1
|
Sun HW, Bai YY, Qin ZL, Li RZ, Madzikatire TB, Akuetteh PDP, Li Q, Kong HR, Jin YP. Transfection of 12/15-lipoxygenase effectively alleviates inflammatory responses during experimental acute pancreatitis. World J Gastroenterol 2024; 30:4544-4556. [PMID: 39563743 PMCID: PMC11572619 DOI: 10.3748/wjg.v30.i42.4544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/26/2024] [Accepted: 10/08/2024] [Indexed: 10/31/2024] Open
Abstract
BACKGROUND Acute pancreatitis (AP), the initially triggered inflammatory process in the pancreas, can be life-threatening. It has been reported that 15-lipoxygenase may promote the removal of damaged intracellular components, maintain intracellular homeostasis, and promote apoptosis by upregulating the activity of caspases. Despite an increased understanding of the lipoxygenase pathway in inflammation and immune diseases, the role of the Alox15 gene product in modulating the inflammatory changes during AP is not well defined. AIM To investigate the effect of Alox15 expression in cerulein-induced AP in rats. METHODS Model rats were transfected with Alox15 by injecting a recombinant lentivirus vector encoding Alox15 into the left gastric artery before inducing AP. The expression of Alox15 was then assessed at the mRNA and protein levels. RESULTS Our in vivo results showed that serum amylase activity and pancreatic tissue water content were significantly reduced in Alox15-transfected rats. Further, the mRNA expression levels of tumor necrosis factor alpha, interleukin (IL)-1β, IL-6, and monocyte chemoattractant protein-1, as well as the protein expression of nuclear factor kappa B in pancreatic tissue were reduced. Additionally, we observed an upregulation of cleaved caspase-3 that implies an induction of apoptosis in pancreatic cells. The transfection of Alox15 resulted in a lower number of autophagic vacuoles in AP. CONCLUSION Our findings demonstrate a regulatory role of Alox15 in apoptosis and autophagy, making it a potential therapeutic target for AP.
Collapse
Affiliation(s)
- Hong-Wei Sun
- National Key Clinical Specialty (General Surgery), The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Yong-Yu Bai
- National Key Clinical Specialty (General Surgery), The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Zhen-Liu Qin
- Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Ri-Zhao Li
- Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | | | | | - Qiang Li
- National Key Clinical Specialty (General Surgery), The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Hong-Ru Kong
- National Key Clinical Specialty (General Surgery), The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Yue-Peng Jin
- National Key Clinical Specialty (General Surgery), The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| |
Collapse
|
2
|
Yang K, Xie R, Xiao G, Zhao Z, Ding M, Lin T, Tsang YS, Chen Y, Xu D, Fei J. The integration of single-cell and bulk RNA-seq atlas reveals ERS-mediated acinar cell damage in acute pancreatitis. J Transl Med 2024; 22:346. [PMID: 38605381 PMCID: PMC11010368 DOI: 10.1186/s12967-024-05156-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/02/2024] [Indexed: 04/13/2024] Open
Abstract
BACKGROUND Acute pancreatitis (AP) is a clinically common acute abdominal disease, whose pathogenesis remains unclear. The severe patients usually have multiple complications and lack specific drugs, leading to a high mortality and poor outcome. Acinar cells are recognized as the initial site of AP. However, there are no precise single-cell transcriptomic profiles to decipher the landscape of acinar cells during AP, which are the missing pieces of jigsaw we aimed to complete in this study. METHODS A single-cell sequencing dataset was used to identify the cell types in pancreas of AP mice and to depict the transcriptomic maps in acinar cells. The pathways' activities were evaluated by gene sets enrichment analysis (GSEA) and single-cell gene sets variation analysis (GSVA). Pseudotime analysis was performed to describe the development trajectories of acinar cells. We also constructed the protein-protein interaction (PPI) network and identified the hub genes. Another independent single-cell sequencing dataset of pancreas samples from AP mice and a bulk RNA sequencing dataset of peripheral blood samples from AP patients were also analyzed. RESULTS In this study, we identified genetic markers of each cell type in the pancreas of AP mice based on single-cell sequencing datasets and analyzed the transcription changes in acinar cells. We found that acinar cells featured acinar-ductal metaplasia (ADM), as well as increased endocytosis and vesicle transport activity during AP. Notably, the endoplasmic reticulum stress (ERS) and ER-associated degradation (ERAD) pathways activated by accumulation of unfolded/misfolded proteins in acinar cells could be pivotal for the development of AP. CONCLUSION We deciphered the distinct roadmap of acinar cells in the early stage of AP at single-cell level. ERS and ERAD pathways are crucially important for acinar homeostasis and the pathogenesis of AP.
Collapse
Affiliation(s)
- Kaige Yang
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rongli Xie
- Department of General Surgery, Ruijin Hospital LuWan Branch, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Guohui Xiao
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhifeng Zhao
- Department of Gastrointestinal Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Min Ding
- Department of General Surgery, Ruijin Hospital LuWan Branch, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Tingyu Lin
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiu Sing Tsang
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Chen
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Dan Xu
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jian Fei
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Department of General Surgery, Ruijin Hospital LuWan Branch, Shanghai Jiaotong University School of Medicine, Shanghai, China.
- Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
3
|
Wang R, Wang Y, Tao Y, Hu L, Qiu Q, Pu Q, Yang J, Wang S, Huang Y, Chen X, Zhu P, Yang H, Xia Q, Du D. Temporal Proteomic and Lipidomic Profiles of Cerulein-Induced Acute Pancreatitis Reveal Novel Insights for Metabolic Alterations in the Disease Pathogenesis. ACS OMEGA 2023; 8:12310-12326. [PMID: 37033809 PMCID: PMC10077560 DOI: 10.1021/acsomega.3c00019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 03/06/2023] [Indexed: 06/19/2023]
Abstract
The pathophysiological mechanisms of acute pancreatitis (AP) are complex and have remained a mystery to date, but metabolism is gradually recognized as an important driver of AP onset and development. We used a cerulein-induced AP mouse model to conduct liquid chromatography-mass spectrometry (LC-MS/MS)-based time-course proteomics and lipidomics in order to better understand the underlying metabolic alterations linked with AP. Results showed that a series of significant changes in proteins over time with a boost in expression were enriched in lipase activity, lipoprotein, and lipids absorption and transport regulation. Furthermore, 16 proteins associated with lipid metabolism and signaling pathways together with the whole lipid species changing profile led to the vital identification of changing law in glycerides, phosphoglycerides, and free fatty acids. In addition to lipid metabolism and regulation-associated proteins, several digestive enzymes and adaptive anti-trypsin, stress response, and energy metabolism-related proteins showed an increment in abundance. Notably, central carbon and branched chain amino acid metabolism were enhanced during 0-24 h from the first cerulein stimulation. Taken together, this integrated proteomics and lipidomics revealed a novel metabolic insight into metabolites transforming rules that might be relevant to their function and drug targets investigation. (Created with Biorender.com.).
Collapse
Affiliation(s)
- Rui Wang
- West
China Centre of Excellence for Pancreatitis, Institute of Integrated
Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis
Centre and West China-Liverpool Biomedical Research Centre, West China
Hospital/West China Medical School, Sichuan
University, Chengdu 610041, China
- Advanced
Mass Spectrometry Center, Research Core Facility, Frontiers Science
Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yiqin Wang
- West
China Centre of Excellence for Pancreatitis, Institute of Integrated
Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis
Centre and West China-Liverpool Biomedical Research Centre, West China
Hospital/West China Medical School, Sichuan
University, Chengdu 610041, China
| | - Yiran Tao
- West
China-California Research Center for Predictive Intervention Medicine,
West China Hospital, Sichuan University, Chengdu 610041, China
| | - Liqiang Hu
- Advanced
Mass Spectrometry Center, Research Core Facility, Frontiers Science
Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qi Qiu
- West
China Centre of Excellence for Pancreatitis, Institute of Integrated
Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis
Centre and West China-Liverpool Biomedical Research Centre, West China
Hospital/West China Medical School, Sichuan
University, Chengdu 610041, China
| | - Qianlun Pu
- Advanced
Mass Spectrometry Center, Research Core Facility, Frontiers Science
Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Juqin Yang
- Biobank,
West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shisheng Wang
- Proteomics-Metabolomics
Platform of Core Facilities, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yan Huang
- West
China Centre of Excellence for Pancreatitis, Institute of Integrated
Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis
Centre and West China-Liverpool Biomedical Research Centre, West China
Hospital/West China Medical School, Sichuan
University, Chengdu 610041, China
| | - Xiaoting Chen
- Animal Experimental
Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ping Zhu
- West
China Centre of Excellence for Pancreatitis, Institute of Integrated
Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis
Centre and West China-Liverpool Biomedical Research Centre, West China
Hospital/West China Medical School, Sichuan
University, Chengdu 610041, China
| | - Hao Yang
- Proteomics-Metabolomics
Platform of Core Facilities, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qing Xia
- West
China Centre of Excellence for Pancreatitis, Institute of Integrated
Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis
Centre and West China-Liverpool Biomedical Research Centre, West China
Hospital/West China Medical School, Sichuan
University, Chengdu 610041, China
| | - Dan Du
- West
China Centre of Excellence for Pancreatitis, Institute of Integrated
Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis
Centre and West China-Liverpool Biomedical Research Centre, West China
Hospital/West China Medical School, Sichuan
University, Chengdu 610041, China
| |
Collapse
|
4
|
Park Y, Ku L, Lim JW, Kim H. Docosahexaenoic acid inhibits zymogen activation by suppressing vacuolar ATPase activation in cerulein-stimulated pancreatic acinar cells. GENES AND NUTRITION 2020; 15:6. [PMID: 32293245 PMCID: PMC7092610 DOI: 10.1186/s12263-020-00664-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 03/05/2020] [Indexed: 12/26/2022]
Abstract
BACKGROUND The premature activation of digestive enzyme zymogens within pancreatic acinar cells is an important early feature of acute pancreatitis. Supraphysiological concentrations of cholecystokinin (CCK) cause intrapancreatic zymogen activation and acute pancreatitis. Stimulation of vacuolar ATPase (vATPase) activity is required for zymogen activation in pancreatic acinar cells. Parkin, a multiprotein E3 ubiquitin ligase complex, promotes vATPase ubiquitination and degradation, which inhibits vATPase activity. Docosahexaenoic acid (DHA), an omega-3 fatty acid, exerts anti-inflammatory effects. It is reported to bind to G-protein coupled receptor 120 (GPR120) and GPR40. DHA induces the degradation of certain proteins by activating ubiquitin-proteasome system in various cells. This study aimed to investigate whether DHA induces Parkin and inhibits vATPase activity, resulting in zymogen inactivation in pancreatic acinar AR42J cells stimulated with cerulein, a CCK analog. RESULTS Cerulein induced the translocation of the cytosolic V1 domain (E subunit) of vATPase to the membrane, which indicated vATPase activation, and zymogen activation in AR42J cells. DHA suppressed the association of the vATPase with membranes, and zymogen activation (increased trypsin activity and amylase release) induced by cerulein. Pretreatment with a GPR120 antagonist AH-7614, a GPR40 antagonist DC260126, or an ubiquitination inhibitor PYR-41 reduced the effect of DHA on cerulein-induced zymogen activation. Treatment with PYR-41 reversed the DHA-induced decrease in vATPase activation in cerulein-treated cells. Furthermore, DHA increased the level of Parkin in membranes of cerulein-treated cells. CONCLUSIONS DHA upregulates Parkin which inhibits vATPase-mediated zymogen activation, via GPR120 and GPR40, in cerulein-stimulated pancreatic acinar cells.
Collapse
Affiliation(s)
- Yeeun Park
- Department of Food and Nutrition, Brain Korea 21 PLUS Project, College of Human Ecology, Yonsei University, Seoul, 03722, Korea
| | - Leeyeon Ku
- Department of Food and Nutrition, Brain Korea 21 PLUS Project, College of Human Ecology, Yonsei University, Seoul, 03722, Korea
| | - Joo Weon Lim
- Department of Food and Nutrition, Brain Korea 21 PLUS Project, College of Human Ecology, Yonsei University, Seoul, 03722, Korea
| | - Hyeyoung Kim
- Department of Food and Nutrition, Brain Korea 21 PLUS Project, College of Human Ecology, Yonsei University, Seoul, 03722, Korea.
| |
Collapse
|
5
|
Gámez-Belmonte R, Hernández-Chirlaque C, Sánchez de Medina F, Martínez-Augustin O. Experimental acute pancreatitis is enhanced in mice with tissue nonspecific alkaline phoshatase haplodeficiency due to modulation of neutrophils and acinar cells. Biochim Biophys Acta Mol Basis Dis 2018; 1864:3769-3779. [DOI: 10.1016/j.bbadis.2018.09.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 07/31/2018] [Accepted: 09/09/2018] [Indexed: 01/13/2023]
|
6
|
Bonior J, Warzecha Z, Ceranowicz P, Gajdosz R, Pierzchalski P, Kot M, Leja-Szpak A, Nawrot-Porąbka K, Link-Lenczowski P, Pędziwiatr M, Olszanecki R, Bartuś K, Trąbka R, Kuśnierz-Cabala B, Dembiński A, Jaworek J. Capsaicin-Sensitive Sensory Nerves Are Necessary for the Protective Effect of Ghrelin in Cerulein-Induced Acute Pancreatitis in Rats. Int J Mol Sci 2017; 18:E1402. [PMID: 28665321 PMCID: PMC5535895 DOI: 10.3390/ijms18071402] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 06/25/2017] [Accepted: 06/27/2017] [Indexed: 12/11/2022] Open
Abstract
Ghrelin was shown to exhibit protective and therapeutic effect in the gut. Aim of the study was to investigate the role of sensory nerves (SN) in the protective effect of ghrelin in acute pancreatitis (AP). Studies were performed on male Wistar rats or isolated pancreatic acinar cells. After capsaicin deactivation of sensory nerves (CDSN) or treatment with saline, rats were pretreated intraperitoneally with ghrelin or saline. In those rats, AP was induced by cerulein or pancreases were used for isolation of pancreatic acinar cells. Pancreatic acinar cells were incubated in cerulein-free or cerulein containing solution. In rats with intact SN, pretreatment with ghrelin led to a reversal of the cerulein-induced increase in pancreatic weight, plasma activity of lipase and plasma concentration of tumor necrosis factor-α (TNF-α). These effects were associated with an increase in plasma interleukin-4 concentration and reduction in histological signs of pancreatic damage. CDSN tended to increase the severity of AP and abolished the protective effect of ghrelin. Exposure of pancreatic acinar cells to cerulein led to increase in cellular expression of mRNA for TNF-α and cellular synthesis of this cytokine. Pretreatment with ghrelin reduced this alteration, but this effect was only observed in acinar cells obtained from rats with intact SN. Moreover, CDSN inhibited the cerulein- and ghrelin-induced increase in gene expression and synthesis of heat shock protein 70 (HSP70) in those cells. Ghrelin exhibits the protective effect in cerulein-induced AP on the organ and pancreatic acinar cell level. Sensory nerves ablation abolishes this effect.
Collapse
Affiliation(s)
- Joanna Bonior
- Department of Medical Physiology, Faculty of Health Sciences, Jagiellonian University Medical College, 12 Michałowskiego St., 31-126 Krakow, Poland.
| | - Zygmunt Warzecha
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegórzecka St., 31-531 Krakow, Poland.
| | - Piotr Ceranowicz
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegórzecka St., 31-531 Krakow, Poland.
| | - Ryszard Gajdosz
- Department of Emergency Medical Care, Faculty of Health Sciences, Jagiellonian University Medical College, 12 Michałowskiego St., 31-126 Krakow, Poland.
| | - Piotr Pierzchalski
- Department of Medical Physiology, Faculty of Health Sciences, Jagiellonian University Medical College, 12 Michałowskiego St., 31-126 Krakow, Poland.
| | - Michalina Kot
- Department of Medical Physiology, Faculty of Health Sciences, Jagiellonian University Medical College, 12 Michałowskiego St., 31-126 Krakow, Poland.
| | - Anna Leja-Szpak
- Department of Medical Physiology, Faculty of Health Sciences, Jagiellonian University Medical College, 12 Michałowskiego St., 31-126 Krakow, Poland.
| | - Katarzyna Nawrot-Porąbka
- Department of Medical Physiology, Faculty of Health Sciences, Jagiellonian University Medical College, 12 Michałowskiego St., 31-126 Krakow, Poland.
| | - Paweł Link-Lenczowski
- Department of Medical Physiology, Faculty of Health Sciences, Jagiellonian University Medical College, 12 Michałowskiego St., 31-126 Krakow, Poland.
| | - Michał Pędziwiatr
- 2nd Department of Surgery, Faculty of Medicine, Jagiellonian University Medical College, 21 Kopernika St., 31-501 Krakow, Poland.
| | - Rafał Olszanecki
- Department of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegórzecka St., 31-531 Krakow, Poland.
| | - Krzysztof Bartuś
- Department of Cardiovascular Surgery and Transplantology, Faculty of Medicine, Jagiellonian University, JP II Hospital, 80 Prądnicka St., 31-202 Krakow, Poland.
| | - Rafał Trąbka
- Department of Rehabilitation, Faculty of Health Sciences, Jagiellonian University Medical College, 3 Koło Strzelnicy St., 30-219 Krakow, Poland.
| | - Beata Kuśnierz-Cabala
- Department of Diagnostics, Chair of Clinical Biochemistry, Faculty of Medicine Jagiellonian University Medical College, 15 A Kopernika St., 31-501 Krakow, Poland.
| | - Artur Dembiński
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegórzecka St., 31-531 Krakow, Poland.
| | - Jolanta Jaworek
- Department of Medical Physiology, Faculty of Health Sciences, Jagiellonian University Medical College, 12 Michałowskiego St., 31-126 Krakow, Poland.
| |
Collapse
|
7
|
Giri B, Sethi V, Modi S, Garg B, Banerjee S, Saluja A, Dudeja V. "Heat shock protein 70 in pancreatic diseases: Friend or foe". J Surg Oncol 2017; 116:114-122. [PMID: 28543919 DOI: 10.1002/jso.24653] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 03/29/2017] [Indexed: 12/18/2022]
Abstract
The heat shock response in pancreatitis that is activated via HSP70 protects acinar cells through multiple simultaneous mechanisms. It inhibits trypsinogen activation and modulates NF-κB signaling to limit acinar cell injury. On the other hand, HSP70 is overexpressed in pancreatic cancer and is hijacked by the cellular machinery to inhibit apoptosis. Inhibition of HSP70 in pancreatic cancer by a novel compound, Minnelide, has shown considerable clinical promise.
Collapse
Affiliation(s)
- Bhuwan Giri
- Department of Surgery and Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| | - Vrishketan Sethi
- Department of Surgery and Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| | - Shrey Modi
- Department of Surgery and Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| | - Bharti Garg
- Department of Surgery and Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| | - Sulagna Banerjee
- Department of Surgery and Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| | - Ashok Saluja
- Department of Surgery and Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| | - Vikas Dudeja
- Department of Surgery and Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| |
Collapse
|
8
|
Song R, Yu D, Park J. Changes in gene expression of tumor necrosis factor alpha and interleukin 6 in a canine model of caerulein-induced pancreatitis. CANADIAN JOURNAL OF VETERINARY RESEARCH = REVUE CANADIENNE DE RECHERCHE VETERINAIRE 2016; 80:236-241. [PMID: 27408338 PMCID: PMC4924559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 03/01/2016] [Indexed: 06/06/2023]
Abstract
Acute pancreatitis is an inflammatory process that frequently involves peripancreatic tissues and remote organ systems. It has high morbidity and mortality rates in both human and veterinary patients. The severity of pancreatitis is generally determined by events that occur after acinar cell injury in the pancreas, resulting in elevated levels of various proinflammatory mediators, such as interleukin (IL) 1β and 6, as well as tumor necrosis factor alpha (TNF-α). When these mediators are excessively released into the systemic circulation, severe pancreatitis occurs with systemic complications. This pathophysiological process is similar to that of sepsis; thus, there are many striking clinical similarities between patients with septic shock and those with severe acute pancreatitis. We induced acute pancreatitis using caerulein in dogs and measured the change in the gene expression of proinflammatory cytokines. The levels of TNF-α and IL-6 mRNA peaked at 3 h, at twice the baseline levels, and the serum concentrations of amylase and lipase also increased. Histopathological examination revealed severe hyperemia of the pancreas and hyperemia in the duodenal villi and the hepatic sinusoid. Thus, pancreatitis can be considered an appropriate model to better understand the development of naturally occurring sepsis and to assist in the effective treatment and management of septic patients.
Collapse
Affiliation(s)
| | | | - Jinho Park
- Address all correspondence to Dr. Jinho Park; telephone: +82-63-850-0949; fax: +82-63-850-0910; e-mail:
| |
Collapse
|
9
|
Kang R, Lotze MT, Zeh HJ, Billiar TR, Tang D. Cell death and DAMPs in acute pancreatitis. Mol Med 2014; 20:466-77. [PMID: 25105302 PMCID: PMC4277549 DOI: 10.2119/molmed.2014.00117] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 08/04/2014] [Indexed: 12/18/2022] Open
Abstract
Cell death and inflammation are key pathologic responses of acute pancreatitis (AP), the leading cause of hospital admissions for gastrointestinal disorders. It is becoming increasingly clear that damage-associated molecular pattern molecules (DAMPs) play an important role in the pathogenesis of AP by linking local tissue damage to systemic inflammation syndrome. Endogenous DAMPs released from dead, dying or injured cells initiate and extend sterile inflammation via specific pattern recognition receptors. Inhibition of the release and activity of DAMPs (for example, high mobility group box 1, DNA, histones and adenosine triphosphate) provides significant protection against experimental AP. Moreover, increased serum levels of DAMPs in patients with AP correlate with disease severity. These findings provide novel insight into the mechanism, diagnosis and management of AP. DAMPs might be an attractive therapeutic target in AP.
Collapse
Affiliation(s)
- Rui Kang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Michael T Lotze
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Herbert J Zeh
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Daolin Tang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
10
|
Jacob TG, Raghav R, Kumar A, Garg PK, Roy TS. Duration of injury correlates with necrosis in caerulein-induced experimental acute pancreatitis: implications for pathophysiology. Int J Exp Pathol 2014; 95:199-208. [PMID: 24761825 DOI: 10.1111/iep.12081] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 03/03/2014] [Indexed: 12/17/2022] Open
Abstract
Pancreatic acinar cell necrosis is indicative of severe pancreatitis and the degree of necrosis is an index of its outcome. We studied whether the dose and duration of injury correlates with severity, particularly in terms of necrosis, in caerulein-induced acute pancreatitis (AP) in Swiss albino mice. In addition to control group 1 (G1), groups 2 and 3 received four injections of caerulein every hour but were sacrificed at five hours (G2) and nine hours (G3) respectively, and group 4 received eight injections and was sacrificed at nine hours (G4). The severity of pancreatitis was assessed histopathologically and biochemically. The histopathological scores of pancreatitis in groups 3 and 4 were significantly higher than in groups 1 and 2 (4 vs. 1, 4 vs. 2, 3 vs. 1, 3 vs. 2; P < 0.05). TUNEL-positive apoptotic cells were significantly higher in groups 2 and 3 compared with groups 1 and 4 (P < 0.05). Necrosis was significantly more in group 4 than other groups (37.49% (4.68) vs. 19.97% (1.60) in G2; 20.36% (1.56) in G3; P = 0.006 for G 2 vs. 4 and P = 0.019 for G 3 vs. 4). Electron microscopy revealed numerous autophagosomes in groups 2 and 3 and mitochondrial damage and necrosis in group 4. The pancreatic and pulmonary myeloperoxidase activity in group 4 was significantly higher than that in the other groups (P < 0.01). Hence, severity of pancreatitis is a function of the dose of injurious agent, while inflammation is both dose and duration dependent, which may also explain the wide spectrum of severity of AP seen in clinical practice.
Collapse
Affiliation(s)
- Tony G Jacob
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | | | | | | | | |
Collapse
|
11
|
Prior peritoneal lavage with hot 0.9 % saline induces HSP70 expression and protects against cerulein-induced acute pancreatitis in rats. Mol Biol Rep 2012; 40:1443-9. [PMID: 23096089 DOI: 10.1007/s11033-012-2187-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 10/09/2012] [Indexed: 01/16/2023]
Abstract
Recent studies have indicated that pre-induction of heat shock protein 70 (HSP70) expression in the pancreas protects against secretagogue-induced pancreatitis. In those studies, the HSP70 was mostly induced by unfeasible conditions. The aim of this current study was to investigate the effect of peritoneal lavage with hot 0.9 % saline (42 °C) on the pancreatic expression of HSP70 and its protective effect on cerulein-induced acute pancreatitis in rats. Male Wistar rats were peritoneally lavaged with 0.9 % saline at 42 °C for 30 min. HSP70 expression was evaluated by western blotting analysis. Prior peritoneal lavages with hot and warm saline were performed. Acute pancreatitis was induced by administration of intraperitoneal injection of cerulein (20 μg/kg) four times, and its severity was assessed by measuring serum amylase, tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and trypsinogen activation peptide (TAP) levels. Pancreatic sections were stained with hematoxylin and eosin for histological evaluation. Peritoneal lavage with hot 0.9 % saline increased intrapancreatic HSP70 expression and ameliorated the cerulein-induced pancreatitis in rats, judged by the significantly reduced serum amylase, TNF-α, and IL-6 concentrations; histopathological scores, and serum TAP levels. Peritoneal lavage with hot 0.9 % saline can induce HSP70 expression and prevent cerulein-induced acute pancreatitis in rats. The results suggest that HSP70 protects against cerulein-induced pancreatitis by preventing proinflammatory cytokine synthesis and trypsinogen activation during acute pancreatitis.
Collapse
|
12
|
García-Hernández V, Sánchez-Bernal C, Sarmiento N, Viana RA, Ferreira L, Pérez N, Calvo JJ, Sánchez-Yagüe J. Proteomic analysis of the soluble and the lysosomal+mitochondrial fractions from rat pancreas: Implications for cerulein-induced acute pancreatitis. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2012; 1824:1058-67. [PMID: 22713802 DOI: 10.1016/j.bbapap.2012.06.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2011] [Revised: 05/08/2012] [Accepted: 06/06/2012] [Indexed: 01/09/2023]
Abstract
Alterations in protein expression within the initiation phase of acute pancreatitis (AP) might play an important role in the development of this disease, lysosomes being involved in its pathophysiology. The use of pancreatic subcellular fractions in proteomic analysis, simplifies protein maps and helps in the identification of new protein changes and biomarkers characterizing tissue damage. The present study aims to determine the differentially expressed acidic proteins in the pancreatic soluble and lysosomal+mitochondrial (L+M) fractions from rats during the early phase of the experimental model of cerulein (Cer)-induced AP. Subcellular pancreatic extracts from diseased and control rats were analyzed by 2-DE (3-5.6 pH range) and MALDI-TOF/TOF MS. Comparative analysis afforded the conclusive identification of 13 (soluble fraction) and 7 (L+M fraction) proteins or protein fragments occuring in different amounts between diseased and control pancreas, some of them being newly described in AP. In the soluble fraction, we detected changes related to inflammation and apoptosis (α1-inhibitor-3, α-1 antitrypsin, α-1 macroglobulin, haptoglobin, STRAP), oxidative stress and stress response (peroxiredoxin-2, thioredoxin-like 1, GRP94/TRA1, heat shock cognate 71kDa protein), digestive proteases (elastase 3B), serine protease inhibition (serpins B6 and A3L) and translation processes (EF 1-δ). In the L+M fraction, we detected changes mainly related to energy generation or cellular metabolism (ATP synthase β subunit, chymotrypsinogen B, triacylglycerol lipase), cell redox homeostasis (iodothyronine 5´monodeiodinase) and digestive proteases (carboxypeptidase B1). The data should provide valuable information for unraveling the early pathophysiologic mechanisms of Cer-induced AP.
Collapse
|
13
|
Kim JN, Lee HS, Ryu SH, Kim YS, Moon JS, Kim CD, Chang IY, Yoon SP. Heat shock proteins and autophagy in rats with cerulein-induced acute pancreatitis. Gut Liver 2011; 5:513-20. [PMID: 22195252 PMCID: PMC3240797 DOI: 10.5009/gnl.2011.5.4.513] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2011] [Accepted: 06/08/2011] [Indexed: 12/12/2022] Open
Abstract
Background/Aims Heat shock proteins (HSPs) protect rats from cerulein-induced acute pancreatitis (AP) by preventing the subcellular redistribution of cathepsin B and the activation of trypsinogen. Autophagy plays a critical role in the secretion of digestive enzymes and triggering of cerulein-induced AP via the colocalization of trypsinogen and lysosomes. Therefore, using a rat cerulein-induced AP model, we investigated whether HSPs prevent AP by regulating autophagy. Methods Twelve hours after fed standard laboratory chow and water, the experimental groups (cerulein, water-immersion [WI]-cerulein and heat-shock [HS]-cerulein) and the control groups (control, WI, and HS) received one intraperitoneal injection of cerulein (50 µg/kg) or saline, respectively. All of the rats were sacrificed at 6 hours after injection. The severity of the AP was assessed based on the serum amylase level and the histological and electron microscopy findings. Western blotting was also performed for HSP60/70 and LC3B-II. Results WI and HS induced HSP60 and HSP70, respectively. The induced HSP60/70 effectively prevented the development of cerulein-induced AP. Autophagy developed in the rats with cerulein-induced AP and was documented by the expression of LC3-II and electron microscopy findings. The WI-stressed rats and HS-treated rats did not develop cerulein-induced autophagy. Conclusions HSPs exert protective effects against cerulein-induced AP in rats by inhibiting autophagy.
Collapse
Affiliation(s)
- Jin Nam Kim
- Division of Gastroenterology, Department of Internal Medicine, Seoul Paik Hospital, Inje University College of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Fan SJ, Jiang H, Yang LJ, Liu X, Song J, Pan F. Effects of adrenergic agents on stress-induced brain microstructural and immunochemical changes in adult male Wistar rats. Ann Anat 2011; 193:418-24. [DOI: 10.1016/j.aanat.2011.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 06/04/2011] [Accepted: 06/06/2011] [Indexed: 12/31/2022]
|
15
|
Abstract
Severe acute pancreatitis (SAP) is an acute abdominal disease that is characterized by sudden onset, quick progression, many complications and high mortality. Multiple organ dysfunction syndrome (MODS) is still regarded as the main cause of death in SAP patients. Nowadays, the mortality rate for patients with SAP in developed countries is 22.7%. In the early 21st century, the mortality reached 15.60%-23.77% in mainland China. However, the etiology, pathogenesis and pathophysiology of SAP remains unclear, resulting in puzzle or perplexity in choosing and developing treatment strategies for SAP. This paper reviews recent progress in understanding the pathogenesis of SAP.
Collapse
|
16
|
Fetaud-Lapierre V, Pastor CM, Farina A, Hochstrasser DF, Frossard JL, Lescuyer P. Proteomic analysis of heat shock-induced protection in acute pancreatitis. J Proteome Res 2010; 9:5929-42. [PMID: 20815342 DOI: 10.1021/pr100695d] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Acute pancreatitis is an inflammatory disease of the pancreas, which can result in serious morbidity or death. Acute pancreatitis severity can be reduced in experimental models by preconditioning animals with a short hyperthermia prior to disease induction. Heat shock proteins 27 and 70 are key effectors of this protective effect. In this study, we performed a comparative proteomic analysis using a combination of liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis and isobaric tagging to investigate changes in pancreatic proteins expression that were associated with thermal stress, both in healthy rats and in a model of caerulein-induced pancreatitis. In agreement with previous studies, we observed modulation of heat shock and inflammatory proteins expression in response to heat stress or pancreatitis induction. We also identified numerous other proteins, whose pancreatic level changed following pancreatitis induction, when acute pancreatitis severity was reduced by prior thermal stress, or in healthy rats in response to hyperthermia. Interestingly, we showed that the expression of various proteins associated with the secretory pathway was modified in the different experimental models, suggesting that modulation of this process is involved in the protective effect against pancreatic tissue damage.
Collapse
Affiliation(s)
- Vanessa Fetaud-Lapierre
- Department of Bioinformatics and Structural Biology, Geneva Faculty of Medicine, Geneva, Switzerland
| | | | | | | | | | | |
Collapse
|
17
|
Li YY, Li XJ, Lv S, Li K, Li YN, Gao ZR, Feng JY, Chen CJ, Schaefer C. Ascitic fluid and serum from rats with acute pancreatitis injure rat pancreatic tissues and alter the expression of heat shock protein 60. Cell Stress Chaperones 2010; 15:583-91. [PMID: 20146106 PMCID: PMC3006631 DOI: 10.1007/s12192-010-0170-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Revised: 01/06/2010] [Accepted: 01/11/2010] [Indexed: 01/14/2023] Open
Abstract
Acute pancreatitis (AP) is an inflammatory process in which cytokines and chemokines are involved. After onset, extrapancreatic stimuli can induce the expression of cytokines in pancreatic acinar cells, thereby amplifying this inflammatory loop. To further determine the role and mechanism of irritating agents in the pathogenesis of AP, rat pancreatic tissues were stimulated with ascitic fluid (APa) and serum (APs) from rats with AP or with lipopolysaccharide (LPS). In addition, the alteration of heat shock protein 60 (HSP60) expression was evaluated. Rat pancreas was removed and meticulously snipped to fragments. The snips were cultured for up to 48 h. During this period, the tissue viability as well as amylase and TNF-alpha levels in the supernatant and the HSP60 expression in the pancreatic tissue before and after stimulation by APa, APs, and LPS were assayed time-dependently. At different time-points during the culture, the viability and the amylase activity in the pancreatic tissue remained largely stable. After stimulation with APa, APs, or LPS for 1 h, the pancreatic tissues showed some damage, and this was followed by a sharp decrease in the viability accompanied by increased levels of amylase and TNF-alpha in the culture medium 2 or 4 h after stimulation (p < 0.05). In contrast, both the HSP60 mRNA and protein levels had a relatively high expression in the freshly prepared tissue fragments (0 h). As the culturing period was extended, the expression of HSP60 mRNA decreased only slightly; at the same time, the HSP60 protein levels decreased over a prolonged culture time, significantly so from 12 through 48 h (p < 0.05). After stimulation with APs, APa, or LPS, both the expression of HSP60 mRNA and protein in the tissue fragments increased slightly at 1 h and decreased significantly thereafter at 2 and 4 h (p < 0.05). APa, APs, or LPS induce injuries on isolated pancreatic tissues, accompanied by an altered HSP60 expression pattern in a time-dependent manner.
Collapse
Affiliation(s)
- Yong-Yu Li
- Institute of Digestive Disease, Department of Pathophysiology, School of Medicine, Tongji University, 1239 Si Ping Road, Shanghai 200092, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Fan BG, Andrén-Sandberg A. Acute pancreatitis. NORTH AMERICAN JOURNAL OF MEDICAL SCIENCES 2010; 2:211-4. [PMID: 22574290 PMCID: PMC3347645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
BACKGROUND Acute pancreatitis continues to be a serious illness, and the patients with acute pancreatitis are at risk to develop different complications from ongoing pancreatic inflammation. AIMS The present review is to highlight the classification, treatment and prognosis of acute pancreatitis. MATERIAL #ENTITYSTARTX00026; METHODS We reviewed the English-language literature (Medline) addressing pancreatitis. RESULTS Acute pancreatitis is frequently caused by gallstone disease or excess alcohol ingestion. There are a number of important issues regarding clinical highlights in the classification, treatment and prognosis of acute pancreatitis, and treatment options for complications of acute pancreatitis including pancreatic pseudocysts. CONCLUSIONS Multidisciplinary approach should be used for the management of the patient with acute pancreatitis.
Collapse
|
19
|
Abstract
OBJECTIVES Our aim was to determine if total parenteral nutrition (TPN)-induced pancreatic atrophy and Hsp70 expression attenuates cerulein-induced pancreatitis in rats. METHODS Rats were randomized to a 7-day course of saline infusion plus a semipurified diet or TPN, with or without an intravenous cerulein injection or vehicle on day 7, and killed 1 or 6 hours after the injection. Based on a pilot study, 1 hour was the primary time point. Pancreatic atrophy was determined by mass, protein, and DNA contents. Pancreatic heat shock protein 70 (Hsp70) expression was measured by Western analysis. Histological examination of the pancreas assessed for edema, inflammation, vacuolization, and apoptosis. Serum amylase activity was measured using the Phadebas assay. Pancreatic trypsinogen activation was measured using a fluorometric substrate assay. RESULTS The saline-infused rats fed orally gained significantly more weight than TPN rats. The TPN decreased the pancreatic mass and protein content and the protein-DNA ratio and increased the pancreatic DNA content compared with the saline. The TPN increased the pancreatic Hsp70 expression by 91% compared with the saline. The TPN reduced the cerulein-induced pancreatic histological edema, the vacuolization, and the inflammation compared with the saline. The increase in the serum amylase level after cerulein injection was significantly attenuated, and trypsinogen activation was reduced in TPN animals compared with the saline group. CONCLUSIONS Lack of luminal nutrients with a 7-day course of TPN provides moderate protection against cerulein-induced pancreatitis in rats.
Collapse
|
20
|
Pei GH, Liang J, Song WL, Wang ZP, Mo CB. Preconditioning of pancreatic graft with isoproterenol reduces posttransplant ischemia/reperfusion injury in rats. Shijie Huaren Xiaohua Zazhi 2010; 18:871-876. [DOI: 10.11569/wcjd.v18.i9.871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To determine the protective effects of isoproterenol preconditioning (IPC) against ischemia/reperfusion injury in rats after pancreas transplantation and to explore mechanisms involved.
METHODS: The expression of heat shock protein 70 (HSP70) in the pancreas of rats undergoing IPC was detected at different time points after IPC. A rat model of posttransplant pancreatic ischemia/reperfusion injury was established. The donor rats that showed high expression of HSP70 in the pancreas were used as experiment group, while donor rats that did not undergo IPC were used as control group. The blood and pancreatic samples were taken 6 h after pancreas transplantation. The expression of HSP70 in the pancreas was detected by Western blot and immunohistochemistry. The expression of TNF-α in the pancreas was detected by immunohistochemistry. Serum amylase was determined by iodine colorimetry. The apoptosis rate of pancreatic cells was determined by flow cytometry.
RESULTS: The expression level of HSP70 in the pancreas of donor rats reached the peak at 24 h after IPC, which was significantly higher than those at other time points (0.92 ± 0.25 vs 0.24 ± 0.04, 0.34 ± 0.06, 0.58 ± 0.07, 0.62 ± 0.11 and 0.25 ± 0.09, respectively; all P < 0.05). The expression levels of HSP70 in the experimental group at 6, 12, 24 and 36 h after IPC were significantly higher than those in the control group at corresponding time points (0.34 ± 0.06 vs 0.28 ± 0.07, 0.58 ± 0.07vs 0.25 ± 0.04, 0.92 ± 0.25 vs 0.27 ± 0.05 and 0.62 ± 0.11 vs 0.25 ± 0.06, respectively; all P < 0.05) but returned to normal level at 48 h. No significant differences were noted in the expression levels of HSP70 among each time point in the control group. HSP70 was mainly expressed in pancreatic acinar cells and the vessel wall. The expression level of TNF-α, apoptosis rate, neutrophil count and serum amylase significantly increased in the control group when compared with those in sham-operated group (all P < 0.01). However, the levels of these parameters significantly decreased in the experiment group when compared with those in the control group (11 929 ± 1 220 vs 46 111 ± 3 127, 26.7% ± 4.5% vs 37.4% ± 4.7%, 3 308 ± 531 vs6 668 ± 1 506 and 1 057 IU/L± 148 IU/L vs 1 408 IU/L± 195 IU/L, respectively; all P < 0.05).
CONCLUSION: Isoproterenol preconditioning reduces ischemia/reperfusion injury in rats after pancreas transplantation perhaps by inducing the production of HSP70.
Collapse
|
21
|
Lee J, Seo JH, Lim JW, Kim H. Membrane proteome analysis of cerulein-stimulated pancreatic acinar cells: implication for early event of acute pancreatitis. Gut Liver 2010; 4:84-93. [PMID: 20479917 DOI: 10.5009/gnl.2010.4.1.84] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Accepted: 02/15/2010] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND/AIMS Cerulein pancreatitis is similar to human edematous pancreatitis with dysregulation of the production and secretion of digestive enzymes, edema formation, cytoplasmic vacuolization and the death of acinar cells. We hypothesized that membrane proteins may be altered as the early event during the induction of acute pancreatitis. Present study aims to determine the differentially expressed proteins in the membranes of cerulein-treated pancreatic acinar cells. METHODS Pancreatic acinar AR42J cells were treated with 10(-8) M cerulein for 1 hour. Membrane proteins were isolated from the cells and separated by two-dimensional electrophoresis using pH gradients of 5-8. Membrane proteins were identified by matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) analysis of the peptide digests. The differentially expressed proteins, whose expression levels were more or less than three-fold in cerulein-treated cells, were analyzed. RESULTS Two differentially expressed proteins (mannan-binding lectin-associated serine protease-2, heat shock protein 60) were up-regulated while four proteins (protein disulfide isomerase, gamma-actin, isocitrate dehydrogenase 3, seven in absentia homolog 1A) were down-regulated by cerulein treatment in pancreatic acinar cells. These proteins are related to cell signaling, oxidative stress, and cytoskeleton arrangement. CONCLUSIONS Oxidative stress may induce cerulein-induced cell injury and disturbances in defense mechanism in pancreatic acinar cells.
Collapse
Affiliation(s)
- Jangwon Lee
- Department of Biotechnology, Brain Korea 21 Project, The Catholic University of Korea, Bucheon, Korea
| | | | | | | |
Collapse
|
22
|
Abstract
Heat shock proteins (HSPs) are a highly conserved family of proteins which inhabit almost all subcellular locations and cellular membranes. Depending on their location, these proteins perform a variety of chaperoning functions including folding of newly synthesised polypeptides. HSPs also play a major role in the protection of cells against stressful and injury-inciting stimuli. By virtue of this protective function, HSPs have been shown to prevent acinar cell injury in acute pancreatitis. Also, the levels of HSPs have been shown to be markedly elevated in various forms of cancers when compared with non-transformed cells. Further, inhibition of HSPs has been shown to induce apoptotic cell death in cancer cells suggesting that inhibition of HSPs has a potential to emerge as novel anti-cancer therapy, either as monotherapy or in combination with other chemotherapeutic agents. Several studies have suggested that HSPs can interact with and inhibit both intrinsic and extrinsic pathways of apoptosis at multiple sites. Besides the anti-apoptotic role of HSPs, recent studies suggest that they play a role in the generation of anti-cancer immunity, and attempts have been made to utilise this property of HSPs in the generation of anti-cancer vaccines. The anti-apoptotic function and mechanism of various subtypes of HSPs as well as the current status of anti-HSP therapy are discussed in this review.
Collapse
Affiliation(s)
- V Dudeja
- Division of Basic and Translational Research, Department of Surgery, University of Minnesota, 420 Delaware Street SE, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
23
|
Fétaud V, Frossard JL, Farina A, Pastor CM, Bühler L, Dumonceau JM, Hadengue A, Hochstrasser DF, Lescuyer P. Proteomic profiling in an animal model of acute pancreatitis. Proteomics 2008; 8:3621-31. [PMID: 18686302 DOI: 10.1002/pmic.200800066] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Acute pancreatitis (AP) is an inflammatory disease of the pancreas, which evolves in approximately 20% of the patients to a severe illness associated with a high mortality rate. In this study, we performed a comparative proteomic analysis of pancreatic tissue extracts from rats with AP and healthy rodent controls in order to identify changes in protein expression related to the pathobiological processes of this disease. Pancreatic extracts from diseased and controls rats were analyzed by 2-DE and MS/MS. A total of 125 proteins were identified from both samples. Comparative analysis allowed the detection of 42 proteins or protein fragments differentially expressed between diseased and control pancreas, some of them being newly described in AP. Interestingly, these changes were representative of the main pathobiological pathways involved in this disease. We observed activation of digestive proteases and increased expression of various inflammatory markers, including several members of the alpha-macroglobulin family. We also detected changes related to oxidative and cell stress responses. Finally, we highlighted modifications of 14-3-3 proteins that could be related to apoptosis regulation. These results showed the interest of proteomic analysis to identify changes characterizing pancreatic tissue damage and, therefore, to highlight new potential biomarkers of AP.
Collapse
Affiliation(s)
- Vanessa Fétaud
- Biomedical Proteomics Research Group, Department of Bioinformatics and Structural Biology, Geneva Faculty of Medicine, Geneva, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
OBJECTIVES Bee venom (BV) has frequently been used as a remedy for inflammatory diseases. The aim of this study was to investigate the effect of BV on cholecystokinin octapeptide (CCK-8)-induced acute pancreatitis (AP) in rats. METHODS The BV pretreatment group: 0.25 mg/kg BV was administered subcutaneously, followed by 75 mug/kg CCK-8 subcutaneously 3 times after 1, 3, and 5 hours. This whole procedure was repeated for 5 days. CONTROL GROUP CCK-8 subcutaneously 3 times after 1, 3, and 5 hours for 5 days. The BV posttreatment group: CCK-8 subcutaneously 3 times at an interval of 2 hours for 3 days, and then 0.25 mg/kg of BV was administered subcutaneously. CONTROL GROUP CCK-8 subcutaneously 3 times at an interval of 2 hours for 3 days. RESULTS The BV pretreatment and posttreatment ameliorated many of the examined laboratory parameters (the pancreatic weight [PW]/body weight [BW] ratio, the serum amylase and lipase activity) and reduced histological damages in pancreas. Furthermore, BV pretreatment reduced the production of tumor necrosis factor-alpha, interleukin 1, and interleukin 6 and also decreased pancreatic nuclearfactor-kappaB binding activity compared with saline-treated group in the AP model. The BV also increased heat shock protein 60 (HSP60) and heat shock protein 72 (HSP72) compared with the saline-treated group in the AP model. CONCLUSIONS These findings suggest that the anti-inflammatory effect of BV in CCK-8-induced AP seems to be mediated by inhibiting nuclear factor-kappaB binding activity, and that BV may have a protective effect against AP.
Collapse
|
25
|
Abstract
Heat shock proteins (HSPs) are chaperone proteins that protect living cells against injury-inducing stimuli. Dysregulated expression of HSPs has been observed in various disease conditions including cancer. Using knock-out and transgenic animal approach, as well as standard, methods of heat shock protein 70 (HSP70) induction (i.e. thermal stress and arsenite administration), it has been shown that HSP70 protects against cell injury and acinar necrosis in experimental model of pancreatitis in animals. Animals in which HSP70 is induced prior to cerulein administration in a cerulein model of pancreatitis have reduced severity of pancreatitis, as demonstrated by lower serum amylase, lesser acinar necrosis on histology and decreased neutrophilic infiltration, suggesting that HSP70 is protective against cell death. Similar to the protective role of HSP70 in a pancreatitis model, HSP70 overexpression has been observed in pancreatic cancer and is believed to protect cancer cells from cell death. HSP70 is overexpressed both at mRNA and protein levels in pancreatic cancer cell lines as compared to normal pancreatic ductal cells. On a more clinical note, HSP70 is present in great abundance in pancreatic cancer clinical specimens as compared to normal pancreatic margins. Inhibition of HSP70 expression in pancreatic cancer cells leads to caspase-dependent apoptotic cell death and is a novel therapeutic modality for pancreatic cancer. Triptolide is a pharmacological agent which highly effective inhibiting HSP70 expression in pancreatic cancer cells and thus induces cell death. Moreover, triptolide is highly efficacious in reducing growth as well as locoregional spread of pancreatic tumors in an orthotopic model of pancreatic cancer and has tremendous potential as a novel therapeutic agent.
Collapse
Affiliation(s)
- Ashok Saluja
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota, USA.
| | | |
Collapse
|
26
|
Bhagat L, Singh VP, Dawra RK, Saluja AK. Sodium arsenite induces heat shock protein 70 expression and protects against secretagogue-induced trypsinogen and NF-kappaB activation. J Cell Physiol 2008; 215:37-46. [PMID: 17941083 DOI: 10.1002/jcp.21286] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Heat shock proteins (HSPs), induced by a variety of stresses, are known to protect against cellular injury. Recent studies have demonstrated that prior beta-adrenergic stimulation as well as thermal or culture stress induces HSP70 expression and protects against cerulein-induced pancreatitis. The goal of our current studies was to determine whether or not a non-thermal, chemical stressor like sodium arsenite also upregulates HSP70 expression in the pancreas and prevents secretagogue-induced trypsinogen and NF-kappaB activation. We examined the effects of sodium arsenite preadministration on the parameters of cerulein-induced pancreatitis in rats and then monitored the effects of preincubating pancreatic acini with sodium arsenite in vitro. Our results showed that sodium arsenite pretreatment induced HSP70 expression both in vitro and in vivo and significantly ameliorated the severity of cerulein-induced pancreatitis, as evidenced by the markedly reduced degree of hyperamylasemia, pancreatic edema, and acinar cell necrosis. Sodium arsenite pretreatment not only inhibited trypsinogen activation and the subcellular redistribution of cathepsin B, but also prevented NF-kappaB translocation to the nucleus by inhibiting the IkappaBalpha degradation both in vivo and in vitro. We also examined the effect of sodium arsenite pretreatment in a more severe model of pancreatitis induced by L-arginine and found a similarly protective effect. Based on our observations we conclude that, like thermal stress, chemical stressors such as sodium arsenite also induce HSP70 expression in the pancreas and protect against acute pancreatitis. Thus, non-thermal pharmacologically induced stress can help prevent or treat pancreatitis.
Collapse
Affiliation(s)
- Lakshmi Bhagat
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | |
Collapse
|
27
|
Chae JI, Cho YK, Cho SK, Kim JH, Han YM, Koo DB, Lee KK. Proteomic analysis of pancreas derived from adult cloned pig. Biochem Biophys Res Commun 2008; 366:379-87. [DOI: 10.1016/j.bbrc.2007.11.114] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2007] [Accepted: 11/20/2007] [Indexed: 01/08/2023]
|
28
|
Phillips PA, Dudeja V, McCarroll JA, Borja-Cacho D, Dawra RK, Grizzle WE, Vickers SM, Saluja AK. Triptolide induces pancreatic cancer cell death via inhibition of heat shock protein 70. Cancer Res 2007; 67:9407-16. [PMID: 17909050 DOI: 10.1158/0008-5472.can-07-1077] [Citation(s) in RCA: 248] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Pancreatic cancer is highly resistant to current chemotherapy agents. We therefore examined the effects of triptolide (a diterpenoid triepoxide) on pancreatic cancer growth and local-regional tumor spread using an orthotopic model of pancreatic cancer. We have recently shown that an increased level of HSP70 in pancreatic cancer cells confers resistance to apoptosis and that inhibiting HSP70 induces apoptosis in these cells. In addition, triptolide was recently identified as part of a small molecule screen, as a regulator of the human heat shock response. Therefore, our aims were to examine the effects of triptolide on (a) pancreatic cancer cells by assessing viability and apoptosis, (b) pancreatic cancer growth and local invasion in vivo, and (c) HSP70 levels in pancreatic cancer cells. Incubation of PANC-1 and MiaPaCa-2 cells with triptolide (50-200 nmol/L) significantly reduced cell viability, but had no effect on the viability of normal pancreatic ductal cells. Triptolide induced apoptosis (assessed by Annexin V, caspase-3, and terminal nucleotidyl transferase-mediated nick end labeling) and decreased HSP70 mRNA and protein levels in both cell lines. Triptolide (0.2 mg/kg/d for 60 days) administered in vivo decreased pancreatic cancer growth and significantly decreased local-regional tumor spread. The control group of mice had extensive local invasion into adjacent organs, including the spleen, liver, kidney, and small intestine. Triptolide causes pancreatic cancer cell death in vitro and in vivo by induction of apoptosis and its mechanism of action is mediated via the inhibition of HSP70. Triptolide is a potential therapeutic agent that can be used to prevent the progression and metastases of pancreatic cancer.
Collapse
Affiliation(s)
- Phoebe A Phillips
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota 55488, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
de Almeida JLJ, Jukemura J, Sampietre SN, Patzina RA, da Cunha JEM, Machado MCC. Effect of hyperthermia on experimental acute pancreatitis. ARQUIVOS DE GASTROENTEROLOGIA 2007; 43:316-20. [PMID: 17406762 DOI: 10.1590/s0004-28032006000400014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2005] [Accepted: 01/18/2006] [Indexed: 02/08/2023]
Abstract
BACKGROUND [corrected] Recent studies indicate that hyperthermia can change inflammatory mechanisms and protect experimental animals from deleterious effects of secretagogue-induced acute pancreatitis AIM To evaluate the effects of hyperthermia post-treatment on cerulein-induced acute pancreatitis in rats METHODS Twenty animals were divided in two groups: group I (n = 10), rats with cerulein-induced acute pancreatitis undergone hyperthermia, and group II (n = 10), animals with cerulein-induced acute pancreatitis that were kept normothermic. In all groups, amylase serum levels, histologic damage, vascular permeability and pancreatic water content were assessed. Acute pancreatitis was induced by administration of two cerulein injections (20 mcg/kg). A single dose of Evans' blue dye was administered along with the second dose of cerulein. All animals also received a subcutaneous injection of saline solution. After this process, animals undergone hyperthermia were heated in a cage with two 100 W lamps. Body temperature was increased to 39.5 degrees C and maintained at that level for 45 minutes. Normothermia rats were kept at room temperature in a second cage RESULTS Control animals had typical edema, serum amylase activity and morphologic changes of this acute pancreatitis model. Hyperthermia post-treatment ameliorated the pancreatic edema, whereas the histologic damage and the serum amylase level remained unchanged CONCLUSIONS The findings suggest a beneficial effect of the thermal stress on inflammatory edema in experimental acute pancreatitis.
Collapse
|
30
|
Aghdassi A, Phillips P, Dudeja V, Dhaulakhandi D, Sharif R, Dawra R, Lerch MM, Saluja A. Heat shock protein 70 increases tumorigenicity and inhibits apoptosis in pancreatic adenocarcinoma. Cancer Res 2007; 67:616-25. [PMID: 17234771 DOI: 10.1158/0008-5472.can-06-1567] [Citation(s) in RCA: 170] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Pancreatic carcinoma is a malignant disease that responds poorly to chemotherapy because of its resistance to apoptosis. Heat shock proteins (Hsp) are not only cytoprotective but also interfere with the apoptotic cascade. Here, we investigated the role of Hsp70 in regulating apoptosis in pancreatic cancer cells. Hsp70 expression was increased in pancreatic cancer cells compared with normal pancreatic ductal cells. This was confirmed by increased mRNA levels for Hsp70 in human pancreatic cancer tissue compared with neighboring normal tissue from the same patient. Depletion of Hsp70 by quercetin decreased cell viability and induced apoptosis in cancer cells but not in normal pancreatic ductal cells. To show that this is a specific effect of Hsp70 on apoptosis, levels of Hsp70 were knocked down by short interfering RNA treatment, which also induced apoptosis in cancer cells as indicated by Annexin V staining and caspase activation. Daily administration of quercetin to nude mice decreased tumor size as well as Hsp70 levels in tumor tissue. These findings indicate that Hsp70 plays an important role in apoptosis and that selective Hsp70 knockdown can be used to induce apoptosis in pancreatic cancer cells.
Collapse
Affiliation(s)
- Ali Aghdassi
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Yamanari MGI, Kunitake TA, Almeida JLJD, Jukemura J, Cunha JEMD, Machado MCC. Efeito da hipertermia na pancreatite aguda grave experimental. Rev Col Bras Cir 2007. [DOI: 10.1590/s0100-69912007000100009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
OBJETIVO: O objetivo deste estudo é avaliar os efeitos da hipertermia na pancreatite aguda (PA) grave experimental induzida por ácido taurocólico. MÉTODO: A PA grave foi induzida pela injeção retrógrada de ácido taurocólico a 2,5% ou 5% no ducto pancreático principal. Após a indução, os animais foram colocados numa gaiola contendo duas lâmpadas de 100 W. A temperatura corporal foi aumentada para 39,5ºC e mantida neste nível por 45 minutos. Foram estudados taxa de mortalidade em 72 horas, permeabilidade vascular no pâncreas, porcentagem de água no tecido pancreático, amilase sérica, histologia (edema, necrose acinar e infiltrado inflamatório) e níveis séricos de IL-6 e IL-10. RESULTADOS: Não houve alteração em nenhum dos parâmetros avaliados. CONCLUSÃO: Não há benefício da hipertermia na PA grave experimental induzida por ácido taurocólico.
Collapse
|
32
|
Abstract
PURPOSE OF REVIEW As in our previous reviews, we endeavor to review important new observations in chronic pancreatitis made in the past year. Topics recently reviewed were truncated to accommodate a surge in publications on clinical aspects of chronic pancreatitis, which contained new observations or insights into new or old concepts. RECENT FINDINGS Cystic fibrosis carriers have been found to be at increased risk of pancreatitis. Autoimmune pancreatitis may belong to a multiorgan immunoglobulin G4-related autoimmune disease, and the natural history of chronic pancreatitis differs among the etiologies. Diffusion-weighted magnetic resonance imaging improves upon previous methodologies for diagnosing reduced pancreatic exocrine secretion, and fecal elastase-1 has been found to be a poor test for diagnosing pancreatic malabsorption. Visceral hyperalgesia or heightened central pain perception may contribute to pain in chronic pancreatitis. Instruments are evolving to assess quality of life in chronic pancreatitis, and fibrolytic agents have been found to have therapeutic promise. SUMMARY Researchers this past year have further characterized genetic, molecular and clinical aspects of chronic pancreatitis. Advancing the understanding of fibrogenesis, mechanisms of exocrine insufficiency, calcification, and pain and continuing development/modification of diagnostic tests should lead to improved prevention, detection and treatment of the condition. More accurate quantification of outcomes is critical for translating potential therapies from bench to bedside.
Collapse
Affiliation(s)
- Matthew J DiMagno
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA.
| | | |
Collapse
|
33
|
Wang XL, Li Y, Kuang JS, Zhao Y, Liu P. Increased heat shock protein 70 expression in the pancreas of rats with endotoxic shock. World J Gastroenterol 2006; 12:780-3. [PMID: 16521195 PMCID: PMC4066132 DOI: 10.3748/wjg.v12.i5.780] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the ultra-structural changes and heat shock protein 70 (HSP70) expression in the pancreas of rats with endotoxic shock and to detect their possible relationship.
METHODS: A total of 33 Wistar rats were randomly divided into three groups: control group (given normal saline), small dose lipopolysaccharide (LPS) group (given LPS 5 mg/kg) and large dose LPS group (given LPS 10 mg/kg). Pancreas was explanted to detect the ultra-structural changes by TEM and the HSP70 expression by immunohistochemistry and Western blot.
RESULTS: Rats given small doses of LPS showed swelling and loss of mitochondrial cristae of acinar cells and increased number of autophagic vacuoles in the cytoplasm of acinar cells. Rats given large doses of LPS showed swelling, vacuolization, and obvious myeloid changes of mitochondrial cristae of acinar cells, increased number of autophagic vacuoles in the cytoplasm of acinar cells. HSP70 expression was increased compared to the control group (P<0.05).
CONCLUSION: Small doses of LPS may induce stronger expression of HSP70, promote autophagocytosis and ameliorate ultra-structural injuries.
Collapse
Affiliation(s)
- Xue-Lian Wang
- Department of Infectious Diseases, The Second Affiliated Hospital, China Medical University, Shenyang 110004, Liaoning Province, China
| | | | | | | | | |
Collapse
|
34
|
Hwang JH, Ryu JK, Yoon YB, Lee KH, Park YS, Kim JW, Kim N, Lee DH, Jeong JB, Seo JS, Kim YT. Spontaneous activation of pancreas trypsinogen in heat shock protein 70.1 knock-out mice. Pancreas 2005; 31:332-6. [PMID: 16258366 DOI: 10.1097/01.mpa.0000183377.04295.c3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVES Heat shock proteins (Hsp's) protect cellular proteins in response to injury, and the role of Hsp70 in experimental pancreatitis was recently described. To find out the possible role of Hsp70 in pancreatitis, we used Hsp70 knock-out mice (Hsp70.1-/-) and wild-type mice (Hsp70.1+/+). METHODS We studied enzymes activities, Hsp70 protein levels, and histologies in cerulein-induced pancreatitis of Hsp70.1-/- and Hsp70.1+/+ mice. RESULTS In the basal state, Hsp70 protein levels were higher in Hsp70.1+/+ than in Hsp70.1-/- mice, and trypsin activity was higher in Hsp70.1-/- than in Hsp70.1+/+ mice. The zymogen/lysosome ratio of cathepsin B activity before cerulein injection was higher in Hsp70.1-/- than in Hsp70.1+/+ mice. The expression level of Hsp70 in the pancreas increased in both of Hsp70.1-/- and Hsp70.1+/+ mice after hyperthermia because of the Hsp70.3 gene left intact in Hsp70.1-/- mice. After cerulein hyperstimulation, trypsin activity increased 2-fold in Hsp70.1+/+ mice, but cerulein did not further increase basally elevated trypsin activity in Hsp70.1-/- mice. Hyperthermia pretreatment not only blocked cerulein-induced trypsinogen activation, pancreatic edema, and vacuolization in Hsp70.1+/+ mice, but also decreased basally elevated trypsin activity in Hsp70.1-/- mice. CONCLUSIONS Hsp70 can be responsible for inhibition of cerulein-induced pancreatitis and prevention of spontaneous trypsinogen activation in mice by inhibiting the colocalization of zymogen and lysosomal enzymes.
Collapse
Affiliation(s)
- Jin-Hyeok Hwang
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Gyeonggi-do, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Letoha T, Somlai C, Takács T, Szabolcs A, Rakonczay Z, Jármay K, Szalontai T, Varga I, Kaszaki J, Boros I, Duda E, Hackler L, Kurucz I, Penke B. The proteasome inhibitor MG132 protects against acute pancreatitis. Free Radic Biol Med 2005; 39:1142-51. [PMID: 16214030 DOI: 10.1016/j.freeradbiomed.2005.06.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2005] [Revised: 06/07/2005] [Accepted: 06/09/2005] [Indexed: 02/06/2023]
Abstract
The cell-permeant MG132 tripeptide (Z-Leu-Leu-Leu-aldehyde) is a peptide aldehyde proteasome inhibitor that also inhibits other proteases, including calpains and cathepsins. By blocking the proteasome, this tripeptide has been shown to induce the expression of cell-protective heat shock proteins (HSPs) in vitro. Effects of MG132 were studied in an in vivo model of acute pancreatitis. Pancreatitis was induced in male Wistar rats by injecting 2 x 100 microug/kg cholecystokinin octapeptide intraperitoneally (ip) at an interval of 1 h. Pretreating the animals with 10 mg/kg MG132 ip before the induction of pancreatitis significantly inhibited IkappaB degradation and subsequent activation of nuclear factor-kappaB (NF-kappaB). MG132 also increased HSP72 expression. Induction of HSP72 and inhibition of NF-kappaB improved parameters of acute pancreatitis. Thus MG132 significantly decreased serum amylase, pancreatic weight/body weight ratio, pancreatic myeloperoxidase activity, proinflammatory cytokine concentrations, and the expression of pancreatitis-associated protein. Parameters of oxidative stress (GSH, MDA, SOD, etc.) were improved in both the serum and the pancreas. Histopathological examinations revealed that pancreatic specimens of animals pretreated with the peptide demonstrated milder edema, cellular damage, and inflammatory activity. Our findings show that simultaneous inhibition of calpains, cathepsins, and the proteasome with MG132 prevents the onset of acute pancreatitis.
Collapse
Affiliation(s)
- Tamás Letoha
- Department of Medical Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Konturek PC, Dembinski A, Warzecha Z, Burnat G, Ceranowicz P, Hahn EG, Dembinski M, Tomaszewska R, Konturek SJ. Pioglitazone, a specific ligand of peroxisome proliferator-activated receptor-gamma, protects pancreas against acute cerulein-induced pancreatitis. World J Gastroenterol 2005; 11:6322-9. [PMID: 16419161 PMCID: PMC4320336 DOI: 10.3748/wjg.v11.i40.6322] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To determine the effect of pioglitazone, a specific peroxisome proliferator-activated receptor-γ (PPARγ) ligand, on the development of acute pancreatitis (AP) and on the expression of heat shock protein 70 (HSP70) in the pancreas.
METHODS: AP was induced in rats by subcutaneous infusion of cerulein for 5 h. Pancreatic blood flow was measured by laser Doppler flowmetry. Plasma lipase activity, interleukin-1β (IL-1β) and IL-10 were determined. Pancreatic weight and histology were evaluated and pancreatic DNA synthesis and blood flow as well as pancreatic mRNA for IL-1β and HSP70 were assessed in rats treated with pioglitazone alone or in combination with cerulein.
RESULTS: Pioglitazone administered (10-100 mg/kg i.g.) 30 min before cerulein, attenuated dose-dependently the pancreatic tissue damage in cerulein-induced pancreatitis (CIP) as demonstrated by the improvement of pancreatic histology, reduction in plasma lipase activity, plasma concentration of pro-inflammatory IL-1β and its gene expression in the pancreas and attenuation of the pancreatitis-evoked fall in pancreatic blood flow. CIP increased pancreatic HSP70 mRNA and protein expression in the pancreas and this effect was enhanced by pioglitazone treatment.
CONCLUSION: Pioglitazone attenuates CIP and the beneficial effect of this pioglitazone is multifactorial probably due to its anti-inflammatory activities, to the suppression of IL-1β and to the overexpression of HSP70. PPARγ ligands could represent a new therapeutic option in the treatment of AP.
Collapse
Affiliation(s)
- Peter C Konturek
- First Department of Medicine, University Erlangen-Nurnberg, Erlangen, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Warzecha Z, Dembinski A, Ceranowicz P, Konturek SJ, Dembinski M, Pawlik WW, Tomaszewska R, Stachura J, Kusnierz-Cabala B, Naskalski JW, Konturek PC. Ischemic preconditioning inhibits development of edematous cerulein-induced pancreatitis: Involvement of cyclooxygenases and heat shock protein 70. World J Gastroenterol 2005; 11:5958-65. [PMID: 16273606 PMCID: PMC4436717 DOI: 10.3748/wjg.v11.i38.5958] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To determine whether ischemic preconditioning (IP) affects the development of edematous cerulein-induced pancreatitis and to assess the role of cyclooxygenase-1 (COX-1), COX-2, and heat shock protein 70 (HSP 70) in this process.
METHODS: In male Wistar rats, IP was performed by clamping of celiac artery (twice for 5 min at 5-min intervals). Thirty minutes after IP or sham operation, acute pancreatitis was induced by cerulein. Activity of COX-1 or COX-2 was inhibited by resveratrol or rofecoxib, respectively (10 mg/kg).
RESULTS: IP significantly reduced pancreatic damage in cerulein-induced pancreatitis as demonstrated by the improvement of pancreas histology, reduction in serum lipase and poly-C ribonuclease activity, and serum concentration of pro-inflammatory interleukin (IL)-1β. Also, IP attenuated the pancreatitis-evoked fall in pancreatic blood flow and pancreatic DNA synthesis. Serum level of anti-inflammatory IL-10 was not affected by IP. Cerulein-induced pancreatitis and IP increased the content of HSP 70 in the pancreas. Maximal increase in HSP 70 was observed when IP was combined with cerulein-induced pancreatitis. Inhibition of COXs, especially COX-2, reduced the protective effect of IP in edematous pancreatitis.
CONCLUSION: Our results indicate that IP reduces pancreatic damage in cerulein-induced pancreatitis and this effect, at least in part, depends on the activity of COXs and pancreatic production of HSP 70.
Collapse
Affiliation(s)
- Zygmunt Warzecha
- Department of Physiology, Jagiellonian University Medical College, ul. Grzegorzecka 16, Kraków 31-531, Poland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Balog A, Gyulai Z, Boros LG, Farkas G, Takács T, Lonovics J, Mándi Y. Polymorphism of the TNF-alpha, HSP70-2, and CD14 genes increases susceptibility to severe acute pancreatitis. Pancreas 2005; 30:e46-50. [PMID: 15714129 DOI: 10.1097/01.mpa.0000153329.92686.ac] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVES Proinflammatory cytokines and heat shock proteins play fundamental roles in the pathogenesis of acute pancreatitis. We studied whether polymorphisms of the tumor necrosis factor alpha (TNF-alpha), heat shock protein 70-2 (HSP70-2), and CD14 genes correlate with the severity of acute pancreatitis. METHODS Patients with acute pancreatitis (n = 77) of mixed etiology were grouped according to the severity of the disease on the basis of the Ranson scores. Healthy blood donors (n = 71) served as controls. TNF-alpha-308 polymorphism was determined by NcoI RFLP, HSP70-2 polymorphism by PstI RFLP, and CD14-159 polymorphism by melting point analysis. RESULTS There was a moderate increase in the frequency of the TNF1/2 genotype (P = 0.046) among patients with severe acute pancreatitis as compared with those with mild disease. A more significant increase was observed in the frequency of the HSP70-2 G allele between groups of patients with mild or severe pancreatitis (18.9% vs. 53%; P < 0.001). Conversely, the A/A genotype was markedly more frequent among the patients with mild pancreatitis (P < 0.0001). There was no significant correlation between CD14-159 promoter polymorphism and the severity of pancreatitis. CONCLUSION High frequencies of the HSP70-2 G and the TNF-alpha -308 A alleles were associated with risk of severe acute pancreatitis. Genotype assessments may be important prognostic tools to predict disease severity and the course of acute pancreatitis. Therefore, genotype assessments may also be used to guide treatment or to identify risk populations for severe acute pancreatitis.
Collapse
Affiliation(s)
- Attila Balog
- Department of Medical Microbiology and Immunology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
The understanding of the regulation of apoptosis and necrosis, the two principal cell death pathways, is becoming exceedingly important in investigations of the pathogenesis and treatment of pancreatitis and pancreatic cancer. For example, in acute pancreatitis significant amounts of pancreatic necrosis are associated with increased morbidity and mortality. Thus, determining the key steps regulating necrosis should provide insights into potential therapeutic strategies for improving outcome in these patients. On the other hand, in pancreatic cancer various survival mechanisms act to prevent cell death, resulting in promotion of tumor growth and metastasis. Resistance of pancreatic cancer to apoptosis is the key factor preventing responses to therapies. Investigations of the regulation of cell death mechanisms specific to pancreatic cancer should lead to improvements in our current therapies for this disease. The present review is designed to provide information about cell death pathways in pancreatitis and pancreatic cancer with reference to areas that need further investigation, as well as to provide measurement techniques adapted to pancreatic tissue and cells.
Collapse
Affiliation(s)
- Anna S Gukovskaya
- VA Greater Los Angeles Health Care System and University of California, Los Angeles, CA 90073, USA.
| | | |
Collapse
|
40
|
Abe M, Kato S, Okayama M, Aihara E, Mitsufuji S, Takeuchi K. Prophylactic effect of restraint stress on cerulein-induced pancreatitis in rats: role of endogenous glucocorticoids. Dig Dis Sci 2004; 49:521-8. [PMID: 15139509 DOI: 10.1023/b:ddas.0000020514.38242.32] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Stress is reportedly known to affect the severity of acute pancreatitis, yet the effect has not been without controversy. We investigated the influence of restraint stress on cerulein-induced pancreatitis, especially in relation to endogenous glucocorticoids. In the present study, restraint stress significantly reduced the increase in serum amylase levels but not pancreas weight induced by cerulein, the effect being totally antagonized by pretreatment with mifepristone, a glucocorticoid receptor antagonist. The changes induced by cerulein were prevented by dexamethasone in a dose-dependent manner. Histologically, restraint stress suppressed the intralobular edema, similar to a low dose of dexamethasone, while the latter at a high dose prevented not only the intralobular but also the interlobular edema. These results suggest that restraint stress exerts a beneficial influence on the cerulein-induced pancreatitis, mainly mediated by endogenous glucocorticoids, and it is assumed that short-term steroid therapy has a potential of clinical application for treatment of pancreatitis.
Collapse
Affiliation(s)
- Mitsumasa Abe
- Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, 465 Kajii-cho, Kamigyo, Kyoto 602-8566, Japan.
| | | | | | | | | | | |
Collapse
|
41
|
Beranek H, Teich N, Witt H, Schulz HU, Mössner J, Keim V. Analysis of tumour necrosis factor alpha and interleukin 10 promotor variants in patients with chronic pancreatitis. Eur J Gastroenterol Hepatol 2003; 15:1223-7. [PMID: 14560157 DOI: 10.1097/00042737-200311000-00012] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
OBJECTIVE Cationic trypsinogen gene mutations are strong risk factors of hereditary pancreatitis. However, 20% of subjects with a trypsinogen mutation never get pancreatitis and the cause of this incomplete penetrance is unknown. We investigated the influence of interleukin 10 (IL10) and tumour necrosis factor alpha (TNFalpha) promotor variants on the manifestation of chronic pancreatitis of different underlying causes and in pancreatic cancer. METHODS A total of 335 German patients with chronic pancreatitis were investigated. In 157 patients the disease was related to alcohol abuse; the other cases were of non-alcoholic origin. In the latter group, the serine protease inhibitor, Kazal type 1 (SPINK1) mutation N34S was found in 72 patients and the trypsinogen mutations N29I or R122H were present in 60 patients; in the remaining 46 patients no mutation was found. In addition, we studied 208 patients with pancreatic cancer. As controls, 116 healthy blood donors and 25 healthy carriers of the trypsinogen mutations N29I or R122H were investigated. After DNA extraction from blood leucocytes, genotyping for the cytokine polymorphisms was performed by induced heteroduplex generators and/or direct DNA sequencing of the IL10 and TNFalpha promotor regions. RESULTS The frequencies of the promotor polymorphisms of IL10-627A, IL10-1117A, TNF-238A and TNF-308A in patients with alcoholic chronic pancreatitis, idiopathic pancreatitis, SPINK1-N34S-associated chronic pancreatitis and pancreatic cancer did not differ significantly from the control group. The variant TNF-238A was two to four times more frequent in index patients with trypsinogen mutations than in all other groups. The analysis of the allelic frequencies of whole families with trypsinogen mutations revealed that all subjects with the TNF-238A variant suffered from chronic pancreatitis, whereas all intrafamilial controls with wild-type TNF were unaffected. CONCLUSIONS TNFalpha and IL10 promotor variants are not associated with a manifestation of chronic pancreatitis or pancreatic cancer. The variant TNF-238A, however, might be a relevant risk factor for disease manifestation in families with hereditary pancreatitis.
Collapse
Affiliation(s)
- Helen Beranek
- Medizinische Klinik und Poliklinik II, Universität Leipzig, Leipzig, Kinderklinik, Charité Berlin, Berlin, Germany
| | | | | | | | | | | |
Collapse
|
42
|
Molero X, Vaquero E, Gómez JA, Alonso A, Guarner L. [New horizons in the mechanisms of acute and chronic pancreatic damage]. GASTROENTEROLOGIA Y HEPATOLOGIA 2003; 26:437-46. [PMID: 12887859 DOI: 10.1016/s0210-5705(03)70387-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- X Molero
- Servei d'Aparell Digestiu. Hospital Universitari Vall d'Hebron. Barcelona. España.
| | | | | | | | | |
Collapse
|
43
|
Abstract
Heat shock proteins (HSPs) are cytoprotective molecules that help to maintain the metabolic and structural integrity of cells. In this review, we briefly discuss the regulation and function of HSPs. The review focuses on the current knowledge of pancreatic HSP induction, the HSP level changes during acute pancreatitis, the potential effects of the pre- and co-induction of HSPs in experimental acute pancreatitis, and the mechanisms by which HSPs might mediate cellular protection.
Collapse
|
44
|
Rakonczay Z, Duda E, Kaszaki J, Iványi B, Boros I, Lonovics J, Takács T. The anti-inflammatory effect of methylprednisolone occurs down-stream of nuclear factor-kappaB DNA binding in acute pancreatitis. Eur J Pharmacol 2003; 464:217-27. [PMID: 12620516 DOI: 10.1016/s0014-2999(03)01380-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Glucocorticoids are potent anti-inflammatory drugs. The molecular mechanisms underlying these effects have not yet been fully revealed. The aim of the present study was to establish whether methylprednisolone pretreatment is beneficial and if it can block the pancreatic DNA binding of the transcription factor nuclear factor-kappaB (NF-kappaB) and proinflammatory cytokine synthesis during cholecystokinin-octapeptide (CCK)-induced acute pancreatitis in rats. Additionally, we set out to investigate the potential effects of methylprednisolone and CCK on pancreatic heat shock protein (HSP) synthesis. The dose-response (5-40 mg/kg) and time-course (6-72 h) curves of methylprednisolone on pancreatic HSP60 and HSP72 synthesis were evaluated following methylprednisolone treatment. We demonstrated that methylprednisolone specifically and dose-dependently induced HSP72 in the pancreas of rats, while it did not have a significant effect on HSP60 expression. The pancreatitis was induced near the peak level of HSP72 synthesis (2 x 30 mg/kg body weight [b.w.] methylprednisolone i.m. at an interval of 12 h, followed by a 12-h recovery period after the second injection of methylprednisolone) by administering 2 x 100 microg/kg CCK subcutaneously at an interval of 1 h. The injections of CCK in the vehicle-pretreated group significantly elevated the levels of pancreatic HSP60 and HSP72 2-4 h after the second CCK injection. Methylprednisolone pretreatment ameliorated many of the examined laboratory (the pancreatic weight/body weight [p.w./b.w.] ratio, the serum amylase activity, the plasma trypsinogen activation peptide concentration, the pancreatic levels of tumor necrosis factor-alpha and interleukin-6, the degree of lipid peroxidation, protein oxidation, nonprotein sulfhydryl group content and the pancreatic myeloperoxidase activity) and morphological parameters of the disease. Methylprednisolone pretreatment did not influence pancreatic NF-kappaB DNA binding, but decreased proinflammatory cytokine synthesis in this acute pancreatitis model. The findings suggest that the anti-inflammatory effect of large doses of methylprednisolone in secretagogue-induced pancreatitis occurs downstream of NF-kappaB DNA binding, and that increased pancreatic HSP72 synthesis may play a role in the protective effect of the drug.
Collapse
Affiliation(s)
- Zoltán Rakonczay
- First Department of Medicine, University of Szeged, P.O. Box 469, Hungary.
| | | | | | | | | | | | | |
Collapse
|
45
|
Ding SP, Li JC, Jin C. A mouse model of severe acute pancreatitis induced with caerulein and lipopolysaccharide. World J Gastroenterol 2003; 9:584-9. [PMID: 12632523 PMCID: PMC4621587 DOI: 10.3748/wjg.v9.i3.584] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To establish a non-traumatic, easy to induce and reproducible mouse model of severe acute pancreatitis (SAP) induced with caerulein and lipopolyasccharide (LPS).
METHODS: Thirty-two healthy mature NIH female mice were selected and divided at random into four groups (each of 8 mice), i.e., the control group (NS group), the caerulein group (Cn group), the lipopolysaccharide group (LPS group), and the caerulein+LPS group (Cn + LPS group). Mice were injected intraperitoneally with caerulein only, or LPS only, and caerulein and LPS in combination. All the animals were then killed by neck dislocation three hours after the last intraperitoneal injection. The pancreas and exo-pancreatic organs were then carefully removed for microscopic examination. And the pancreatic acinus was further observed under transmission electron microscope (TEM). Pancreatic weight, serum amylase, serum nitric oxide (NO) concentration, superoxide dismutase (SOD) and malondialdehyde (MDA) concentration of the pancreas were assayed respectively.
RESULTS: (1) NS animals displayed normal pancreatic structure both in the exocrine and endocrine. In the LPS group, the pancreas was slightly edematous, with the infiltration of a few inflammatory cells and the necrosis of the adjacent fat tissues. All the animals of the Cn group showed distinct signs of a mild edematous pancreatitis characterized by interstitial edema, infiltration of neutrophil and mononuclear cells, but without obvious parenchyma necrosis and hemorrhage. In contrast, the Cn + LPS group showed more diffuse focal areas of nonviable pancreatic and hemorrhage as well as systemic organ dysfunction. According to Schmidt’s criteria, the pancreatic histologic score showed that there existed significant difference in the Cn + LPS group in the interstitial edema, inflammatory infiltration, parenchyma necrosis and parenchyma homorrhage in comparison with those of the Cn group, LPS group and NS group (P < 0.01 or P < 0.05). (2) The ultrasturcture of acinar cells was seriously damaged in the Cn + LPS group. Chromatin margination of nuclei was present, the number and volume of vacuoles greatly increased. Zymogen granules (ZGs) were greatly decreased in number and endoplasmic reticulum exhibited whorls. The swollen mitochondria appeared, the crista of which was decreased in number or disappeared. (3) Pancreatic weight and serum amylase levels in the Cn +LPS was significantly higher than those of the NS group and the LPS group respectively (P < 0.01 or P < 0.05). However, the pancreatic wet weight and serum amylase concentration showed no significant difference between the Cn + LPS group and the Cn group. (4) NO concentration in the Cn + LPS group was significantly higher than that of NS group, LPS group and Cn group(P < 0.05 or P < 0.01). 5) The SOD and MDA concentration of the pancreas in the Cn + LPS group were significantly higher than those of NS, LPS and Cn groups (P < 0.05 or P < 0.01).
CONCLUSION: The mouse model of severe acute pancreatitis could be induced with caerulein and LPS, which could be non-traumatic and easy to induce, reproducible with the same pathological characteristics as those of SAP in human, and could be used in the research on the mechanism of human SAP.
Collapse
Affiliation(s)
- Shi-Ping Ding
- Department of Lymphology, Department of Histology and Embryology, Medical College of Zhejiang University, Hangzhou 310031, Zhejiang Province, China.
| | | | | |
Collapse
|
46
|
|
47
|
Abe M, Kato S, Okayama M, Mitsufuji S, Takeuchi K. Amelioration of caerulein-induced pancreatitis by restraint stress in the rat. Inflammopharmacology 2002. [DOI: 10.1163/156856002321544972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|