1
|
Wang J, Zhou C. Genome-Wide Characterization and Analysis of the FH Gene Family in Medicago truncatula Under Abiotic Stresses. Genes (Basel) 2025; 16:555. [PMID: 40428377 PMCID: PMC12111191 DOI: 10.3390/genes16050555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Revised: 04/27/2025] [Accepted: 04/28/2025] [Indexed: 05/29/2025] Open
Abstract
BACKGROUND The formin family proteins play an important role in guiding the assembly and nucleation of linear actin and can promote the formation of actin filaments independently of the Arp2/3 complex. As a key protein that regulates the cytoskeleton and cell morphological structure, the formin gene family has been widely studied in plants such as Arabidopsis thaliana and rice. METHODS In this study, we conducted comprehensive analyses, including phylogenetic tree construction, conserved motif identification, co-expression network analysis, and transcriptome data mining. RESULTS A total of 18 MtFH gene family members were identified, and the distribution of these genes on chromosomes was not uniform. The phylogenetic tree divided the FH proteins of the four species into two major subgroups (Clade I and Clade II). Notably, Medicago truncatula and soybean exhibited closer phylogenetic relationships. The analysis of cis-acting elements revealed the potential regulatory role of the MtFH gene in light response, hormone response, and stress response. GO enrichment analysis again demonstrated the importance of FH for reactions such as actin nucleation. Expression profiling revealed that MtFH genes displayed significant transcriptional responsiveness to cold, drought, and salt stress conditions. And there was a temporal complementary relationship between the expression of some genes under stress. The protein interaction network indicated an interaction relationship between MtFH protein and profilin, etc. In addition, 22 miRNAs were screened as potential regulators of the MtFH gene at the post-transcriptional level. CONCLUSIONS In general, this study provides a basis for deepening the understanding of the physiological function of the MtFH gene and provides a reference gene for stress resistance breeding in agricultural production.
Collapse
Affiliation(s)
| | - Chunyang Zhou
- College of Life Science and Technology, Changchun University of Science and Technology, Changchun 130012, China;
| |
Collapse
|
2
|
Das S, Das S, Maity A, Maiti S. Nuclear Protein FNBP4: A Novel Inhibitor of Non-diaphanous Formin FMN1-Mediated Actin Cytoskeleton Dynamics. J Biol Chem 2025:108550. [PMID: 40316024 DOI: 10.1016/j.jbc.2025.108550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 04/07/2025] [Accepted: 04/11/2025] [Indexed: 05/04/2025] Open
Abstract
Formin1 (FMN1), a member of the non-diaphanous formin family, is essential for development and neuronal function. Unlike diaphanous-related formins, FMN1 is not subject to canonical autoinhibition through the DID and DAD domains, nor is it activated by Rho GTPase binding. Recent studies suggest that formins also play roles in the nucleus, influencing DNA damage response and transcriptional regulation. However, the mechanisms regulating formins particularly non-diaphanous ones like FMN1 remain poorly understood. Our previous research identified the interaction between FMN1 and formin-binding protein 4 (FNBP4), prompting further investigation into its functional role in regulating actin dynamics. Results reveal that FNBP4 inhibits FMN1-mediated actin assembly in vitro. It is shown that FNBP4 prevents FMN1 from displacing the capping protein CapZ at the growing barbed end of actin filaments. Additionally, FNBP4 inhibits FMN1's bundling activity in a concentration-dependent manner. Further analysis indicates that FNBP4 interacts with the FH1 domain and the interdomain connector between the FH1 and FH2 domains, creating spatial constraints on the FH2 domain. We propose that FNBP4 acts as a stationary inhibitor of FMN1. In addition, our subcellular localization studies revealed that FNBP4 is exclusively nuclear, supported by the identification of a monopartite nuclear localization signal (NLS) within its sequence, suggesting a potential role in regulating nuclear actin dynamics. This study provides new insights into the regulatory role of FNBP4 in modulating FMN1-mediated actin dynamics, shedding light on regulatory mechanisms specific to non-diaphanous formins.
Collapse
Affiliation(s)
- Shubham Das
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India
| | - Saikat Das
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India
| | - Amrita Maity
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India
| | - Sankar Maiti
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India.
| |
Collapse
|
3
|
Ehara F, Nagase D, Kai M, Adachi K, Miyake H, Shimizu Y, Inoue Y, Miyazaki D. Roles played by IL-8 in altering dynamics of trabecular meshwork cells after human cytomegalovirus infection. Front Cell Infect Microbiol 2025; 15:1550509. [PMID: 40353220 PMCID: PMC12061996 DOI: 10.3389/fcimb.2025.1550509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 04/04/2025] [Indexed: 05/14/2025] Open
Abstract
Open-angle glaucoma (OAG) is the leading cause of blindness worldwide. Human cytomegalovirus (HCMV) is known to infect the trabecular meshwork cells (HTMCs) and corneal endothelial cells leading to chronic and recurrent elevations of the intraocular pressure (IOP) as secondary glaucoma. To investigate how HCMV affects the function of HTMCs, we analyzed the effects of HCMV infection on cultured HTMCs infected with the endothelial-adapted strain, TB40/E, of HCMV. We studied the induced molecular mechanisms focusing on the OAG-associated chemokines, IL-8 and CCL2. The HTMCs were analyzed for transcriptome changes using RNAseq analysis. Our results showed that HCMV infection activated interferon signaling and significantly increased the expression of IL-8 and CCL2. The IL-8-responsive transcriptional pathway was analyzed by using a CXCR2 antagonist which is associated with cellular movement and development of the hematological system. In contrast, the CCL2-sensitive pathway, assessed using a CCR2 antagonist, was linked to olfactory receptor signaling and keratinization. HCMV infection activated cell motility with the formation of lamellipodia and filopodia. The infection-induced activation of cell motility was dependent on both CXCR2 and CCR2, and IL-8 stimulated filopodia-mediated cell motility. HCMV infection also induced cell contraction that was dependent on CXCR2, but not on CCR2, and it involved the activation of Rac1/Cdc42. These results suggest that HCMV infection altered the cytoskeletal dynamics and contraction of the HTMCs in a CCR2- and CXCR2-dependent manner. These changes have the potential of causing an increase in the resistance to aqueous humor outflow in HCMV-associated anterior uveitis and corneal endotheliitis.
Collapse
Affiliation(s)
- Fumie Ehara
- Ophthalmology and Visual Science, Tottori University Faculty of Medicine, Yonago, Japan
| | - Daisuke Nagase
- Ophthalmology and Visual Science, Tottori University Faculty of Medicine, Yonago, Japan
| | - Masachika Kai
- Research Initiative Center, Organization for Research Initiative and Promotion, Tottori University Faculty of Medicine, Yonago, Japan
| | - Kaori Adachi
- Research Initiative Center, Organization for Research Initiative and Promotion, Tottori University Faculty of Medicine, Yonago, Japan
| | - Hitomi Miyake
- Ophthalmology and Visual Science, Tottori University Faculty of Medicine, Yonago, Japan
| | - Yumiko Shimizu
- Ophthalmology and Visual Science, Tottori University Faculty of Medicine, Yonago, Japan
| | - Yoshitsugu Inoue
- Ophthalmology and Visual Science, Tottori University Faculty of Medicine, Yonago, Japan
| | - Dai Miyazaki
- Ophthalmology and Visual Science, Tottori University Faculty of Medicine, Yonago, Japan
| |
Collapse
|
4
|
Xu G, Zhang Q, Cheng R, Qu J, Li W. Survival strategies of cancer cells: the role of macropinocytosis in nutrient acquisition, metabolic reprogramming, and therapeutic targeting. Autophagy 2025; 21:693-718. [PMID: 39817564 PMCID: PMC11925119 DOI: 10.1080/15548627.2025.2452149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/27/2024] [Accepted: 01/07/2025] [Indexed: 01/18/2025] Open
Abstract
Macropinocytosis is a nonselective form of endocytosis that allows cancer cells to largely take up the extracellular fluid and its contents, including nutrients, growth factors, etc. We first elaborate meticulously on the process of macropinocytosis. Only by thoroughly understanding this entire process can we devise targeted strategies against it. We then focus on the central role of the MTOR (mechanistic target of rapamycin kinase) complex 1 (MTORC1) in regulating macropinocytosis, highlighting its significance as a key signaling hub where various pathways converge to control nutrient uptake and metabolic processes. The article covers a comprehensive analysis of the literature on the molecular mechanisms governing macropinocytosis, including the initiation, maturation, and recycling of macropinosomes, with an emphasis on how these processes are hijacked by cancer cells to sustain their growth. Key discussions include the potential therapeutic strategies targeting macropinocytosis, such as enhancing drug delivery via this pathway, inhibiting macropinocytosis to starve cancer cells, blocking the degradation and recycling of macropinosomes, and inducing methuosis - a form of cell death triggered by excessive macropinocytosis. Targeting macropinocytosis represents a novel and innovative approach that could significantly advance the treatment of cancers that rely on this pathway for survival. Through continuous research and innovation, we look forward to developing more effective and safer anti-cancer therapies that will bring new hope to patients.Abbreviation: AMPK: AMP-activated protein kinase; ASOs: antisense oligonucleotides; CAD: carbamoyl-phosphate synthetase 2, aspartate transcarbamylase, and dihydroorotase; DC: dendritic cell; EGF: epidermal growth factor; EGFR: epidermal growth factor receptor; ERBB2: erb-b2 receptor tyrosine kinase 2; ESCRT: endosomal sorting complex required for transport; GAP: GTPase-activating protein; GEF: guanine nucleotide exchange factor; GRB2: growth factor receptor bound protein 2; LPP: lipopolyplex; MTOR: mechanistic target of rapamycin kinase; MTORC1: mechanistic target of rapamycin kinase complex 1; MTORC2: mechanistic target of rapamycin kinase complex 2; NSCLC: non-small cell lung cancer; PADC: pancreatic ductal adenocarcinoma; PDPK1: 3-phosphoinositide dependent protein kinase 1; PI3K: phosphoinositide 3-kinase; PIK3C3: phosphatidylinositol 3-kinase catalytic subunit type 3; PtdIns(3,4,5)P3: phosphatidylinositol-(3,4,5)-trisphosphate; PtdIns(4,5)P2: phosphatidylinositol-(4,5)-bisphosphate; PTT: photothermal therapies; RAC1: Rac family small GTPase 1; RPS6: ribosomal protein S6; RPS6KB1: ribosomal protein S6 kinase B1; RTKs: receptor tyrosine kinases; SREBF: sterol regulatory element binding transcription factor; TFEB: transcription factor EB; TNBC: triple-negative breast cancer; TSC2: TSC complex subunit 2; ULK1: unc-51 like autophagy activating kinase 1; UPS: ubiquitin-proteasome system.
Collapse
Affiliation(s)
- Guoshuai Xu
- Department of General Surgery, Aerospace Center Hospital, Beijing, China
| | - Qinghong Zhang
- Emergency Department, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Renjia Cheng
- Department of Intensive Care Medicine, The General Hospital of the Northern Theater Command of the People’s Liberation Army of China, Shenyang, Liaoning, China
| | - Jun Qu
- Department of General Surgery, Aerospace Center Hospital, Beijing, China
| | - Wenqiang Li
- Department of General Surgery, Aerospace Center Hospital, Beijing, China
| |
Collapse
|
5
|
He S, Zhou Z, Cheng MY, Hao X, Chiang T, Wang Y, Zhang J, Wang X, Ye X, Wang R, Steinberg GK, Zhao Y. Advances in moyamoya disease: pathogenesis, diagnosis, and therapeutic interventions. MedComm (Beijing) 2025; 6:e70054. [PMID: 39822761 PMCID: PMC11733107 DOI: 10.1002/mco2.70054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 12/12/2024] [Indexed: 01/19/2025] Open
Abstract
Moyamoya disease (MMD) is a type of cerebrovascular disease characterized by occlusion of the distal end of the internal carotid artery and the formation of collateral blood vessels. Over the past 20 years, the landscape of research on MMD has significantly transformed. In this review, we provide insights into the pathogenesis, diagnosis, and therapeutic interventions in MMD. The development of high-throughput sequencing technology has expanded our understanding of genetic susceptibility, identifying MMD-related genes beyond RNF213, such as ACTA2, DIAPH1, HLA, and others. The genetic susceptibility of MMD to its pathological mechanism was summarized and discussed. Based on the second-hit theory, the influences of inflammation, immunity, and environmental factors on MMD were also appropriately summarized. Despite these advancements, revascularization surgery remains the primary treatment for MMD largely because of the lack of effective in vivo and in vitro models. In this study, 16 imaging diagnostic methods for MMD were summarized. Regarding therapeutic intervention, the influences of drugs, endovascular procedures, and revascularization surgeries on patients with MMD were discussed. Future research on the central MMD vascular abnormalities and peripheral circulating factors will provide a more comprehensive understanding of the pathogenic mechanisms of MMD.
Collapse
Affiliation(s)
- Shihao He
- Department of NeurosurgeryPeking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical SciencesBeijingChina
- Department of NeurosurgeryStanford University School of MedicineStanfordCaliforniaUSA
| | - Zhenyu Zhou
- Department of NeurosurgeryBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| | - Michelle Y. Cheng
- Department of NeurosurgeryStanford University School of MedicineStanfordCaliforniaUSA
| | - Xiaokuan Hao
- Department of NeurosurgeryBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| | - Terrance Chiang
- Department of NeurosurgeryStanford University School of MedicineStanfordCaliforniaUSA
| | - Yanru Wang
- Department of NeurosurgeryBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| | - Junze Zhang
- Department of NeurosurgeryBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- Department of PathologyStanford University School of MedicineStanfordCaliforniaUSA
| | - Xilong Wang
- Department of NeurosurgeryBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| | - Xun Ye
- Department of NeurosurgeryBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| | - Rong Wang
- Department of NeurosurgeryBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| | - Gary K. Steinberg
- Department of NeurosurgeryStanford University School of MedicineStanfordCaliforniaUSA
| | - Yuanli Zhao
- Department of NeurosurgeryPeking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical SciencesBeijingChina
| |
Collapse
|
6
|
Li C, Liu Y, Liu C, Chen F, Xie Y, Zeh HJ, Yu C, Liu J, Tang D, Kang R. AGER-dependent macropinocytosis drives resistance to KRAS-G12D-targeted therapy in advanced pancreatic cancer. Sci Transl Med 2025; 17:eadp4986. [PMID: 39879317 DOI: 10.1126/scitranslmed.adp4986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/07/2024] [Accepted: 12/30/2024] [Indexed: 01/31/2025]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) driven by the KRAS-G12D mutation presents a formidable health challenge because of limited treatment options. MRTX1133 is a highly selective and first-in-class KRAS-G12D inhibitor under clinical development. Here, we report that the advanced glycosylation end product-specific receptor (AGER) plays a key role in mediating MRTX1133 resistance in PDAC cells. The up-regulation of AGER within cancer cells instigates macropinocytosis, facilitating the internalization of serum albumin and subsequent amino acid generation. These amino acids are then used to synthesize the antioxidant glutathione, leading to resistance to MRTX1133 treatment due to the inhibition of apoptosis. The underlying molecular mechanism involves AGER's interaction with diaphanous-related formin 1 (DIAPH1), a formin protein responsible for driving Rac family small GTPase 1 (RAC1)-dependent macropinosome formation. The effectiveness and safety of combining MRTX1133 with pharmacological inhibitors of the AGER-DIAPH1 complex (using RAGE299) or macropinocytosis (using EIPA) were confirmed in patient-derived xenografts, orthotopic models, and genetically engineered mouse PDAC models. This combination therapy also induces high-mobility group box 1 (HMGB1) release, resulting in a subsequent antitumor CD8+ T cell response in immunocompetent mice. Collectively, the study findings underscore the potential to enhance the efficacy of KRAS-G12D blockade therapy by targeting AGER-dependent macropinocytosis.
Collapse
Affiliation(s)
- Changfeng Li
- Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, China
| | - Yuanda Liu
- Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, China
| | - Chang Liu
- Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, China
| | - Fangquan Chen
- DAMP Laboratory, Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - Yangchun Xie
- Department of Oncology, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Herbert J Zeh
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Chunhua Yu
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jiao Liu
- DAMP Laboratory, Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
7
|
Mahanta B, Courtemanche N. The mode of subunit addition regulates the processive elongation of actin filaments by formin. J Biol Chem 2025; 301:108071. [PMID: 39667500 PMCID: PMC11773026 DOI: 10.1016/j.jbc.2024.108071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/25/2024] [Accepted: 12/05/2024] [Indexed: 12/14/2024] Open
Abstract
Formins play crucial roles in actin polymerization by nucleating filaments and regulating their elongation. Formins bind the barbed ends of filaments via their dimeric FH2 domains, which step processively onto incoming actin subunits during elongation. Actin monomers can bind formin-bound barbed ends directly or undergo diffusion-mediated delivery through interactions with formin FH1 domains and profilin. Despite its fundamental importance, a clear mechanism governing processive FH2 stepping has remained elusive. In this study, we systematically characterized the polymerization behavior of the Saccharomyces cerevisiae formin Bni1p using in vitro reconstitution assays and stochastic simulations. We found that Bni1p assembles populations of filaments with lengths that depend nonlinearly on the rate of elongation. This processive behavior is dictated by a variable probability of dissociation that depends on the reaction conditions. Bni1p dissociates from barbed ends with a basal off-rate, which enables prolonged filament assembly over the course of a long lifetime at the barbed end. A bias toward FH1-mediated delivery as the dominant mechanism for polymerization curtails elongation by shortening the lifetime of the formin at the filament end. This facilitates the assembly of populations of filaments with similar average lengths, even when polymerization proceeds at different rates. Our results suggest a central role for formin FH1 domains in regulating processivity. The specific effects of FH1 domains on processivity are variable and likely tailored to the physiological function of each formin.
Collapse
Affiliation(s)
- Biswaprakash Mahanta
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, USA
| | - Naomi Courtemanche
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, USA.
| |
Collapse
|
8
|
Scholl D, Boyd T, Latham AP, Salazar A, Khan A, Boeynaems S, Holehouse AS, Lander GC, Sali A, Park D, Deniz AA, Lasker K. Cellular Function of a Biomolecular Condensate Is Determined by Its Ultrastructure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.27.630454. [PMID: 39763716 PMCID: PMC11703246 DOI: 10.1101/2024.12.27.630454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Biomolecular condensates play key roles in the spatiotemporal regulation of cellular processes. Yet, the relationship between atomic features and condensate function remains poorly understood. We studied this relationship using the polar organizing protein Z (PopZ) as a model system, revealing how its material properties and cellular function depend on its ultrastructure. We revealed PopZ's hierarchical assembly into a filamentous condensate by integrating cryo-electron tomography, biochemistry, single-molecule techniques, and molecular dynamics simulations. The helical domain drives filamentation and condensation, while the disordered domain inhibits them. Phase-dependent conformational changes prevent interfilament contacts in the dilute phase and expose client binding sites in the dense phase. These findings establish a multiscale framework that links molecular interactions and condensate ultrastructure to macroscopic material properties that drive cellular function.
Collapse
Affiliation(s)
- Daniel Scholl
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Tumara Boyd
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Andrew P. Latham
- Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Alexandra Salazar
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Asma Khan
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Center for Infectious Disease Imaging, National Institutes of Health, Clinical Center, 10 Center Drive, Bethesda, MD 20892, USA
| | - Steven Boeynaems
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
- Therapeutic Innovation Center (THINC), Baylor College of Medicine, Houston, TX 77030, USA
- Center for Alzheimer’s and Neurodegenerative Diseases (CAND), Texas Children’s Hospital, Houston, TX 77030, USA
- Dan L Duncan Comprehensive Cancer Center (DLDCCC), Baylor College of Medicine, Houston, TX 77030, USA
| | - Alex S. Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO
- Center for Biomolecular Condensates (CBC), Washington University in St. Louis, St. Louis, MO
| | - Gabriel C. Lander
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Andrej Sali
- Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Donghyun Park
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Ashok A. Deniz
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Keren Lasker
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| |
Collapse
|
9
|
Nama K, Su B, Marquez J, Khokha MK, Habas R. The dishevelled associated activator of morphogenesis protein 2 (Daam2) regulates neural tube closure. Dev Dyn 2024; 253:1130-1146. [PMID: 38877839 PMCID: PMC11611695 DOI: 10.1002/dvdy.720] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 04/15/2024] [Accepted: 04/24/2024] [Indexed: 12/05/2024] Open
Abstract
BACKGROUND The Wnt signaling pathway is highly conserved in metazoans and regulates a large array of cellular processes including motility, polarity and fate determination, and stem cell homeostasis. Modulation of the actin cytoskeleton via the non-canonical Wnt pathway regulate cell polarity and cell migration that are required for proper vertebrate gastrulation and subsequent neurulation. However, the mechanism(s) of how the non-canonical pathway mediates actin cytoskeleton modulation is not fully understood. RESULTS Herein, we characterize the role of the Formin-homology protein; dishevelled associated activator of morphogenesis 2 (Daam2) protein in the Wnt signaling pathway. Co-immunoprecipitation assays confirm the binding of Daam2 to dishevelled2 (Dvl2) as well as the domains within these proteins required for interaction; additionally, the interaction between Daam2 and Dvl2 was Wnt-regulated. Sub-cellular localization studies reveal Daam2 is cytoplasmic and regulates the cellular actin cytoskeleton by modulating actin filament formation. During Xenopus development, a knockdown or loss of Daam2 specifically produces neural tube closure defects indicative of a role in non-canonical signaling. Additionally, our studies did not identify any role for Daam2 in canonical Wnt signaling in mammalian culture cells or the Xenopus embryo. CONCLUSIONS Our studies together identify Daam2 as a component of the non-canonical Wnt pathway and Daam2 is a regulator of neural tube morphogenesis during vertebrate development.
Collapse
Affiliation(s)
- Kaushik Nama
- Department of Biology, Temple University, Philadelphia, PA 19122
| | - Baihao Su
- Department of Biology, Temple University, Philadelphia, PA 19122
| | - Jonathan Marquez
- Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Mustapha K Khokha
- Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Raymond Habas
- Department of Biology, Temple University, Philadelphia, PA 19122
| |
Collapse
|
10
|
Labat-de-Hoz L, Jiménez MÁ, Correas I, Alonso MA. Regulation of formin INF2 and its alteration in INF2-linked inherited disorders. Cell Mol Life Sci 2024; 81:463. [PMID: 39586895 PMCID: PMC11589041 DOI: 10.1007/s00018-024-05499-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/21/2024] [Accepted: 10/31/2024] [Indexed: 11/27/2024]
Abstract
Formins are proteins that catalyze the formation of linear filaments made of actin. INF2, a formin, is crucial for correct vesicular transport, microtubule stability and mitochondrial division. Its activity is regulated by a complex of cyclase-associated protein and lysine-acetylated G-actin (KAc-actin), which helps INF2 adopt an inactive conformation through the association of its N-terminal diaphanous inhibitory domain (DID) with its C-terminal diaphanous autoinhibitory domain. INF2 activation can occur through calmodulin binding, KAc-actin deacetylation, G-actin binding, or association with the Cdc42 GTPase. Mutations in the INF2 DID are linked to focal segmental glomerulosclerosis (FSGS), affecting podocytes, and Charcot-Marie-Tooth disease, which affects Schwann cells and leads to axonal loss. At least 80 pathogenic DID variants of INF2 have been identified, with potential for many more. These mutations disrupt INF2 regulation, leading to excessive actin polymerization. This in turn causes altered intracellular trafficking, abnormal mitochondrial dynamics, and profound transcriptional reprogramming via the MRTF/SRF complex, resulting in mitotic abnormalities and p53-mediated cell death. This sequence of events could be responsible for progressive podocyte loss during glomerular degeneration in FSGS patients. Pharmacological targeting of INF2 or actin polymerization could offer the therapeutic potential to halt the progression of FSGS and improve outcomes for patients with INF2-linked disease.
Collapse
Affiliation(s)
- Leticia Labat-de-Hoz
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), 28049, Madrid, Spain
| | - M Ángeles Jiménez
- Instituto de Química Física (IQF) Blas Cabrera, Consejo Superior de Investigaciones Científicas, 28006, Madrid, Spain
| | - Isabel Correas
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), 28049, Madrid, Spain
- Department of Molecular Biology, UAM, 28049, Madrid, Spain
| | - Miguel A Alonso
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), 28049, Madrid, Spain.
| |
Collapse
|
11
|
Valdez VA, Ma M, Gouveia B, Zhang R, Petry S. HURP facilitates spindle assembly by stabilizing microtubules and working synergistically with TPX2. Nat Commun 2024; 15:9689. [PMID: 39516491 PMCID: PMC11549357 DOI: 10.1038/s41467-024-53630-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
In vertebrate spindles, most microtubules are formed via branching microtubule nucleation, whereby microtubules nucleate along the side of pre-existing microtubules. Hepatoma up-regulated protein (HURP) is a microtubule-associated protein that has been implicated in spindle assembly, but its mode of action is yet to be defined. In this study, we show that HURP is necessary for RanGTP-induced branching microtubule nucleation in Xenopus egg extract. Specifically, HURP stabilizes the microtubule lattice to promote microtubule formation from γ-TuRC. This function is shifted to promote branching microtubule nucleation through enhanced localization to TPX2 condensates, which form the core of the branch site on microtubules. Lastly, we provide a high-resolution cryo-EM structure of HURP on the microtubule, revealing how HURP binding stabilizes the microtubule lattice. We propose a model in which HURP stabilizes microtubules during their formation, and TPX2 preferentially enriches HURP to microtubules to promote branching microtubule nucleation and thus spindle assembly.
Collapse
Affiliation(s)
| | - Meisheng Ma
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
- Department of Histology and Embryology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Bernardo Gouveia
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | - Rui Zhang
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA.
| | - Sabine Petry
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
12
|
Heydecker M, Shitara A, Chen D, Tran DT, Masedunskas A, Tora MS, Ebrahim S, Appaduray MA, Galeano Niño JL, Bhardwaj A, Narayan K, Hardeman EC, Gunning PW, Weigert R. Coordination of force-generating actin-based modules stabilizes and remodels membranes in vivo. J Cell Biol 2024; 223:e202401091. [PMID: 39172125 PMCID: PMC11344176 DOI: 10.1083/jcb.202401091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/18/2024] [Accepted: 08/07/2024] [Indexed: 08/23/2024] Open
Abstract
Membrane remodeling drives a broad spectrum of cellular functions, and it is regulated through mechanical forces exerted on the membrane by cytoplasmic complexes. Here, we investigate how actin filaments dynamically tune their structure to control the active transfer of membranes between cellular compartments with distinct compositions and biophysical properties. Using intravital subcellular microscopy in live rodents we show that a lattice composed of linear filaments stabilizes the granule membrane after fusion with the plasma membrane and a network of branched filaments linked to the membranes by Ezrin, a regulator of membrane tension, initiates and drives to completion the integration step. Our results highlight how the actin cytoskeleton tunes its structure to adapt to dynamic changes in the biophysical properties of membranes.
Collapse
Affiliation(s)
- Marco Heydecker
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- School of Biomedical Sciences, University of New South Wales Sydney, Sydney, Australia
| | - Akiko Shitara
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Department of Pharmacology, Asahi University School of Dentistry, Gifu, Japan
| | - Desu Chen
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Duy T. Tran
- NIDCR Imaging Core, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Andrius Masedunskas
- School of Biomedical Sciences, University of New South Wales Sydney, Sydney, Australia
| | - Muhibullah S. Tora
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Seham Ebrahim
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Department of Molecular Physiology and Biological Physics, Center for Membrane and Cell Physiology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Mark A. Appaduray
- School of Biomedical Sciences, University of New South Wales Sydney, Sydney, Australia
| | - Jorge Luis Galeano Niño
- EMBL Australia, Single Molecule Science node, University of New South Wales Sydney, Sydney, Australia
| | - Abhishek Bhardwaj
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Kedar Narayan
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Edna C. Hardeman
- School of Biomedical Sciences, University of New South Wales Sydney, Sydney, Australia
| | - Peter W. Gunning
- School of Biomedical Sciences, University of New South Wales Sydney, Sydney, Australia
| | - Roberto Weigert
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
13
|
Li T, Song Y, Wei L, Song X, Duan R. Disulfidptosis: a novel cell death modality induced by actin cytoskeleton collapse and a promising target for cancer therapeutics. Cell Commun Signal 2024; 22:491. [PMID: 39394612 PMCID: PMC11470700 DOI: 10.1186/s12964-024-01871-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 10/03/2024] [Indexed: 10/13/2024] Open
Abstract
Disulfidptosis is a novel discovered form of programmed cell death (PCD) that diverges from apoptosis, necroptosis, ferroptosis, and cuproptosis, stemming from disulfide stress-induced cytoskeletal collapse. In cancer cells exhibiting heightened expression of the solute carrier family 7 member 11 (SLC7A11), excessive cystine importation and reduction will deplete nicotinamide adenine dinucleotide phosphate (NADPH) under glucose deprivation, followed by an increase in intracellular disulfide stress and aberrant disulfide bond formation within actin networks, ultimately culminating in cytoskeletal collapse and disulfidptosis. Disulfidptosis involves crucial physiological processes in eukaryotic cells, such as cystine and glucose uptake, NADPH metabolism, and actin dynamics. The Rac1-WRC pathway-mediated actin polymerization is also implicated in this cell death due to its contribution to disulfide bond formation. However, the precise mechanisms underlying disulfidptosis and its role in tumors are not well understood. This is probably due to the multifaceted functionalities of SLC7A11 within cells and the complexities of the downstream pathways driving disulfidptosis. This review describes the critical roles of SLC7A11 in cells and summarizes recent research advancements in the potential pathways of disulfidptosis. Moreover, the less-studied aspects of this newly discovered cell death process are highlighted to stimulate further investigations in this field.
Collapse
Affiliation(s)
- Tianyi Li
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Ying Song
- Department of Gastroenterology and Digestive Endoscopy Center, The Second Hospital of Jilin University, Chang Chun, Jilin, China
| | - Lijuan Wei
- Department of Gastroenterology and Digestive Endoscopy Center, The Second Hospital of Jilin University, Chang Chun, Jilin, China
| | - Xiangyi Song
- Department of Gastroenterology and Digestive Endoscopy Center, The Second Hospital of Jilin University, Chang Chun, Jilin, China
| | - Ruifeng Duan
- Department of Gastroenterology and Digestive Endoscopy Center, The Second Hospital of Jilin University, Chang Chun, Jilin, China.
| |
Collapse
|
14
|
Pimm ML, Haarer BK, Nobles AD, Haney LM, Marcin AG, Alcaide Eligio M, Henty-Ridilla JL. Coordination of actin plus-end dynamics by IQGAP1, formin, and capping protein. J Cell Biol 2024; 223:e202305065. [PMID: 38787349 PMCID: PMC11117073 DOI: 10.1083/jcb.202305065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 04/01/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024] Open
Abstract
Cell processes require precise regulation of actin polymerization that is mediated by plus-end regulatory proteins. Detailed mechanisms that explain plus-end dynamics involve regulators with opposing roles, including factors that enhance assembly, e.g., the formin mDia1, and others that stop growth (capping protein, CP). We explore IQGAP1's roles in regulating actin filament plus-ends and the consequences of perturbing its activity in cells. We confirm that IQGAP1 pauses elongation and interacts with plus ends through two residues (C756 and C781). We directly visualize the dynamic interplay between IQGAP1 and mDia1, revealing that IQGAP1 displaces the formin to influence actin assembly. Using four-color TIRF, we show that IQGAP1's displacement activity extends to formin-CP "decision complexes," promoting end-binding protein turnover at plus-ends. Loss of IQGAP1 or its plus-end activities disrupts morphology and migration, emphasizing its essential role. These results reveal a new role for IQGAP1 in promoting protein turnover on filament ends and provide new insights into how plus-end actin assembly is regulated in cells.
Collapse
Affiliation(s)
- Morgan L. Pimm
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Brian K. Haarer
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Alexander D. Nobles
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Laura M. Haney
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Alexandra G. Marcin
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Marcela Alcaide Eligio
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Jessica L. Henty-Ridilla
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, USA
| |
Collapse
|
15
|
Li WJ, Li RY, Wang DY, Shen M, Liu HL. CXCR3 participates in asymmetric division of mouse oocytes by modulating actin dynamics. Theriogenology 2024; 225:43-54. [PMID: 38788628 DOI: 10.1016/j.theriogenology.2024.05.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/24/2024] [Accepted: 05/18/2024] [Indexed: 05/26/2024]
Abstract
Extensive research has been conducted on the role of CXCR3 in immune responses and inflammation. However, the role of CXCR3 in the reproductive system, particularly in oocyte development, remains unknown. In this study, we present findings on the involvement of CXCR3 in the meiotic division process of mouse oocytes. We found CXCR3 was expressed consistently throughout the entire maturation process of mouse oocyte. Inhibition of CXCR3 impaired the asymmetric division of oocyte, while the injection of Cxcr3 mRNA was capable of restoring these defects. Further study showed that inhibition of CXCR3 perturbed spindle migration by affecting LIMK/cofilin pathway-mediated actin remodeling. Knockout of CXCR3 led to an upregulation of actin-binding protein and an increased ATP level in GV-stage oocytes, while maintaining normal actin dynamics during the process of meiosis. Additionally, we noticed the expression level of DYNLT1 is markedly elevated in CXCR3-null oocytes. DYNLT1 bound with the Arp2/3 complex, and knockdown of DYNLT1 in CXCR3-null oocytes impaired the organization of cytoplasmic actin, suggesting the regulatory role of DYNLT1 in actin organization, and the compensatory expression of DYNLT1 may contribute to maintain normal actin dynamics in CXCR3-knockout oocytes. In summary, our findings provide insights into the intricate network of actin dynamics associated with CXCR3 during oocyte meiosis.
Collapse
Affiliation(s)
- Wei-Jian Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China.
| | - Rong-Yang Li
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
| | - Da-Yu Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China.
| | - Ming Shen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China.
| | - Hong-Lin Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
16
|
Wojnacki J, Quassollo G, Bordenave MD, Unsain N, Martínez GF, Szalai AM, Pertz O, Gundersen GG, Bartolini F, Stefani FD, Cáceres A, Bisbal M. Dual spatio-temporal regulation of axon growth and microtubule dynamics by RhoA signaling pathways. J Cell Sci 2024; 137:jcs261970. [PMID: 38910449 DOI: 10.1242/jcs.261970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 06/17/2024] [Indexed: 06/25/2024] Open
Abstract
RhoA plays a crucial role in neuronal polarization, where its action restraining axon outgrowth has been thoroughly studied. We now report that RhoA has not only an inhibitory but also a stimulatory effect on axon development depending on when and where exerts its action and the downstream effectors involved. In cultured hippocampal neurons, FRET imaging revealed that RhoA activity selectively localized in growth cones of undifferentiated neurites, whereas in developing axons it displayed a biphasic pattern, being low in nascent axons and high in elongating ones. RhoA-Rho kinase (ROCK) signaling prevented axon initiation but had no effect on elongation, whereas formin inhibition reduced axon extension without significantly altering initial outgrowth. In addition, RhoA-mDia signaling promoted axon elongation by stimulating growth cone microtubule stability and assembly, as opposed to RhoA-ROCK signaling, which restrained growth cone microtubule assembly and protrusion.
Collapse
Affiliation(s)
- José Wojnacki
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba 5016, Argentina
| | - Gonzalo Quassollo
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba 5016, Argentina
| | - Martín D Bordenave
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, Ciudad Autónoma de Buenos Aires C1425FQD, Argentina
| | - Nicolás Unsain
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba 5016, Argentina
- Instituto Universitario Ciencias Biomédicas de Córdoba (IUCBC), Córdoba 5016, Argentina
| | - Gaby F Martínez
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba 5016, Argentina
| | - Alan M Szalai
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, Ciudad Autónoma de Buenos Aires C1425FQD, Argentina
| | - Olivier Pertz
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, Bern 3012, Switzerland
| | - Gregg G Gundersen
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Francesca Bartolini
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Fernando D Stefani
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, Ciudad Autónoma de Buenos Aires C1425FQD, Argentina
- Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Güiraldes 2620, Ciudad Autónoma de Buenos Aires C1428EHA, Argentina
| | - Alfredo Cáceres
- Centro Investigación Medicina Traslacional Severo R Amuchástegui (CIMETSA), Instituto Universitario Ciencias Biomédicas Córdoba (IUCBC), Av. Naciones Unidas 440, Córdoba 5016, Argentina
| | - Mariano Bisbal
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba 5016, Argentina
- Instituto Universitario Ciencias Biomédicas de Córdoba (IUCBC), Córdoba 5016, Argentina
| |
Collapse
|
17
|
Caparali EB, De Gregorio V, Barua M. Genetic Causes of Nephrotic Syndrome and Focal and Segmental Glomerulosclerosis. ADVANCES IN KIDNEY DISEASE AND HEALTH 2024; 31:309-316. [PMID: 39084756 DOI: 10.1053/j.akdh.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 03/29/2024] [Accepted: 04/01/2024] [Indexed: 08/02/2024]
Abstract
The field of nephrology has a long-standing interest in deciphering the genetic basis of nephrotic syndrome (NS), motivated by the mechanistic insights it provides in chronic kidney disease. The initial era of genetic studies solidified NS and the focal segmental glomerulosclerosis lesion as podocyte disorders. The likelihood of identifying a single gene (called monogenic) cause is higher if certain factors are present such as positive family history. Obtaining a monogenic diagnosis enables reproductive counseling and screening of family members. Now, with a new era of genomic studies facilitated by technological advances and the emergence of large genetically characterized cohorts, more insights are apparent. This includes the phenotypic breadth associated with disease genes, as evidenced in Alport syndrome and congenital NS of the Finnish type. Moreover, the underlying genetic architecture is more complex than previously appreciated, as shown by genome-wide association studies, suggesting that variants in multiple genes collectively influence risk. Achieving molecularly informed diagnoses also holds substantial potential for personalizing medicine, including the development of targeted therapeutics. Illustrative examples include coenzyme Q10 for ADCK4-associated NS and inaxaplin, a small molecule that inhibits apolipoprotein L1 channel activity, though larger studies are required to confirm benefit.
Collapse
Affiliation(s)
- Emine Bilge Caparali
- Division of Nephrology, University Health Network, Toronto, Ontario, Canada; Division of Nephrology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Vanessa De Gregorio
- Division of Nephrology, University Health Network, Toronto, Ontario, Canada; Division of Nephrology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Moumita Barua
- Division of Nephrology, University Health Network, Toronto, Ontario, Canada; Division of Nephrology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
18
|
Labat-de-Hoz L, Fernández-Martín L, Correas I, Alonso MA. INF2 formin variants linked to human inherited kidney disease reprogram the transcriptome, causing mitotic chaos and cell death. Cell Mol Life Sci 2024; 81:279. [PMID: 38916773 PMCID: PMC11335204 DOI: 10.1007/s00018-024-05323-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/26/2024]
Abstract
Mutations in the human INF2 gene cause autosomal dominant focal segmental glomerulosclerosis (FSGS)-a condition characterized by podocyte loss, scarring, and subsequent kidney degeneration. To understand INF2-linked pathogenicity, we examined the effect of pathogenic INF2 on renal epithelial cell lines and human primary podocytes. Our study revealed an increased incidence of mitotic cells with surplus microtubule-organizing centers fostering multipolar spindle assembly, leading to nuclear abnormalities, particularly multi-micronucleation. The levels of expression of exogenous pathogenic INF2 were similar to those of endogenous INF2. The aberrant nuclear phenotypes were observed regardless of the expression method used (retrovirus infection or plasmid transfection) or the promoter (LTR or CMV) used, and were absent with exogenous wild type INF2 expression. This indicates that the effect of pathogenic INF2 is not due to overexpression or experimental cell manipulation, but instead to the intrinsic properties of pathogenic INF2. Inactivation of the INF2 catalytic domain prevented aberrant nuclei formation. Pathogenic INF2 triggered the translocation of the transcriptional cofactor MRTF into the nucleus. RNA sequencing revealed a profound alteration in the transcriptome that could be primarily attributed to the sustained activation of the MRTF-SRF transcriptional complex. Cells eventually underwent mitotic catastrophe and death. Reducing MRTF-SRF activation mitigated multi-micronucleation, reducing the extent of cell death. Our results, if validated in animal models, could provide insights into the mechanism driving glomerular degeneration in INF2-linked FSGS and may suggest potential therapeutic strategies for impeding FSGS progression.
Collapse
Affiliation(s)
- Leticia Labat-de-Hoz
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas (CSIC) and Universidad Autónoma de Madrid (UAM), 28049, Madrid, Spain
| | - Laura Fernández-Martín
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas (CSIC) and Universidad Autónoma de Madrid (UAM), 28049, Madrid, Spain
| | - Isabel Correas
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas (CSIC) and Universidad Autónoma de Madrid (UAM), 28049, Madrid, Spain
- Department of Molecular Biology, UAM, 28049, Madrid, Spain
| | - Miguel A Alonso
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas (CSIC) and Universidad Autónoma de Madrid (UAM), 28049, Madrid, Spain.
| |
Collapse
|
19
|
Wei J, Wen Q, Zhan S, Cao J, Jiang Y, Lian J, Mai Y, Qiu M, Liu Y, Chen P, Lin Q, Wei X, Wei Y, Huang Q, Zhang R, He S, Yuan G, Wei Q, Zhou Z, Yu H. Functional genetic variants of the disulfidptosis-related INF2 gene predict survival of hepatitis B virus-related hepatocellular carcinoma. Carcinogenesis 2024; 45:199-209. [PMID: 38270181 DOI: 10.1093/carcin/bgae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/18/2023] [Accepted: 01/23/2024] [Indexed: 01/26/2024] Open
Abstract
Disulfidptosis is a novel form of programmed cell death involved in migration and invasion of cancer cells, but few studies investigated the roles of genetic variants in disulfidptosis-related genes in survival of patients with hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC). We used Cox proportional hazards regression analyses, Kaplan-Meier curves and receiver operating characteristic curves to assess effects of genetic variants in 14 disulfidptosis-related genes on overall survival of 866 HBV-HCC patients. The Bayesian false discovery probability was used for multiple testing corrections. We also investigated biological mechanisms of the significant variants through expression quantitative trait loci analyses using the data from publicly available databases, luciferase reporter assays and differential expression analyses. As a result, we identified two independently functional single nucleotide polymorphisms (SNPs) (INF2 rs4072285 G > A and INF2 rs4444271 A > T) that predicted overall survival of HBV-HCC patients, with adjusted hazard ratios of 1.60 (95% CI = 1.22-2.11, P = 0.001) and 1.50 (95% CI = 1.80-1.90, P < 0.001), respectively, after multiple testing correction. Luciferase reporter assays indicated that both INF2 rs4072285 A and INF2 rs4444271 T alleles increased INF2 mRNA expression levels (P < 0.001) that were also higher in HCC tumor tissues than in adjacent normal tissues (P < 0.001); such elevated INF2 expression levels were associated with a poorer survival of HBV-HCC patients (P < 0.001) in the TCGA database. In summary, this study supported that INF2 rs4072285 and INF2 rs4444271 may be novel biomarkers for survival of HBV-HCC patients.
Collapse
Affiliation(s)
- Junjie Wei
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning 530021, China
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Qiuping Wen
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning 530021, China
- Key Cultivated Laboratory of Cancer Molecular Medicine of Guangxi Health Commission, Guangxi Medical University Cancer Hospital, Nanning 530021, China
| | - Shicheng Zhan
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Ji Cao
- Department of Cancer Prevention and Control, Guangxi Medical University Cancer Hospital, Nanning 530021, China
| | - Yanji Jiang
- Department of Scientific Research, Guangxi Medical University Cancer Hospital, Nanning 530021, China
| | - Jiawei Lian
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Yuejiao Mai
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Moqin Qiu
- Department of Respiratory Oncology, Guangxi Medical University Cancer Hospital, Nanning 530021, China
| | - Yingchun Liu
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning 530021, China
- Key Cultivated Laboratory of Cancer Molecular Medicine of Guangxi Health Commission, Guangxi Medical University Cancer Hospital, Nanning 530021, China
| | - Peiqin Chen
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning 530021, China
| | - Qiuling Lin
- Department of Clinical Research, Guangxi Medical University Cancer Hospital, Nanning 530021, China
| | - Xiaoxia Wei
- Department of Clinical Research, Guangxi Medical University Cancer Hospital, Nanning 530021, China
| | - Yuying Wei
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning 530021, China
| | - Qiongguang Huang
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Ruoxin Zhang
- School of Public Health, Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai 200032, China
| | - Songqing He
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, Guangxi 530021, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning 530021, China
| | - Guandou Yuan
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, Guangxi 530021, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning 530021, China
| | - Qingyi Wei
- Duke Cancer Institute, Duke University Medical Center, 10 Bryn Searle Dr., Durham, NC, 27710, USA
- Department of Population Health Sciences, Duke University School of Medicine, Durham, NC 27710, USA
| | - Zihan Zhou
- Department of Cancer Prevention and Control, Guangxi Medical University Cancer Hospital, Nanning 530021, China
| | - Hongping Yu
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning 530021, China
- Key Cultivated Laboratory of Cancer Molecular Medicine of Guangxi Health Commission, Guangxi Medical University Cancer Hospital, Nanning 530021, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning 530021, China
| |
Collapse
|
20
|
Oosterheert W, Boiero Sanders M, Funk J, Prumbaum D, Raunser S, Bieling P. Molecular mechanism of actin filament elongation by formins. Science 2024; 384:eadn9560. [PMID: 38603491 DOI: 10.1126/science.adn9560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/05/2024] [Indexed: 04/13/2024]
Abstract
Formins control the assembly of actin filaments (F-actin) that drive cell morphogenesis and motility in eukaryotes. However, their molecular interaction with F-actin and their mechanism of action remain unclear. In this work, we present high-resolution cryo-electron microscopy structures of F-actin barbed ends bound by three distinct formins, revealing a common asymmetric formin conformation imposed by the filament. Formation of new intersubunit contacts during actin polymerization sterically displaces formin and triggers its translocation. This "undock-and-lock" mechanism explains how actin-filament growth is coordinated with formin movement. Filament elongation speeds are controlled by the positioning and stability of actin-formin interfaces, which distinguish fast and slow formins. Furthermore, we provide a structure of the actin-formin-profilin ring complex, which resolves how profilin is rapidly released from the barbed end during filament elongation.
Collapse
Affiliation(s)
- Wout Oosterheert
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany
| | - Micaela Boiero Sanders
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany
| | - Johanna Funk
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany
| | - Daniel Prumbaum
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany
| | - Stefan Raunser
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany
| | - Peter Bieling
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany
| |
Collapse
|
21
|
Pimm ML, Haarer BK, Nobles AD, Haney LM, Marcin AG, Marcela Alcaide Eligio, Henty-Ridilla JL. Coordination of actin plus-end dynamics by IQGAP1, formin, and capping protein. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.04.539490. [PMID: 37205555 PMCID: PMC10187324 DOI: 10.1101/2023.05.04.539490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Cell processes require precise regulation of actin polymerization that is mediated by plus-end regulatory proteins. Detailed mechanisms that explain plus-end dynamics involve regulators with opposing roles, including factors that enhance assembly, e.g., the formin mDia1, and others that stop growth (Capping Protein, CPz). We explore IQGAP1's roles regulating actin filament plus-ends and the consequences of perturbing its activity in cells. We confirm that IQGAP1 pauses elongation and interacts with plus ends through two residues (C756 and C781). We directly visualize the dynamic interplay between IQGAP1 and mDia1, revealing that IQGAP1 displaces the formin to influence actin assembly. Using four-color TIRF we show that IQGAP1's displacement activity extends to formin-CPz 'decision complexes', promoting end-binding protein turnover at plus-ends. Loss of IQGAP1 or its plus-end activities disrupts morphology and migration, emphasizing its essential role. These results reveal a new role for IQGAP1 in promoting protein turnover on filament ends and provide new insights into how plus-end actin assembly is regulated in cells.
Collapse
Affiliation(s)
- Morgan L Pimm
- Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Brian K Haarer
- Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Alexander D Nobles
- Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Laura M Haney
- Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Alexandra G Marcin
- Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Marcela Alcaide Eligio
- Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Jessica L Henty-Ridilla
- Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
- Department of Neuroscience & Physiology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| |
Collapse
|
22
|
Oevel K, Hohensee S, Kumar A, Rosas-Brugada I, Bartolini F, Soykan T, Haucke V. Rho GTPase signaling and mDia facilitate endocytosis via presynaptic actin. eLife 2024; 12:RP92755. [PMID: 38502163 PMCID: PMC10950329 DOI: 10.7554/elife.92755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024] Open
Abstract
Neurotransmission at synapses is mediated by the fusion and subsequent endocytosis of synaptic vesicle membranes. Actin has been suggested to be required for presynaptic endocytosis but the mechanisms that control actin polymerization and its mode of action within presynaptic nerve terminals remain poorly understood. We combine optical recordings of presynaptic membrane dynamics and ultrastructural analysis with genetic and pharmacological manipulations to demonstrate that presynaptic endocytosis is controlled by actin regulatory diaphanous-related formins mDia1/3 and Rho family GTPase signaling in mouse hippocampal neurons. We show that impaired presynaptic actin assembly in the near absence of mDia1/3 and reduced RhoA activity is partly compensated by hyperactivation of Rac1. Inhibition of Rac1 signaling further aggravates impaired presynaptic endocytosis elicited by loss of mDia1/3. Our data suggest that interdependent mDia1/3-Rho and Rac1 signaling pathways cooperatively act to facilitate synaptic vesicle endocytosis by controlling presynaptic F-actin.
Collapse
Affiliation(s)
- Kristine Oevel
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)BerlinGermany
| | - Svea Hohensee
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)BerlinGermany
| | - Atul Kumar
- Department of Pathology and Cell Biology, Columbia University Medical CenterNew York CityUnited States
| | | | - Francesca Bartolini
- Department of Pathology and Cell Biology, Columbia University Medical CenterNew York CityUnited States
| | - Tolga Soykan
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)BerlinGermany
| | - Volker Haucke
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)BerlinGermany
- Faculty of Biology, Chemistry, Pharmacy, Freie Universität BerlinBerlinGermany
- NeuroCure Cluster of Excellence, Charité Universitätsmedizin BerlinBerlinGermany
| |
Collapse
|
23
|
Chehade G, El Hajj N, Aittaleb M, Alkailani MI, Bejaoui Y, Mahdi A, Aldaalis AAH, Verbiest M, Lelotte J, Ruiz-Reig N, Durá I, Raftopoulos C, Tajeddine N, Tissir F. DIAPH3 predicts survival of patients with MGMT-methylated glioblastoma. Front Oncol 2024; 14:1359652. [PMID: 38454929 PMCID: PMC10917989 DOI: 10.3389/fonc.2024.1359652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/07/2024] [Indexed: 03/09/2024] Open
Abstract
Background Glioblastoma is one of the most aggressive primary brain tumors, with a poor outcome despite multimodal treatment. Methylation of the MGMT promoter, which predicts the response to temozolomide, is a well-established prognostic marker for glioblastoma. However, a difference in survival can still be detected within the MGMT methylated group, with some patients exhibiting a shorter survival than others, emphasizing the need for additional predictive factors. Methods We analyzed DIAPH3 expression in glioblastoma samples from the cancer genome atlas (TCGA). We also retrospectively analyzed one hundred seventeen histological glioblastomas from patients operated on at Saint-Luc University Hospital between May 2013 and August 2019. We analyzed the DIAPH3 expression, explored the relationship between mRNA levels and Patient's survival after the surgical resection. Finally, we assessed the methylation pattern of the DIAPH3 promoter using a targeted deep bisulfite sequencing approach. Results We found that 36% and 1% of the TCGA glioblastoma samples exhibit copy number alterations and mutations in DIAPH3, respectively. We scrutinized the expression of DIAPH3 at single cell level and detected an overlap with MKI67 expression in glioblastoma proliferating cells, including neural progenitor-like, oligodendrocyte progenitor-like and astrocyte-like states. We quantitatively analyzed DIAPH3 expression in our cohort and uncovered a positive correlation between DIAPH3 mRNA level and patient's survival. The effect of DIAPH3 was prominent in MGMT-methylated glioblastoma. Finally, we report that the expression of DIAPH3 is at least partially regulated by the methylation of three CpG sites in the promoter region. Conclusion We propose that combining the DIAPH3 expression with MGMT methylation could offer a better prediction of survival and more adapted postsurgical treatment for patients with MGMT-methylated glioblastoma.
Collapse
Affiliation(s)
- Georges Chehade
- Université Catholique de Louvain, Institute of Neuroscience, Cellular and Molecular Division, Brussels, Belgium
| | - Nady El Hajj
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Mohamed Aittaleb
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Maisa I. Alkailani
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Yosra Bejaoui
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Asma Mahdi
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Arwa A. H. Aldaalis
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Michael Verbiest
- Laboratory of Population Genomics, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Julie Lelotte
- Department of Neuropathology, Saint-Luc University Hospital, Brussels, Belgium
| | - Nuria Ruiz-Reig
- Université Catholique de Louvain, Institute of Neuroscience, Cellular and Molecular Division, Brussels, Belgium
| | - Irene Durá
- Université Catholique de Louvain, Institute of Neuroscience, Cellular and Molecular Division, Brussels, Belgium
| | | | - Nicolas Tajeddine
- Université Catholique de Louvain, Institute of Neuroscience, Cellular and Molecular Division, Brussels, Belgium
| | - Fadel Tissir
- Université Catholique de Louvain, Institute of Neuroscience, Cellular and Molecular Division, Brussels, Belgium
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| |
Collapse
|
24
|
Mierke CT. Phenotypic Heterogeneity, Bidirectionality, Universal Cues, Plasticity, Mechanics, and the Tumor Microenvironment Drive Cancer Metastasis. Biomolecules 2024; 14:184. [PMID: 38397421 PMCID: PMC10887446 DOI: 10.3390/biom14020184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/19/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
Tumor diseases become a huge problem when they embark on a path that advances to malignancy, such as the process of metastasis. Cancer metastasis has been thoroughly investigated from a biological perspective in the past, whereas it has still been less explored from a physical perspective. Until now, the intraluminal pathway of cancer metastasis has received the most attention, while the interaction of cancer cells with macrophages has received little attention. Apart from the biochemical characteristics, tumor treatments also rely on the tumor microenvironment, which is recognized to be immunosuppressive and, as has recently been found, mechanically stimulates cancer cells and thus alters their functions. The review article highlights the interaction of cancer cells with other cells in the vascular metastatic route and discusses the impact of this intercellular interplay on the mechanical characteristics and subsequently on the functionality of cancer cells. For instance, macrophages can guide cancer cells on their intravascular route of cancer metastasis, whereby they can help to circumvent the adverse conditions within blood or lymphatic vessels. Macrophages induce microchannel tunneling that can possibly avoid mechanical forces during extra- and intravasation and reduce the forces within the vascular lumen due to vascular flow. The review article highlights the vascular route of cancer metastasis and discusses the key players in this traditional route. Moreover, the effects of flows during the process of metastasis are presented, and the effects of the microenvironment, such as mechanical influences, are characterized. Finally, the increased knowledge of cancer metastasis opens up new perspectives for cancer treatment.
Collapse
Affiliation(s)
- Claudia Tanja Mierke
- Faculty of Physics and Earth System Science, Peter Debye Institute of Soft Matter Physics, Biological Physics Division, Leipzig University, 04103 Leipzig, Germany
| |
Collapse
|
25
|
Yang EJN, Liao PC, Pon L. Mitochondrial protein and organelle quality control-Lessons from budding yeast. IUBMB Life 2024; 76:72-87. [PMID: 37731280 PMCID: PMC10842221 DOI: 10.1002/iub.2783] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/11/2023] [Indexed: 09/22/2023]
Abstract
Mitochondria are essential for normal cellular function and have emerged as key aging determinants. Indeed, defects in mitochondrial function have been linked to cardiovascular, skeletal muscle and neurodegenerative diseases, premature aging, and age-linked diseases. Here, we describe mechanisms for mitochondrial protein and organelle quality control. These surveillance mechanisms mediate repair or degradation of damaged or mistargeted mitochondrial proteins, segregate mitochondria based on their functional state during asymmetric cell division, and modulate cellular fitness, the response to stress, and lifespan control in yeast and other eukaryotes.
Collapse
Affiliation(s)
- Emily Jie-Ning Yang
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032
| | - Pin-Chao Liao
- Institute of Molecular Medicine & Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan 30013
| | - Liza Pon
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032
| |
Collapse
|
26
|
Das S, Banerjee A, Roy S, Mallick T, Maiti S, De P. Zwitterionic Polysulfobetaine Inhibits Cancer Cell Migration Owing to Actin Cytoskeleton Dynamics. ACS APPLIED BIO MATERIALS 2024; 7:144-153. [PMID: 38150303 DOI: 10.1021/acsabm.3c00682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Cell migration is an essential dynamic process for most living cells, mainly driven by the reorganization of actin cytoskeleton. To control actin dynamics, a molecular architecture that can serve as a nucleator has been designed by polymerizing sulfobetaine methacrylate. The synthesized zwitterionic polymer, poly(sulfobetaine methacrylate) (PZI), effectively nucleates the polymerization process of G-actin and substantially accelerates the rate of polymerization. Isothermal titration calorimetry (ITC) and bioinformatics analysis indicated binding between PZI and monomeric G-actin. Thus, in vitro actin dynamics was studied by dynamic light scattering (DLS), pyrene-actin polymerization assay, and total internal reflection fluorescence microscopy (TIRFM). Furthermore, a 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) fluorophore-containing monomeric unit was incorporated into the sulfobetaine zwitterionic architecture to visualize the effect of polymer in the cellular environment. The BODIPY-containing zwitterionic sulfobetaine polymer (PZI-F) successfully penetrated the cell and remained in the lysosome with minimal cytotoxicity. Confocal microscopy revealed the influence of this polymer on the cellular actin cytoskeleton dynamics. The PZI-F polymer was successfully able to inhibit the collective migration of the human cervical cancer cell line (HeLa cell) and breast cancer cell line (MDA-MB-231 cell), as confirmed by a wound healing assay. Therefore, polyzwitterionic sulfobetaine could be explored as an inhibitor of cancer cell migration.
Collapse
Affiliation(s)
- Shubham Das
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal 741246, India
| | - Arnab Banerjee
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal 741246, India
| | - Subhadip Roy
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal 741246, India
| | - Tamanna Mallick
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal 741246, India
| | - Sankar Maiti
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal 741246, India
| | - Priyadarsi De
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal 741246, India
| |
Collapse
|
27
|
Bremer KV, Wu C, Patel AA, He KL, Grunfeld AM, Chanfreau GF, Quinlan ME. Formin tails act as a switch, inhibiting or enhancing processive actin elongation. J Biol Chem 2024; 300:105557. [PMID: 38097186 PMCID: PMC10797183 DOI: 10.1016/j.jbc.2023.105557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/30/2023] [Accepted: 12/07/2023] [Indexed: 01/04/2024] Open
Abstract
Formins are large, multidomain proteins that nucleate new actin filaments and accelerate elongation through a processive interaction with the barbed ends of filaments. Their actin assembly activity is generally attributed to their eponymous formin homology (FH) 1 and 2 domains; however, evidence is mounting that regions outside of the FH1FH2 stretch also tune actin assembly. Here, we explore the underlying contributions of the tail domain, which spans the sequence between the FH2 domain and the C terminus of formins. Tails vary in length from ∼0 to >200 residues and contain a number of recognizable motifs. The most common and well-studied motif is the ∼15-residue-long diaphanous autoregulatory domain. This domain mediates all or nothing regulation of actin assembly through an intramolecular interaction with the diaphanous inhibitory domain in the N-terminal half of the protein. Multiple reports demonstrate that the tail can enhance both nucleation and processivity. In this study, we provide a high-resolution view of the alternative splicing encompassing the tail in the formin homology domain (Fhod) family of formins during development. While four distinct tails are predicted, we found significant levels of only two of these. We characterized the biochemical effects of the different tails. Surprisingly, the two highly expressed Fhod-tails inhibit processive elongation and diminish nucleation, while a third supports activity. These findings demonstrate a new mechanism of modulating actin assembly by formins and support a model in which splice variants are specialized to build distinct actin structures during development.
Collapse
Affiliation(s)
- Kathryn V Bremer
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California, USA
| | - Carolyn Wu
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California, USA
| | - Aanand A Patel
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California, USA
| | - Kevin L He
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California, USA
| | - Alex M Grunfeld
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California, USA
| | - Guillaume F Chanfreau
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California, USA; Molecular Biology Institute, University of California Los Angeles, Los Angeles, California, USA
| | - Margot E Quinlan
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California, USA; Molecular Biology Institute, University of California Los Angeles, Los Angeles, California, USA.
| |
Collapse
|
28
|
Qin K, Yu M, Fan J, Wang H, Zhao P, Zhao G, Zeng W, Chen C, Wang Y, Wang A, Schwartz Z, Hong J, Song L, Wagstaff W, Haydon RC, Luu HH, Ho SH, Strelzow J, Reid RR, He TC, Shi LL. Canonical and noncanonical Wnt signaling: Multilayered mediators, signaling mechanisms and major signaling crosstalk. Genes Dis 2024; 11:103-134. [PMID: 37588235 PMCID: PMC10425814 DOI: 10.1016/j.gendis.2023.01.030] [Citation(s) in RCA: 55] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/01/2022] [Accepted: 01/29/2023] [Indexed: 08/18/2023] Open
Abstract
Wnt signaling plays a major role in regulating cell proliferation and differentiation. The Wnt ligands are a family of 19 secreted glycoproteins that mediate their signaling effects via binding to Frizzled receptors and LRP5/6 coreceptors and transducing the signal either through β-catenin in the canonical pathway or through a series of other proteins in the noncanonical pathway. Many of the individual components of both canonical and noncanonical Wnt signaling have additional functions throughout the body, establishing the complex interplay between Wnt signaling and other signaling pathways. This crosstalk between Wnt signaling and other pathways gives Wnt signaling a vital role in many cellular and organ processes. Dysregulation of this system has been implicated in many diseases affecting a wide array of organ systems, including cancer and embryological defects, and can even cause embryonic lethality. The complexity of this system and its interacting proteins have made Wnt signaling a target for many therapeutic treatments. However, both stimulatory and inhibitory treatments come with potential risks that need to be addressed. This review synthesized much of the current knowledge on the Wnt signaling pathway, beginning with the history of Wnt signaling. It thoroughly described the different variants of Wnt signaling, including canonical, noncanonical Wnt/PCP, and the noncanonical Wnt/Ca2+ pathway. Further description involved each of its components and their involvement in other cellular processes. Finally, this review explained the various other pathways and processes that crosstalk with Wnt signaling.
Collapse
Affiliation(s)
- Kevin Qin
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Michael Yu
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jiaming Fan
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, The School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Hongwei Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Piao Zhao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Departments of Orthopaedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Guozhi Zhao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Departments of Orthopaedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Wei Zeng
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Interventional Neurology, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong 523475, China
| | - Connie Chen
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Yonghui Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Clinical Laboratory Medicine, Shanghai Jiaotong University School of Medicine, Shanghai 200000, China
| | - Annie Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Laboratory of Craniofacial Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Zander Schwartz
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- School of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Jeffrey Hong
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Lily Song
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - William Wagstaff
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Rex C. Haydon
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Hue H. Luu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Sherwin H. Ho
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jason Strelzow
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Russell R. Reid
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Laboratory of Craniofacial Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Laboratory of Craniofacial Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Lewis L. Shi
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| |
Collapse
|
29
|
Shah V, Singh JK, Srivastava SK, Konnur A, Gang S, Pandey SN. INF2 and ROBO2 gene mutation in an Indian family with end stage renal failure and follow-up of renal transplantation. Nephrology (Carlton) 2024; 29:48-54. [PMID: 37772439 DOI: 10.1111/nep.14244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/12/2023] [Accepted: 09/18/2023] [Indexed: 09/30/2023]
Abstract
BACKGROUND Accurate genetic diagnosis of end-stage renal disease patients with a family history of renal dysfunction is very essential. It not only helps in proper prognosis, but becomes crucial in designating donor for live related renal transplant. We here present a case of family with deleterious mutations in INF2 and ROBO2 and its importance of genetic testing before preparing for kidney transplantation. CASE PRESENTATION We report the case of a 29-year-female with end-stage renal disease and rapidly progressive renal failure. Mutational analysis revealed an Autosomal Dominant inheritance pattern and mutation in exon 4 of the INF2 gene (p. Thr215Ser) and exon 26 of the ROBO2 gene (p. Arg1371Cys). Her mother was diagnosed for CKD stage 4 with creatinine level of 4.3 mg/dL. Genetic variants (INF2 and ROBO2) identified in proband were tested in her sisters and mother. Her elder sister was positive for both heterozygous variants (INF2 and ROBO2). Her mother was positive for mutation in INF2 gene, and her donor elder sister did not showed mutation in INF2 gene and had mutation in ROBO2 gene without any clinical symptoms. CONCLUSION This case report emphasize that familial genetic screening has allowed us in allocating the donor selection in family where family member had history of genetic defect of Chronic Kidney Disease. Information of the causative renal disorder is extremely valuable for risk-assessment and planning of kidney transplantation.
Collapse
Affiliation(s)
- Vandit Shah
- Department of Pathology, Muljibhai Patel Urological Hospital, Nadiad, India
| | - Jaikee Kumar Singh
- Structural Biology and Bioinformatics Laboratory, Department of Biosciences, Manipal University Jaipur, Jaipur, India
| | - Sandeep Kumar Srivastava
- Structural Biology and Bioinformatics Laboratory, Department of Biosciences, Manipal University Jaipur, Jaipur, India
| | - Abhijit Konnur
- Department of Nephrology, Muljibhai Patel Urological Hospital, Nadiad, India
| | - Sishir Gang
- Department of Nephrology, Muljibhai Patel Urological Hospital, Nadiad, India
| | | |
Collapse
|
30
|
Valdez V, Ma M, Gouveia B, Zhang R, Petry S. HURP facilitates spindle assembly by stabilizing microtubules and working synergistically with TPX2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.18.571906. [PMID: 38187686 PMCID: PMC10769297 DOI: 10.1101/2023.12.18.571906] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
In large vertebrate spindles, the majority of microtubules are formed via branching microtubule nucleation, whereby microtubules nucleate along the side of pre-existing microtubules. Hepatoma up-regulated protein (HURP) is a microtubule-associated protein that has been implicated in spindle assembly, but its mode of action is yet to be defined. In this study, we show that HURP is necessary for RanGTP-induced branching microtubule nucleation in Xenopus egg extract. Specifically, HURP stabilizes the microtubule lattice to promote microtubule formation from γ-TuRC. This function is shifted to promote branching microtubule nucleation in the presence of TPX2, another branching-promoting factor, as HURP's localization to microtubules is enhanced by TPX2 condensation. Lastly, we provide a structure of HURP on the microtubule lattice, revealing how HURP binding stabilizes the microtubule lattice. We propose a model in which HURP stabilizes microtubules during their formation, and TPX2 preferentially enriches HURP to microtubules to promote branching microtubule nucleation and thus spindle assembly.
Collapse
Affiliation(s)
- Venecia Valdez
- Princeton University, Department of Molecular Biology, Princeton, New Jersey, United States
| | - Meisheng Ma
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, School of Medicine (St. Louis, Missouri, United States)
- Present address: Department of Histology and Embryology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology (Wuhan, Hubei, China)
| | - Bernardo Gouveia
- Princeton University, Department of Chemical and Biological Engineering, Princeton, New Jersey, United States
| | - Rui Zhang
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, School of Medicine (St. Louis, Missouri, United States)
| | - Sabine Petry
- Princeton University, Department of Molecular Biology, Princeton, New Jersey, United States
| |
Collapse
|
31
|
Das S, Maiti S. Probing the ligand binding specificity of FNBP4 WW domains and interaction with FH1 domain of FMN1. Curr Res Struct Biol 2023; 7:100119. [PMID: 38188541 PMCID: PMC10770428 DOI: 10.1016/j.crstbi.2023.100119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 01/09/2024] Open
Abstract
Formins are a group of actin-binding proteins that mediate nascent actin filament polymerization, filament elongation, and barbed end-capping function, thereby regulating different cellular and developmental processes. Developmental processes like vertebrate gastrulation, neural growth cone dynamics, and limb development require formins functioning in a regulated manner. Formin-binding proteins like Rho GTPase regulate the activation of auto-inhibited conformation of diaphanous formins. Unlike other diaphanous formins, Formin1 (FMN1) a non-diaphanous formin is not regulated by Rho GTPase. FMN1 acts as an antagonist of the Bone Morphogenetic Protein (BMP) signaling pathway during limb development. Several previous reports demonstrated that WW domain-containing proteins can interact with poly-proline-rich amino acid stretches of formins and play a crucial role in developmental processes. In contrast, WW domain-containing Formin-binding Protein 4 (FNBP4) protein plays an essential role in limb development. It has been hypothesized that the interaction between FNBP4 and FMN1 can further attribute to the role in limb development through the BMP signaling pathway. In this study, we have elucidated the binding kinetics of FNBP4 and FMN1 using surface plasmon resonance (SPR) and enzyme-linked immunosorbent assays (ELISA). Our findings confirm that the FNBP4 exhibits interaction with the poly-proline-rich formin homology 1 (FH1) domain of FMN1. Furthermore, only the first WW1 domains are involved in the interaction between the two domains. Thus, this study sheds light on the binding potentialities of WW domains of FNBP4 that might contribute to the regulation of FMN1 function.
Collapse
Affiliation(s)
- Shubham Das
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, Nadia, West Bengal, India
| | - Sankar Maiti
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, Nadia, West Bengal, India
| |
Collapse
|
32
|
Heydecker M, Shitara A, Chen D, Tran D, Masedunskas A, Tora M, Ebrahim S, Appaduray MA, Galeano Niño JL, Bhardwaj A, Narayan K, Hardeman EC, Gunning PW, Weigert R. Spatial and Temporal Coordination of Force-generating Actin-based Modules Drives Membrane Remodeling In Vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.04.569944. [PMID: 38168275 PMCID: PMC10760165 DOI: 10.1101/2023.12.04.569944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Membrane remodeling drives a broad spectrum of cellular functions, and it is regulated through mechanical forces exerted on the membrane by cytoplasmic complexes. Here, we investigate how actin filaments dynamically tune their structure to control the active transfer of membranes between cellular compartments with distinct compositions and biophysical properties. Using intravital subcellular microscopy in live rodents we show that: a lattice composed of linear filaments stabilizes the granule membrane after fusion with the plasma membrane; and a network of branched filaments linked to the membranes by Ezrin, a regulator of membrane tension, initiates and drives to completion the integration step. Our results highlight how the actin cytoskeleton tunes its structure to adapt to dynamic changes in the biophysical properties of membranes.
Collapse
|
33
|
Kim D, Kim DH. Subcellular mechano-regulation of cell migration in confined extracellular microenvironment. BIOPHYSICS REVIEWS 2023; 4:041305. [PMID: 38505424 PMCID: PMC10903498 DOI: 10.1063/5.0185377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/01/2023] [Indexed: 03/21/2024]
Abstract
Cell migration is a highly coordinated cellular event that determines diverse physiological and pathological processes in which the continuous interaction of a migrating cell with neighboring cells or the extracellular matrix is regulated by the physical setting of the extracellular microenvironment. In confined spaces, cell migration occurs differently compared to unconfined open spaces owing to the additional forces that limit cell motility, which create a driving bias for cells to invade the confined space, resulting in a distinct cell motility process compared to what is expected in open spaces. Moreover, cells in confined environments can be subjected to elevated mechanical compression, which causes physical stimuli and activates the damage repair cycle in the cell, including the DNA in the nucleus. Although cells have a self-restoring system to repair damage from the cell membrane to the genetic components of the nucleus, this process may result in genetic and/or epigenetic alterations that can increase the risk of the progression of diverse diseases, such as cancer and immune disorders. Furthermore, there has been a shift in the paradigm of bioengineering from the development of new biomaterials to controlling biophysical cues and fine-tuning cell behaviors to cure damaged/diseased tissues. The external physical cues perceived by cells are transduced along the mechanosensitive machinery, which is further channeled into the nucleus through subcellular molecular linkages of the nucleoskeleton and cytoskeleton or the biochemical translocation of transcription factors. Thus, external cues can directly or indirectly regulate genetic transcriptional processes and nuclear mechanics, ultimately determining cell fate. In this review, we discuss the importance of the biophysical cues, response mechanisms, and mechanical models of cell migration in confined environments. We also discuss the effect of force-dependent deformation of subcellular components, specifically focusing on subnuclear organelles, such as nuclear membranes and chromosomal organization. This review will provide a biophysical perspective on cancer progression and metastasis as well as abnormal cellular proliferation.
Collapse
Affiliation(s)
- Daesan Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| | | |
Collapse
|
34
|
Pan MH, Xu R, Zheng Z, Xiong J, Dong H, Wei Q, Ma B. The formins inhibitor SMIFH2 inhibits the cytoskeleton dynamics and mitochondrial function during goat oocyte maturation. Theriogenology 2023; 211:40-48. [PMID: 37562190 DOI: 10.1016/j.theriogenology.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 08/12/2023]
Abstract
The cytoskeleton plays a crucial role in facilitating the successful completion of the meiotic maturation of oocytes. Its influence extends to the process of oocyte nuclear maturation and the proper functioning of various organelles during cytoplasmic maturation. The formin family of proteins plays a crucial role in the molecular regulation of cytoskeletal assembly and organization; however, its role in goat oocytes are not fully understood. Our study examined the inhibition of formins activity, which revealed its crucial role in the maturation of goat oocytes. We observed that the inhibition of formins resulted in meiotic defects in goat oocytes, as evidenced by the hindered extrusion of polar bodies and the expansion of cumulus cells. Additionally, the oocytes exhibited altered actin dynamics and compromised spindle/chromosome structure upon formins inhibition. The results of the transcriptomic analysis highlighted a noteworthy alteration in the mRNA levels of genes implicated in mitochondrial functions and oxidative phosphorylation in formins inhibited oocytes. Validation experiments provided evidence that the meiotic defects observed in these oocytes were due to the excessive early apoptosis induced by reactive oxygen species (ROS). Our findings demonstrate that the involvement of formins in sustaining the cytoskeletal dynamics and mitochondrial function is crucial for the successful meiotic maturation of goat oocytes.
Collapse
Affiliation(s)
- Meng-Hao Pan
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, China
| | - Rui Xu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, China
| | - Zhi Zheng
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, China
| | - Jinfeng Xiong
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, China
| | - Haiying Dong
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, China
| | - Qiang Wei
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, China
| | - Baohua Ma
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, China.
| |
Collapse
|
35
|
Nguyen MT, Dash R, Jeong K, Lee W. Role of Actin-Binding Proteins in Skeletal Myogenesis. Cells 2023; 12:2523. [PMID: 37947600 PMCID: PMC10650911 DOI: 10.3390/cells12212523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/22/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023] Open
Abstract
Maintenance of skeletal muscle quantity and quality is essential to ensure various vital functions of the body. Muscle homeostasis is regulated by multiple cytoskeletal proteins and myogenic transcriptional programs responding to endogenous and exogenous signals influencing cell structure and function. Since actin is an essential component in cytoskeleton dynamics, actin-binding proteins (ABPs) have been recognized as crucial players in skeletal muscle health and diseases. Hence, dysregulation of ABPs leads to muscle atrophy characterized by loss of mass, strength, quality, and capacity for regeneration. This comprehensive review summarizes the recent studies that have unveiled the role of ABPs in actin cytoskeletal dynamics, with a particular focus on skeletal myogenesis and diseases. This provides insight into the molecular mechanisms that regulate skeletal myogenesis via ABPs as well as research avenues to identify potential therapeutic targets. Moreover, this review explores the implications of non-coding RNAs (ncRNAs) targeting ABPs in skeletal myogenesis and disorders based on recent achievements in ncRNA research. The studies presented here will enhance our understanding of the functional significance of ABPs and mechanotransduction-derived myogenic regulatory mechanisms. Furthermore, revealing how ncRNAs regulate ABPs will allow diverse therapeutic approaches for skeletal muscle disorders to be developed.
Collapse
Affiliation(s)
- Mai Thi Nguyen
- Department of Biochemistry, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea; (M.T.N.); (K.J.)
| | - Raju Dash
- Department of Anatomy, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea;
- Department of New Biology, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu 42988, Republic of Korea
| | - Kyuho Jeong
- Department of Biochemistry, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea; (M.T.N.); (K.J.)
| | - Wan Lee
- Department of Biochemistry, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea; (M.T.N.); (K.J.)
- Channelopathy Research Center, Dongguk University College of Medicine, 32 Dongguk-ro, Ilsan Dong-gu, Goyang 10326, Republic of Korea
| |
Collapse
|
36
|
Iqbal A, Aslam S, Ahmed M, Khan F, Ali Q, Han S. Role of Actin Dynamics and GhACTIN1 Gene in Cotton Fiber Development: A Prototypical Cell for Study. Genes (Basel) 2023; 14:1642. [PMID: 37628693 PMCID: PMC10454433 DOI: 10.3390/genes14081642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/13/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Cotton crop is considered valuable for its fiber and seed oil. Cotton fiber is a single-celled outgrowth from the ovule epidermis, and it is a very dynamic cell for study. It has four distinct but overlapping developmental stages: initiation, elongation, secondary cell wall synthesis, and maturation. Among the various qualitative characteristics of cotton fiber, the important ones are the cotton fiber staple length, tensile strength, micronaire values, and fiber maturity. Actin dynamics are known to play an important role in fiber elongation and maturation. The current review gives an insight into the cotton fiber developmental stages, the qualitative traits associated with cotton fiber, and the set of genes involved in regulating these developmental stages and fiber traits. This review also highlights some prospects for how biotechnological approaches can improve cotton fiber quality.
Collapse
Affiliation(s)
- Adnan Iqbal
- School of Biological Sciences and Technology, Liupanshui Normal University, Liupanshui 553004, China;
- Plant Breeding and Acclimatization Institute—National Research Institute, Radzikow, 05-870 Blonie, Poland
| | - Sibgha Aslam
- Plant Breeding and Acclimatization Institute—National Research Institute, Radzikow, 05-870 Blonie, Poland
| | - Mukhtar Ahmed
- Government Boys College Sokasan, Higher Education Department, Azad Jammu and Kashmir, Bhimber 10040, Pakistan
| | - Fahad Khan
- Department of Plant Protection, Faculty of Agricultural Sciences, Ghazi University, Dera Ghazi Khan 33001, Pakistan
| | - Qurban Ali
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, Lahore 54590, Pakistan
| | - Shiming Han
- School of Biological Sciences and Technology, Liupanshui Normal University, Liupanshui 553004, China;
| |
Collapse
|
37
|
He S, Hao X, Liu Z, Wang Y, Zhang J, Wang X, Di F, Wang R, Zhao Y. Association between DIAPH1 variant and posterior circulation involvement with Moyamoya disease. Sci Rep 2023; 13:10732. [PMID: 37400591 DOI: 10.1038/s41598-023-37665-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 06/25/2023] [Indexed: 07/05/2023] Open
Abstract
Moyamoya disease (MMD) is a chronic and progressive cerebrovascular stenosis or occlusive disease that occurs near Willis blood vessels. The aim of this study was to investigate the mutation of DIAPH1 in Asian population, and to compare the angiographic features of MMD patients with and without the mutation of the DIAPH1 gene. Blood samples of 50 patients with MMD were collected, and DIAPH1 gene mutation was detected. The angiographic involvement of the posterior cerebral artery was compared between the mutant group and the non-mutant group. The independent risk factors of posterior cerebral artery involvement were determined by multivariate logistic regression analysis. DIAPH1 gene mutation was detected in 9 (18%) of 50 patients, including 7 synonymous mutations and 2 missense mutations. However, the incidence of posterior cerebral artery involvement in mutation positive group was very higher than that in mutation negative group (77.8% versus 12%; p = 0.001). There is an association between DIAPH1 mutation and PCA involvement (odds ratio 29.483, 95% confidence interval 3.920-221.736; p = 0.001). DIAPH1 gene mutation is not a major genetic risk gene for Asian patients with moyamoya disease but may play an important role in the involvement of posterior cerebral artery.
Collapse
Affiliation(s)
- Shihao He
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- Department of Neurosurgery, Stanford University School of Medicine, 300 Pasteur Drive (R281), Stanford, CA, 94305-5327, USA
| | - Xiaokuan Hao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Ziqi Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Yanru Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Junze Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Xilong Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Fei Di
- Department of Neurosurgery, The Affiliated Children's Hospital, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Rong Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China.
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, 100069, China.
| | - Yuanli Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China.
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, 100069, China.
- Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
38
|
Han X, Hu Z, Surya W, Ma Q, Zhou F, Nordenskiöld L, Torres J, Lu L, Miao Y. The intrinsically disordered region of coronins fine-tunes oligomerization and actin polymerization. Cell Rep 2023; 42:112594. [PMID: 37269287 DOI: 10.1016/j.celrep.2023.112594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 04/21/2023] [Accepted: 05/16/2023] [Indexed: 06/05/2023] Open
Abstract
Coronins play critical roles in actin network formation. The diverse functions of coronins are regulated by the structured N-terminal β propeller and the C-terminal coiled coil (CC). However, less is known about a middle "unique region" (UR), which is an intrinsically disordered region (IDR). The UR/IDR is an evolutionarily conserved signature in the coronin family. By integrating biochemical and cell biology experiments, coarse-grained simulations, and protein engineering, we find that the IDR optimizes the biochemical activities of coronins in vivo and in vitro. The budding yeast coronin IDR plays essential roles in regulating Crn1 activity by fine-tuning CC oligomerization and maintaining Crn1 as a tetramer. The IDR-guided optimization of Crn1 oligomerization is critical for F-actin cross-linking and regulation of Arp2/3-mediated actin polymerization. The final oligomerization status and homogeneity of Crn1 are contributed by three examined factors: helix packing, the energy landscape of the CC, and the length and molecular grammar of the IDR.
Collapse
Affiliation(s)
- Xiao Han
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Zixin Hu
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Wahyu Surya
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Qianqian Ma
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Feng Zhou
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Lars Nordenskiöld
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Jaume Torres
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Lanyuan Lu
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Yansong Miao
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore; Institute for Digital Molecular Analytics and Science, Nanyang Technological University, Singapore 636921, Singapore.
| |
Collapse
|
39
|
Carman PJ, Rebowski G, Dominguez R, Alqassim SS. Single particle cryo-EM analysis of Rickettsia conorii Sca2 reveals a formin-like core. J Struct Biol 2023; 215:107960. [PMID: 37028467 PMCID: PMC10200769 DOI: 10.1016/j.jsb.2023.107960] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/16/2023] [Accepted: 04/01/2023] [Indexed: 04/08/2023]
Abstract
Spotted fever group Rickettsia undergo actin-based motility inside infected eukaryotic cells using Sca2 (surface cell antigen 2): an ∼ 1800 amino-acid monomeric autotransporter protein that is surface-attached to the bacterium and responsible for the assembly of long unbranched actin tails. Sca2 is the only known functional mimic of eukaryotic formins, yet it shares no sequence similarities to the latter. Using structural and biochemical approaches we have previously shown that Sca2 uses a novel actin assembly mechanism. The first ∼ 400 amino acids fold into helix-loop-helix repeats that form a crescent shape reminiscent of a formin FH2 monomer. Additionally, the N- and C- terminal halves of Sca2 display intramolecular interaction in an end-to-end manner and cooperate for actin assembly, mimicking a formin FH2 dimer. Towards a better structural understanding of this mechanism, we performed single-particle cryo-electron microscopy analysis of Sca2. While high-resolution structural details remain elusive, our model confirms the presence of a formin-like core: Sca2 indeed forms a doughnut shape, similar in diameter to a formin FH2 dimer and can accommodate two actin subunits. Extra electron density, thought to be contributed by the C-terminal repeat domain (CRD), covering one side is also observed. This structural analysis allows us to propose an updated model where nucleation proceeds by encircling two actin subunits, and elongation proceeds either by a formin-like mechanism that necessitates conformational changes in the observed Sca2 model, or via an insertional mechanism akin to that observed in the ParMRC system.
Collapse
Affiliation(s)
- Peter J Carman
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Grzegorz Rebowski
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Roberto Dominguez
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Saif S Alqassim
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates.
| |
Collapse
|
40
|
Wang R, Lin Z, Zhou L, Chen C, Yu X, Zhang J, Zou Z, Lu Z. Rho 1 participates in parasitoid wasp eggs maturation and host cellular immunity inhibition. INSECT SCIENCE 2023; 30:677-692. [PMID: 36271788 DOI: 10.1111/1744-7917.13123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 09/21/2022] [Accepted: 09/27/2022] [Indexed: 06/15/2023]
Abstract
Endoparasitoid wasps introduce venom into their host insects during the egg-laying stage. Venom proteins play various roles in the host physiology, development, immunity, and behavior manipulation and regulation. In this study, we identified a venom protein, MmRho1, a small guanine nucleotide-binding protein derived from ovary in the endoparasitoid wasp Microplitis mediator and found that knockdown of its expression by RNA interference caused down-regulation of vitellogenin and juvenile hormone, egg production, and cocoons formation in the female wasps. We demonstrated that MmRho1 entered the cotton bollworm's (host) hemocytes and suppressed cellular immune responses after parasitism using immunofluorescence staining. Furthermore, wasp MmRho1 interacted with the cotton bollworm's actin cytoskeleton rearrangement regulator diaphanous by yeast 2-hybrid and glutathione s-transferase pull-down. In conclusion, this study indicates that MmRho1 plays dual roles in wasp development and the suppression of the host insect cellular immune responses.
Collapse
Affiliation(s)
- Ruijuan Wang
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Zhe Lin
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Lizhen Zhou
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Caihua Chen
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Xianhao Yu
- Engineering Research Center of Natural Enemies, Institute of Biological Control, Jilin Agricultural University, Changchun, Jilin, China
| | - Junjie Zhang
- Engineering Research Center of Natural Enemies, Institute of Biological Control, Jilin Agricultural University, Changchun, Jilin, China
| | - Zhen Zou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Zhiqiang Lu
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi Province, China
| |
Collapse
|
41
|
Antoku S, Schwartz TU, Gundersen GG. FHODs: Nuclear tethered formins for nuclear mechanotransduction. Front Cell Dev Biol 2023; 11:1160219. [PMID: 37215084 PMCID: PMC10192571 DOI: 10.3389/fcell.2023.1160219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/28/2023] [Indexed: 05/24/2023] Open
Abstract
In this review, we discuss FHOD formins with a focus on recent studies that reveal a new role for them as critical links for nuclear mechanotransduction. The FHOD family in vertebrates comprises two structurally related proteins, FHOD1 and FHOD3. Their similar biochemical properties suggest overlapping and redundant functions. FHOD1 is widely expressed, FHOD3 less so, with highest expression in skeletal (FHOD1) and cardiac (FHOD3) muscle where specific splice isoforms are expressed. Unlike other formins, FHODs have strong F-actin bundling activity and relatively weak actin polymerization activity. These activities are regulated by phosphorylation by ROCK and Src kinases; bundling is additionally regulated by ERK1/2 kinases. FHODs are unique among formins in their association with the nuclear envelope through direct, high affinity binding to the outer nuclear membrane proteins nesprin-1G and nesprin-2G. Recent crystallographic structures reveal an interaction between a conserved motif in one of the spectrin repeats (SRs) of nesprin-1G/2G and a site adjacent to the regulatory domain in the amino terminus of FHODs. Nesprins are components of the LINC (linker of nucleoskeleton and cytoskeleton) complex that spans both nuclear membranes and mediates bidirectional transmission of mechanical forces between the nucleus and the cytoskeleton. FHODs interact near the actin-binding calponin homology (CH) domains of nesprin-1G/2G enabling a branched connection to actin filaments that presumably strengthens the interaction. At the cellular level, the tethering of FHODs to the outer nuclear membrane mechanically couples perinuclear actin arrays to the nucleus to move and position it in fibroblasts, cardiomyocytes, and potentially other cells. FHODs also function in adhesion maturation during cell migration and in the generation of sarcomeres, activities distant from the nucleus but that are still influenced by it. Human genetic studies have identified multiple FHOD3 variants linked to dilated and hypertrophic cardiomyopathies, with many mutations mapping to "hot spots" in FHOD3 domains. We discuss how FHOD1/3's role in reinforcing the LINC complex and connecting to perinuclear actin contributes to functions of mechanically active tissues such as striated muscle.
Collapse
Affiliation(s)
- Susumu Antoku
- Department of Pathology and Cell Biology, Columbia University, New York, NY, United States
| | - Thomas U. Schwartz
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Gregg G. Gundersen
- Department of Pathology and Cell Biology, Columbia University, New York, NY, United States
| |
Collapse
|
42
|
Dans MG, Piirainen H, Nguyen W, Khurana S, Mehra S, Razook Z, Geoghegan ND, Dawson AT, Das S, Parkyn Schneider M, Jonsdottir TK, Gabriela M, Gancheva MR, Tonkin CJ, Mollard V, Goodman CD, McFadden GI, Wilson DW, Rogers KL, Barry AE, Crabb BS, de Koning-Ward TF, Sleebs BE, Kursula I, Gilson PR. Sulfonylpiperazine compounds prevent Plasmodium falciparum invasion of red blood cells through interference with actin-1/profilin dynamics. PLoS Biol 2023; 21:e3002066. [PMID: 37053271 PMCID: PMC10128974 DOI: 10.1371/journal.pbio.3002066] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 04/25/2023] [Accepted: 03/06/2023] [Indexed: 04/15/2023] Open
Abstract
With emerging resistance to frontline treatments, it is vital that new antimalarial drugs are identified to target Plasmodium falciparum. We have recently described a compound, MMV020291, as a specific inhibitor of red blood cell (RBC) invasion, and have generated analogues with improved potency. Here, we generated resistance to MMV020291 and performed whole genome sequencing of 3 MMV020291-resistant populations. This revealed 3 nonsynonymous single nucleotide polymorphisms in 2 genes; 2 in profilin (N154Y, K124N) and a third one in actin-1 (M356L). Using CRISPR-Cas9, we engineered these mutations into wild-type parasites, which rendered them resistant to MMV020291. We demonstrate that MMV020291 reduces actin polymerisation that is required by the merozoite stage parasites to invade RBCs. Additionally, the series inhibits the actin-1-dependent process of apicoplast segregation, leading to a delayed death phenotype. In vitro cosedimentation experiments using recombinant P. falciparum proteins indicate that potent MMV020291 analogues disrupt the formation of filamentous actin in the presence of profilin. Altogether, this study identifies the first compound series interfering with the actin-1/profilin interaction in P. falciparum and paves the way for future antimalarial development against the highly dynamic process of actin polymerisation.
Collapse
Affiliation(s)
- Madeline G. Dans
- Burnet Institute, Melbourne, Victoria, Australia
- School of Medicine and Institute for Mental and Physical Health and Clinical Translation, Deakin University, Waurn Ponds, Victoria, Australia
- Walter and Eliza Hall Institute, Parkville, Victoria, Australia
| | - Henni Piirainen
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - William Nguyen
- Walter and Eliza Hall Institute, Parkville, Victoria, Australia
| | - Sachin Khurana
- Walter and Eliza Hall Institute, Parkville, Victoria, Australia
| | - Somya Mehra
- Burnet Institute, Melbourne, Victoria, Australia
| | - Zahra Razook
- Burnet Institute, Melbourne, Victoria, Australia
- School of Medicine and Institute for Mental and Physical Health and Clinical Translation, Deakin University, Waurn Ponds, Victoria, Australia
| | | | | | - Sujaan Das
- Ludwig Maximilian University, Faculty of Veterinary Medicine, Munich, Germany
| | | | - Thorey K. Jonsdottir
- Burnet Institute, Melbourne, Victoria, Australia
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, Victoria, Australia
| | - Mikha Gabriela
- Burnet Institute, Melbourne, Victoria, Australia
- School of Medicine and Institute for Mental and Physical Health and Clinical Translation, Deakin University, Waurn Ponds, Victoria, Australia
| | - Maria R. Gancheva
- Research Centre for Infectious Diseases, The University of Adelaide, Adelaide, Australia
| | | | - Vanessa Mollard
- School of Biosciences, The University of Melbourne, Parkville, Victoria, Australia
| | | | - Geoffrey I. McFadden
- School of Biosciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Danny W. Wilson
- Research Centre for Infectious Diseases, The University of Adelaide, Adelaide, Australia
| | - Kelly L. Rogers
- Walter and Eliza Hall Institute, Parkville, Victoria, Australia
| | - Alyssa E. Barry
- Burnet Institute, Melbourne, Victoria, Australia
- School of Medicine and Institute for Mental and Physical Health and Clinical Translation, Deakin University, Waurn Ponds, Victoria, Australia
| | - Brendan S. Crabb
- Burnet Institute, Melbourne, Victoria, Australia
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, Victoria, Australia
| | - Tania F. de Koning-Ward
- School of Medicine and Institute for Mental and Physical Health and Clinical Translation, Deakin University, Waurn Ponds, Victoria, Australia
| | - Brad E. Sleebs
- Walter and Eliza Hall Institute, Parkville, Victoria, Australia
| | - Inari Kursula
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Paul R. Gilson
- Burnet Institute, Melbourne, Victoria, Australia
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
43
|
S100A8/S100A9 Integrates F-Actin and Microtubule Dynamics to Prevent Uncontrolled Extravasation of Leukocytes. Biomedicines 2023; 11:biomedicines11030835. [PMID: 36979814 PMCID: PMC10045313 DOI: 10.3390/biomedicines11030835] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Immune reactions are characterized by the rapid immigration of phagocytes into sites of inflammation. Meticulous regulation of these migratory processes is crucial for preventing uncontrolled and harmful phagocyte extravasation. S100A8/S100A9 is the major calcium-binding protein complex expressed in phagocytes. After release, this complex acts as a proinflammatory alarmin in the extracellular space, but the intracellular functions of these highly abundant proteins are less clear. Results of this study reveal an important role of S100A8/S100A9 in coordinated cytoskeleton rearrangement during migration. We found that S100A8/S100A9 was able to cross-link F-actin and microtubules in a calcium- and phosphorylation-dependent manner. Cells deficient in S100A8/S100A9 showed abnormalities in cell adhesion and motility. Missing cytoskeletal interactions of S100A8/S100A9 caused differences in the surface expression and activation of β1-integrins as well as in the regulation of Src/Syk kinase family members. Loss of S100A8/S100A9 led to dysregulated integrin-mediated adhesion and migration, resulting in an overall higher dynamic activity of non-activated S100A8/S100A9-deficient phagocytes. Our data suggest that intracellular S100A8/S100A9 is part of a novel regulatory mechanism that ensures the precise control necessary to facilitate the change between the quiescent and activated state of phagocytes.
Collapse
|
44
|
Tang Q, Pollard LW, Homa KE, Kovar DR, Trybus KM. Acetylation of fission yeast tropomyosin does not promote differential association with cognate formins. Cytoskeleton (Hoboken) 2023; 80:77-92. [PMID: 36692369 PMCID: PMC10121778 DOI: 10.1002/cm.21745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/02/2023] [Accepted: 01/17/2023] [Indexed: 01/25/2023]
Abstract
It was proposed from cellular studies that S. pombe tropomyosin Cdc8 (Tpm) segregates into two populations due to the presence or absence of an amino-terminal acetylation that specifies which formin-mediated F-actin networks it binds, but with no supporting biochemistry. To address this mechanism in vitro, we developed methods for S. pombe actin expression in Sf9 cells. We then employed 3-color TIRF microscopy using all recombinant S. pombe proteins to probe in vitro multicomponent mechanisms involving actin, acetylated and unacetylated Tpm, formins, and myosins. Acetyl-Tpm exhibits tight binding to actin in contrast to weaker binding by unacetylated Tpm. In disagreement with the differential recruitment model, Tpm showed no preferential binding to filaments assembled by the FH1-FH2-domains of two S. pombe formins, nor did Tpm binding have any bias towards the growing formin-bound actin filament barbed end. Although our in vitro findings do not support a direct formin-tropomyosin interaction, it is possible that formins bias differential tropomyosin isoform recruitment through undiscovered mechanisms. Importantly, despite a 12% sequence divergence between skeletal and S. pombe actin, S. pombe myosins Myo2 and Myo51 exhibited similar motile behavior with these two actins, validating key prior findings with these myosins that used skeletal actin.
Collapse
Affiliation(s)
- Qing Tang
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington VT
| | - Luther W. Pollard
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington VT
| | - Kaitlin E. Homa
- Molecular Genetics and Cell Biology, Biochemistry and Molecular Biology, the University of Chicago, Chicago, IL
| | - David R. Kovar
- Molecular Genetics and Cell Biology, Biochemistry and Molecular Biology, the University of Chicago, Chicago, IL
| | - Kathleen M. Trybus
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington VT
| |
Collapse
|
45
|
Actin-driven chromosome clustering facilitates fast and complete chromosome capture in mammalian oocytes. Nat Cell Biol 2023; 25:439-452. [PMID: 36732633 PMCID: PMC10014578 DOI: 10.1038/s41556-022-01082-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 12/20/2022] [Indexed: 02/04/2023]
Abstract
Accurate chromosome segregation during meiosis is crucial for reproduction. Human and porcine oocytes transiently cluster their chromosomes before the onset of spindle assembly and subsequent chromosome segregation. The mechanism and function of chromosome clustering are unknown. Here we show that chromosome clustering is required to prevent chromosome losses in the long gap phase between nuclear envelope breakdown and the onset of spindle assembly, and to promote the rapid capture of all chromosomes by the acentrosomal spindle. The initial phase of chromosome clustering is driven by a dynamic network of Formin-2- and Spire-nucleated actin cables. The actin cables form in the disassembling nucleus and migrate towards the nuclear centre, moving the chromosomes centripetally by interacting with their arms and kinetochores as they migrate. A cage of stable microtubule loops drives the late stages of chromosome clustering. Together, our data establish a crucial role for chromosome clustering in accurate progression through meiosis.
Collapse
|
46
|
Rajan S, Terman JR, Reisler E. MICAL-mediated oxidation of actin and its effects on cytoskeletal and cellular dynamics. Front Cell Dev Biol 2023; 11:1124202. [PMID: 36875759 PMCID: PMC9982024 DOI: 10.3389/fcell.2023.1124202] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/02/2023] [Indexed: 02/19/2023] Open
Abstract
Actin and its dynamic structural remodelings are involved in multiple cellular functions, including maintaining cell shape and integrity, cytokinesis, motility, navigation, and muscle contraction. Many actin-binding proteins regulate the cytoskeleton to facilitate these functions. Recently, actin's post-translational modifications (PTMs) and their importance to actin functions have gained increasing recognition. The MICAL family of proteins has emerged as important actin regulatory oxidation-reduction (Redox) enzymes, influencing actin's properties both in vitro and in vivo. MICALs specifically bind to actin filaments and selectively oxidize actin's methionine residues 44 and 47, which perturbs filaments' structure and leads to their disassembly. This review provides an overview of the MICALs and the impact of MICAL-mediated oxidation on actin's properties, including its assembly and disassembly, effects on other actin-binding proteins, and on cells and tissue systems.
Collapse
Affiliation(s)
- Sudeepa Rajan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, United States
| | - Jonathan R. Terman
- Departments of Neuroscience and Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Emil Reisler
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, United States
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
47
|
Ponlachantra K, Suginta W, Robinson RC, Kitaoku Y. AlphaFold2: A versatile tool to predict the appearance of functional adaptations in evolution: Profilin interactions in uncultured Asgard archaea: Profilin interactions in uncultured Asgard archaea. Bioessays 2023; 45:e2200119. [PMID: 36461738 DOI: 10.1002/bies.202200119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 12/05/2022]
Abstract
The release of AlphaFold2 (AF2), a deep-learning-aided, open-source protein structure prediction program, from DeepMind, opened a new era of molecular biology. The astonishing improvement in the accuracy of the structure predictions provides the opportunity to characterize protein systems from uncultured Asgard archaea, key organisms in evolutionary biology. Despite the accumulation in metagenomics-derived Asgard archaea eukaryotic-like protein sequences, limited structural and biochemical information have restricted the insight in their potential functions. In this review, we focus on profilin, an actin-dynamics regulating protein, which in eukaryotes, modulates actin polymerization through (1) direct actin interaction, (2) polyproline binding, and (3) phospholipid binding. We assess AF2-predicted profilin structures in their potential abilities to participate in these activities. We demonstrate that AF2 is a powerful new tool for understanding the emergence of biological functional traits in evolution.
Collapse
Affiliation(s)
- Khongpon Ponlachantra
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
| | - Wipa Suginta
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
| | - Robert C Robinson
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand.,Research Institute for Interdisciplinary Science (RIIS), Okayama University, Okayama, Japan
| | - Yoshihito Kitaoku
- Research Institute for Interdisciplinary Science (RIIS), Okayama University, Okayama, Japan
| |
Collapse
|
48
|
Chiereghin C, Robusto M, Lewis MA, Caetano S, Massa V, Castorina P, Ambrosetti U, Steel KP, Duga S, Asselta R, Soldà G. In-depth genetic and molecular characterization of diaphanous related formin 2 (DIAPH2) and its role in the inner ear. PLoS One 2023; 18:e0273586. [PMID: 36689403 PMCID: PMC9870134 DOI: 10.1371/journal.pone.0273586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 01/09/2023] [Indexed: 01/24/2023] Open
Abstract
Diaphanous related formins are regulatory cytoskeletal protein involved in actin elongation and microtubule stabilization. In humans, defects in two of the three diaphanous genes (DIAPH1 and DIAPH3) have been associated with different types of hearing loss. Here, we investigate the role of the third member of the family, DIAPH2, in nonsyndromic hearing loss, prompted by the identification, by exome sequencing, of a predicted pathogenic missense variant in DIAPH2. This variant occurs at a conserved site and segregated with nonsyndromic X-linked hearing loss in an Italian family. Our immunohistochemical studies indicated that the mouse ortholog protein Diaph2 is expressed during development in the cochlea, specifically in the actin-rich stereocilia of the sensory outer hair cells. In-vitro studies showed a functional impairment of the mutant DIAPH2 protein upon RhoA-dependent activation. Finally, Diaph2 knock-out and knock-in mice were generated by CRISPR/Cas9 technology and auditory brainstem response measurements performed at 4, 8 and 14 weeks. However, no hearing impairment was detected. Our findings indicate that DIAPH2 may play a role in the inner ear; further studies are however needed to clarify the contribution of DIAPH2 to deafness.
Collapse
Affiliation(s)
| | - Michela Robusto
- Experimental Therapeutics Program, IFOM ETS -The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Morag A. Lewis
- Wolfson Centre for Age-Related Diseases, King’s College London, London, United Kingdom
| | - Susana Caetano
- Wolfson Centre for Age-Related Diseases, King’s College London, London, United Kingdom
| | - Valentina Massa
- Dipartimento di Scienze della Salute, Università degli Studi di Milano, Milano, Italy
| | | | - Umberto Ambrosetti
- Dipartimento di Scienze Cliniche e di Comunità, Università degli Studi di Milano and Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, UO Audiologia, Milano, Italy
| | - Karen P. Steel
- Wolfson Centre for Age-Related Diseases, King’s College London, London, United Kingdom
| | - Stefano Duga
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
- Humanitas University, Department of Biomedical Sciences, Pieve Emanuele, Milan, Italy
| | - Rosanna Asselta
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
- Humanitas University, Department of Biomedical Sciences, Pieve Emanuele, Milan, Italy
| | - Giulia Soldà
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
- Humanitas University, Department of Biomedical Sciences, Pieve Emanuele, Milan, Italy
| |
Collapse
|
49
|
Zhang Y, Dong G, Wu L, Wang X, Chen F, Xiong E, Xiong G, Zhou Y, Kong Z, Fu Y, Zeng D, Ma D, Qian Q, Yu Y. Formin protein DRT1 affects gross morphology and chloroplast relocation in rice. PLANT PHYSIOLOGY 2023; 191:280-298. [PMID: 36102807 PMCID: PMC9806613 DOI: 10.1093/plphys/kiac427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/21/2022] [Indexed: 06/15/2023]
Abstract
Plant height and tiller number are two major factors determining plant architecture and yield. However, in rice (Oryza sativa), the regulatory mechanism of plant architecture remains to be elucidated. Here, we reported a recessive rice mutant presenting dwarf and reduced tillering phenotypes (drt1). Map-based cloning revealed that the phenotypes are caused by a single point mutation in DRT1, which encodes the Class I formin protein O. sativa formin homolog 13 (OsFH13), binds with F-actin, and promotes actin polymerization for microfilament organization. DRT1 protein localized on the plasma membrane (PM) and chloroplast (CP) outer envelope. DRT1 interacted with rice phototropin 2 (OsPHOT2), and the interaction was interrupted in drt1. Upon blue light stimulus, PM localized DRT1 and OsPHOT2 were translocated onto the CP membrane. Moreover, deficiency of DRT1 reduced OsPHOT2 internalization and OsPHOT2-mediated CP relocation. Our study suggests that rice formin protein DRT1/OsFH13 is necessary for plant morphology and CP relocation by modulating the actin-associated cytoskeleton network.
Collapse
Affiliation(s)
- Yanli Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
- Rice Research Institute, Shenyang Agricultural University, Shenyang, 110866, China
| | - Guojun Dong
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Limin Wu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Xuewen Wang
- Institute of Plant Breeding, Genetics, and Genomics, University of Georgia, Athens, Georgia, 30601, USA
| | - Fei Chen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Erhui Xiong
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Guosheng Xiong
- Institute of Agricultural Genomics, Chinese Academy of Agricultural Sciences, Shenzhen, 100018, China
| | - Yihua Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhaosheng Kong
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ying Fu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Dali Zeng
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Dianrong Ma
- Rice Research Institute, Shenyang Agricultural University, Shenyang, 110866, China
| | - Qian Qian
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Yanchun Yu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 310036, China
| |
Collapse
|
50
|
Liu C, Nguyen RY, Pizzurro GA, Zhang X, Gong X, Martinez AR, Mak M. Self-assembly of mesoscale collagen architectures and applications in 3D cell migration. Acta Biomater 2023; 155:167-181. [PMID: 36371004 PMCID: PMC9805527 DOI: 10.1016/j.actbio.2022.11.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 11/11/2022]
Abstract
3D in vitro tumor models have recently been investigated as they can recapitulate key features in the tumor microenvironment. Reconstruction of a biomimetic scaffold is critical in these models. However, most current methods focus on modulating local properties, e.g. micro- and nano-scaled topographies, without capturing the global millimeter or intermediate mesoscale features. Here we introduced a method for modulating the collagen I-based extracellular matrix structure by disruption of fibrillogenesis and the gelation process through mechanical agitation. With this method, we generated collagen scaffolds that are thickened and wavy at a larger scale while featuring global softness. Thickened collagen patches were interconnected with loose collagen networks, highly resembling collagen architecture in the tumor stroma. This thickened collagen network promoted tumor cell dissemination. In addition, this novel modified scaffold triggered differences in morphology and migratory behaviors of tumor cells. Altogether, our method for altered collagen architecture paves new ways for studying in detail cell behavior in physiologically relevant biological processes. STATEMENT OF SIGNIFICANCE: Tumor progression usually involves chronic tissue damage and repair processes. Hallmarks of tumors are highly overlapped with those of wound healing. To mimic the tumor milieu, collagen-based scaffolds are widely used. These scaffolds focus on modulating microscale topographies and mechanics, lacking global architecture similarity compared with in vivo architecture. Here we introduced one type of thick collagen bundles that mimics ECM architecture in human skin scars. These thickened collagen bundles are long and wavy while featuring global softness. This collagen architecture imposes fewer steric restraints and promotes tumor cell dissemination. Our findings demonstrate a distinct picture of cell behaviors and intercellular interactions, highlighting the importance of collagen architecture and spatial heterogeneity of the tumor microenvironment.
Collapse
Affiliation(s)
- Chang Liu
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, United States
| | - Ryan Y Nguyen
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, United States
| | - Gabriela A Pizzurro
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, United States
| | - Xingjian Zhang
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, United States
| | - Xiangyu Gong
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, United States
| | | | - Michael Mak
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, United States.
| |
Collapse
|