1
|
Lertpatipanpong P, Moon H, Seo JE, Kim M, Baek SJ. Characterization of feline nonsteroidal anti-inflammatory drug activated gene-1 (fNAG-1) and its protective function in kidney cells. BMC Vet Res 2025; 21:364. [PMID: 40399974 DOI: 10.1186/s12917-025-04781-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/23/2025] [Indexed: 05/23/2025] Open
Abstract
BACKGROUND Domestic cats are susceptible to obesity and chronic renal failure, leading to significant health risks. Nonsteroidal anti-inflammatory drug-activated gene (NAG-1), also known as growth differentiation factor 15 (GDF15), is a member of the transforming growth factor-β superfamily and has been associated with anti-obesity properties and preservation of kidney function. While the NAG-1 sequence has been extensively studied in several species, a comprehensive understanding of feline NAG-1 remains limited. This study aimed to investigate the nucleotide sequence of feline NAG-1 and its biological role in kidney protection through in-vitro experiments. METHODS The feline NAG-1 cDNA was isolated from the feline uterus, and its sequence was analyzed and compared to sequences from other species, including humans. Expression patterns of feline NAG-1 in various tissues, particularly the liver and kidney, were determined. Furthermore, the effects of different phytochemicals and NSAIDs known to induce NAG-1 expression were assessed using Crandell-Rees Feline Kidney (CRFK) cells. RESULTS The analysis revealed that feline NAG-1 shares similarities with human NAG-1 and exhibits high expression levels in the liver and kidney of cats. Treatment with tolfenamic acid, quercetin, and resveratrol significantly increased NAG-1 expression in CRFK cells. Subsequently, CRFK cells overexpressing feline NAG-1 were utilized to investigate the functional roles of NAG-1 in feline kidney health. High-content screening analysis demonstrated that NAG-1 overexpression in cat kidney cells enhanced mitochondrial membrane potential, reduced reactive oxygen species (ROS) generation in both whole cells and mitochondria, and downregulated the expression of Bax, a pro-apoptotic protein, under conditions of ROS-induced stress. These findings indicate the renoprotective role of NAG-1. CONCLUSION This study highlights the significant role of NAG-1 in feline kidney cells, revealing its high expression in the liver and kidney and demonstrating its protective effects on kidney function. These results underscore the potential of NAG-1 as a key factor in kidney protection. Future research should focus on further elucidating the molecular pathways involved and exploring therapeutic strategies to harness NAG-1 for managing obesity-related renal dysfunction in cats.
Collapse
Affiliation(s)
- Pattawika Lertpatipanpong
- Laboratory of Signal Transduction, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, 65000, Thailand
| | - Hyunjin Moon
- Laboratory of Signal Transduction, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Jung Eun Seo
- Laboratory of Signal Transduction, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Minsu Kim
- Center for Veterinary Integrative Medicine, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seung Joon Baek
- Laboratory of Signal Transduction, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
- Center for Veterinary Integrative Medicine, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
2
|
Jung YS, Radhakrishnan K, Noh JR, Kim YH, Lee CH, Choi HS. Hepatic estrogen-related receptor gamma is a key regulator of GDF15 production in acute and chronic liver injury. Mol Cell Endocrinol 2025; 606:112572. [PMID: 40379080 DOI: 10.1016/j.mce.2025.112572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 04/21/2025] [Accepted: 05/14/2025] [Indexed: 05/19/2025]
Abstract
AIMS Growth differentiation factor 15 (GDF15) is a stress-induced hepatokine with emerging roles in liver injury. Estrogen-related receptor γ (ERRγ), a nuclear receptor regulating mitochondrial function and metabolic stress, has also been implicated in various liver injury conditions. However, the regulatory interplay between ERRγ and GDF15 remains unclear. This study investigates the molecular mechanisms underlying GDF15 expression and secretion in the liver, focusing on the role of ERRγ during acute and chronic liver injury. MATERIALS AND METHODS Wild-type and hepatocyte-specific ERRγ knockout (ERRγ-LKO) mice were administered with a single dose of carbon tetrachloride (CCl4) or fed an alcohol-containing diet for 4 weeks to establish acute or chronic liver injury models, respectively. ERRγ was overexpressed through an adenoviral construct (Ad-ERRγ). The ERRγ-specific inverse agonist GSK5182 was employed to inhibit the transactivation of ERRγ. The luciferase reporter assays were used to assess the binding of ERRγ protein to the regulatory region of GDF15 gene. KEY FINDINGS Hepatic ERRγ and GDF15 gene expression, and GDF15 protein secretion were significantly elevated in both acute and chronic liver injury. Adenovirus-mediated overexpression of ERRγ is sufficient to substantially increase hepatic GDF15 expression and secretion. Genetic ablation of ERRγ expression or pharmacological inhibition of ERRγ transactivation substantially inhibited the upregulation of hepatic GDF15 expression and production in both acute and chronic liver injury. Furthermore, reporter assays showed that ERRγ, but not ERRα or ERRβ, directly binds to and activates the GDF15 gene promoter. SIGNIFICANCE Our findings highlight the crucial role of ERRγ in transcriptional regulation of GDF15 gene expression and production in response to liver damage. Understanding the regulatory mechanisms of GDF15 expression could lead to new therapeutic targets for protecting the liver from various types of injuries and associated diseases.
Collapse
Affiliation(s)
- Yoon Seok Jung
- Host-Directed Antiviral Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Kamalakannan Radhakrishnan
- Host-Directed Antiviral Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Jung-Ran Noh
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Yong-Hoon Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea; Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, 34113, Republic of Korea.
| | - Chul-Ho Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea; Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, 34113, Republic of Korea.
| | - Hueng-Sik Choi
- Host-Directed Antiviral Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
3
|
Lian J, An Y, Wei W, Lu Y, Zhang X, Sun G, Guo H, Xu L, Chen X, Hu H. Transcriptional landscape and chromatin accessibility reveal key regulators for liver regenerative initiation and organoid formation. Cell Rep 2025; 44:115633. [PMID: 40286271 DOI: 10.1016/j.celrep.2025.115633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 03/19/2025] [Accepted: 04/10/2025] [Indexed: 04/29/2025] Open
Abstract
Liver regeneration is a well-organized and phase-restricted process that involves chromatin remodeling and transcriptional alterations. However, the specific transcription factors (TFs) that act as key "switches" to initiate hepatocyte regeneration and organoid formation remain unclear. Comprehensive integration of RNA sequencing and ATAC sequencing reveals that ATF3 representing "Initiation_on" TF and ONECUT2 representing "Initiation_off" TF transiently modulate the occupancy of target promoters to license liver cells for regeneration. Knockdown of Atf3 or overexpression of Onecut2 not only reduces organoid formation but also delays tissue-damage repair after PHx or CCl4 treatment. Mechanistically, we demonstrate that ATF3 binds to the promoter of Slc7a5 to activate mTOR signals while the Hmgcs1 promoter loses ONECUT2 binding to facilitate regenerative initiation. The results identify the mechanism for initiating regeneration and reveal the remodeling of transcriptional landscapes and chromatin accessibility, thereby providing potential therapeutic targets for liver diseases with regenerative defects.
Collapse
Affiliation(s)
- Jiabei Lian
- The Key Laboratory of Experimental Teratology, Ministry of Education, Department of Systems Biomedicine, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Yachun An
- The Key Laboratory of Experimental Teratology, Ministry of Education, Department of Systems Biomedicine, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Wenjing Wei
- The Key Laboratory of Experimental Teratology, Ministry of Education, Department of Systems Biomedicine, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Yao Lu
- The Key Laboratory of Experimental Teratology, Ministry of Education, Department of Systems Biomedicine, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Xiyu Zhang
- The Key Laboratory of Experimental Teratology, Ministry of Education, Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Gongping Sun
- The Key Laboratory of Experimental Teratology, Ministry of Education, Department of Histology and Embryology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Haiyang Guo
- Department of Clinical Laboratory, the Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Longjin Xu
- Shandong Center for Disease Control and Prevention, Jinan, Shandong 250014, China
| | - Xuena Chen
- The Key Laboratory of Experimental Teratology, Ministry of Education, Department of Systems Biomedicine, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Huili Hu
- The Key Laboratory of Experimental Teratology, Ministry of Education, Department of Systems Biomedicine, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
4
|
Kronenberger D, Zimmers T, Ralston R, Runco D. Circulating Growth Differentiation Factor 15 (GDF15) in Paediatric Disease: A Systematic Review. J Cachexia Sarcopenia Muscle 2025; 16:e13712. [PMID: 40019842 PMCID: PMC11870081 DOI: 10.1002/jcsm.13712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 12/20/2024] [Accepted: 01/02/2025] [Indexed: 03/03/2025] Open
Abstract
BACKGROUND Growth Differentiation Factor 15 (GDF15), a nonspecific inflammatory marker and member of the TGF-β superfamily, has a well-established role in both inflammation and metabolic modulation, but lacks a comprehensive paediatric literature review. In several adult disease states, including cancer cachexia and pregnancy, circulation and expression of GDF15 has been of clinical and scientific interest, but little published paediatric data exists. As such, we aim to summarize existing paediatric studies. METHODS This review follows the PRISMA-ScR guidelines for reporting and aims to summarize existing paediatric studies including GDF15, describe disease entities in which GDF15 has been investigated including existing reference ranges, and identify literature gaps to present future clinical and research direction. Our search strategy queried Ovid MEDLINE, Ovid Embase, Cochrane Library and Scopus databases to find original scientific articles measuring GDF15 from birth through children up to age 18. Data relating to study participant demographic and disease pathology, GDF15 measurement methods and clinical outcomes of interest were extracted. RESULTS Sixty-two studies were included, classified as cardiac, endocrine, mitochondrial, hematologic, neonatal, oncologic, infectious, rheumatologic, renal, neurologic or healthy. While several entities demonstrated elevated GDF15, the highest median GDF15 levels were observed in cardiac arrest 7089 pg/mL (interquartile range 3805-13 306) and mitochondrial diseases 4640 pg/mL (1896-14 064). In certain conditions, including cardiac stress, polycystic ovarian syndrome (PCOS), Kawasaki Disease (KD) and certain mitochondrial myopathies GDF15 can normalize with disease treatment or resolution. Of healthy children studied, GDF15 levels were highest in healthy neonates and followed a predictable pattern, decreasing over time. Mean and standard deviation values of GDF15 in healthy children were 343.8 ± 221.0 pg/mL, with a range of 90-1134 pg/mL for study averages. CONCLUSIONS Circulating GDF15 has been studied in a variety of paediatric diseases. However, variable evaluated outcome measures and GDF15 measurement methodologies prevent generalizability and direct comparison of these published studies. Validating normal GDF15 levels in children with standardized and reproducible methodology will help clarify GDF15's utility as a diagnostic marker of disease, a necessary step to elucidate clinical implications of GDF15 over expression and its potential as a therapeutic target.
Collapse
Affiliation(s)
| | - Teresa A. Zimmers
- Department of Cell, Developmental, and Cancer Biology, Knight Cancer InstituteOregon Health & Science UniversityPortlandOregonUSA
| | - Rick K. Ralston
- Ruth Lilly Medical LibraryIndiana University School of MedicineIndianapolisIndianaUSA
| | - Daniel V. Runco
- Division of Hematology/Oncology, Department of Pediatrics, Seattle Children's HospitalUniversity of WashingtonSeattleWashingtonUSA
- Ben Towne Center for Childhood Cancer ResearchSeattle Children's Research InstituteSeattleWashingtonUSA
- Fred Hutchinson Cancer Research CenterSeattleWashingtonUSA
| |
Collapse
|
5
|
Yoon T, Ha JW, Park YB, Lee SW. Circulating GDF15 May Estimate Vasculitis Activity and Predict Poor Outcomes During the Disease Course of ANCA-Associated Vasculitis. J Clin Med 2025; 14:1876. [PMID: 40142684 PMCID: PMC11942900 DOI: 10.3390/jcm14061876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/08/2025] [Accepted: 03/09/2025] [Indexed: 03/28/2025] Open
Abstract
Objective: This study investigated whether circulating growth differentiation factor 15 (GDF15) at diagnosis could estimate the Birmingham Vasculitis Activity Score (BVAS) and potentially predict all-cause mortality and end-stage kidney disease (ESKD) during follow-up in patients with antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV). Methods: This study included 79 patients selected from a cohort of Korean patients with AAV. Circulating GDF15 was measured from patients' sera collected at diagnosis and stored at -80 °C. Clinical data at diagnosis and during follow-up were reviewed. Results: The median age was 64.0 years (40.5% men, and 59.5% women). Median circulating GDF15 was measured as 995.0 pg/mL. Of the 79 patients, 6 (7.6%) died and 20 (25.3%) progressed to ESKD during the disease course. Circulating GDF15 levels were significantly correlated with BVAS (r = 0.340) at diagnosis. Patients with circulating GDF15 ≥ 3350.5 pg/mL exhibited a significantly higher risk of the highest tertile of BVAS than those without (relative risk [RR], 11.229). Similarly, patients with circulating GDF15 ≥ 2239.5 pg/mL and ≥2208.5 pg/mL showed higher risks of all-cause mortality (RR, 7.733) and progression to ESKD (RR 7.125) than those without. Patients with circulating GDF15 ≥ 2239.5 pg/mL and ≥2208.5 pg/mL also showed significantly lower patient and ESKD-free survival rates than those without. Conclusions: Circulating GDF15 at diagnosis is useful in estimating BVAS and potentially predicts all-cause mortality and ESKD progression in patients with AAV.
Collapse
Affiliation(s)
- Taejun Yoon
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Jang Woo Ha
- Division of Rheumatology, Department of Internal Medicine, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin 16995, Republic of Korea
| | - Yong-Beom Park
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Sang-Won Lee
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| |
Collapse
|
6
|
Baazaoui N, Y Alfaifi M, Ben Saad R, Garzoli S. Potential role of long noncoding RNA maternally expressed gene 3 (MEG3) in the process of neurodegeneration. Neuroscience 2025; 565:487-498. [PMID: 39675694 DOI: 10.1016/j.neuroscience.2024.12.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 10/28/2024] [Accepted: 12/12/2024] [Indexed: 12/17/2024]
Abstract
Neurodegenerative diseases (ND) are complex diseases of still unknown etiology. Lately, long non-coding RNAs (lncRNAs) have become increasingly popular and implicated in several pathologies as they have several roles and appear to be involved in all biological processes such as cell signaling and cycle control as well as translation and transcription. MEG3 is one of these and acts by binding proteins or directly or competitively binding miRNAs. It has a crucial role in controlling cell death, inflammatory process, oxidative stress, endoplasmic reticulum stress, epithelial-mesenchymal transition and other processes. Recent reports showed that MEG3 is a major driving force of the necrosis phenomena in AD, causing the death of neurons, and its upregulation in cancer patients was linked to tumor suppression. Dysregulation of MEG3 affects neuronal cell death, inflammatory process, smooth muscle cell proliferation and consequently leads to the initiation or the acceleration of the disease. This review examines the current state of knowledge concerning the level of expression and the regulatory function of MEG3 in relation to several NDs. In addition, we examined the relation of MEG3 with neurotrophic factors such as Tumor growth factor β (TGFβ) and its possible mechanism of action. A comprehensive and in-depth analysis of the role of MEG3 in ND could give a clearer picture about the initiation of the process of neuronal death and help develop an alternative therapy that targets MEG3.
Collapse
Affiliation(s)
- Narjes Baazaoui
- Central Labs, King Khalid University, AlQura'a, Abha, P.O. Box 960, Saudi Arabia; Biology Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia; Tissue Culture and Cancer Biology Research Laboratory, King Khalid University, Abha 9004, Saudi Arabia
| | - Mohammad Y Alfaifi
- Central Labs, King Khalid University, AlQura'a, Abha, P.O. Box 960, Saudi Arabia; Biology Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia; Tissue Culture and Cancer Biology Research Laboratory, King Khalid University, Abha 9004, Saudi Arabia
| | - Rania Ben Saad
- Biotechnology and Plant Improvement Laboratory, Center of Biotechnology of Sfax, B.P "1177", Sfax 3018, Tunisia
| | - Stefania Garzoli
- Department of Chemistry and Technologies of Drug, Sapienza University, P. le Aldo Moro 5, 00185 Rome, Italy.
| |
Collapse
|
7
|
Sanip Z, Rasool AHG, Pahimi N, Bokti NA, Yusof Z, Mohamed MS, Isa WYHW. Elevated Inflammation and Adhesion Molecule hsCRP, GDF-15 and VCAM-1 in Angina Patients with Non-obstructive Coronary Artery Disease. Malays J Med Sci 2024; 31:148-159. [PMID: 39830114 PMCID: PMC11740812 DOI: 10.21315/mjms2024.31.6.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 11/07/2024] [Indexed: 01/22/2025] Open
Abstract
Background Non-obstructive coronary artery disease (NOCAD) is a condition in stable patients that experience angina despite not having significant coronary obstructive lesion. Knowledge on the role of certain biomarkers in patients with NOCAD is still limited. This study aimed to evaluate the roles of inflammation and adhesion molecules in the development of NOCAD. The correlations between the peripheral and coronary levels of the inflammatory biomarkers and adhesion molecules were also investigated. Methods In this cross-sectional study, symptomatic angina patients scheduled for coronary angiograms were recruited and separated into obstructive coronary artery disease (OCAD) and NOCAD groups based on those angiograms. Peripheral and coronary blood samples were taken to measure inflammation biomarkers [high sensitivity C-reactive protein (hsCRP) and growth differentiation factor 15 (GDF-15)], and adhesion molecules [vascular cell adhesion molecule-1 (VCAM-1)]. Subjects without angina symptoms were recruited for the control group. Results The hsCRP, GDF-15, and VCAM-1 levels were higher in the OCAD and NOCAD groups than in the control group. VCAM-1 levels successfully predicted the incidence of NOCAD [p = 0.010, area under the curve (AUC) = 0.716]. All biomarkers' levels in the peripheral and coronary blood were correlated in OCAD and NOCAD patients (p < 0.001). Conclusion Elevated levels of the hsCRP, GDF-15, and VCAM-1 were found with NOCAD, despite the absent of significant coronary obstruction. VCAM-1 successfully predicted NOCAD and may thus serve as an early NOCAD biomarker. Significant correlations of hsCRP, GDF-15, and VCAM-1 level in peripheral and coronary blood indicate that the peripheral levels of these biomarkers reflect the levels and changes that occur at the coronary level.
Collapse
Affiliation(s)
- Zulkefli Sanip
- Central Research Laboratory, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Aida Hanum Ghulam Rasool
- Department of Pharmacology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Nurnajwa Pahimi
- Department of Pharmacology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
- Department of Internal Medicine, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Nur Adilah Bokti
- Department of Internal Medicine, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
- Cardiology Unit, Hospital Universiti Sains Malaysia, Kelantan, Malaysia
| | - Zurkurnai Yusof
- Cardiology Unit, Hospital Universiti Sains Malaysia, Kelantan, Malaysia
| | | | - W Yus Haniff W Isa
- Department of Internal Medicine, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
- Cardiology Unit, Hospital Universiti Sains Malaysia, Kelantan, Malaysia
| |
Collapse
|
8
|
Igual-Gil C, Bishop CA, Jähnert M, Johann K, Coleman V, Baum V, Kruse M, Pfeiffer AFH, Pivovarova-Ramich O, Ost M, Kleinert M, Klaus S. GDF15 is required for maintaining subcutaneous adipose tissue lipid metabolic signature. Sci Rep 2024; 14:26989. [PMID: 39505926 PMCID: PMC11541726 DOI: 10.1038/s41598-024-77448-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/22/2024] [Indexed: 11/08/2024] Open
Abstract
Recent research has identified growth differentiation factor 15 (GDF15) as a crucial factor in various physiological and pathological processes, particularly in energy balance regulation. While the role of GDF15 in modulating energy metabolism through hindbrain GDNF family receptor alpha-like (GFRAL) signaling has been extensively studied, emerging evidence suggests direct peripheral metabolic actions of GDF15. Using knockout mouse models, we investigated GDF15 and GFRAL's roles in adipose tissue metabolism. Our findings indicate that C57BL/6/129/SvJ Gdf15-KO mice exhibit impaired expression of de novo lipogenesis enzymes in subcutaneous adipose tissue (sWAT). In contrast, C57BL/6J Gfral-KO mice showed no impairments compared to wild-type (WT) littermates. RNA-Seq analysis of sWAT in Gdf15-KO mice revealed a broad downregulation of genes involved in lipid metabolism. Importantly, our study uncovered sex-specific effects, with females being more affected by GDF15 loss than males. Additionally, we observed a fasting-induced upregulation of GDF15 gene expression in sWAT of both mice and humans, reinforcing this factor's role in adipose tissue lipid metabolism. In conclusion, our research highlights an essential role for GDF15 in sWAT lipid metabolic homeostasis. These insights enhance our understanding of GDF15's functions in adipose tissue physiology and underscore its potential as a therapeutic target for metabolic disorders.
Collapse
Affiliation(s)
- Carla Igual-Gil
- Department of Physiology of Energy Metabolism, German Institute of Human Nutrition Potsdam-Rehbrücke, Arthur-Scheunert-Allee 114-116, 14458, Nuthetal, Germany
| | - Christopher A Bishop
- Department of Physiology of Energy Metabolism, German Institute of Human Nutrition Potsdam-Rehbrücke, Arthur-Scheunert-Allee 114-116, 14458, Nuthetal, Germany
| | - Markus Jähnert
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbrücke, Arthur-Scheunert-Allee 114-116, 14458, Nuthetal, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Kornelia Johann
- Department of Molecular Physiology of Exercise and Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke, Arthur-Scheunert-Allee 114-116, 14458, Nuthetal, Germany
| | - Verena Coleman
- Department of Physiology of Energy Metabolism, German Institute of Human Nutrition Potsdam-Rehbrücke, Arthur-Scheunert-Allee 114-116, 14458, Nuthetal, Germany
| | - Vanessa Baum
- Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14458, Nuthetal, Germany
| | - Michael Kruse
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- Department of Endocrinology, Diabetes and Nutrition, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Andreas F H Pfeiffer
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- Department of Endocrinology, Diabetes and Nutrition, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Olga Pivovarova-Ramich
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- Department of Endocrinology and Metabolism, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Molecular Metabolism and Precision Nutrition, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Mario Ost
- Department of Physiology of Energy Metabolism, German Institute of Human Nutrition Potsdam-Rehbrücke, Arthur-Scheunert-Allee 114-116, 14458, Nuthetal, Germany
- Paul Flechsig Institute of Neuropathology, University Clinic Leipzig, Leipzig, Germany
| | - Maximilian Kleinert
- Department of Molecular Physiology of Exercise and Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke, Arthur-Scheunert-Allee 114-116, 14458, Nuthetal, Germany
| | - Susanne Klaus
- Department of Physiology of Energy Metabolism, German Institute of Human Nutrition Potsdam-Rehbrücke, Arthur-Scheunert-Allee 114-116, 14458, Nuthetal, Germany.
- Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14458, Nuthetal, Germany.
| |
Collapse
|
9
|
Takeuchi K, Yamaguchi K, Takahashi Y, Yano K, Okishio S, Ishiba H, Tochiki N, Kataoka S, Fujii H, Iwai N, Seko Y, Umemura A, Moriguchi M, Okanoue T, Itoh Y. Hepatocyte-specific GDF15 overexpression improves high-fat diet-induced obesity and hepatic steatosis in mice via hepatic FGF21 induction. Sci Rep 2024; 14:23993. [PMID: 39402176 PMCID: PMC11473698 DOI: 10.1038/s41598-024-75107-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 10/01/2024] [Indexed: 10/17/2024] Open
Abstract
GDF15 and FGF21, stress-responsive cytokines primarily secreted from the liver, are promising therapeutic targets for metabolic dysfunction-associated steatotic liver disease (MASLD). However, the interaction between GDF15 and FGF21 remains unclear. We examined the effects of hepatocyte-specific GDF15 or FGF21 overexpression in high-fat diet (HFD)-fed mice for 8 weeks. Hydrodynamic injection of GDF15 or FGF21 sustained high circulating levels of GDF15 or FGF21, respectively, resulting in marked reductions in body weight, epididymal fat mass, insulin resistance, and hepatic steatosis. In addition, GDF15 treatment led to early reduction in body weight despite no change in food intake, indicating the role of GDF15 other than appetite loss. GDF15 treatment increased liver-derived serum FGF21 levels, whereas FGF21 treatment did not affect GDF15 expression. GDF15 promoted eIF2α phosphorylation and XBP1 splicing, leading to FGF21 induction. In murine AML12 hepatocytes treated with free fatty acids (FFAs), GDF15 overexpression upregulated Fgf21 mRNA levels and promoted eIF2α phosphorylation and XBP1 splicing. Overall, continuous exposure to excess FFAs resulted in a gradual increase of β-oxidation-derived reactive oxygen species and endoplasmic reticulum stress, suggesting that GDF15 enhanced this pathway and induced FGF21 expression. GDF15- and FGF21-related crosstalk is an important pathway for the treatment of MASLD.
Collapse
Affiliation(s)
- Kento Takeuchi
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyou-ku, Kyoto, 602-8566, Japan
| | - Kanji Yamaguchi
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyou-ku, Kyoto, 602-8566, Japan.
| | - Yusuke Takahashi
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyou-ku, Kyoto, 602-8566, Japan
| | - Kota Yano
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyou-ku, Kyoto, 602-8566, Japan
| | - Shinya Okishio
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyou-ku, Kyoto, 602-8566, Japan
| | - Hiroshi Ishiba
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyou-ku, Kyoto, 602-8566, Japan
| | - Nozomi Tochiki
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyou-ku, Kyoto, 602-8566, Japan
| | - Seita Kataoka
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyou-ku, Kyoto, 602-8566, Japan
| | - Hideki Fujii
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyou-ku, Kyoto, 602-8566, Japan
| | - Naoto Iwai
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyou-ku, Kyoto, 602-8566, Japan
| | - Yuya Seko
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyou-ku, Kyoto, 602-8566, Japan
| | - Atsushi Umemura
- Department of Pharmacology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Michihisa Moriguchi
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyou-ku, Kyoto, 602-8566, Japan
| | - Takeshi Okanoue
- Department of Gastroenterology and Hepatology, Saiseikai Suita Hospital, Osaka, Japan
| | - Yoshito Itoh
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyou-ku, Kyoto, 602-8566, Japan
| |
Collapse
|
10
|
Li Y, Zhang J, Chen S, Ke Y, Li Y, Chen Y. Growth differentiation factor 15: Emerging role in liver diseases. Cytokine 2024; 182:156727. [PMID: 39111112 DOI: 10.1016/j.cyto.2024.156727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 08/25/2024]
Abstract
Growth differentiation factor 15 (GDF15) is a cell stress-response cytokine within the transforming growth factor-β (TGFβ) superfamily. It is known to exert diverse effects on many metabolic pathways through its receptor GFRAL, which is expressed in the hindbrain, and transduces signals through the downstream receptor tyrosine kinase Ret. Since the liver is the core organ of metabolism, summarizing the functions of GDF15 is highly important. In this review, we assessed the relevant literature regarding the main metabolic, inflammatory, fibrogenic, tumorigenic and other effects of GDF15 on different liver diseases, including Metabolic dysfunction-associated steatotic liver disease(MASLD), alcohol and drug-induced liver injury, as well as autoimmune and viral hepatitis, with a particular focus on the pathogenesis of MASLD progression from hepatic steatosis to MASH, liver fibrosis and even hepatocellular carcinoma (HCC). Finally, we discuss the prospects of the clinical application potential of GDF15 along with its research and development progress. With better knowledge of GDF15, increasing in-depth research will lead to a new era in the field of liver diseases.
Collapse
Affiliation(s)
- Yu Li
- Department of Gastroenterology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Jie Zhang
- Department of Gastroenterology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Shurong Chen
- Department of Gastroenterology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Yini Ke
- Department of Rheumatology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Youming Li
- Department of Gastroenterology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Yi Chen
- Department of Gastroenterology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China.
| |
Collapse
|
11
|
Platko K, Gyulay G, Lebeau PF, MacDonald ME, Lynn EG, Byun JH, Igdoura SA, Holden RM, Roubtsova A, Seidah NG, Krepinsky JC, Austin RC. GDF10 is a negative regulator of vascular calcification. J Biol Chem 2024; 300:107805. [PMID: 39307303 PMCID: PMC11541827 DOI: 10.1016/j.jbc.2024.107805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/23/2024] [Accepted: 09/11/2024] [Indexed: 10/27/2024] Open
Abstract
Cardiovascular mortality is particularly high and increasing in patients with chronic kidney disease, with vascular calcification (VC) as a major pathophysiologic feature. VC is a highly regulated biological process similar to bone formation involving osteogenic transdifferentiation of vascular smooth muscle cells (VSMCs). We have previously demonstrated that loss of T-cell death-associated gene 51 (TDAG51) expression leads to an attenuation of medial VC. We now show a significant induction of circulating levels of growth differentiation factor 10 (GDF10) in TDAG51-/- mice, which was of interest due to its established role as an inhibitor of osteoblast differentiation. The objective of this study was to examine the role of GDF10 in the osteogenic transdifferentiation of VSMCs. Using primary mouse and human VSMCs, as well as ex vivo aortic ring cultures, we demonstrated that treatment with recombinant human (rh) GDF10 mitigated phosphate-mediated hydroxyapatite (HA) mineral deposition. Furthermore, ex vivo aortic rings from GDF10-/- mice exhibited increased HA deposition compared to C57BL/6J controls. To explain our observations, we identified that rhGDF10 treatment reduced protein expression of runt-related transcription factor 2, a key driver of osteogenic transdifferentiation of VSMCs and VC. In support of these findings, in vivo treatment with rhGDF10 attenuated VD3-induced VC. Furthermore, we demonstrated an increase in circulating GDF10 in patients with chronic kidney disease with clinically defined severe VC, as assessed by coronary artery calcium score. Thus, our studies identify GDF10 as a novel inhibitor of mineral deposition and as such, may represent a potential novel biomarker and therapeutic target for the detection and management of VC.
Collapse
Affiliation(s)
- Khrystyna Platko
- Department of Medicine, Division of Nephrology, McMaster University, and The Research Institute of St Joe's Hamilton, Hamilton, Ontario, Canada
| | - Gabriel Gyulay
- Department of Medicine, Division of Nephrology, McMaster University, and The Research Institute of St Joe's Hamilton, Hamilton, Ontario, Canada
| | - Paul F Lebeau
- Department of Medicine, Division of Nephrology, McMaster University, and The Research Institute of St Joe's Hamilton, Hamilton, Ontario, Canada
| | - Melissa E MacDonald
- Department of Medicine, Division of Nephrology, McMaster University, and The Research Institute of St Joe's Hamilton, Hamilton, Ontario, Canada
| | - Edward G Lynn
- Department of Medicine, Division of Nephrology, McMaster University, and The Research Institute of St Joe's Hamilton, Hamilton, Ontario, Canada
| | - Jae Hyun Byun
- Department of Medicine, Division of Nephrology, McMaster University, and The Research Institute of St Joe's Hamilton, Hamilton, Ontario, Canada
| | - Suleiman A Igdoura
- Department of Biology, McMaster University Medical Centre, Hamilton, Ontario, Canada; Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | - Rachel M Holden
- Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Anna Roubtsova
- The Institut de Recherches Cliniques de Montréal (IRCM), Affiliated with Université de Montréal, Montréal, Quebec, Canada
| | - Nabil G Seidah
- The Institut de Recherches Cliniques de Montréal (IRCM), Affiliated with Université de Montréal, Montréal, Quebec, Canada
| | - Joan C Krepinsky
- Department of Medicine, Division of Nephrology, McMaster University, and The Research Institute of St Joe's Hamilton, Hamilton, Ontario, Canada.
| | - Richard C Austin
- Department of Medicine, Division of Nephrology, McMaster University, and The Research Institute of St Joe's Hamilton, Hamilton, Ontario, Canada.
| |
Collapse
|
12
|
L'homme L, Sermikli BP, Haas JT, Fleury S, Quemener S, Guinot V, Barreby E, Esser N, Caiazzo R, Verkindt H, Legendre B, Raverdy V, Cheval L, Paquot N, Piette J, Legrand-Poels S, Aouadi M, Pattou F, Staels B, Dombrowicz D. Adipose tissue macrophage infiltration and hepatocyte stress increase GDF-15 throughout development of obesity to MASH. Nat Commun 2024; 15:7173. [PMID: 39169003 PMCID: PMC11339436 DOI: 10.1038/s41467-024-51078-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 07/29/2024] [Indexed: 08/23/2024] Open
Abstract
Plasma growth differentiation factor-15 (GDF-15) levels increase with obesity and metabolic dysfunction-associated steatotic liver disease (MASLD) but the underlying mechanism remains poorly defined. Using male mouse models of obesity and MASLD, and biopsies from carefully-characterized patients regarding obesity, type 2 diabetes (T2D) and MASLD status, we identify adipose tissue (AT) as the key source of GDF-15 at onset of obesity and T2D, followed by liver during the progression towards metabolic dysfunction-associated steatohepatitis (MASH). Obesity and T2D increase GDF15 expression in AT through the accumulation of macrophages, which are the main immune cells expressing GDF15. Inactivation of Gdf15 in macrophages reduces plasma GDF-15 concentrations and exacerbates obesity in mice. During MASH development, Gdf15 expression additionally increases in hepatocytes through stress-induced TFEB and DDIT3 signaling. Together, these results demonstrate a dual contribution of AT and liver to GDF-15 production in metabolic diseases and identify potential therapeutic targets to raise endogenous GDF-15 levels.
Collapse
Affiliation(s)
- Laurent L'homme
- Univ. Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France.
| | - Benan Pelin Sermikli
- Univ. Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Joel T Haas
- Univ. Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Sébastien Fleury
- Univ. Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Sandrine Quemener
- Univ. Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Valentine Guinot
- Univ. Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Emelie Barreby
- Center for Infectious Medicine (CIM), Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Nathalie Esser
- Laboratory of Immunometabolism and Nutrition, GIGA-I3, University of Liège, Liège, Belgium
- Division of Diabetes, Nutrition and Metabolic Disorders, Department of Medicine, CHU Liège, Liège, Belgium
| | - Robert Caiazzo
- Univ. Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1190-EGID (Translational research in Diabetes), Lille, France
| | - Hélène Verkindt
- Univ. Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1190-EGID (Translational research in Diabetes), Lille, France
| | - Benjamin Legendre
- Univ. Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1190-EGID (Translational research in Diabetes), Lille, France
| | - Violeta Raverdy
- Univ. Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1190-EGID (Translational research in Diabetes), Lille, France
| | - Lydie Cheval
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Laboratoire de Physiologie Rénale et Tubulopathies, Paris, France
- CNRS EMR 8228-Unité Métabolisme et Physiologie Rénale, Paris, France
| | - Nicolas Paquot
- Laboratory of Immunometabolism and Nutrition, GIGA-I3, University of Liège, Liège, Belgium
- Division of Diabetes, Nutrition and Metabolic Disorders, Department of Medicine, CHU Liège, Liège, Belgium
| | - Jacques Piette
- Laboratory of Virology and Immunology, GIGA-Signal Transduction, University of Liège, Liège, Belgium
| | - Sylvie Legrand-Poels
- Laboratory of Immunometabolism and Nutrition, GIGA-I3, University of Liège, Liège, Belgium
| | - Myriam Aouadi
- Center for Infectious Medicine (CIM), Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - François Pattou
- Univ. Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1190-EGID (Translational research in Diabetes), Lille, France
| | - Bart Staels
- Univ. Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - David Dombrowicz
- Univ. Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France.
| |
Collapse
|
13
|
Li J, Hu X, Xie Z, Li J, Huang C, Huang Y. Overview of growth differentiation factor 15 (GDF15) in metabolic diseases. Biomed Pharmacother 2024; 176:116809. [PMID: 38810400 DOI: 10.1016/j.biopha.2024.116809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/18/2024] [Accepted: 05/20/2024] [Indexed: 05/31/2024] Open
Abstract
GDF15 is a stress response cytokine and a distant member of the transforming growth factor beta (TGFβ) superfamily, its levels increase in response to cell stress and certain diseases in the serum. To exert its effects, GDF15 binds to glial-derived neurotrophic factor (GDNF) receptor alpha-like (GFRAL), which was firstly identified in 2017 and highly expressed in the brain stem. Many studies have demonstrated that elevated serum GDF15 is associated with anorexia and weight loss. Herein, we focus on the biology of GDF15, specifically how this circulating protein regulates appetite and metabolism in influencing energy homeostasis through its actions on hindbrain neurons to shed light on its impact on diseases such as obesity and anorexia/cachexia syndromes. It works as an endocrine factor and transmits metabolic signals leading to weight reduction effects by directly reducing appetite and indirectly affecting food intake through complex mechanisms, which could be a promising target for the treatment of energy-intake disorders.
Collapse
Affiliation(s)
- Jian Li
- Department of Nephrology, Institute of Kidney Diseases, West China Hospital of Sichuan University, China
| | - Xiangjun Hu
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Zichuan Xie
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Jiajin Li
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Chen Huang
- Health Management Center, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, China; Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yan Huang
- Health Management Center, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
14
|
Tang Y, Yao T, Tian X, Xia X, Huang X, Qin Z, Shen Z, Zhao L, Zhao Y, Diao B, Ping Y, Zheng X, Xu Y, Chen H, Qian T, Ma T, Zhou B, Xu S, Zhou Q, Liu Y, Shao M, Chen W, Shan B, Wu Y. Hepatic IRE1α-XBP1 signaling promotes GDF15-mediated anorexia and body weight loss in chemotherapy. J Exp Med 2024; 221:e20231395. [PMID: 38695876 PMCID: PMC11070642 DOI: 10.1084/jem.20231395] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 02/26/2024] [Accepted: 04/02/2024] [Indexed: 05/08/2024] Open
Abstract
Platinum-based chemotherapy drugs can lead to the development of anorexia, a detrimental effect on the overall health of cancer patients. However, managing chemotherapy-induced anorexia and subsequent weight loss remains challenging due to limited effective therapeutic strategies. Growth differentiation factor 15 (GDF15) has recently gained significant attention in the context of chemotherapy-induced anorexia. Here, we report that hepatic GDF15 plays a crucial role in regulating body weight in response to chemo drugs cisplatin and doxorubicin. Cisplatin and doxorubicin treatments induce hepatic Gdf15 expression and elevate circulating GDF15 levels, leading to hunger suppression and subsequent weight loss. Mechanistically, selective activation by chemotherapy of hepatic IRE1α-XBP1 pathway of the unfolded protein response (UPR) upregulates Gdf15 expression. Genetic and pharmacological inactivation of IRE1α is sufficient to ameliorate chemotherapy-induced anorexia and body weight loss. These results identify hepatic IRE1α as a molecular driver of GDF15-mediated anorexia and suggest that blocking IRE1α RNase activity offers a therapeutic strategy to alleviate the adverse anorexia effects in chemotherapy.
Collapse
Affiliation(s)
- Yuexiao Tang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Cancer Prevention and Therapy Combining Traditional Chinese and Western Medicine of Zhejiang Province, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Tao Yao
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Cancer Prevention and Therapy Combining Traditional Chinese and Western Medicine of Zhejiang Province, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, China
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xin Tian
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Cancer Prevention and Therapy Combining Traditional Chinese and Western Medicine of Zhejiang Province, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, China
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xintong Xia
- Key Laboratory of Cancer Prevention and Therapy Combining Traditional Chinese and Western Medicine of Zhejiang Province, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, China
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xingxiao Huang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhewen Qin
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhong Shen
- Department of Coloproctology, Hangzhou Third People’s Hospital, Hangzhou, China
| | - Lin Zhao
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Yaping Zhao
- Division of Life Sciences and Medicine, Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, China
| | - Bowen Diao
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Yan Ping
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaoxiao Zheng
- Key Laboratory of Cancer Prevention and Therapy Combining Traditional Chinese and Western Medicine of Zhejiang Province, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Yonghao Xu
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Hui Chen
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Tao Qian
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tao Ma
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ben Zhou
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Suowen Xu
- Division of Life Sciences and Medicine, Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, China
| | - Qimin Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yong Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Center for Immunology and Metabolism, The Institute for Advanced Studies, Wuhan University, Wuhan, China
| | - Mengle Shao
- CAS Key Laboratory of Molecular Virology and Immunology, The Center for Microbes, Development, and Health, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
| | - Wei Chen
- Key Laboratory of Cancer Prevention and Therapy Combining Traditional Chinese and Western Medicine of Zhejiang Province, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, China
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Bo Shan
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Ying Wu
- Key Laboratory of Cancer Prevention and Therapy Combining Traditional Chinese and Western Medicine of Zhejiang Province, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, China
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
15
|
Yu J, Guo T, Gupta A, Llano EM, Wajahat N, Slater S, Deng Q, Akbay EA, Shelton JM, Evers BM, Wu Z, Tzameli I, Pashos E, Minna JD, Iyengar P, Infante RE. Cancer Cachexia in STK11/LKB1 -mutated NSCLC is Dependent on Tumor-secreted GDF15. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.14.598891. [PMID: 38948776 PMCID: PMC11212884 DOI: 10.1101/2024.06.14.598891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Cachexia is a wasting syndrome comprised of adipose, muscle, and weight loss observed in cancer patients. Tumor loss-of-function mutations in STK11/LKB1 , a regulator of the energy sensor AMP-activated protein kinase, induce cancer cachexia (CC) in preclinical models and are associated with cancer-related weight loss in NSCLC patients. Here we characterized the relevance of the NSCLC-associated cachexia factor growth differentiation factor 15 (GDF15) in several patient-derived and genetically engineered STK11/LKB1 -mutant NSCLC cachexia lines. Both tumor mRNA expression and serum concentrations of tumor-derived GDF15 were significantly elevated in multiple mice transplanted with patient-derived STK11/LKB1 -mutated NSCLC lines. GDF15 neutralizing antibody administered to mice transplanted with patient- or mouse-derived STK11/LKB1 -mutated NSCLC lines suppressed cachexia-associated adipose loss, muscle atrophy, and changes in body weight. The silencing of GDF15 in multiple human NSCLC lines was also sufficient to eliminate in vivo circulating GDF15 levels and abrogate cachexia induction, suggesting that tumor and not host tissues represent a key source of GDF15 production in these cancer models. Finally, reconstitution of wild-type STK11/LKB1 in a human STK11/LKB1 loss-of-function NSCLC line that normally induces cachexia in vivo correlated with the absence of tumor-secreted GDF15 and rescue from the cachexia phenotype. The current data provide evidence for tumor-secreted GDF15 as a conduit and a therapeutic target through which NSCLCs with STK11/LKB1 loss-of-function mutations promote cachexia-associated wasting.
Collapse
|
16
|
von Rauchhaupt E, Klaus M, Ribeiro A, Honarpisheh M, Li C, Liu M, Köhler P, Adamowicz K, Schmaderer C, Lindenmeyer M, Steiger S, Anders HJ, Lech M. GDF-15 Suppresses Puromycin Aminonucleoside-Induced Podocyte Injury by Reducing Endoplasmic Reticulum Stress and Glomerular Inflammation. Cells 2024; 13:637. [PMID: 38607075 PMCID: PMC11011265 DOI: 10.3390/cells13070637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/22/2024] [Accepted: 03/30/2024] [Indexed: 04/13/2024] Open
Abstract
GDF15, also known as MIC1, is a member of the TGF-beta superfamily. Previous studies reported elevated serum levels of GDF15 in patients with kidney disorder, and its association with kidney disease progression, while other studies identified GDF15 to have protective effects. To investigate the potential protective role of GDF15 on podocytes, we first performed in vitro studies using a Gdf15-deficient podocyte cell line. The lack of GDF15 intensified puromycin aminonucleoside (PAN)-triggered endoplasmic reticulum stress and induced cell death in cultivated podocytes. This was evidenced by elevated expressions of Xbp1 and ER-associated chaperones, alongside AnnexinV/PI staining and LDH release. Additionally, we subjected mice to nephrotoxic PAN treatment. Our observations revealed a noteworthy increase in both GDF15 expression and secretion subsequent to PAN administration. Gdf15 knockout mice displayed a moderate loss of WT1+ cells (podocytes) in the glomeruli compared to wild-type controls. However, this finding could not be substantiated through digital evaluation. The parameters of kidney function, including serum BUN, creatinine, and albumin-creatinine ratio (ACR), were increased in Gdf15 knockout mice as compared to wild-type mice upon PAN treatment. This was associated with an increase in the number of glomerular macrophages, neutrophils, inflammatory cytokines, and chemokines in Gdf15-deficient mice. In summary, our findings unveil a novel renoprotective effect of GDF15 during kidney injury and inflammation by promoting podocyte survival and regulating endoplasmic reticulum stress in podocytes, and, subsequently, the infiltration of inflammatory cells via paracrine effects on surrounding glomerular cells.
Collapse
Affiliation(s)
- Ekaterina von Rauchhaupt
- Department of Medicine IV, Renal Division, Ludwig-Maximilians-University Hospital, Ludwig-Maximilians-University Munich, 80336 Munich, Germany; (E.v.R.); (M.K.); (A.R.); (M.H.); (C.L.); (M.L.); (P.K.); (S.S.); (H.-J.A.)
| | - Martin Klaus
- Department of Medicine IV, Renal Division, Ludwig-Maximilians-University Hospital, Ludwig-Maximilians-University Munich, 80336 Munich, Germany; (E.v.R.); (M.K.); (A.R.); (M.H.); (C.L.); (M.L.); (P.K.); (S.S.); (H.-J.A.)
| | - Andrea Ribeiro
- Department of Medicine IV, Renal Division, Ludwig-Maximilians-University Hospital, Ludwig-Maximilians-University Munich, 80336 Munich, Germany; (E.v.R.); (M.K.); (A.R.); (M.H.); (C.L.); (M.L.); (P.K.); (S.S.); (H.-J.A.)
- Klinikum Rechts der Isar, Department of Nephrology, Technical University Munich, 81675 Munich, Germany;
| | - Mohsen Honarpisheh
- Department of Medicine IV, Renal Division, Ludwig-Maximilians-University Hospital, Ludwig-Maximilians-University Munich, 80336 Munich, Germany; (E.v.R.); (M.K.); (A.R.); (M.H.); (C.L.); (M.L.); (P.K.); (S.S.); (H.-J.A.)
| | - Chenyu Li
- Department of Medicine IV, Renal Division, Ludwig-Maximilians-University Hospital, Ludwig-Maximilians-University Munich, 80336 Munich, Germany; (E.v.R.); (M.K.); (A.R.); (M.H.); (C.L.); (M.L.); (P.K.); (S.S.); (H.-J.A.)
| | - Min Liu
- Department of Medicine IV, Renal Division, Ludwig-Maximilians-University Hospital, Ludwig-Maximilians-University Munich, 80336 Munich, Germany; (E.v.R.); (M.K.); (A.R.); (M.H.); (C.L.); (M.L.); (P.K.); (S.S.); (H.-J.A.)
| | - Paulina Köhler
- Department of Medicine IV, Renal Division, Ludwig-Maximilians-University Hospital, Ludwig-Maximilians-University Munich, 80336 Munich, Germany; (E.v.R.); (M.K.); (A.R.); (M.H.); (C.L.); (M.L.); (P.K.); (S.S.); (H.-J.A.)
| | - Karina Adamowicz
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology of Jagiellonian University, 30-387 Krakow, Poland;
| | - Christoph Schmaderer
- Klinikum Rechts der Isar, Department of Nephrology, Technical University Munich, 81675 Munich, Germany;
| | - Maja Lindenmeyer
- III Department of Medicine, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany;
| | - Stefanie Steiger
- Department of Medicine IV, Renal Division, Ludwig-Maximilians-University Hospital, Ludwig-Maximilians-University Munich, 80336 Munich, Germany; (E.v.R.); (M.K.); (A.R.); (M.H.); (C.L.); (M.L.); (P.K.); (S.S.); (H.-J.A.)
| | - Hans-Joachim Anders
- Department of Medicine IV, Renal Division, Ludwig-Maximilians-University Hospital, Ludwig-Maximilians-University Munich, 80336 Munich, Germany; (E.v.R.); (M.K.); (A.R.); (M.H.); (C.L.); (M.L.); (P.K.); (S.S.); (H.-J.A.)
| | - Maciej Lech
- Department of Medicine IV, Renal Division, Ludwig-Maximilians-University Hospital, Ludwig-Maximilians-University Munich, 80336 Munich, Germany; (E.v.R.); (M.K.); (A.R.); (M.H.); (C.L.); (M.L.); (P.K.); (S.S.); (H.-J.A.)
| |
Collapse
|
17
|
Maddala R, Eldawy C, Ho LTY, Challa P, Rao PV. Influence of Growth Differentiation Factor 15 on Intraocular Pressure in Mice. J Transl Med 2024; 104:102025. [PMID: 38290601 PMCID: PMC11031300 DOI: 10.1016/j.labinv.2024.102025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/27/2023] [Accepted: 01/19/2024] [Indexed: 02/01/2024] Open
Abstract
Growth differentiation factor 15 (GDF15), a stress-sensitive cytokine, and a distant member of the transforming growth factor β superfamily, has been shown to exhibit increased levels with aging, and in various age-related pathologies. Although GDF15 levels are elevated in the aqueous humor (AH) of glaucoma (optic nerve atrophy) patients, the possible role of this cytokine in the modulation of intraocular pressure (IOP) or AH outflow is unknown. The current study addresses this question using transgenic mice expressing human GDF15 and GDF15 null mice, and by perfusing enucleated mouse eyes with recombinant human GDF15 (rhGDF15). Treatment of primary cultures of human trabecular meshwork cells with a telomerase inhibitor, an endoplasmic reticulum stress-inducing agent, hydrogen peroxide, or an autophagy inhibitor resulted in significant elevation in GDF15 levels relative to the respective control cells. rhGDF15 stimulated modest but significant increases in the expression of genes encoding the extracellular matrix, cell adhesion proteins, and chemokine receptors (C-C chemokine receptor type 2) in human trabecular meshwork cells compared with controls, as deduced from the differential transcriptional profiles using RNA-sequencing analysis. There was a significant increase in IOP in transgenic mice expressing human GDF15, but not in GDF15 null mice, compared with the respective wild-type control mice. The AH outflow facility was decreased in enucleated wild-type mouse eyes perfused with rhGDF15. Light microcopy-based histologic examination of the conventional AH outflow pathway tissues did not reveal identifiable differences between the GDF15-targeted and control mice. Taken together, these results reveal the modest elevation of IOP in mice expressing human GDF15 possibly stemming from decreased AH outflow through the trabecular pathway.
Collapse
Affiliation(s)
- Rupalatha Maddala
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina
| | - Camelia Eldawy
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina
| | - Leona T Y Ho
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina
| | - Pratap Challa
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina
| | - Ponugoti V Rao
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina; Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina.
| |
Collapse
|
18
|
Ramirez Bustamante CE, Agarwal N, Cox AR, Hartig SM, Lake JE, Balasubramanyam A. Adipose Tissue Dysfunction and Energy Balance Paradigms in People Living With HIV. Endocr Rev 2024; 45:190-209. [PMID: 37556371 PMCID: PMC10911955 DOI: 10.1210/endrev/bnad028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 07/09/2023] [Accepted: 08/07/2023] [Indexed: 08/11/2023]
Abstract
Over the past 4 decades, the clinical care of people living with HIV (PLWH) evolved from treatment of acute opportunistic infections to the management of chronic, noncommunicable comorbidities. Concurrently, our understanding of adipose tissue function matured to acknowledge its important endocrine contributions to energy balance. PLWH experience changes in the mass and composition of adipose tissue depots before and after initiating antiretroviral therapy, including regional loss (lipoatrophy), gain (lipohypertrophy), or mixed lipodystrophy. These conditions may coexist with generalized obesity in PLWH and reflect disturbances of energy balance regulation caused by HIV persistence and antiretroviral therapy drugs. Adipocyte hypertrophy characterizes visceral and subcutaneous adipose tissue depot expansion, as well as ectopic lipid deposition that occurs diffusely in the liver, skeletal muscle, and heart. PLWH with excess visceral adipose tissue exhibit adipokine dysregulation coupled with increased insulin resistance, heightening their risk for cardiovascular disease above that of the HIV-negative population. However, conventional therapies are ineffective for the management of cardiometabolic risk in this patient population. Although the knowledge of complex cardiometabolic comorbidities in PLWH continues to expand, significant knowledge gaps remain. Ongoing studies aimed at understanding interorgan communication and energy balance provide insights into metabolic observations in PLWH and reveal potential therapeutic targets. Our review focuses on current knowledge and recent advances in HIV-associated adipose tissue dysfunction, highlights emerging adipokine paradigms, and describes critical mechanistic and clinical insights.
Collapse
Affiliation(s)
- Claudia E Ramirez Bustamante
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Neeti Agarwal
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Aaron R Cox
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sean M Hartig
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jordan E Lake
- Division of Infectious Diseases, Department of Internal Medicine, McGovern Medical School at UTHealth, Houston, TX 77030, USA
| | - Ashok Balasubramanyam
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
19
|
Jurado-Aguilar J, Barroso E, Bernard M, Zhang M, Peyman M, Rada P, Valverde ÁM, Wahli W, Palomer X, Vázquez-Carrera M. GDF15 activates AMPK and inhibits gluconeogenesis and fibrosis in the liver by attenuating the TGF-β1/SMAD3 pathway. Metabolism 2024; 152:155772. [PMID: 38176644 DOI: 10.1016/j.metabol.2023.155772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 12/18/2023] [Accepted: 12/28/2023] [Indexed: 01/06/2024]
Abstract
INTRODUCTION The levels of the cellular energy sensor AMP-activated protein kinase (AMPK) have been reported to be decreased via unknown mechanisms in the liver of mice deficient in growth differentiation factor 15 (GDF15). This stress response cytokine regulates energy metabolism mainly by reducing food intake through its hindbrain receptor GFRAL. OBJECTIVE To examine how GDF15 regulates AMPK. METHODS Wild-type and Gdf15-/- mice, mouse primary hepatocytes and the human hepatic cell line Huh-7 were used. RESULTS Gdf15-/- mice showed glucose intolerance, reduced hepatic phosphorylated AMPK levels, increased levels of phosphorylated mothers against decapentaplegic homolog 3 (SMAD3; a mediator of the fibrotic response), elevated serum levels of transforming growth factor (TGF)-β1, as well as upregulated gluconeogenesis and fibrosis. In line with these observations, recombinant (r)GDF15 promoted AMPK activation and reduced the levels of phosphorylated SMAD3 and the markers of gluconeogenesis and fibrosis in the liver of mice and in mouse primary hepatocytes, suggesting that these effects may be independent of GFRAL. Pharmacological inhibition of SMAD3 phosphorylation in Gdf15-/- mice prevented glucose intolerance, the deactivation of AMPK and the increase in the levels of proteins involved in gluconeogenesis and fibrosis, suggesting that overactivation of the TGF-β1/SMAD3 pathway is responsible for the metabolic alterations in Gdf15-/- mice. CONCLUSIONS Overall, these findings indicate that GDF15 activates AMPK and inhibits gluconeogenesis and fibrosis by lowering the activity of the TGF-β1/SMAD3 pathway.
Collapse
Affiliation(s)
- Javier Jurado-Aguilar
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, 08028 Barcelona, Spain; Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, 28029 Madrid, Spain; Pediatric Research Institute-Hospital Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain
| | - Emma Barroso
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, 08028 Barcelona, Spain; Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, 28029 Madrid, Spain; Pediatric Research Institute-Hospital Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain
| | - Maribel Bernard
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, 08028 Barcelona, Spain; Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, 28029 Madrid, Spain; Pediatric Research Institute-Hospital Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain
| | - Meijian Zhang
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, 08028 Barcelona, Spain; Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, 28029 Madrid, Spain; Pediatric Research Institute-Hospital Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain
| | - Mona Peyman
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, 08028 Barcelona, Spain; Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, 28029 Madrid, Spain; Pediatric Research Institute-Hospital Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain
| | - Patricia Rada
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, 28029 Madrid, Spain; Instituto de Investigaciones Biomédicas Alberto Sols (CSIC/UAM), Madrid, Spain
| | - Ángela M Valverde
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, 28029 Madrid, Spain; Instituto de Investigaciones Biomédicas Alberto Sols (CSIC/UAM), Madrid, Spain
| | - Walter Wahli
- Center for Integrative Genomics, University of Lausanne, CH-1015 Lausanne, Switzerland; Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore 308232; ToxAlim (Research Center in Food Toxicology), INRAE, UMR1331, F-31300 Toulouse Cedex, France
| | - Xavier Palomer
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, 08028 Barcelona, Spain; Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, 28029 Madrid, Spain; Pediatric Research Institute-Hospital Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain
| | - Manuel Vázquez-Carrera
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, 08028 Barcelona, Spain; Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, 28029 Madrid, Spain; Pediatric Research Institute-Hospital Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain.
| |
Collapse
|
20
|
Fernández Miyakawa ME, Casanova NA, Kogut MH. How did antibiotic growth promoters increase growth and feed efficiency in poultry? Poult Sci 2024; 103:103278. [PMID: 38052127 PMCID: PMC10746532 DOI: 10.1016/j.psj.2023.103278] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 11/04/2023] [Accepted: 11/12/2023] [Indexed: 12/07/2023] Open
Abstract
It has been hypothesized that reducing the bioenergetic costs of gut inflammation as an explanation for the effect of antibiotic growth promoters (AGPs) on animal efficiency, framing some observations but not explaining the increase in growth rate or the prevention of infectious diseases. The host's ability to adapt to alterations in environmental conditions and to maintain health involves managing all physiological interactions that regulate homeostasis. Thus, metabolic pathways are vital in regulating physiological health as the energetic demands of the host guides most biological functions. Mitochondria are not only the metabolic heart of the cell because of their role in energy metabolism and oxidative phosphorylation, but also a central hub of signal transduction pathways that receive messages about the health and nutritional states of cells and tissues. In response, mitochondria direct cellular and tissue physiological alterations throughout the host. The endosymbiotic theory suggests that mitochondria evolved from prokaryotes, emphasizing the idea that these organelles can be affected by some antibiotics. Indeed, therapeutic levels of several antibiotics can be toxic to mitochondria, but subtherapeutic levels may improve mitochondrial function and defense mechanisms by inducing an adaptive response of the cell, resulting in mitokine production which coordinates an array of adaptive responses of the host to the stressor(s). This adaptive stress response is also observed in several bacteria species, suggesting that this protective mechanism has been preserved during evolution. Concordantly, gut microbiome modulation by subinhibitory concentration of AGPs could be the result of direct stimulation rather than inhibition of determined microbial species. In eukaryotes, these adaptive responses of the mitochondria to internal and external environmental conditions, can promote growth rate of the organism as an evolutionary strategy to overcome potential negative conditions. We hypothesize that direct and indirect subtherapeutic AGP regulation of mitochondria functional output can regulate homeostatic control mechanisms in a manner similar to those involved with disease tolerance.
Collapse
Affiliation(s)
- Mariano Enrique Fernández Miyakawa
- Institute of Pathobiology, National Institute of Agricultural Technology (INTA), Argentina; National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina..
| | - Natalia Andrea Casanova
- Institute of Pathobiology, National Institute of Agricultural Technology (INTA), Argentina; National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Michael H Kogut
- Southern Plains Agricultural Research Center, USDA-ARS, College Station, TX, USA
| |
Collapse
|
21
|
Min SH, Kang GM, Park JW, Kim MS. Beneficial Effects of Low-Grade Mitochondrial Stress on Metabolic Diseases and Aging. Yonsei Med J 2024; 65:55-69. [PMID: 38288646 PMCID: PMC10827639 DOI: 10.3349/ymj.2023.0131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 11/07/2023] [Accepted: 12/04/2023] [Indexed: 02/01/2024] Open
Abstract
Mitochondria function as platforms for bioenergetics, nutrient metabolism, intracellular signaling, innate immunity regulators, and modulators of stem cell activity. Thus, the decline in mitochondrial functions causes or correlates with diabetes mellitus and many aging-related diseases. Upon stress or damage, the mitochondria elicit a series of adaptive responses to overcome stress and restore their structural integrity and functional homeostasis. These adaptive responses to low-level or transient mitochondrial stress promote health and resilience to upcoming stress. Beneficial effects of low-grade mitochondrial stress, termed mitohormesis, have been observed in various organisms, including mammals. Accumulated evidence indicates that treatments boosting mitohormesis have therapeutic potential in various human diseases accompanied by mitochondrial stress. Here, we review multiple cellular signaling pathways and interorgan communication mechanisms through which mitochondrial stress leads to advantageous outcomes. We also discuss the relevance of mitohormesis in obesity, diabetes, metabolic liver disease, aging, and exercise.
Collapse
Affiliation(s)
- Se Hee Min
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Diabetes Center, Asan Medical Center and University of Ulsan College of Medicine, Seoul, Korea
- Appetite Regulation Laboratory, Asan Institute for Life Science, Seoul, Korea
| | - Gil Myoung Kang
- Appetite Regulation Laboratory, Asan Institute for Life Science, Seoul, Korea
| | - Jae Woo Park
- Appetite Regulation Laboratory, Asan Institute for Life Science, Seoul, Korea
| | - Min-Seon Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Diabetes Center, Asan Medical Center and University of Ulsan College of Medicine, Seoul, Korea
- Appetite Regulation Laboratory, Asan Institute for Life Science, Seoul, Korea.
| |
Collapse
|
22
|
Kong D, Mourtzinos A, Heegsma J, Blokzijl H, de Meijer VE, Faber KN. Growth differentiation factor 7 autocrine signaling promotes hepatic progenitor cell expansion in liver fibrosis. Stem Cell Res Ther 2023; 14:288. [PMID: 37798809 PMCID: PMC10557292 DOI: 10.1186/s13287-023-03493-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/06/2023] [Indexed: 10/07/2023] Open
Abstract
BACKGROUND AND AIM Liver fibrosis is prevalent among chronic diseases of the liver and represents a major health burden worldwide. Growth differentiation factor 7 (GDF7), a member of the TGFβ protein superfamily, has been recently investigated for its role in repair of injured organs, but its role in chronic liver diseases remains unclear. Here, we examined hepatic GDF7 expression and its association with development and progression of human liver fibrosis. Moreover, we determined the source and target cells of GDF7 in the human liver. METHODS GDF7 expression was analyzed in fibrotic and healthy human liver tissues by immunohistochemistry and qPCR. Cell-specific accumulation of GDF7 was examined by immunofluorescence through co-staining of cell type-specific markers on formalin-fixed paraffin-embedded human liver tissues. Public single cell RNA sequence databases were analyzed for cell type-specific expression of GDF7. In vitro, human liver organoids and LX-2 hepatic stellate cells (LX-2) were treated with recombinant human GDF7. Human liver organoids were co-cultured with activated LX-2 cells to induce an autocrine signaling circuit of GDF7 in liver organoids. RESULTS GDF7 protein levels were elevated in fibrotic liver tissue, mainly detected in hepatocytes and cholangiocytes. In line, GDF7 mRNA was mainly detected in liver parenchymal cells. Expressions of BMPR1A and BMPR2, encoding GDF7 receptors, were readily detected in hepatocytes, cholangiocytes and stellate cells in vivo and in vitro. In vitro, recombinant GDF7 promoted liver organoid growth and enhanced expression of the progenitor cell markers (LGR5, AXIN2), but failed to activate LX-2 cells. Still, activated LX-2 cells induced GDF7 and LGR5 expression in co-cultured human liver organoids. CONCLUSIONS Collectively, this study reveals a role of GDF7 in liver fibrosis and suggests a potential pro-regenerative function that can be utilized for amelioration of hepatic fibrosis caused by chronic liver disease.
Collapse
Affiliation(s)
- Defu Kong
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Apostolos Mourtzinos
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Janette Heegsma
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Hans Blokzijl
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Vincent E de Meijer
- Department of Surgery, Division of Hepato-Pancreato-Biliary Surgery and Liver Transplantation, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Klaas Nico Faber
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands.
| |
Collapse
|
23
|
Luo J, He Z, Li Q, Lv M, Cai Y, Ke W, Niu X, Zhang Z. Adipokines in atherosclerosis: unraveling complex roles. Front Cardiovasc Med 2023; 10:1235953. [PMID: 37645520 PMCID: PMC10461402 DOI: 10.3389/fcvm.2023.1235953] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/02/2023] [Indexed: 08/31/2023] Open
Abstract
Adipokines are biologically active factors secreted by adipose tissue that act on local and distant tissues through autocrine, paracrine, and endocrine mechanisms. However, adipokines are believed to be involved in an increased risk of atherosclerosis. Classical adipokines include leptin, adiponectin, and ceramide, while newly identified adipokines include visceral adipose tissue-derived serpin, omentin, and asprosin. New evidence suggests that adipokines can play an essential role in atherosclerosis progression and regression. Here, we summarize the complex roles of various adipokines in atherosclerosis lesions. Representative protective adipokines include adiponectin and neuregulin 4; deteriorating adipokines include leptin, resistin, thrombospondin-1, and C1q/tumor necrosis factor-related protein 5; and adipokines with dual protective and deteriorating effects include C1q/tumor necrosis factor-related protein 1 and C1q/tumor necrosis factor-related protein 3; and adipose tissue-derived bioactive materials include sphingosine-1-phosphate, ceramide, and adipose tissue-derived exosomes. However, the role of a newly discovered adipokine, asprosin, in atherosclerosis remains unclear. This article reviews progress in the research on the effects of adipokines in atherosclerosis and how they may be regulated to halt its progression.
Collapse
Affiliation(s)
- Jiaying Luo
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhiwei He
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qingwen Li
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Mengna Lv
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yuli Cai
- Department of Endocrinology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wei Ke
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xuan Niu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhaohui Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
24
|
Yin D, Yan X, Bai X, Tian A, Gao Y, Li J. Prognostic value of Growth differentiation factors 15 in Acute heart failure patients with preserved ejection fraction. ESC Heart Fail 2023; 10:1025-1034. [PMID: 36519216 PMCID: PMC10053169 DOI: 10.1002/ehf2.14271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 11/10/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
AIMS There is an increasing proportion of hospitalized heart failure (HF) patients classified as HF with preserved ejection fraction (HFpEF) around the world. Growth differentiation factor 15 (GDF-15) is a promising biomarker in HFpEF prognostication; however, the majority of the existing data has been derived from the research on undifferentiated HF, whereas the studies focusing on HFpEF are still limited. This study aimed to determine the prognostic power of GDF-15 in the hospitalized patients with HFpEF in a Chinese cohort. METHODS AND RESULTS We analysed the levels of serum GDF-15 in 380 patients hospitalized for acute onset of HFpEF measured by heart ultrasound at admission in a prospective cohort. The associations of GDF-15 with 1 year risk of all-cause death and 1 year HF readmission were assessed by the Cox proportional hazards model. Area under the receiver operating characteristic curves was used to compare predictive accuracy. GDF-15 was strongly correlated with 1 year HF readmission and 1 year all-cause death, with event rates of 24.8%, 40.0%, and 50.0% for 1 year HF readmission (P < 0.001), respectively, and with 11.2%, 13.6%, and 24.6% for 1 year all-cause death (P = 0.004) in the corresponding tertile, respectively. In the multivariate linear regression model, GDF-15 had a significantly negative correlation with haemoglobin (P = 0.01) and a positive correlation with creatinine (P = 0.01), alanine transaminase (P = 0.001), and therapy of aldosterone antagonist (P = 0.018). The univariate Cox regression model of GDF-15 showed that c-statistic was 0.632 for 1 year HF readmission and 0.644 for 1 year all-cause death, which were superior to the N-terminal pro-brain natriuretic peptide (NT-proBNP) model with c-statistics of 0.595 and 0.610, respectively. In the multivariable Cox regression model, GDF-15 tertiles independently predicted 1 year HF readmission (hazard ratio 2.25, 95% confidence interval: 1.43-3.54, P < 0.001) after adjusting for baseline Acute Study of Clinical Effectiveness of Nesiritide in Decompensated Heart Failure (ASCEND-HF) risk score, history of HF, NT-proBNP, and high-sensitivity cardiac troponin T. Compared with the model including all the adjusted variables, the model with the addition of GDF-15 improved predictive power, with c-statistic increasing from 0.643 to 0.657 for 1 year HF readmission and from 0.638 to 0.660 for 1 year all-cause death. CONCLUSIONS In hospitalized patients with HFpEF, GDF-15 measured within 48 h of admission is a strong independent biomarker for 1 year HF readmission and even better than NT-proBNP. GDF-15 combined with the traditional indicators provided incremental prognostic value in this population.
Collapse
Affiliation(s)
- Dan Yin
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical College167 Beilishi RoadBeijing100037People's Republic of China
| | - Xiaofang Yan
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical College167 Beilishi RoadBeijing100037People's Republic of China
| | - Xueke Bai
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical College167 Beilishi RoadBeijing100037People's Republic of China
| | - Aoxi Tian
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical College167 Beilishi RoadBeijing100037People's Republic of China
| | - Yan Gao
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical College167 Beilishi RoadBeijing100037People's Republic of China
| | - Jing Li
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical College167 Beilishi RoadBeijing100037People's Republic of China
- Fuwai HospitalChinese Academy of Medical Sciences12 Langshan Road, Nanshan DistrictShenzhenChina
| |
Collapse
|
25
|
Mathews L, Hu X, Ding N, Ishigami J, Al Rifai M, Hoogeveen RC, Coresh J, Ballantyne CM, Selvin E, Matsushita K. Growth Differentiation Factor 15 and Risk of Bleeding Events: The Atherosclerosis Risk in Communities Study. J Am Heart Assoc 2023; 12:e023847. [PMID: 36927042 PMCID: PMC10111534 DOI: 10.1161/jaha.121.023847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/05/2023] [Indexed: 03/18/2023]
Abstract
Background GDF15 (growth differentiation factor 15) is a potent predictor of bleeding in people with cardiovascular disease. However, whether GDF15 is associated with bleeding in individuals without a history of cardiovascular disease is unknown. Methods and Results The study population was from the ARIC (Atherosclerosis Risk in Communities) study. We studied the association of GDF15 with hospitalized bleeding events among 9205 participants (1993-1995) without prior bleeding and cardiovascular disease (mean age 60 years, 57% women, 21% Black). Plasma levels of GDF15 were measured in relative fluorescence units using DNA-based aptamer technology. Bleeding was ascertained using discharge codes. We examined hazard ratios (HRs) of incident bleeding using Cox models and risk prediction with the addition of GDF15 to clinical predictors of bleeding. There were 1328 hospitalizations with bleeding during a median follow-up of 22.5 years. The majority (76.5%) were because of gastrointestinal bleeding. The absolute incidence rate of bleeding per 1000 person-years was 11.64 in the highest quartile of GDF15 versus 5.22 in the lowest quartile. The highest versus lowest quartile of GDF15 demonstrated an adjusted HR of 2.00 (95% CI, 1.69-2.35) for total bleeding. The findings were consistent when we examined bleeding as the primary discharge diagnosis. The addition of GDF15 to clinical predictors of bleeding improved the C-statistic by 0.006 (0.002-0.011) from 0.684 to 0.690, P=0.008. Conclusions Higher levels of GDF15 were associated with bleeding events and improved the risk prediction beyond clinical predictors in individuals without cardiovascular disease.
Collapse
Affiliation(s)
- Lena Mathews
- Department of Epidemiology, Welch Center Department of Epidemiology, Prevention and Clinical ResearchJohns Hopkins Bloomberg School of Public HealthBaltimoreMD
- Division of CardiologyCiccarone Center for the Prevention of Cardiovascular Disease, Johns Hopkins School of MedicineBaltimoreMD
| | - Xiao Hu
- Department of Epidemiology, Welch Center Department of Epidemiology, Prevention and Clinical ResearchJohns Hopkins Bloomberg School of Public HealthBaltimoreMD
| | - Ning Ding
- Department of Epidemiology, Welch Center Department of Epidemiology, Prevention and Clinical ResearchJohns Hopkins Bloomberg School of Public HealthBaltimoreMD
| | - Junichi Ishigami
- Department of Epidemiology, Welch Center Department of Epidemiology, Prevention and Clinical ResearchJohns Hopkins Bloomberg School of Public HealthBaltimoreMD
| | - Mahmoud Al Rifai
- Division of CardiologyCiccarone Center for the Prevention of Cardiovascular Disease, Johns Hopkins School of MedicineBaltimoreMD
- Houston Methodist DeBakey Heart & Vascular CenterHoustonTX
| | - Ron C. Hoogeveen
- Department of Medicine, Section of Cardiovascular Research HoustonBaylor College of MedicineHoustonTX
| | - Josef Coresh
- Department of Epidemiology, Welch Center Department of Epidemiology, Prevention and Clinical ResearchJohns Hopkins Bloomberg School of Public HealthBaltimoreMD
| | - Christie M. Ballantyne
- Department of Medicine, Section of Cardiovascular Research HoustonBaylor College of MedicineHoustonTX
| | - Elizabeth Selvin
- Department of Epidemiology, Welch Center Department of Epidemiology, Prevention and Clinical ResearchJohns Hopkins Bloomberg School of Public HealthBaltimoreMD
| | - Kunihiro Matsushita
- Department of Epidemiology, Welch Center Department of Epidemiology, Prevention and Clinical ResearchJohns Hopkins Bloomberg School of Public HealthBaltimoreMD
| |
Collapse
|
26
|
Cheng J, Lyu Y, Mei Y, Chen Q, Liu H, Li Y. Serum growth differentiation factor-15 and non-esterified fatty acid levels in patients with coronary artery disease and hyperuricemia. Lipids Health Dis 2023; 22:31. [PMID: 36864452 PMCID: PMC9979416 DOI: 10.1186/s12944-023-01792-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 02/20/2023] [Indexed: 03/04/2023] Open
Abstract
BACKGROUND High serum NEFA and GDF-15 are risk factors for CAD and have been linked to detrimental cardiovascular events. It has been hypothesized that hyperuricemia causes CAD via the oxidative metabolism and inflammation. The current study sought to clarify the relationship between serum GDF-15/NEFA and CAD in individuals with hyperuricemia. METHODS Blood samples collected from 350 male patients with hyperuricemia(191 patients without CAD and 159 patients with CAD, serum UA > 420 μmol/L) to measure serum GDF-15 and NEFA concentrations with baseline parameters. RESULTS Serum circulating GDF-15 concentrations(pg/dL) [8.48(6.67,12.73)] and NEFA levels(mmol/L) [0.45(0.32,0.60)] were higher in hyperuricemia patients with CAD. Logistic regression analysis revealed that the OR (95% CI) for CAD were 10.476 (4.158, 26.391) and 11.244 (4.740, 26.669) in quartile 4 (highest) respectively. The AUC of the combined serum GDF-15 and NEFA was 0.813 (0.767,0.858) as a predictor of whether CAD occurred in male with hyperuricemia. CONCLUSIONS Circulating GDF-15 and NEFA levels correlated positively with CAD in male patients with hyperuricemia and measurements may be a useful clinical adjunct.
Collapse
Affiliation(s)
- Jingru Cheng
- grid.412632.00000 0004 1758 2270Department of Clinical Laboratory,institute of translational medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yongnan Lyu
- grid.412632.00000 0004 1758 2270Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yufeng Mei
- grid.412632.00000 0004 1758 2270Department of Clinical Laboratory,institute of translational medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qian Chen
- grid.412632.00000 0004 1758 2270Department of Clinical Laboratory,institute of translational medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hang Liu
- grid.412632.00000 0004 1758 2270Department of Clinical Laboratory,institute of translational medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yan Li
- Department of Clinical Laboratory,institute of translational medicine, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
27
|
Relationship Between Plasma Growth Differentiation Factor 15 Levels and Complications of Type 2 Diabetes Mellitus: A Cross-sectional Study. Can J Diabetes 2023; 47:117-123.e7. [PMID: 36526573 DOI: 10.1016/j.jcjd.2022.09.116] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 09/01/2022] [Accepted: 09/03/2022] [Indexed: 11/23/2022]
Abstract
OBJECTIVE Our aim in this study was to identify the associations between growth differentiation factor 15 (GDF15) and type 2 diabetes mellitus (T2DM) complications in a community-based population in China. METHODS Based on a cross-sectional study registered in the National Basic Public Health Service for disease management of Changshu in China, a total of 1,689 T2DM patients were enrolled and tested further for plasma GDF15 levels. Macrovascular (cardiovascular disease and diabetic foot) and microvascular (diabetic kidney disease [DKD], diabetic retinopathy, and neuropathy) complications were evaluated. Logistic regression models were conducted to identify the associations of GDF15 with the risk of diabetes complications, and linear regression models were used to assess relationships between GDF15 and other clinical features. RESULTS Overall, 459 of the 1,689 T2DM patients (27.18%) had complications. GDF15 levels were significantly higher in patients with any type of complication compared with their counterparts. With each standard deviation increase of base 10 logarithms of GDF15 (lg-GDF15), the risk of overall complications increased by 1.17-fold (95% confidence interval [CI], 1.03 to 1.32). In contrast to macrovascular complications, associations of GDF15 with microvascular complications appeared to be stronger (adjusted odds ratio [OR], 1.24; 95% CI, 1.08 to 1.43), especially for DKD (adjusted OR, 1.51; 95% CI, 1.19 to 1.93). Subgroup analyses showed that the strength of association between GDF15 and complications varied by distinct age and T2DM duration subgroups. Patients with 2 or more types of complications had higher levels of GDF15 than those with fewer types of complications. Also, linear relationships were identified between GDF15 and several liver and kidney function indices. CONCLUSION Higher GDF15 levels were associated with T2DM complications, especially DKD. GDF15 may serve as a biomarker for monitoring the deterioration of T2DM.
Collapse
|
28
|
Growth differentiation factor 15 is required for triple-negative breast cancer cell growth and chemoresistance. Anticancer Drugs 2023; 34:351-360. [PMID: 36729006 DOI: 10.1097/cad.0000000000001434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Growth differentiation factor 15 (GDF15) is a pleiotropic cytokine, which is involved in the cellular stress response following acute damage. However, the functional role of GDF15 in triple-negative breast cancer (TNBC) has not been fully elucidated. ELISA, Western blot, and PCR assays as well as bioinformatics analyses were conducted to observe the expression of GDF15. Cell Counting Kit-8, 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and crystal violet staining assays were conducted to evaluate paclitaxel resistance and cell viability. Cell apoptosis was analyzed by Western blotting. Murine xenograft model assay was employed to evaluate tumor growth in vivo . Our data indicate that GDF15 is markedly elevated in paclitaxel-resistant TNBC cells, which is significantly associated with unfavorable prognosis. Silencing of GDF15 robustly inhibits the proliferation of tumor cells and increases their sensitivity to paclitaxel in vitro and in vivo , whereas the treatment of purified GDF15 protein confers breast cancer cells with chemoresistance ability. Moreover, GDF15 activates protein kinase B (AKT) /mammalian target of rapamycin (mTOR) signaling, inhibition of AKT or mTOR reverses the prosurvival effect of GDF15 and enhances the antitumor efficacy of paclitaxel in TNBC cells. Altogether, our study uncovers the role of GDF15 in tumor growth and paclitaxel resistance, implicating a potential therapeutic target for TNBC.
Collapse
|
29
|
Kim HH, Shim YR, Choi SE, Kim MH, Lee G, You HJ, Choi WM, Yang K, Ryu T, Kim K, Kim MJ, Woo C, Chung KPS, Hong SH, Eun HS, Kim SH, Ko G, Park JE, Gao B, Kim W, Jeong WI. Catecholamine induces Kupffer cell apoptosis via growth differentiation factor 15 in alcohol-associated liver disease. Exp Mol Med 2023; 55:158-170. [PMID: 36631664 PMCID: PMC9898237 DOI: 10.1038/s12276-022-00921-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/26/2022] [Accepted: 11/18/2022] [Indexed: 01/13/2023] Open
Abstract
Chronic alcohol consumption often induces hepatic steatosis but rarely causes severe inflammation in Kupffer cells (KCs) despite the increased hepatic influx of lipopolysaccharide (LPS), suggesting the presence of a veiled tolerance mechanism. In addition to LPS, the liver is affected by several gut-derived neurotransmitters through the portal blood, but the effects of catecholamines on KCs have not been clearly explored in alcohol-associated liver disease (ALD). Hence, we investigated the regulatory roles of catecholamine on inflammatory KCs under chronic alcohol exposure. We discovered that catecholamine levels were significantly elevated in the cecum, portal blood, and liver tissues of chronic ethanol-fed mice. Increased catecholamines induced mitochondrial translocation of cytochrome P450 2E1 in perivenous hepatocytes expressing the β2-adrenergic receptor (ADRB2), leading to the enhanced production of growth differentiation factor 15 (GDF15). Subsequently, GDF15 profoundly increased ADRB2 expression in adjacent inflammatory KCs to facilitate catecholamine/ADRB2-mediated apoptosis. Single-cell RNA sequencing of KCs confirmed the elevated expression of Adrb2 and apoptotic genes after chronic ethanol intake. Genetic ablation of Adrb2 or hepatic Gdf15 robustly decreased the number of apoptotic KCs near perivenous areas, exacerbating alcohol-associated inflammation. Consistently, we found that blood and stool catecholamine levels and perivenous GDF15 expression were increased in patients with early-stage ALD along with an increase in apoptotic KCs. Our findings reveal a novel protective mechanism against ALD, in which the catecholamine/GDF15 axis plays a critical role in KC apoptosis, and identify a unique neuro-metabo-immune axis between the gut and liver that elicits hepatoprotection against alcohol-mediated pathogenic challenges.
Collapse
Affiliation(s)
- Hee-Hoon Kim
- grid.37172.300000 0001 2292 0500Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon, 34141 Republic of Korea
| | - Young-Ri Shim
- grid.37172.300000 0001 2292 0500Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon, 34141 Republic of Korea
| | - Sung Eun Choi
- grid.37172.300000 0001 2292 0500Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon, 34141 Republic of Korea
| | - Myung-Ho Kim
- grid.37172.300000 0001 2292 0500Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon, 34141 Republic of Korea ,grid.32224.350000 0004 0386 9924Liver Center, Gastrointestinal Division, Massachusetts General Hospital, Boston, MA USA
| | - Giljae Lee
- grid.31501.360000 0004 0470 5905Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, 08826 Republic of Korea
| | - Hyun Ju You
- grid.31501.360000 0004 0470 5905Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, 08826 Republic of Korea
| | - Won-Mook Choi
- grid.37172.300000 0001 2292 0500Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon, 34141 Republic of Korea ,grid.413967.e0000 0001 0842 2126Department of Gastroenterology, Liver Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505 Republic of Korea
| | - Keungmo Yang
- grid.37172.300000 0001 2292 0500Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon, 34141 Republic of Korea
| | - Tom Ryu
- grid.37172.300000 0001 2292 0500Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon, 34141 Republic of Korea
| | - Kyurae Kim
- grid.37172.300000 0001 2292 0500Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon, 34141 Republic of Korea
| | - Min Jeong Kim
- grid.37172.300000 0001 2292 0500Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon, 34141 Republic of Korea
| | - Chaerin Woo
- grid.37172.300000 0001 2292 0500Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon, 34141 Republic of Korea
| | - Katherine Po Sin Chung
- grid.37172.300000 0001 2292 0500Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon, 34141 Republic of Korea
| | - Song Hwa Hong
- grid.37172.300000 0001 2292 0500Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon, 34141 Republic of Korea
| | - Hyuk Soo Eun
- grid.37172.300000 0001 2292 0500Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon, 34141 Republic of Korea ,grid.254230.20000 0001 0722 6377Department of Internal Medicine, Chungnam National University, College of Medicine, Daejeon, 35015 Republic of Korea
| | - Seok-Hwan Kim
- grid.254230.20000 0001 0722 6377Department of Surgery, Chungnam National University, College of Medicine, Daejeon, 35015 Republic of Korea
| | - GwangPyo Ko
- grid.31501.360000 0004 0470 5905Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, 08826 Republic of Korea
| | - Jong-Eun Park
- grid.37172.300000 0001 2292 0500Single-Cell Medical Genomics Laboratory, Graduate School of Medical Science and Engineering, KAIST, Daejeon, 34141 Republic of Korea
| | - Bin Gao
- grid.420085.b0000 0004 0481 4802Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institute of Health, Bethesda, MD 20892 USA
| | - Won Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul Metropolitan Government Boramae Medical Center, Seoul, 07061, Republic of Korea.
| | - Won-Il Jeong
- Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
30
|
Growth differentiation factor 15 (GDF-15) in kidney diseases. Adv Clin Chem 2023. [DOI: 10.1016/bs.acc.2023.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
31
|
Growth Differentiation Factor 15 (GDF-15) Levels Associate with Lower Survival in Chronic Kidney Disease Patients with COVID-19. Biomedicines 2022; 10:biomedicines10123251. [PMID: 36552007 PMCID: PMC9775159 DOI: 10.3390/biomedicines10123251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/09/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022] Open
Abstract
A cytokine storm drives the pathogenesis of severe COVID-19 infection and several biomarkers have been linked to mortality. Chronic kidney disease (CKD) emerged as a risk factor for severe COVID-19. We investigated the association between selected biomarkers and mortality in 77 patients hospitalized for COVID-19, and whether they differ in patients with eGFR higher and lower than 45 mL/min. The association between patients’ characteristics, plasma biomarkers and mortality was conducted by univariate logistic regression models and independent predictors of mortality were then used to create a multivariate prediction model through Cox regression. Patients with lower eGFR had a significant increase of GDF-15, CD-25 and RAGE, with higher plasma levels in non-survivors and in patients who needed ventilation. At univariate analysis, low and mid-low GDF-15 quartiles (<4.45 ng/mL) were associated with lower mortality risk, while mid-high and high quartiles (>4.45 ng/mL) were associated with higher mortality risk. Independent association between GDF-15 quartiles and mortality risk was confirmed in the Cox model and adjusted for eGFR, age, fever and dyspnea (HR 2.28, CI 1.53−3.39, p < 0.0001). The strength of the association between GDF-15 quartiles and mortality risk increased in patients with lower compared to higher eGFR (HR 2.53, CI 1.34−4.79 versus HR 1.99, CI 1.17−3.39). Our findings may suggest a further investigation of the effect of GDF-15 signaling pathway inhibition in CKD.
Collapse
|
32
|
Jennings MJ, Kagiava A, Vendredy L, Spaulding EL, Stavrou M, Hathazi D, Grüneboom A, De Winter V, Gess B, Schara U, Pogoryelova O, Lochmüller H, Borchers CH, Roos A, Burgess RW, Timmerman V, Kleopa KA, Horvath R. NCAM1 and GDF15 are biomarkers of Charcot-Marie-Tooth disease in patients and mice. Brain 2022; 145:3999-4015. [PMID: 35148379 PMCID: PMC9679171 DOI: 10.1093/brain/awac055] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 11/22/2021] [Accepted: 12/15/2021] [Indexed: 02/02/2023] Open
Abstract
Molecular markers scalable for clinical use are critical for the development of effective treatments and the design of clinical trials. Here, we identify proteins in sera of patients and mouse models with Charcot-Marie-Tooth disease (CMT) with characteristics that make them suitable as biomarkers in clinical practice and therapeutic trials. We collected serum from mouse models of CMT1A (C61 het), CMT2D (GarsC201R, GarsP278KY), CMT1X (Gjb1-null), CMT2L (Hspb8K141N) and from CMT patients with genotypes including CMT1A (PMP22d), CMT2D (GARS), CMT2N (AARS) and other rare genetic forms of CMT. The severity of neuropathy in the patients was assessed by the CMT Neuropathy Examination Score (CMTES). We performed multitargeted proteomics on both sample sets to identify proteins elevated across multiple mouse models and CMT patients. Selected proteins and additional potential biomarkers, such as growth differentiation factor 15 (GDF15) and cell free mitochondrial DNA, were validated by ELISA and quantitative PCR, respectively. We propose that neural cell adhesion molecule 1 (NCAM1) is a candidate biomarker for CMT, as it was elevated in Gjb1-null, Hspb8K141N, GarsC201R and GarsP278KY mice as well as in patients with both demyelinating (CMT1A) and axonal (CMT2D, CMT2N) forms of CMT. We show that NCAM1 may reflect disease severity, demonstrated by a progressive increase in mouse models with time and a significant positive correlation with CMTES neuropathy severity in patients. The increase in NCAM1 may reflect muscle regeneration triggered by denervation, which could potentially track disease progression or the effect of treatments. We found that member proteins of the complement system were elevated in Gjb1-null and Hspb8K141N mouse models as well as in patients with both demyelinating and axonal CMT, indicating possible complement activation at the impaired nerve terminals. However, complement proteins did not correlate with the severity of neuropathy measured on the CMTES scale. Although the complement system does not seem to be a prognostic biomarker, we do show complement elevation to be a common disease feature of CMT, which may be of interest as a therapeutic target. We also identify serum GDF15 as a highly sensitive diagnostic biomarker, which was elevated in all CMT genotypes as well as in Hspb8K141N, Gjb1-null, GarsC201R and GarsP278KY mouse models. Although we cannot fully explain its origin, it may reflect increased stress response or metabolic disturbances in CMT. Further large and longitudinal patient studies should be performed to establish the value of these proteins as diagnostic and prognostic molecular biomarkers for CMT.
Collapse
Affiliation(s)
- Matthew J Jennings
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Alexia Kagiava
- Department of Neuroscience and Neuromuscular Disorders Centre, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Leen Vendredy
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, Institute Born Bunge, University of Antwerp, Antwerp, Belgium
| | - Emily L Spaulding
- The Jackson Laboratory, Bar Harbor, ME, USA
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME 04469, USA
| | - Marina Stavrou
- Department of Neuroscience and Neuromuscular Disorders Centre, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Denisa Hathazi
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Anika Grüneboom
- Leibniz-Institut für Analytische Wissenschaften—ISAS—e.V, Dortmund, Germany
| | - Vicky De Winter
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, Institute Born Bunge, University of Antwerp, Antwerp, Belgium
| | - Burkhard Gess
- Department of Neurology, University Hospital Aachen, Aachen, Germany
| | - Ulrike Schara
- Centre for Neuromuscular Disorders in Children, University of Duisburg-Essen, Essen, Germany
| | - Oksana Pogoryelova
- Directorate of Neurosciences, Royal Victoria Infirmary, Newcastle upon Tyne Hospitals, NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Hanns Lochmüller
- Division of Neurology, Department of Medicine, The Ottawa Hospital, Brain and Mind Research Institute and Children’s Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Canada
- Department of Neuropediatrics and Muscle Disorders, Medical Center–University of Freiburg, Faculty of Medicine, Freiburg, Germany
- CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Christoph H Borchers
- Segal Cancer Proteomics Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, Quebec, Canada
- Gerald Bronfman Department of Oncology, Jewish General Hospital, McGill University, Montreal, Quebec, Canada
- Center for Computational and Data-Intensive Science and Engineering, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Andreas Roos
- Division of Neurology, Department of Medicine, The Ottawa Hospital, Brain and Mind Research Institute and Children’s Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Canada
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Robert W Burgess
- The Jackson Laboratory, Bar Harbor, ME, USA
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME 04469, USA
| | - Vincent Timmerman
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, Institute Born Bunge, University of Antwerp, Antwerp, Belgium
| | - Kleopas A Kleopa
- Department of Neuroscience and Neuromuscular Disorders Centre, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Rita Horvath
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
33
|
GDF15 Contributes to Radioresistance by Mediating the EMT and Stemness of Breast Cancer Cells. Int J Mol Sci 2022; 23:ijms231810911. [PMID: 36142823 PMCID: PMC9504016 DOI: 10.3390/ijms231810911] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
Radiotherapy is one of the conventional methods for the clinical treatment of breast cancer. However, radioresistance has an adverse effect on the prognosis of breast cancer patients after radiotherapy. In this study, using bioinformatic analysis of GSE59732 and GSE59733 datasets in the Gene Expression Omnibus (GEO) database together with the prognosis database of breast cancer patients after radiotherapy, the GDF15 gene was screened out to be related to the poor prognosis of breast cancer after radiotherapy. Compared with radiosensitive parental breast cancer cells, breast cancer cells with acquired radioresistance exhibited a high level of GDF15 expression and enhanced epithelial-to-mesenchymal transition (EMT) properties of migration and invasion, as well as obvious stem-like traits, including the increases of mammosphere formation ability, the proportion of stem cells (CD44+ CD24- cells), and the expressions of stem cell-related markers (SOX2, NANOG). Moreover, knockdown of GDF15 sensitized the radioresistance cells to irradiation and significantly inhibited their EMT and stem-like traits, indicating that GDF15 promoted the radioresistance of breast cancer by enhancing the properties of EMT and stemness. Conclusively, GDF15 may be applicable as a novel prognosis-related biomarker and a potential therapeutic target for breast cancer radiotherapy.
Collapse
|
34
|
Fiorucci S, Urbani G. GDF15 in Vascular and Liver Metabolic Disorders: A Novel Therapeutic Target. RECENT ADVANCES IN INFLAMMATION & ALLERGY DRUG DISCOVERY 2022; 16:55-59. [PMID: 36578252 DOI: 10.2174/277227081602221221113442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 11/30/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022]
Affiliation(s)
- Stefano Fiorucci
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Perugia, Perugia, Italy
| | - Ginevra Urbani
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Perugia, Perugia, Italy
| |
Collapse
|
35
|
The GDF15-GFRAL pathway is dispensable for the effects of metformin on energy balance. Cell Rep 2022; 40:111258. [PMID: 36001956 DOI: 10.1016/j.celrep.2022.111258] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/18/2022] [Accepted: 08/03/2022] [Indexed: 12/30/2022] Open
Abstract
Metformin is a blood-glucose-lowering medication with physiological effects that extend beyond its anti-diabetic indication. Recently, it was reported that metformin lowers body weight via induction of growth differentiation factor 15 (GDF15), which suppresses food intake by binding to the GDNF family receptor α-like (GFRAL) in the hindbrain. Here, we corroborate that metformin increases circulating GDF15 in mice and humans, but we fail to confirm previous reports that the GDF15-GFRAL pathway is necessary for the weight-lowering effects of metformin. Instead, our studies in wild-type, GDF15 knockout, and GFRAL knockout mice suggest that the GDF15-GFRAL pathway is dispensable for the effects of metformin on energy balance. The data presented here question whether metformin is a sufficiently strong stimulator of GDF15 to drive anorexia and weight loss and emphasize that additional work is needed to untangle the relationship among metformin, GDF15, and energy balance.
Collapse
|
36
|
Dias JP, Carlson O, Schweitzer M, Shardell M, Clark JM, Brown TT, Egan JM, Lee CJ. GDF15 and Cortisol Response to Meal Tolerance Test in Post-Sleeve Gastrectomy Patients with Weight Regain. Obes Surg 2022; 32:2641-2648. [PMID: 35672598 PMCID: PMC9972254 DOI: 10.1007/s11695-022-06140-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/26/2022] [Accepted: 06/01/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND Hormonal factors behind weight regain (WR) after surgical weight loss remain inadequately understood. Growth/differentiation factor 15 (GDF15) has emerged as a potential therapeutic target in obesity treatment. Cortisol, another stress hormone, has also been associated with weight gain at both low and high circulating concentrations. We aimed to compare meal-stimulated GDF15 and cortisol response in adults with and without WR after sleeve gastrectomy (SG). We hypothesized that GDF15 and cortisol response to meal tolerance test (MTT) will be lower in those with versus without WR after SG. METHODS Cross-sectional study comprised 21 adults without diabetes, who underwent SG. WR was defined as 100 × (current weight - nadir)/(preoperative weight - nadir) > 10%. GDF15, cortisol, insulin, glucose, and incretins (total glucagon-like peptide (GLP)-1 and glucose-dependent insulinotropic polypeptide (GIP) circulating concentrations) were measured during MTT (0-240 min) after 3-6 years post-bariatric surgery. RESULTS All participants were 48% White, 85% female, with mean (SD) age: 43(10) years, and BMI: 36.2(7.6) kg/m2. Compared to the non-WR group (n = 6), the WR group (n = 15) had significantly higher BMI (WR: 38.6 ± 7.6 kg/m2, non-WR: 30.3 ± 3.5 kg/m2, p = 0.02) and showed lower GDF15 response (WR AUC vs non-WR AUC (116143 ± 13973 vs 185798 ± 38884 ng*min/L, p = 0.047)) and lower cortisol response (WR AUC vs non-WR AUC (3492 ± 210 vs 4880 ± 655 µg*min/dL, p = 0.015)). Incretin response did not differ between the groups. CONCLUSIONS GDF15 and cortisol responses to MTT were lower in those who regained the weight after SG compared to those who did not, suggesting that dysregulation in GDF15 and cortisol response following bariatric surgery.
Collapse
Affiliation(s)
- Jenny Pena Dias
- Department of Medicine, Johns Hopkins University School of Medicine, 1830 E. Monument St., Baltimore, MD, 21205, USA. .,National Institute of Aging, NIH, Baltimore, MD, USA.
| | - Olga Carlson
- National Institute of Aging, NIH, Baltimore, MD, USA
| | - Michael Schweitzer
- Department of Surgery, Johns Hopkins University School of Medicine, 1830 E. Monument St., Baltimore, MD 21205, USA
| | - Michelle Shardell
- Department of Epidemiology and Public Health, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Jeanne M. Clark
- Department of Medicine, Johns Hopkins University School of Medicine, 1830 E. Monument St., Baltimore, MD 21205, USA,Department of Epidemiology, Johns Hopkins University, Bloomberg School of Public Health, Baltimore, MD, USA
| | - Todd T. Brown
- Department of Medicine, Johns Hopkins University School of Medicine, 1830 E. Monument St., Baltimore, MD 21205, USA,Department of Epidemiology, Johns Hopkins University, Bloomberg School of Public Health, Baltimore, MD, USA
| | | | - Clare J. Lee
- Department of Medicine, Johns Hopkins University School of Medicine, 1830 E. Monument St., Baltimore, MD 21205, USA
| |
Collapse
|
37
|
Wang Y, Chen C, Chen J, Sang T, Peng H, Lin X, Zhao Q, Chen S, Eling T, Wang X. Overexpression of NAG-1/GDF15 prevents hepatic steatosis through inhibiting oxidative stress-mediated dsDNA release and AIM2 inflammasome activation. Redox Biol 2022; 52:102322. [PMID: 35504134 PMCID: PMC9079118 DOI: 10.1016/j.redox.2022.102322] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/10/2022] [Accepted: 04/23/2022] [Indexed: 02/08/2023] Open
Abstract
Mitochondrial dysfunction and oxidative stress-mediated inflammasome activation play critical roles in the pathogenesis of the non-alcoholic fatty liver disease (NAFLD). Non-steroidal anti-inflammatory drug (NSAID)-activated gene-1 (NAG-1), or growth differentiation factor-15 (GDF15), is associated with many biological processes and diseases, including NAFLD. However, the role of NAG-1/GDF15 in regulating oxidative stress and whether this process is associated with absent in melanoma 2 (AIM2) inflammasome activation in NAFLD are unknown. In this study, we revealed that NAG-1/GDF15 is significantly downregulated in liver tissues of patients with steatosis compared to normal livers using the Gene Expression Omnibus (GEO) database, and in free fatty acids (FFA, oleic acid/palmitic acid, 2:1)-induced HepG2 and Huh-7 cellular steatosis models. Overexpression of NAG-1/GDF15 in transgenic (Tg) mice significantly alleviated HFD-induced obesity and hepatic steatosis, improved lipid homeostasis, enhanced fatty acid β-oxidation and lipolysis, inhibited fatty acid synthesis and uptake, and inhibited AIM2 inflammasome activation and the secretion of IL-18 and IL-1β, as compared to their wild-type (WT) littermates without reducing food intake. Furthermore, NAG-1/GDF15 overexpression attenuated FFA-induced triglyceride (TG) accumulation, lipid metabolism deregulation, and AIM2 inflammasome activation in hepatic steatotic cells, while knockdown of NAG-1/GDF15 demonstrated opposite effects. Moreover, NAG-1/GDF15 overexpression inhibited HFD- and FFA-induced oxidative stress and mitochondrial damage which in turn reduced double-strand DNA (dsDNA) release into the cytosol, while NAG-1/GDF15 siRNA showed opposite effects. The reduced ROS production and dsDNA release may be responsible for attenuated AIM2 activation by NAG-1/GDF15 upon fatty acid overload. In conclusion, our results provide evidence that other than regulating lipid homeostasis, NAG-1/GDF15 protects against hepatic steatosis through a novel mechanism via suppressing oxidative stress, mitochondrial damage, dsDNA release, and AIM2 inflammasome activation.
NAG-1/GDF15 is downregulated in human steatotic liver and FFA-induced liver cells. NAG-1/GDF15 inhibits hepatic steatosis and improves lipid homeostasis. AIM2 inflammasome is activated in steatosis models and is inhibited by NAG-1/GDF15. NAG-1/GDF15 reduces oxidative stress and mitochondrial damage in steatosis models. NAG-1/GDF15 inhibits mitochondrial dsDNA release and thus inhibits AIM2 activation.
Collapse
|
38
|
Arinaga-Hino T, Ide T, Akiba J, Suzuki H, Kuwahara R, Amano K, Kawaguchi T, Sano T, Inoue E, Koga H, Mitsuyama K, Koga Y, Torimura T. Growth differentiation factor 15 as a novel diagnostic and therapeutic marker for autoimmune hepatitis. Sci Rep 2022; 12:8759. [PMID: 35610317 PMCID: PMC9130300 DOI: 10.1038/s41598-022-12762-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/16/2022] [Indexed: 11/26/2022] Open
Abstract
Growth differentiation factor 15 (GDF15) has been reported to be associated with fibrosis and cancer in liver disease. Diagnosis of autoimmune hepatitis (AIH) is often difficult because of the lack of specific markers. We investigated whether GDF15 is useful for diagnosing AIH and determined its therapeutic effects. We enrolled 171 Japanese patients as follows: AIH (n = 45), hepatitis B (HB) (n = 17), hepatitis C (HC) (n = 15), primary biliary cholangitis (PBC) (n = 20), and 74 healthy controls. Serum GDF15 levels were measured, and immunohistological analyses of GDF15 were performed using liver tissue of AIH patients. (1) GDF15 levels (pg/ml) were higher in AIH (1994.3 ± 1258.0) and HC (1568.0 ± 822.3) than in HB (953.2 ± 871.4), PBC (643.9 ± 247.0), and controls (475.3 ± 145.3) (p < 0.0001), as well as in cirrhosis patients (n = 31) than in non-cirrhosis patients (n = 66) (1926.6 ± 1026.0 vs. 1249.1 ± 1124.1, p < 0.0001). In non-cirrhosis patients, GDF15 levels were higher in AIH (1914.0 ± 1327.2) than in HC (955.7 ± 502.7), HB (519.3 ± 197.5), and PBC (643.9 ± 247.0) (p < 0.0001). (2) GDF15 was positively correlated with M2BPGi (r = 0.7728), total bilirubin (r = 0.6231), and PT-INR (r = 0.6332). (3) GDF15 levels could be used to distinguish AIH from other liver diseases in non-cirrhosis patients, with an area under the curve of 0.9373 (sensitivity 93.6%, specificity 79.3%, cut-off value 931.3). (4) GDF15 in AIH decreased after treatment. (5) Immunohistological analyses in AIH liver tissues revealed that GDF15 was strongly expressed in inflammatory cells, hepatic cytoplasm, and sinusoidal endothelial cells, but decreased after treatment. GDF15 is a novel diagnostic marker for AIH and is also expected to be a therapeutic marker for AIH.Clinical Trials Registration: The study protocol was approved by the institutional review board of Kurume University (Approval No.: 19049).
Collapse
Affiliation(s)
- Teruko Arinaga-Hino
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka, 830-0011, Japan.
| | - Tatsuya Ide
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka, 830-0011, Japan
| | - Jun Akiba
- Department of Diagnostic Pathology, Kurume University Hospital, Kurume, Fukuoka, Japan
| | - Hiroyuki Suzuki
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka, 830-0011, Japan
| | - Reiichiro Kuwahara
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka, 830-0011, Japan
| | - Keisuke Amano
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka, 830-0011, Japan
| | - Toshihiro Kawaguchi
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka, 830-0011, Japan
| | - Tomoya Sano
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka, 830-0011, Japan
| | - Eisuke Inoue
- Showa University Research Administration Center, Shinagawa-ku, Tokyo, Japan
| | - Hironori Koga
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka, 830-0011, Japan
| | - Keiichi Mitsuyama
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka, 830-0011, Japan
| | - Yasutoshi Koga
- Cognitive and Molecular Research Institute of Brain Diseases, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Takuji Torimura
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka, 830-0011, Japan
| |
Collapse
|
39
|
Agarwal N, Ramirez Bustamante CE, Wu H, Armamento‐Villareal R, Lake JE, Balasubramanyam A, Hartig S. Heightened levels of plasma growth differentiation factor 15 in men living with HIV. Physiol Rep 2022; 10:e15293. [PMID: 35510313 PMCID: PMC9069165 DOI: 10.14814/phy2.15293] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/14/2022] [Accepted: 04/17/2022] [Indexed: 01/13/2023] Open
Abstract
Plasma biomarkers that reflect energy balance disorders in people living with HIV (PLWH) remain limited. Growth differentiation factor 15 (GDF15) abundance in plasma of mice and humans induces negative energy balance but also becomes highly elevated in obesity and other metabolic diseases. We sought to compare plasma GDF15 levels in PLWH and HIV-negative persons and mouse models expressing the HIV accessory protein Vpr (that recapitulate HIV-associated metabolic disorders) and determine their relationship to metabolic parameters. We measured liver Gdf15 mRNA levels and plasma GDF15 levels in male Vpr mice and littermate controls. In parallel, we analyzed plasma GDF15 levels in 18 male PLWH on stable, long-term antiretroviral therapy and 13 HIV-negative men (6 healthy controls and 7 with metabolic syndrome). Plasma GDF15 levels were correlated with anthropometric and immune cell parameters in humans. Gene expression analysis of Vpr mouse liver demonstrated elevated Gdf15 mRNA. Plasma GDF15 levels were also higher in Vpr mouse models. Levels of plasma GDF15 in PLWH were greater than in both HIV-negative groups and correlated positively with the CD4/CD8 T cell ratio in PLWH. Plasma GDF15 levels correlated positively with age in the HIV-negative subjects but not in PLWH. Since GDF15 levels predict fatty liver disease and energy balance disorders, further studies are warranted to determine the effect of GDF15 in mediating the metabolic disturbances that occur in Vpr mice and PLWH.
Collapse
Affiliation(s)
- Neeti Agarwal
- Division of Diabetes, Endocrinology, and MetabolismBaylor College of MedicineHoustonTexasUSA
| | | | - Huaizhu Wu
- Atherosclerosis and Lipoprotein ResearchBaylor College of MedicineHoustonTexasUSA
| | - Reina Armamento‐Villareal
- Division of Diabetes, Endocrinology, and MetabolismBaylor College of MedicineHoustonTexasUSA
- Center for Translational Research on Inflammatory DiseasesMichael E DeBakey VA Medical CenterHoustonTexasUSA
| | - Jordan E. Lake
- Division of Infectious DiseasesDepartment of Internal MedicineMcGovern Medical SchoolUniversity of Texas Health Science CenterHoustonTexasUSA
| | - Ashok Balasubramanyam
- Division of Diabetes, Endocrinology, and MetabolismBaylor College of MedicineHoustonTexasUSA
| | - Sean M. Hartig
- Division of Diabetes, Endocrinology, and MetabolismBaylor College of MedicineHoustonTexasUSA
- Department of Molecular and Cellular BiologyBaylor College of MedicineHoustonTexasUSA
| |
Collapse
|
40
|
Xu G, Chen J, Jo S, Grayson TB, Ramanadham S, Koizumi A, Germain-Lee EL, Lee SJ, Shalev A. Deletion of Gdf15 Reduces ER Stress-induced Beta-cell Apoptosis and Diabetes. Endocrinology 2022; 163:6548945. [PMID: 35290443 PMCID: PMC9272264 DOI: 10.1210/endocr/bqac030] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Indexed: 01/12/2023]
Abstract
Endoplasmic reticulum (ER) stress contributes to pancreatic beta-cell apoptosis in diabetes, but the factors involved are still not fully elucidated. Growth differentiation factor 15 (GDF15) is a stress response gene and has been reported to be increased and play an important role in various diseases. However, the role of GDF15 in beta cells in the context of ER stress and diabetes is still unclear. In this study, we have discovered that GDF15 promotes ER stress-induced beta-cell apoptosis and that downregulation of GDF15 has beneficial effects on beta-cell survival in diabetes. Specifically, we found that GDF15 is induced by ER stress in beta cells and human islets, and that the transcription factor C/EBPβ is involved in this process. Interestingly, ER stress-induced apoptosis was significantly reduced in INS-1 cells with Gdf15 knockdown and in isolated Gdf15 knockout mouse islets. In vivo, we found that Gdf15 deletion attenuates streptozotocin-induced diabetes by preserving beta cells and insulin levels. Moreover, deletion of Gdf15 significantly delayed diabetes development in spontaneous ER stress-prone Akita mice. Thus, our findings suggest that GDF15 contributes to ER stress-induced beta-cell apoptosis and that inhibition of GDF15 may represent a novel strategy to promote beta-cell survival and treat diabetes.
Collapse
Affiliation(s)
- Guanlan Xu
- Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Correspondence: Guanlan Xu, PhD, Comprehensive Diabetes Center, University of Alabama at Birmingham, 1825 University Blvd, Shelby Bldg 1272, Birmingham, AL 35294-2182, USA. E-mail:
| | - Junqin Chen
- Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - SeongHo Jo
- Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Truman B Grayson
- Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Sasanka Ramanadham
- Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Akio Koizumi
- Institute of Public Health and Social Welfare Public Interest Incorporation Associations, Kyoto Hokenkai, Ukyo-ku Kyoto 615-8577, Japan
| | - Emily L Germain-Lee
- Department of Pediatrics, University of Connecticut School of Medicine, Farmington, CT 06030, USA
- Connecticut Children’s Center for Rare Bone Disorders, Farmington, CT 06032, USA
| | - Se-Jin Lee
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
- University of Connecticut School of Medicine, Department of Genetics and Genome Sciences, Farmington, CT 06030, USA
| | - Anath Shalev
- Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
41
|
Patel A, Aslam R, Jamil M, Ansari A, Khan S. The Effects of Growth Factors and Cytokines on Hepatic Regeneration: A Systematic Review. Cureus 2022; 14:e24539. [PMID: 35651436 PMCID: PMC9138487 DOI: 10.7759/cureus.24539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/27/2022] [Indexed: 01/10/2023] Open
Abstract
The incidence of liver disease increases throughout the years due to many lifestyle factors; thus, the only definite treatment available for chronic liver disease is a liver transplant. However, the liver has a natural ability to repair itself and regenerate its hepatic tissue from stem cells. It is hypothesized that by inducing the liver with specific growth factors and cytokines such as interleukin 6 (IL-6) compared to general growth factors like growth differentiation factor 15 (GDF-15), it can regenerate, decreasing the need for liver transplant procedures. MEDLINE, the Journal of Hepatology, and Google Scholar were used to find articles. Various studies, including epidemiological studies dated from the year 2000 and greater, were used for the introduction. The results used only randomized control trials, experimental studies, and primary articles published since 2000. This compared the results of manipulating variables to determine the effects of hepatic regeneration by either specific hepatocyte growth factors or general growth factors like GDF-15. A total of 10 collected studies showed increased levels of gene expression and function, improved gross morphology, and histological appearance of the liver when induced by cytokines and specific growth factors versus general growth factors. Overall, the hypothesis was proven. The effects of GDF-15 were not significant compared to the effects of hepatocyte-specific growth factors and cytokines like IL-6 because they have two different effects on the liver after liver injury. Future studies should investigate this topic on the human hepatic regenerative ability, plus compare the effects of general growth factors like GDF-15 and specific hepatocyte growth factors and cytokines such as IL-6 in human liver tissue.
Collapse
|
42
|
Lorenz G, Ribeiro A, von Rauchhaupt E, Würf V, Schmaderer C, Cohen CD, Vohra T, Anders HJ, Lindenmeyer M, Lech M. GDF15 Suppresses Lymphoproliferation and Humoral Autoimmunity in a Murine Model of Systemic Lupus Erythematosus. J Innate Immun 2022; 14:673-689. [PMID: 35443244 PMCID: PMC9801254 DOI: 10.1159/000523991] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/21/2022] [Indexed: 01/02/2023] Open
Abstract
Growth and differentiation factor 15 (GDF15), a divergent member of the transforming growth factor-β superfamily, has been associated with acute and chronic inflammatory conditions including autoimmune disease, i.e., type I diabetes and rheumatoid arthritis. Still, its role in systemic autoimmune disease remains elusive. Thus, we studied GDF15-deficient animals in Fas-receptor intact (C57BL/6) or deficient (C57BL/6lpr/lpr) backgrounds. Further, lupus nephritis (LN) microdissected kidney biopsy specimens were analyzed to assess the involvement of GDF15 in human disease. GDF15-deficiency in lupus-prone mice promoted lymphoproliferation, T-, B- and plasma cell-expansion, a type I interferon signature, and increased serum levels of anti-DNA autoantibodies. Accelerated systemic inflammation was found in association with a relatively mild renal phenotype. Splenocytes of phenotypically overall-normal Gdf15-/- C57BL/6 and lupus-prone C57BL/6lpr/lpr mice displayed increased in vitro lymphoproliferative responses or interferon-dependent transcription factor induction in response to the toll-like-receptor (TLR)-9 ligand CpG, or the TLR-7 ligand Imiquimod, respectively. In human LN, GDF15 expression was downregulated whereas type I interferon expression was upregulated in glomerular- and tubular-compartments versus living donor controls. These findings demonstrate that GDF15 regulates lupus-like autoimmunity by suppressing lymphocyte-proliferation and -activation. Further, the data indicate a negative regulatory role for GDF15 on TLR-7 and -9 driven type I interferon signaling in effector cells of the innate immune system.
Collapse
Affiliation(s)
- Georg Lorenz
- LMU Klinikum, Medizinische Klinik und Poliklinik IV, Department of Nephrology, Ludwig-Maximilians-Universität München, Munich, Germany,Klinikum rechts der Isar, Department of Nephrology, Section of Rheumatology, Technical University Munich, Munich, Germany
| | - Andrea Ribeiro
- LMU Klinikum, Medizinische Klinik und Poliklinik IV, Department of Nephrology, Ludwig-Maximilians-Universität München, Munich, Germany,Klinikum rechts der Isar, Department of Nephrology, Technical University Munich, Munich, Germany
| | - Ekatharina von Rauchhaupt
- LMU Klinikum, Medizinische Klinik und Poliklinik IV, Department of Nephrology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Vivian Würf
- LMU Klinikum, Medizinische Klinik und Poliklinik IV, Department of Nephrology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Christoph Schmaderer
- Klinikum rechts der Isar, Department of Nephrology, Technical University Munich, Munich, Germany
| | - Clemens D. Cohen
- LMU Klinikum, Medizinische Klinik und Poliklinik IV, Department of Nephrology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Twinkle Vohra
- LMU Klinikum, Medizinische Klinik und Poliklinik IV, Department of Endocrinology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Hans-Joachim Anders
- LMU Klinikum, Medizinische Klinik und Poliklinik IV, Department of Nephrology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Maja Lindenmeyer
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maciej Lech
- LMU Klinikum, Medizinische Klinik und Poliklinik IV, Department of Nephrology, Ludwig-Maximilians-Universität München, Munich, Germany,*Maciej Lech,
| |
Collapse
|
43
|
Valiño-Rivas L, Cuarental L, Ceballos MI, Pintor-Chocano A, Perez-Gomez MV, Sanz AB, Ortiz A, Sanchez-Niño MD. Growth differentiation factor-15 preserves Klotho expression in acute kidney injury and kidney fibrosis. Kidney Int 2022; 101:1200-1215. [PMID: 35337892 DOI: 10.1016/j.kint.2022.02.028] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 02/07/2022] [Accepted: 02/16/2022] [Indexed: 02/07/2023]
Abstract
Growth differentiation factor-15 (GDF15) is a member of the GDF subfamily with potential kidney protective functions. Here, we explored the impact of GDF15 on the expression of the kidney protective factor Klotho in models of acute kidney injury and kidney fibrosis in mice. GDF15 was the most upregulated GDF family gene in experimental toxic acute kidney injury and in kidney fibrosis transcriptomics. GDF15 function was explored in toxic acute kidney injury in genetically modified mice and following treatment with GDF15. Gdf15-deficient mice developed more severe toxic acute kidney injury (folic acid or cisplatin) while GDF15 overexpression or GDF15 administration were protective. Kidney expression of Klotho was more severely depressed in Gdf15-deficient mice and was preserved by GDF15 overexpression or GDF15 treatment. Moreover, increased plasma calcitriol levels inversely correlated with kidney Klotho across models with diverse levels of GDF15 availability. Kidney fibrosis induced by unilateral ureteral obstruction was more severe in Gdf15-deficient mice while GDF15 overexpression decreased kidney injury and preserved Klotho expression. GDF15 increased Klotho expression in vivo in healthy mice, in cultured tubular cells, and prevented Klotho downregulation by inflammatory factors in tubular cells by preventing transcription factor NF-ĸB activation. Thus, spontaneous increased kidney expression of endogenous GDF15 is not enough to prevent kidney injury, but further increments in GDF15 are kidney protecting and preserve expression of the kidney protective factor Klotho within the kidney in acute and chronic settings.
Collapse
Affiliation(s)
- Lara Valiño-Rivas
- Department of Nephrology and Hypertension. IIS-Fundacion Jimenez Diaz, School of Medicine, Universidad Autonoma de Madrid and REDINREN and FRIAT, Madrid, Spain
| | - Leticia Cuarental
- Department of Nephrology and Hypertension. IIS-Fundacion Jimenez Diaz, School of Medicine, Universidad Autonoma de Madrid and REDINREN and FRIAT, Madrid, Spain
| | - Maria I Ceballos
- Department of Nephrology and Hypertension. IIS-Fundacion Jimenez Diaz, School of Medicine, Universidad Autonoma de Madrid and REDINREN and FRIAT, Madrid, Spain
| | - Arancha Pintor-Chocano
- Department of Nephrology and Hypertension. IIS-Fundacion Jimenez Diaz, School of Medicine, Universidad Autonoma de Madrid and REDINREN and FRIAT, Madrid, Spain
| | - Maria Vanessa Perez-Gomez
- Department of Nephrology and Hypertension. IIS-Fundacion Jimenez Diaz, School of Medicine, Universidad Autonoma de Madrid and REDINREN and FRIAT, Madrid, Spain
| | - Ana B Sanz
- Department of Nephrology and Hypertension. IIS-Fundacion Jimenez Diaz, School of Medicine, Universidad Autonoma de Madrid and REDINREN and FRIAT, Madrid, Spain
| | - Alberto Ortiz
- Department of Nephrology and Hypertension. IIS-Fundacion Jimenez Diaz, School of Medicine, Universidad Autonoma de Madrid and REDINREN and FRIAT, Madrid, Spain
| | - Maria Dolores Sanchez-Niño
- Department of Nephrology and Hypertension. IIS-Fundacion Jimenez Diaz, School of Medicine, Universidad Autonoma de Madrid and REDINREN and FRIAT, Madrid, Spain; Department of Pharmacology, Universidad Autonoma de Madrid, Madrid, Spain.
| |
Collapse
|
44
|
Galuppo B, Agazzi C, Pierpont B, Chick J, Li Z, Caprio S, Santoro N. Growth differentiation factor 15 (GDF15) is associated with non-alcoholic fatty liver disease (NAFLD) in youth with overweight or obesity. Nutr Diabetes 2022; 12:9. [PMID: 35194014 PMCID: PMC8863897 DOI: 10.1038/s41387-022-00187-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 12/23/2021] [Accepted: 02/04/2022] [Indexed: 01/26/2023] Open
Abstract
OBJECTIVE Growth differentiation factor 15 (GDF15) has been associated with food intake and weight regulation in response to metabolic stress. In animal models, it has been noted that it may play a role in the progression of non-alcoholic fatty liver disease (NAFLD), the leading cause of chronic liver disease in children. DESIGN In the current study, we explored the association of circulating plasma concentrations of GDF15 with NAFLD in youth with overweight/obesity, and whether changes in plasma concentrations in GDF15 parallel the changes in intrahepatic fat content (HFF%) over time. METHODS Plasma GDF15 concentrations were measured by ELISA in 175 youth with overweight/obesity who underwent an oral glucose tolerance test (OGTT) and magnetic resonance imaging (MRI) to assess intrahepatic, visceral, and subcutaneous fat. Baseline fasting GDF15 concentrations were measured in twenty-two overweight/obese youth who progressed (n = 11) or regressed (n = 11) in HFF% by more than 30% of original over a 2-year period. RESULTS Youth with NAFLD had significantly higher plasma concentrations of GDF15 than those without NAFLD, independent of age, sex, ethnicity, BMI z-score (BMIz), and visceral fat (P = 0.002). During the OGTT, there was a decline in plasma GDF15 concentrations from 0 to 60 min, but GDF15 concentrations returned to basal levels by the end of the study. There was a statistically significant association between change in HFF% and change in GDF15 (P = 0.008; r2 = 0.288) over ~2 years of follow-up. CONCLUSIONS These data suggest that plasma GDF15 concentrations change with change in intrahepatic fat content in youth with overweight/obesity and may serve as a biomarker for NAFLD in children.
Collapse
Affiliation(s)
- Brittany Galuppo
- Department of Pediatrics, Yale School of Medicine, New Haven, CT, USA
| | - Cristiana Agazzi
- Department of Pediatrics, Yale School of Medicine, New Haven, CT, USA
| | - Bridget Pierpont
- Department of Pediatrics, Yale School of Medicine, New Haven, CT, USA
| | - Jennifer Chick
- Department of Pediatrics, Yale School of Medicine, New Haven, CT, USA
| | - Zhongyao Li
- Department of Pediatrics, Yale School of Medicine, New Haven, CT, USA
| | - Sonia Caprio
- Department of Pediatrics, Yale School of Medicine, New Haven, CT, USA
| | - Nicola Santoro
- Department of Pediatrics, Yale School of Medicine, New Haven, CT, USA.
- Department of Medicine and Health Sciences, "V. Tiberio," University of Molise, Campobasso, Italy.
| |
Collapse
|
45
|
Raygan F, Etminan A, Mohammadi H, Akbari H, Nikoueinejad H. Serum Levels of Growth Differentiation Factor-15 as an Inflammatory Marker in Patients with Unstable Angina Pectoris. J Tehran Heart Cent 2022; 16:15-19. [PMID: 35082862 PMCID: PMC8728865 DOI: 10.18502/jthc.v16i1.6595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 11/19/2020] [Indexed: 11/24/2022] Open
Abstract
Background: Growth differentiation factor-15 (GDF-15), a member of transforming growth factors, is a stress-responsive marker whose levels may significantly increase in response to pathological stresses associated with inflammatory tissue injuries such as unstable angina pectoris (USAP). This study evaluated the diagnostic value of GDF-15 in patients with USAP. Methods: The present cross-sectional study recruited 39 patients with USAP criteria and 30 patients with stable angina pectoris (SAP), referred to Shahid Beheshti Hospital, Kashan, Iran. All the patients with USAP had at least 1 coronary artery stenosis (>50%) in angiography. The control group comprised 42 healthy individuals. The serum levels of GDF-15 were measured in all the participants by ELISA. Also analyzed were the relationship between GDF-15 levels and thrombolysis in myocardial infarction (TIMI) and the Global Registry of Acute Coronary Events (GRACE) risk scores in the patients with USAP to determine the severity of the disease. Result: The study population consisted of 111 subjects, 62 women and 49 men, divided into 3 groups of USAP (n=39, mean age=60.07±14.10 y), SAP (n=30, mean age=67.56±9.88 y), and control (n=42, mean age=61.21±7.76 y). The mean serum level of GDF-15 in the USAP group was significantly different from the other 2 groups (P<0.001), while no significant difference was observed in this regard between the SAP and control groups (P=0.797). No correlation was found between the mean GDF-15 serum level and the GRACE (P=0.816) and TIMI (P=0.359) risk scores in the USAP group. Conclusion: The mean serum level of GDF-15 exhibited a rise in our patients with USAP. GDF-15 may be a diagnostic biomarker of USAP and its severity.
Collapse
Affiliation(s)
- Fariba Raygan
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Aniseh Etminan
- Students' Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Hanieh Mohammadi
- Students' Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Hossein Akbari
- School of Public Health, Kashan University of Medical Sciences, Kashan, Iran
| | - Hassan Nikoueinejad
- Nephrology and Urology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
46
|
Patsalos A, Halasz L, Medina-Serpas MA, Berger WK, Daniel B, Tzerpos P, Kiss M, Nagy G, Fischer C, Simandi Z, Varga T, Nagy L. A growth factor-expressing macrophage subpopulation orchestrates regenerative inflammation via GDF-15. J Exp Med 2022; 219:e20210420. [PMID: 34846534 PMCID: PMC8635277 DOI: 10.1084/jem.20210420] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 08/03/2021] [Accepted: 11/01/2021] [Indexed: 12/13/2022] Open
Abstract
Muscle regeneration is the result of the concerted action of multiple cell types driven by the temporarily controlled phenotype switches of infiltrating monocyte-derived macrophages. Pro-inflammatory macrophages transition into a phenotype that drives tissue repair through the production of effectors such as growth factors. This orchestrated sequence of regenerative inflammatory events, which we termed regeneration-promoting program (RPP), is essential for proper repair. However, it is not well understood how specialized repair-macrophage identity develops in the RPP at the transcriptional level and how induced macrophage-derived factors coordinate tissue repair. Gene expression kinetics-based clustering of blood circulating Ly6Chigh, infiltrating inflammatory Ly6Chigh, and reparative Ly6Clow macrophages, isolated from injured muscle, identified the TGF-β superfamily member, GDF-15, as a component of the RPP. Myeloid GDF-15 is required for proper muscle regeneration following acute sterile injury, as revealed by gain- and loss-of-function studies. Mechanistically, GDF-15 acts both on proliferating myoblasts and on muscle-infiltrating myeloid cells. Epigenomic analyses of upstream regulators of Gdf15 expression identified that it is under the control of nuclear receptors RXR/PPARγ. Finally, immune single-cell RNA-seq profiling revealed that Gdf15 is coexpressed with other known muscle regeneration-associated growth factors, and their expression is limited to a unique subpopulation of repair-type macrophages (growth factor-expressing macrophages [GFEMs]).
Collapse
Affiliation(s)
- Andreas Patsalos
- Departments of Medicine and Biological Chemistry, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children’s Hospital, St. Petersburg, FL
| | - Laszlo Halasz
- Departments of Medicine and Biological Chemistry, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children’s Hospital, St. Petersburg, FL
| | - Miguel A. Medina-Serpas
- Departments of Medicine and Biological Chemistry, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children’s Hospital, St. Petersburg, FL
| | - Wilhelm K. Berger
- Departments of Medicine and Biological Chemistry, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children’s Hospital, St. Petersburg, FL
| | - Bence Daniel
- Departments of Medicine and Biological Chemistry, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children’s Hospital, St. Petersburg, FL
| | - Petros Tzerpos
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Máté Kiss
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gergely Nagy
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | | | - Zoltan Simandi
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL
| | - Tamas Varga
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Laszlo Nagy
- Departments of Medicine and Biological Chemistry, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children’s Hospital, St. Petersburg, FL
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
47
|
Plomgaard P, Hansen JS, Townsend LK, Gudiksen A, Secher NH, Clemmesen JO, Støving RK, Goetze JP, Wright DC, Pilegaard H. GDF15 is an exercise-induced hepatokine regulated by glucagon and insulin in humans. Front Endocrinol (Lausanne) 2022; 13:1037948. [PMID: 36545337 PMCID: PMC9760804 DOI: 10.3389/fendo.2022.1037948] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/14/2022] [Indexed: 12/07/2022] Open
Abstract
OBJECTIVE Growth differentiation factor (GDF)-15 is implicated in regulation of metabolism and circulating GDF15 increases in response to exercise. The source and regulation of the exercise-induced increase in GDF15 is, however not known. METHOD Plasma GDF15 was measured by ELISA under the following conditions: 1) Arterial-to-hepatic venous differences sampled before, during, and after exercise in healthy male subjects (n=10); 2) exogenous glucagon infusion compared to saline infusion in resting healthy subjects (n=10); 3) an acute exercise bout with and without a pancreatic clamp (n=6); 4) healthy subjects for 36 hours (n=17), and 5) patients with anorexia nervosa (n=25) were compared to healthy age-matched subjects (n=25). Tissue GDF15 mRNA content was determined in mice in response to exhaustive exercise (n=16). RESULTS The splanchnic bed released GDF15 to the circulation during exercise and increasing the glucagon-to-insulin ratio in resting humans led to a 2.7-fold (P<0.05) increase in circulating GDF15. Conversely, inhibiting the exercise-induced increase in the glucagon-to-insulin ratio blunted the exercise-induced increase in circulating GDF15. Fasting for 36 hours did not affect circulating GDF15, whereas resting patients with anorexia nervosa displayed elevated plasma concentrations (1.4-fold, P<0.05) compared to controls. In mice, exercise increased GDF15 mRNA contents in liver, muscle, and adipose tissue. CONCLUSION In humans, GDF15 is a "hepatokine" which increases during exercise and is at least in part regulated by the glucagon-to-insulin ratio. Moreover, chronic energy deprivation is associated with elevated plasma GDF15, which supports that GDF15 is implicated in metabolic signalling in humans.
Collapse
Affiliation(s)
- Peter Plomgaard
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Centre of Inflammation and Metabolism and Centre for Physical Activity Research, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- *Correspondence: Peter Plomgaard,
| | - Jakob S. Hansen
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Centre of Inflammation and Metabolism and Centre for Physical Activity Research, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Logan K. Townsend
- Department of Human Health and Nutritional Sciences, University of Guelph, Copenhagen, ON, Canada
| | - Anders Gudiksen
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Niels H. Secher
- Department of Anaesthesiology, Copenhagen Muscle Research Centre, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Jens O. Clemmesen
- Department of Hepatology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Rene K. Støving
- Center for Eating Disorders, Elite Research Center for Medical Endocrinology, Odense University Hospital, Odense, Denmark
- Mental Health Services in the Region of Southern Denmark, Odense, Denmark
- Clinical Institute, University of Southern Denmark, Odense, Denmark
| | - Jens P. Goetze
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - David C. Wright
- Department of Human Health and Nutritional Sciences, University of Guelph, Copenhagen, ON, Canada
- School of kinesiology, Faculty of Land and Food Systems and British Columbia (BC) Children’s Hospital Research Foundation, University of British Columbia, Vancouver, BC, Canada
| | - Henriette Pilegaard
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
48
|
GDF15 Supports the Inflammatory Response of PdL Fibroblasts Stimulated by P. gingivalis LPS and Concurrent Compression. Int J Mol Sci 2021; 22:ijms222413608. [PMID: 34948405 PMCID: PMC8708878 DOI: 10.3390/ijms222413608] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/13/2021] [Accepted: 12/16/2021] [Indexed: 12/22/2022] Open
Abstract
Periodontitis is characterized by bacterially induced inflammatory destruction of periodontal tissue. This also affects fibroblasts of the human periodontal ligaments (HPdLF), which play a coordinating role in force-induced tissue and alveolar bone remodeling. Excessive inflammation in the oral tissues has been observed with simultaneous stimulation by pathogens and mechanical forces. Recently, elevated levels of growth differentiation factor 15 (GDF15), an immuno-modulatory member of the transforming growth factor (TGFB) superfamily, were detected under periodontitis-like conditions and in force-stressed PdL cells. In view of the pleiotropic effects of GDF15 in various tissues, this study aims to investigate the role of GDF15 in P. gingivalis-related inflammation of HPdLF and its effect on the excessive inflammatory response to concurrent compressive stress. To this end, the expression and secretion of cytokines (IL6, IL8, COX2/PGE2, TNFα) and the activation of THP1 monocytic cells were analyzed in GDF15 siRNA-treated HPdLF stimulated with P. gingivalis lipopolysaccharides alone and in combination with compressive force. GDF15 knockdown significantly reduced cytokine levels and THP1 activation in LPS-stimulated HPdLF, which was less pronounced with additional compressive stress. Overall, our data suggest a pro-inflammatory role for GDF15 in periodontal disease and demonstrate that GDF15 partially modulates the force-induced excessive inflammatory response of PdLF under these conditions.
Collapse
|
49
|
The Role of GDF15 as a Myomitokine. Cells 2021; 10:cells10112990. [PMID: 34831213 PMCID: PMC8616340 DOI: 10.3390/cells10112990] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/29/2021] [Accepted: 10/31/2021] [Indexed: 02/07/2023] Open
Abstract
Growth differentiation factor 15 (GDF15) is a cytokine best known for affecting systemic energy metabolism through its anorectic action. GDF15 expression and secretion from various organs and tissues is induced in different physiological and pathophysiological states, often linked to mitochondrial stress, leading to highly variable circulating GDF15 levels. In skeletal muscle and the heart, the basal expression of GDF15 is very low compared to other organs, but GDF15 expression and secretion can be induced in various stress conditions, such as intense exercise and acute myocardial infarction, respectively. GDF15 is thus considered as a myokine and cardiokine. GFRAL, the exclusive receptor for GDF15, is expressed in hindbrain neurons and activation of the GDF15–GFRAL pathway is linked to an increased sympathetic outflow and possibly an activation of the hypothalamic-pituitary-adrenal (HPA) stress axis. There is also evidence for peripheral, direct effects of GDF15 on adipose tissue lipolysis and possible autocrine cardiac effects. Metabolic and behavioral outcomes of GDF15 signaling can be beneficial or detrimental, likely depending on the magnitude and duration of the GDF15 signal. This is especially apparent for GDF15 production in muscle, which can be induced both by exercise and by muscle disease states such as sarcopenia and mitochondrial myopathy.
Collapse
|
50
|
Wang D, Day EA, Townsend LK, Djordjevic D, Jørgensen SB, Steinberg GR. GDF15: emerging biology and therapeutic applications for obesity and cardiometabolic disease. Nat Rev Endocrinol 2021; 17:592-607. [PMID: 34381196 DOI: 10.1038/s41574-021-00529-7] [Citation(s) in RCA: 245] [Impact Index Per Article: 61.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/17/2021] [Indexed: 02/06/2023]
Abstract
Growth differentiation factor 15 (GDF15) is a member of the TGFβ superfamily whose expression is increased in response to cellular stress and disease as well as by metformin. Elevations in GDF15 reduce food intake and body mass in animal models through binding to glial cell-derived neurotrophic factor family receptor alpha-like (GFRAL) and the recruitment of the receptor tyrosine kinase RET in the hindbrain. This effect is largely independent of other appetite-regulating hormones (for example, leptin, ghrelin or glucagon-like peptide 1). Consistent with an important role for the GDF15-GFRAL signalling axis, some human genetic studies support an interrelationship with human obesity. Furthermore, findings in both mice and humans have shown that metformin and exercise increase circulating levels of GDF15. GDF15 might also exert anti-inflammatory effects through mechanisms that are not fully understood. These unique and distinct mechanisms for suppressing food intake and inflammation makes GDF15 an appealing candidate to treat many metabolic diseases, including obesity, type 2 diabetes mellitus, non-alcoholic fatty liver disease, cardiovascular disease and cancer cachexia. Here, we review the mechanisms regulating GDF15 production and secretion, GDF15 signalling in different cell types, and how GDF15-targeted pharmaceutical approaches might be effective in the treatment of metabolic diseases.
Collapse
Affiliation(s)
- Dongdong Wang
- Centre for Metabolism, Obesity and Diabetes Research and the Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Emily A Day
- Centre for Metabolism, Obesity and Diabetes Research and the Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Logan K Townsend
- Centre for Metabolism, Obesity and Diabetes Research and the Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Djordje Djordjevic
- Global Obesity and Liver Disease Research, Novo Nordisk A/S, Maaloev, Denmark
| | | | - Gregory R Steinberg
- Centre for Metabolism, Obesity and Diabetes Research and the Department of Medicine, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|