1
|
Kivistik S, Metsälä E, Virtanen H. Perceptions, educational expectations and knowledge gaps of patients with non-metastatic breast cancer regarding radiotherapy: Integrative review. Tech Innov Patient Support Radiat Oncol 2025; 34:100312. [PMID: 40321895 PMCID: PMC12049838 DOI: 10.1016/j.tipsro.2025.100312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/20/2025] [Accepted: 04/19/2025] [Indexed: 05/08/2025] Open
Abstract
Objective This integrative review investigates perceptions, educational expectations, and knowledge gaps of patients with breast cancer (BC) regarding radiotherapy (RT). Methods The included studies were analysed using a thematic analysis approach. Each segment of data was coded with open coding. The codes were gathered into subthemes as they emerged and into overarching themes, after which the data was analysed again. Results 22 studies were included: 11 qualitative, 10 cross-sectional, and 1 case study. Our findings indicate that breast cancer patients perceptions of radiation therapy (RT) are influenced by their understanding of RT, its side effects, the treatment burden, emotional state or feelings, effectiveness if RT, prognosis, and viewing RT as the end-of-care phase. They expect education on the treatment pathway, psychosocial support, personalised aspects of RT, planning, delivery, follow-up, and side effects. Additionally, women undergoing RT have knowledge gaps related to preparedness and support, unforeseen risks and side effects, as well as daily practical issues. Conclusion Tailored, culturally sensitive education is essential to bridge gaps in understanding, manage anxiety, and build trust. It requires individualized communication strategies and psychosocial support. By integrating personalized information and leveraging technological solutions, healthcare providers can empower patients, improve adherence, and enhance outcomes, particularly in resource-limited settings.
Collapse
Affiliation(s)
- Siret Kivistik
- University of Turku, Department of Nursing Science, Turku, Finland
- Tartu University of Applied Sciences, Department of Radiography and Biomedical Laboratory Science, Tartu, Estonia
- Tartu University Hospital, Department of Radiation Therapy and Oncology, Tartu, Estonia
| | - Eija Metsälä
- University of Turku, Department of Nursing Science, Turku, Finland
- Metropolia University of Applied Sciences, Faculty of Healthcare and Nursing, Helsinki, Finland
| | - Heli Virtanen
- University of Turku, Department of Nursing Science, Turku, Finland
| |
Collapse
|
2
|
Tegaw EM, Asfaw BB. Explainable machine learning and feature interpretation to predict survival outcomes in the treatment of lung cancer. Semin Oncol 2025; 52:152364. [PMID: 40414043 DOI: 10.1016/j.seminoncol.2025.152364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 04/11/2025] [Accepted: 04/23/2025] [Indexed: 05/27/2025]
Abstract
The treatment outcomes of lung cancer are highly variable, and machine learning (ML) models provide valuable insights into how clinical and biochemical factors influence survival across different treatments. This study will investigate the survival of patients after four major treatments for lung cancer by interpreting the impact of biomarkers on survival using SHapley Additive exPlanations (SHAP). We analyzed 23,658 lung cancer patient records derived from a Kaggle dataset. Using the most relevant clinical and biochemical variables, ML models were employed to study survival outcomes for different treatments. SHAP analysis revealed major survival predictors in each treatment. Survival outcomes are visualized as f(x) (predicted survival) and E[f(x)] (baseline expectation) in SHAP waterfall plots. The most performed model is Gradient Boosting with an accuracy of 88.99%, precision of 89.06%, recall of 88.99%, F1-score of 88.91%, and Receiver Operating Characteristic Curve (AUC-ROC) score of 0.9332. Chemotherapy treatment was positive for survival, the key for survival was phosphorus levels (+0.05), low Alanine Aminotransferase levels (+0.04) and low glucose levels (+0.04). Targeted therapy and radiation had worse survival, while surgery was favorable, especially in cases with high white blood cell and Lactate Dehydrogenase (LDH) levels. SHAP-based ML analysis aptly underlines how clinical and biochemical factors influence the survival rate. It indicates that ML-driven interpretability might drive personalized treatment approaches in lung cancer.
Collapse
Affiliation(s)
- Eyachew Misganew Tegaw
- Department of Physics, College of Natural and Computational Sciences, Debre Tabor University, Debre Tabor, Ethiopia.
| | - Betelhem Bizuneh Asfaw
- Department of Health System Management and Health Economics, School of Public Health, College of Medicine and Health Sciences, Bahir Dar University, Bahir Dar, Ethiopia
| |
Collapse
|
3
|
Van Booven DJ, Chen CB, Kryvenko ON, Punnen S, Sandoval V, Malpani S, Noman A, Ismael F, Wang Y, Qureshi R, Hare JM, Arora H. Mitigating bias in prostate cancer diagnosis using synthetic data for improved AI driven Gleason grading. NPJ Precis Oncol 2025; 9:151. [PMID: 40404862 PMCID: PMC12098719 DOI: 10.1038/s41698-025-00934-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 05/02/2025] [Indexed: 05/24/2025] Open
Abstract
Prostate cancer (PCa) is a leading cause of cancer-related mortality in men, with Gleason grading critical for prognosis and treatment decisions. Machine learning (ML) models offer potential for automated grading but are limited by dataset biases, staining variability, and data scarcity, reducing their generalizability. This study employs generative adversarial networks (GANs) to generate high-quality synthetic histopathological images to address these challenges. A conditional GAN (dcGAN) was developed and validated using expert pathologist review and Spatial Heterogeneous Recurrence Quantification Analysis (SHRQA), achieving 80% diagnostic quality approval. A convolutional neural network (EfficientNet) was trained on original and synthetic images and validated across TCGA, PANDA Challenge, and MAST trial datasets. Integrating synthetic images improved classification accuracy for Gleason 3 (26%, p = 0.0010), Gleason 4 (15%, p = 0.0274), and Gleason 5 (32%, p < 0.0001), with sensitivity and specificity reaching 81% and 92%, respectively. This study demonstrates that synthetic data significantly enhances ML-based Gleason grading accuracy and improves reproducibility, providing a scalable AI-driven solution for precision oncology.
Collapse
Affiliation(s)
- Derek J Van Booven
- John P Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Cheng-Bang Chen
- Department of Industrial and Systems Engineering, University of Miami, Miami, FL, USA
| | - Oleksandr N Kryvenko
- Department of Pathology, Miller School of Medicine, University of Miami, Miami, FL, USA
- Desai & Sethi Institute of Urology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Sanoj Punnen
- Desai & Sethi Institute of Urology, Miller School of Medicine, University of Miami, Miami, FL, USA
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - Victor Sandoval
- Hospital Valentin Gomez Farias, Universidad de Guadalajara, Guadalajara, Mexico
| | - Sheetal Malpani
- Department of Pathology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Ahmed Noman
- Dow University of Health Sciences, Karachi, Sindh, Pakistan
| | - Farhan Ismael
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kansas city, KS, USA
| | - Yujie Wang
- Department of Industrial and Systems Engineering, University of Miami, Miami, FL, USA
| | - Rehana Qureshi
- Department of Pathology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Joshua M Hare
- Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, USA
- Department of Medicine, Cardiology Division, Miller School of Medicine, University of Miami, Miami, FL, USA
- The Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Himanshu Arora
- John P Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL, USA.
- Desai & Sethi Institute of Urology, Miller School of Medicine, University of Miami, Miami, FL, USA.
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA.
- The Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL, USA.
| |
Collapse
|
4
|
Kashani S, Sasan H, Mollashahi B, Bahari G, Hashemi SM, Taheri M. A Preliminary Association Study of H19 Non-Coding Gene Variants With Risk of Non-Hodgkin Lymphoma: A Case-Control Study and Computational Analysis. J Clin Lab Anal 2025:e70024. [PMID: 40377020 DOI: 10.1002/jcla.70024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 01/31/2025] [Accepted: 03/20/2025] [Indexed: 05/18/2025] Open
Abstract
BACKGROUND Non-Hodgkin lymphoma (NHL) is one of the most prevalent disorders worldwide, with a variety range of etiology from environmental to genetic factors. H19 is a non-coding RNA that codes no protein while playing regulatory roles and is hypothesized to be involved in susceptibility to NHL. METHODS 209 NHL patients and 259 healthy subjects were studied. The salting out method was used for genomic DNA extraction, followed by the Refractory fragment length polymorphism polymerase chain reaction (RFLP-PCR) technique for genotyping. SPSS package V.22 software was used for statistical analysis. Several in silico tools were used to predict the probable consequences of studied H19 genetic variants on the different aspects of non-coding RNAs. RESULTS The results revealed that statistically, both rs3741219T>C and rs217727C>T variants increased the susceptibility to NHL. The T allele of rs3741219T>C in the codominant model caused the most enhancement in the incidence of NHL (OR = 2.33, 95% CI = 1.28-4.25, p = 0.005). Moreover, The CC genotype of rs217727C>T compared to TT had the sharpest impact on the susceptibility to NHL (OR = 2.27, 95% CI = 1.21-4.23, p = 0.009). In silico predictions revealed that the studied variants seem to alter the binding sites of miRNAs on the H19 long non-coding RNA and change its targets. Furthermore, nucleotide substitution in both rs3741219T>C and rs217727C>T may prepare a new binding site for a transcription factor called Y-Box-binding protein-1 (YB-1). CONCLUSIONS The rs217727C>T and rs3714219T>C were responsible for elevating the likelihood of NHL in our population. These substitutions alter the RNA folding of H19 and alter the miRNA binding sites on the H19 transcript.
Collapse
Affiliation(s)
- Sara Kashani
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
- Genetics of Non-Communicable Disease Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Hoseinali Sasan
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Behrouz Mollashahi
- Genetics of Non-Communicable Disease Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Gholamreza Bahari
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Seyed Mahdi Hashemi
- Department of Internal Medicine, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mohsen Taheri
- Genetics of Non-Communicable Disease Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| |
Collapse
|
5
|
Nama ASA, Sandeepa GM, Buddolla V, Mastan A. Advances in understanding therapeutic mechanisms of probiotics in cancer management, with special emphasis on breast cancer: A comprehensive review. Eur J Pharmacol 2025; 995:177410. [PMID: 39986595 DOI: 10.1016/j.ejphar.2025.177410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/01/2025] [Accepted: 02/19/2025] [Indexed: 02/24/2025]
Abstract
The increasing global prevalence of cancer, particularly breast cancer, necessitates the development of innovative therapeutic strategies. Probiotics, proficient in promoting gut health, have emerged as promising candidates for cancer treatment due to their immunomodulatory and potential anticancer properties. This review focuses on the therapeutic mechanisms of probiotics in breast cancer, examining their anticancer efficacy through metabolic, immune, and molecular mechanisms. Probiotics enhance cancer therapies, minimize side effects, and offer new adjuvant approaches in oncology. Recent advancements discussed in the review include the utilization of probiotics as oncolytic gene expression systems and drug delivery vectors, as well as personalized probiotic interventions aimed at optimizing cancer therapy. Clinical studies are critically evaluated, highlighting both the outcomes and limitations of probiotic use in cancer patients, particularly those suffering from breast cancer. Additionally, the review explores factors influencing anticancer effects of probiotics, focusing on their role in modulating the tumor microenvironment. Challenges in translating preclinical findings to clinical practice are discussed, along with future research directions, focusing on the relationship between probiotics, the microbiome, and cancer treatment. Ultimately, this review advocates for further investigation into the therapeutic potential of probiotics in breast cancer, aiming to harness their benefits in oncology.
Collapse
Affiliation(s)
- A S Angel Nama
- Department of Biotechnology, Vikrama Simhapuri University, Nellore, 524320, India
| | - G Mary Sandeepa
- Department of Biotechnology, Vikrama Simhapuri University, Nellore, 524320, India.
| | - Viswanath Buddolla
- Dr.Buddolla's Institute of Life Sciences (A unit of Dr. Buddolla's Research and Educational Society), Tirupati, 517506, India
| | - Anthati Mastan
- Dr.Buddolla's Institute of Life Sciences (A unit of Dr. Buddolla's Research and Educational Society), Tirupati, 517506, India.
| |
Collapse
|
6
|
Busschaert SL, Van Deynse H, De Ridder M, Putman K. Patient-level simulation models in cancer care: a systematic review. Front Public Health 2025; 13:1335300. [PMID: 40416695 PMCID: PMC12098283 DOI: 10.3389/fpubh.2025.1335300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 04/14/2025] [Indexed: 05/27/2025] Open
Abstract
Background Patient-level simulation (PLS) models overcome some major limitations of conventional cohort models and have broad applicability in healthcare, yet limited knowledge exists about their potential in cancer care. Objectives This systematic review aims to: (1) describe the application areas of PLS models in cancer care, (2) identify commonly used model structures, (3) evaluate the quality of reporting based on established guidelines, and (4) critically discuss the potential and limitations of PLS models in this context. Methods A systematic literature search was completed in Web of Science, PubMed, EMBASE and EconLit. Reasons underlying the use of PLS models were identified with a conventional inductive content analysis and reporting quality was assessed with an 18-item checklist based on the ISPOR-SMDM guidelines. Results The number of publications increased over time and most studies used state-transition microsimulation (49.25%) or discrete event simulation (48.51%). Two main application areas could be discerned, namely disease progression modelling (DPM) (78.36%) and health and care systems operation (HCSO) (21.64%). In the DPM domain, the use of PLS models was mainly motivated by the need to represent patient heterogeneity and history. In the HCSO domain, PLS models were used to better understand and improve cancer care delivery. Average reporting quality was 65.2% and did not improve over time. Conclusion PLS models can be used to simulate the progression of cancer and to model cancer care delivery. In the DPM domain more direct comparisons with cohort models are required to establish the relative advantages of PLS models and in the HCSO domain the impact on clinical practice needs to be systematically assessed. Furthermore, adherence to the ISPOR-SMDM guidelines should be improved.
Collapse
|
7
|
Skovborg G, Svejsø FH, Müller C, Jensen BN, Jensen JG, Majidi SE, Matthiesen CL, Chen M. Replication of patient specific circulating tumor cells on a microfibrous filter for drug screening. NANOSCALE 2025; 17:11592-11604. [PMID: 40242908 DOI: 10.1039/d4nr05294c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Personalized medicine in cancer treatment has the potential to enhance therapeutic efficacy while simultaneously reducing adverse effects. Molecular characterization of circulating tumor cells (CTCs) offers invaluable insight into metastatic tumor heterogeneity, making them a perfect candidate for metastatic cancer drug screening. However, they are extremely rare. This study presents the development of melt-electrowritten membrane filters designed for the capture, culture, and drug testing of CTCs. By varying the collector speeds, filters with optimized pore sizes and polymer densities were produced, enabling selective capture of CTCs while minimizing co-capture of white blood cells. Biocompatibility tests showed that the filter supported the proliferation of multiple cancer cell lines. The filter successfully captured and cultured colorectal cancer patient-derived CTC44 and CTC45 cells, which formed 3D clusters observable over several weeks. Drug testing with chemotherapeutic agents 5-fluorouracil/oxaliplatin (FOX) and 5-fluorouracil/irinotecan (FIRI) revealed that CTCs in 3D clusters on the filters exhibited significantly higher drug resistance compared to 2D monolayers. These findings demonstrate the potential of the filter as a versatile platform for studying CTC biology and for screening anticancer drugs, providing a more physiologically relevant environment than traditional 2D cultures.
Collapse
Affiliation(s)
- Grith Skovborg
- Department of Biological and Chemical Engineering, Aarhus University, Aarhus, DK-8000, Denmark.
| | - Frederik Høbjerg Svejsø
- Department of Biological and Chemical Engineering, Aarhus University, Aarhus, DK-8000, Denmark.
| | - Christoph Müller
- Department of Biological and Chemical Engineering, Aarhus University, Aarhus, DK-8000, Denmark.
| | | | - Jesper Godrim Jensen
- Department of Biological and Chemical Engineering, Aarhus University, Aarhus, DK-8000, Denmark.
| | - Sara Egsgaard Majidi
- Department of Biological and Chemical Engineering, Aarhus University, Aarhus, DK-8000, Denmark.
| | | | - Menglin Chen
- Department of Biological and Chemical Engineering, Aarhus University, Aarhus, DK-8000, Denmark.
| |
Collapse
|
8
|
Tapia-Uriol P, Becerra-Goicochea L, Campos-Valderrama V, del Valle-Mendoza J, Aguilar-Luis MA, Silva-Caso WG. Characterization of intrinsic subtypes of breast cancer and their relationship with staging: an observational study. Front Med (Lausanne) 2025; 12:1553910. [PMID: 40417678 PMCID: PMC12098373 DOI: 10.3389/fmed.2025.1553910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 04/16/2025] [Indexed: 05/27/2025] Open
Abstract
Background Breast cancer is one of the main causes of morbidity and mortality among women around the world. In Peru, it has recently surpassed cervical cancer as the most commonly reported cancer. Studying the relationship between intrinsic breast cancer subtypes and disease staging can optimize diagnosis, prognosis, and treatment. Therefore, there is a need for better risk stratification, selection of personalized treatment, and improved early detection strategies. We conducted this study to address the lack of data on underrepresented populations such as the Peruvian population. The objective of the study was to analyze the distribution of intrinsic subtypes of breast cancer and their correlation with prognostic factors and demographic characteristics among women in Peru. Methods A descriptive, retrospective observational study was conducted, analyzing 67 cases of breast cancer of various intrinsic subtypes diagnosed at a referral hospital in Peru. Clinical, demographic, and pathological data were collected, including histological type, intrinsic subtype, tumor stage, and geographic origin of the patients. Intrinsic subtypes were classified through immunohistochemistry, and the data were processed to determine their distribution and correlation with prognostic factors such as disease stage. Results The mean age of the 67 patients included in the study was 54.2 years. The majority of cases originated from the city of Cajamarca (56.7%, n = 38). Invasive breast carcinoma of no special type was the most common histological type (62.7%, n = 42). Among the intrinsic subtypes, luminal B was the most common (31.3%, n = 21), followed by luminal A and triple-negative (22.4%, n = 15), both with the same frequency. Furthermore, 16.4% (n = 11) of patients presented with metastasis at the time of evaluation. A high frequency of tumors was observed in Tumor, Nodes, Metastasis (TNM) stages 3 and 4, accounting for 49.2% (n = 33). Conclusion This study describes the heterogeneity of breast cancer based on the identification of intrinsic subtypes within the analyzed population. The high frequency of luminal B, luminal A, and triple-negative subtypes is notable. The highest frequency of identified cases was in the advanced stages, highlighting the need for personalized treatments and improved early detection strategies.
Collapse
Affiliation(s)
- Paola Tapia-Uriol
- Oncology Unit, Cajamarca Regional Teaching Hospital, Cajamarca, Peru
| | - Lorena Becerra-Goicochea
- Oncology Unit, Cajamarca Regional Teaching Hospital, Cajamarca, Peru
- Professional Academic School of Obstetrics, National University of Cajamarca, Cajamarca, Peru
| | | | - Juana del Valle-Mendoza
- Biomedicine Laboratory, Research Center of the Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas, Lima, Peru
| | - Miguel Angel Aguilar-Luis
- Biomedicine Laboratory, Research Center of the Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas, Lima, Peru
| | - Wilmer Gianfranco Silva-Caso
- Biomedicine Laboratory, Research Center of the Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas, Lima, Peru
| |
Collapse
|
9
|
Abbasi Y, Altamimi O, Al-Shehab M, Nabulsi H, Abbasi S. Next-generation sequencing in the management of cancer: an evaluation of the clinical effectiveness in Jordan. Ther Adv Med Oncol 2025; 17:17588359251337271. [PMID: 40351324 PMCID: PMC12062634 DOI: 10.1177/17588359251337271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Accepted: 04/07/2025] [Indexed: 05/14/2025] Open
Abstract
Background The widespread use of next-generation sequencing (NGS) panels to guide targeted therapies in advanced malignancies raises questions regarding their real-world impact on clinical outcomes and affordability. Objectives The study aims to find trends in targetable genetic alterations among late-stage cancer patients in the Jordanian population and to assess the clinical effectiveness of NGS testing in Jordan. Design This article is a retrospective observational analysis. Data extracted from patient files were used to determine genetic alteration trends and for a comparative assessment of progression-free survival (PFS) between patients receiving NGS-guided personalized treatment compared to those receiving conventional treatment. Methods Two hundred thirteen nonselected late-stage cancer patients from three Jordanian hospitals (2019-2024) were included in this study. Key data points included demographics, genetic variations, and treatment details. Statistical analysis involved the use of the Cox proportional hazards model to evaluate PFS between the two groups of patients. Results Clinically significant genetic alterations were found in 89 patients (42%), with the most common genes being KRAS (20%), PIK3CA (9%), ERBB2 (7%), EGFR (6%), and BRCA1 and 2 (1.5% each). Microsatellite instability-high status was seen in 8 patients (3.7%). Out of the 89 patients with targetable genetic variations, 80.9% received their recommended NGS-guided treatments, while 19.1% did not due to cost or drug unavailability. PFS was significantly improved for patients receiving NGS-guided targeted treatment compared to conventional treatment in the general population with a hazard ratio (HR) of 0.216, the colorectal cancer population (HR of 0.185), the breast cancer population (HR of 0.239), and the lung cancer population (HR of 0.089). Conclusion NGS testing is a very beneficial tool for patients with advanced malignancies to select targeted therapies and potentially improve survival. However, the incorporation of NGS testing in Jordan faces challenges such as high testing and treatment costs and drug unavailability.
Collapse
Affiliation(s)
- Yousef Abbasi
- School of Medicine, University of Jordan, Queen Rania Street, Amman 11942, Jordan
| | - Omar Altamimi
- School of Medicine, University of Jordan, Amman, Jordan
| | | | - Hamza Nabulsi
- School of Medicine, University of Jordan, Amman, Jordan
| | | |
Collapse
|
10
|
Aden D, Zaheer S, Sureka N, Trisal M, Chaurasia JK, Zaheer S. Exploring immune checkpoint inhibitors: Focus on PD-1/PD-L1 axis and beyond. Pathol Res Pract 2025; 269:155864. [PMID: 40068282 DOI: 10.1016/j.prp.2025.155864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 01/20/2025] [Accepted: 02/25/2025] [Indexed: 04/19/2025]
Abstract
Immunotherapy emerges as a promising approach, marked by recent substantial progress in elucidating how the host immune response impacts tumor development and its sensitivity to various treatments. Immune checkpoint inhibitors have revolutionized cancer therapy by unleashing the power of the immune system to recognize and eradicate tumor cells. Among these, inhibitors targeting the programmed cell death protein 1 (PD-1) and its ligand (PD-L1) have garnered significant attention due to their remarkable clinical efficacy across various malignancies. This review delves into the mechanisms of action, clinical applications, and emerging therapeutic strategies surrounding PD-1/PD-L1 blockade. We explore the intricate interactions between PD-1/PD-L1 and other immune checkpoints, shedding light on combinatorial approaches to enhance treatment outcomes and overcome resistance mechanisms. Furthermore, we discuss the expanding landscape of immune checkpoint inhibitors beyond PD-1/PD-L1, including novel targets such as CTLA-4, LAG-3, TIM-3, and TIGIT. Through a comprehensive analysis of preclinical and clinical studies, we highlight the promise and challenges of immune checkpoint blockade in cancer immunotherapy, paving the way for future advancements in the field.
Collapse
Affiliation(s)
- Durre Aden
- Department of Pathology, Hamdard Institute of Medical science and research, Jamia Hamdard, New Delhi, India.
| | - Samreen Zaheer
- Department of Radiotherapy, Jawaharlal Nehru Medical College, AMU, Aligarh, India.
| | - Niti Sureka
- Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India.
| | - Monal Trisal
- Department of Pathology, Hamdard Institute of Medical science and research, Jamia Hamdard, New Delhi, India.
| | | | - Sufian Zaheer
- Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India.
| |
Collapse
|
11
|
Fard NT, Khademi M, Salahi‐Niri A, Esmaeili S. Nanotechnology in Hematology: Enhancing Therapeutic Efficacy With Nanoparticles. Health Sci Rep 2025; 8:e70647. [PMID: 40391271 PMCID: PMC12086657 DOI: 10.1002/hsr2.70647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 02/19/2025] [Accepted: 03/24/2025] [Indexed: 05/21/2025] Open
Abstract
Background and Aims Hematological malignancies, such as leukemia, lymphoma, and multiple myeloma, contribute significantly to global cancer diagnoses. Despite progress in conventional therapies, such as chemotherapy and immunotherapy, these treatments face limitations, including nonspecific targeting, side effects, and drug resistance. The aim of this review is to explore the potential of nanotechnology, particularly nanoparticles (NPs), to improve therapeutic outcomes for these cancers by enhancing drug delivery and reducing toxicity. Methods This review examines recent advancements in NP-based therapies, focusing on their application in hematological malignancies. We discuss different types of NPs, including liposomes, polymeric, and inorganic NPs, for their potential in targeted drug delivery. The review also evaluates the current state of clinical trials and highlights challenges in the translation of nanomedicines from preclinical research to clinical practice. Results Nanoparticles, with their unique properties, offer significant advantages in drug delivery systems, such as enhanced stability, extended circulation time, and targeted tumor delivery. Various NP formulations have shown promise in clinical trials, including liposomal formulations like Vyxeos for acute myeloid leukemia and Marqibo for Ph-negative acute lymphoblastic leukemia. However, challenges in toxicity, regulatory hurdles, and large-scale production still remain. Conclusion Nanomedicine holds transformative potential in the treatment of hematological malignancies, offering more effective and specific therapies compared to conventional treatments. Continued research is necessary to overcome the clinical challenges and maximize the benefits of NP-based therapies for patients with blood cancers.
Collapse
Affiliation(s)
- Nima Torabi Fard
- Department of Hematology and Blood Banking, School of Allied Medical SciencesShahid Beheshti University of Medical SciencesTehranIran
| | - Melika Khademi
- Department of Hematology and Blood Banking, School of Allied Medical SciencesShahid Beheshti University of Medical SciencesTehranIran
| | - Aryan Salahi‐Niri
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver DiseasesShahid Beheshti University of Medical SciencesTehranIran
| | - Shadi Esmaeili
- Department of Hematology and Blood Banking, School of Allied Medical SciencesShahid Beheshti University of Medical SciencesTehranIran
| |
Collapse
|
12
|
Piergentili R, Sechi S, De Paola L, Zaami S, Marinelli E. Building a Hand-Curated ceRNET for Endometrial Cancer, Striving for Clinical as Well as Medicolegal Soundness: A Systematic Review. Noncoding RNA 2025; 11:34. [PMID: 40407592 PMCID: PMC12101250 DOI: 10.3390/ncrna11030034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/31/2025] [Accepted: 04/27/2025] [Indexed: 05/26/2025] Open
Abstract
Background/Objectives: Competing endogenous RNAs (ceRNA) are molecules that compete for the binding to a microRNA (miR). Usually, there are two ceRNA, one of which is a protein-coding RNA (mRNA), with the other being a long non-coding RNA (lncRNA). The miR role is to inhibit mRNA expression, either promoting its degradation or impairing its translation. The lncRNA can "sponge" the miR, thus impeding its inhibitory action on the mRNA. In their easier configuration, these three molecules constitute a regulatory axis for protein expression. However, each RNA can interact with multiple targets, creating branched and intersected axes that, all together, constitute what is known as a competing endogenous RNA network (ceRNET). Methods: In this systematic review, we collected all available data from PubMed about experimentally verified (by luciferase assay) regulatory axes in endometrial cancer (EC), excluding works not using this test; Results: This search allowed the selection of 172 bibliographic sources, and manually building a series of ceRNETs of variable complexity showed the known axes and the deduced intersections. The main limitation of this search is the highly stringent selection criteria, possibly leading to an underestimation of the complexity of the networks identified. However, this work allows us not only to hypothesize possible gap fillings but also to set the basis to instruct artificial intelligence, using adequate prompts, to expand the EC ceRNET by comparing it with ceRNETs of other cancers. Moreover, these networks can be used to inform and guide research toward specific, though still unidentified, axes in EC, to complete parts of the network that are only partially described, or even to integrate low complexity subnetworks into larger more complex ones. Filling the gaps among the existing EC ceRNET will allow physicians to hypothesize new therapeutic strategies that may either potentiate or substitute existing ones. Conclusions: These ceRNETs allow us to easily visualize long-distance interactions, thus helping to select the best treatment, depending on the molecular profile of each patient, for personalized medicine. This would yield higher efficiency rates and lower toxicity levels, both of which are extremely relevant factors not only for patients' wellbeing, but also for the legal, regulatory, and ethical aspects of miR-based innovative treatments and personalized medicine as a whole. This systematic review has been registered in PROSPERO (ID: PROSPERO 2025 CRD420251035222).
Collapse
Affiliation(s)
- Roberto Piergentili
- Institute of Molecular Biology and Pathology, Italian National Research Council (CNR-IBPM), 00185 Rome, Italy;
| | - Stefano Sechi
- Institute of Molecular Biology and Pathology, Italian National Research Council (CNR-IBPM), 00185 Rome, Italy;
| | - Lina De Paola
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University of Rome, 00161 Rome, Italy; (L.D.P.); (S.Z.)
| | - Simona Zaami
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University of Rome, 00161 Rome, Italy; (L.D.P.); (S.Z.)
| | - Enrico Marinelli
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy;
| |
Collapse
|
13
|
Srivastav AK, Mishra MK, Lillard JW, Singh R. Transforming Pharmacogenomics and CRISPR Gene Editing with the Power of Artificial Intelligence for Precision Medicine. Pharmaceutics 2025; 17:555. [PMID: 40430848 DOI: 10.3390/pharmaceutics17050555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/16/2025] [Accepted: 04/22/2025] [Indexed: 05/29/2025] Open
Abstract
Background: Advancements in pharmacogenomics, artificial intelligence (AI), and CRISPR gene-editing technology are revolutionizing precision medicine by enabling highly individualized therapeutic strategies. Artificial intelligence-driven computational techniques improve biomarker discovery and drug optimization while pharmacogenomics helps to identify genetic polymorphisms affecting medicine metabolism, efficacy, and toxicity. Genetically editing based on CRISPR presents a precise method for changing gene expression and repairing damaging mutations. This review explores the convergence of these three fields to enhance improved precision medicine. Method: A methodical study of the current literature was performed on the effects of pharmacogenomics on drug response variability, artificial intelligence, and CRISPR in predictive modeling and gene-editing applications. Results: Driven by artificial intelligence, pharmacogenomics allows clinicians to classify patients and select the appropriate medications depending on their DNA profiles. This reduces the side effect risk and increases the therapeutic efficacy. Precision genetic modifications made feasible by CRISPR technology improve therapy outcomes in oncology, metabolic illnesses, neurological diseases, and other fields. The integration of artificial intelligence streamlines genome-editing applications, lowers off-target effects, and increases CRISPR specificity. Notwithstanding these advances, issues including computational biases, moral dilemmas, and legal constraints still arise. Conclusions: The synergy of artificial intelligence, pharmacogenomics, and CRISPR alters precision medicine by letting customized therapeutic interventions. Clinically translating, however, hinges on resolving data privacy concerns, assuring equitable access, and strengthening legal systems. Future research should focus on refining CRISPR gene-editing technologies, enhancing AI-driven pharmacogenomics, and developing moral guidelines for applying these tools in individualized medicine going forward.
Collapse
Affiliation(s)
- Amit Kumar Srivastav
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, 720 Westview Drive SW, Atlanta, GA 30310, USA
| | - Manoj Kumar Mishra
- Department of Biological Sciences, Alabama State University, Montgomery, AL 36104, USA
| | - James W Lillard
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, 720 Westview Drive SW, Atlanta, GA 30310, USA
- Cancer Health Equity Institute, Morehouse School of Medicine, 720 Westview Drive SW, Atlanta, GA 30310-1495, USA
| | - Rajesh Singh
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, 720 Westview Drive SW, Atlanta, GA 30310, USA
- Cancer Health Equity Institute, Morehouse School of Medicine, 720 Westview Drive SW, Atlanta, GA 30310-1495, USA
| |
Collapse
|
14
|
Frühwein H, Münch N, Paul NW. Reassessing onco-exceptionalism: equity and resource allocation in immunotherapeutic cancer treatments. JOURNAL OF MEDICAL ETHICS 2025:jme-2025-110739. [PMID: 40258651 DOI: 10.1136/jme-2025-110739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 04/04/2025] [Indexed: 04/23/2025]
Abstract
Given that only a small fraction of patients with cancer exhibits specific markers making them eligible for effective targeted therapies, this paper investigates the justification of treating cancer differently in terms of resource allocation when it comes to the application of novel precise therapies-the so-called onco-exceptionalism. Specifically, it assesses whether the reimbursement of expensive drugs is equitable. To do so, we first contextualise healthcare resource allocation concerning immunotherapeutic treatments for cancer, then explore arguments for and against onco-exceptionalism and finally conclude by advocating for a proactive health approach.
Collapse
Affiliation(s)
- Hamideh Frühwein
- Institute for the History, Philosophy and Ethics of Medicine, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Nikolai Münch
- Institute for the History, Philosophy and Ethics of Medicine, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Norbert W Paul
- Institute for the History, Philosophy and Ethics of Medicine, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
15
|
Schnorr I, Andreas S, Schumann L, Hahn S, Vehreschild JJ, Maier D. ATCodeR: a dictionary-based R-tool to standardize medication free-text. Sci Rep 2025; 15:12252. [PMID: 40211013 PMCID: PMC11986091 DOI: 10.1038/s41598-025-97150-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 04/02/2025] [Indexed: 04/12/2025] Open
Abstract
Over the past decades, oncology treatment paradigms have developed significantly. Yet, the often unstructured nature of substance-related documentation in medical records presents a time-consuming challenge for analyzing treatment patterns and outcomes. To advance oncological research further, clinical data science must offer solutions that facilitate research and analysis with real-world data (RWD). The present contribution introduces a user-friendly R-tool designed to transform free-text medication entries into the structured Anatomical Therapeutic Chemical (ATC) Classification System by applying a dictionary-based approach. The resulting output is a structured data frame containing columns for antineoplastic medication, other medications, and supplementary information. For accuracy validation, 561 data entries from an evaluation data set were reviewed, consisting of 935 tokens. 88.5% of these tokens were successfully transformed into their respective ATC codes. Additional information was extracted from 129 data entries (23%), while 23 entries (4.1%) presented no usable information. All tokens underwent a manual review; 8.9% (84 tokens) failed transformations. This approach improves the standardization and analysis of systemic anti-cancer treatment data in German-speaking regions by optimizing efficiency while maintaining relevant accuracy.
Collapse
Affiliation(s)
- Isabel Schnorr
- Faculty of Medicine, Institute for Digital Medicine and Clinical Data Sciences, Goethe University Frankfurt, Frankfurt, Germany.
- Medical Department 2 (Hematology/Oncology and Infectious Diseases), Center for Internal Medicine, University Hospital, Goethe University Frankfurt, Frankfurt, Germany.
| | - Stefanie Andreas
- Faculty of Medicine, Institute for Digital Medicine and Clinical Data Sciences, Goethe University Frankfurt, Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, a partnership between DKFZ and University Medicine Frankfurt, Frankfurt am Main, Germany
| | - Linnea Schumann
- Faculty of Medicine, Institute for Digital Medicine and Clinical Data Sciences, Goethe University Frankfurt, Frankfurt, Germany
| | - Svenja Hahn
- Faculty of Medicine, Institute for Digital Medicine and Clinical Data Sciences, Goethe University Frankfurt, Frankfurt, Germany
| | - Jörg Janne Vehreschild
- Faculty of Medicine, Institute for Digital Medicine and Clinical Data Sciences, Goethe University Frankfurt, Frankfurt, Germany
- Medical Department 2 (Hematology/Oncology and Infectious Diseases), Center for Internal Medicine, University Hospital, Goethe University Frankfurt, Frankfurt, Germany
| | - Daniel Maier
- Faculty of Medicine, Institute for Digital Medicine and Clinical Data Sciences, Goethe University Frankfurt, Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, a partnership between DKFZ and University Medicine Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
16
|
Tillman L, Margalef Rieres J, Ahjem E, Bishop-Guest F, McGrath M, Hatrick H, Pranjol MZI. Thinking Outside the Therapeutic Box: The Potential of Polyphenols in Preventing Chemotherapy-Induced Endothelial Dysfunction. Cells 2025; 14:566. [PMID: 40277892 PMCID: PMC12026109 DOI: 10.3390/cells14080566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 04/03/2025] [Accepted: 04/07/2025] [Indexed: 04/26/2025] Open
Abstract
The numerous side effects and adverse health implications associated with chemotherapies have long plagued the field of cancer care. Whilst in some cases a curative measure, this highly toxic intervention consistently scores poorly on quantitative measures of tolerability and safety. Of these side effects, cardiac and microvascular defects pose the greatest health risk and are the leading cause of death amongst cancer survivors who do not succumb to relapse. In fact, in many low-grade cancers, the risk of recurrence is far outweighed by the cardiovascular risk of morbidity. As such, there is a pressing need to improve outcomes within these populations. Polyphenols are a group of naturally occurring metabolites that have shown potential vasoprotective effects. Studies suggest they possess antioxidant and anti-inflammatory activities, in addition to directly modulating vascular signalling pathways and gene expression. Leveraging these properties may help counteract the vascular toxicity induced by chemotherapy. In this review, we outline the main mechanisms by which the endothelium is damaged by chemotherapeutic agents and discuss the ability of polyphenols to counteract such side effects. We suggest future considerations that may help overcome some of the published limitations of these compounds that have stalled their clinical success. Finally, we briefly explore their pharmacological properties and how novel approaches could enhance their efficacy while minimising treatment-related side effects.
Collapse
Affiliation(s)
- Luke Tillman
- School of Clinical Medicine, University of Cambridge, Cambridge CB2 0SP, UK; (L.T.); (J.M.R.); (M.M.); (H.H.)
| | - Jaume Margalef Rieres
- School of Clinical Medicine, University of Cambridge, Cambridge CB2 0SP, UK; (L.T.); (J.M.R.); (M.M.); (H.H.)
| | - Elena Ahjem
- School of Clinical Medicine, University of Cambridge, Cambridge CB2 0SP, UK; (L.T.); (J.M.R.); (M.M.); (H.H.)
| | - Fynn Bishop-Guest
- School of Clinical Medicine, University of Cambridge, Cambridge CB2 0SP, UK; (L.T.); (J.M.R.); (M.M.); (H.H.)
| | - Meghan McGrath
- School of Clinical Medicine, University of Cambridge, Cambridge CB2 0SP, UK; (L.T.); (J.M.R.); (M.M.); (H.H.)
| | - Helena Hatrick
- School of Clinical Medicine, University of Cambridge, Cambridge CB2 0SP, UK; (L.T.); (J.M.R.); (M.M.); (H.H.)
| | | |
Collapse
|
17
|
Oyovwi MO, Ben-Azu B, Babawale KH. Therapeutic potential of microbiome modulation in reproductive cancers. Med Oncol 2025; 42:152. [PMID: 40188410 DOI: 10.1007/s12032-025-02708-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 03/30/2025] [Indexed: 04/08/2025]
Abstract
The human microbiome, a complex ecosystem of microbial communities, plays a crucial role in physiological processes, and emerging research indicates a potential link between it and reproductive cancers. This connection highlights the significance of understanding the microbiome's influence on cancer development and treatment. A comprehensive review of current literature was conducted, focusing on studies that investigate the relationship between microbiome composition, reproductive cancer progression, and potential therapeutic approaches to modulate the microbiome. Evidence suggests that imbalances in the microbiome, known as dysbiosis, may contribute to the development and progression of reproductive cancers. Specific microbial populations have been associated with inflammatory responses, immune modulation, and even resistance to conventional therapies. Interventions such as probiotics, dietary modifications, and fecal microbiota transplantation have shown promise in restoring healthy microbiome function and improving cancer outcomes in pre-clinical models, with pilot studies in humans indicating potential benefits. This review explores the therapeutic potential of microbiome modulation in the management of reproductive cancers, discussing the mechanisms involved and the evidence supporting microbiome-targeted therapies. Future research is warranted to unravel the complex interactions between the microbiome and reproductive cancer pathophysiology, paving the way for innovative approaches.
Collapse
Affiliation(s)
- Mega Obukohwo Oyovwi
- Faculty of Basic Medical Sciences, Department of Physiology, Adeleke University, Ede, Osun State, Nigeria.
- Department of Human Physiology, Faculty of Basic Medical Sciences, Delta State University of Science and Technology, Ozoro, Delta State, Nigeria.
| | - Benneth Ben-Azu
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Delta State University, Abraka, 330106, Delta State, Nigeria
| | - Kehinde Henrietta Babawale
- Faculty of Basic Medical Sciences, Department of Physiology, Adeleke University, Ede, Osun State, Nigeria
| |
Collapse
|
18
|
Alkamli S, Alshamlan H. Evaluating the Nuclear Reaction Optimization (NRO) Algorithm for Gene Selection in Cancer Classification. Diagnostics (Basel) 2025; 15:927. [PMID: 40218277 PMCID: PMC11988358 DOI: 10.3390/diagnostics15070927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/29/2025] [Accepted: 03/31/2025] [Indexed: 04/14/2025] Open
Abstract
Background/Objectives: Cancer classification using microarray datasets presents a significant challenge due to their extremely high dimensionality. This complexity necessitates advanced optimization methods for effective gene selection. Methods: This study introduces and evaluates the Nuclear Reaction Optimization (NRO)-drawing inspiration from nuclear fission and fusion-for identifying informative gene subsets in six benchmark cancer microarray datasets. Employed as a standalone approach without prior dimensionality reduction, NRO was assessed using both Support Vector Machine (SVM) and k-Nearest Neighbors (k-NN). Leave-One-Out Cross-Validation (LOOCV) was used to rigorously evaluate classification accuracy and the relevance of the selected genes. Results: Experimental results show that NRO achieved high classification accuracy, particularly when used with SVM. In select datasets, it outperformed several state-of-the-art optimization algorithms. However, due to the absence of additional dimensionality reduction techniques, the number of selected genes remains relatively high. Comparative analysis with Harris Hawks Optimization (HHO), Artificial Bee Colony (ABC), Particle Swarm Optimization (PSO), and Firefly Algorithm (FFA) shows that while NRO delivers competitive performance, it does not consistently outperform all methods across datasets. Conclusions: The study concludes that NRO is a promising gene selection approach, particularly effective in certain datasets, and suggests that future work should explore hybrid models and feature reduction techniques to further enhance its accuracy and efficiency.
Collapse
Affiliation(s)
| | - Hala Alshamlan
- Department of Information Technology, College of Computer and Information Sciences, King Saud University, P.O. Box 51178, Riyadh 11543, Saudi Arabia;
| |
Collapse
|
19
|
Shende S, Rathored J, Budhbaware T. Role of metabolic transformation in cancer immunotherapy resistance: molecular mechanisms and therapeutic implications. Discov Oncol 2025; 16:453. [PMID: 40175681 PMCID: PMC11965038 DOI: 10.1007/s12672-025-02238-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 03/25/2025] [Indexed: 04/04/2025] Open
Abstract
BACKGROUND Immunotherapy in the treatment of cancer, with immune inhibitors helps in many cancer types. Many patients still encounter resistance to these treatments, though. This resistance is mediated by metabolic changes in the tumour microenvironment and cancer cells. The development of novel treatments to overcome resistance and boost immunotherapy's effectiveness depends on these metabolic changes. OBJECTIVE This review concentrates on the molecular mechanisms through which metabolic transformation contributes to cancer immunotherapy resistance. Additionally, research therapeutic approaches that target metabolic pathways to enhance immunotherapy for resistance. METHODS We used databases available on PubMed, Scopus, and Web of Science to perform a thorough review of peer-reviewed literature. focusing on the tumor microenvironment, immunotherapy resistance mechanisms, and cancer metabolism. The study of metabolic pathways covers oxidative phosphorylation, glycolysis, lipid metabolism, and amino acid metabolism. RESULTS An immunosuppressive tumour microenvironment is produced by metabolic changes in cancer cells, such as dysregulated lipid metabolism, enhanced glutaminolysis, and increased glycolysis (Warburg effect). Myeloid-derived suppressor cells and regulatory T cells are promoted, immune responses are suppressed, and T cell activity is impaired when lactate and other metabolites build up. changes in the metabolism of amino acids in the pathways for arginine and tryptophan, which are nutrients crucial for immune function. By enhancing their function in the tumour microenvironment, these metabolic alterations aid in resistance to immune checkpoint inhibitors. CONCLUSION Metabolic change plays a key role in cancer immunotherapy resistance. Gaining knowledge of metabolic processes can help develop efficient treatments that improve immunotherapy's effectiveness. In order to determine the best targets for therapeutic intervention, future studies should concentrate on patient-specific metabolic profiling.
Collapse
Affiliation(s)
- Sandesh Shende
- Central Research Laboratory and Molecular Diagnostics, School of Allied Health Sciences, Datta Meghe Institute of Higher Education and Research, Sawangi (Meghe), Wardha, 442001, Maharashtra, India
| | - Jaishriram Rathored
- Central Research Laboratory and Molecular Diagnostics, School of Allied Health Sciences, Datta Meghe Institute of Higher Education and Research, Sawangi (Meghe), Wardha, 442001, Maharashtra, India.
| | - Tanushree Budhbaware
- Central Research Laboratory and Molecular Diagnostics, School of Allied Health Sciences, Datta Meghe Institute of Higher Education and Research, Sawangi (Meghe), Wardha, 442001, Maharashtra, India
| |
Collapse
|
20
|
Bayat M, Nahand JS. Battlegrounds of treatment resistance: decoding the tumor microenvironment. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04055-5. [PMID: 40131387 DOI: 10.1007/s00210-025-04055-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Accepted: 03/12/2025] [Indexed: 03/27/2025]
Abstract
The tumor microenvironment (TME) emerges as a formidable actor in the cancer treatment landscape, wielding the power to thwart therapeutic efficacy across various modalities, including chemotherapy, radiotherapy, immunotherapy, targeted therapy, and hormonal therapy. This intricate ecosystem comprising diverse cellular constituents, signaling molecules, and the extracellular matrix fosters a dynamic interplay that profoundly influences tumor behavior and treatment outcomes. This review explores the mechanisms through which the TME drives resistance to standard therapies, emphasizing key factors such as hypoxia, immune evasion, and metabolic reprogramming. Furthermore, we illuminate innovative strategies aimed at reprogramming this hostile environment, including the application of therapeutic vaccines, CAR T cell therapy, and combination immunotherapies designed to enhance anti-tumor responses. By advocating for multidimensional approaches that dismantle the TME's barriers to effective treatment, this review calls for a transformative shift in cancer treatment paradigms. By bridging the gap between the TME's complexities and targeted therapeutic strategies, we pave the way for targeted interventions that promise to enhance clinical outcomes and improve patient prognosis in the relentless battle against cancer.
Collapse
Affiliation(s)
- Mobina Bayat
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javid Sadri Nahand
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
21
|
Selvaraj C, Santhosh R, Alothaim AS, Vijayakumar R, Desai D, Safi SZ, Singh SK. Advances in cancer therapy: unveil the immunomodulatory protein involved in signaling pathways as molecular targets. CHEMICAL PAPERS 2025. [DOI: 10.1007/s11696-025-04007-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 03/05/2025] [Indexed: 04/01/2025]
|
22
|
Bagde A, Messiha M, Singh M. Development and Characterization of Cannabidiol Gummy Using 3D Printing. Gels 2025; 11:189. [PMID: 40136894 PMCID: PMC11941846 DOI: 10.3390/gels11030189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/25/2025] [Accepted: 03/04/2025] [Indexed: 03/27/2025] Open
Abstract
Oropharyngeal dysphagia and pain are prevalent concerns in the geriatric population. Therefore, this study investigates advances in the development of cannabidiol (CBD) gummies using 3D printing technology and compares them to commercially available molded gummies for pain management. A gelatin-based CBD formulation was prepared and printed using a syringe-based extrusion 3D printer. The formulation's rheological properties were assessed, and the printed gummies were characterized using a texture analyzer. Drug content was analyzed using HPLC, and in vitro dissolution studies were conducted in phosphate buffer (pH 1.2 and 6.8). Our results demonstrated that the gelatin-based formulation had shear-thinning rheological properties for 3D printing at a temperature of 38.00 °C, filament diameter of 26 mm and flow of 110%. The optimized printing parameters produced gummies with higher elasticity compared to marketed gummies and comparable toughness. Drug content analysis showed 98.14 ± 1.56 and 97.97 ± 2.14% of CBD in 3D-printed and marketed gummies, respectively. Dissolution studies revealed that both gummy types released 100% of the drug within 30 min in both pH 1.2 and 6.8 buffers. Overall, 3D printing enables customizable CBD gummies with optimized release and offer a personalized and patient-friendly alternative to traditional oral forms for geriatric care.
Collapse
Affiliation(s)
| | | | - Mandip Singh
- Pharmaceutical Sciences Department, Florida A&M University, Tallahassee, FL 32307, USA; (A.B.); (M.M.)
| |
Collapse
|
23
|
Regett N, Dieterle M, Peters F, Deuring M, Stegmaier K, Teleki A, Takors R. Subcellular Fractionation Enables Assessment of Nucleotide Sugar Donors Inside the Golgi Apparatus as a Prerequisite for Unraveling Culture Impacts on Glycoforms of Antibodies. Biotechnol J 2025; 20:e202400678. [PMID: 40123410 PMCID: PMC11931351 DOI: 10.1002/biot.202400678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/30/2025] [Accepted: 02/22/2025] [Indexed: 03/25/2025]
Abstract
Glycosylation is a critical quality attribute in biopharmaceuticals that influences crucial properties, such as biological activity and blood clearance. Current methods for modeling glycosylation typically rely on imprecise or limited data on nucleotide sugar donor (NSD) dynamics. These methods use in vitro transporter kinetics or flux balance analysis, which overlook the key aspects of metabolic regulation. We devised an integrative workflow for absolute subcellular NSD quantification in both cytoplasm and secretory organelles. Using subcellular fractionation, exhaustive sample extraction, and liquid chromatography triple-quadrupole tandem mass spectrometry, we accurately measured NSD concentrations ranging from 1.6 amol/cell to 3 fmol/cell. As expected, NSD concentration profiles aligned closely with the glycan distributions on antibodies, particularly after nutrient pulsing to stimulate NSD production, showcasing method validity. This method enables empirical observation of compartment-specific NSD dynamics. Thus, this study provides novel insights indicating that N-glycosylation, which governs NSD supply, is primarily regulated within the Golgi apparatus (GA). This method offers a novel tool to obtain sophisticated data for a more efficient optimization of glycosylation processes in production cell lines.
Collapse
Affiliation(s)
- Niklas Regett
- Institute of Biochemical EngineeringUniversity of StuttgartStuttgartBaden‐WürttembergGermany
| | - Marcel Dieterle
- Institute of Biochemical EngineeringUniversity of StuttgartStuttgartBaden‐WürttembergGermany
| | - Fleur Peters
- Institute of Biochemical EngineeringUniversity of StuttgartStuttgartBaden‐WürttembergGermany
| | - Max Deuring
- Institute of Biochemical EngineeringUniversity of StuttgartStuttgartBaden‐WürttembergGermany
| | - Kaja Stegmaier
- Institute of Biochemical EngineeringUniversity of StuttgartStuttgartBaden‐WürttembergGermany
| | - Attila Teleki
- Institute of Biochemical EngineeringUniversity of StuttgartStuttgartBaden‐WürttembergGermany
| | - Ralf Takors
- Institute of Biochemical EngineeringUniversity of StuttgartStuttgartBaden‐WürttembergGermany
| |
Collapse
|
24
|
Cafiero C, Palmirotta R, Martinelli C, Micera A, Giacò L, Persiani F, Morrione A, Pastore C, Nisi C, Modoni G, Galeano T, Guarino T, Foggetti I, Nisticò C, Giordano A, Pisconti S. Oncological Treatment Adverse Reaction Prediction: Development and Initial Validation of a Pharmacogenetic Model in Non-Small-Cell Lung Cancer Patients. Genes (Basel) 2025; 16:265. [PMID: 40149417 PMCID: PMC11942520 DOI: 10.3390/genes16030265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/13/2025] [Accepted: 02/22/2025] [Indexed: 03/29/2025] Open
Abstract
Background/Objectives: The accurate prediction of adverse drug reactions (ADRs) to oncological treatments still poses a clinical challenge. Chemotherapy is usually selected based on clinical trials that do not consider patient variability in ADR risk. Consequently, many patients undergo multiple treatments to find the appropriate medication or dosage, enhancing ADR risks and increasing the chance of discontinuing therapy. We first aimed to develop a pharmacogenetic model for predicting chemotherapy-induced ADRs in cancer patients (the ANTIBLASTIC DRUG MULTIPANEL PLATFORM) and then to assess its feasibility and validate this model in patients with non-small-cell lung cancer (NSCLC) undergoing oncological treatments. Methods: Seventy NSCLC patients of all stages that needed oncological treatment at our facility were enrolled, reflecting the typical population served by our institution, based on geographic and demographic characteristics. Treatments followed existing guidelines, and patients were continuously monitored for adverse reactions. We developed and used a multipanel platform based on 326 SNPs that we identified as strongly associated with response to cancer treatments. Subsequently, a network-based algorithm to link these SNPs to molecular and biological functions, as well as efficacy and adverse reactions to oncological treatments, was used. Results: Data and blood samples were collected from 70 NSCLC patients. A bioinformatic analysis of all identified SNPs highlighted five clusters of patients based on variant aggregations and the associated genes, suggesting potential susceptibility to treatment-related toxicity. We assessed the feasibility of the platform and technically validated it by comparing NSCLC patients undergoing the same course of treatment with or without ADRs against the cluster combination. An odds ratio analysis confirmed the correlation between cluster allocation and increased ADR risk, indicating specific treatment susceptibilities. Conclusions: The ANTIBLASTIC DRUG MULTIPANEL PLATFORM was easily applicable and able to predict ADRs in NSCLC patients undergoing oncological treatments. The application of this novel predictive model could significantly reduce adverse drug reactions and improve the rate of chemotherapy completion, enhancing patient outcomes and quality of life. Its potential for broader prescription management suggests significant treatment improvements in cancer patients.
Collapse
Affiliation(s)
- Concetta Cafiero
- Medical Oncology, SG Moscati Hospital, 74010 Statte, Italy; (C.C.); (C.P.); (C.N.); (G.M.); (T.G.); (T.G.); (I.F.); (S.P.)
- Anatomic Pathology Unit, Fabrizio Spaziani Hospital, 03100 Frosinone, Italy
| | - Raffaele Palmirotta
- Interdisciplinary Department of Medicine, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Canio Martinelli
- Sbarro Institute for Cancer Research and Molecular Medicine and Center for Biotechnology, Department of Biology College of Science and Technology, Temple University, Philadelphia, PA 19122, USA; (C.M.); (A.M.); (A.G.)
- Gynecology and Obstetrics Unit, Department of Human Pathology “G. Barresi”, University of Messina, 98125 Messina, Italy
| | - Alessandra Micera
- Research and Development Laboratory for Biochemical, Molecular and Cellular Applications in Ophthalmological Sciences, IRCCS-Fondazione Bietti, 00184 Rome, Italy;
| | - Luciano Giacò
- Bioinformatics Core Facility, Gemelli Science and Technology Park (G-STeP), Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (L.G.); (F.P.)
| | - Federica Persiani
- Bioinformatics Core Facility, Gemelli Science and Technology Park (G-STeP), Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (L.G.); (F.P.)
| | - Andrea Morrione
- Sbarro Institute for Cancer Research and Molecular Medicine and Center for Biotechnology, Department of Biology College of Science and Technology, Temple University, Philadelphia, PA 19122, USA; (C.M.); (A.M.); (A.G.)
| | - Cosimo Pastore
- Medical Oncology, SG Moscati Hospital, 74010 Statte, Italy; (C.C.); (C.P.); (C.N.); (G.M.); (T.G.); (T.G.); (I.F.); (S.P.)
| | - Claudia Nisi
- Medical Oncology, SG Moscati Hospital, 74010 Statte, Italy; (C.C.); (C.P.); (C.N.); (G.M.); (T.G.); (T.G.); (I.F.); (S.P.)
| | - Gabriella Modoni
- Medical Oncology, SG Moscati Hospital, 74010 Statte, Italy; (C.C.); (C.P.); (C.N.); (G.M.); (T.G.); (T.G.); (I.F.); (S.P.)
| | - Teresa Galeano
- Medical Oncology, SG Moscati Hospital, 74010 Statte, Italy; (C.C.); (C.P.); (C.N.); (G.M.); (T.G.); (T.G.); (I.F.); (S.P.)
| | - Tiziana Guarino
- Medical Oncology, SG Moscati Hospital, 74010 Statte, Italy; (C.C.); (C.P.); (C.N.); (G.M.); (T.G.); (T.G.); (I.F.); (S.P.)
| | - Ilaria Foggetti
- Medical Oncology, SG Moscati Hospital, 74010 Statte, Italy; (C.C.); (C.P.); (C.N.); (G.M.); (T.G.); (T.G.); (I.F.); (S.P.)
| | - Cecilia Nisticò
- Medical Oncology Unit, ASL Frosinone, 03100 Frosinone, Italy;
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine and Center for Biotechnology, Department of Biology College of Science and Technology, Temple University, Philadelphia, PA 19122, USA; (C.M.); (A.M.); (A.G.)
- Department of Medical Biotechnology, University of Siena, 53100 Siena, Italy
| | - Salvatore Pisconti
- Medical Oncology, SG Moscati Hospital, 74010 Statte, Italy; (C.C.); (C.P.); (C.N.); (G.M.); (T.G.); (T.G.); (I.F.); (S.P.)
| |
Collapse
|
25
|
Alqarni SS, Khan NU. Integrating alternative therapies in overcoming chemotherapy resistance in tumors. Mol Biol Rep 2025; 52:239. [PMID: 39961936 DOI: 10.1007/s11033-025-10361-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 02/11/2025] [Indexed: 05/09/2025]
Abstract
Chemotherapy-resistant tumors present a significant challenge in oncology, often leading to treatment failures owing to mechanisms such as genetic mutations, drug efflux, altered metabolism, and adaptations within the tumor microenvironment. These factors limit the effectiveness of treatment and contribute to tumor resistance. This review highlights the role of alternative therapies aimed at overcoming resistance mechanisms. Several alternative strategies with high efficacy rate against tumor resistance are being explored, including targeted therapies (58-64%), immunotherapy (80%), hormone therapy (22-61%), and emerging approaches such as herbal therapies (90%), probiotics (34-90%), metabolic therapies (> 50%), epigenetic therapies (51-89%), microbiome-based therapies (50%), gene therapy (67-80%), photodynamic therapy/hypothermia (86-99%), and nanotechnology (50-67%). Integrating these alternative strategies with conventional treatments has the potent-al to augment the therapeutic efficacy and patient outcomes. Despite this progress, limitations in cancer therapeutics include the lack of predictive biomarkers, resistance mechanisms, and tumor heterogeneity, all of which contribute to treatment failure and relapse. To address these limitations, advancements in molecular diagnostics, as well as early detection through liquid biopsies, and the use of biomarkers to monitor resistance and guide treatment are crucial. Additionally, expanding clinical trials is essential to validate new therapies and improve patient outcomes.
Collapse
Affiliation(s)
- Sana S Alqarni
- Department of Clinical Laboratory Science, College of Applied Medical Science, King Saud University, 11421, Riyadh, Saudi Arabia
| | - Najeeb Ullah Khan
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture, Peshawar, 25130, Pakistan.
| |
Collapse
|
26
|
Lawal AO, Ogunniyi TJ, Oludele OI, Olorunfemi OA, Okesanya OJ, Ogaya JB, Manirambona E, Ahmed MM, Lucero-Prisno DE. Innovative laboratory techniques shaping cancer diagnosis and treatment in developing countries. Discov Oncol 2025; 16:137. [PMID: 39921787 PMCID: PMC11807038 DOI: 10.1007/s12672-025-01877-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 02/03/2025] [Indexed: 02/10/2025] Open
Abstract
Cancer is a major global health challenge, with approximately 19.3 million new cases and 10 million deaths estimated by 2020. Laboratory advancements in cancer detection have transformed diagnostic capabilities, particularly through the use of biomarkers that play crucial roles in risk assessment, therapy selection, and disease monitoring. Tumor histology, single-cell technology, flow cytometry, molecular imaging, liquid biopsy, immunoassays, and molecular diagnostics have emerged as pivotal tools for cancer detection. The integration of artificial intelligence, particularly deep learning and convolutional neural networks, has enhanced the diagnostic accuracy and data analysis capabilities. However, developing countries face significant challenges including financial constraints, inadequate healthcare infrastructure, and limited access to advanced diagnostic technologies. The impact of COVID-19 has further complicated cancer management in resource-limited settings. Future research should focus on precision medicine and early cancer diagnosis through sophisticated laboratory techniques to improve prognosis and health outcomes. This review examines the evolving landscape of cancer detection, focusing on laboratory research breakthroughs and limitations in developing countries, while providing recommendations for advancing tumor diagnostics in resource-constrained environments.
Collapse
Affiliation(s)
- Azeez Okikiola Lawal
- Department of Medical Laboratory Science, Kwara State University, Malete, Nigeria
| | | | | | | | - Olalekan John Okesanya
- Department of Public Health and Maritime Transport, University of Thessaly, Volos, Greece
| | - Jerico Bautista Ogaya
- Department of Medical Technology, Institute of Health Sciences and Nursing, Far Eastern University, Manila, Philippines
| | | | | | - Don Eliseo Lucero-Prisno
- Department of Global Health and Development, London School of Hygiene and Tropical Medicine, London, UK
- Research and Innovation Office, Southern Leyte State University, Leyte, Philippines
- Research and Development Office, Biliran Province State University, Biliran, Philippines
| |
Collapse
|
27
|
Amparo TR, Almeida TC, Sousa LRD, Xavier VF, da Silva GN, Brandão GC, dos Santos ODH. Nanostructured Formulations for a Local Treatment of Cancer: A Mini Review About Challenges and Possibilities. Pharmaceutics 2025; 17:205. [PMID: 40006574 PMCID: PMC11859672 DOI: 10.3390/pharmaceutics17020205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/30/2025] [Accepted: 02/03/2025] [Indexed: 02/27/2025] Open
Abstract
Cancer represents a significant societal, public health, and economic challenge. Conventional chemotherapy is based on systemic administration; however, it has current limitations, including poor bioavailability, high-dose requirements, adverse side effects, low therapeutic indices, and the development of multiple drug resistance. These factors underscore the need for innovative strategies to enhance drug delivery directly to tumours. However, local treatment also presents significant challenges, including the penetration of the drug through endothelial layers, tissue density in the tumour microenvironment, tumour interstitial fluid pressure, physiological conditions within the tumour, and permanence at the site of action. Nanotechnology represents a promising alternative for addressing these challenges. This narrative review elucidates the potential of nanostructured formulations for local cancer treatment, providing illustrative examples and an analysis of the advantages and challenges associated with this approach. Among the nanoformulations developed for the local treatment of breast, bladder, colorectal, oral, and melanoma cancer, polymeric nanoparticles, liposomes, lipid nanoparticles, and nanohydrogels have demonstrated particular efficacy. These systems permit mucoadhesion and enhanced tissue penetration, thereby increasing the drug concentration at the tumour site (bioavailability) and consequently improving anti-tumour efficacy and potentially reducing adverse effects. In addition to studies indicating chemotherapy, nanocarriers can be used as a theranostic approach and in combination with irradiation methods.
Collapse
Affiliation(s)
- Tatiane Roquete Amparo
- Department of Pharmacy, Federal University of Ouro Preto, Rua Professor Paulo Magalhães Gomes, 122-Bauxita, Ouro Preto 35400-000, Brazil; (L.R.D.S.); (V.F.X.); (G.N.d.S.); (G.C.B.); (O.D.H.d.S.)
| | - Tamires Cunha Almeida
- Laboratory of Pain and Signaling, Butantan Institute, Av. Vital Brasil, 1500–Butantã, São Paulo 05503-900, Brazil;
| | - Lucas Resende Dutra Sousa
- Department of Pharmacy, Federal University of Ouro Preto, Rua Professor Paulo Magalhães Gomes, 122-Bauxita, Ouro Preto 35400-000, Brazil; (L.R.D.S.); (V.F.X.); (G.N.d.S.); (G.C.B.); (O.D.H.d.S.)
| | - Viviane Flores Xavier
- Department of Pharmacy, Federal University of Ouro Preto, Rua Professor Paulo Magalhães Gomes, 122-Bauxita, Ouro Preto 35400-000, Brazil; (L.R.D.S.); (V.F.X.); (G.N.d.S.); (G.C.B.); (O.D.H.d.S.)
| | - Glenda Nicioli da Silva
- Department of Pharmacy, Federal University of Ouro Preto, Rua Professor Paulo Magalhães Gomes, 122-Bauxita, Ouro Preto 35400-000, Brazil; (L.R.D.S.); (V.F.X.); (G.N.d.S.); (G.C.B.); (O.D.H.d.S.)
| | - Geraldo Célio Brandão
- Department of Pharmacy, Federal University of Ouro Preto, Rua Professor Paulo Magalhães Gomes, 122-Bauxita, Ouro Preto 35400-000, Brazil; (L.R.D.S.); (V.F.X.); (G.N.d.S.); (G.C.B.); (O.D.H.d.S.)
| | - Orlando David Henrique dos Santos
- Department of Pharmacy, Federal University of Ouro Preto, Rua Professor Paulo Magalhães Gomes, 122-Bauxita, Ouro Preto 35400-000, Brazil; (L.R.D.S.); (V.F.X.); (G.N.d.S.); (G.C.B.); (O.D.H.d.S.)
| |
Collapse
|
28
|
Ye J, Wang H, Chakraborty S, Sang X, Xue Q, Sun M, Zhang Y, Uher O, Pacak K, Zhuang Z. Optimizing rWTC-MBTA Vaccine Formulations, Dosing Regimens, and Cryopreservation Techniques to Enhance Anti-Metastatic Immunotherapy. Int J Mol Sci 2025; 26:1340. [PMID: 39941108 PMCID: PMC11818183 DOI: 10.3390/ijms26031340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/17/2025] [Accepted: 02/02/2025] [Indexed: 02/16/2025] Open
Abstract
Metastatic cancer poses significant clinical challenges, necessitating effective immunotherapies with minimal systemic toxicity. Building on prior research demonstrating the rWTC-MBTA vaccine's ability to inhibit tumor metastasis and growth, this study focuses on its clinical translation by optimizing vaccine composition, dosing regimens, and freezing techniques. The vaccine formula components included three TLR ligands (LTA, Poly I:C, and Resiquimod) and an anti-CD40 antibody, which were tested in melanoma and triple-negative breast cancer (TNBC) models. The formulations were categorized as rWTC-MBT (Mannan-BAM with LTA, Poly I:C, Resiquimod), rWTC-MBL (LTA), rWTC-MBP (Mannan-BAM with Poly I:C), and rWTC-MBR (Resiquimod). In the melanoma models, all the formulations exhibited efficacy that was comparable to that of the full vaccine, while in the "colder" TNBC models, the formulations with multiple TLR ligands or Resiquimod alone performed the best. Vaccine-induced activation of dendritic cell (DC) subsets, including conventional DCs (cDCs), myeloid DCs (mDCs), and plasmacytoid DCs (pDCs), was accompanied by significant CD80+CD86+ population induction, suggesting robust innate immune stimulation. An initial three-dose schedule followed by booster doses (3-1-1-1 or 3-3-3-3) reduced the metastatic burden effectively. Gradual freezing (DMSO-based preservation) maintained vaccine efficacy, underscoring the importance of intact cell structure. These findings highlight the potential of simplified formulations, optimized dosing, and freezing techniques in developing practical, scalable immunotherapies for metastatic cancers.
Collapse
Affiliation(s)
- Juan Ye
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Herui Wang
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Xueyu Sang
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Qingfeng Xue
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mitchell Sun
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yaping Zhang
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ondrej Uher
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Karel Pacak
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zhengping Zhuang
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
29
|
Vijayakumar S, González-Sánchez ZI, Amanullah M, Sonamuthu J, Rajkumar M, Divya M, Durán-Lara EF, Li M. Shark chondroitin sulfate gold nanoparticles: A biocompatible apoptotic agent for osteosarcoma. Int J Biol Macromol 2025; 290:138793. [PMID: 39689798 DOI: 10.1016/j.ijbiomac.2024.138793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/19/2024] [Accepted: 12/13/2024] [Indexed: 12/19/2024]
Abstract
Osteosarcoma is a highly aggressive tumor that originates in the bone and often infiltrates nearby bone cells. It is the most prevalent type of primary bone cancer among the various bone malignancies. Traditional cancer treatment methods such as surgery, chemotherapy, immunotherapy, and radiotherapy have had restricted success. However, the integration of nanotechnology into cancer research has led to notable progress. One promising area is the use of marine-derived polysaccharide-based nano formulations for treating various human diseases, including cancer. This study presents a straightforward method for synthesizing biocompatible gold nanoparticles (AuNPs), utilizing sodium borohydride as a reducing agent and a cost-effective, water-soluble chondroitin sulfate (CS) derived from shark cartilage as a stabilizing agent. The synthesized CS-Au NPs appeared purple and were mainly spherical, with 40.768 nm of average size. Cytotoxicity assays (MTT) indicated that CS-Au NPs significantly reduced the viability of human osteosarcoma cells (MG63) at 100 μg/mL, while it showed no cytotoxic effects on mouse embryonic fibroblast cells (NIH3T3) at the same concentration. The observed toxicity of the CS-Au NPs was linked to a rise in the production of reactive oxygen species (ROS) within damaged mitochondria. ROS generation and changes in mitochondrial membrane potential were detected in MG63 cells treated with CS-Au NPs. Furthermore, apoptotic analysis through ethidium bromide dual staining and flow cytometry demonstrated that CS-Au NPs at higher concentrations significantly increased the amount of apoptotic cells, as demonstrated by acridine orange/ethidium bromide staining. Flow cytometry also confirmed that CS-Au NPs activated the apoptotic pathway in MG63 cells.
Collapse
Affiliation(s)
- Sekar Vijayakumar
- College of Material Science and Engineering, Huaqiao University, Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Xiamen 361021, PR China.
| | - Zaira I González-Sánchez
- Nanobiology Laboratory, Department of Natural and Exact Sciences, Pontificia Universidad Católica Madre y Maestra, PUCMM, Autopista Duarte Km 1 ½, Santiago de los Caballeros, Dominican Republic; Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Seville, Seville, Spain
| | - Mohammed Amanullah
- Department of clinical Biochemistry, College of Medicine, King Khalid University, Abha, Kingdom of Saudi Arabia
| | - Jegatheeswaran Sonamuthu
- Advanced Laboratory of Bio-nanomaterials, BioMe Live Analytical Centre, Kannappa Tower, College Road, Karaikudi 630 003, Tamilnadu, India
| | - Mangaiyarkarasi Rajkumar
- Advanced Laboratory of Bio-nanomaterials, BioMe Live Analytical Centre, Kannappa Tower, College Road, Karaikudi 630 003, Tamilnadu, India
| | - Mani Divya
- Advanced Laboratory of Bio-nanomaterials, BioMe Live Analytical Centre, Kannappa Tower, College Road, Karaikudi 630 003, Tamilnadu, India
| | - Esteban F Durán-Lara
- Bio&NanoMaterialsLab Drug Delivery and Controlled Release, Universidad de Talca, Talca 3460000, Maule, Chile; Departamento de Microbiología, Facultad de Ciencias de la Salud, Universidad de Talca, Talca 3460000, Maule, Chile
| | - Mingchun Li
- College of Material Science and Engineering, Huaqiao University, Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Xiamen 361021, PR China.
| |
Collapse
|
30
|
Desai SA, Patel VP, Bhosle KP, Nagare SD, Thombare KC. The tumor microenvironment: shaping cancer progression and treatment response. J Chemother 2025; 37:15-44. [PMID: 38179655 DOI: 10.1080/1120009x.2023.2300224] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/15/2023] [Accepted: 12/21/2023] [Indexed: 01/06/2024]
Abstract
The tumor microenvironment (TME) plays a crucial role in cancer progression and treatment response. It comprises a complex network of stromal cells, immune cells, extracellular matrix, and blood vessels, all of which interact with cancer cells and influence tumor behaviour. This review article provides an in-depth examination of the TME, focusing on stromal cells, blood vessels, signaling molecules, and ECM, along with commonly available therapeutic compounds that target these components. Moreover, we explore the TME as a novel strategy for discovering new anti-tumor drugs. The dynamic and adaptive nature of the TME offers opportunities for targeting specific cellular interactions and signaling pathways. We discuss emerging approaches, such as combination therapies that simultaneously target cancer cells and modulate the TME. Finally, we address the challenges and future prospects in targeting the TME. Overcoming drug resistance, improving drug delivery, and identifying new therapeutic targets within the TME are among the challenges discussed. We also highlight the potential of personalized medicine and the integration of emerging technologies, such as immunotherapy and nanotechnology, in TME-targeted therapies. This comprehensive review provides insights into the TME and its therapeutic implications. Understanding the TME's complexity and targeting its components offer promising avenues for the development of novel anti-tumor therapies and improved patient outcomes.
Collapse
Affiliation(s)
- Sharav A Desai
- Department of Pharmaceutical Biotechnology, Sanjivani College of Pharmaceutical Education & Research, Kopargaon, India
| | - Vipul P Patel
- Department of Pharmaceutical Biotechnology, Sanjivani College of Pharmaceutical Education & Research, Kopargaon, India
| | - Kunal P Bhosle
- Department of Pharmaceutical Biotechnology, Sanjivani College of Pharmaceutical Education & Research, Kopargaon, India
| | - Sandip D Nagare
- Department of Pharmaceutical Biotechnology, Sanjivani College of Pharmaceutical Education & Research, Kopargaon, India
| | - Kirti C Thombare
- Department of Pharmaceutical Biotechnology, Sanjivani College of Pharmaceutical Education & Research, Kopargaon, India
| |
Collapse
|
31
|
T C D, N K N, Pushparaj C, Narayanasamy A, Manickam P, Thiruvenkataswamy S, Sennimalai R. Novel therapeutic approaches targeting cancer stem cells: Unveiling new frontiers in breast cancer treatment. Pathol Res Pract 2025; 266:155800. [PMID: 39808859 DOI: 10.1016/j.prp.2024.155800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/13/2024] [Accepted: 12/25/2024] [Indexed: 01/16/2025]
Abstract
Breast cancer remains the leading cause of mortality among women with cancer. This article delves into the intricate relationship between breast cancer and cancer stem cells (CSCs), emphasizing advanced methods for their identification and isolation. The key isolation techniques, such as the mammosphere formation assay, surface marker identification, Side Population assay, and Aldehyde Dehydrogenase assay, are critically examined. Furthermore, the review analyzes CSC-specific molecular signaling pathways, focusing on actionable targets like CD44/CD24, Nanog, and Oct4. The potential of targeted therapies and small molecules that disrupt these pathways is explored. Additionally, the review highlights immunotherapy strategies against CSCs, focusing on resistance mechanisms and the critical role of precision medicine. The study investigates how precision medicine enhances therapeutic outcomes by targeting specific CSC biomarkers. This comprehensive analysis offers insights into recent advancements and emerging strategies in breast cancer treatment, pointing toward future therapeutic innovations.
Collapse
Affiliation(s)
- Deeptha T C
- Department of Zoology, PSGR Krishnammal College for Women, Coimbatore, India
| | - Nabeela N K
- Department of Zoology, PSGR Krishnammal College for Women, Coimbatore, India
| | | | - Arul Narayanasamy
- Disease Proteomics Laboratory, Department of Zoology, Bharathiar University, Coimbatore, India
| | - Paulpandi Manickam
- Disease Proteomics Laboratory, Department of Zoology, Bharathiar University, Coimbatore, India
| | | | - Ramya Sennimalai
- Department of Zoology (PG), Vellalar College for Women, Erode, India.
| |
Collapse
|
32
|
Garg P, Singhal G, Pareek S, Kulkarni P, Horne D, Nath A, Salgia R, Singhal SS. Unveiling the potential of gene editing techniques in revolutionizing Cancer treatment: A comprehensive overview. Biochim Biophys Acta Rev Cancer 2025; 1880:189233. [PMID: 39638158 DOI: 10.1016/j.bbcan.2024.189233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024]
Abstract
Gene editing techniques have emerged as powerful tools in biomedical research, offering precise manipulation of genetic material with the potential to revolutionize cancer treatment strategies. This review provides a comprehensive overview of the current landscape of gene editing technologies, including CRISPR-Cas systems, base editing, prime editing, and synthetic gene circuits, highlighting their applications and potential in cancer therapy. It discusses the mechanisms, advantages, and limitations of each gene editing approach, emphasizing their transformative impact on targeting oncogenes, tumor suppressor genes, and drug resistance mechanisms in various cancer types. The review delves into population-level interventions and precision prevention strategies enabled by gene editing technologies, including gene drives, synthetic gene circuits, and precision prevention tools, for controlling cancer-causing genes, targeting pre-cancerous lesions, and implementing personalized preventive measures. Ethical considerations, regulatory challenges, and future directions in gene editing research for cancer treatment are also addressed. This review highlights how gene editing could revolutionize precision medicine by enhancing patient care and advancing cancer treatments with targeted, personalized methods. For these benefits to be fully realized, collaboration among researchers, doctors, regulators, and patient advocates is crucial in fighting cancer and meeting clinical needs.
Collapse
Affiliation(s)
- Pankaj Garg
- Department of Chemistry, GLA University, Mathura, Uttar Pradesh 281406, India
| | - Gargi Singhal
- Undergraduate Medical Sciences, S.N. Medical College Agra, Uttar Pradesh 282002, India
| | - Siddhika Pareek
- Department of Medical Oncology & Therapeutics Research, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Prakash Kulkarni
- Department of Medical Oncology & Therapeutics Research, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - David Horne
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Aritro Nath
- Department of Medical Oncology & Therapeutics Research, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Ravi Salgia
- Department of Medical Oncology & Therapeutics Research, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Sharad S Singhal
- Department of Medical Oncology & Therapeutics Research, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA.
| |
Collapse
|
33
|
Rajendran P, Prasad M, Ali EM, Sekar R, AlZahrani AM, Karobari MI, Genena MAM, Abdallah BM. Molecular insight into histone methylation as a novel target for oral squamous cell carcinoma: future hope in personalised medicine. J Cancer 2025; 16:1575-1590. [PMID: 39991574 PMCID: PMC11843246 DOI: 10.7150/jca.103243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 01/17/2025] [Indexed: 02/25/2025] Open
Abstract
Oral squamous cell carcinoma (OSCC) is the most prevalent type of malignant epithelial neoplasm that affects the oral cavity. It has been a significant health concern in many countries for a long time since it was usually treated with surgery, radiation, and/or chemotherapy. Drug resistance is the primary issue in patient populations and scientific research, which promotes OSCC tumour cell invasion and migration. Thus, identifying highly specific therapeutic targets could be the potential approach for more successful treatment of OSCC. It is still challenging to understand the genetic causes of oral carcinogenesis due to its highly varied clinic-pathological parameters. It is important to remember that signaling channels and complexes that affect chromatin accessibility control gene expression, which in turn affects cell development and differentiation. Histones undergo post-translational alteration to give this platform. Understanding the processes of gene regulation through histone methylation and its modifications could enhance the early detection, prognostic prediction, and therapy of OSCC. To be properly used as a therapeutic target, histone methylation in OSCC requires more investigation. This review details the dysregulated histone methylation and the modifying enzymes linked to the development and aetiology of OSCC. Furthermore, the part that lysine methylation plays in cell migration, chemo-resistance, and OSCC invasion is also investigated.
Collapse
Affiliation(s)
- Peramaiyan Rajendran
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
| | - Monisha Prasad
- Centre for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 602105, TN, India
| | - Enas M Ali
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
| | - Ramya Sekar
- Department of Oral & Maxillofacial Pathology and Oral Microbiology, Meenakshi Ammal Dental College and Hospital, Meenakshi Academy of Higher Education and Research (Deemed to be University), Chennai, Tamil Nadu, India
| | - Abdullah M AlZahrani
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
| | - Mohmed Isaqali Karobari
- Department of Conservative Dentistry and Endodontics, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India
| | - Marwa Azmy M. Genena
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
| | - Basem M Abdallah
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
| |
Collapse
|
34
|
Glaviano A, Lau HSH, Carter LM, Lee EHC, Lam HY, Okina E, Tan DJJ, Tan W, Ang HL, Carbone D, Yee MYH, Shanmugam MK, Huang XZ, Sethi G, Tan TZ, Lim LHK, Huang RYJ, Ungefroren H, Giovannetti E, Tang DG, Bruno TC, Luo P, Andersen MH, Qian BZ, Ishihara J, Radisky DC, Elias S, Yadav S, Kim M, Robert C, Diana P, Schalper KA, Shi T, Merghoub T, Krebs S, Kusumbe AP, Davids MS, Brown JR, Kumar AP. Harnessing the tumor microenvironment: targeted cancer therapies through modulation of epithelial-mesenchymal transition. J Hematol Oncol 2025; 18:6. [PMID: 39806516 PMCID: PMC11733683 DOI: 10.1186/s13045-024-01634-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 11/11/2024] [Indexed: 01/16/2025] Open
Abstract
The tumor microenvironment (TME) is integral to cancer progression, impacting metastasis and treatment response. It consists of diverse cell types, extracellular matrix components, and signaling molecules that interact to promote tumor growth and therapeutic resistance. Elucidating the intricate interactions between cancer cells and the TME is crucial in understanding cancer progression and therapeutic challenges. A critical process induced by TME signaling is the epithelial-mesenchymal transition (EMT), wherein epithelial cells acquire mesenchymal traits, which enhance their motility and invasiveness and promote metastasis and cancer progression. By targeting various components of the TME, novel investigational strategies aim to disrupt the TME's contribution to the EMT, thereby improving treatment efficacy, addressing therapeutic resistance, and offering a nuanced approach to cancer therapy. This review scrutinizes the key players in the TME and the TME's contribution to the EMT, emphasizing avenues to therapeutically disrupt the interactions between the various TME components. Moreover, the article discusses the TME's implications for resistance mechanisms and highlights the current therapeutic strategies toward TME modulation along with potential caveats.
Collapse
Affiliation(s)
- Antonino Glaviano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123, Palermo, Italy
| | - Hannah Si-Hui Lau
- Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore, 169610, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Lukas M Carter
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - E Hui Clarissa Lee
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Hiu Yan Lam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Elena Okina
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Donavan Jia Jie Tan
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
- School of Chemical and Life Sciences, Singapore Polytechnic, Singapore, 139651, Singapore
| | - Wency Tan
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
- School of Chemical and Life Sciences, Singapore Polytechnic, Singapore, 139651, Singapore
| | - Hui Li Ang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Daniela Carbone
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123, Palermo, Italy
| | - Michelle Yi-Hui Yee
- Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore, 169610, Singapore
| | - Muthu K Shanmugam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Xiao Zi Huang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Tuan Zea Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Lina H K Lim
- Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore, 169610, Singapore
- Immunology Program, Life Sciences Institute, National University of Singapore, Singapore, 117456, Singapore
- Immunology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Ruby Yun-Ju Huang
- School of Medicine and Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
- Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117456, Singapore
| | - Hendrik Ungefroren
- First Department of Medicine, University Hospital Schleswig-Holstein (UKSH), Campus Lübeck, 23538, Lübeck, Germany
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, UMC, Vrije Universiteit, HV Amsterdam, 1081, Amsterdam, The Netherlands
- Cancer Pharmacology Lab, Fondazione Pisana Per La Scienza, 56017, San Giuliano, Italy
| | - Dean G Tang
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
- Experimental Therapeutics (ET) Graduate Program, University at Buffalo & Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Tullia C Bruno
- Department of Immunology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Mads Hald Andersen
- National Center for Cancer Immune Therapy, Department of Oncology, Herlev and Gentofte Hospital, Herlev, Denmark
| | - Bin-Zhi Qian
- Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, The Human Phenome Institute, Zhangjiang-Fudan International Innovation Center, Fudan University, Shanghai, China
| | - Jun Ishihara
- Department of Bioengineering, Imperial College London, London, W12 0BZ, UK
| | - Derek C Radisky
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Salem Elias
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Saurabh Yadav
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Minah Kim
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Caroline Robert
- Department of Cancer Medicine, Inserm U981, Gustave Roussy Cancer Center, Université Paris-Saclay, Villejuif, France
- Faculty of Medicine, University Paris-Saclay, Kremlin Bicêtre, Paris, France
| | - Patrizia Diana
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123, Palermo, Italy
| | - Kurt A Schalper
- Department of Pathology, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Tao Shi
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Taha Merghoub
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Department of Medicine, Parker Institute for Cancer Immunotherapy, Weill Cornell Medicine, New York, NY, USA
| | - Simone Krebs
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anjali P Kusumbe
- Tissue and Tumor Microenvironment Group, MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Matthew S Davids
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Jennifer R Brown
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore.
| |
Collapse
|
35
|
Chadokiya J, Chang K, Sharma S, Hu J, Lill JR, Dionne J, Kirane A. Advancing precision cancer immunotherapy drug development, administration, and response prediction with AI-enabled Raman spectroscopy. Front Immunol 2025; 15:1520860. [PMID: 39850874 PMCID: PMC11753970 DOI: 10.3389/fimmu.2024.1520860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 11/25/2024] [Indexed: 01/25/2025] Open
Abstract
Molecular characterization of tumors is essential to identify predictive biomarkers that inform treatment decisions and improve precision immunotherapy development and administration. However, challenges such as the heterogeneity of tumors and patient responses, limited efficacy of current biomarkers, and the predominant reliance on single-omics data, have hindered advances in accurately predicting treatment outcomes. Standard therapy generally applies a "one size fits all" approach, which not only provides ineffective or limited responses, but also an increased risk of off-target toxicities and acceleration of resistance mechanisms or adverse effects. As the development of emerging multi- and spatial-omics platforms continues to evolve, an effective tumor assessment platform providing utility in a clinical setting should i) enable high-throughput and robust screening in a variety of biological matrices, ii) provide in-depth information resolved with single to subcellular precision, and iii) improve accessibility in economical point-of-care settings. In this perspective, we explore the application of label-free Raman spectroscopy as a tumor profiling tool for precision immunotherapy. We examine how Raman spectroscopy's non-invasive, label-free approach can deepen our understanding of intricate inter- and intra-cellular interactions within the tumor-immune microenvironment. Furthermore, we discuss the analytical advances in Raman spectroscopy, highlighting its evolution to be utilized as a single "Raman-omics" approach. Lastly, we highlight the translational potential of Raman for its integration in clinical practice for safe and precise patient-centric immunotherapy.
Collapse
Affiliation(s)
- Jay Chadokiya
- Department of Surgery, Stanford School of Medicine, Stanford University Medical Center, Stanford, CA, United States
| | - Kai Chang
- Department of Electrical Engineering, Stanford University,
Stanford, CA, United States
| | - Saurabh Sharma
- Department of Surgery, Stanford School of Medicine, Stanford University Medical Center, Stanford, CA, United States
| | - Jack Hu
- Pumpkinseed Technologies, Palo Alto, CA, United States
| | | | - Jennifer Dionne
- Pumpkinseed Technologies, Palo Alto, CA, United States
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, United States
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford, CA, United States
| | - Amanda Kirane
- Department of Surgery, Stanford School of Medicine, Stanford University Medical Center, Stanford, CA, United States
| |
Collapse
|
36
|
Silva J, Oliveira PA, Duarte JA, Faustino-Rocha AI. Mammary Cancer Models: An Overview from the Past to the Future. In Vivo 2025; 39:1-16. [PMID: 39740866 PMCID: PMC11705154 DOI: 10.21873/invivo.13800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 01/02/2025]
Abstract
Breast cancer research heavily relies on diverse model systems to comprehend disease progression, develop novel diagnostics, and evaluate new therapeutic strategies. This review offers a comprehensive overview of mammary cancer models, covering both ex vivo and in vivo approaches. We delve into established techniques, such as cell culture and explore cutting-edge advancements, like tumor-on-a-chip and bioprinting. The in vivo section encompasses spontaneous, induced, and transplanted models, genetically engineered models, chick chorioallantoic membrane assays, and the burgeoning field of in silico models. Additionally, this article briefly highlights the key discoveries made using these models, significantly enhancing our understanding of breast cancer. In essence, this article serves as a comprehensive compass, charting the trajectory of mammary cancer modeling from its early beginnings to the promising vistas of tomorrow.
Collapse
Affiliation(s)
- Jessica Silva
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal;
- Institute for Innovation, Capacity Building and Sustainability of Agri-food Production (Inov4Agro), Vila Real, Portugal
| | - Paula A Oliveira
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-food Production (Inov4Agro), Vila Real, Portugal
- Department of Veterinary Sciences, UTAD, Vila Real, Portugal
| | - José Alberto Duarte
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, University Institute of Health Sciences - CESPU, Gandra, Portugal
- UCIBIO - Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), Gandra, Portugal
| | - Ana I Faustino-Rocha
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-food Production (Inov4Agro), Vila Real, Portugal
- Department of Zootechnics, School of Sciences and Technology, University of Évora, Évora, Portugal
- Comprehensive Health Research Center (CHRC), University of Évora, Évora, Portugal
| |
Collapse
|
37
|
Sunita, Kaushik R, Verma KK, Parveen R. Herbal Nanoformulations for Diabetes: Mechanisms, Formulations, and Clinical Impact. Curr Diabetes Rev 2025; 21:68-85. [PMID: 38500279 DOI: 10.2174/0115733998288592240308073925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/31/2024] [Accepted: 02/12/2024] [Indexed: 03/20/2024]
Abstract
BACKGROUND Diabetes mellitus remains a global health challenge, demanding innovative therapeutic strategies. Herbal remedies have garnered attention for their potential in diabetes management, and recent advancements in nanotechnology have enabled the development of herbal nanoformulations with enhanced efficacy and bioavailability. OBJECTIVE This review aimed to comprehensively analyze the mechanisms, formulations, and clinical impact of herbal nanoformulations in managing diabetes mellitus. METHOD A systematic literature search was conducted to identify relevant studies exploring the mechanisms of action, various formulations, and clinical outcomes of herbal nanoformulations in diabetes management. RESULT Herbal nanoformulations exert their anti-diabetic effects through multiple mechanisms, including enhanced bioavailability, improved tissue targeting, and potentiation of insulin signaling pathways. Various herbal ingredients, such as bitter melon, fenugreek, and Gymnema sylvestre, have been encapsulated into nanocarriers, like liposomes, polymeric nanoparticles, and solid lipid nanoparticles, to enhance their therapeutic potential. Clinical studies have demonstrated promising results, showing improvements in glycemic control, lipid profile, and antioxidant status with minimal adverse effects. CONCLUSION Herbal nanoformulations represent a promising avenue for the management of diabetes mellitus, offering improved therapeutic outcomes compared to conventional herbal preparations. Further research is warranted to optimize formulation strategies, elucidate long-term safety profiles, and explore the potential synergistic effects of herbal nanoformulations in combination therapies for diabetes management.
Collapse
Affiliation(s)
- Sunita
- Department of Pharmacy, Metro College of Health Science and Research, Plot No.41, Knowledge Park-3, Greater Noida, Uttar Pradesh, India
| | - Rahul Kaushik
- Department of Pharmacy, Metro College of Health Science and Research, Plot No.41, Knowledge Park-3, Greater Noida, Uttar Pradesh, India
| | - Krishan Kumar Verma
- Department of Pharmacy, Metro College of Health Science and Research, Plot No.41, Knowledge Park-3, Greater Noida, Uttar Pradesh, India
| | - Rehana Parveen
- Department of Pharmacy, Metro College of Health Science and Research, Plot No.41, Knowledge Park-3, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
38
|
Sekeroglu ZA, Sekeroglu V. A Review on Patient-derived 3D Micro Cancer Approach for Drug Screen in Personalized Cancer Medicine. Curr Cancer Drug Targets 2025; 25:118-130. [PMID: 38445692 DOI: 10.2174/0115680096285910240206044830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/12/2024] [Accepted: 01/17/2024] [Indexed: 03/07/2024]
Abstract
Precision medicine in oncology aims to identify an individualized treatment plan based on genomic alterations in a patient's tumor. It helps to select the most beneficial therapy for an individual patient. As it is now known that no patient's cancer is the same, and therefore, different patients may respond differently to conventional treatments, precision medicine, which replaces the one-size-fits-all approach, supports the development of tailored treatments for specific cancers of different patients. Patient-specific organoid or spheroid models as 3D cell culture models are very promising for predicting resistance to anti-cancer drugs and for identifying the most effective cancer therapy for high-throughput drug screening combined with genomic analysis in personalized medicine. Because tumor spheroids incorporate many features of solid tumors and reflect resistance to drugs and radiation, as in human cancers, they are widely used in drug screening studies. Testing patient-derived 3D cancer spheroids with some anticancer drugs based on information from molecular profiling can reveal the sensitivity of tumor cells to drugs and provide the right compounds to be effective against resistant cells. Given that many patients do not respond to standard treatments, patient-specific treatments will be more effective, less toxic. They will affect survival better compared to the standard approach used for all patients.
Collapse
Affiliation(s)
- Zulal Atlı Sekeroglu
- Department of Molecular Biology and Genetics, Faculty of Science and Letters, Ordu University, Ordu, Turkey
| | - Vedat Sekeroglu
- Department of Molecular Biology and Genetics, Faculty of Science and Letters, Ordu University, Ordu, Turkey
| |
Collapse
|
39
|
Aden D, Sureka N, Zaheer S, Chaurasia JK, Zaheer S. Metabolic Reprogramming in Cancer: Implications for Immunosuppressive Microenvironment. Immunology 2025; 174:30-72. [PMID: 39462179 DOI: 10.1111/imm.13871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/29/2024] Open
Abstract
Cancer is a complex and heterogeneous disease characterised by uncontrolled cell growth and proliferation. One hallmark of cancer cells is their ability to undergo metabolic reprogramming, which allows them to sustain their rapid growth and survival. This metabolic reprogramming creates an immunosuppressive microenvironment that facilitates tumour progression and evasion of the immune system. In this article, we review the mechanisms underlying metabolic reprogramming in cancer cells and discuss how these metabolic alterations contribute to the establishment of an immunosuppressive microenvironment. We also explore potential therapeutic strategies targeting metabolic vulnerabilities in cancer cells to enhance immune-mediated anti-tumour responses. TRIAL REGISTRATION: ClinicalTrials.gov identifier: NCT02044861, NCT03163667, NCT04265534, NCT02071927, NCT02903914, NCT03314935, NCT03361228, NCT03048500, NCT03311308, NCT03800602, NCT04414540, NCT02771626, NCT03994744, NCT03229278, NCT04899921.
Collapse
Affiliation(s)
- Durre Aden
- Department of Pathology, Hamdard Institute of Medical Science and Research, New Delhi, India
| | - Niti Sureka
- Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India
| | - Samreen Zaheer
- Department of Radiotherapy, Jawaharlal Nehru Medical College, AMU, Aligarh, India
| | | | - Sufian Zaheer
- Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India
| |
Collapse
|
40
|
Horgan D, Tanner M, Aggarwal C, Thomas D, Grover S, Basel-Salmon L, Dienstmann R, Tan TJY, Park WY, Abu Rasheed HM, Siu LL, Ma B, Ortiz-López R, Van den Bulcke M, Taucher SC, Ferris A, Starling N, Malapelle U, Longshore J, Saldaña HAB, Subbiah V. Precision Oncology: A Global Perspective on Implementation and Policy Development. JCO Glob Oncol 2025; 11:e2400416. [PMID: 39847746 DOI: 10.1200/go-24-00416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/27/2024] [Accepted: 12/02/2024] [Indexed: 01/25/2025] Open
Abstract
Despite the acknowledged merits of precision oncology (PO) and its increasing global implementation, its full potential for advancing care and prevention remains unrealized. The benefits are currently accessible to only limited patient segments because of multifaceted barriers. Successful implementation hinges on various factors-scientific complexities not limited to technical, clinical, regulatory, economic, administrative, and health care policy-related challenges. From building infrastructure to the associated costs, including research and development, testing, processing, and trained personnel, a lack of alignment persists. Administrative alignment with regulatory and payor acceptance is crucial. Health care policy must adapt to the ongoing shift from a one-size-fits-all treatment to a personalized approach. Without official endorsement of long-term gains over short-term costs and the health establishment's readiness for innovation, PO prospects, even in prosperous economies, may stagnate. Lower-income countries face exacerbated challenges, intensifying barriers to adoption. Nevertheless, growing awareness and utilization, driven by recognized potential for patients and public health, along with successful examples and advocacy, are progressively influencing policy for a more inclusive and beneficial approach to PO adoption.
Collapse
Affiliation(s)
- Denis Horgan
- European Alliance for Personalised Medicine, Brussels, Belgium
- International Cancer Patient Coalition, Brussels, Belgium
| | - Marcel Tanner
- International Cancer Patient Coalition, Brussels, Belgium
- Swiss Tropical & Public Health Institute/R.Geigy Foundation, Basel, Switzerland
- University of Basel, Basel Switzerland
| | - Charu Aggarwal
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - David Thomas
- Centre for Molecular Oncology, University of New South Wales, Sydney, Australia
| | - Surbhi Grover
- Department of Radiation Oncology, Hospital of University of Pennsylvania, Philadelphia, PA
| | - Lina Basel-Salmon
- Rapahel Recanati Genetics Institute, Beilinson Hospital, Rabin Medical Center, Petach Tikva, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Pediatric Genetics Unit, Schneider Children's Medical Center of Israel, Petah Tikva, Israel
- Felsenstein Medical Research Center, Rabin Medical Center, Petah Tikva, Israel
| | - Rodrigo Dienstmann
- Oncology Data Science, Vall d'Hebron Institute of Oncology, Barcelona, Spain
- Oncoclínicas Precision Medicine, São Paulo, Brazil
- University of Vic-Central University of Catalonia, Vic, Barcelona, Spain
| | - Tira Jing Ying Tan
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Woong-Yang Park
- Samsung Genome Institute, Samsung Medical Center, Seoul, Korea
| | | | - Lillian L Siu
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Brigette Ma
- Department of Clinical Oncology, Prince of Wales Hospital, State Key Laboratory in Oncology in South China, Chinese University of Hong Kong, Shatin, Hong Kong
| | | | | | | | - Andrea Ferris
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD
| | - Naureen Starling
- Department of Medicine, Royal Marsden Hospital, London, United Kingdom
| | - Umberto Malapelle
- Department of Public Health, University Federico II of Naples, Naples, Italy
| | | | - Hugo Alberto Barrera Saldaña
- Universidad Autónoma de Nuevo León, Facultades de Medicina y Ciencias Bilógicas, San Nicolás de los Garza, México
- Innbiogem SC-Vitagénesis SA at LANSEIDI-FarBiotec, Monterrey, México
| | - Vivek Subbiah
- International Cancer Patient Coalition, Brussels, Belgium
- Sarah Cannon Research Institute, Nashville, TN
| |
Collapse
|
41
|
Chriskos P, Frantzidis CA, Plomariti CS, Papanastasiou E, Pataka A, Kourtidou-Papadeli C, Bamidis PD. SmartHypnos: An Android application for low-cost sleep self-monitoring and personalized recommendation generation. Comput Biol Med 2025; 184:109306. [PMID: 39541899 DOI: 10.1016/j.compbiomed.2024.109306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 10/09/2024] [Accepted: 10/18/2024] [Indexed: 11/17/2024]
Abstract
BACKGROUND AND OBJECTIVE Sleep is an essential biological function that is critical for a healthy and fulfilling life. Available sleep quality assessment tools contain long questionnaires covering a long period of time, not taking into account daily physical activity patterns and individual lifestyles. METHODS In this paper we present SmartHypnos, an Android application that supports low-end devices. It enables users to report their sleep quality, monitor their physical activity and exercise intensity and gain personalized recommendations aimed at increasing sleep quality. The application functionalities are implemented through sleep quality evaluation questions, passive step counter, efficient data storage and Personal data are stored locally protecting user privacy. All these are integrated into a single interface that requires a single device, is of low learning difficulty and easy to use. SmartHypnos was evaluated during a pilot study that involved 48 adults (ages 18-50) that used the application for seven days and subsequently submitted their data, possible through the interface directly, and evaluated the application through an appropriate questionnaire. RESULTS SmartHypnos was rated positively by users, especially it terms of learnability, ease of use and stability, with a mean score over 8. Task completion time and ease, simplicity, user comfort and recommendation utility were scored with a mean over 7. The correlation between the features extracted were in accordance to prior works. CONCLUSIONS SmartHypnos has the potential to become a sleep monitoring and intervention tool readily available to the general public, including vulnerable populations of low socio-economic status.
Collapse
Affiliation(s)
- Panteleimon Chriskos
- Laboratory of Medical Physics and Digital Innovation, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Christos A Frantzidis
- Laboratory of Medical Physics and Digital Innovation, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; School of Engineering and Physical Sciences, College of Health and Science, University of Lincoln, Lincoln, United Kingdom; Greek Aerospace Medical Association and Space Research (GASMA-SR), Thessaloniki, Greece.
| | - Christina S Plomariti
- Laboratory of Medical Physics and Digital Innovation, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Emmanouil Papanastasiou
- Laboratory of Medical Physics and Digital Innovation, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Athanasia Pataka
- Respiratory Failure Unit G Papanikolaou Hospital Exohi Thessaloniki Greece, Aristotle University Thessaloniki, Greece.
| | | | - Panagiotis D Bamidis
- Laboratory of Medical Physics and Digital Innovation, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| |
Collapse
|
42
|
Ma L, Kim MO. Advances in Preventive and Therapeutic Strategies for Oral Cancer: A Short Review. J Cancer Prev 2024; 29:113-119. [PMID: 39790224 PMCID: PMC11706729 DOI: 10.15430/jcp.24.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/16/2024] [Accepted: 12/18/2024] [Indexed: 01/12/2025] Open
Abstract
Oral cancer is a major global health concern, with high incidence and mortality rates, especially in high-risk populations. Early diagnosis remains a challenge, and current treatments, such as surgery, radiation, and chemotherapy, have limited effectiveness, particularly in advanced stages. Recent advances in targeted therapies and immunotherapy offer promising alternatives, providing more precise and personalized treatment options. Targeted therapies, such as epidermal growth factor receptor inhibitors, aim to disrupt specific molecular pathways in tumor growth, while immunotherapies, including immune checkpoint inhibitors and chimeric antigen receptor-T cell therapy, enhance the body's immune response to fight cancer. Combination therapies, integrating both targeted and immune strategies, are being explored to overcome the limitations of single-agent treatments. This review highlights the current strategies in the prevention and treatment of oral cancer, discusses emerging therapies, explores future research directions, focusing on optimizing existing treatments, identifying new biomarkers, and developing innovative therapeutic approaches. The potential of personalized medicine and combination therapies offers new hope for improving survival rates and quality of life for oral cancer patients.
Collapse
Affiliation(s)
- Lei Ma
- Department of Animal Science and Biotechnology, Research Institute for Innovative Animal Science, Kyungpook National University, Sangju, Korea
| | - Myoung Ok Kim
- Department of Animal Science and Biotechnology, Research Institute for Innovative Animal Science, Kyungpook National University, Sangju, Korea
| |
Collapse
|
43
|
Fathi M, Taher HJ, Al-Rubiae SJ, Yaghoobpoor S, Bahrami A, Eshraghi R, Sadri H, Asadi Anar M, Gholamrezanezhad A. Role of molecular imaging in prognosis, diagnosis, and treatment of gastrointestinal cancers: An update on new therapeutic methods. World J Methodol 2024; 14:93461. [PMID: 39712556 PMCID: PMC11287540 DOI: 10.5662/wjm.v14.i4.93461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/31/2024] [Accepted: 07/15/2024] [Indexed: 07/26/2024] Open
Abstract
One of the leading causes of cancer-related death is gastrointestinal cancer, which has a significant morbidity and mortality rate. Although preoperative risk assessment is essential for directing patient care, its biological behavior cannot be accurately predicted by conventional imaging investigations. Potential pathophysiological information in anatomical imaging that cannot be visually identified can now be converted into high-dimensional quantitative image features thanks to the developing discipline of molecular imaging. In order to enable molecular tissue profile in vivo, molecular imaging has most recently been utilized to phenotype the expression of single receptors and targets of biological therapy. It is expected that molecular imaging will become increasingly important in the near future, driven by the expanding range of biological therapies for cancer. With this live molecular fingerprinting, molecular imaging can be utilized to drive expression-tailored customized therapy. The technical aspects of molecular imaging are first briefly discussed in this review, followed by an examination of the most recent research on the diagnosis, prognosis, and potential future clinical methods of molecular imaging for GI tract malignancies.
Collapse
Affiliation(s)
- Mobina Fathi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1983969411, Iran
| | | | | | - Shirin Yaghoobpoor
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1983969411, Iran
| | - Ashkan Bahrami
- Faculty of Medicine, Kashan University of Medical Sciences, Kashan 1617768911, Iran
| | - Reza Eshraghi
- Faculty of Medicine, Kashan University of Medical Sciences, Kashan 1617768911, Iran
| | - Hossein Sadri
- Faculty of Medicine, Kashan University of Medical Sciences, Kashan 1617768911, Iran
| | - Mahsa Asadi Anar
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1983969411, Iran
| | - Ali Gholamrezanezhad
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, United States
| |
Collapse
|
44
|
Kandasamy T, Sarkar S, Ghosh SS. Harnessing Drug Repurposing to Combat Breast Cancer by Targeting Altered Metabolism and Epithelial-to-Mesenchymal Transition Pathways. ACS Pharmacol Transl Sci 2024; 7:3780-3794. [PMID: 39698277 PMCID: PMC11650739 DOI: 10.1021/acsptsci.4c00545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/15/2024] [Accepted: 10/21/2024] [Indexed: 12/20/2024]
Abstract
Breast cancer remains one of the most prevalent and challenging cancers to treat due to its complexity and heterogenicity. Cellular processes such as metabolic reprogramming and epithelial-to-mesenchymal transition (EMT) contribute to the complexity of breast cancer by driving uncontrolled cell division, metastasis, and resistance to therapies. Strategically targeting these intricate pathways can effectively impede breast cancer progression, thereby revealing significant potential for therapeutic interventions. Among various emerging therapeutic approaches, drug repurposing offers a promising avenue for enhancing clinical outcomes. In recent years, high-throughput screening, QSAR, and network pharmacology have been widely employed to identify promising repurposed drugs. As an outcome, several drugs, such as Metformin, Itraconazole, Pimozide, and Disulfiram, were repurposed to regulate metabolic and EMT pathways. Moreover, strategies such as combination therapy, targeted delivery, and personalized medicine were utilized to enhance the efficacy and specificity of the repurposed drugs. This review focuses on the potential of targeting altered metabolism and EMT in breast cancer through drug repurposing. It also highlights recent advancements in drug screening techniques, associated limitations, and strategies to overcome these challenges.
Collapse
Affiliation(s)
- Thirukumaran Kandasamy
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Guwahati-39, Assam India
| | - Shilpi Sarkar
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Guwahati-39, Assam India
| | - Siddhartha Sankar Ghosh
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Guwahati-39, Assam India
- Centre
for Nanotechnology, Indian Institute of
Technology Guwahati, Guwahati-39, Assam India
| |
Collapse
|
45
|
Setiawan D, Wiranto Y, Girard JM, Watts A, Ashourvan A. Individualized Machine-learning-based Clinical Assessment Recommendation System. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.07.24.24310941. [PMID: 39108531 PMCID: PMC11302612 DOI: 10.1101/2024.07.24.24310941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/12/2024]
Abstract
Background Traditional clinical assessments often lack individualization, relying on standardized procedures that may not accommodate the diverse needs of patients, especially in early stages where personalized diagnosis could offer significant benefits. We aim to provide a machine-learning framework that addresses the individualized feature addition problem and enhances diagnostic accuracy for clinical assessments. Methods Individualized Clinical Assessment Recommendation System (iCARE) employs locally weighted logistic regression and Shapley Additive Explanations (SHAP) value analysis to tailor feature selection to individual patient characteristics. Evaluations were conducted on synthetic and real-world datasets, including early-stage diabetes risk prediction and heart failure clinical records from the UCI Machine Learning Repository. We compared the performance of iCARE with a Global approach using statistical analysis on accuracy and area under the ROC curve (AUC) to select the best additional features. Findings The iCARE framework enhances predictive accuracy and AUC metrics when additional features exhibit distinct predictive capabilities, as evidenced by synthetic datasets 1-3 and the early diabetes dataset. Specifically, in synthetic dataset 1, iCARE achieved an accuracy of 0·999 and an AUC of 1·000, outperforming the Global approach with an accuracy of 0·689 and an AUC of 0·639. In the early diabetes dataset, iCARE shows improvements of 1·5-3·5% in accuracy and AUC across different numbers of initial features. Conversely, in synthetic datasets 4-5 and the heart failure dataset, where features lack discernible predictive distinctions, iCARE shows no significant advantage over global approaches on accuracy and AUC metrics. Interpretation iCARE provides personalized feature recommendations that enhance diagnostic accuracy in scenarios where individualized approaches are critical, improving the precision and effectiveness of medical diagnoses. Funding This work was supported by startup funding from the Department of Psychology at the University of Kansas provided to A.A., and the R01MH125740 award from NIH partially supported J.M.G.'s work.
Collapse
Affiliation(s)
- Devin Setiawan
- The University of Kansas, Department of Electrical Engineering and Computer Science, 1415 Jayhawk Blvd. Lawrence, KS 66045
| | - Yumiko Wiranto
- The University of Kansas, Department of Psychology, 1415 Jayhawk Blvd. Lawrence, KS 66045
| | - Jeffrey M Girard
- The University of Kansas, Department of Psychology, 1415 Jayhawk Blvd. Lawrence, KS 66045
| | - Amber Watts
- The University of Kansas, Department of Psychology, 1415 Jayhawk Blvd. Lawrence, KS 66045
| | - Arian Ashourvan
- The University of Kansas, Department of Psychology, 1415 Jayhawk Blvd. Lawrence, KS 66045
| |
Collapse
|
46
|
Sharma Y, Ghatak S, Sen CK, Mohanty S. Emerging technologies in regenerative medicine: The future of wound care and therapy. J Mol Med (Berl) 2024; 102:1425-1450. [PMID: 39358606 DOI: 10.1007/s00109-024-02493-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 09/10/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024]
Abstract
Wound healing, an intricate biological process, comprises orderly phases of simple biological processed including hemostasis, inflammation, angiogenesis, cell proliferation, and ECM remodeling. The regulation of the shift in these phases can be influenced by systemic or environmental conditions. Any untimely transitions between these phases can lead to chronic wounds and scarring, imposing a significant socio-economic burden on patients. Current treatment modalities are largely supportive in nature and primarily involve the prevention of infection and controlling inflammation. This often results in delayed healing and wound complications. Recent strides in regenerative medicine and tissue engineering offer innovative and patient-specific solutions. Mesenchymal stem cells (MSCs) and their secretome have gained specific prominence in this regard. Additionally, technologies like tissue nano-transfection enable in situ gene editing, a need-specific approach without the requirement of complex laboratory procedures. Innovating approaches like 3D bioprinting and ECM bioscaffolds also hold the potential to address wounds at the molecular and cellular levels. These regenerative approaches target common healing obstacles, such as hyper-inflammation thereby promoting self-recovery through crucial signaling pathway stimulation. The rationale of this review is to examine the benefits and limitations of both current and emerging technologies in wound care and to offer insights into potential advancements in the field. The shift towards such patient-centric therapies reflects a paradigmatic change in wound care strategies.
Collapse
Affiliation(s)
- Yashvi Sharma
- Stem Cell Facility (DBT-Centre of Excellence for Stem Cell Research), All India Institute of Medical Sciences, New Delhi, Delhi, 110029, India
| | - Subhadip Ghatak
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- McGowan Institute of Regenerative Medicine, Department of Surgery, University of Pittsburgh, 419 Bridgeside Point II, 450 Technology Drive, Pittsburgh, PA, 15219, USA
| | - Chandan K Sen
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- McGowan Institute of Regenerative Medicine, Department of Surgery, University of Pittsburgh, 419 Bridgeside Point II, 450 Technology Drive, Pittsburgh, PA, 15219, USA.
| | - Sujata Mohanty
- Stem Cell Facility (DBT-Centre of Excellence for Stem Cell Research), All India Institute of Medical Sciences, New Delhi, Delhi, 110029, India.
| |
Collapse
|
47
|
Varga P, Obeidat M, Máté V, Kói T, Kiss-Dala S, Major GS, Tímár ÁE, Li X, Szilágyi Á, Csáki Z, Engh MA, Garami M, Hegyi P, Túri I, Tuboly E. From simple factors to artificial intelligence: evolution of prognosis prediction in childhood cancer: a systematic review and meta-analysis. EClinicalMedicine 2024; 78:102902. [PMID: 39640942 PMCID: PMC11617957 DOI: 10.1016/j.eclinm.2024.102902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 12/07/2024] Open
Abstract
Background Current paediatric cancer care requires innovative approaches to predict prognosis that facilitates personalised stratification, yet studies on the performance, composition and limitations of contemporary prognostic models are lacking. We aimed to compare the accuracy of traditional and advanced prognostic models. Methods A systematic search for this systematic review and meta-analysis (CRTN42022370251) was conducted in PubMed, Embase, Scopus, and the Cochrane Library databases on 28 June 2024. Studies on the accuracy of prognostic markers or models used in paediatric haematological malignancies, central nervous system (CNS), or non-CNS solid tumours (NCNSST) were included. Three model categories were defined using: 1-clinical parameters, 2-genomic-transcriptomic data, and 3-artificial intelligence (AI). Primary outcomes were area under the receiver operating characteristic curve with a 95% confidence interval (CI) for various overall survival intervals and event-free survival. Two independent groups performed selection and data extraction. We used data published by the authors and publicly available databases. Findings Of 12,982 studies, 358 were included in the meta-analysis and 27 in the systematic review, with limited data on AI-approaches. Most data were reported on NCNSST at 5-year OS, where a statistically significant difference was observed between Category-1 (0.75 CI: 0.72-0.79) and Category-2 (0.85 CI: 0.82-0.88) (p < 0.001), but not between Categories-2 and -3 (p = 0.2834) (0.82 CI: 0.77-0.88). Internal validation studies showed significantly better performance compared to those using external validation, highlighting the high risk of bias (ROB) inherent in internal validation. High ROB was most commonly experienced in the outcomes and statistical analysis domains, assessed using PROBAST and QUIPS. Interpretation It is advisable to introduce Category-2 and -3 models in a clinical setting, especially for NCNSST prognostic for aiding risk-stratification. Although AI-supported predictions in paediatric oncology are at an early stage of development, it is imperative to further explore their potential. This requires structured data collection and ethical sharing from paediatric oncology patients in sufficient quantity and quality. Funding None.
Collapse
Affiliation(s)
- Petra Varga
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
- Heim Pál National Pediatric Institute, Budapest, Hungary
| | - Mahmoud Obeidat
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Vanda Máté
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
- Pediatric Center, Semmelweis University, Budapest, Hungary
| | - Tamás Kói
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
- Department of Stochastics, Institute of Mathematics, Budapest University of Technology and Economics, Budapest, Hungary
| | - Szilvia Kiss-Dala
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Gréta Szilvia Major
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
- Heim Pál National Pediatric Institute, Budapest, Hungary
| | - Ágnes Eszter Tímár
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
- Heim Pál National Pediatric Institute, Budapest, Hungary
| | - Ximeng Li
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Ádám Szilágyi
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Zsófia Csáki
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Marie Anne Engh
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Miklós Garami
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
- Pediatric Center, Semmelweis University, Budapest, Hungary
| | - Péter Hegyi
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
- Institute of Pancreatic Diseases, Semmelweis University, Budapest, Hungary
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Ibolya Túri
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
- Pető András Faculty, Semmelweis University, Budapest, Hungary
| | - Eszter Tuboly
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
- Hungarian Pediatric Oncology Network, Budapest, Hungary
| |
Collapse
|
48
|
Budhbaware T, Rathored J, Shende S. Molecular methods in cancer diagnostics: a short review. Ann Med 2024; 56:2353893. [PMID: 38753424 PMCID: PMC11100444 DOI: 10.1080/07853890.2024.2353893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/18/2024] [Indexed: 05/18/2024] Open
Abstract
BACKGROUND One of the ailments with the greatest fatality rates in the 21st century is cancer. Globally, molecular methods are widely employed to treat cancer-related disorders, and the body of research on this subject is growing yearly. A thorough and critical summary of the data supporting molecular methods for illnesses linked to cancer is required. OBJECTIVE In order to guide clinical practice and future research, it is important to examine and summarize the systematic reviews (SRs) that evaluate the efficacy and safety of molecular methods for disorders associated to cancer. METHODS We developed a comprehensive search strategy to find relevant articles from electronic databases like PubMed, Google Scholar, Web of Science (WoS), or Scopus. We looked through the literature and determined which diagnostic methods in cancer genetics were particularly reliable. We used phrases like 'cancer genetics', genetic susceptibility, Hereditary cancer, cancer risk assessment, 'cancer diagnostic tools', cancer screening', biomarkers, and molecular diagnostics, reviews and meta-analyses evaluating the efficacy and safety of molecular therapies for cancer-related disorders. Research that only consider treatment modalities that don't necessitate genetic or molecular diagnostics fall under the exclusion criteria. RESULTS The results of this comprehensive review clearly demonstrate the transformative impact of molecular methods in the realm of cancer genetics.This review underscores how these technologies have empowered researchers and clinicians to identify and understand key genetic alterations that drive malignancy, ranging from point mutations to structural variations. Such insights are instrumental in pinpointing critical oncogenic drivers and potential therapeutic targets, thus opening the door for methods in precision medicine that can significantly improve patient outcomes. LIMITATION The search does not specify a timeframe for publication inclusion, it may have missed recent advancements or changes in the field's landscape of molecular methods for cancer. As a result, it may not have included the most recent developments in the field. CONCLUSION After conducting an in-depth study on the molecular methods in cancer genetics, it is evident that these cutting-edge technologies have revolutionized the field of oncology, providing researchers and clinicians with powerful tools to unravel the complexities of cancer at the genetic level. The integration of molecular methods techniques has not only enhanced our understanding of cancer etiology, progression, and treatment response but has also opened new avenues for personalized medicine and targeted therapies, leading to improved patient outcomes.
Collapse
Affiliation(s)
- Tanushree Budhbaware
- Department of ‘School of Allied Health Sciences’, Central Research Laboratory (CRL) and Molecular Diagnostics, Datta Meghe Institute of Higher Education and Research, Sawangi (Meghe), Wardha, India
| | - Jaishriram Rathored
- Department of ‘School of Allied Health Sciences’, Central Research Laboratory (CRL) and Molecular Diagnostics, Datta Meghe Institute of Higher Education and Research, Sawangi (Meghe), Wardha, India
| | - Sandesh Shende
- Department of ‘School of Allied Health Sciences’, Central Research Laboratory (CRL) and Molecular Diagnostics, Datta Meghe Institute of Higher Education and Research, Sawangi (Meghe), Wardha, India
| |
Collapse
|
49
|
Chen LC, Zack T, Demirci A, Sushil M, Miao B, Kasap C, Butte A, Collisson EA, Hong JC. Assessing Large Language Models for Oncology Data Inference From Radiology Reports. JCO Clin Cancer Inform 2024; 8:e2400126. [PMID: 39661914 DOI: 10.1200/cci.24.00126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/14/2024] [Accepted: 09/23/2024] [Indexed: 12/13/2024] Open
Abstract
PURPOSE We examined the effectiveness of proprietary and open large language models (LLMs) in detecting disease presence, location, and treatment response in pancreatic cancer from radiology reports. METHODS We analyzed 203 deidentified radiology reports, manually annotated for disease status, location, and indeterminate nodules needing follow-up. Using generative pre-trained transformer (GPT)-4, GPT-3.5-turbo, and open models such as Gemma-7B and Llama3-8B, we employed strategies such as ablation and prompt engineering to boost accuracy. Discrepancies between human and model interpretations were reviewed by a secondary oncologist. RESULTS Among 164 patients with pancreatic tumor, GPT-4 showed the highest accuracy in inferring disease status, achieving a 75.5% correctness (F1-micro). Open models Mistral-7B and Llama3-8B performed comparably, with accuracies of 68.6% and 61.4%, respectively. Mistral-7B excelled in deriving correct inferences from objective findings directly. Most tested models demonstrated proficiency in identifying disease containing anatomic locations from a list of choices, with GPT-4 and Llama3-8B showing near-parity in precision and recall for disease site identification. However, open models struggled with differentiating benign from malignant postsurgical changes, affecting their precision in identifying findings indeterminate for cancer. A secondary review occasionally favored GPT-3.5's interpretations, indicating the variability in human judgment. CONCLUSION LLMs, especially GPT-4, are proficient in deriving oncologic insights from radiology reports. Their performance is enhanced by effective summarization strategies, demonstrating their potential in clinical support and health care analytics. This study also underscores the possibility of zero-shot open model utility in environments where proprietary models are restricted. Finally, by providing a set of annotated radiology reports, this paper presents a valuable data set for further LLM research in oncology.
Collapse
Affiliation(s)
- Li-Ching Chen
- University of California, Berkeley, Berkeley, CA
- University of California, San Francisco, San Francisco, CA
| | - Travis Zack
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA
| | - Arda Demirci
- University of California, Berkeley, Berkeley, CA
| | - Madhumita Sushil
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA
| | - Brenda Miao
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA
| | - Corynn Kasap
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA
| | - Atul Butte
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA
| | - Eric A Collisson
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA
| | - Julian C Hong
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA
| |
Collapse
|
50
|
Erdogan MK, Sever A, Gundogdu R, Toy Y, Gecibesler IH, Yapar Y, Behcet L, Zengin G. Verbascum gimgimense an Endemic Turkish Plant: Evaluation of In Vitro Anticancer, Antioxidant, Enzyme Inhibitory Activities, and Phytochemical Profile. Cell Biochem Funct 2024; 42:e70023. [PMID: 39632482 DOI: 10.1002/cbf.70023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/21/2024] [Accepted: 11/14/2024] [Indexed: 12/07/2024]
Abstract
The Verbascum genus has gained significant attention in the pharmaceutical field, particularly in recent years, due to its valuable medicinal properties, which are well-recognized in complementary and alternative medicine. Certain species within this genus contain essential compounds and exhibit a wide range of therapeutic activities. In this study, the ethanolic extract of Verbascum gimgimense (VG) was analyzed for its cytotoxic, apoptotic, antioxidant, and enzyme inhibitory properties, as well as its phenolic and lipophilic compounds. The phenolic compounds in the extract were identified using Exactive Plus Orbitrap HPLC-HRMS, while the lipophilic components were characterized by GC-MS analysis. The Neutral Red Uptake (NRU) cell viability assay and colony formation assay were performed to assess the antiproliferative and anti-colony survival effects of VG on the A549 human lung adenocarcinoma cell line. Additionally, a wound healing assay measured cell migration, and the apoptotic process was evaluated using Caspase-3 ELISA and acridine orange/ethidium bromide staining. Protein expression levels were determined by western blot analysis. DPPH, ABTS FRAP, and CUPRAC assays were used to determine free radical scavenging, reducing power, and metal chelating activities, respectively. VG was rich in dominant phenolic components, including benzoic acid (6.809 mg/g extract), phloretic acid (1.279 mg/g extract), luteolin 7-rutinoside (2.799 mg/g extract), luteoloside (3.300 mg/g extract), kuromanine (3.456 mg/g extract), and rutin hydrate (2.015 mg/g extract). Major fatty acids identified in VG included palmitic acid (17.3%), stearic acid (2.99%), linoleic acid (9.44%), and α-linolenic acid (26.48%). VG treatment significantly reduced colony formation ability, decreased wound closure, and increased both apoptotic cell count and caspase-3 activity compared to the control group. Protein levels of c-PARP, p53, and p21 were substantially elevated compared to controls. In addition to its strong free radical scavenging, reducing power and metal chelating activity, VG exhibited strong inhibitory effects on α-amylase, α-glucosidase, AChE, BChE, and tyrosinase. Our study demonstrates that VG possesses antiproliferative, apoptotic, antioxidant, and enzyme-inhibitory properties. V. gimgimense emerges as a promising natural antioxidant source with potentially significant regulatory effects on key enzymes and proteins, which could contribute to managing various human diseases and inspire the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Mehmet Kadir Erdogan
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Bingol University, Bingol, Türkiye
| | - Aydın Sever
- Department of Pharmacy Services, Vocational School of Health Services, Bingol University, Bingol, Türkiye
| | - Ramazan Gundogdu
- Department of Pharmacy Services, Vocational School of Health Services, Bingol University, Bingol, Türkiye
| | - Yusuf Toy
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Bingol University, Bingol, Türkiye
| | - Ibrahim Halil Gecibesler
- Department of Occupational Health and Safety, Faculty of Health Science, Bingol University, Bingol, Türkiye
| | - Yakup Yapar
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Bingol University, Bingol, Türkiye
| | - Lutfi Behcet
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Bingol University, Bingol, Türkiye
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Konya, Türkiye
| |
Collapse
|