emma Melia
- Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
| | - Jason L. Parsons
- Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
| |
Collapse
|
46
|
Vennarini S, Colombo F, Mirandola A, Chiaravalli S, Orlandi E, Massimino M, Casanova M, Ferrari A. Clinical Insight on Proton Therapy for Paediatric Rhabdomyosarcoma. Cancer Manag Res 2023; 15:1125-1139. [PMID: 37842128 PMCID: PMC10576457 DOI: 10.2147/cmar.s362664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/05/2023] [Indexed: 10/17/2023] Open
Abstract
This paper offers an insight into the use of Proton Beam Therapy (PBT) in paediatric patients with rhabdomyosarcoma (RMS). This paper provides a comprehensive analysis of the literature, investigating comparative photon-proton dosimetry, outcome, and toxicity. In the complex and multimodal scenario of the treatment of RMS, clear evidence of the therapeutic superiority of PBT compared to other modern photon techniques has not yet been demonstrated; however, PBT can be considered an excellent treatment option, in particular for young children and patients with specific primary sites, such as the head and neck area (and especially the parameningeal regions), genito-urinary, pelvic, and paravertebral regions. The unique depth-dose characteristics of protons can be exploited to achieve significant reductions in normal tissue doses and may allow an escalation of tumour doses and greater sparing of normal tissues, thus potentially improving local control while at the same time reducing toxicity and improving quality of life. However, access of children with RMS (and more in general with solid tumors) to PBT remains a challenge, due to the limited number of available proton therapy installations.
Collapse
Affiliation(s)
- Sabina Vennarini
- Pediatric Radiotherapy Unit, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Francesca Colombo
- Pediatric Radiotherapy Unit, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
- Department of Oncology and Hemato-Oncology (DIPO), University of Milan, Milan, Italy
| | - Alfredo Mirandola
- Medical Physics Unit, Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Stefano Chiaravalli
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale Tumori, Milano, Italy
| | - Ester Orlandi
- Radiation Oncology Unit, Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Maura Massimino
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale Tumori, Milano, Italy
| | - Michela Casanova
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale Tumori, Milano, Italy
| | - Andrea Ferrari
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale Tumori, Milano, Italy
| |
Collapse
|
47
|
Izairi-Bexheti R, Fejzulahi-Izairi M, Ristova M. Uncertainty in the range of the protons and C-ions in particle therapy due to a hydration level of a human body model. Appl Radiat Isot 2023; 200:110951. [PMID: 37487427 DOI: 10.1016/j.apradiso.2023.110951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/26/2023]
Abstract
Cancer treatment with protons and carbon ions relies on the property of the accelerated charged particles to deposit most of their energy in the vicinity of their range (around the Bragg peak). The level of hydration in a cancer patient's body may vary within hours. Some patients may be heavy to moderately dehydrated, and some may be well and even excessively hydrated. In this research, we aim to estimate the uncertainty of the protons and C-ion ranges because of the different hydration levels of the human body. For the study of the impact of body hydration level on the particle's ranges, we have designed a new phantom model - a homogeneous mixture of an Average HUuman BOdy constituting elements (AHUBO) in three states of hydration: normal (n), dehydrated (d), and excessively hydrated (e) by applying corresponding recalibration in the "atomic-stoichiometry model" due to the water sufficiency/deficiency. The purpose of the study is to estimate the shift in the ranges depending on the hydration level, possibly suggest particle beam energy adjustments to overcome the range uncertainties, to deliver the prescribed dose to the tumour while sparing the healthy tissue. Herein we present the results of the FLUKA-Flair simulations of the therapeutic range of energies of protons (50-105 MeV) and C-ions (30-210 MeV) respectively, into an AHUBO head phantom model at three levels of hydration (normal, dehydrated, and excessively hydrated). The range uncertainty was estimated via the shifts of the Bragg-peaks position for the three different hydration levels. The estimations showed that the range uncertainty (ΔR) due to body hydration for the maximum energy in the range for protons at 105 MeV is about 0.04 mm and for C-ions at 190 MeV/u is about 0.06 mm.
Collapse
Affiliation(s)
- Redona Izairi-Bexheti
- Physics Department, Faculty of Natural Sciences and Mathematics, University Ss Cyril and Methodius, Arhimedova St. 3, Skopje, Macedonia
| | - Mimoza Fejzulahi-Izairi
- Physics Department, Faculty of Natural Sciences and Mathematics, University Ss Cyril and Methodius, Arhimedova St. 3, Skopje, Macedonia
| | - Mimoza Ristova
- Physics Department, Faculty of Natural Sciences and Mathematics, University Ss Cyril and Methodius, Arhimedova St. 3, Skopje, Macedonia; SEEIIST, Southeast European International Institute for Sustainable Technologies, Geneva, Switzerland.
| |
Collapse
|
48
|
Ibáñez-Moragues M, Fernández-Barahona I, Santacruz R, Oteo M, Luján-Rodríguez VM, Muñoz-Hernando M, Magro N, Lagares JI, Romero E, España S, Espinosa-Rodríguez A, García-Díez M, Martínez-Nouvilas V, Sánchez-Tembleque V, Udías JM, Valladolid-Onecha V, Martín-Rey MÁ, Almeida-Cordon EI, Viñals i Onsès S, Pérez JM, Fraile LM, Herranz F, Morcillo MÁ. Zinc-Doped Iron Oxide Nanoparticles as a Proton-Activatable Agent for Dose Range Verification in Proton Therapy. Molecules 2023; 28:6874. [PMID: 37836718 PMCID: PMC10574368 DOI: 10.3390/molecules28196874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/13/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Proton therapy allows the treatment of specific areas and avoids the surrounding tissues. However, this technique has uncertainties in terms of the distal dose fall-off. A promising approach to studying the proton range is the use of nanoparticles as proton-activatable agents that produce detectable signals. For this, we developed an iron oxide nanoparticle doped with Zn (IONP@Zn-cit) with a hydrodynamic size of 10 nm and stability in serum. Cytotoxicity, defined as half of the surveillance, was 100 μg Zn/mL in the U251 cell line. The effect on clonogenic cell death was tested after X-ray irradiation, which suggested a radioprotective effect of these nanoparticles at low concentrations (1-10 μg Zn/mL). To evaluate the production of positron emitters and prompt-gamma signals, IONP@Zn-cit was irradiated with protons, obtaining prompt-gamma signals at the lowest measured concentration (10 mg Zn/mL). Finally, 67Ga-IONP@Zn-cit showed accumulation in the liver and spleen and an accumulation in the tumor tissue of 0.95% ID/g in a mouse model of U251 cells. These results suggest the possibility of using Zn nanoparticles as proton-activatable agents to verify the range by prompt gamma detection and face the challenges of prompt gamma detection in a specific biological situation, opening different avenues to go forward in this field.
Collapse
Affiliation(s)
- Marta Ibáñez-Moragues
- Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas CIEMAT, Medical Applications of Ionizing Radiation Unit, 28040 Madrid, Spain; (R.S.); (M.O.); (V.M.L.-R.); (N.M.); (J.I.L.); (E.R.); (J.M.P.)
| | - Irene Fernández-Barahona
- Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain;
- Instituto de Química Médica—Consejo Superior de Investigaciones Científicas IQM-CSIC, Nanomedicine and Molecular Imaging Group, 28006 Madrid, Spain; (M.M.-H.)
| | - Rocío Santacruz
- Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas CIEMAT, Medical Applications of Ionizing Radiation Unit, 28040 Madrid, Spain; (R.S.); (M.O.); (V.M.L.-R.); (N.M.); (J.I.L.); (E.R.); (J.M.P.)
| | - Marta Oteo
- Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas CIEMAT, Medical Applications of Ionizing Radiation Unit, 28040 Madrid, Spain; (R.S.); (M.O.); (V.M.L.-R.); (N.M.); (J.I.L.); (E.R.); (J.M.P.)
| | - Víctor M. Luján-Rodríguez
- Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas CIEMAT, Medical Applications of Ionizing Radiation Unit, 28040 Madrid, Spain; (R.S.); (M.O.); (V.M.L.-R.); (N.M.); (J.I.L.); (E.R.); (J.M.P.)
| | - María Muñoz-Hernando
- Instituto de Química Médica—Consejo Superior de Investigaciones Científicas IQM-CSIC, Nanomedicine and Molecular Imaging Group, 28006 Madrid, Spain; (M.M.-H.)
| | - Natalia Magro
- Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas CIEMAT, Medical Applications of Ionizing Radiation Unit, 28040 Madrid, Spain; (R.S.); (M.O.); (V.M.L.-R.); (N.M.); (J.I.L.); (E.R.); (J.M.P.)
| | - Juan I. Lagares
- Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas CIEMAT, Medical Applications of Ionizing Radiation Unit, 28040 Madrid, Spain; (R.S.); (M.O.); (V.M.L.-R.); (N.M.); (J.I.L.); (E.R.); (J.M.P.)
| | - Eduardo Romero
- Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas CIEMAT, Medical Applications of Ionizing Radiation Unit, 28040 Madrid, Spain; (R.S.); (M.O.); (V.M.L.-R.); (N.M.); (J.I.L.); (E.R.); (J.M.P.)
| | - Samuel España
- Nuclear Physics Group, Universidad Complutense de Madrid, IPARCOS &EMFTEL, CEI Moncloa, 28040 Madrid, Spain; (S.E.); (A.E.-R.); (M.G.-D.); (V.M.-N.); (V.S.-T.); (J.M.U.); (V.V.-O.); (L.M.F.)
- Instituto de Investigación del Hospital Clínico San Carlos (IdISSC), Ciudad Universitaria, 28040 Madrid, Spain
| | - Andrea Espinosa-Rodríguez
- Nuclear Physics Group, Universidad Complutense de Madrid, IPARCOS &EMFTEL, CEI Moncloa, 28040 Madrid, Spain; (S.E.); (A.E.-R.); (M.G.-D.); (V.M.-N.); (V.S.-T.); (J.M.U.); (V.V.-O.); (L.M.F.)
- Instituto de Investigación del Hospital Clínico San Carlos (IdISSC), Ciudad Universitaria, 28040 Madrid, Spain
| | - Miguel García-Díez
- Nuclear Physics Group, Universidad Complutense de Madrid, IPARCOS &EMFTEL, CEI Moncloa, 28040 Madrid, Spain; (S.E.); (A.E.-R.); (M.G.-D.); (V.M.-N.); (V.S.-T.); (J.M.U.); (V.V.-O.); (L.M.F.)
- Instituto de Investigación del Hospital Clínico San Carlos (IdISSC), Ciudad Universitaria, 28040 Madrid, Spain
| | - Víctor Martínez-Nouvilas
- Nuclear Physics Group, Universidad Complutense de Madrid, IPARCOS &EMFTEL, CEI Moncloa, 28040 Madrid, Spain; (S.E.); (A.E.-R.); (M.G.-D.); (V.M.-N.); (V.S.-T.); (J.M.U.); (V.V.-O.); (L.M.F.)
- Instituto de Investigación del Hospital Clínico San Carlos (IdISSC), Ciudad Universitaria, 28040 Madrid, Spain
| | - Víctor Sánchez-Tembleque
- Nuclear Physics Group, Universidad Complutense de Madrid, IPARCOS &EMFTEL, CEI Moncloa, 28040 Madrid, Spain; (S.E.); (A.E.-R.); (M.G.-D.); (V.M.-N.); (V.S.-T.); (J.M.U.); (V.V.-O.); (L.M.F.)
- Instituto de Investigación del Hospital Clínico San Carlos (IdISSC), Ciudad Universitaria, 28040 Madrid, Spain
| | - José Manuel Udías
- Nuclear Physics Group, Universidad Complutense de Madrid, IPARCOS &EMFTEL, CEI Moncloa, 28040 Madrid, Spain; (S.E.); (A.E.-R.); (M.G.-D.); (V.M.-N.); (V.S.-T.); (J.M.U.); (V.V.-O.); (L.M.F.)
- Instituto de Investigación del Hospital Clínico San Carlos (IdISSC), Ciudad Universitaria, 28040 Madrid, Spain
| | - Víctor Valladolid-Onecha
- Nuclear Physics Group, Universidad Complutense de Madrid, IPARCOS &EMFTEL, CEI Moncloa, 28040 Madrid, Spain; (S.E.); (A.E.-R.); (M.G.-D.); (V.M.-N.); (V.S.-T.); (J.M.U.); (V.V.-O.); (L.M.F.)
- Instituto de Investigación del Hospital Clínico San Carlos (IdISSC), Ciudad Universitaria, 28040 Madrid, Spain
| | - Miguel Á. Martín-Rey
- Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas CIEMAT, Hematopoietic Innovative Therapies Unit, 28040 Madrid, Spain;
| | - Edilia I. Almeida-Cordon
- Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas CIEMAT, Animal Facility Unit, 28040 Madrid, Spain;
| | - Sílvia Viñals i Onsès
- Center for Microanalysis of Materials (CMAM), Universidad Autónoma de Madrid, 28049 Madrid, Spain;
| | - José Manuel Pérez
- Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas CIEMAT, Medical Applications of Ionizing Radiation Unit, 28040 Madrid, Spain; (R.S.); (M.O.); (V.M.L.-R.); (N.M.); (J.I.L.); (E.R.); (J.M.P.)
| | - Luis Mario Fraile
- Nuclear Physics Group, Universidad Complutense de Madrid, IPARCOS &EMFTEL, CEI Moncloa, 28040 Madrid, Spain; (S.E.); (A.E.-R.); (M.G.-D.); (V.M.-N.); (V.S.-T.); (J.M.U.); (V.V.-O.); (L.M.F.)
- Instituto de Investigación del Hospital Clínico San Carlos (IdISSC), Ciudad Universitaria, 28040 Madrid, Spain
| | - Fernando Herranz
- Instituto de Química Médica—Consejo Superior de Investigaciones Científicas IQM-CSIC, Nanomedicine and Molecular Imaging Group, 28006 Madrid, Spain; (M.M.-H.)
| | - Miguel Ángel Morcillo
- Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas CIEMAT, Medical Applications of Ionizing Radiation Unit, 28040 Madrid, Spain; (R.S.); (M.O.); (V.M.L.-R.); (N.M.); (J.I.L.); (E.R.); (J.M.P.)
| |
Collapse
|
49
|
Zhou B, Zhang SR, Chen G, Chen P. Developments and challenges in neoadjuvant therapy for locally advanced pancreatic cancer. World J Gastroenterol 2023; 29:5094-5103. [PMID: 37744290 PMCID: PMC10514760 DOI: 10.3748/wjg.v29.i35.5094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/19/2023] [Accepted: 08/31/2023] [Indexed: 09/14/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains a significant public health challenge and is currently the fourth leading cause of cancer-related mortality in developed countries. Despite advances in cancer treatment, the 5-year survival rate for patients with PDAC remains less than 5%. In recent years, neoadjuvant therapy (NAT) has emerged as a promising treatment option for many cancer types, including locally advanced PDAC, with the potential to improve patient outcomes. To analyze the role of NAT in the setting of locally advanced PDAC over the past decade, a systematic literature search was conducted using PubMed and Web of Science. The results suggest that NAT may reduce the local mass size, promote tumor downstaging, and increase the likelihood of resection. These findings are supported by the latest evidence-based medical literature and the clinical experience of our center. Despite the potential benefits of NAT, there are still challenges that need to be addressed. One such challenge is the lack of consensus on the optimal timing and duration of NAT. Improved criteria for patient selection are needed to further identify PDAC patients likely to respond to NAT. In conclusion, NAT has emerged as a promising treatment option for locally advanced PDAC. However, further research is needed to optimize its use and to better understand the role of NAT in the management of this challenging disease. With continued advances in cancer treatment, there is hope of improving the outcomes of patients with PDAC in the future.
Collapse
Affiliation(s)
- Bo Zhou
- Department of Hepatobiliary Surgery, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Shi-Ran Zhang
- Department of Hepatobiliary Surgery, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Geng Chen
- Department of Hepatobiliary Surgery, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Ping Chen
- Department of Hepatobiliary Surgery, Daping Hospital, Army Medical University, Chongqing 400042, China
| |
Collapse
|
50
|
Schilling A, Aehle M, Alme J, Barnaföldi GG, Bodova T, Borshchov V, van den Brink A, Eikeland V, Feofilov G, Garth C, Gauger NR, Grøttvik O, Helstrup H, Igolkin S, Keidel R, Kobdaj C, Kortus T, Leonhardt V, Mehendale S, Ningappa Mulawade R, Harald Odland O, O'Neill G, Papp G, Peitzmann T, Pettersen HES, Piersimoni P, Protsenko M, Rauch M, Ur Rehman A, Richter M, Röhrich D, Santana J, Seco J, Songmoolnak A, Sudár Á, Tambave G, Tymchuk I, Ullaland K, Varga-Kofarago M, Volz L, Wagner B, Wendzel S, Wiebel A, Xiao R, Yang S, Zillien S. Uncertainty-aware spot rejection rate as quality metric for proton therapy using a digital tracking calorimeter. Phys Med Biol 2023; 68:194001. [PMID: 37652034 DOI: 10.1088/1361-6560/acf5c2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/31/2023] [Indexed: 09/02/2023]
Abstract
Objective.Proton therapy is highly sensitive to range uncertainties due to the nature of the dose deposition of charged particles. To ensure treatment quality, range verification methods can be used to verify that the individual spots in a pencil beam scanning treatment fraction match the treatment plan. This study introduces a novel metric for proton therapy quality control based on uncertainties in range verification of individual spots.Approach.We employ uncertainty-aware deep neural networks to predict the Bragg peak depth in an anthropomorphic phantom based on secondary charged particle detection in a silicon pixel telescope designed for proton computed tomography. The subsequently predicted Bragg peak positions, along with their uncertainties, are compared to the treatment plan, rejecting spots which are predicted to be outside the 95% confidence interval. The such-produced spot rejection rate presents a metric for the quality of the treatment fraction.Main results.The introduced spot rejection rate metric is shown to be well-defined for range predictors with well-calibrated uncertainties. Using this method, treatment errors in the form of lateral shifts can be detected down to 1 mm after around 1400 treated spots with spot intensities of 1 × 107protons. The range verification model used in this metric predicts the Bragg peak depth to a mean absolute error of 1.107 ± 0.015 mm.Significance.Uncertainty-aware machine learning has potential applications in proton therapy quality control. This work presents the foundation for future developments in this area.
Collapse
Affiliation(s)
- Alexander Schilling
- Center for Technology and Transfer (ZTT), University of Applied Sciences Worms, D-67549 Worms, Germany
- Chair for Scientific Computing, University of Kaiserslautern-Landau, D-67663 Kaiserslautern, Germany
| | - Max Aehle
- Chair for Scientific Computing, University of Kaiserslautern-Landau, D-67663 Kaiserslautern, Germany
| | - Johan Alme
- Department of Physics and Technology, University of Bergen, NO-5007 Bergen, Norway
| | | | - Tea Bodova
- Department of Physics and Technology, University of Bergen, NO-5007 Bergen, Norway
| | | | | | - Viljar Eikeland
- Department of Physics and Technology, University of Bergen, NO-5007 Bergen, Norway
| | | | - Christoph Garth
- Scientific Visualization Lab, University of Kaiserslautern-Landau, D-67663 Kaiserslautern, Germany
| | - Nicolas R Gauger
- Chair for Scientific Computing, University of Kaiserslautern-Landau, D-67663 Kaiserslautern, Germany
| | - Ola Grøttvik
- Department of Physics and Technology, University of Bergen, NO-5007 Bergen, Norway
| | - Håvard Helstrup
- Department of Computer Science, Electrical Engineering and Mathematical Sciences, Western Norway University of Applied Sciences, NO-5020 Bergen, Norway
| | | | - Ralf Keidel
- Center for Technology and Transfer (ZTT), University of Applied Sciences Worms, D-67549 Worms, Germany
- Chair for Scientific Computing, University of Kaiserslautern-Landau, D-67663 Kaiserslautern, Germany
| | - Chinorat Kobdaj
- Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Tobias Kortus
- Center for Technology and Transfer (ZTT), University of Applied Sciences Worms, D-67549 Worms, Germany
| | - Viktor Leonhardt
- Scientific Visualization Lab, University of Kaiserslautern-Landau, D-67663 Kaiserslautern, Germany
| | - Shruti Mehendale
- Department of Physics and Technology, University of Bergen, NO-5007 Bergen, Norway
| | - Raju Ningappa Mulawade
- Center for Technology and Transfer (ZTT), University of Applied Sciences Worms, D-67549 Worms, Germany
| | - Odd Harald Odland
- Department of Physics and Technology, University of Bergen, NO-5007 Bergen, Norway
- Department of Oncology and Medical Physics, Haukeland University Hospital, NO-5021 Bergen, Norway
| | - George O'Neill
- Department of Physics and Technology, University of Bergen, NO-5007 Bergen, Norway
| | - Gábor Papp
- Institute for Physics, Eötvös Loránd University, 1/A Pázmány P. Sétány, H-1117 Budapest, Hungary
| | - Thomas Peitzmann
- Institute for Subatomic Physics, Utrecht University/Nikhef, Utrecht, Netherlands
| | | | - Pierluigi Piersimoni
- Department of Physics and Technology, University of Bergen, NO-5007 Bergen, Norway
- UniCamillus-Saint Camillus International University of Health Sciences, Rome, Italy
| | - Maksym Protsenko
- Research and Production Enterprise 'LTU' (RPELTU), Kharkiv, Ukraine
| | - Max Rauch
- Department of Physics and Technology, University of Bergen, NO-5007 Bergen, Norway
| | - Attiq Ur Rehman
- Department of Physics and Technology, University of Bergen, NO-5007 Bergen, Norway
| | - Matthias Richter
- Department of Physics and Technology, University of Bergen, NO-5007 Bergen, Norway
| | - Dieter Röhrich
- Department of Physics and Technology, University of Bergen, NO-5007 Bergen, Norway
| | - Joshua Santana
- Center for Technology and Transfer (ZTT), University of Applied Sciences Worms, D-67549 Worms, Germany
| | - Joao Seco
- Department of Biomedical Physics in Radiation Oncology, DKFZ-German Cancer Research Center, Heidelberg, Germany
- Department of Physics and Astronomy, Heidelberg University, Heidelberg, Germany
| | - Arnon Songmoolnak
- Department of Physics and Technology, University of Bergen, NO-5007 Bergen, Norway
- Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Ákos Sudár
- Wigner Research Centre for Physics, Budapest, Hungary
- Budapest University of Technology and Economics, Budapest, Hungary
| | - Ganesh Tambave
- Center for Medical and Radiation Physics (CMRP), National Institute of Science Education and Research (NISER), Bhubaneswar, India
| | - Ihor Tymchuk
- Research and Production Enterprise 'LTU' (RPELTU), Kharkiv, Ukraine
| | - Kjetil Ullaland
- Department of Physics and Technology, University of Bergen, NO-5007 Bergen, Norway
| | | | - Lennart Volz
- Biophysics, GSI Helmholtz Center for Heavy Ion Research GmbH, Darmstadt, Germany
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Boris Wagner
- Department of Physics and Technology, University of Bergen, NO-5007 Bergen, Norway
| | - Steffen Wendzel
- Center for Technology and Transfer (ZTT), University of Applied Sciences Worms, D-67549 Worms, Germany
| | - Alexander Wiebel
- Center for Technology and Transfer (ZTT), University of Applied Sciences Worms, D-67549 Worms, Germany
| | - RenZheng Xiao
- Department of Physics and Technology, University of Bergen, NO-5007 Bergen, Norway
- College of Mechanical & Power Engineering, China Three Gorges University, Yichang, People's Republic of China
| | - Shiming Yang
- Department of Physics and Technology, University of Bergen, NO-5007 Bergen, Norway
| | - Sebastian Zillien
- Center for Technology and Transfer (ZTT), University of Applied Sciences Worms, D-67549 Worms, Germany
| |
Collapse
|