1
|
Segui-Perez C, Huang LZX, Paganelli FL, Lievens E, Strijbis K. Probiotic Bifidobacterium bifidum strains desialylate MUC13 and increase intestinal epithelial barrier function. Sci Rep 2025; 15:8778. [PMID: 40082523 PMCID: PMC11906825 DOI: 10.1038/s41598-025-92125-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 02/25/2025] [Indexed: 03/16/2025] Open
Abstract
Probiotic bacteria including Bifidobacterial species have the capacity to improve intestinal health, but the underlying molecular mechanisms are often not understood. Bifidobacteria are considered keystone species but have a relatively low abundance in the adult intestinal tract. Bifidobacterium colonization depends on degradation of host-derived carbohydrates, including human milk oligosaccharides and mucin-associated oligosaccharides. Specific Bifidobacterium strains can enhance intestinal barrier integrity and improve symptoms of gastrointestinal disorders. We previously reported that the transmembrane mucin MUC13 localizes to the apical and lateral membrane and regulates epithelial tight junction strength. Here, we screened probiotic bacterial strains for their capacity to modulate MUC13 and enhance intestinal barrier function. Of these probiotic bacteria, a Bifidobacterium bifidum strain uniquely degraded the MUC13 O-glycosylated extracellular domain. Further characterization of two probiotic B. bifidum strains (W23 and W28) and the type strain 20456 demonstrated that the W23 and W28 strains adhered strongly to the apical surface, had high sialidase activity, penetrated the mucus layer, and enhanced epithelial barrier integrity. These results underscore the strain-specific properties of these specific B. bifidum strains that most likely contribute to their probiotic effects in the intestinal tract.
Collapse
Affiliation(s)
- Celia Segui-Perez
- Department of Biomolecular Health Sciences, Division Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Liane Z X Huang
- Department of Biomolecular Health Sciences, Division Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | | | - Elke Lievens
- Winclove Probiotics B.V., Amsterdam, The Netherlands
| | - Karin Strijbis
- Department of Biomolecular Health Sciences, Division Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
2
|
Foata F, Duboux S, Herzig S, Sizzano F, Thevenet J, Guy P, Rezzi S, Métairon S, Bourqui B, Montoliu I, Mercenier A, Bosco N. Identification and Biological Characterization of a Novel NRF2 Activator Molecule Released From the Membranes of Heat-Treated Bifidobacterium breve NCC 2950. Mol Nutr Food Res 2025:e202400770. [PMID: 39911038 DOI: 10.1002/mnfr.202400770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/16/2024] [Accepted: 01/14/2025] [Indexed: 02/07/2025]
Abstract
Postbiotics are defined as a "preparation of inanimate microorganisms and/or their components that confers a health benefit on the host". They represent an attractive alternative to probiotics as they could be used in a broader range of applications, where probiotic stability is limiting. To date knowledge on the mechanism of action of inanimate microorganisms is relatively scarce. In this study, we investigated the impact of heat treatment on NRF2 activation by several candidate probiotic strains from the Nestlé Culture Collection (NCC), including species encompassed in the Bifidobacterium genus and the Lactobacillaceae family. We identified an NRF2-activating bioactive molecule, 4-oxo-2-pentenoic acid (OPA), specifically released during heat treatment of Bifidobacterium breve NCC 2950. We explored cellular pathways that can be modulated by OPA, such as antiinflammatory signals and organismal defense against oxidative stress in zebrafish in vivo. We identified a new B. breve NCC 2950-derived postbiotic that, based on the mode of action, may have important applications for nutritional strategies to benefit human health.
Collapse
Affiliation(s)
- Francis Foata
- Clinical Research Unit, Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Stéphane Duboux
- Nestlé Institute of Food Sciences, Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Sébastien Herzig
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Federico Sizzano
- Nestlé Institute of Food Safety and Analytical Science, Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Jonathan Thevenet
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Philippe Guy
- Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Serge Rezzi
- Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Sylviane Métairon
- Nestlé Institute of Food Safety and Analytical Science, Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Bertrand Bourqui
- Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Ivan Montoliu
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Annick Mercenier
- Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Nabil Bosco
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| |
Collapse
|
3
|
Wan MLY, Co VA, Turner PC, Nagendra SP, El‐Nezami H. Deoxynivalenol modulated mucin expression and proinflammatory cytokine production, affecting susceptibility to enteroinvasive Escherichia coli infection in intestinal epithelial cells. J Food Sci 2025; 90:e70079. [PMID: 39980277 PMCID: PMC11842951 DOI: 10.1111/1750-3841.70079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 01/31/2025] [Accepted: 02/02/2025] [Indexed: 02/22/2025]
Abstract
Deoxynivalenol (DON) is a common mycotoxin in crops that could induce intestinal inflammation, affecting the susceptibility of intestinal epithelial cells (IECs) to pathogen infection. This study aimed to investigate DON's effects on mucin and cytokine production as part of the local immune system and how it affected intestinal susceptibility to pathogen infection. Caco-2 cells were exposed to DON followed by acute enteroinvasive Escherichia coli (EIEC) infection. An increase in EIEC attachment to DON-exposed cells was observed, probably in part, mediated by secretory MUC5AC mucins and membrane-bound MUC4 and MUC17 mucins. Additionally, DON with EIEC posttreatment led to significant changes in the gene expression of several proinflammatory cytokines (IL1α, IL1β, IL6, IL8, TNFα, and MCP-1), which may be in part, mediated by NK-κB and/or MAPK signaling pathways. These data suggested DON may exert immunomodulatory effects on IECs, altering the IEC susceptibility to bacterial infection. PRACTICAL APPLICATION: The results suggested that DON might modulate immune responses by affecting mucus and cytokine production, which may affect the susceptibility of intestinal epithelial cells to pathogen infection.
Collapse
Affiliation(s)
- Murphy Lam Yim Wan
- School of Biological Sciences, Faculty of Science, Kadoorie Biological Sciences BuildingThe University of Hong KongPokfulamHong Kong
- Department of Laboratory Medicine, Division of MicrobiologyImmunology and Glycobiology, Lund UniversityLundSweden
- School of Medicine, Pharmacy and Biomedical Sciences, Faculty of Science and HealthUniversity of PortsmouthPortsmouthUK
| | - Vanessa Anna Co
- School of Biological Sciences, Faculty of Science, Kadoorie Biological Sciences BuildingThe University of Hong KongPokfulamHong Kong
| | - Paul C Turner
- Maryland Institute for Applied Environmental Health, School of Public HealthUniversity of MarylandCollege ParkMarylandUSA
| | - Shah P Nagendra
- School of Biological Sciences, Faculty of Science, Kadoorie Biological Sciences BuildingThe University of Hong KongPokfulamHong Kong
| | - Hani El‐Nezami
- School of Biological Sciences, Faculty of Science, Kadoorie Biological Sciences BuildingThe University of Hong KongPokfulamHong Kong
- Institute of Public Health and Clinical NutritionUniversity of Eastern FinlandKuopioFinland
| |
Collapse
|
4
|
Chowdhury MR, Islam A, Yurina V, Shimosato T. Water pollution, cholera, and the role of probiotics: a comprehensive review in relation to public health in Bangladesh. Front Microbiol 2025; 15:1523397. [PMID: 39877756 PMCID: PMC11772269 DOI: 10.3389/fmicb.2024.1523397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 12/27/2024] [Indexed: 01/31/2025] Open
Abstract
Cholera, a disease caused by Vibrio cholerae, remains a pervasive public health threat, particularly in regions with inadequate water sanitation and hygiene infrastructure, such as Bangladesh. This review explores the complex interplay between water pollution and cholera transmission in Bangladesh, highlighting how contaminated water bodies serve as reservoirs for V. cholerae. A key focus is the potential role of probiotics as a novel intervention approach for cholera prevention and management. Probiotics are promising as an adjunctive approach to existing therapies as they can enhance gut barrier function, induce competitive exclusion of pathogens, and modulate host immune responses. Recent probiotic advancements include engineering strains that disrupt V. cholerae biofilms and inhibit their virulence. Integrating probiotics with traditional cholera control measures could significantly enhance their effectiveness and provide a multifaceted approach to combating this persistent disease. This review aims to shed light on the potential of probiotics in revolutionizing cholera management and to offer insights into their application as both preventive and therapeutic tools in the fight against this enduring public health challenge.
Collapse
Affiliation(s)
- Md. Rayhan Chowdhury
- Graduate School of Medicine, Science and Technology, Shinshu University, Nagano, Japan
| | - Ariful Islam
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, Bangladesh
| | - Valentina Yurina
- Department of Pharmacy, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Takeshi Shimosato
- Graduate School of Medicine, Science and Technology, Shinshu University, Nagano, Japan
- Department of Pharmacy, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
- Institute for Aqua Regeneration, Shinshu University, Nagano, Japan
| |
Collapse
|
5
|
Vocca C, Abrego-Guandique DM, Cione E, Rania V, Marcianò G, Palleria C, Catarisano L, Colosimo M, La Cava G, Palumbo IM, De Sarro G, Ceccato T, Botti S, Cai T, Palmieri A, Gallelli L. Probiotics in the Management of Chronic Bacterial Prostatitis Patients: A Randomized, Double-Blind Trial to Evaluate a Possible Link Between Gut Microbiota Restoring and Symptom Relief. Microorganisms 2025; 13:130. [PMID: 39858898 PMCID: PMC11767496 DOI: 10.3390/microorganisms13010130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 12/22/2024] [Indexed: 01/27/2025] Open
Abstract
Several studies have suggested that probiotics could play a role in the management of patients with chronic bacterial prostatitis (CBP). In this randomized, placebo-controlled clinical study, we evaluated the efficacy and safety of consumption of probiotics containing human Lactobacillus casei DG® as an add-on treatment in patients with clinical recurrences of CBP, through gut microbiota modification analysis. Enrolled patients with CBP were randomized to receive for 3 months probiotics containing human Lactobacillus casei DG® or placebo following 1 month treatment with ciprofloxacin. During the enrollment and follow-ups, urological examinations analyzed symptoms and quality of life, while microbiological tests analyzed gut and seminal microbiota. During the study, the development of adverse drug reactions was evaluated through the Naranjo scale. Twenty-four patients with CBP were recruited and treated for 3 months with placebo (n. 12) or with Lactobacillus casei DG® (n. 12). Lactobacillus casei DG® induced a significantly (p < 0.01) faster recovery of symptoms than placebo (2 days vs. 8 days) and an increased time free from symptoms (86 days vs. 42 days) without the occurrence of adverse events. In the probiotic group, the appearance of Lactobacilli after 30 days (T1) was higher vs. the placebo group, and a significant reduction in Corynebacterium, Peptoniphilus, Pseudomonas, Veillonella, Staphylococcus, and Streptococcus was also observed. These preliminary data suggest that in patients with CBP, the use of Lactobacillus casei DG after an antimicrobial treatment improves the days free of symptoms and the quality of life, without the development of adverse drug reactions.
Collapse
Affiliation(s)
- Cristina Vocca
- Operative Unit of Clinical Pharmacology and Pharmacovigilance, Department of Health Science, AOU Dulbecco, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (C.V.); (D.M.A.-G.); (V.R.); (G.M.); (C.P.); (L.C.); (G.D.S.); (L.G.)
| | - Diana Marisol Abrego-Guandique
- Operative Unit of Clinical Pharmacology and Pharmacovigilance, Department of Health Science, AOU Dulbecco, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (C.V.); (D.M.A.-G.); (V.R.); (G.M.); (C.P.); (L.C.); (G.D.S.); (L.G.)
| | - Erika Cione
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy;
| | - Vincenzo Rania
- Operative Unit of Clinical Pharmacology and Pharmacovigilance, Department of Health Science, AOU Dulbecco, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (C.V.); (D.M.A.-G.); (V.R.); (G.M.); (C.P.); (L.C.); (G.D.S.); (L.G.)
| | - Gianmarco Marcianò
- Operative Unit of Clinical Pharmacology and Pharmacovigilance, Department of Health Science, AOU Dulbecco, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (C.V.); (D.M.A.-G.); (V.R.); (G.M.); (C.P.); (L.C.); (G.D.S.); (L.G.)
| | - Caterina Palleria
- Operative Unit of Clinical Pharmacology and Pharmacovigilance, Department of Health Science, AOU Dulbecco, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (C.V.); (D.M.A.-G.); (V.R.); (G.M.); (C.P.); (L.C.); (G.D.S.); (L.G.)
| | - Luca Catarisano
- Operative Unit of Clinical Pharmacology and Pharmacovigilance, Department of Health Science, AOU Dulbecco, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (C.V.); (D.M.A.-G.); (V.R.); (G.M.); (C.P.); (L.C.); (G.D.S.); (L.G.)
| | - Manuela Colosimo
- Operative Unit of Microbiology and Virology, AOU Dulbecco, 88100 Catanzaro, Italy;
| | - Gregorio La Cava
- Urology Division Azienda Sanitaria Provinciale, Department of Primary Care, 88100 Catanzaro, Italy;
| | - Italo Michele Palumbo
- Department of Urology, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy;
| | - Giovambattista De Sarro
- Operative Unit of Clinical Pharmacology and Pharmacovigilance, Department of Health Science, AOU Dulbecco, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (C.V.); (D.M.A.-G.); (V.R.); (G.M.); (C.P.); (L.C.); (G.D.S.); (L.G.)
- Research Center FAS@UMG, Department of Health Science, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Tommaso Ceccato
- Department of Urology, Santa Chiara Regional Hospital, 38123 Trento, Italy; (T.C.); (S.B.)
| | - Simone Botti
- Department of Urology, Santa Chiara Regional Hospital, 38123 Trento, Italy; (T.C.); (S.B.)
| | - Tommaso Cai
- Department of Urology, Santa Chiara Regional Hospital, 38123 Trento, Italy; (T.C.); (S.B.)
- Institute of Clinical Medicine, University of Oslo, 0313 Oslo, Norway
| | - Alessandro Palmieri
- Department of Urology, Federico II University of Naples, 80138 Naples, Italy;
| | - Luca Gallelli
- Operative Unit of Clinical Pharmacology and Pharmacovigilance, Department of Health Science, AOU Dulbecco, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (C.V.); (D.M.A.-G.); (V.R.); (G.M.); (C.P.); (L.C.); (G.D.S.); (L.G.)
- Research Center FAS@UMG, Department of Health Science, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
- Medifarmagen, University of Catanzaro and Renato Dulbecco Hospital, 88100 Catanzaro, Italy
| |
Collapse
|
6
|
An F, Jia X, Shi Y, Xiao X, Yang F, Su J, Peng X, Geng G, Yan C. The ultimate microbial composition for correcting Th17/Treg cell imbalance and lipid metabolism disorders in osteoporosis. Int Immunopharmacol 2025; 144:113613. [PMID: 39571271 DOI: 10.1016/j.intimp.2024.113613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/28/2024] [Accepted: 11/07/2024] [Indexed: 12/15/2024]
Abstract
Osteoporosis is a systemic bone disease characterised by decreased bone mass and a deteriorated bone microstructure, leading to increased bone fragility and fracture risk. Disorders of the intestinal microbiota may be key inducers of osteoporosis. Furthermore, such disorders may contribute to osteoporosis by influencing immune function and lipid metabolism. Therefore, in this review, we aimed to summarise the molecular mechanisms through which the intestinal microbiota affect the onset and development of osteoporosis by regulating Th17/Treg imbalance and lipid metabolism disorders. We also discussed the regulatory mechanisms underlying the effect of intestinal microbiota-related modulators on Th17/Treg imbalance and lipid metabolism disorders in osteoporosis, to explore new molecular targets for its treatment and provide a theoretical basis for clinical management.
Collapse
Affiliation(s)
- Fangyu An
- Teaching Experiment Training Center, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, China.
| | - Xueru Jia
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, China
| | - Yangyang Shi
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, China
| | - Xiaolong Xiao
- School of Tradional Chinese and Werstern Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, China
| | - Fan Yang
- School of Tradional Chinese and Werstern Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, China
| | - Junchang Su
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, China
| | - Xia Peng
- School of Tradional Chinese and Werstern Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, China
| | - Guangqin Geng
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, China
| | - Chunlu Yan
- School of Tradional Chinese and Werstern Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, China.
| |
Collapse
|
7
|
Ghimire S, Subedi K, Zhang X, Wu C. Efficacy of Bacillus subtilis probiotic in preventing necrotic enteritis in broilers: a systematic review and meta-analysis. Avian Pathol 2024; 53:451-466. [PMID: 38776185 DOI: 10.1080/03079457.2024.2359596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 05/24/2024]
Abstract
Probiotics can enhance broiler chicken health by improving intestinal microbiota, potentially replacing antibiotics. They protect against bacterial diseases like necrotic enteritis (NE) in poultry. Understanding their role is crucial for managing bacterial diseases, including NE. This study conducted a meta-analysis to assess the effects of Bacillus subtilis probiotic supplementation on feed conversion ratio (FCR), NE lesion score, and mortality. Additionally, a systematic review analysed gut microbiota changes in broilers challenged with Clostridium perfringens with or without the probiotic supplementation. Effect sizes from the studies were estimated in terms of standardized mean difference (SMD). Random effect models were fitted to estimate the pooled effect size and 95% confidence interval (CI) of the pooled effect size between the control [probiotic-free + C. perfringens] and the treatment [Bacillus subtilis supplemented + C. perfringens] groups. Overall variance was computed by heterogeneity (Q). The meta-analysis showed that Bacillus subtilis probiotic supplementation significantly improved FCR and reduced NE lesion score but had no effect on mortality rates. The estimated overall effects of probiotic supplementation on FCR, NE lesion score and mortality percentage in terms of SMD were -0.91 (CI = -1.34, -0.49; P < 0.001*); -0.67 (CI = -1.11, -0.22; P = 0.006*), and -0.32 (CI = -0.70, 0.06; P = 0.08), respectively. Heterogeneity analysis indicated significant variations across studies for FCR (Q = 69.66; P < 0.001*) and NE lesion score (Q = 42.35; P < 0.001*) while heterogeneity was not significant for mortality (Q = 2.72; P = 0.74). Bacillus subtilis probiotic supplementation enriched specific gut microbiota including Streptococcus, Butyricicoccus, Faecalibacterium, and Ruminococcus. These microbiotas were found to upregulate expression of various genes such as TJ proteins occluding, ZO-1, junctional adhesion 2 (JAM2), interferon gamma, IL12-β and transforming growth factor-β4. Moreover, downregulated mucin-2 expression was involved in restoring the intestinal physical barrier, reducing intestinal inflammation, and recovering the physiological functions of damaged intestines. These findings highlight the potential benefits of probiotic supplementation in poultry management, particularly in combating bacterial diseases and promoting intestinal health.
Collapse
Affiliation(s)
- Shweta Ghimire
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE, USA
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, USA
| | - Keshab Subedi
- Christiana Care Health Systems, Institute for Research on Equity and Community Health (iREACH), Wilmington, DE, USA
| | - Xinwen Zhang
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, USA
| | - Changqing Wu
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, USA
| |
Collapse
|
8
|
Rahangdale S, Deshmukh P, Sammeta S, Aglawe M, Kale M, Umekar M, Kotagale N, Taksande B. Agmatine modulation of gut-brain axis alleviates dysbiosis-induced depression-like behavior in rats. Eur J Pharmacol 2024; 981:176884. [PMID: 39134294 DOI: 10.1016/j.ejphar.2024.176884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 07/20/2024] [Accepted: 08/09/2024] [Indexed: 08/19/2024]
Abstract
Depression is a global health concern affecting nearly 280 million individuals. It not only imposes a significant burden on economies and healthcare systems but also manifests complex physiological connections and consequences. Agmatine, a putative neuromodulator derived primarily from beneficial gut microbes specially Lactobacillus, has emerged as a potential therapeutic agent for mental health. The microbiota-gut-brain axis is involved in the development of depression through the peripheral nervous system, endocrine system, and immune system and may be a key factor in the effect of agmatine. Therefore, this study aimed to investigate the potential mechanism of agmatine in antibiotic-induced dysbiosis and depression-like behavior in rats, focusing on its modulation of the gut-brain axis. Depression-like behavior associated with dysbiosis was induced through a seven-day regimen of the broad-spectrum antibiotic, comprising ampicillin and metronidazole and validated through microbial, biochemical, and behavioral alterations. On day 8, antibiotic-treated rats exhibited loose fecal consistency, altered fecal microbiota, and depression-like behavior in forced swim test. Pro-inflammatory cytokines were elevated, while agmatine and monoamine levels decreased in the hippocampus and prefrontal cortex. Antibiotic administration disrupted tight junction proteins in the ileum, affecting gut architecture. Oral administration of agmatine alone or combined with probiotics significantly reversed antibiotic-induced dysbiosis, restoring gut microbiota and mitigating depression-like behaviors. This intervention also restored neuro-inflammatory markers, increased agmatine and monoamine levels, and preserved gut integrity. The study highlights the regulatory role of endogenous agmatine in the gut-brain axis in broad-spectrum antibiotic induced dysbiosis and associated depression-like behavior.
Collapse
Affiliation(s)
- Sandip Rahangdale
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, M.S., 441 002, India
| | - Pankaj Deshmukh
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, M.S., 441 002, India
| | - Shivkumar Sammeta
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, M.S., 441 002, India
| | - Manish Aglawe
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, M.S., 441 002, India
| | - Mayur Kale
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, M.S., 441 002, India
| | - Milind Umekar
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, M.S., 441 002, India
| | - Nandkishor Kotagale
- Government College of Pharmacy, Kathora Naka, VMV Road, Amravati, M.S., 44604, India
| | - Brijesh Taksande
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, M.S., 441 002, India.
| |
Collapse
|
9
|
Bendinelli P, De Noni I, Cattaneo S, Silvetti T, Brasca M, Piazzalunga F, Donetti E, Ferraretto A. Surface layer proteins from Lactobacillus helveticus ATCC® 15009™ affect the gut barrier morphology and function. Tissue Barriers 2024; 12:2289838. [PMID: 38059583 PMCID: PMC11583618 DOI: 10.1080/21688370.2023.2289838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 10/30/2023] [Accepted: 11/28/2023] [Indexed: 12/08/2023] Open
Abstract
Paraprobiotics and postbiotics represent a valid alternative to probiotic strains for ameliorating and preserving a healthy intestinal epithelial barrier (IEB). The present study investigated the effects of surface layer proteins (S-layer) of the dairy strain Lactobacillus helveticus ATCC® 15009™ (Lb ATCC® 15009™), as paraprobiotic, on the morpho-functional modulation of IEB in comparison to live or heat-inactivated Lb ATCC® 15009™ in an in vitro co-culture of Caco-2/HT-29 70/30 cells. Live or heat-inactivated Lb ATCC® 15009™ negatively affected transepithelial electrical resistance (TEER) and paracellular permeability, and impaired the distribution of Claudin-1, a tight junction (TJ) transmembrane protein, as detected by immunofluorescence (IF). Conversely, the addition of the S-layer improved TEER and decreased permeability in physiological conditions in co-cultures with basal TEER lower than 50 ohmcm2, indicative of a more permeable physiological IEB known as leaky gut. Transmission electron microscopy (TEM) and IF analyses suggested that the S-layer induces a structural TJ rearrangement and desmosomes' formation. S-layer also restored TEER and permeability in the presence of LPS, but not of a mixture of pro-inflammatory cytokines (TNF-α plus IFN-γ). IF analyses showed an increase in Claudin-1 staining when LPS and S-layer were co-administered with respect to LPS alone; in addition, the S-layer counteracted the reduction of alkaline phosphatase detoxification activity and the enhancement of pro-inflammatory interleukin-8 release both induced by LPS. Altogether, these data corroborate a paraprobiotic role of S-layer from Lb ATCC® 15009™ as a possible candidate for therapeutic and prophylactic uses in conditions related to gastrointestinal health and correlated with extra-intestinal disorders.
Collapse
Affiliation(s)
- Paola Bendinelli
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Ivano De Noni
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Milan, Italy
| | - Stefano Cattaneo
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Milan, Italy
| | - Tiziana Silvetti
- Institute of Sciences of Food Production, National Research Council (CNR-ISPA), Milan, Italy
| | - Milena Brasca
- Institute of Sciences of Food Production, National Research Council (CNR-ISPA), Milan, Italy
| | | | - Elena Donetti
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Anita Ferraretto
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
- Laboratory of Experimental Biochemistry & Molecular Biology, IRCCS Istituto Galeazzi-Sant’Ambrogio, Milan, Italy
| |
Collapse
|
10
|
Abdulqadir R, Al-Sadi R, Haque M, Gupta Y, Rawat M, Ma TY. Bifidobacterium bifidum Strain BB1 Inhibits Tumor Necrosis Factor-α-Induced Increase in Intestinal Epithelial Tight Junction Permeability via Toll-Like Receptor-2/Toll-Like Receptor-6 Receptor Complex-Dependent Stimulation of Peroxisome Proliferator-Activated Receptor γ and Suppression of NF-κB p65. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:1664-1683. [PMID: 38885924 PMCID: PMC11372998 DOI: 10.1016/j.ajpath.2024.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/16/2024] [Accepted: 05/16/2024] [Indexed: 06/20/2024]
Abstract
Bifidobacterium bifidum strain BB1 causes a strain-specific enhancement in intestinal epithelial tight junction (TJ) barrier. Tumor necrosis factor (TNF)-α induces an increase in intestinal epithelial TJ permeability and promotes intestinal inflammation. The major purpose of this study was to delineate the protective effect of BB1 against the TNF-α-induced increase in intestinal TJ permeability and to unravel the intracellular mechanisms involved. TNF-α produces an increase in intestinal epithelial TJ permeability in Caco-2 monolayers and in mice. Herein, the addition of BB1 inhibited the TNF-α increase in Caco-2 intestinal TJ permeability and mouse intestinal permeability in a strain-specific manner. BB1 inhibited the TNF-α-induced increase in intestinal TJ permeability by interfering with TNF-α-induced enterocyte NF-κB p50/p65 and myosin light chain kinase (MLCK) gene activation. The BB1 protective effect against the TNF-α-induced increase in intestinal permeability was mediated by toll-like receptor-2/toll-like receptor-6 heterodimer complex activation of peroxisome proliferator-activated receptor γ (PPAR-γ) and PPAR-γ pathway inhibition of TNF-α-induced inhibitory kappa B kinase α (IKK-α) activation, which, in turn, resulted in a step-wise inhibition of NF-κB p50/p65, MLCK gene, MLCK kinase activity, and MLCK-induced opening of the TJ barrier. In conclusion, these studies unraveled novel intracellular mechanisms of BB1 protection against the TNF-α-induced increase in intestinal TJ permeability. The current data show that BB1 protects against the TNF-α-induced increase in intestinal epithelial TJ permeability via a PPAR-γ-dependent inhibition of NF-κB p50/p65 and MLCK gene activation.
Collapse
Affiliation(s)
- Raz Abdulqadir
- Department of Medicine, Penn State College of Medicine, Hershey Medical Center, Hershey, Pennsylvania.
| | - Rana Al-Sadi
- Department of Medicine, Penn State College of Medicine, Hershey Medical Center, Hershey, Pennsylvania
| | - Mohammad Haque
- Department of Medicine, Penn State College of Medicine, Hershey Medical Center, Hershey, Pennsylvania
| | - Yash Gupta
- Department of Medicine, Penn State College of Medicine, Hershey Medical Center, Hershey, Pennsylvania
| | - Manmeet Rawat
- Department of Medicine, Penn State College of Medicine, Hershey Medical Center, Hershey, Pennsylvania
| | - Thomas Y Ma
- Department of Medicine, Penn State College of Medicine, Hershey Medical Center, Hershey, Pennsylvania.
| |
Collapse
|
11
|
Chen X, Yong SB, Yii CY, Feng B, Hsieh KS, Li Q. Intestinal microbiota and probiotic intervention in children with bronchial asthma. Heliyon 2024; 10:e34916. [PMID: 39144926 PMCID: PMC11320201 DOI: 10.1016/j.heliyon.2024.e34916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 07/12/2024] [Accepted: 07/18/2024] [Indexed: 08/16/2024] Open
Abstract
Objective This study aims to understand the differences in intestinal flora, expression of helper T cells, allergy-related indicators, and cytokine levels between children with bronchial asthma and healthy children. The study seeks to clarify the effectiveness and safety of probiotic preparations in the treatment of bronchial asthma in children, and to provide new methods for the treatment of bronchial asthma. Methods A total of 66 pediatric patients aged 3-6 years with bronchial asthma and 35 healthy children undergoing physical examination during the same period were enrolled, designated as the asthma group and the healthy group, respectively. The asthma group was further divided into the probiotic group and the non-probiotic group based on whether probiotics were used. The gut microbiota, serum IgE antibody levels, cytokines (IL-4, IL-5, IL-9, IL-13 levels), proportions of helper T cells (Th1, Th2), and hypersensitive C-reactive protein were measured and compared among the groups. Results Children with bronchial asthma had decreased abundance and reduced diversity of intestinal flora compared to the healthy group. At the genus level, the asthma group showed increased abundance of Bacteroides and decreased abundance of Faecalibacterium and Veillonella; The probiotic group demonstrated a significantly higher improvement in the abundance of these genera before and after treatment compared to the non-probiotic group (P < 0.05). Compared to the healthy group, children with asthma had elevated levels of serum IgE, IL-4, IL-5, IL-9, and IL-13, as well as a decreased Th1/Th2 ratio, all of which showed statistical differences (P < 0.05). After treatment, all immune indicators improved. Specifically, the probiotic group exhibited a more significant decrease in serum IgE, IL-4, and IL-13 levels compared to the non-probiotic group (P < 0.05). Conclusion Children with bronchial asthma exhibit dysbiosis of intestinal flora, characterized by an increased abundance of the Bacteroides and decreased abundance of the Faecalibacterium and Veillonella. This imbalance in intestinal flora increases the risk of allergic diseases. Probiotics can effectively improve dysbiosis of intestinal flora, contributing to the balance of immune function in children, and can be used as an adjunct therapy for the treatment of bronchial asthma.
Collapse
Affiliation(s)
- Xiaodan Chen
- Ningbo Medical Center LiHuiLi Hospital, The Affiliated LiHuiLIi Hospitai of Ningbo University, Zhejiang, China
| | - Su-Boon Yong
- Department of Allergy and Immunology, China Medical University Children's Hospital, Taichung, Taiwan
| | - Chin-Yuan Yii
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Landseed International Hospital, Taoyuan, Taiwan
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan, Taiwan
| | - Bihong Feng
- Ningbo Medical Center LiHuiLi Hospital, The Affiliated LiHuiLIi Hospitai of Ningbo University, Zhejiang, China
| | - Kai-Sheng Hsieh
- Department of Pediatrics, China Medical University, Children's Hospital, Taichung, Taiwan and College of Medicine, China Medical University, Taichung, Taiwan
| | - Qingcao Li
- Ningbo Medical Center LiHuiLi Hospital, The Affiliated LiHuiLIi Hospitai of Ningbo University, Zhejiang, China
| |
Collapse
|
12
|
Oketch EO, Yu M, Hong JS, Chaturanga NC, Seo E, Lee H, Hermes RG, Smeets N, Taechavasonyoo A, Kirwan S, Rodriguez-Sanchez R, Heo JM. Laying hen responses to multi-strain Bacillus-based probiotic supplementation from 25 to 37 weeks of age. Anim Biosci 2024; 37:1418-1427. [PMID: 38575130 PMCID: PMC11222866 DOI: 10.5713/ab.23.0495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/27/2023] [Accepted: 01/17/2024] [Indexed: 04/06/2024] Open
Abstract
OBJECTIVE This study aimed to investigate the efficacy of Bacillus-based probiotics supplemented at two different levels to modulate the productive performance, egg quality, tibia traits, and specific cecal bacteria counts of Hy-Line Brown layers from 25 to 37 weeks of age. METHODS A total of 216 twenty-five-week-old hens were randomly distributed into 3 experimental diets with 12 replicates of 6 birds per cage. Diets included basal diet supplemented with 0 (CON), 3×108 (PRO1), or 3×109 (PRO2) colony-forming unit (CFU) of the test probiotic containing Bacillus subtilis PB6, Bacillus subtilis FXA, and Bacillus licheniformis G3 per kilogram of feed. RESULTS Improved egg weights and mass at 29 weeks; and feed intake at 31 weeks (p<0.10) were noticed with the probiotic-supplemented PRO1 and PRO2 diets. Considering egg quality, the shell thickness, Haugh units, and yolk color were improved; but yolk cholesterol was lowered (p<0.05) with PRO1 and PRO2 diets at 29 weeks. At both 33 and 37 weeks, the egg-breaking strength, shell color and thickness, albumen height, Haugh units, and yolk color were improved; but yolk cholesterol was similarly lowered (p<0.05) with the PRO1 and PRO2 diets. Improved tibia Ca, ash, weights, and density; and raised cecal counts of Bifidobacteria and Lactobacilli (p<0.05) were noticed with PRO1 and PRO2 diets. Improved tibia P but reduced Clostridia counts (p<0.10) were also observed with the PRO1 and PRO2 diets. CONCLUSION Probiotic supplementation of Bacillus subtilis PB6, Bacillus subtilis FXA, and Bacillus licheniformis G3 at 3×108 CFU/kg of feed is adequate to significantly improve egg quality, lower yolk cholesterol, enhance several tibia traits, and raise the populations of beneficial cecal bacteria. Modest improvements in several productive parameters and tibia P but reduced Clostridia were also observed; and could warrant further investigation of probiotic effects beyond the current test period.
Collapse
Affiliation(s)
- Elijah Ogola Oketch
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon 34134,
Korea
| | - Myunghwan Yu
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon 34134,
Korea
| | - Jun Seon Hong
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon 34134,
Korea
| | - Nuwan Chamara Chaturanga
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon 34134,
Korea
| | - Eunsoo Seo
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon 34134,
Korea
| | - Hans Lee
- Kemin Animal Nutrition and Health, Asia Pacific, 12 Senoko Drive,
Singapore 758200
| | | | - Natasja Smeets
- Kemin Animal Nutrition and Health, Europa NV, Herentals 2200,
Belgium
| | | | - Susanne Kirwan
- Kemin Animal Nutrition and Health, Europa NV, Herentals 2200,
Belgium
| | | | - Jung Min Heo
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon 34134,
Korea
| |
Collapse
|
13
|
Maddineni G, Obulareddy SJ, Paladiya RD, Korsapati RR, Jain S, Jeanty H, Vikash F, Tummala NC, Shetty S, Ghazalgoo A, Mahapatro A, Polana V, Patel D. The role of gut microbiota augmentation in managing non-alcoholic fatty liver disease: an in-depth umbrella review of meta-analyses with grade assessment. Ann Med Surg (Lond) 2024; 86:4714-4731. [PMID: 39118769 PMCID: PMC11305784 DOI: 10.1097/ms9.0000000000002276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/03/2024] [Indexed: 08/10/2024] Open
Abstract
Background and aim Currently, there are no authorized medications specifically for non-alcoholic fatty liver disease (NAFLD) treatment. Studies indicate that changes in gut microbiota can disturb intestinal balance and impair the immune system and metabolism, thereby elevating the risk of developing and exacerbating NAFLD. Despite some debate, the potential benefits of microbial therapies in managing NAFLD have been shown. Methods A systematic search was undertaken to identify meta-analyses of randomized controlled trials that explored the effects of microbial therapy on the NAFLD population. The goal was to synthesize the existing evidence-based knowledge in this field. Results The results revealed that probiotics played a significant role in various aspects, including a reduction in liver stiffness (MD: -0.38, 95% CI: [-0.49, -0.26]), hepatic steatosis (OR: 4.87, 95% CI: [1.85, 12.79]), decrease in body mass index (MD: -1.46, 95% CI: [-2.43, -0.48]), diminished waist circumference (MD: -1.81, 95% CI: [-3.18, -0.43]), lowered alanine aminotransferase levels (MD: -13.40, 95% CI: [-17.02, -9.77]), decreased aspartate aminotransferase levels (MD: -13.54, 95% CI: [-17.85, -9.22]), lowered total cholesterol levels (MD: -15.38, 95% CI: [-26.49, -4.26]), decreased fasting plasma glucose levels (MD: -4.98, 95% CI: [-9.94, -0.01]), reduced fasting insulin (MD: -1.32, 95% CI: [-2.42, -0.21]), and a decline in homeostatic model assessment of insulin resistance (MD: -0.42, 95% CI: [-0.72, -0.11]) (P<0.05). Conclusion Overall, the results demonstrated that gut microbiota interventions could ameliorate a wide range of indicators including glycemic profile, dyslipidemia, anthropometric indices, and liver injury, allowing them to be considered a promising treatment strategy.
Collapse
Affiliation(s)
| | | | | | | | - Shika Jain
- MVJ Medical College and Research Hospital, Bengaluru, Karnataka, India
| | | | - Fnu Vikash
- Jacobi Medical Center, Albert Einstein College of Medicine, Bronx
| | - Nayanika C. Tummala
- Gitam Institute of Medical Sciences and Research, Visakhapatnam, Andhra Pradesh
| | | | - Arezoo Ghazalgoo
- Student Research Committee, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | | | | | - Dhruvan Patel
- Drexel University College of Medicine, Philadelphia, Pennsylvania, PA
| |
Collapse
|
14
|
Haque M, Kaminsky L, Abdulqadir R, Engers J, Kovtunov E, Rawat M, Al-Sadi R, Ma TY. Lactobacillus acidophilus inhibits the TNF-α-induced increase in intestinal epithelial tight junction permeability via a TLR-2 and PI3K-dependent inhibition of NF-κB activation. Front Immunol 2024; 15:1348010. [PMID: 39081324 PMCID: PMC11286488 DOI: 10.3389/fimmu.2024.1348010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 06/25/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND Defective intestinal epithelial tight junction (TJ), characterized by an increase in intestinal TJ permeability, has been shown to play a critical role in the pathogenesis of inflammatory bowel disease (IBD). Tumor necrosis factor-α (TNF-α) is a key pro-inflammatory cytokine involved in the immunopathology of IBD and has been shown to cause an increase in intestinal epithelial TJ permeability. Although TNF-α antibodies and other biologics have been advanced for use in IBD treatment, these therapies are associated with severe side effects and have limited efficacy, and there is an urgent need for therapies with benign profiles and high therapeutic efficacy. Probiotic bacteria have beneficial effects and are generally safe and represent an important class of potential therapeutic agents in IBD. Lactobacillus acidophilus (LA) is one of the most used probiotics for wide-ranging health benefits, including in gastrointestinal, metabolic, and inflammatory disorders. A specific strain of LA, LA1, was recently demonstrated to have protective and therapeutic effects on the intestinal epithelial TJ barrier. However, the mechanisms of actions of LA1 remain largely unknown. METHODS The primary aim of this study was to investigate microbial-epithelial interactions and novel signaling pathways that regulate the effect of LA1 on TNF-α-induced increase in intestinal epithelial TJ permeability, using cell culture and animal model systems. RESULTS AND CONCLUSION Pre-treatment of filter-grown Caco-2 monolayers with LA1 prevented the TNF-α-induced increase in intestinal epithelial TJ permeability by inhibiting TNF-α-induced activation of NF-κB p50/p65 and myosin light chain kinase (MLCK) gene and kinase activity in a TLR-2-dependent manner. LA1 produced a TLR-2- and MyD88-dependent activation of NF-κB p50/p65 in immune cells; however, LA1, in intestinal cells, inhibited the NF-κB p50/p65 activation in a TLR-2-dependent but MyD88-independent manner. In addition, LA1 inhibition of NF-κB p50/p65 and MLCK gene was mediated by TLR-2 pathway activation of phosphatidylinositol 3-kinase (PI3K) and IKK-α phosphorylation. Our results demonstrated novel intracellular signaling pathways by which LA1/TLR-2 suppresses the TNF-α pathway activation of NF-κB p50/p65 in intestinal epithelial cells and protects against the TNF-α-induced increase in intestinal epithelial TJ permeability.
Collapse
Affiliation(s)
- Mohammad Haque
- Department of Medicine, Penn State Milton S. Hershey Medical Center, Hershey, PA, United States
| | - Lauren Kaminsky
- Department of Medicine, Penn State Milton S. Hershey Medical Center, Hershey, PA, United States
| | - Raz Abdulqadir
- Department of Medicine, Penn State Milton S. Hershey Medical Center, Hershey, PA, United States
| | - Jessica Engers
- Department of Medicine, Penn State Milton S. Hershey Medical Center, Hershey, PA, United States
| | - Evgeny Kovtunov
- Department of Medicine, Penn State Milton S. Hershey Medical Center, Hershey, PA, United States
| | - Manmeet Rawat
- Department of Medicine, Penn State Milton S. Hershey Medical Center, Hershey, PA, United States
| | - Rana Al-Sadi
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Thomas Y. Ma
- Department of Medicine, Penn State Milton S. Hershey Medical Center, Hershey, PA, United States
| |
Collapse
|
15
|
Amini-Salehi E, Hassanipour S, Keivanlou MH, Shahdkar M, Orang Goorabzarmakhi M, Vakilpour A, Joukar F, Hashemi M, Sattari N, Javid M, Mansour-Ghanaei F. The impact of gut microbiome-targeted therapy on liver enzymes in patients with nonalcoholic fatty liver disease: an umbrella meta-analysis. Nutr Rev 2024; 82:815-830. [PMID: 37550264 DOI: 10.1093/nutrit/nuad086] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023] Open
Abstract
CONTEXT Nonalcoholic fatty liver disease (NAFLD) is considered the leading cause of chronic liver disease worldwide. To date, no confirmed medication is available for the treatment of NAFLD. Previous studies showed the promising effects of gut microbiome-targeted therapies; however, the results were controversial and the strength of the evidence and their clinical significance remained unclear. OBJECTIVES This umbrella study summarizes the results of meta-analyses investigating the effects of probiotics, prebiotics, and synbiotics on liver enzymes in the NAFLD population. DATA SOURCE A comprehensive search of the PubMed, Scopus, Web of Science, and Cochrane Library databases was done up to December 20, 2022, to find meta-analyses on randomized control trials reporting the effects of gut microbial therapy on patients with NAFLD. DATA EXTRACTION Two independent investigators extracted data on the characteristics of meta-analyses, and any discrepancies were resolved by a third researcher. The AMSTAR2 checklist was used for evaluating the quality of studies. DATA ANALYSIS A final total of 15 studies were included in the analysis. Results showed that microbiome-targeted therapies could significantly reduce levels of alanine aminotransferase (ALT; effect size [ES], -10.21; 95% confidence interval [CI], -13.29, -7.14; P < 0.001), aspartate aminotransferase (AST; ES, -8.86; 95%CI, -11.39, -6.32; P < 0.001), and γ-glutamyltransferase (ES, -5.56; 95%CI, -7.92, -3.31; P < 0.001) in patients with NAFLD. Results of subgroup analysis based on intervention showed probiotics could significantly reduce levels of AST (ES, -8.69; 95%CI, -11.01, -6.37; P < 0.001) and ALT (ES, -9.82; 95%CI, -11.59, -8.05; P < 0.001). Synbiotics could significantly reduce levels of AST (ES, -11.40; 95%CI, -13.91, -8.88; P < 0.001) and ALT (ES, -11.87; 95%CI, -13.80, -9.95; P < 0.001). Prebiotics had no significant effects on AST and ALT levels (ES, -2.96; 95%CI, -8.12, 2.18, P = 0.259; and ES, -4.69; 95%CI, -13.53, 4.15, P = 0.299, respectively). CONCLUSION Gut microbiome-targeted therapies could be a promising therapeutic approach in the improvement of hepatic damage in patients with NAFLD. However, more studies are needed to better determine the best bacterial strains, duration of treatment, and optimum dosage of gut microbiome-targeted therapies in the treatment of the NAFLD population. SYSTEMATIC REVIEW REGISTRATION PROSPERO registration no. CRD42022346998.
Collapse
Affiliation(s)
- Ehsan Amini-Salehi
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Soheil Hassanipour
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | | | - Milad Shahdkar
- School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | | | - Azin Vakilpour
- School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Farahnaz Joukar
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Mohammad Hashemi
- Student Research Committee, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Nazila Sattari
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | | | - Fariborz Mansour-Ghanaei
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
16
|
Mehrani Y, Kazemi Mehrjerdi H, Tavakoli A, Shafieian R, Salari A. Effects of Probiotic Lactobacilli plantarum in Treatment of Experimentally Induced Periodontal Disease in Rabbits. J Vet Dent 2024; 41:210-216. [PMID: 36927186 DOI: 10.1177/08987564231163193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
The aim of this study was to evaluate the therapeutic effects of probiotic Lactobacillus plantarum in experimentally induced periodontal disease in rabbits. The incisor teeth of 24 rabbits were scaled under general anesthesia. Two weeks later, silk ligatures were placed at the gingival margin of the incisor teeth to induce periodontal disease. After confirming the presence of periodontal disease by periodontal probing four weeks later, incisor mucogingival flaps were created and gingival pocket lavage and debridement was performed. The rabbits were randomly divided into four groups. Group 1: Control; Group 2: Microencapsulated form of the probiotic; Group 3: Planktonic form of the probiotic; and Group 4: Biofilm form of the probiotic. The rabbits were euthanized eight weeks later, and gingival connective tissue and epithelium were resected for histopathological and histomorphometric evaluation. The results showed that the rate of epithelial regeneration was lower and bone regeneration was significantly higher in the treatment groups compared to the Control group. The highest level of bone regeneration was in Group 2 (Microencapsulated probiotic). There was no significant difference in bone regeneration observed between the biofilm and planktonic probiotic groups. This study showed that applying the probiotic Lactobacillus plantarum in microencapsulated form improved bone regeneration in experimentally induced periodontal disease in rabbits.
Collapse
Affiliation(s)
- Yeganeh Mehrani
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Hossien Kazemi Mehrjerdi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Azin Tavakoli
- Department of Clinical Sciences, Islamic Azad University Garmsar Branch, Garmsar, Iran
| | - Reyhaneh Shafieian
- Department of Anatomy and Cell Biology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Salari
- Department of Food Hygiene and Aquaculture, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
17
|
Amini-Salehi E, Samethadka Nayak S, Maddineni G, Mahapatro A, Keivanlou MH, Soltani Moghadam S, Vakilpour A, Aleali MS, Joukar F, Hashemi M, Norouzi N, Bakhshi A, Bahrampourian A, Mansour-Ghanaei F, Hassanipour S. Can modulation of gut microbiota affect anthropometric indices in patients with non-alcoholic fatty liver disease? An umbrella meta-analysis of randomized controlled trials. Ann Med Surg (Lond) 2024; 86:2900-2910. [PMID: 38694388 PMCID: PMC11060227 DOI: 10.1097/ms9.0000000000001740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/08/2024] [Indexed: 05/04/2024] Open
Abstract
Background and aim Modulating the gut microbiota population by administration of probiotics, prebiotics, and synbiotics has shown to have a variety of health benefits in different populations, particularly those with metabolic disorders. Although the promising effects of these compounds have been observed in the management of patients with non-alcoholic fatty liver disease (NAFLD), the exact effects and the mechanisms of action are yet to be understood. In the present study, we aimed to evaluate how gut microbiota modulation affects anthropometric indices of NAFLD patients to achieve a comprehensive summary of current evidence-based knowledge. Methods Two researchers independently searched international databases, including PubMed, Scopus, and Web of Science, from inception to June 2023. Meta-analysis studies that evaluated the effects of probiotics, prebiotics, and synbiotics on patients with NAFLD were entered into our umbrella review. The data regarding anthropometric indices, including body mass index, weight, waist circumference (WC), and waist-to-hip ratio (WHR), were extracted by the investigators. The authors used random effect model for conducting the meta-analysis. Subgroup analysis and sensitivity analysis were also performed. Results A total number of 13 studies were finally included in our study. Based on the final results, BMI was significantly decreased in NAFLD patients by modulation of gut microbiota [effect size (ES): -0.18, 05% CI: -0.25, -0.11, P<0.001]; however, no significant alteration was observed in weight and WC (ES: -1.72, 05% CI: -3.48, 0.03, P=0.055, and ES: -0.24, 05% CI: -0.75, 0.26, P=0.353, respectively). The results of subgroup analysis showed probiotics had the most substantial effect on decreasing BMI (ES: -0.77, 95% CI: -1.16, -0.38, P<0.001) followed by prebiotics (ES: -0.51, 95% CI: -0.76, -0.27, P<0.001) and synbiotics (ES: -0.12, 95% CI: -0.20, -0.04, P=0.001). Conclusion In conclusion, the present umbrella meta-analysis showed that although modulation of gut microbiota by administration of probiotics, prebiotics, and synbiotics had promising effects on BMI, no significant change was observed in the WC and weight of the patients. No sufficient data were available for other anthropometric indices including waist-to-hip ratio and waist-to-height ratio and future meta-analyses should be done in this regard.
Collapse
Affiliation(s)
- Ehsan Amini-Salehi
- Gastrointestinal and Liver Diseases Research Center
- Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | | | | | | | | | | | - Azin Vakilpour
- School of Medicine, Guilan University of Medical Sciences, Rasht
| | | | | | - Mohammad Hashemi
- Student Research Committee, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | | | | | | | | | | |
Collapse
|
18
|
Goudarzi F, Kiani A, Nami Y, Shahmohammadi A, Mohammadalipour A, Karami A, Haghshenas B. Potential probiotic Lactobacillus delbrueckii subsp. lactis KUMS-Y33 suppresses adipogenesis and promotes osteogenesis in human adipose-derived mesenchymal stem cell. Sci Rep 2024; 14:9689. [PMID: 38678043 PMCID: PMC11055903 DOI: 10.1038/s41598-024-60061-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 04/18/2024] [Indexed: 04/29/2024] Open
Abstract
Today, probiotics are considered to be living microorganisms whose consumption has a certain number of beneficial effects on the consumer. The present study aimed to investigate the effect of a new probiotic extract (Lactobacillus delbrueckii subsp. lactis KUMS Y33) on the differentiation process of human adipose-derived stem cells (hADSCs) into adipocytes and osteocytes and, as a result, clarify its role in the prevention and treatment of bone age disease. Several bacteria were isolated from traditional yogurt. They were evaluated to characterize the probiotic's activity. Then, the isolated hADSCs were treated with the probiotic extract, and then osteogenesis and adipogenesis were induced. To evaluate the differentiation process, oil red O and alizarin red staining, a triglyceride content assay, an alkaline phosphatase (ALP) activity assay, as well as real-time PCR and western blot analysis of osteocyte- and adipocyte-specific genes, were performed. Ultimately, the new strain was sequenced and registered on NBCI. In the probiotic-treated group, the triglyceride content and the gene expression and protein levels of C/EBP-α and PPAR-γ2 (adipocyte-specific markers) were significantly decreased compared to the control group (P < 0.05), indicating an inhibited adipogenesis process. Furthermore, the probiotic extract caused a significant increase in the ALP activity, the expression levels of RUNX2 and osteocalcin, and the protein levels of collagen I and FGF-23 (osteocyte-specific markers) in comparison to the control group (P < 0.05), indicating an enhanced osteogenesis process. According to the results of the present study, the probiotic extract inhibits adipogenesis and significantly increases osteogenesis, suggesting a positive role in the prevention and treatment of osteoporosis and opening a new aspect for future in-vivo study.
Collapse
Affiliation(s)
- Farjam Goudarzi
- Regenerative Medicine Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Amir Kiani
- Regenerative Medicine Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Yousef Nami
- Department of Food Biotechnology, Branch for Northwest and West Region, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO), Tabriz, Iran
| | - Azin Shahmohammadi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Adel Mohammadalipour
- Department of Clinical Biochemistry, Isfahan Pharmaceutical Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Afshin Karami
- Departments of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Babak Haghshenas
- Regenerative Medicine Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
19
|
Al-Khazaleh AK, Chang D, Münch GW, Bhuyan DJ. The Gut Connection: Exploring the Possibility of Implementing Gut Microbial Metabolites in Lymphoma Treatment. Cancers (Basel) 2024; 16:1464. [PMID: 38672546 PMCID: PMC11048693 DOI: 10.3390/cancers16081464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
Recent research has implicated the gut microbiota in the development of lymphoma. Dysbiosis of the gut microbial community can disrupt the production of gut microbial metabolites, thereby impacting host physiology and potentially contributing to lymphoma. Dysbiosis-driven release of gut microbial metabolites such as lipopolysaccharides can promote chronic inflammation, potentially elevating the risk of lymphoma. In contrast, gut microbial metabolites, such as short-chain fatty acids, have shown promise in preclinical studies by promoting regulatory T-cell function, suppressing inflammation, and potentially preventing lymphoma. Another metabolite, urolithin A, exhibited immunomodulatory and antiproliferative properties against lymphoma cell lines in vitro. While research on the role of gut microbial metabolites in lymphoma is limited, this article emphasizes the need to comprehend their significance, including therapeutic applications, molecular mechanisms of action, and interactions with standard chemotherapies. The article also suggests promising directions for future research in this emerging field of connection between lymphoma and gut microbiome.
Collapse
Affiliation(s)
- Ahmad K. Al-Khazaleh
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia;
| | - Dennis Chang
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia;
| | - Gerald W. Münch
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia;
| | - Deep Jyoti Bhuyan
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia;
- School of Science, Western Sydney University, Penrith, NSW 2751, Australia
| |
Collapse
|
20
|
El Jeni R, Villot C, Koyun OY, Osorio-Doblado A, Baloyi JJ, Lourenco JM, Steele M, Callaway TR. Invited review: "Probiotic" approaches to improving dairy production: Reassessing "magic foo-foo dust". J Dairy Sci 2024; 107:1832-1856. [PMID: 37949397 DOI: 10.3168/jds.2023-23831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 10/24/2023] [Indexed: 11/12/2023]
Abstract
The gastrointestinal microbial consortium in dairy cattle is critical to determining the energetic status of the dairy cow from birth through her final lactation. The ruminant's microbial community can degrade a wide variety of feedstuffs, which can affect growth, as well as production rate and efficiency on the farm, but can also affect food safety, animal health, and environmental impacts of dairy production. Gut microbial diversity and density are powerful tools that can be harnessed to benefit both producers and consumers. The incentives in the United States to develop Alternatives to Antibiotics for use in food-animal production have been largely driven by the Veterinary Feed Directive and have led to an increased use of probiotic approaches to alter the gastrointestinal microbial community composition, resulting in improved heifer growth, milk production and efficiency, and animal health. However, the efficacy of direct-fed microbials or probiotics in dairy cattle has been highly variable due to specific microbial ecological factors within the host gut and its native microflora. Interactions (both synergistic and antagonistic) between the microbial ecosystem and the host animal physiology (including epithelial cells, immune system, hormones, enzyme activities, and epigenetics) are critical to understanding why some probiotics work but others do not. Increasing availability of next-generation sequencing approaches provides novel insights into how probiotic approaches change the microbial community composition in the gut that can potentially affect animal health (e.g., diarrhea or scours, gut integrity, foodborne pathogens), as well as animal performance (e.g., growth, reproduction, productivity) and fermentation parameters (e.g., pH, short-chain fatty acids, methane production, and microbial profiles) of cattle. However, it remains clear that all direct-fed microbials are not created equal and their efficacy remains highly variable and dependent on stage of production and farm environment. Collectively, data have demonstrated that probiotic effects are not limited to the simple mechanisms that have been traditionally hypothesized, but instead are part of a complex cascade of microbial ecological and host animal physiological effects that ultimately impact dairy production and profitability.
Collapse
Affiliation(s)
- R El Jeni
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602
| | - C Villot
- Lallemand SAS, Blagnac, France, 31069
| | - O Y Koyun
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602
| | - A Osorio-Doblado
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602
| | - J J Baloyi
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602
| | - J M Lourenco
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602
| | - M Steele
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada, N1G 2W1
| | - T R Callaway
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602.
| |
Collapse
|
21
|
Petruzziello C, Saviano A, Manetti LL, Macerola N, Ojetti V. The Role of Gut Microbiota and the Potential Effects of Probiotics in Heart Failure. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:271. [PMID: 38399558 PMCID: PMC10890346 DOI: 10.3390/medicina60020271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/25/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024]
Abstract
Heart failure (HF) remains a significant global health challenge, affecting millions of individuals worldwide and posing a substantial burden on healthcare systems. HF is a syndrome of intricate pathophysiology, involving systemic inflammation, oxidative stress, metabolic perturbations, and maladaptive structural changes in the heart. It is influenced by complex interactions between cardiac function, systemic physiology, and environmental factors. Among these factors, the gut microbiota has emerged as a novel and intriguing player in the landscape of HF pathophysiology. The gut microbiota, beyond its role in digestion and nutrient absorption, impacts immune responses, metabolic processes, and, as suggested by evidence in the literature, the development and progression of HF. There is a bidirectional communication between the gut and the heart, often known as the gut-heart axis, through which gut microbiota-derived metabolites, immune signals, and microbial products exert profound effects on cardiovascular health. This review aims to provide a comprehensive overview of the intricate relationship between the gut microbiota and HF. Additionally, we explore the potential of using probiotics as a therapeutic strategy to modulate the gut microbiota's composition and attenuate the adverse effects observed in HF. Conventional therapeutic approaches targeting hemodynamic and neurohormonal dysregulation have substantially improved the management of HF, but emerging research is exploring the potential implications of harnessing the gut microbiota for innovative approaches in HF treatment.
Collapse
Affiliation(s)
- Carmine Petruzziello
- Emergency Department, Ospedale San Carlo di Nancy—GVM Care & Research, 00165 Rome, Italy; (C.P.); (L.L.M.)
| | - Angela Saviano
- Emergency Department, Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy;
| | - Luca Luigi Manetti
- Emergency Department, Ospedale San Carlo di Nancy—GVM Care & Research, 00165 Rome, Italy; (C.P.); (L.L.M.)
| | - Noemi Macerola
- Internal Medicine, Ospedale San Carlo di Nancy—GVM Care & Research, 00165 Rome, Italy;
| | - Veronica Ojetti
- Internal Medicine, Ospedale San Carlo di Nancy—GVM Care & Research, 00165 Rome, Italy;
- Deaprtment of Internal Medicine, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
22
|
Huang J, Sheng Y, Xue P, Yu D, Guan P, Ren J, Qian W. Patterns of Spatial Variation in Rumen Microbiology, Histomorphology, and Fermentation Parameters in Tarim wapiti ( Cervus elaphus yarkandensis). Microorganisms 2024; 12:216. [PMID: 38276201 PMCID: PMC10820752 DOI: 10.3390/microorganisms12010216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
The rumen is divided into multiple rumen sacs based on anatomical structure, and each has its unique physiological environment. Tarim wapiti preserved roughage tolerance after domestication, and adaptation to the desertified environment led to the development of a unique rumen shape and intraruminal environment. In this work, six Tarim wapiti were chosen and tested for fermentation parameters, microbes, and histomorphology in four rumen areas (Dorsal sac, DS; Ventral sac, VS; Caudodorsal blind sac, CDBS; Caudoventral blind sac, CVBS). Tarim wapiti's rumen blind sac had better developed rumen histomorphology, the ventral sac was richer in VFAs, and the dominant bacteria varied most notably in the phylum Firmicutes, which was enriched in the caudoventral blind sac. The ventral sac biomarkers focused on carbohydrate fermentation-associated bacteria, the dorsal sac focused on N recycling, and the caudoventral blind sac identified the only phylum-level bacterium, Firmicutes; we were surprised to find a probiotic bacterium, Bacillus clausii, identified as a biomarker in the ventral sac. This research provides a better understanding of rumen fermentation parameters, microorganisms, and histomorphology in the Tarim wapiti rumen within a unique ecological habitat, laying the groundwork for future regulation targeting the rumen microbiota and subsequent animal production improvement.
Collapse
Affiliation(s)
- Jianzhi Huang
- College of Animal Science and Technology, Tarim University, Alar 843300, China
| | - Yueyun Sheng
- College of Animal Science and Technology, Tarim University, Alar 843300, China
| | - Pengfei Xue
- College of Animal Science and Technology, Tarim University, Alar 843300, China
| | - Donghui Yu
- College of Animal Science and Technology, Tarim University, Alar 843300, China
| | - Peng Guan
- College of Animal Science and Technology, Tarim University, Alar 843300, China
| | - Jiangang Ren
- College of Animal Science and Technology, Tarim University, Alar 843300, China
| | - Wenxi Qian
- College of Animal Science and Technology, Tarim University, Alar 843300, China
- Key Laboratory of Tarim Animal Husbandry Science & Technology, Xinjiang Production & Construction Group, Alar 843300, China
| |
Collapse
|
23
|
Saviano A, Petruzziello C, Cancro C, Macerola N, Petti A, Nuzzo E, Migneco A, Ojetti V. The Efficacy of a Mix of Probiotics ( Limosilactobacillus reuteri LMG P-27481 and Lacticaseibacillus rhamnosus GG ATCC 53103) in Preventing Antibiotic-Associated Diarrhea and Clostridium difficile Infection in Hospitalized Patients: Single-Center, Open-Label, Randomized Trial. Microorganisms 2024; 12:198. [PMID: 38258024 PMCID: PMC10819176 DOI: 10.3390/microorganisms12010198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/14/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Antibiotic-associated diarrhea is a condition reported in 5-35% of patients treated with antibiotics, especially in older patients with comorbidities. In most cases, antibiotic-associated diarrhea is not associated with serious complications, but it can prolong hospitalization and provoke Clostridium difficile infection. An important role in the prevention of antibiotic-associated diarrhea is carried out by some probiotic strains such as Lactobacillus GG or the yeast Saccharomyces boulardii that showed good efficacy and a significant reduction in antibiotic-associated diarrhea. Similarly, the Limosilactobacillus reuteri DSM 17938 showed significant benefits in acute diarrhea, reducing its duration and abdominal pain. AIM The aim of this study was to test the efficacy of a mix of two probiotic strains (Limosilactobacillus reuteri LMG P-27481 and Lacticaseibacillus rhamnosus GG ATCC 53103; Reuterin GG®, NOOS, Italy), in association with antibiotics (compared to antibiotics used alone), in reducing antibiotic-associated diarrhea, clostridium difficile infection, and other gastrointestinal symptoms in adult hospitalized patients. PATIENTS AND METHODS We enrolled 113 (49M/64F, mean age 69.58 ± 21.28 years) adult patients treated with antibiotics who were hospitalized at the Internal Medicine Department of the San Carlo di Nancy Hospital in Rome from January 2023 to September 2023. Patients were randomized to receive probiotics 1.4 g twice/day in addition with antibiotics (Reuterin GG® group, total: 56 patients, 37F/19M, 67.16 ± 20.5 years old) or antibiotics only (control group, total: 57 patients, 27F/30 M, 71 ± 22 years old). RESULTS Patients treated with Reuterin GG® showed a significant reduction in diarrhea and clostridium difficile infection. In particular, 28% (16/57) of patients in the control group presented with diarrhea during treatment, compared with 11% (6/56) in the probiotic group (p < 0.05). Interestingly, 7/57 (11%) of patients treated only with antibiotics developed clostridium difficile infection compared to 0% in the probiotic group (p < 0.01). Finally, 9% (5/57) of patients in the control group presented with vomiting compared with 2% (1/56) in the probiotic group (p < 0.05). CONCLUSIONS Our study showed, for the first time, the efficacy of these two specific probiotic strains in preventing antibiotic-associated diarrhea and clostridium difficile infection in adult hospitalized patients treated with antibiotic therapy. This result allows us to hypothesize that the use of specific probiotic strains during antibiotic therapy can prevent dysbiosis and subsequent antibiotic-associated diarrhea and clostridium difficile infection, thus resulting in both patient and economic health care benefits.
Collapse
Affiliation(s)
- Angela Saviano
- Emergency Medicine Department, Polyclinic A. Gemelli Hospital, 00168 Rome, Italy; (A.S.); (A.M.)
- Internal and Emergency Medicine Department, Catholic University of the Sacred Heart, 00168 Rome, Italy;
| | - Carmine Petruzziello
- Internal Medicine Department, San Carlo di Nancy Hospital, 00165 Rome, Italy; (C.P.); (N.M.); (A.P.); (E.N.)
| | - Clelia Cancro
- Internal and Emergency Medicine Department, Catholic University of the Sacred Heart, 00168 Rome, Italy;
| | - Noemi Macerola
- Internal Medicine Department, San Carlo di Nancy Hospital, 00165 Rome, Italy; (C.P.); (N.M.); (A.P.); (E.N.)
| | - Anna Petti
- Internal Medicine Department, San Carlo di Nancy Hospital, 00165 Rome, Italy; (C.P.); (N.M.); (A.P.); (E.N.)
| | - Eugenia Nuzzo
- Internal Medicine Department, San Carlo di Nancy Hospital, 00165 Rome, Italy; (C.P.); (N.M.); (A.P.); (E.N.)
| | - Alessio Migneco
- Emergency Medicine Department, Polyclinic A. Gemelli Hospital, 00168 Rome, Italy; (A.S.); (A.M.)
| | - Veronica Ojetti
- Internal and Emergency Medicine Department, Catholic University of the Sacred Heart, 00168 Rome, Italy;
- Internal Medicine Department, San Carlo di Nancy Hospital, 00165 Rome, Italy; (C.P.); (N.M.); (A.P.); (E.N.)
| |
Collapse
|
24
|
Ma H, Li Y, Han P, Zhang R, Yuan J, Sun Y, Li J, Chen J. Effects of Supplementing Drinking Water of Parental Pigeons with Enterococcus faecium and Bacillus subtilis on Antibody Levels and Microbiomes in Squabs. Animals (Basel) 2024; 14:178. [PMID: 38254347 PMCID: PMC10812638 DOI: 10.3390/ani14020178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/14/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024] Open
Abstract
Enterococcus faecium (E. faecium) and Bacillus subtilis (B. subtilis) are widely used as probiotics to improve performance in animal production, but there have been few reports of their impacts on pigeon milk. In this study, twenty-four pairs of parental pigeons were randomly divided into four groups, with six replicates, and each pair feeding three squabs. The control group drank normal water. The E. faecium group, B. subtilis group, and mixed group drank water supplemented with 3 × 106 CFU/mL E. faecium, 2 × 107 CFU/mL B. subtilis, and a mixture of these two probiotics, respectively. The experiment lasted 19 days. The results demonstrated that the IgA and IgG levels were significantly higher in the milk of Group D pigeons than in the other groups. At the phylum level, Fimicutes, Actinobacteria, and Bacteroidetes were the three main phyla identified. At the genus level, Lactobacillus, Bifidobacterium, Veillonella, and Enterococcus were the four main genera identified. In conclusion, drinking water supplemented with E. faecium and B. subtilis could improve immunoglobulin levels in pigeon milk, and this could increase the ability of squabs to resist disease. E. faecium and B. subtilis could be used as probiotics in the pigeon industry.
Collapse
Affiliation(s)
- Hui Ma
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.M.); (Y.L.); (R.Z.); (J.Y.); (Y.S.)
| | - Yunlei Li
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.M.); (Y.L.); (R.Z.); (J.Y.); (Y.S.)
| | - Pengmin Han
- Ningxia Xiaoming Agriculture and Animal Husbandry Limited Company, Yinchuan 750000, China;
| | - Ran Zhang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.M.); (Y.L.); (R.Z.); (J.Y.); (Y.S.)
| | - Jingwei Yuan
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.M.); (Y.L.); (R.Z.); (J.Y.); (Y.S.)
| | - Yanyan Sun
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.M.); (Y.L.); (R.Z.); (J.Y.); (Y.S.)
| | - Jianhui Li
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030800, China
| | - Jilan Chen
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.M.); (Y.L.); (R.Z.); (J.Y.); (Y.S.)
| |
Collapse
|
25
|
Kardan R, Hemmati J, Nazari M, Ahmadi A, Asghari B, Azizi M, Khaledi M, Arabestani MR. Novel therapeutic strategy for obesity through the gut microbiota-brain axis: A review article. CASPIAN JOURNAL OF INTERNAL MEDICINE 2024; 15:215-227. [PMID: 38807723 PMCID: PMC11129059 DOI: 10.22088/cjim.15.2.215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/27/2023] [Accepted: 05/27/2023] [Indexed: 05/30/2024]
Abstract
Background: The interaction between commensal bacteria and the host is essential for health and the gut microbiota-brain axis plays a vital role in this regard. Obesity as a medical problem not only affect the health of the individuals, but also the economic and social aspects of communities. The presence of any dysbiosis in the composition of the gut microbiota disrupts in the gut microbiota-brain axis, which in turn leads to an increase in appetite and then obesity. Because common treatments for obesity have several drawbacks, the use of microbiota-based therapy in addition to treatment and prevention of obesity can have other numerous benefits for the individual. In this review, we intend to investigate the relationship between obesity and the gut microbiota-brain axis as well as novel treatment strategies based on this axis with an emphasis on gut microbiota.
Collapse
Affiliation(s)
- Romina Kardan
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- These authors contributed equally in this article
| | - Jaber Hemmati
- Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- These authors contributed equally in this article
| | - Mohsen Nazari
- Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Amjad Ahmadi
- Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Babak Asghari
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mehdi Azizi
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mansoor Khaledi
- Department of Microbiology and Immunology, School of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mohammad Reza Arabestani
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Nutrition Health Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
26
|
Paladino L, Rappa F, Barone R, Macaluso F, Zummo FP, David S, Szychlinska MA, Bucchieri F, Conway de Macario E, Macario AJL, Cappello F, Marino Gammazza A. NF-kB Regulation and the Chaperone System Mediate Restorative Effects of the Probiotic Lactobacillus fermentum LF31 in the Small Intestine and Cerebellum of Mice with Ethanol-Induced Damage. BIOLOGY 2023; 12:1394. [PMID: 37997993 PMCID: PMC10669058 DOI: 10.3390/biology12111394] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/13/2023] [Accepted: 10/29/2023] [Indexed: 11/25/2023]
Abstract
Probiotics are live microorganisms that yield health benefits when consumed, generally by improving or restoring the intestinal flora (microbiota) as part of the muco-microbiotic layer of the bowel. In this work, mice were fed with ethanol alone or in combination with the probiotic Lactobacillus fermentum (L. fermentum) for 12 weeks. The modulation of the NF-κB signaling pathway with the induction of Hsp60, Hsp90, and IkB-α by the probiotic occurred in the jejunum. L. fermentum inhibited IL-6 expression and downregulated TNF-α transcription. NF-κB inactivation concurred with the restoration of the intestinal barrier, which had been damaged by ethanol, via the production of tight junction proteins, ameliorating the ethanol-induced intestinal permeability. The beneficial effect of the probiotic on the intestine was repeated for the cerebellum, in which downregulation of glial inflammation-related markers was observed in the probiotic-fed mice. The data show that L. fermentum exerted anti-inflammatory and cytoprotective effects in both the small intestine and the cerebellum, by suppressing ethanol-induced increased intestinal permeability and curbing neuroinflammation. The results also suggest that L. fermentum could be advantageous, along with the other available means, for treating intestinal diseases caused by stressors associated with inflammation and dysbiosis.
Collapse
Affiliation(s)
- Letizia Paladino
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (F.R.); (R.B.); (F.P.Z.); (F.B.); (F.C.)
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy; (E.C.d.M.); (A.J.L.M.)
| | - Francesca Rappa
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (F.R.); (R.B.); (F.P.Z.); (F.B.); (F.C.)
- Institute of Translational Pharmacology (IFT), Italy National Research Council of Italy (CNR), 90146 Palermo, Italy
| | - Rosario Barone
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (F.R.); (R.B.); (F.P.Z.); (F.B.); (F.C.)
| | - Filippo Macaluso
- Department of SMART Engineering Solutions & Technologies, eCampus University, 22060 Novedrate, Italy;
| | - Francesco Paolo Zummo
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (F.R.); (R.B.); (F.P.Z.); (F.B.); (F.C.)
| | - Sabrina David
- Department Surgical, Oncological and Oral Sciences, School of Medicine, University of Palermo, 90133 Palermo, Italy;
| | - Marta Anna Szychlinska
- Faculty of Medicine and Surgery, UKE-Kore University of Enna, Cittadella Universitaria, 94100 Enna, Italy;
| | - Fabio Bucchieri
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (F.R.); (R.B.); (F.P.Z.); (F.B.); (F.C.)
| | - Everly Conway de Macario
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy; (E.C.d.M.); (A.J.L.M.)
- Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore-Institute of Marine and Environmental Technology (IMET), Baltimore, MD 21202, USA
| | - Alberto J. L. Macario
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy; (E.C.d.M.); (A.J.L.M.)
- Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore-Institute of Marine and Environmental Technology (IMET), Baltimore, MD 21202, USA
| | - Francesco Cappello
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (F.R.); (R.B.); (F.P.Z.); (F.B.); (F.C.)
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy; (E.C.d.M.); (A.J.L.M.)
| | - Antonella Marino Gammazza
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (F.R.); (R.B.); (F.P.Z.); (F.B.); (F.C.)
| |
Collapse
|
27
|
Ma L, Zhang L, Li J, Zhang X, Xie Y, Li X, Yang B, Yang H. The potential mechanism of gut microbiota-microbial metabolites-mitochondrial axis in progression of diabetic kidney disease. Mol Med 2023; 29:148. [PMID: 37907885 PMCID: PMC10617243 DOI: 10.1186/s10020-023-00745-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/19/2023] [Indexed: 11/02/2023] Open
Abstract
Diabetic kidney disease (DKD), has become the main cause of end-stage renal disease (ESRD) worldwide. Lately, it has been shown that the onset and advancement of DKD are linked to imbalances of gut microbiota and the abnormal generation of microbial metabolites. Similarly, a body of recent evidence revealed that biological alterations of mitochondria ranging from mitochondrial dysfunction and morphology can also exert significant effects on the occurrence of DKD. Based on the prevailing theory of endosymbiosis, it is believed that human mitochondria originated from microorganisms and share comparable biological characteristics with the microbiota found in the gut. Recent research has shown a strong correlation between the gut microbiome and mitochondrial function in the occurrence and development of metabolic disorders. The gut microbiome's metabolites may play a vital role in this communication. However, the relationship between the gut microbiome and mitochondrial function in the development of DKD is not yet fully understood, and the role of microbial metabolites is still unclear. Recent studies are highlighted in this review to examine the possible mechanism of the gut microbiota-microbial metabolites-mitochondrial axis in the progression of DKD and the new therapeutic approaches for preventing or reducing DKD based on this biological axis in the future.
Collapse
Affiliation(s)
- Leilei Ma
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese, Medicine Acupuncture and Moxibustion, Tianjin, 300380, China
| | - Li Zhang
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese, Medicine Acupuncture and Moxibustion, Tianjin, 300380, China
| | - Jing Li
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese, Medicine Acupuncture and Moxibustion, Tianjin, 300380, China
| | - Xiaotian Zhang
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese, Medicine Acupuncture and Moxibustion, Tianjin, 300380, China
| | - Yiran Xie
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese, Medicine Acupuncture and Moxibustion, Tianjin, 300380, China
| | - Xiaochen Li
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese, Medicine Acupuncture and Moxibustion, Tianjin, 300380, China
| | - Bo Yang
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese, Medicine Acupuncture and Moxibustion, Tianjin, 300380, China
| | - Hongtao Yang
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese, Medicine Acupuncture and Moxibustion, Tianjin, 300380, China.
| |
Collapse
|
28
|
Poto R, Laniro G, de Paulis A, Spadaro G, Marone G, Gasbarrini A, Varricchi G. Is there a role for microbiome-based approach in common variable immunodeficiency? Clin Exp Med 2023; 23:1981-1998. [PMID: 36737487 PMCID: PMC9897624 DOI: 10.1007/s10238-023-01006-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 01/18/2023] [Indexed: 02/05/2023]
Abstract
Common variable immunodeficiency (CVID) is a primary immunodeficiency characterized by low levels of serum immunoglobulins and increased susceptibility to infections, autoimmune disorders and cancer. CVID embraces a plethora of heterogeneous manifestations linked to complex immune dysregulation. While CVID is thought to be due to genetic defects, the exact cause of this immune disorder is unknown in the large majority of cases. Compelling evidences support a linkage between the gut microbiome and the CVID pathogenesis, therefore a potential for microbiome-based treatments to be a therapeutic pathway for this disorder. Here we discuss the potential of treating CVID patients by developing a gut microbiome-based personalized approach, including diet, prebiotics, probiotics, postbiotics and fecal microbiota transplantation. We also highlight the need for a better understanding of microbiota-host interactions in CVID patients to prime the development of improved preventive strategies and specific therapeutic targets.
Collapse
Affiliation(s)
- Remo Poto
- Department of Translational Medical Sciences, University of Naples Federico II, 80131, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence, 80131, Naples, Italy
- Department of Oncology and Molecular Medicine, Istituto Superiore Di Sanità (ISS), Rome, Italy
| | - Gianluca Laniro
- Digestive Disease Center, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
- Department of Translational Medicine and Surgery, Catholic University of Rome, Rome, Italy
| | - Amato de Paulis
- Department of Translational Medical Sciences, University of Naples Federico II, 80131, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence, 80131, Naples, Italy
| | - Giuseppe Spadaro
- Department of Translational Medical Sciences, University of Naples Federico II, 80131, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence, 80131, Naples, Italy
| | - Gianni Marone
- Department of Translational Medical Sciences, University of Naples Federico II, 80131, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence, 80131, Naples, Italy
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, 80131, Naples, Italy
| | - Antonio Gasbarrini
- Digestive Disease Center, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
- Department of Translational Medicine and Surgery, Catholic University of Rome, Rome, Italy
| | - Gilda Varricchi
- Department of Translational Medical Sciences, University of Naples Federico II, 80131, Naples, Italy.
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131, Naples, Italy.
- World Allergy Organization (WAO), Center of Excellence, 80131, Naples, Italy.
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, 80131, Naples, Italy.
| |
Collapse
|
29
|
Palkovicsné Pézsa N, Kovács D, Somogyi F, Karancsi Z, Móritz AV, Jerzsele Á, Rácz B, Farkas O. Effects of Lactobacillus rhamnosus DSM7133 on Intestinal Porcine Epithelial Cells. Animals (Basel) 2023; 13:3007. [PMID: 37835613 PMCID: PMC10571805 DOI: 10.3390/ani13193007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/27/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
Antimicrobial resistance is one of the biggest health challenges nowadays. Probiotics are promising candidates as feed additives contributing to the health of the gastrointestinal tract. The beneficial effect of probiotics is species/strain specific; the potential benefits need to be individually assessed for each probiotic strain or species. We established a co-culture model, in which gastrointestinal infection was modeled using Escherichia coli (E. coli) and Salmonella enterica serovar Typhimurium (S. enterica serovar Typhimurium). Using intestinal porcine epithelial cells (IPEC-J2), the effects of pre-, co-, and post-treatment with Lactobacillus (L.) rhamnosus on the barrier function, intracellular (IC) reactive oxygen species (ROS) production, proinflammatory cytokine (IL-6 and IL-8) response, and adhesion inhibition were tested. E. coli- and S. Typhimurium-induced barrier impairment and increased ROS production could be counteracted using L. rhamnosus (p < 0.01). S. Typhimurium-induced IL-6 production was reduced via pre-treatment (p < 0.05) and post-treatment (p < 0.01); increased IL-8 secretion was decreased via pre-, co-, and post-treatment (p < 0.01) with L. rhamnosus. L. rhamnosus demonstrated significant inhibition of adhesion for both S. Typhimurium (p < 0.001) and E. coli (p < 0.001 in both pre-treatment and post-treatment; p < 0.05 in co-treatment). This study makes a substantial contribution to the understanding of the specific benefits of L. rhamnosus. Our findings can serve as a basis for further in vivo studies carried out in pigs and humans.
Collapse
Affiliation(s)
- Nikolett Palkovicsné Pézsa
- Department of Pharmacology and Toxicology, University of Veterinary Medicine Budapest, 1078 Budapest, Hungary; (D.K.); (F.S.); (Z.K.); (A.V.M.); (Á.J.); (O.F.)
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine Budapest, 1078 Budapest, Hungary
| | - Dóra Kovács
- Department of Pharmacology and Toxicology, University of Veterinary Medicine Budapest, 1078 Budapest, Hungary; (D.K.); (F.S.); (Z.K.); (A.V.M.); (Á.J.); (O.F.)
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine Budapest, 1078 Budapest, Hungary
| | - Fanni Somogyi
- Department of Pharmacology and Toxicology, University of Veterinary Medicine Budapest, 1078 Budapest, Hungary; (D.K.); (F.S.); (Z.K.); (A.V.M.); (Á.J.); (O.F.)
| | - Zita Karancsi
- Department of Pharmacology and Toxicology, University of Veterinary Medicine Budapest, 1078 Budapest, Hungary; (D.K.); (F.S.); (Z.K.); (A.V.M.); (Á.J.); (O.F.)
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine Budapest, 1078 Budapest, Hungary
| | - Alma Virág Móritz
- Department of Pharmacology and Toxicology, University of Veterinary Medicine Budapest, 1078 Budapest, Hungary; (D.K.); (F.S.); (Z.K.); (A.V.M.); (Á.J.); (O.F.)
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine Budapest, 1078 Budapest, Hungary
| | - Ákos Jerzsele
- Department of Pharmacology and Toxicology, University of Veterinary Medicine Budapest, 1078 Budapest, Hungary; (D.K.); (F.S.); (Z.K.); (A.V.M.); (Á.J.); (O.F.)
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine Budapest, 1078 Budapest, Hungary
| | - Bence Rácz
- Department of Anatomy and Histology, University of Veterinary Medicine Budapest, 1078 Budapest, Hungary;
| | - Orsolya Farkas
- Department of Pharmacology and Toxicology, University of Veterinary Medicine Budapest, 1078 Budapest, Hungary; (D.K.); (F.S.); (Z.K.); (A.V.M.); (Á.J.); (O.F.)
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine Budapest, 1078 Budapest, Hungary
| |
Collapse
|
30
|
Zhou Y, Duan L, Zeng Y, Song X, Pan K, Niu L, Pu Y, Li J, Khalique A, Fang J, Jing B, Zeng D, Shen B, Ni X. The panda-derived Lactiplantibacillus plantarum BSG201683 improves LPS-induced intestinal inflammation and epithelial barrier disruption in vitro. BMC Microbiol 2023; 23:249. [PMID: 37674107 PMCID: PMC10481503 DOI: 10.1186/s12866-023-02928-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 07/03/2023] [Indexed: 09/08/2023] Open
Abstract
Captive pandas are suffering from intestinal infection due to intestinal microbiota characterized by a high abundance of Enterobacteriaceae induced by long-term captivity. Probiotic supplements showed improvement in intestinal barrier function and inflammation. However, the effects of panda-derived probiotics on the intestinal epithelium and inflammation have not been elucidated. In the present study, lipopolysaccharide (LPS) impaired Caco-2 and RAW264.7 inflammatory models were applied to assess the protection of Lactiplantibacillus plantarum BSG201683 (L. plantarum G83) on barrier disruption and inflammation. The results showed that treatment with L. plantarum G83 significantly decreased the paracellular permeability to fluorescein isothiocyanate conjugated dextran (MW 4000, FITC-D4) after LPS induction. Meanwhile, L. plantarum G83 alleviated the reduction in tight junction (TJ) proteins and downregulated proinflammatory cytokines caused by LPS in Caco-2 cells. L. plantarum G83 also significantly decreased the expression and secretion of pro-inflammatory cytokines in LPS-induced RAW264.7 cells. In addition, the IL-10 increased in both Caco-2 and RAW264.7 cells after L. plantarum G83 treatment. The phagocytosis activity of RAW264.7 cells was significantly increased after L. plantarum G83 treatment. Toll-like receptor 4/ nuclear factor kappa-B (TLR4/NF-κB) signaling pathways were significantly down-regulated after L. plantarum G83 intervention, and the phosphorylation of NF-κB/p65 was consistent with this result. Our findings suggest that L. plantarum G83 improves intestinal inflammation and epithelial barrier disruption in vitro.
Collapse
Affiliation(s)
- Yi Zhou
- Animal Microecology Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Department of Urology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 611130, Sichuan, China
| | - Ling Duan
- Animal Feed Affairs of Sichuan Province, Sichuan Provincial Department of Agriculture and Rural Affairs, Chengdu, 610041, Sichuan, China
| | - Yan Zeng
- Animal Microecology Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xu Song
- Animal Microecology Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Kangcheng Pan
- Animal Microecology Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Lili Niu
- Chengdu Wildlife Institute, Chengdu Zoo, Chengdu, 610081, Sichuan, China
| | - Yang Pu
- Chengdu Wildlife Institute, Chengdu Zoo, Chengdu, 610081, Sichuan, China
| | - Jiakun Li
- Department of Urology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 611130, Sichuan, China
| | - Abdul Khalique
- Animal Microecology Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Jing Fang
- Animal Microecology Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Bo Jing
- Animal Microecology Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Dong Zeng
- Animal Microecology Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Bairong Shen
- Department of Urology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 611130, Sichuan, China.
| | - Xueqin Ni
- Animal Microecology Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
31
|
Chen S, Fan L, Lin Y, Qi Y, Xu C, Ge Q, Zhang Y, Wang Q, Jia D, Wang L, Si J, Wang L. Bifidobacterium adolescentis orchestrates CD143 + cancer-associated fibroblasts to suppress colorectal tumorigenesis by Wnt signaling-regulated GAS1. Cancer Commun (Lond) 2023; 43:1027-1047. [PMID: 37533188 PMCID: PMC10508156 DOI: 10.1002/cac2.12469] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/16/2023] [Accepted: 07/13/2023] [Indexed: 08/04/2023] Open
Abstract
BACKGROUND The interplay between gut microbiota and tumor microenvironment (TME) in the pathogenesis of colorectal cancer (CRC) is not well explored. Here, we elucidated the functional role of Bifidobacterium adolescentis (B.a) on CRC and investigated its possible mechanism on the manipulation of cancer-associated fibroblasts (CAFs) in CRC. METHODS Different CRC animal models and various cell line models were established to explore the function of B.a on CRC. The single-cell RNA sequencing (scRNA-seq) or flow cytometry was used to detect the cell subsets in the TME of CRC. Western blot, quantitative real-time polymerase chain reaction (qRT-PCR), or immunofluorescence staining were performed to examine the activation of Wnt signaling and growth arrest specific 1 (GAS1) on CD143+ CAFs. Chromatin immunoprecipitation quantitative real-time PCR (CHIP-qPCR) was performed to investigate the regulation of transcription factor 4 (TCF4) on GAS1. Multi-immunofluorescence assay examined the expression level of CD143 and GAS1 on tissue microarray. RESULTS We found that B.a abundance was significantly reduced in CRC patients from two independent cohorts and the bacteria database of GMrepo. Supplementation with B.a suppressed ApcMin/+ spontaneous or AOM/DSS-induced tumorigenesis in mice. scRNA-seq revealed that B.a facilitated a subset of CD143+ CAFs by inhibiting the infiltration of Th2 cells, while promoting the TNF-alpha+ B cells in TME. CD143+ CAFs highly expressed GAS1 and exhibited tumor suppressive effect. Mechanistically, GAS1 was activated by the Wnt/β-catenin signaling in CD143+ CAFs. B.a abundance was correlated with the expression level of CD143 and GAS1. The level of CD143+ CAFs predicted the better survival outcome in CRC patients. CONCLUSIONS These results highlighted that B.a induced a new subset of CD143+ CAFs by Wnt signaling-regulated GAS1 to suppress tumorigenesis and provided a novel therapeutic target for probiotic-based modulation of TME in CRC.
Collapse
Affiliation(s)
- Shujie Chen
- Department of GastroenterologySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
- Institute of GastroenterologyZhejiang UniversityHangzhouZhejiangP. R. China
- Cancer CenterZhejiang UniversityHangzhouZhejiangP. R. China
- Research Center of Prevention and Treatment of Senescent DiseaseSchool of Medicine Zhejiang UniversityHangzhouZhejiangP. R. China
| | - Lina Fan
- Institute of GastroenterologyZhejiang UniversityHangzhouZhejiangP. R. China
- Department of GastroenterologySecond Affiliated Hospital of Zhejiang University School of MedicineHangzhouZhejiangP. R. China
| | - Yifeng Lin
- Institute of GastroenterologyZhejiang UniversityHangzhouZhejiangP. R. China
- Department of GastroenterologySecond Affiliated Hospital of Zhejiang University School of MedicineHangzhouZhejiangP. R. China
| | - Yadong Qi
- Department of GastroenterologySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
- Institute of GastroenterologyZhejiang UniversityHangzhouZhejiangP. R. China
| | - Chaochao Xu
- Institute of GastroenterologyZhejiang UniversityHangzhouZhejiangP. R. China
- Department of GastroenterologySecond Affiliated Hospital of Zhejiang University School of MedicineHangzhouZhejiangP. R. China
| | - Qiwei Ge
- Institute of GastroenterologyZhejiang UniversityHangzhouZhejiangP. R. China
- Department of GastroenterologySecond Affiliated Hospital of Zhejiang University School of MedicineHangzhouZhejiangP. R. China
| | - Ying Zhang
- Institute of GastroenterologyZhejiang UniversityHangzhouZhejiangP. R. China
- Department of GastroenterologySecond Affiliated Hospital of Zhejiang University School of MedicineHangzhouZhejiangP. R. China
| | - Qiwen Wang
- Department of GastroenterologySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
- Institute of GastroenterologyZhejiang UniversityHangzhouZhejiangP. R. China
| | - Dingjiacheng Jia
- Institute of GastroenterologyZhejiang UniversityHangzhouZhejiangP. R. China
- Department of GastroenterologySecond Affiliated Hospital of Zhejiang University School of MedicineHangzhouZhejiangP. R. China
| | - Lan Wang
- Department of GastroenterologySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
- Institute of GastroenterologyZhejiang UniversityHangzhouZhejiangP. R. China
| | - Jianmin Si
- Department of GastroenterologySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
- Institute of GastroenterologyZhejiang UniversityHangzhouZhejiangP. R. China
- Cancer CenterZhejiang UniversityHangzhouZhejiangP. R. China
- Research Center of Prevention and Treatment of Senescent DiseaseSchool of Medicine Zhejiang UniversityHangzhouZhejiangP. R. China
| | - Liangjing Wang
- Institute of GastroenterologyZhejiang UniversityHangzhouZhejiangP. R. China
- Cancer CenterZhejiang UniversityHangzhouZhejiangP. R. China
- Research Center of Prevention and Treatment of Senescent DiseaseSchool of Medicine Zhejiang UniversityHangzhouZhejiangP. R. China
- Department of GastroenterologySecond Affiliated Hospital of Zhejiang University School of MedicineHangzhouZhejiangP. R. China
| |
Collapse
|
32
|
Iancu MA, Profir M, Roşu OA, Ionescu RF, Cretoiu SM, Gaspar BS. Revisiting the Intestinal Microbiome and Its Role in Diarrhea and Constipation. Microorganisms 2023; 11:2177. [PMID: 37764021 PMCID: PMC10538221 DOI: 10.3390/microorganisms11092177] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
The gut microbiota represents a community of microorganisms (bacteria, fungi, archaea, viruses, and protozoa) that colonize the gut and are responsible for gut mucosal structural integrity and immune and metabolic homeostasis. The relationship between the gut microbiome and human health has been intensively researched in the past years. It is now widely recognized that gut microbial composition is highly responsible for the general health of the host. Among the diseases that have been linked to an altered gut microbial population are diarrheal illnesses and functional constipation. The capacity of probiotics to modulate the gut microbiome population, strengthen the intestinal barrier, and modulate the immune system together with their antioxidant properties have encouraged the research of probiotic therapy in many gastrointestinal afflictions. Dietary and lifestyle changes and the use of probiotics seem to play an important role in easing constipation and effectively alleviating diarrhea by suppressing the germs involved. This review aims to describe how probiotic bacteria and the use of specific strains could interfere and bring benefits as an associated treatment for diarrhea and constipation.
Collapse
Affiliation(s)
- Mihaela Adela Iancu
- Department of Family Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Monica Profir
- Department of Oncology, Elias University Emergency Hospital, 011461 Bucharest, Romania; (M.P.); (O.A.R.)
| | - Oana Alexandra Roşu
- Department of Oncology, Elias University Emergency Hospital, 011461 Bucharest, Romania; (M.P.); (O.A.R.)
| | - Ruxandra Florentina Ionescu
- Department of Morphological Sciences, Cell and Molecular Biology and Histology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
- Department of Cardiology I, “Dr. Carol Davila” Central Military Emergency Hospital, 010825 Bucharest, Romania
| | - Sanda Maria Cretoiu
- Department of Morphological Sciences, Cell and Molecular Biology and Histology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Bogdan Severus Gaspar
- Surgery Clinic, Emergency Clinical Hospital, 014461 Bucharest, Romania;
- Department of Surgery, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| |
Collapse
|
33
|
Cela L, Brindisi G, Gravina A, Pastore F, Semeraro A, Bringheli I, Marchetti L, Morelli R, Cinicola B, Capponi M, Gori A, Pignataro E, Piccioni MG, Zicari AM, Anania C. Molecular Mechanism and Clinical Effects of Probiotics in the Management of Cow's Milk Protein Allergy. Int J Mol Sci 2023; 24:9781. [PMID: 37372929 DOI: 10.3390/ijms24129781] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/23/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Cow's milk protein allergy (CMPA) is the most common food allergy (FA) in infancy, affecting approximately 2% of children under 4 years of age. According to recent studies, the increasing prevalence of FAs can be associated with changes in composition and function of gut microbiota or "dysbiosis". Gut microbiota regulation, mediated by probiotics, may modulate the systemic inflammatory and immune responses, influencing the development of allergies, with possible clinical benefits. This narrative review collects the actual evidence of probiotics' efficacy in the management of pediatric CMPA, with a specific focus on the molecular mechanisms of action. Most studies included in this review have shown a beneficial effect of probiotics in CMPA patients, especially in terms of achieving tolerance and improving symptoms.
Collapse
Affiliation(s)
- Ludovica Cela
- Department of Maternal Infantile and Urological Science, Sapienza University of Rome, 00161 Rome, Italy
| | - Giulia Brindisi
- Department of Maternal Infantile and Urological Science, Sapienza University of Rome, 00161 Rome, Italy
| | - Alessandro Gravina
- Department of Maternal Infantile and Urological Science, Sapienza University of Rome, 00161 Rome, Italy
| | - Francesca Pastore
- Department of Maternal Infantile and Urological Science, Sapienza University of Rome, 00161 Rome, Italy
| | - Antonio Semeraro
- Department of Maternal Infantile and Urological Science, Sapienza University of Rome, 00161 Rome, Italy
| | - Ivana Bringheli
- Department of Maternal Infantile and Urological Science, Sapienza University of Rome, 00161 Rome, Italy
| | - Lavinia Marchetti
- Department of Maternal Infantile and Urological Science, Sapienza University of Rome, 00161 Rome, Italy
| | - Rebecca Morelli
- Department of Maternal Infantile and Urological Science, Sapienza University of Rome, 00161 Rome, Italy
| | - Bianca Cinicola
- Department of Maternal Infantile and Urological Science, Sapienza University of Rome, 00161 Rome, Italy
| | - Martina Capponi
- Department of Maternal Infantile and Urological Science, Sapienza University of Rome, 00161 Rome, Italy
| | - Alessandra Gori
- Department of Maternal Infantile and Urological Science, Sapienza University of Rome, 00161 Rome, Italy
| | - Elia Pignataro
- Department of Maternal Infantile and Urological Science, Sapienza University of Rome, 00161 Rome, Italy
| | - Maria Grazia Piccioni
- Department of Maternal Infantile and Urological Science, Sapienza University of Rome, 00161 Rome, Italy
| | - Anna Maria Zicari
- Department of Maternal Infantile and Urological Science, Sapienza University of Rome, 00161 Rome, Italy
| | - Caterina Anania
- Department of Maternal Infantile and Urological Science, Sapienza University of Rome, 00161 Rome, Italy
| |
Collapse
|
34
|
Gu S, Yang D, Liu C, Xue W. The role of probiotics in prevention and treatment of food allergy. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
35
|
Gowen R, Gamal A, Di Martino L, McCormick TS, Ghannoum MA. Modulating the Microbiome for Crohn's Disease Treatment. Gastroenterology 2023; 164:828-840. [PMID: 36702360 PMCID: PMC10152883 DOI: 10.1053/j.gastro.2023.01.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/12/2022] [Accepted: 01/06/2023] [Indexed: 01/28/2023]
Abstract
The central role of the gut microbiota in the regulation of health and disease has been convincingly demonstrated. Polymicrobial interkingdom interactions between bacterial (the bacteriome) and fungal (the mycobiome) communities of the gut have become a prominent focus for development of potential therapeutic approaches. In addition to polymicrobial interactions, the complex gut ecosystem also mediates interactions between the host and the microbiota. These interactions are complex and bidirectional; microbiota composition can be influenced by host immune response, disease-specific therapeutics, antimicrobial drugs, and overall ecosystems. However, the gut microbiota also influences host immune response to a drug or therapy by potentially transforming the drug's structure and altering bioavailability, activity, or toxicity. This is especially true in cases where the gut microbiota has produced a biofilm. The negative ramifications of biofilm formation include alteration of gut permeability, enhanced antimicrobial resistance, and alteration of host immune response effectiveness. Natural modulation of the gut microbiota, using probiotic and prebiotic approaches, may also be used to affect the host microbiome, a type of "natural" modulation of the host microbiota composition. In this review, we discuss potential bidirectional interactions between microbes and host, and we describe the changes in gut microbiota induced by probiotic and prebiotic approaches as well as their potential clinical consequences, including biofilm formation. We outline a systematic approach to designing probiotics capable of altering the host microbiota in disease states, using Crohn's disease as a model chronic disease. Understanding how the effective changes in the microbiome may enhance treatment efficacy may unlock the possibility of modulating the gut microbiome to improve treatment using a natural approach.
Collapse
Affiliation(s)
- Rachael Gowen
- Department of Dermatology, Case Western Reserve University, Cleveland, Ohio; University Hospitals Cleveland Medical Center, Cleveland, Ohio
| | - Ahmed Gamal
- Department of Dermatology, Case Western Reserve University, Cleveland, Ohio; University Hospitals Cleveland Medical Center, Cleveland, Ohio
| | - Luca Di Martino
- University Hospitals Cleveland Medical Center, Cleveland, Ohio; Department of Medicine, Case Western Reserve University, Cleveland, Ohio; Case Digestive Health Research Institute, Case Western Reserve University, Cleveland Ohio
| | - Thomas S McCormick
- Department of Dermatology, Case Western Reserve University, Cleveland, Ohio; University Hospitals Cleveland Medical Center, Cleveland, Ohio
| | - Mahmoud A Ghannoum
- Department of Dermatology, Case Western Reserve University, Cleveland, Ohio; University Hospitals Cleveland Medical Center, Cleveland, Ohio.
| |
Collapse
|
36
|
Wang R, Kuerman M, Cui Q, Tian X, Zhou Y, Yi H, Gong P, Lin K, Zhang Z, Liu T, Zhang L. Protective effects of Bifidobacterium bifidum FL-228.1 on dextran sulfate sodium-induced intestinal damage in mice. Eur J Nutr 2023; 62:1267-1280. [PMID: 36520190 DOI: 10.1007/s00394-022-03064-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 11/23/2022] [Indexed: 12/23/2022]
Abstract
PURPOSE Numerous studies have found that probiotics benefit the intestinal barrier. However, the prophylactic effects of probiotics on the intestinal barrier, i.e., if probiotics exert protective effects in healthy individuals to defend them against harmful elements, have seldomly been reported. The present study aimed to investigate the possible mechanisms of potential strains with the function of preventing intestinal barrier damage. METHODS This study investigated nine potential probiotic strains using in vitro and in vivo models on their intestinal barrier-protecting properties. Transcriptomic was then employed to decipher the underlying mechanisms of action of the strains. RESULTS The results showed that the strains, to varying degrees, regulated the ratio of interleukin (IL)-10 and IL-12 in peripheral blood mononuclear cells (PBMCs), increased the transepithelial electrical resistance (TEER) values, and decreased Caco-2 cell monolayers permeability. Correspondingly, the strains showed different prophylactic efficacies in protecting mice from dextran sulfate sodium (DSS)-induced intestinal barrier damage. Remarkably, Bifidobacterium bifidum FL-228.1 (FL-228.1) showed the best prophylactic efficacies in protecting mice from DSS-induced intestinal barrier damage. Further research suggested that FL-228.1 exerted its prophylactic effects by enhancing mucin 2 (Muc2) production and Claudin (Cldn)-4 in the colon. Furthermore, the transcriptomic and protein-protein interactions (PPI) analyses indicated that the inhibition of NLRP3 and the activation of PPARγ and TLR2 could be involved in protecting the intestinal barrier by FL-228.1. CONCLUSION Bifidobacterium bifidum FL-228.1 may be developed as a promising probiotic for the prevention of intestinal barrier damage via PPARγ/NLRP3/ TLR2 pathways by enhancing Muc2 and Cldn-4.
Collapse
Affiliation(s)
- Rui Wang
- College of Food Science and Engineering, Ocean University of China, No.5 Yushan Road, Qingdao, 266003, China
| | - Malina Kuerman
- College of Food Science and Engineering, Ocean University of China, No.5 Yushan Road, Qingdao, 266003, China
| | - Qingyu Cui
- College of Food Science and Engineering, Ocean University of China, No.5 Yushan Road, Qingdao, 266003, China
| | - Xiaoying Tian
- College of Food Science and Engineering, Ocean University of China, No.5 Yushan Road, Qingdao, 266003, China
| | - Yu Zhou
- College of Food Science and Engineering, Ocean University of China, No.5 Yushan Road, Qingdao, 266003, China
| | - Huaxi Yi
- College of Food Science and Engineering, Ocean University of China, No.5 Yushan Road, Qingdao, 266003, China
| | - Pimin Gong
- College of Food Science and Engineering, Ocean University of China, No.5 Yushan Road, Qingdao, 266003, China
| | - Kai Lin
- College of Food Science and Engineering, Ocean University of China, No.5 Yushan Road, Qingdao, 266003, China
| | - Zhe Zhang
- College of Food Science and Engineering, Ocean University of China, No.5 Yushan Road, Qingdao, 266003, China
| | - Tongjie Liu
- College of Food Science and Engineering, Ocean University of China, No.5 Yushan Road, Qingdao, 266003, China.
| | - Lanwei Zhang
- College of Food Science and Engineering, Ocean University of China, No.5 Yushan Road, Qingdao, 266003, China.
| |
Collapse
|
37
|
Barrea L, Verde L, Auriemma RS, Vetrani C, Cataldi M, Frias-Toral E, Pugliese G, Camajani E, Savastano S, Colao A, Muscogiuri G. Probiotics and Prebiotics: Any Role in Menopause-Related Diseases? Curr Nutr Rep 2023; 12:83-97. [PMID: 36746877 PMCID: PMC9974675 DOI: 10.1007/s13668-023-00462-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2023] [Indexed: 02/08/2023]
Abstract
PURPOSE OF REVIEW The aim of this review is to provide an overview of the menopause-related changes in microbiota and their role in the pathogenesis of menopause-related diseases. In addition, evidence on probiotic supplementation as a therapeutic strategy is discussed. RECENT FINDINGS The human microbiota is a complex community that lives in a mutualism relationship with the host. Menopause is associated with dysbiosis, and these changes in the composition of microbiota in different sites (gut, vaginal, and oral microbiota) might play a role in the pathogenesis of menopause-related diseases (i.e., osteoporosis, breast cancer, endometrial hyperplasia, periodontitis, and cardiometabolic diseases). The present review highlights the pivotal role of microbiota in postmenopausal women health, in particular it (a) may increase intestinal calcium absorption thus preventing osteoporosis, (b) is associated with reduced risk of breast cancer and type 1 endometrial hyperplasia, (c) reduces gingival inflammation and menopausal periodontitis, and (d) beneficially affects multiple cardiometabolic risk factors (i.e., obesity, inflammation, and blood glucose and lipid metabolism). However, whether oral probiotic supplementation might be used for the treatment of menopause-related dysbiosis requires further clarification.
Collapse
Affiliation(s)
- Luigi Barrea
- Dipartimento di Scienze Umanistiche, Centro Direzionale, Università Telematica Pegaso, Via Porzio, isola F2, 80143, Naples, Italy
- Centro Italiano per la cura e il Benessere del Paziente con Obesità (C.I.B.O), Department of Clinical Medicine and Surgery, Endocrinology Unit, University Medical School of Naples, Via Sergio Pansini 5, 80131, Naples, Italy
| | - Ludovica Verde
- Centro Italiano per la cura e il Benessere del Paziente con Obesità (C.I.B.O), Department of Clinical Medicine and Surgery, Endocrinology Unit, University Medical School of Naples, Via Sergio Pansini 5, 80131, Naples, Italy.
- Department of Public Health, University of Naples Federico II, Naples, Italy.
| | - Renata Simona Auriemma
- Dipartimento di Medicina Clinica e Chirurgia, Unità di Endocrinologia, Diabetologia e Andrologia, Università degli Studi di Napoli Federico II, Via Sergio Pansini 5, Naples, 80131, Italy
| | - Claudia Vetrani
- Centro Italiano per la cura e il Benessere del Paziente con Obesità (C.I.B.O), Department of Clinical Medicine and Surgery, Endocrinology Unit, University Medical School of Naples, Via Sergio Pansini 5, 80131, Naples, Italy
- Dipartimento di Medicina Clinica e Chirurgia, Unità di Endocrinologia, Diabetologia e Andrologia, Università degli Studi di Napoli Federico II, Via Sergio Pansini 5, Naples, 80131, Italy
| | - Mauro Cataldi
- Section of Pharmacology, Department of Neuroscience, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Evelyn Frias-Toral
- Universidad Católica Santiago de Guayaquil, Av. Pdte. Carlos Julio Arosemena Tola, Guayaquil, 090615, Ecuador
| | - Gabriella Pugliese
- Centro Italiano per la cura e il Benessere del Paziente con Obesità (C.I.B.O), Department of Clinical Medicine and Surgery, Endocrinology Unit, University Medical School of Naples, Via Sergio Pansini 5, 80131, Naples, Italy
- Dipartimento di Medicina Clinica e Chirurgia, Unità di Endocrinologia, Diabetologia e Andrologia, Università degli Studi di Napoli Federico II, Via Sergio Pansini 5, Naples, 80131, Italy
| | - Elisabetta Camajani
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166, Rome, Italy
| | - Silvia Savastano
- Centro Italiano per la cura e il Benessere del Paziente con Obesità (C.I.B.O), Department of Clinical Medicine and Surgery, Endocrinology Unit, University Medical School of Naples, Via Sergio Pansini 5, 80131, Naples, Italy
- Dipartimento di Medicina Clinica e Chirurgia, Unità di Endocrinologia, Diabetologia e Andrologia, Università degli Studi di Napoli Federico II, Via Sergio Pansini 5, Naples, 80131, Italy
| | - Annamaria Colao
- Centro Italiano per la cura e il Benessere del Paziente con Obesità (C.I.B.O), Department of Clinical Medicine and Surgery, Endocrinology Unit, University Medical School of Naples, Via Sergio Pansini 5, 80131, Naples, Italy
- Dipartimento di Medicina Clinica e Chirurgia, Unità di Endocrinologia, Diabetologia e Andrologia, Università degli Studi di Napoli Federico II, Via Sergio Pansini 5, Naples, 80131, Italy
- Cattedra Unesco "Educazione alla salute e allo sviluppo sostenibile", University Federico II, Naples, Italy
| | - Giovanna Muscogiuri
- Centro Italiano per la cura e il Benessere del Paziente con Obesità (C.I.B.O), Department of Clinical Medicine and Surgery, Endocrinology Unit, University Medical School of Naples, Via Sergio Pansini 5, 80131, Naples, Italy
- Dipartimento di Medicina Clinica e Chirurgia, Unità di Endocrinologia, Diabetologia e Andrologia, Università degli Studi di Napoli Federico II, Via Sergio Pansini 5, Naples, 80131, Italy
- Cattedra Unesco "Educazione alla salute e allo sviluppo sostenibile", University Federico II, Naples, Italy
| |
Collapse
|
38
|
Xiang X, Wang X, Shang Y, Ding Y. Microfluidic intestine-on-a-chip: Current progress and further perspectives of probiotic-foodborne pathogen interactions. Trends Food Sci Technol 2023. [DOI: 10.1016/j.tifs.2023.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
39
|
Han Y, Xu X, Wang J, Cai H, Li D, Zhang H, Yang P, Meng K. Dietary Bacillus licheniformis shapes the foregut microbiota, improving nutrient digestibility and intestinal health in broiler chickens. Front Microbiol 2023; 14:1113072. [PMID: 36846755 PMCID: PMC9950405 DOI: 10.3389/fmicb.2023.1113072] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/23/2023] [Indexed: 02/12/2023] Open
Abstract
Bacillus licheniformis is considered a potential alternative to antibiotic growth promoters of animal growth and health. However, the effects of Bacillus licheniformis on the foregut and hindgut microbiota, and their relationships with nutrient digestion and health, in broiler chickens remain unclear. In this study, we aimed to identify the effects of Bacillus licheniformis BCG on intestinal digestion and absorption, tight junctions, inflammation, and the fore- and hind-gut microbiota. We randomly assigned 240 1-day-old male AA broilers into three treatment groups: CT (basal diet), BCG1 (basal diet + 1.0 × 108 CFU/kg B. licheniformis BCG), and BCG2 (basal diet + 1.0 × 109 CFU/kg B. licheniformis BCG). On day 42, the jejunal and ileal chyme and mucosa were subjected to analysis of digestive enzyme activity, nutrient transporters, tight junctions, and signaling molecules associated with inflammation. The ileal and cecal chyme were subjected to microbiota analysis. Compared with the CT group, the B. licheniformis BCG group showed significantly greater jejunal and ileal α-amylase, maltase, and sucrase activity; moreover, the α-amylase activity in the BCG2 group was higher than that in the BCG1 group (P < 0.05). The transcript abundance of FABP-1 and FATP-1 in the BCG2 group was significantly greater than that in the CT and BCG1 groups, and the GLUT-2 and LAT-1 relative mRNA levels were greater in the BCG2 group than the CT group (P < 0.05). Dietary B. licheniformis BCG resulted in significantly higher ileal occludin, and lower IL-8 and TLR-4 mRNA levels than observed in the CT group (P < 0.05). B. licheniformis BCG supplementation significantly decreased bacterial community richness and diversity in the ileum (P < 0.05). Dietary B. licheniformis BCG shaped the ileac microbiota by increasing the prevalence of f_Sphingomonadaceae, Sphingomonas, and Limosilactobacillus, and contributed to nutrient digestion and absorption; moreover, it enhanced the intestinal barrier by increasing the prevalence of f_Lactobacillaceae, Lactobacillus, and Limosilactobacillus. Dietary B. licheniformis BCG decreased microbial community diversity by diminishing Desulfovibrio, Alistipes, Campylobacter, Vibrio, Streptococcus, and Escherichia coli-Shigella levels, and down-regulating inflammatory associated molecule expression. Therefore, dietary B. licheniformis BCG contributed to digestion and absorption of nutrients, enhanced the intestinal physical barrier, and decreased intestinal inflammation in broilers by decreasing microbial diversity and optimizing the microbiota structure.
Collapse
Affiliation(s)
- Yunsheng Han
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China,National Engineering Research Center of Biological Feed, Beijin, China
| | - Xin Xu
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China,National Engineering Research Center of Biological Feed, Beijin, China
| | - Jiaxin Wang
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China,National Engineering Research Center of Biological Feed, Beijin, China
| | - Hongying Cai
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China,National Engineering Research Center of Biological Feed, Beijin, China
| | - Daojie Li
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China,National Engineering Research Center of Biological Feed, Beijin, China
| | - Hongwei Zhang
- Chengde Academy of Agricultural and Forestry Sciences, Chengde, China
| | - Peilong Yang
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China,National Engineering Research Center of Biological Feed, Beijin, China,Peilong Yang,
| | - Kun Meng
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China,National Engineering Research Center of Biological Feed, Beijin, China,*Correspondence: Kun Meng,
| |
Collapse
|
40
|
Revisiting the Role of Vitamins and Minerals in Alzheimer's Disease. Antioxidants (Basel) 2023; 12:antiox12020415. [PMID: 36829974 PMCID: PMC9952129 DOI: 10.3390/antiox12020415] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
Alzheimer's disease (AD) is the most common type of dementia that affects millions of individuals worldwide. It is an irreversible neurodegenerative disorder that is characterized by memory loss, impaired learning and thinking, and difficulty in performing regular daily activities. Despite nearly two decades of collective efforts to develop novel medications that can prevent or halt the disease progression, we remain faced with only a few options with limited effectiveness. There has been a recent growth of interest in the role of nutrition in brain health as we begin to gain a better understanding of what and how nutrients affect hormonal and neural actions that not only can lead to typical cardiovascular or metabolic diseases but also an array of neurological and psychiatric disorders. Vitamins and minerals, also known as micronutrients, are elements that are indispensable for functions including nutrient metabolism, immune surveillance, cell development, neurotransmission, and antioxidant and anti-inflammatory properties. In this review, we provide an overview on some of the most common vitamins and minerals and discuss what current studies have revealed on the link between these essential micronutrients and cognitive performance or AD.
Collapse
|
41
|
Pratiwi F, Fardah Athiyyah A, Darma A, Gunadi Ranuh R, Widjiati W, Riawan W, Rizky Sumitro K, Marto Sudarmo S. Lactobacillus plantarum IS-10506 Accelerates Healing of Gastric Injury Induced by Ketorolac in Wistar Rats. RESEARCH JOURNAL OF PHARMACY AND TECHNOLOGY 2023:307-313. [DOI: 10.52711/0974-360x.2023.00055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
Gastric injury is an event that often occurs due to many factors, such as the use of drugs, stress factors, infections, chemicals, etc. The use of histamin 2(H2) receptor antagonist drugs and pump inhibitors have become the choice for gastric injury treatment so far and requires a relatively long time. The widespread use of probiotics has been shown to affect the healing process of digestive tract disorders, for example in the small intestine. This study aimed to investigate the effect of Lactobacillus plantarumIS-10506 in acceleratingthe healing of gastric injury induced by ketorolac in the rat. The experimental study used 64 Wistar rats divided into 4 groups, group 1 (control), group 2(ketorolac administration), group 3 (ketorolac and probiotic administration), and group 4(preventive treatment with probiotic before, ketorolac administration, and treatment with probiotic). Each group was divided into 4 subgroups based on the day of sacrifice, days 1, 5, 7, 10. The healing of gastric injury evaluating by epithelial defects improvement and fibroblast cells by hematoxylin and eosin (HE) staining.The group induced by ketorolac (group 2) showed the highest epithelial defect score (p=0.048) on day 1. The repair of the epithelial defect in group 3 and group 4 were significantly increased on day 5, while group 2remains defectiveon day 5(p=0.019). Fibroblast cells of groups 3 and 4 decreased significantly more than others on day 10(p=0.024). Lactobacillus plantarum IS-10506 influences the healing acceleration of gastric injury by ketorolac by enhancing epithelial regenerationand fibroblast cells.
Collapse
Affiliation(s)
- Fauziah Pratiwi
- Department of Child Health, Dr. Soetomo Hospital, Faculty of Medicine, Universitas Airlangga, Jl. Prof. Dr.Moestopo No. 6-8, Surabaya, Indonesia
| | - Alpha Fardah Athiyyah
- Department of Child Health, Dr. Soetomo Hospital, Faculty of Medicine, Universitas Airlangga, Jl. Prof. Dr.Moestopo No. 6-8, Surabaya, Indonesia
| | - Andy Darma
- Department of Child Health, Dr. Soetomo Hospital, Faculty of Medicine, Universitas Airlangga, Jl. Prof. Dr.Moestopo No. 6-8, Surabaya, Indonesia
| | - Reza Gunadi Ranuh
- Department of Child Health, Dr. Soetomo Hospital, Faculty of Medicine, Universitas Airlangga, Jl. Prof. Dr.Moestopo No. 6-8, Surabaya, Indonesia
| | - Widjiati Widjiati
- Department of Child Health, Dr. Soetomo Hospital, Faculty of Medicine, Universitas Airlangga, Jl. Prof. Dr.Moestopo No. 6-8, Surabaya, Indonesia
| | - Wibi Riawan
- Department of Child Health, Dr. Soetomo Hospital, Faculty of Medicine, Universitas Airlangga, Jl. Prof. Dr.Moestopo No. 6-8, Surabaya, Indonesia
| | - Khadijah Rizky Sumitro
- Department of Child Health, Dr. Soetomo Hospital, Faculty of Medicine, Universitas Airlangga, Jl. Prof. Dr.Moestopo No. 6-8, Surabaya, Indonesia
| | - Subijanto Marto Sudarmo
- Department of Child Health, Dr. Soetomo Hospital, Faculty of Medicine, Universitas Airlangga, Jl. Prof. Dr.Moestopo No. 6-8, Surabaya, Indonesia
| |
Collapse
|
42
|
He X, Ye G, Xu S, Chen X, He X, Gong Z. Effects of three different probiotics of Tibetan sheep origin and their complex probiotics on intestinal damage, immunity, and immune signaling pathways of mice infected with Clostridium perfringens type C. Front Microbiol 2023; 14:1177232. [PMID: 37138630 PMCID: PMC10149710 DOI: 10.3389/fmicb.2023.1177232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 03/31/2023] [Indexed: 05/05/2023] Open
Abstract
Tibetan sheep have unique intestinal microorganisms in their intestines that are adapted to the highland alpine and anoxic environment. To further clarify the probiotic properties of Tibetan sheep-derived probiotics, we selected three Tibetan sheep-derived probiotic isolates (Enterococcus faecalis EF1-mh, Bacillus subtilis BS1-ql, and Lactobacillus sakei LS-ql) to investigate the protective mechanisms of monocultures and their complex strains against Clostridium perfringens type C infection in mice. We established a model of C. perfringens type C infection and used histology and molecular biology to analyze the effects and mechanisms of different probiotic treatments on mice after C. perfringens type C infection. After supplementation with either probiotics or complex probiotics, mice were improved in terms of weight reduction and reduced the levels of cytokines in serum and increased the levels of intestinal sIgA, and supplementation with complex probiotics was effective. In addition, both probiotic and complex probiotic supplementation effectively improved the damage of intestinal mucosa and spleen tissue. The relative expressions of Muc 2, Claudin-1, and Occludin genes were increased in the ileum. The three probiotics and the compound probiotics treatment significantly reduced the relative mRNA expression of toll-like/MyD88/NF-κB/MAPK. The effect of probiotic treatment was similar to the results of engramycin treatment, but the effect of engramycin treatment on intestinal sIgA was not significant. Our results clarify the immunomodulatory effects of the three probiotic isolates and the complex probiotics on C. perfringens infection, and the repair of the intestinal mucosal barrier.
Collapse
|
43
|
Gu M, Cho JH, Suh JW, Cheng J. Potential oral probiotic Lactobacillus pentosus MJM60383 inhibits Streptococcus mutans biofilm formation by inhibiting sucrose decomposition. J Oral Microbiol 2022; 15:2161179. [PMID: 36605406 PMCID: PMC9809368 DOI: 10.1080/20002297.2022.2161179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 12/16/2022] [Indexed: 12/29/2022] Open
Abstract
Streptococcus mutans is known as a contributor to dental caries. In this work, Lactobacillus pentosus MJM60383 was selected for its strong antagonistic activity against S. mutans and was characterized by good oral probiotic properties including lysozyme tolerance, adhesive ability to oral cells, good aggregation (auto-aggregation, co-aggregation) ability, hydrogen peroxide production and inhibition of biofilm formation of S. mutans. L. pentosus MJM60383 also exhibited safety as a probiotic characterized by no hemolytic activity, no D-lactate production, no biogenic amine production, and susceptibility to antibiotics. Furthermore, the biofilm formation of S. mutans was also significantly inhibited by the supernatant of L. pentosus MJM60383. An anti-biofilm mechanism study revealed that sucrose decomposition and the production of water-insoluble exopolysaccharides by S. mutans were inhibited by the treatment with L. pentosus MJM60383 supernatant. Real-time PCR analysis indicated that the supernatant of L. pentosus MJM60383 significantly inhibited the mRNA expression of S. mutans glycosyltransferases, which synthesize glucan to construct biofilm architecture and mediate bacterial adherence. Our study demonstrated L. pentosus MJM60383 as a potential oral probiotic and revealed its anti-biofilm mechanism.
Collapse
Affiliation(s)
- Mingkun Gu
- Interdisciplinary Program of Biomodulation, Myongji University, Yongin, Republic of Korea
| | - Joo-Hyung Cho
- Myongji Bioefficacy Research Center, Myongji University, Yongin, Republic of Korea
| | - Joo-Won Suh
- Myongji Bioefficacy Research Center, Myongji University, Yongin, Republic of Korea
| | - Jinhua Cheng
- Myongji Bioefficacy Research Center, Myongji University, Yongin, Republic of Korea
| |
Collapse
|
44
|
Saha UB, Saroj SD. Lactic acid bacteria: prominent player in the fight against human pathogens. Expert Rev Anti Infect Ther 2022; 20:1435-1453. [PMID: 36154442 DOI: 10.1080/14787210.2022.2128765] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION The human microbiome is a unique repository of diverse bacteria. Over 1000 microbial species reside in the human gut, which predominantly influences the host's internal environment and plays a significant role in host health. Lactic acid bacteria have long been employed for multiple purposes, ranging from food to medicines. Lactobacilli, which are often used in commercial food fermentation, have improved to the point that they might be helpful in medical applications. AREAS COVERED This review summarises various clinical and experimental evidence on efficacy of lactobacilli in treating a wide range of infections. Both laboratory based and clinical studies have been discussed. EXPERT OPINION Lactobacilli are widely accepted as safe biological treatments and host immune modulators (GRAS- Generally regarded as safe) by the US Food and Drug Administration and Qualified Presumption of Safety. Understanding the molecular mechanisms of lactobacilli in the treatment and pathogenicity of bacterial infections can help with the prediction and development of innovative therapeutics aimed at pathogens which have gained resistance to antimicrobials. To formulate effective lactobacilli based therapy significant research on the effectiveness of different lactobacilli strains and its association with demographic distribution is required. Also, the side effects of such therapy needs to be evaluated.
Collapse
Affiliation(s)
- Ujjayni B Saha
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Symbiosis Knowledge Village, Lavale, Pune, India
| | - Sunil D Saroj
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Symbiosis Knowledge Village, Lavale, Pune, India
| |
Collapse
|
45
|
Wang L, Wang X, Chang J, Wang P, Liu C, Yuan L, Yin Q, Zhu Q, Lu F. Effect of the Combined Compound Probiotics with Glycyrrhinic Acid on Alleviating Cytotoxicity of IPEC-J2 Cells Induced by Multi-Mycotoxins. Toxins (Basel) 2022; 14:toxins14100670. [PMID: 36287939 PMCID: PMC9612255 DOI: 10.3390/toxins14100670] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/17/2022] [Accepted: 09/22/2022] [Indexed: 11/17/2022] Open
Abstract
Aflatoxins B1 (AFB1), deoxynivalenol (DON) and zearalenone (ZEA) are the three most prevalent mycotoxins, whose contamination of food and feed is a severe worldwide problem. In order to alleviate the toxic effects of multi-mycotoxins (AFB1 + DON + ZEA, ADZ) on inflammation and apoptosis in swine jejunal epithelial cells (IPEC-J2), three species of probiotics (Bacillus subtilis, Saccharomyces cerevisiae and Pseudomonas lactis at 1 × 105 CFU/mL, respectively) were mixed together to make compound probiotics (CP), which were further combined with 400 μg/mL of glycyrrhinic acid (GA) to make bioactive materials (CGA). The experiment was divided into four groups, i.e., the control, ADZ, CGA and ADZ + CGA groups. The results showed that ADZ decreased cell viability and induced cytotoxicity, while CGA addition could alleviate ADZ-induced cytotoxicity. Moreover, the mRNA expressions of IL-8, TNF-α, NF-Κb, Bcl-2, Caspase-3, ZO-1, Occludin, Claudin-1 and ASCT2 genes, and protein expressions of TNF-α and Claudin-1 were significantly upregulated in ADZ group; while the mRNA abundances of IL-8, TNF-α, NF-Κb, Caspase-3, ASCT2 genes, and protein expressions of TNF-α and Claudin-1 were significantly downregulated in the ADZ + CGA group. In addition, the protein expressions of COX-2, ZO-1, and ASCT2 were significantly downregulated in the ADZ group, compared with the control group; whereas CGA co-incubation with ADZ could increase these protein expressions to recover to normal levels. This study indicated that CGA could alleviate cytotoxicity, apoptosis and inflammation in ADZ-induced IPEC-J2 cells and protect intestinal cell integrity from ADZ damages.
Collapse
Affiliation(s)
- Lijun Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Xiaomin Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Juan Chang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Ping Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Chaoqi Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Lin Yuan
- Institute of Animal Husbandry and Veterinary Medicine, Henan Academy of Agricultural Sciences, Zhengzhou 450003, China
| | - Qingqiang Yin
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- Correspondence:
| | - Qun Zhu
- Henan Delin Biological Product Co., Ltd., Xinxiang 453000, China
| | - Fushan Lu
- Henan Puai Feed Co., Ltd., Zhoukou 466000, China
| |
Collapse
|
46
|
Chatterjee G, Negi S, Basu S, Faintuch J, O'Donovan A, Shukla P. Microbiome systems biology advancements for natural well-being. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:155915. [PMID: 35568180 DOI: 10.1016/j.scitotenv.2022.155915] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 05/09/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Throughout the years all data from epidemiological, physiological and omics have suggested that the microbial communities play a considerable role in modulating human health. The population of microorganisms residing in the human intestine collectively known as microbiota presents a genetic repertoire that is higher in magnitude than the human genome. They play an essential role in host immunity and neuronal signaling. Rapid enhancement of sequence based screening and development of humanized gnotobiotic model has sparked a great deal of interest among scientists to probe the dynamic interactions of the commensal bacteria. This review focuses on systemic analysis of the gut microbiome to decipher the complexity of the host-microbe intercommunication and gives a special emphasis on the evolution of targeted precision medicine through microbiome engineering. In addition, we have also provided a comprehensive description of how interconnection between metabolism and biochemical reactions in a specific organism can be obtained from a metabolic network or a flux balance analysis and combining multiple datasets helps in the identification of a particular metabolite. The review highlights how genetic modification of the critical components and programming the resident microflora can be employed for targeted precision medicine. Inspite of the ongoing debate on the utility of gut microbiome we have explored on the probable new therapeutic avenues like FMT (Fecal microbiota transplant) can be utilized. This review also recapitulates integrating human-relevant 3D cellular models coupled with computational models and the metadata obtained from interventional and epidemiological studies may decipher the complex interactome of diet-microbiota-disease pathophysiology. In addition, it will also open new avenues for the development of therapeutics derived from microbiome or implementation of personalized nutrition. In addition, the identification of biomarkers can also help towards the development of new diagnostic tools and eventually will lead to strategic management of the disease. Inspite of the ongoing debate on the utility of the gut microbiome we have explored how probable new therapeutic avenues like FMT (Fecal microbiota transplant) can be utilized. This review also summarises integrating human-relevant 3D cellular models coupled with computational models and the metadata obtained from interventional and epidemiological studies may decipher the complex interactome of diet- microbiota-disease pathophysiology. In addition, it will also open new avenues for the development of therapeutics derived from the microbiome or implementation of personalized nutrition. In addition, the identification of biomarkers can also help towards the development of new diagnostic tools and eventually will lead to strategic management of disease.
Collapse
Affiliation(s)
| | - Sangeeta Negi
- NMC Biolab, New Mexico Consortium, Los Alamos, NM, USA; Los Alamos National Laboratory, Los Alamos, NM 87544, USA
| | - Supratim Basu
- NMC Biolab, New Mexico Consortium, Los Alamos, NM, USA
| | - Joel Faintuch
- Department of Gastroenterology, Sao Paulo University Medical School, São Paulo, SP 01246-903, Brazil
| | | | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
47
|
Gu M, Cheng J, Lee YG, Cho JH, Suh JW. Discovery of Novel Iminosugar Compounds Produced by Lactobacillus paragasseri MJM60645 and Their Anti-Biofilm Activity against Streptococcus mutans. Microbiol Spectr 2022; 10:e0112222. [PMID: 35863019 PMCID: PMC9431463 DOI: 10.1128/spectrum.01122-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/03/2022] [Indexed: 11/20/2022] Open
Abstract
The oral cavity contains a number of microbes. They interact with each other and play an important role in human health. Among oral cariogenic microbes, Streptococcus mutans is recognized a major etiological bacteria of dental caries. Lactobacilli strains have been promoted as possible probiotic agents against S. mutans. However, their inhibitory mechanism has not been well elucidated yet. In the present study, two new compounds with strong antibiofilm activities were purified from the culture supernatant of Lactobacillus paragasseri MJM60645, which was isolated from the human oral cavity. These compounds showed strong inhibitory activities against S. mutans biofilm formation, with IC50 (concentration at which 50% biofilm was inhibited) of 30.4 μM for compound 1 and 18.9 μM for compound 2. However, these compounds did not show bactericidal activities against S. mutans. Structure elucidation by nuclear magnetic resonance (NMR) and mass spectrometry showed that compound 1 was composed of two arabinofuranose iminosugars jointed with one glycerol and oleic acid, and compound 2 was composed of two arabinofuranose iminosugars jointed with one glycerol and nervonic acid. To the best of our knowledge, these structures were discovered for the first time in this study. Treatment of S. mutans with compound 1 strongly downregulated expression levels of genes related to biofilm formation, including gtfB, gtfC, gtfD, gbpB, brpA, spaP, ftf, and smu0630 without affecting the expression of comDE or relA. This study provides new insights into novel molecules produced by Lactobacillus to regulate the pathogenesis of S. mutans, facilitating a better understanding of the mechanism for interactions between Lactobacillus and S. mutans. IMPORTANCE In this study, we isolated lactic acid bacteria that inhibit streptococcal biofilm from the oral cavity of infants and identified two novel compounds from the supernatant of their culture broth. The two compounds are structurally similar, and both consist of iminosugars, glycerol, and unsaturated fatty acid. A search of the SciFinder database revealed that these structures are novel and were discovered for the first time in this study. Mechanism studies have shown that these compounds can inhibit the expression of biofilm synthesis-related genes. This is the first report that lactic acid bacteria inhibit streptococcal biofilms by small molecules with new chemical structures. This study not only expands the understanding of natural products derived from lactic acid bacteria but also provides a new paradigm for the understanding of the interaction of bacteria in the oral microbiota.
Collapse
Affiliation(s)
- Mingkun Gu
- Interdisciplinary Program of Biomodulation, Myongji University, Yongin, Republic of Korea
| | - Jinhua Cheng
- Myongji Bioefficacy Research Center, Myongji University, Yongin, Republic of Korea
| | - Yeong-Geun Lee
- Department of Oriental Medicine Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, Republic of Korea
| | - Joo-Hyung Cho
- Myongji Bioefficacy Research Center, Myongji University, Yongin, Republic of Korea
| | - Joo-Won Suh
- Myongji Bioefficacy Research Center, Myongji University, Yongin, Republic of Korea
| |
Collapse
|
48
|
Goya-Jorge E, Gonza I, Bondue P, Douny C, Taminiau B, Daube G, Scippo ML, Delcenserie V. Human Adult Microbiota in a Static Colon Model: AhR Transcriptional Activity at the Crossroads of Host–Microbe Interaction. Foods 2022; 11:foods11131946. [PMID: 35804761 PMCID: PMC9265634 DOI: 10.3390/foods11131946] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/21/2022] [Accepted: 06/25/2022] [Indexed: 02/01/2023] Open
Abstract
Functional symbiotic intestinal microbiota regulates immune defense and the metabolic processing of xenobiotics in the host. The aryl hydrocarbon receptor (AhR) is one of the transcription factors mediating host–microbe interaction. An in vitro static simulation of the human colon was used in this work to analyze the evolution of bacterial populations, the microbial metabolic output, and the potential induction of AhR transcriptional activity in healthy gut ecosystems. Fifteen target taxa were explored by qPCR, and the metabolic content was chromatographically profiled using SPME-GC-MS and UPLC-FLD to quantify short-chain fatty acids (SCFA) and biogenic amines, respectively. Over 72 h of fermentation, the microbiota and most produced metabolites remained stable. Fermentation supernatant induced AhR transcription in two of the three reporter gene cell lines (T47D, HepG2, HT29) evaluated. Mammary and intestinal cells were more sensitive to microbiota metabolic production, which showed greater AhR agonism than the 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) used as a positive control. Some of the SCFA and biogenic amines identified could crucially contribute to the potent AhR induction of the fermentation products. As a fundamental pathway mediating human intestinal homeostasis and as a sensor for several microbial metabolites, AhR activation might be a useful endpoint to include in studies of the gut microbiota.
Collapse
Affiliation(s)
- Elizabeth Goya-Jorge
- Laboratory of Food Quality Management, Department of Food Sciences, Faculty of Veterinary Medicine, University of Liege, Av. de Cureghem 10 (B43b), 4000 Liege, Belgium; (E.G.-J.); (I.G.)
| | - Irma Gonza
- Laboratory of Food Quality Management, Department of Food Sciences, Faculty of Veterinary Medicine, University of Liege, Av. de Cureghem 10 (B43b), 4000 Liege, Belgium; (E.G.-J.); (I.G.)
| | - Pauline Bondue
- Research & Development, ORTIS S.A., Hinter der Heck 46, 4750 Elsenborn, Belgium;
| | - Caroline Douny
- Laboratory of Food Analysis, Department of Food Sciences, Faculty of Veterinary Medicine, University of Liege, Av. de Cureghem 10 (B43b), 4000 Liege, Belgium; (C.D.); (M.-L.S.)
| | - Bernard Taminiau
- Laboratory of Microbiology, Department of Food Sciences, Faculty of Veterinary Medicine, University of Liege, Av. de Cureghem 180 (B42), 4000 Liege, Belgium; (B.T.); (G.D.)
| | - Georges Daube
- Laboratory of Microbiology, Department of Food Sciences, Faculty of Veterinary Medicine, University of Liege, Av. de Cureghem 180 (B42), 4000 Liege, Belgium; (B.T.); (G.D.)
| | - Marie-Louise Scippo
- Laboratory of Food Analysis, Department of Food Sciences, Faculty of Veterinary Medicine, University of Liege, Av. de Cureghem 10 (B43b), 4000 Liege, Belgium; (C.D.); (M.-L.S.)
| | - Véronique Delcenserie
- Laboratory of Food Quality Management, Department of Food Sciences, Faculty of Veterinary Medicine, University of Liege, Av. de Cureghem 10 (B43b), 4000 Liege, Belgium; (E.G.-J.); (I.G.)
- Correspondence: ; Tel.: +32-4-366-51-24
| |
Collapse
|
49
|
Rodrigo T, Dulani S, Nimali Seneviratne S, De Silva AP, Fernando J, De Silva HJ, Jayasekera, Wickramasinghe VP. Effects of probiotics combined with dietary and lifestyle modification on clinical, biochemical, and radiological parameters in obese children with nonalcoholic fatty liver disease/nonalcoholic steatohepatitis: a randomized clinical trial. Clin Exp Pediatr 2022; 65:304-311. [PMID: 34773939 PMCID: PMC9171460 DOI: 10.3345/cep.2021.00787] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 10/23/2021] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Childhood obesity is a global problem associated with metabolic abnormalities. The gut-liver axis is thought to play a major role in its pathogenesis. Probiotics are known to alter the gut microbiota and, therefore, could be a therapeutic option in the management of childhood obesity-related complications. PURPOSE This double-blind randomized placebo-controlled trial evaluated the effects of probiotics on metabolic derangement in obese children with nonalcoholic fatty liver disease/ nonalcoholic steatohepatitis (NAFLD/NASH). METHODS Obese children with NAFLD/NASH treated at the nutrition clinic of the University Paediatric Unit at Lady Ridgeway Hospital, Colombo, were recruited. Anthropometry, body fat, metabolic derangement, and liver ultrasound scan (USS) results were evaluated at baseline and after 6 months. Transient elastography (FibroScan) was performed on a subsample of these patients. Eighty-four patients were recruited and randomized into the probiotics (n=43) and placebo (n= 41) groups. The mean age was 11.3±1.9 versus 12.1±1.5 years in the probiotic and placebo groups, respectively. Baseline parameters including liver disease stage on USS, body fat percentage, fasting blood sugar, lipid profile, liver function, and C-reactive protein showed no significant intergroup differences. RESULTS In the probiotic group, a statistically significant reduction in body mass index was noted from the baseline value. However, the reduction was not significant compared with the placebo group. There was a significant reduction in triglycerides, aspartate transaminase (AST), alanine aminotransferase (ALT), AST/ALT ratio, and alkaline phosphatase in the placebo group over the treatment period. Although the liver disease stage on USS improved from stage II-III to stage I in a small number of patients in the probiotic-treated group, transient elastography performed in a subsample did not demonstrate significant improvement in either group. CONCLUSION Our results indicate that probiotics have no advantage over lifestyle modification for improving obesityassociated metabolic derangement in children.
Collapse
Affiliation(s)
- Thushara Rodrigo
- Post Graduate Institute of Medicine, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| | - Samaranayake Dulani
- Department of Community Medicine, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| | | | - Arjuna P De Silva
- Department of Medicine, Faculty of Medicine, University of Kelaniya, Kelaniya, Sri Lanka
| | - Jerad Fernando
- Department of Radiology, Lady ridgeway Hospital for Children, Colombo, Sri Lanka
| | - H Janaka De Silva
- Department of Medicine, Faculty of Medicine, University of Kelaniya, Kelaniya, Sri Lanka
| | - Jayasekera
- Department of Pediatrics, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| | | |
Collapse
|
50
|
Sadiq FA, Hansen MF, Burmølle M, Heyndrickx M, Flint S, Lu W, Chen W, Zhang H. Towards understanding mechanisms and functional consequences of bacterial interactions with members of various kingdoms in complex biofilms that abound in nature. FEMS Microbiol Rev 2022; 46:6595875. [PMID: 35640890 DOI: 10.1093/femsre/fuac024] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 04/11/2022] [Accepted: 05/27/2022] [Indexed: 11/12/2022] Open
Abstract
The microbial world represents a phenomenal diversity of microorganisms from different kingdoms of life which occupy an impressive set of ecological niches. Most, if not all, microorganisms once colonise a surface develop architecturally complex surface-adhered communities which we refer to as biofilms. They are embedded in polymeric structural scaffolds serve as a dynamic milieu for intercellular communication through physical and chemical signalling. Deciphering microbial ecology of biofilms in various natural or engineered settings has revealed co-existence of microorganisms from all domains of life, including Bacteria, Archaea and Eukarya. The coexistence of these dynamic microbes is not arbitrary, as a highly coordinated architectural setup and physiological complexity show ecological interdependence and myriads of underlying interactions. In this review, we describe how species from different kingdoms interact in biofilms and discuss the functional consequences of such interactions. We highlight metabolic advances of collaboration among species from different kingdoms, and advocate that these interactions are of great importance and need to be addressed in future research. Since trans-kingdom biofilms impact diverse contexts, ranging from complicated infections to efficient growth of plants, future knowledge within this field will be beneficial for medical microbiology, biotechnology, and our general understanding of microbial life in nature.
Collapse
Affiliation(s)
- Faizan Ahmed Sadiq
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Technology & Food Sciences Unit, Melle, Belgium
| | - Mads Frederik Hansen
- Section of Microbiology, Department of Biology, University of Copenhagen, Denmark
| | - Mette Burmølle
- Section of Microbiology, Department of Biology, University of Copenhagen, Denmark
| | - Marc Heyndrickx
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Technology & Food Sciences Unit, Melle, Belgium.,Department of Pathology, Bacteriology and Poultry Diseases, Ghent University, Merelbeke, Belgium
| | - Steve Flint
- School of Food and Advanced Technology, Massey University, Private Bag, 11222, Palmerston North, New Zealand
| | - Wenwei Lu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Wei Chen
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Hao Zhang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| |
Collapse
|