1
|
Chokwassanasakulkit T, Oti VB, Idris A, McMillan NA. SiRNAs as antiviral drugs - Current status, therapeutic potential and challenges. Antiviral Res 2024; 232:106024. [PMID: 39454759 DOI: 10.1016/j.antiviral.2024.106024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/17/2024] [Accepted: 10/21/2024] [Indexed: 10/28/2024]
Abstract
Traditionally, antiviral drugs target viral enzymes and or structural proteins, identified through large drug screens or rational drug design. The screening, chemical optimisation, small animal toxicity studies and clinical trials mean time to market is long for a new compound, and in the event of a novel virus or pandemic, weeks, and months matter. Small interfering RNAs (siRNAs) as a gene silencing platform is an alluring alternative. SiRNAs are now approved for use in the clinic to treat a range of diseases, are cost effective, scalable, and can be easily programmed to target any viral target in a matter of days. Despite the large number of preclinical studies that clearly show siRNAs are highly effective antivirals this has not translated into clinical success with no products on the market. This review provides a comprehensive overview of both the clinical and preclinical work in this area and outlines the challenges the field faces going forward that need to be addressed in order to see siRNA antivirals become a clinical reality.
Collapse
Affiliation(s)
- Trairong Chokwassanasakulkit
- Institute of Biomedicine and Glycomics and School and Pharmacy and Medical Sciences, Griffith University, Southport, QLD, Australia
| | - Victor Baba Oti
- Institute of Biomedicine and Glycomics and School and Pharmacy and Medical Sciences, Griffith University, Southport, QLD, Australia
| | - Adi Idris
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, Kelvin Grove, QLD, Australia
| | - Nigel Aj McMillan
- Institute of Biomedicine and Glycomics and School and Pharmacy and Medical Sciences, Griffith University, Southport, QLD, Australia.
| |
Collapse
|
2
|
Chatterjee K, Lakdawala S, Quadir SS, Puri D, Mishra DK, Joshi G, Sharma S, Choudhary D. siRNA-Based Novel Therapeutic Strategies to Improve Effectiveness of Antivirals: An Insight. AAPS PharmSciTech 2023; 24:170. [PMID: 37566146 DOI: 10.1208/s12249-023-02629-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 07/25/2023] [Indexed: 08/12/2023] Open
Abstract
Since the ground-breaking discovery of RNA interference (RNAi), scientists have made significant progress in the field of small interfering RNA (siRNA) treatments. Due to severe barriers to the therapeutic application of siRNA, nanoparticle technologies for siRNA delivery have been designed. For pathological circumstances such as viral infection, toxic RNA abnormalities, malignancies, and hereditary diseases, siRNAs are potential therapeutic agents. However, systemic administration of siRNAs in vivo remains a substantial issue due to a lack of "drug-likeness" (siRNA are relatively larger than drugs and have low hydrophobicity), physiological obstacles, and possible toxicities. This write-up covers important accomplishment in the field of clinical trials and patents specially based of siRNAs using targeting viruses. Furthermore, it offers deep insight of nanoparticle applied for siRNA delivery and strategies to improve the effectiveness of antivirals.
Collapse
Affiliation(s)
- Krittika Chatterjee
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS (Deemed to be University), Mumbai, 400056, India
| | - Sagheerah Lakdawala
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS (Deemed to be University), Mumbai, 400056, India
| | - Sheikh Shahnawaz Quadir
- Department of Pharmaceutical Sciences, Mohanlal Sukhadia University, Udaipur, Rajasthan, 313001, India
| | - Dinesh Puri
- School of Pharmacy, Graphic Era Hill University, Dehradun, Uttarakhand, 248001, India
| | - Dinesh Kumar Mishra
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Koni, Bilaspur (C.G.), 495009, India
| | - Garima Joshi
- Department of Pharmaceutical Sciences, Mohanlal Sukhadia University, Udaipur, Rajasthan, 313001, India
| | - Sanjay Sharma
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS (Deemed to be University), Mumbai, 400056, India.
| | - Deepak Choudhary
- Department of Pharmaceutical Sciences, Mohanlal Sukhadia University, Udaipur, Rajasthan, 313001, India.
| |
Collapse
|
3
|
Arriaga-Canon C, Contreras-Espinosa L, Rebollar-Vega R, Montiel-Manríquez R, Cedro-Tanda A, García-Gordillo JA, Álvarez-Gómez RM, Jiménez-Trejo F, Castro-Hernández C, Herrera LA. Transcriptomics and RNA-Based Therapeutics as Potential Approaches to Manage SARS-CoV-2 Infection. Int J Mol Sci 2022; 23:11058. [PMID: 36232363 PMCID: PMC9570475 DOI: 10.3390/ijms231911058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/24/2022] Open
Abstract
SARS-CoV-2 is a coronavirus family member that appeared in China in December 2019 and caused the disease called COVID-19, which was declared a pandemic in 2020 by the World Health Organization. In recent months, great efforts have been made in the field of basic and clinical research to understand the biology and infection processes of SARS-CoV-2. In particular, transcriptome analysis has contributed to generating new knowledge of the viral sequences and intracellular signaling pathways that regulate the infection and pathogenesis of SARS-CoV-2, generating new information about its biology. Furthermore, transcriptomics approaches including spatial transcriptomics, single-cell transcriptomics and direct RNA sequencing have been used for clinical applications in monitoring, detection, diagnosis, and treatment to generate new clinical predictive models for SARS-CoV-2. Consequently, RNA-based therapeutics and their relationship with SARS-CoV-2 have emerged as promising strategies to battle the SARS-CoV-2 pandemic with the assistance of novel approaches such as CRISPR-CAS, ASOs, and siRNA systems. Lastly, we discuss the importance of precision public health in the management of patients infected with SARS-CoV-2 and establish that the fusion of transcriptomics, RNA-based therapeutics, and precision public health will allow a linkage for developing health systems that facilitate the acquisition of relevant clinical strategies for rapid decision making to assist in the management and treatment of the SARS-CoV-2-infected population to combat this global public health problem.
Collapse
Affiliation(s)
- Cristian Arriaga-Canon
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Avenida San Fernando No. 22 ColC. Sección XVI, Tlalpan. C.P., Mexico City 14080, Mexico
| | - Laura Contreras-Espinosa
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Avenida San Fernando No. 22 ColC. Sección XVI, Tlalpan. C.P., Mexico City 14080, Mexico
| | - Rosa Rebollar-Vega
- Genomics Laboratory, Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México, Vasco de Quiroga 15, Belisario Domínguez Secc 16, Tlalpan, Mexico City 14080, Mexico
| | - Rogelio Montiel-Manríquez
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Avenida San Fernando No. 22 ColC. Sección XVI, Tlalpan. C.P., Mexico City 14080, Mexico
| | - Alberto Cedro-Tanda
- Instituto Nacional de Medicina Genómica, Periférico Sur 4809, Arenal Tepepan, Tlalpan. C.P., Mexico City 14610, Mexico
| | - José Antonio García-Gordillo
- Oncología Médica, Instituto Nacional de Cancerología, Avenida San Fernando No. 22 Col. Sección XVI, Tlalpan. C.P., Mexico City 14080, Mexico
| | - Rosa María Álvarez-Gómez
- Clínica de Cáncer Hereditario, Instituto Nacional de Cancerología, Avenida San Fernando No. 22 Col. Sección XVI, Tlalpan. C.P., Mexico City 14080, Mexico
| | - Francisco Jiménez-Trejo
- Instituto Nacional de Pediatría, Insurgentes Sur No. 3700-C, Coyoacán. C.P., Mexico City 04530, Mexico
| | - Clementina Castro-Hernández
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Avenida San Fernando No. 22 ColC. Sección XVI, Tlalpan. C.P., Mexico City 14080, Mexico
| | - Luis A. Herrera
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Avenida San Fernando No. 22 ColC. Sección XVI, Tlalpan. C.P., Mexico City 14080, Mexico
- Instituto Nacional de Medicina Genómica, Periférico Sur 4809, Arenal Tepepan, Tlalpan. C.P., Mexico City 14610, Mexico
| |
Collapse
|
4
|
Gao J, Xia Z, Vohidova D, Joseph J, Luo JN, Joshi N. Progress in non-viral localized delivery of siRNA therapeutics for pulmonary diseases. Acta Pharm Sin B 2022; 13:1400-1428. [PMID: 37139423 PMCID: PMC10150162 DOI: 10.1016/j.apsb.2022.07.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/10/2022] [Accepted: 06/13/2022] [Indexed: 11/01/2022] Open
Abstract
Emerging therapies based on localized delivery of siRNA to lungs have opened up exciting possibilities for treatment of different lung diseases. Localized delivery of siRNA to lungs has shown to result in severalfold higher lung accumulation than systemic route, while minimizing non-specific distribution in other organs. However, to date, only 2 clinical trials have explored localized delivery of siRNA for pulmonary diseases. Here we systematically reviewed recent advances in the field of pulmonary delivery of siRNA using non-viral approaches. We firstly introduce the routes of local administration and analyze the anatomical and physiological barriers towards effective local delivery of siRNA in lungs. We then discuss current progress in pulmonary delivery of siRNA for respiratory tract infections, chronic obstructive pulmonary diseases, acute lung injury, and lung cancer, list outstanding questions, and highlight directions for future research. We expect this review to provide a comprehensive understanding of current advances in pulmonary delivery of siRNA.
Collapse
|
5
|
Klimenko OV. Perspectives on the Use of Small Noncoding RNAs as a Therapy for Severe Virus-Induced Disease Manifestations and Late Complications. BIONANOSCIENCE 2022; 12:994-1001. [PMID: 35529531 PMCID: PMC9066397 DOI: 10.1007/s12668-022-00977-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2022] [Indexed: 11/03/2022]
Abstract
Many viruses appear each year. Some of these viruses result in severe disease and even death. The frequency of epidemics and pandemics is growing at an alarming rate. The lack of virus-specific etiopathogenic drugs necessitates the search for new tools for the complex treatment of severe viral diseases and their late complications. Small noncoding RNAs and their antagonists may be effective therapeutic tools for preventing virus-induced damage to targeted epithelial cells and surrounding tissues in the manifestation stage. Moreover, sncRNAs could interfere with the virus-interacting host genes that trigger the malignant transformation of target cells as a late complication of severe viral diseases.
Collapse
Affiliation(s)
- Oxana V. Klimenko
- SID ALEX GROUP, Ltd., Kyselova 1185/2, 182 00 Prague, Czech Republic
| |
Collapse
|
6
|
Saba AA, Adiba M, Chakraborty S, Nabi AHMN. Prediction of putative potential siRNAs for inhibiting SARS-CoV-2 strains, including variants of concern and interest. Future Microbiol 2022; 17:449-463. [PMID: 35285248 PMCID: PMC8958991 DOI: 10.2217/fmb-2021-0130] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 02/10/2022] [Indexed: 12/22/2022] Open
Abstract
Aim: To predict siRNAs as a therapeutic intervention for highly infectious new variants of SARS-CoV-2. Methods: Conserved coding sequence regions of 11 SARS-CoV-2 proteins were used to construct siRNAs through sampling of metadata comprising 214,256 sequences. Results: Predicted siRNAs S1: 5'-UCAUUGAGAAAUGUUUACGCA-3' and S2: 5'-AAAGACAUCAGCAUACUCCUG-3' against RdRp of SARS-CoV-2 satisfied all the stringent filtering processes and showed good binding characteristics. The designed siRNAs are expected to inhibit viral replication and transcription of various coronavirus strains encompassing variants of concern and interest. Conclusion: The predicted siRNAs are expected to be potent against SARS-CoV-2, and following in vitro and in vivo validations may be considered as potential therapeutic measures.
Collapse
Affiliation(s)
- Abdullah Al Saba
- Department of Biochemistry and Molecular Biology, Laboratory of Population Genetics, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Maisha Adiba
- Department of Biochemistry and Molecular Biology, Laboratory of Population Genetics, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Sajib Chakraborty
- Department of Biochemistry and Molecular Biology, Systems Cell-Signalling Laboratory, University of Dhaka, Dhaka, 1000, Bangladesh
| | - AHM Nurun Nabi
- Department of Biochemistry and Molecular Biology, Laboratory of Population Genetics, University of Dhaka, Dhaka, 1000, Bangladesh
| |
Collapse
|
7
|
Zhang Y, Almazi JG, Ong HX, Johansen MD, Ledger S, Traini D, Hansbro PM, Kelleher AD, Ahlenstiel CL. Nanoparticle Delivery Platforms for RNAi Therapeutics Targeting COVID-19 Disease in the Respiratory Tract. Int J Mol Sci 2022; 23:2408. [PMID: 35269550 PMCID: PMC8909959 DOI: 10.3390/ijms23052408] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/14/2022] [Accepted: 02/18/2022] [Indexed: 02/06/2023] Open
Abstract
Since December 2019, a pandemic of COVID-19 disease, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has rapidly spread across the globe. At present, the Food and Drug Administration (FDA) has issued emergency approval for the use of some antiviral drugs. However, these drugs still have limitations in the specific treatment of COVID-19, and as such, new treatment strategies urgently need to be developed. RNA-interference-based gene therapy provides a tractable target for antiviral treatment. Ensuring cell-specific targeted delivery is important to the success of gene therapy. The use of nanoparticles (NPs) as carriers for the delivery of small interfering RNA (siRNAs) to specific tissues or organs of the human body could play a crucial role in the specific therapy of severe respiratory infections, such as COVID-19. In this review, we describe a variety of novel nanocarriers, such as lipid NPs, star polymer NPs, and glycogen NPs, and summarize the pre-clinical/clinical progress of these nanoparticle platforms in siRNA delivery. We also discuss the application of various NP-capsulated siRNA as therapeutics for SARS-CoV-2 infection, the challenges with targeting these therapeutics to local delivery in the lung, and various inhalation devices used for therapeutic administration. We also discuss currently available animal models that are used for preclinical assessment of RNA-interference-based gene therapy. Advances in this field have the potential for antiviral treatments of COVID-19 disease and could be adapted to treat a range of respiratory diseases.
Collapse
Affiliation(s)
- Yuan Zhang
- Kirby Institute, UNSW, Sydney, NSW 2052, Australia; (Y.Z.); (S.L.); (A.D.K.)
| | - Juhura G. Almazi
- Respiratory Technology, Woolcock Institute of Medical Research, Sydney, NSW 2037, Australia; (J.G.A.); (H.X.O.); (D.T.)
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Ryde, NSW 2109, Australia
| | - Hui Xin Ong
- Respiratory Technology, Woolcock Institute of Medical Research, Sydney, NSW 2037, Australia; (J.G.A.); (H.X.O.); (D.T.)
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Ryde, NSW 2109, Australia
| | - Matt D. Johansen
- Centre for Inflammation, Faculty of Science, Centenary Institute and University of Technology Sydney, Sydney, NSW 2050, Australia; (M.D.J.); (P.M.H.)
| | - Scott Ledger
- Kirby Institute, UNSW, Sydney, NSW 2052, Australia; (Y.Z.); (S.L.); (A.D.K.)
| | - Daniela Traini
- Respiratory Technology, Woolcock Institute of Medical Research, Sydney, NSW 2037, Australia; (J.G.A.); (H.X.O.); (D.T.)
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Ryde, NSW 2109, Australia
| | - Philip M. Hansbro
- Centre for Inflammation, Faculty of Science, Centenary Institute and University of Technology Sydney, Sydney, NSW 2050, Australia; (M.D.J.); (P.M.H.)
| | - Anthony D. Kelleher
- Kirby Institute, UNSW, Sydney, NSW 2052, Australia; (Y.Z.); (S.L.); (A.D.K.)
| | | |
Collapse
|
8
|
Rodriguez-Salazar CA, Recalde-Reyes DP, Bedoya JP, Padilla-Sanabria L, Castaño-Osorio JC, Giraldo MI. In Vitro Inhibition of Replication of Dengue Virus Serotypes 1-4 by siRNAs Bound to Non-Toxic Liposomes. Viruses 2022; 14:339. [PMID: 35215929 PMCID: PMC8875542 DOI: 10.3390/v14020339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 01/29/2022] [Accepted: 02/05/2022] [Indexed: 12/04/2022] Open
Abstract
Dengue virus is a ssRNA+ flavivirus, which produces the dengue disease in humans. Currently, no specific treatment exists. siRNAs regulate gene expression and have been used systematically to silence viral genomes; however, they require controlled release. Liposomes show favorable results encapsulating siRNA for gene silencing. The objective herein was to design and evaluate in vitro siRNAs bound to liposomes that inhibit DENV replication. siRNAs were designed against DENV1-4 from conserved regions using siDirect2.0 and Web-BLOCK-iT™ RNAiDesigner; the initial in vitro evaluation was carried out through transfection into HepG2 cells. siRNA with silencing capacity was encapsulated in liposomes composed of D-Lin-MC3-DMA, DSPC, Chol. Cytotoxicity, hemolysis, pro-inflammatory cytokine release and antiviral activity were evaluated using plaque assay and RT-qPCR. A working concentration of siRNA was established at 40 nM. siRNA1, siRNA2, siRNA3.1, and siRNA4 were encapsulated in liposomes, and their siRNA delivery through liposomes led to a statistically significant decrease in viral titers, yielded no cytotoxicity or hemolysis and did not stimulate release of pro-inflammatory cytokines. Finally, liposomes were designed with siRNA against DENV, which proved to be safe in vitro.
Collapse
Affiliation(s)
- Carlos Andrés Rodriguez-Salazar
- Center of Biomedical Research, Faculty of Health Sciences, Universidad del Quindío, Armenia 630003, Colombia; (D.P.R.-R.); (J.P.B.); (L.P.-S.); (J.C.C.-O.)
- Molecular Biology and Virology Laboratory, Faculty of Medicine and Health Sciences, Corporación Universitaria Empresarial Alexander Von Humboldt, Armenia 630003, Colombia
| | - Delia Piedad Recalde-Reyes
- Center of Biomedical Research, Faculty of Health Sciences, Universidad del Quindío, Armenia 630003, Colombia; (D.P.R.-R.); (J.P.B.); (L.P.-S.); (J.C.C.-O.)
- Molecular Biology and Virology Laboratory, Faculty of Medicine and Health Sciences, Corporación Universitaria Empresarial Alexander Von Humboldt, Armenia 630003, Colombia
| | - Juan Pablo Bedoya
- Center of Biomedical Research, Faculty of Health Sciences, Universidad del Quindío, Armenia 630003, Colombia; (D.P.R.-R.); (J.P.B.); (L.P.-S.); (J.C.C.-O.)
| | - Leonardo Padilla-Sanabria
- Center of Biomedical Research, Faculty of Health Sciences, Universidad del Quindío, Armenia 630003, Colombia; (D.P.R.-R.); (J.P.B.); (L.P.-S.); (J.C.C.-O.)
| | - Jhon Carlos Castaño-Osorio
- Center of Biomedical Research, Faculty of Health Sciences, Universidad del Quindío, Armenia 630003, Colombia; (D.P.R.-R.); (J.P.B.); (L.P.-S.); (J.C.C.-O.)
| | - Maria Isabel Giraldo
- Department of Microbiology, Immunology University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
9
|
Salimi-Jeda A, Abbassi S, Mousavizadeh A, Esghaie M, Bokharaei-Salim F, Jeddi F, Shafaati M, Abdoli A. SARS-CoV-2: Current trends in emerging variants, pathogenesis, immune responses, potential therapeutic, and vaccine development strategies. Int Immunopharmacol 2021; 101:108232. [PMID: 34673335 PMCID: PMC8519814 DOI: 10.1016/j.intimp.2021.108232] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/18/2021] [Accepted: 10/04/2021] [Indexed: 02/06/2023]
Abstract
More than a year after the SARS-CoV-2 pandemic, the Coronavirus disease 19 (COVID-19) is still a major global challenge for scientists to understand the different dimensions of infection and find ways to prevent, treat, and develop a vaccine. On January 30, 2020, the world health organization (WHO) officially announced this new virus as an international health emergency. While many biological and mechanisms of pathogenicity of this virus are still unclear, it seems that cytokine storm resulting from an immune response against the virus is considered the main culprit of the severity of the disease. Despite many global efforts to control the SARS-CoV-2, several problems and challenges have been posed in controlling the COVID-19 infection. These problems include the various mutations, the emergence of variants with high transmissibility, the short period of immunity against the virus, the possibility of reinfection in people improved, lack of specific drugs, and problems in the development of highly sensitive and specific vaccines. In this review, we summarized the results of the current trend and the latest research studies on the characteristics of the structure and genome of the SARS-CoV- 2, new mutations and variants of SARS-CoV-2, pathogenicity, immune response, virus diagnostic tests, potential treatment, and vaccine candidate.
Collapse
Affiliation(s)
- Ali Salimi-Jeda
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Sina Abbassi
- Department of Anesthesiology, Faculty of Medical Science, Tehran University of Medical Science, Tehran, Iran
| | - Atieh Mousavizadeh
- Department of Virology, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran
| | - Maryam Esghaie
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farah Bokharaei-Salim
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farhad Jeddi
- Department of Medical Genetics and Pathology, Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Maryam Shafaati
- Department of Microbiology, Jahrom Branch, Islamic Azad University, Fars, Iran
| | - Asghar Abdoli
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
10
|
Pashkov EA, Korchevaya ER, Faizuloev EB, Svitich OA, Pashkov EP, Nechaev DN, Zverev VV. Potential of application of the RNA interference phenomenon in the treatment of new coronavirus infection COVID-19. Vopr Virusol 2021; 66:241-251. [PMID: 34545716 DOI: 10.36233/0507-4088-61] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 09/16/2021] [Indexed: 12/11/2022]
Abstract
COVID-19 has killed more than 4 million people to date and is the most significant global health problem. The first recorded case of COVID-19 had been noted in Wuhan, China in December 2019, and already on March 11, 2020, World Health Organization declared a pandemic due to the rapid spread of this infection. In addition to the damage to the respiratory system, SARS-CoV-2 is capable of causing severe complications that can affect almost all organ systems. Due to the insufficient effectiveness of the COVID-19 therapy, there is an urgent need to develop effective specific medicines. Among the known approaches to the creation of antiviral drugs, a very promising direction is the development of drugs whose action is mediated by the mechanism of RNA interference (RNAi). A small interfering RNA (siRNA) molecule suppresses the expression of a target gene in this regulatory pathway. The phenomenon of RNAi makes it possible to quickly create a whole series of highly effective antiviral drugs, if the matrix RNA (mRNA) sequence of the target viral protein is known. This review examines the possibility of clinical application of siRNAs aimed at suppressing reproduction of the SARS-CoV-2, taking into account the experience of similar studies using SARS-CoV and MERS-CoV infection models. It is important to remember that the effectiveness of siRNA molecules targeting viral genes may decrease due to the formation of viral resistance. In this regard, the design of siRNAs targeting the cellular factors necessary for the reproduction of SARS-CoV-2 deserves special attention.
Collapse
Affiliation(s)
- E A Pashkov
- FSAEI HE I.M. Sechenov First Moscow State Medical University (Sechenov University) of the Ministry of the Health of Russia; FSBRI «I.I. Mechnikov Research Institute of Vaccines and Sera»
| | - E R Korchevaya
- FSBRI «I.I. Mechnikov Research Institute of Vaccines and Sera»
| | - E B Faizuloev
- FSBRI «I.I. Mechnikov Research Institute of Vaccines and Sera»
| | - O A Svitich
- FSAEI HE I.M. Sechenov First Moscow State Medical University (Sechenov University) of the Ministry of the Health of Russia; FSBRI «I.I. Mechnikov Research Institute of Vaccines and Sera»
| | - E P Pashkov
- FSAEI HE I.M. Sechenov First Moscow State Medical University (Sechenov University) of the Ministry of the Health of Russia
| | - D N Nechaev
- FSAEI HE I.M. Sechenov First Moscow State Medical University (Sechenov University) of the Ministry of the Health of Russia
| | - V V Zverev
- FSAEI HE I.M. Sechenov First Moscow State Medical University (Sechenov University) of the Ministry of the Health of Russia; FSBRI «I.I. Mechnikov Research Institute of Vaccines and Sera»
| |
Collapse
|
11
|
Thangamani L, Balasubramanian B, Easwaran M, Natarajan J, Pushparaj K, Meyyazhagan A, Piramanayagam S. GalNAc-siRNA conjugates: Prospective tools on the frontier of anti-viral therapeutics. Pharmacol Res 2021; 173:105864. [PMID: 34474100 PMCID: PMC8405237 DOI: 10.1016/j.phrs.2021.105864] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/27/2021] [Accepted: 08/27/2021] [Indexed: 12/19/2022]
Abstract
The growing use of short-interfering RNA (siRNA)-based therapeutics for viral diseases reflects the most recent innovations in anti-viral vaccines and drugs. These drugs play crucial roles in the fight against many hitherto incurable diseases, the causes, pathophysiologies, and molecular processes of which remain unknown. Targeted liver drug delivery systems are in clinical trials. The receptor-mediated endocytosis approach involving the abundant asialoglycoprotein receptors (ASGPRs) on the surfaces of liver cells show great promise. We here review N-acetylgalactosamine (GalNAc)-siRNA conjugates that treat viral diseases such as hepatitis B infection, but we also mention that novel, native conjugate-based, targeted siRNA anti-viral drugs may also cure several life-threatening diseases such as hemorrhagic cystitis, multifocal leukoencephalopathy, and severe acute respiratory syndrome caused by coronaviruses and human herpes virus.
Collapse
Affiliation(s)
- Lokesh Thangamani
- Computational Biology Lab, Department of Bioinformatics, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | | | - Murugesh Easwaran
- International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Jeyakumar Natarajan
- Data Mining and Text Mining Laboratory, Department of Bioinformatics, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Karthika Pushparaj
- Department of Zoology, School of Biosciences, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore 641043, Tamil Nadu, India
| | - Arun Meyyazhagan
- Department of Life Sciences, CHRIST (Deemed to be University), Bengaluru 560029, Karnataka, India.
| | - Shanmughavel Piramanayagam
- Computational Biology Lab, Department of Bioinformatics, Bharathiar University, Coimbatore 641046, Tamil Nadu, India.
| |
Collapse
|
12
|
Pluskota-Karwatka D, Hoffmann M, Barciszewski J. Reducing SARS-CoV-2 pathological protein activity with small molecules. J Pharm Anal 2021; 11:383-397. [PMID: 33842018 PMCID: PMC8020608 DOI: 10.1016/j.jpha.2021.03.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 03/21/2021] [Accepted: 03/29/2021] [Indexed: 01/18/2023] Open
Abstract
Coronaviruses are dangerous human and animal pathogens. The newly identified coronavirus SARS-CoV-2 is the causative agent of COVID-19 outbreak, which is a real threat to human health and life. The world has been struggling with this epidemic for about a year, yet there are still no targeted drugs and effective treatments are very limited. Due to the long process of developing new drugs, reposition of existing ones is one of the best ways to deal with an epidemic of emergency infectious diseases. Among the existing drugs, there are candidates potentially able to inhibit the SARS-CoV-2 replication, and thus inhibit the infection of the virus. Some therapeutics target several proteins, and many diseases share molecular paths. In such cases, the use of existing pharmaceuticals for more than one purpose can reduce the time needed to design new drugs. The aim of this review was to analyze the key targets of viral infection and potential drugs acting on them, as well as to discuss various strategies and therapeutic approaches, including the possible use of natural products. We highlighted the approach based on increasing the involvement of human deaminases, particularly APOBEC deaminases in editing of SARS-CoV-2 RNA. This can reduce the cytosine content in the viral genome, leading to the loss of its integrity. We also indicated the nucleic acid technologies as potential approaches for COVID-19 treatment. Among numerous promising natural products, we pointed out curcumin and cannabidiol as good candidates for being anti-SARS-CoV-2 agents.
Collapse
Affiliation(s)
| | - Marcin Hoffmann
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, 61-614, Poznań, Poland
| | - Jan Barciszewski
- NanoBiomedical Center of the Adam Mickiewicz University, 61-614, Poznań, Poland
- Institute of Bioorganic Chemistry of the Polish Academy of Sciences 61-704, Poznań, Poland
| |
Collapse
|
13
|
Sajid M, Moazzam M, Cho Y, Kato S, Xu A, Way JJ, Lohan S, Tiwari RK. siRNA Therapeutics for the Therapy of COVID-19 and Other Coronaviruses. Mol Pharm 2021; 18:2105-2121. [PMID: 33945284 PMCID: PMC9896947 DOI: 10.1021/acs.molpharmaceut.0c01239] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The ongoing pandemic of global concern has killed about three million humans and affected around 151 million people worldwide, as of April 30, 2021. Although recently approved vaccines for COVID-19 are engendering hope, finding new ways to cure the viral pandemic is still a quest for researchers worldwide. Major pandemics in history have been of viral origin, such as SARS, MERS, H1NI, Spanish flu, and so on. A larger emphasis has been on discovering potential vaccines, novel antiviral drugs, and agents that can mitigate the viral infection symptoms; however, a relatively new area, RNA interference (RNAi), has proven effective as an antiviral agent. The RNAi phenomenon has been largely exploited to cure cancer, neurodegenerative diseases, and some rare diseases. The U.S. Food and Drug Administration has recently approved three siRNA products for human use that garner significant hope in siRNA therapeutics for coronaviruses. There have been some commentaries and communications addressing this area. We have summarized and illustrated the significance and the potential of the siRNA therapeutics available as of April 30, 2021 to combat the ongoing viral pandemic and the emerging new variants such as B.1.1.7 and B.1.351. Numerous successful in vitro studies and several investigations to address the clinical application of siRNA therapeutics provide great hope in this field. This seminal Review describes the significance of siRNA-based therapy to treat diverse viral infections in addition to the current coronavirus challenge. In addition, we have thoroughly reviewed the patents approved for coronaviruses, the major challenges in siRNA therapy, and the potential approaches to address them, followed by innovation and prospects.
Collapse
Affiliation(s)
- Muhammad
Imran Sajid
- Center
for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical
Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, California 92618, United States
- Faculty
of Pharmacy, University of Central Punjab, Lahore 54700, Pakistan
| | - Muhammad Moazzam
- Faculty
of Pharmacy, University of Central Punjab, Lahore 54700, Pakistan
| | - Yeseom Cho
- Center
for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical
Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, California 92618, United States
- Department
of Biochemistry and Molecular Biology, Schmid College of Science and
Technology, Chapman University, Orange, California 92866, United States
| | - Shun Kato
- Center
for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical
Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, California 92618, United States
- Department
of Biochemistry and Molecular Biology, Schmid College of Science and
Technology, Chapman University, Orange, California 92866, United States
| | - Ava Xu
- Center
for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical
Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, California 92618, United States
| | - J. J. Way
- Center
for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical
Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, California 92618, United States
| | - Sandeep Lohan
- Center
for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical
Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, California 92618, United States
| | - Rakesh K. Tiwari
- Center
for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical
Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, California 92618, United States
| |
Collapse
|
14
|
A small interfering RNA (siRNA) database for SARS-CoV-2. Sci Rep 2021; 11:8849. [PMID: 33893357 PMCID: PMC8065152 DOI: 10.1038/s41598-021-88310-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 04/09/2021] [Indexed: 12/13/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) rapidly transformed into a global pandemic, for which a demand for developing antivirals capable of targeting the SARS-CoV-2 RNA genome and blocking the activity of its genes has emerged. In this work, we presented a database of SARS-CoV-2 targets for small interference RNA (siRNA) based approaches, aiming to speed the design process by providing a broad set of possible targets and siRNA sequences. The siRNAs sequences are characterized and evaluated by more than 170 features, including thermodynamic information, base context, target genes and alignment information of sequences against the human genome, and diverse SARS-CoV-2 strains, to assess possible bindings to off-target sequences. This dataset is available as a set of four tables, available in a spreadsheet and CSV (Comma-Separated Values) formats, each one corresponding to sequences of 18, 19, 20, and 21 nucleotides length, aiming to meet the diversity of technology and expertise among laboratories around the world. A metadata table (Supplementary Table S1), which describes each feature, is also provided in the aforementioned formats. We hope that this database helps to speed up the development of new target antivirals for SARS-CoV-2, contributing to a possible strategy for a faster and effective response to the COVID-19 pandemic.
Collapse
|
15
|
Jamalkhah M, Asaadi Y, Azangou-Khyavy M, Khanali J, Soleimani M, Kiani J, Arefian E. MSC-derived exosomes carrying a cocktail of exogenous interfering RNAs an unprecedented therapy in era of COVID-19 outbreak. J Transl Med 2021; 19:164. [PMID: 33888147 PMCID: PMC8061879 DOI: 10.1186/s12967-021-02840-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/16/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND The onset of the SARS-CoV-2 pandemic has resulted in ever-increasing casualties worldwide, and after 15 months, standard therapeutic regimens are yet to be discovered. MAIN BODY Due to the regenerative and immunomodulatory function of MSCs, they can serve as a suitable therapeutic option in alleviating major COVID-19 complications like acute respiratory distress syndrome. However, the superior properties of their cognate exosomes as a cell-free product make them preferable in the clinic. Herein, we discuss the current clinical status of these novel therapeutic strategies in COVID-19 treatment. We then delve into the potential of interfering RNAs incorporation as COVID-19 gene therapy and introduce targets involved in SARS-CoV-2 pathogenesis. Further, we present miRNAs and siRNAs candidates with promising results in targeting the mentioned targets. CONCLUSION Finally, we present a therapeutic platform of mesenchymal stem cell-derived exosomes equipped with exogenous iRNAs, that can be employed as a novel therapeutic modality in COVID-19 management aiming to prevent further viral spread within the lung, hinder the virus life cycle and pathogenesis such as immune suppression, and ultimately, enhance the antiviral immune response.
Collapse
Affiliation(s)
- Monire Jamalkhah
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Yasaman Asaadi
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | | | - Javad Khanali
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoud Soleimani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jafar Kiani
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Ehsan Arefian
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran.
| |
Collapse
|
16
|
Site-Selective Artificial Ribonucleases: Renaissance of Oligonucleotide Conjugates for Irreversible Cleavage of RNA Sequences. Molecules 2021; 26:molecules26061732. [PMID: 33808835 PMCID: PMC8003597 DOI: 10.3390/molecules26061732] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 11/17/2022] Open
Abstract
RNA-targeting therapeutics require highly efficient sequence-specific devices capable of RNA irreversible degradation in vivo. The most developed methods of sequence-specific RNA cleavage, such as siRNA or antisense oligonucleotides (ASO), are currently based on recruitment of either intracellular multi-protein complexes or enzymes, leaving alternative approaches (e.g., ribozymes and DNAzymes) far behind. Recently, site-selective artificial ribonucleases combining the oligonucleotide recognition motifs (or their structural analogues) and catalytically active groups in a single molecular scaffold have been proven to be a great competitor to siRNA and ASO. Using the most efficient catalytic groups, utilising both metal ion-dependent (Cu(II)-2,9-dimethylphenanthroline) and metal ion-free (Tris(2-aminobenzimidazole)) on the one hand and PNA as an RNA recognising oligonucleotide on the other, allowed site-selective artificial RNases to be created with half-lives of 0.5-1 h. Artificial RNases based on the catalytic peptide [(ArgLeu)2Gly]2 were able to take progress a step further by demonstrating an ability to cleave miRNA-21 in tumour cells and provide a significant reduction of tumour growth in mice.
Collapse
|
17
|
Kalhori MR, Saadatpour F, Arefian E, Soleimani M, Farzaei MH, Aneva IY, Echeverría J. The Potential Therapeutic Effect of RNA Interference and Natural Products on COVID-19: A Review of the Coronaviruses Infection. Front Pharmacol 2021; 12:616993. [PMID: 33716745 PMCID: PMC7953353 DOI: 10.3389/fphar.2021.616993] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 01/14/2021] [Indexed: 01/08/2023] Open
Abstract
The SARS-CoV-2 virus was reported for the first time in Wuhan, Hubei Province, China, and causes respiratory infection. This pandemic pneumonia killed about 1,437,835 people out of 61,308,161cases up to November 27, 2020. The disease's main clinical complications include fever, recurrent coughing, shortness of breath, acute respiratory syndrome, and failure of vital organs that could lead to death. It has been shown that natural compounds with antioxidant, anticancer, and antiviral activities and RNA interference agents could play an essential role in preventing or treating coronavirus infection by inhibiting the expression of crucial virus genes. This study aims to introduce a summary of coronavirus's genetic and morphological structure and determine the role of miRNAs, siRNAs, chemical drugs, and natural compounds in stimulating the immune system or inhibiting the virus's structural and non-structural genes that are essential for replication and infection of SARS-CoV-2.
Collapse
Affiliation(s)
- Mohammad Reza Kalhori
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Saadatpour
- Molecular Virology Lab, Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Ehsan Arefian
- Molecular Virology Lab, Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Masoud Soleimani
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Hosien Farzaei
- Medical Technology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ina Yosifova Aneva
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Javier Echeverría
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
18
|
Yang D. Application of Nanotechnology in the COVID-19 Pandemic. Int J Nanomedicine 2021; 16:623-649. [PMID: 33531805 PMCID: PMC7847377 DOI: 10.2147/ijn.s296383] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 01/08/2021] [Indexed: 12/12/2022] Open
Abstract
COVID-19, caused by SARS-CoV-2 infection, has been prevalent worldwide for almost a year. In early 2000, there was an outbreak of SARS-CoV, and in early 2010, a similar dissemination of infection by MERS-CoV occurred. However, no clear explanation for the spread of SARS-CoV-2 and a massive increase in the number of infections has yet been proposed. The best solution to overcome this pandemic is the development of suitable and effective vaccines and therapeutics. Fortunately, for SARS-CoV-2, the genome sequence and protein structure have been published in a short period, making research and development for prevention and treatment relatively easy. In addition, intranasal drug delivery has proven to be an effective method of administration for treating viral lung diseases. In recent years, nanotechnology-based drug delivery systems have been applied to intranasal drug delivery to overcome various limitations that occur during mucosal administration, and advances have been made to the stage where effective drug delivery is possible. This review describes the accumulated knowledge of the previous SARS-CoV and MERS-CoV infections and aims to help understand the newly emerged SARS-CoV-2 infection. Furthermore, it elucidates the achievements in developing COVID-19 vaccines and therapeutics to date through existing approaches. Finally, the applicable nanotechnology approach is described in detail, and vaccines and therapeutic drugs developed based on nanomedicine, which are currently undergoing clinical trials, have presented the potential to become innovative alternatives for overcoming COVID-19.
Collapse
Affiliation(s)
- Dongki Yang
- Department of Physiology, College of Medicine, Gachon University, Incheon, 21999, South Korea
| |
Collapse
|
19
|
Sohrab SS, El-Kafrawy SA, Mirza Z, Hassan AM, Alsaqaf F, Azhar EI. Designing and evaluation of MERS-CoV siRNAs in HEK-293 cell line. J Infect Public Health 2020; 14:238-243. [PMID: 33493920 PMCID: PMC7771261 DOI: 10.1016/j.jiph.2020.12.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 12/03/2020] [Accepted: 12/10/2020] [Indexed: 02/06/2023] Open
Abstract
Background The MERS-CoV was identified for the first time from Jeddah, Saudi Arabia in 2012 from a hospitalized patient. This virus has now been spread to 27 countries with a total of 858 deaths and 2494 confirmed cases and has become a serious concern for the human population. Camels are well known for the transmission of the virus to the human population. Methods In this report, we have discussed the designing, prediction, and evaluation of potential siRNAs against the orf1ab gene of MERS-CoV. The online software was used to predict and design the siRNAs and finally, total twenty-one siRNA were filtered out from four hundred and sixty-two sIRNAs as per their scoring and specificity criteria. We have used only ten siRNAs to evaluate their cytotoxicity and efficacy by reverse transfection approach in HEK-293-T cell lines. Results Based on the results and data generated; no cytotoxicity was observed for any siRNAs at various concentrations in HEK-293-T cells. The ct value of real-time PCR showed the inhibition of viral replication in siRNA-1, 2, 4, 6, and 9. The data generated provided the preliminary information and encouraged us to evaluate the remaining siRNAs separately as well as in combination to analyses the replication of MERS-CoV inhibition in other cell lines. Conclusion Based on the results obtained; it is concluded that the prediction of siRNAs using online software resulted in the filtration of potential siRNAs with high accuracy and strength. This technology can be used to design and develop antiviral therapy not only for MERS-CoV but also against other viruses.
Collapse
Affiliation(s)
- Sayed Sartaj Sohrab
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Post Box, No-80216, Jeddah 21589, Saudi Arabia; Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Sherif Aly El-Kafrawy
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Post Box, No-80216, Jeddah 21589, Saudi Arabia; Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Zeenat Mirza
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia; King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmed M Hassan
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Post Box, No-80216, Jeddah 21589, Saudi Arabia
| | - Fatima Alsaqaf
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Post Box, No-80216, Jeddah 21589, Saudi Arabia
| | - Esam Ibraheem Azhar
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Post Box, No-80216, Jeddah 21589, Saudi Arabia; Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
20
|
Beeraka NM, Sadhu SP, Madhunapantula SV, Rao Pragada R, Svistunov AA, Nikolenko VN, Mikhaleva LM, Aliev G. Strategies for Targeting SARS CoV-2: Small Molecule Inhibitors-The Current Status. Front Immunol 2020; 11:552925. [PMID: 33072093 PMCID: PMC7531039 DOI: 10.3389/fimmu.2020.552925] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 08/18/2020] [Indexed: 01/08/2023] Open
Abstract
Severe Acute Respiratory Syndrome-Corona Virus-2 (SARS-CoV-2) induced Coronavirus Disease - 19 (COVID-19) cases have been increasing at an alarming rate (7.4 million positive cases as on June 11 2020), causing high mortality (4,17,956 deaths as on June 11 2020) and economic loss (a 3.2% shrink in global economy in 2020) across 212 countries globally. The clinical manifestations of this disease are pneumonia, lung injury, inflammation, and severe acute respiratory syndrome (SARS). Currently, there is no vaccine or effective pharmacological agents available for the prevention/treatment of SARS-CoV2 infections. Moreover, development of a suitable vaccine is a challenging task due to antibody-dependent enhancement (ADE) and Th-2 immunopathology, which aggravates infection with SARS-CoV-2. Furthermore, the emerging SARS-CoV-2 strain exhibits several distinct genomic and structural patterns compared to other coronavirus strains, making the development of a suitable vaccine even more difficult. Therefore, the identification of novel small molecule inhibitors (NSMIs) that can interfere with viral entry or viral propagation is of special interest and is vital in managing already infected cases. SARS-CoV-2 infection is mediated by the binding of viral Spike proteins (S-protein) to human cells through a 2-step process, which involves Angiotensin Converting Enzyme-2 (ACE2) and Transmembrane Serine Protease (TMPRSS)-2. Therefore, the development of novel inhibitors of ACE2/TMPRSS2 is likely to be beneficial in combating SARS-CoV-2 infections. However, the usage of ACE-2 inhibitors to block the SARS-CoV-2 viral entry requires additional studies as there are conflicting findings and severe health complications reported for these inhibitors in patients. Hence, the current interest is shifted toward the development of NSMIs, which includes natural antiviral phytochemicals and Nrf-2 activators to manage a SARS-CoV-2 infection. It is imperative to investigate the efficacy of existing antiviral phytochemicals and Nrf-2 activators to mitigate the SARS-CoV-2-mediated oxidative stress. Therefore, in this review, we have reviewed structural features of SARS-CoV-2 with special emphasis on key molecular targets and their known modulators that can be considered for the development of NSMIs.
Collapse
Affiliation(s)
- Narasimha M. Beeraka
- Department of Biochemistry, Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), JSS Academy of Higher Education & Research (JSS AHER), Mysore, India
| | - Surya P. Sadhu
- AU College of Pharmaceutical Sciences, Andhra University, Visakhapatnam, India
| | - SubbaRao V. Madhunapantula
- Department of Biochemistry, Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), JSS Academy of Higher Education & Research (JSS AHER), Mysore, India
- Special Interest Group in Cancer Biology and Cancer Stem Cells (SIG-CBCSC), JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysore, India
| | | | - Andrey A. Svistunov
- I. M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - Vladimir N. Nikolenko
- I. M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
- Department of Normal and Topographic Anatomy, M.V. Lomonosov Moscow State University, Moscow, Russia
| | | | - Gjumrakch Aliev
- Research Institute of Human Morphology, Moscow, Russia
- Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, Moscow, Russia
- GALLY International Research Institute, San Antonio, TX, United States
| |
Collapse
|
21
|
RNA interference as a promising treatment against SARS-CoV-2. Int Microbiol 2020; 24:123-124. [PMID: 32875426 PMCID: PMC7462657 DOI: 10.1007/s10123-020-00146-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 08/25/2020] [Accepted: 08/28/2020] [Indexed: 11/03/2022]
Abstract
Until now, there is no current vaccine or treatment against SARS-CoV-2. There are previous successful RNAi studies performed on SARS-CoV. Therefore, similar line of investigation against SARS-CoV-2 could be successful.
Collapse
|
22
|
Piyush R, Rajarshi K, Chatterjee A, Khan R, Ray S. Nucleic acid-based therapy for coronavirus disease 2019. Heliyon 2020; 6:e05007. [PMID: 32984620 PMCID: PMC7501848 DOI: 10.1016/j.heliyon.2020.e05007] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/02/2020] [Accepted: 09/17/2020] [Indexed: 12/14/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19), the pandemic that originated in China has already spread into more than 190 countries, resulting in huge loss of human life and many more are at the stake of losing it; if not intervened with the best therapeutics to contain the disease. For that aspect, various scientific groups are continuously involved in the development of an effective line of treatment to control the novel coronavirus from spreading rapidly. Worldwide scientists are evaluating various biomolecules and synthetic inhibitors against COVID-19; where the nucleic acid-based molecules may be considered as potential drug candidates. These molecules have been proved potentially effective against SARS-CoV, which shares high sequence similarity with SARS-CoV-2. Recent advancements in nucleic acid-based therapeutics are helpful in targeted drug delivery, safely and effectively. The use of nucleic acid-based molecules also known to regulate the level of gene expression inside the target cells. This review mainly focuses on various nucleic acid-based biologically active molecules and their therapeutic potentials in developing vaccines for SARS-CoV-2.
Collapse
Affiliation(s)
- Ravikant Piyush
- School of Biotechnology, Madurai Kamaraj University, Madurai, Tamil Nadu 625021, India
| | - Keshav Rajarshi
- School of Community Science and Technology (SOCSAT) Indian Institute of Engineering Science and Technology (IIEST), Shibpur, Howrah, West Bengal 711103, India
| | - Aroni Chatterjee
- Indian Council of Medical Research (ICMR)-Virus Research Laboratory, NICED, Kolkata, India
| | - Rajni Khan
- Motihari College of Engineering, Bariyarpur, Motihari, NH 28A, Furshatpur, Motihari, Bihar 845401, India
| | - Shashikant Ray
- Department of Biotechnology, Mahatma Gandhi Central University Motihari, 845401, India
| |
Collapse
|
23
|
Zhang D, Lu J. In Silico Design of siRNAs Targeting Existing and Future Respiratory Viruses with VirusSi. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.08.13.250076. [PMID: 32817944 PMCID: PMC7430574 DOI: 10.1101/2020.08.13.250076] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/16/2023]
Abstract
The COVID-19 pandemic has exposed global inadequacies in therapeutic options against both the COVID-19-causing SARS-CoV-2 virus and other newly emerged respiratory viruses. In this study, we present the VirusSi computational pipeline, which facilitates the rational design of siRNAs to target existing and future respiratory viruses. Mode A of VirusSi designs siRNAs against an existing virus, incorporating considerations on siRNA properties, off-target effects, viral RNA structure and viral mutations. It designs multiple siRNAs out of which the top candidate targets >99% of SARS-CoV-2 strains, and the combination of the top four siRNAs is predicted to target all SARS-CoV-2 strains. Additionally, we develop Greedy Algorithm with Redundancy (GAR) and Similarity-weighted Greedy Algorithm with Redundancy (SGAR) to support the Mode B of VirusSi, which pre-designs siRNAs against future emerging viruses based on existing viral sequences. Time-simulations using known coronavirus genomes as early as 10 years prior to the COVID-19 outbreak show that at least three SARS-CoV-2-targeting siRNAs are among the top 30 pre-designed siRNAs. Before-the-outbreak pre-design is also possible against the MERS-CoV virus and the 2009-H1N1 swine flu virus. Our data support the feasibility of pre-designing anti-viral siRNA therapeutics prior to viral outbreaks. We propose the development of a collection of pre-designed, safety-tested, and off-the-shelf siRNAs that could accelerate responses toward future viral diseases.
Collapse
Affiliation(s)
- Dingyao Zhang
- Yale Stem Cell Center, New Haven, CT 06520, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Jun Lu
- Yale Stem Cell Center, New Haven, CT 06520, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
- Yale Center for RNA Science and Medicine, Yale Cancer Center, New Haven, CT 06520, USA
- Yale Cooperative Center of Excellence in Hematology, New Haven, CT 06520, USA
| |
Collapse
|
24
|
Uludağ H, Parent K, Aliabadi HM, Haddadi A. Prospects for RNAi Therapy of COVID-19. Front Bioeng Biotechnol 2020; 8:916. [PMID: 32850752 PMCID: PMC7409875 DOI: 10.3389/fbioe.2020.00916] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 07/15/2020] [Indexed: 12/12/2022] Open
Abstract
COVID-19 caused by the SARS-CoV-2 virus is a fast emerging disease with deadly consequences. The pulmonary system and lungs in particular are most prone to damage caused by the SARS-CoV-2 infection, which leaves a destructive footprint in the lung tissue, making it incapable of conducting its respiratory functions and resulting in severe acute respiratory disease and loss of life. There were no drug treatments or vaccines approved for SARS-CoV-2 at the onset of pandemic, necessitating an urgent need to develop effective therapeutics. To this end, the innate RNA interference (RNAi) mechanism can be employed to develop front line therapies against the virus. This approach allows specific binding and silencing of therapeutic targets by using short interfering RNA (siRNA) and short hairpin RNA (shRNA) molecules. In this review, we lay out the prospect of the RNAi technology for combatting the COVID-19. We first summarize current understanding of SARS-CoV-2 virology and the host response to viral entry and duplication, with the purpose of revealing effective RNAi targets. We then summarize the past experience with nucleic acid silencers for SARS-CoV, the predecessor for current SARS-CoV-2. Efforts targeting specific protein-coding regions within the viral genome and intragenomic targets are summarized. Emphasizing non-viral delivery approaches, molecular underpinnings of design of RNAi agents are summarized with comparative analysis of various systems used in the past. Promising viral targets as well as host factors are summarized, and the possibility of modulating the immune system are presented for more effective therapies. We place special emphasis on the limitations of past studies to propel the field faster by focusing on most relevant models to translate the promising agents to a clinical setting. Given the urgency to address lung failure in COVID-19, we summarize the feasibility of delivering promising therapies by the inhalational route, with the expectation that this route will provide the most effective intervention to halt viral spread. We conclude with the authors' perspectives on the future of RNAi therapeutics for combatting SARS-CoV-2. Since time is of the essence, a strong perspective for the path to most effective therapeutic approaches are clearly articulated by the authors.
Collapse
Affiliation(s)
- Hasan Uludağ
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Kylie Parent
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada
| | | | - Azita Haddadi
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
25
|
Garrido PF, Calvelo M, Blanco-González A, Veleiro U, Suárez F, Conde D, Cabezón A, Piñeiro Á, Garcia-Fandino R. The Lord of the NanoRings: Cyclodextrins and the battle against SARS-CoV-2. Int J Pharm 2020; 588:119689. [PMID: 32717282 PMCID: PMC7381410 DOI: 10.1016/j.ijpharm.2020.119689] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/19/2020] [Accepted: 07/21/2020] [Indexed: 12/15/2022]
Abstract
A handful of singular structures and laws can be observed in nature. They are not always evident but, once discovered, it seems obvious how to take advantage of them. In chemistry, the discovery of reproducible patterns stimulates the imagination to develop new functional materials and technological or medical applications. Two clear examples are helical structures at different levels in biological polymers as well as ring and spherical structures of different size and composition. Rings are intuitively observed as holes able to thread elongated structures. A large number of real and fictional stories have rings as inanimate protagonists. The design, development or just discovering of a special ring has often been taken as a symbol of power or success. Several examples are the Piscatory Ring wore by the Pope of the Catholic Church, the NBA Championship ring and the One Ring created by the Dark Lord Sauron in the epic story The Lord of the Rings. In this work, we reveal the power of another extremely powerful kind of rings to fight against the pandemic which is currently affecting the whole world. These rings are as small as ~1 nm of diameter and so versatile that they are able to participate in the attack of viruses, and specifically SARS-CoV-2, in a large range of different ways. This includes the encapsulation and transport of specific drugs, as adjuvants to stabilize proteins, vaccines or other molecules involved in the infection, as cholesterol trappers to destabilize the virus envelope, as carriers for RNA therapies, as direct antiviral drugs and even to rescue blood coagulation upon heparin treatment. “One ring to rule them all. One ring to find them. One ring to bring them all and in the darkness bind them.” J. R. R. Tolkien.
Collapse
Affiliation(s)
- Pablo F Garrido
- Departamento de Física Aplicada, Facultade de Física, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - Martín Calvelo
- Departamento de Química Orgánica, Center for Research in Biological Chemistry and Molecular Materials, Universidade de Santiago de Compostela, Campus Vida s/n, E-15782 Santiago de Compostela, Spain
| | - Alexandre Blanco-González
- Departamento de Química Orgánica, Center for Research in Biological Chemistry and Molecular Materials, Universidade de Santiago de Compostela, Campus Vida s/n, E-15782 Santiago de Compostela, Spain
| | - Uxía Veleiro
- Departamento de Física Aplicada, Facultade de Física, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - Fabián Suárez
- Departamento de Física Aplicada, Facultade de Física, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - Daniel Conde
- Departamento de Química Orgánica, Center for Research in Biological Chemistry and Molecular Materials, Universidade de Santiago de Compostela, Campus Vida s/n, E-15782 Santiago de Compostela, Spain
| | - Alfonso Cabezón
- Departamento de Química Orgánica, Center for Research in Biological Chemistry and Molecular Materials, Universidade de Santiago de Compostela, Campus Vida s/n, E-15782 Santiago de Compostela, Spain
| | - Ángel Piñeiro
- Departamento de Física Aplicada, Facultade de Física, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain.
| | - Rebeca Garcia-Fandino
- Departamento de Química Orgánica, Center for Research in Biological Chemistry and Molecular Materials, Universidade de Santiago de Compostela, Campus Vida s/n, E-15782 Santiago de Compostela, Spain.
| |
Collapse
|
26
|
Three kinds of treatment with Homoharringtonine, Hydroxychloroquine or shRNA and their combination against coronavirus PEDV in vitro. Virol J 2020; 17:71. [PMID: 32493436 PMCID: PMC7267768 DOI: 10.1186/s12985-020-01342-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 05/20/2020] [Indexed: 01/20/2023] Open
Abstract
Background Porcine epidemic diarrhea virus (PEDV) of the family Coronaviridae has caused substantial economic losses in the swine husbandry industry. There’s currently no specific drug available for treatment of coronaviruses or PEDV. Method In the current study, we use coronavirus PEDV as a model to study antiviral agents. Briefly, a fusion inhibitor tHR2, recombinant lentivirus-delivered shRNAs targeted to conserved M and N sequences, homoharringtonine (HHT), and hydroxychloroquine (HCQ) were surveyed for their antiviral effects. Results Treatment with HCQ at 50 μM and HHT at 150 nM reduced virus titer in TCID50 by 30 and 3.5 fold respectively, and the combination reduced virus titer in TCID50 by 200 fold. Conclusion Our report demonstrates that the combination of HHT and HCQ exhibited higher antiviral activity than either HHT or HCQ exhibited. The information may contribute to the development of antiviral strategies effective in controlling PEDV infection.
Collapse
|
27
|
Gubernatorova EO, Gorshkova EA, Polinova AI, Drutskaya MS. IL-6: Relevance for immunopathology of SARS-CoV-2. Cytokine Growth Factor Rev 2020; 53:13-24. [PMID: 32475759 PMCID: PMC7237916 DOI: 10.1016/j.cytogfr.2020.05.009] [Citation(s) in RCA: 204] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 05/17/2020] [Indexed: 01/08/2023]
Abstract
COVID-19 mortality is strongly associated with the development of severe pneumonia and acute respiratory distress syndrome with the worst outcome resulting in cytokine release syndrome and multiorgan failure. It is becoming critically important to identify at the early stage of the infection those patients who are prone to develop the most adverse effects. Elevated systemic interleukin-6 levels in patients with COVID-19 are considered as a relevant parameter in predicting most severe course of disease and the need for intensive care. This review discusses the mechanisms by which IL-6 may possibly contribute to disease exacerbation and the potential of therapeutic approaches based on anti-IL-6 biologics.
Collapse
Affiliation(s)
- E O Gubernatorova
- Laboratory of Molecular Mechanisms of Immunity, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia; Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia.
| | - E A Gorshkova
- Laboratory of Molecular Mechanisms of Immunity, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia; Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia; Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - A I Polinova
- Laboratory of Molecular Mechanisms of Immunity, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia; Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - M S Drutskaya
- Laboratory of Molecular Mechanisms of Immunity, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia; Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
28
|
Asha K, Kumar P, Sanicas M, Meseko CA, Khanna M, Kumar B. Advancements in Nucleic Acid Based Therapeutics against Respiratory Viral Infections. J Clin Med 2018; 8:jcm8010006. [PMID: 30577479 PMCID: PMC6351902 DOI: 10.3390/jcm8010006] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/18/2018] [Accepted: 12/19/2018] [Indexed: 02/06/2023] Open
Abstract
Several viruses cause pulmonary infections due to their shared tropism with cells of the respiratory tract. These respiratory problems due to viral infection become a public health concern due to rapid transmission through air/aerosols or via direct-indirect contact with infected persons. In addition, the cross-species transmission causes alterations to viral genetic makeup thereby increasing the risk of emergence of pathogens with new and more potent infectivity. With the introduction of effective nucleic acid-based technologies, post translational gene silencing (PTGS) is being increasingly used to silence viral gene targets and has shown promising approach towards management of many viral infections. Since several host factors are also utilized by these viruses during various stages of infection, silencing these host factors can also serve as promising therapeutic tool. Several nucleic acid-based technologies such as short interfering RNAs (siRNA), antisense oligonucleotides, aptamers, deoxyribozymes (DNAzymes), and ribozymes have been studied and used against management of respiratory viruses. These therapeutic nucleic acids can be efficiently delivered through the airways. Studies have also shown efficacy of gene therapy in clinical trials against respiratory syncytial virus (RSV) as well as models of respiratory diseases including severe acute respiratory syndrome (SARS), measles and influenza. In this review, we have summarized some of the recent advancements made in the area of nucleic acid based therapeutics and highlighted the emerging roles of nucleic acids in the management of some of the severe respiratory viral infections. We have also focused on the methods of their delivery and associated challenges.
Collapse
Affiliation(s)
- Kumari Asha
- Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA.
| | - Prashant Kumar
- Amity Institute of Virology and Immunology, Amity University, Noida 201303, India.
| | - Melvin Sanicas
- Sanofi Pasteur, Asia and JPAC Region, Singapore 257856, Singapore.
| | - Clement A Meseko
- Regional Centre for Animal Influenza, National Veterinary Research Institute, Vom 930010, Nigeria.
| | - Madhu Khanna
- Department of Respiratory Virology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi 110007, India.
| | - Binod Kumar
- Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA.
| |
Collapse
|
29
|
Qureshi A, Tantray VG, Kirmani AR, Ahangar AG. A review on current status of antiviral siRNA. Rev Med Virol 2018; 28:e1976. [PMID: 29656441 PMCID: PMC7169094 DOI: 10.1002/rmv.1976] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 01/18/2018] [Accepted: 02/12/2018] [Indexed: 01/12/2023]
Abstract
Viral diseases like influenza, AIDS, hepatitis, and Ebola cause severe epidemics worldwide. Along with their resistant strains, new pathogenic viruses continue to be discovered so creating an ongoing need for new antiviral treatments. RNA interference is a cellular gene‐silencing phenomenon in which sequence‐specific degradation of target mRNA is achieved by means of complementary short interfering RNA (siRNA) molecules. Short interfering RNA technology affords a potential tractable strategy to combat viral pathogenesis because siRNAs are specific, easy to design, and can be directed against multiple strains of a virus by targeting their conserved gene regions. In this review, we briefly summarize the current status of siRNA therapy for representative examples from different virus families. In addition, other aspects like their design, delivery, medical significance, bioinformatics resources, and limitations are also discussed.
Collapse
Affiliation(s)
- Abid Qureshi
- Biomedical Informatics Center, Sher-i-Kashmir Institute of Medical Sciences (SKIMS), Srinagar, India
| | - Vaqar Gani Tantray
- Biomedical Informatics Center, Sher-i-Kashmir Institute of Medical Sciences (SKIMS), Srinagar, India
| | - Altaf Rehman Kirmani
- Biomedical Informatics Center, Sher-i-Kashmir Institute of Medical Sciences (SKIMS), Srinagar, India
| | - Abdul Ghani Ahangar
- Biomedical Informatics Center, Sher-i-Kashmir Institute of Medical Sciences (SKIMS), Srinagar, India
| |
Collapse
|
30
|
Dyall J, Gross R, Kindrachuk J, Johnson RF, Olinger GG, Hensley LE, Frieman MB, Jahrling PB. Middle East Respiratory Syndrome and Severe Acute Respiratory Syndrome: Current Therapeutic Options and Potential Targets for Novel Therapies. Drugs 2017; 77:1935-1966. [PMID: 29143192 PMCID: PMC5733787 DOI: 10.1007/s40265-017-0830-1] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
No specific antivirals are currently available for two emerging infectious diseases, Middle East respiratory syndrome (MERS) and severe acute respiratory syndrome (SARS). A literature search was performed covering pathogenesis, clinical features and therapeutics, clinically developed drugs for repurposing and novel drug targets. This review presents current knowledge on the epidemiology, pathogenesis and clinical features of the SARS and MERS coronaviruses. The rationale for and outcomes with treatments used for SARS and MERS is discussed. The main focus of the review is on drug development and the potential that drugs approved for other indications provide for repurposing. The drugs we discuss belong to a wide range of different drug classes, such as cancer therapeutics, antipsychotics, and antimalarials. In addition to their activity against MERS and SARS coronaviruses, many of these approved drugs have broad-spectrum potential and have already been in clinical use for treating other viral infections. A wealth of knowledge is available for these drugs. However, the information in this review is not meant to guide clinical decisions, and any therapeutic described here should only be used in context of a clinical trial. Potential targets for novel antivirals and antibodies are discussed as well as lessons learned from treatment development for other RNA viruses. The article concludes with a discussion of the gaps in our knowledge and areas for future research on emerging coronaviruses.
Collapse
Affiliation(s)
- Julie Dyall
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD, USA.
| | - Robin Gross
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD, USA
| | - Jason Kindrachuk
- Department of Medical Microbiology, University of Manitoba, Winnipeg, MN, Canada
| | - Reed F Johnson
- Emerging Viral Pathogens Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD, USA
| | | | - Lisa E Hensley
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD, USA
| | - Matthew B Frieman
- Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, MD, USA
| | - Peter B Jahrling
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD, USA
- Emerging Viral Pathogens Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD, USA
| |
Collapse
|
31
|
Adhikari N, Baidya SK, Saha A, Jha T. Structural Insight Into the Viral 3C-Like Protease Inhibitors: Comparative SAR/QSAR Approaches. VIRAL PROTEASES AND THEIR INHIBITORS 2017. [PMCID: PMC7150231 DOI: 10.1016/b978-0-12-809712-0.00011-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Severe acute respiratory syndrome (SARS), caused by SARS-coronavirus (SARS-CoV), is a dreadful infection worldwide having economic and medical importance and a global threat for health. It was turned into an epidemic in South China followed by a chain of infections across three generations. A number of pathogeneses in human may occur due to the virus. This infection has not been taken into account before the SARS outbreak, and still it is a neglected one. Therefore, there is an urgent need to develop small molecule antivirals to combat the SARS-CoV. No vaccines are available till date though a number of SARS-CoV 3C-like and 3C protease inhibitors were reported. In this chapter, quantitative structure–activity relationship technique is used for development of anti-SARS and anti-HRV drugs and outcome discussed in details. This approach may be a useful strategy to design novel and potential anti-SARS drugs to combat these dreadful viral diseases.
Collapse
Affiliation(s)
| | | | | | - Tarun Jha
- Jadavpur University, Kolkata, West Bengal, India
| |
Collapse
|
32
|
Zumla A, Chan JFW, Azhar EI, Hui DSC, Yuen KY. Coronaviruses - drug discovery and therapeutic options. Nat Rev Drug Discov 2016. [PMID: 26868298 DOI: 10.1038/nrd201537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
In humans, infections with the human coronavirus (HCoV) strains HCoV-229E, HCoV-OC43, HCoV-NL63 and HCoV-HKU1 usually result in mild, self-limiting upper respiratory tract infections, such as the common cold. By contrast, the CoVs responsible for severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS), which were discovered in Hong Kong, China, in 2003, and in Saudi Arabia in 2012, respectively, have received global attention over the past 12 years owing to their ability to cause community and health-care-associated outbreaks of severe infections in human populations. These two viruses pose major challenges to clinical management because there are no specific antiviral drugs available. In this Review, we summarize the epidemiology, virology, clinical features and current treatment strategies of SARS and MERS, and discuss the discovery and development of new virus-based and host-based therapeutic options for CoV infections.
Collapse
Affiliation(s)
- Alimuddin Zumla
- Division of Infection and Immunity, University College London, and NIHR Biomedical Research Centre, UCL Hospitals NHS Foundation Trust, 307 Euston Road, London NW1 3AD, UK
| | - Jasper F W Chan
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Research Centre of Infection and Immunology, Department of Microbiology, University Pathology Building, Queen Mary Hospital, The University of Hong Kong, 102 Pokfulam Road, Pokfulam, Hong Kong Special Administrative Region of the People's Republic of China
| | - Esam I Azhar
- Special Infectious Agents Unit, King Fahd Medical Research Centre, and Medical Laboratory Technology Department, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. Box 128442, Jeddah - 21362, Kingdom of Saudi Arabia
| | - David S C Hui
- Division of Respiratory Medicine and Stanley Ho Centre for Emerging Infectious Diseases, The Chinese University of Hong Kong, Prince of Wales Hospital, 30-32 Ngan Shing Street, Shatin, New Territories, Hong Kong Special Administrative Region of the People's Republic of China
| | - Kwok-Yung Yuen
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Research Centre of Infection and Immunology, Department of Microbiology, University Pathology Building, Queen Mary Hospital, The University of Hong Kong, 102 Pokfulam Road, Pokfulam, Hong Kong Special Administrative Region of the People's Republic of China
| |
Collapse
|
33
|
Zumla A, Chan JFW, Azhar EI, Hui DSC, Yuen KY. Coronaviruses - drug discovery and therapeutic options. Nat Rev Drug Discov 2016; 15:327-47. [PMID: 26868298 PMCID: PMC7097181 DOI: 10.1038/nrd.2015.37] [Citation(s) in RCA: 1184] [Impact Index Per Article: 131.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS) are examples of emerging zoonotic coronavirus infections capable of person-to-person transmission that result in large-scale epidemics with substantial effects on patient health and socioeconomic factors. Unlike patients with mild illnesses that are caused by other human-pathogenic coronaviruses, patients with SARS or MERS coronavirus infections may develop severe acute respiratory disease with multi-organ failure. The case–fatality rates of SARS and MERS are approximately 10% and 35%, respectively. Both SARS and MERS pose major clinical management challenges because there is no specific antiviral treatment that has been proven to be effective in randomized clinical trials for either infection. Substantial efforts are underway to discover new therapeutic agents for coronavirus infections. Virus-based therapies include monoclonal antibodies and antiviral peptides that target the viral spike glycoprotein, viral enzyme inhibitors, viral nucleic acid synthesis inhibitors and inhibitors of other viral structural and accessory proteins. Host-based therapies include agents that potentiate the interferon response or affect either host signalling pathways involved in viral replication or host factors utilized by coronaviruses for viral replication. The major challenges in the clinical development of novel anti-coronavirus drugs include the limited number of suitable animal models for the evaluation of potential treatments for SARS and MERS, the current absence of new SARS cases, the limited number of MERS cases — which are also predominantly geographically confined to the Middle East — as well as the lack of industrial incentives to develop antivirals for mild infections caused by other, less pathogenic coronaviruses. The continuing threat of MERS-CoV to global health 3 years after its discovery presents a golden opportunity to tackle current obstacles in the development of new anti-coronavirus drugs. A well-organized, multidisciplinary, international collaborative network consisting of clinicians, virologists and drug developers, coupled to political commitment, should be formed to carry out clinical trials using anti-coronavirus drugs that have already been shown to be safe and effective in vitro and/or in animal models, particularly lopinavir–ritonavir, interferon beta-1b and monoclonal antibodies and antiviral peptides targeting the viral spike glycoprotein. Severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS), which are caused by coronaviruses, have attracted substantial attention owing to their high mortality rates and potential to cause epidemics. Yuen and colleagues discuss progress with treatment options for these syndromes, including virus- and host-targeted drugs, and the challenges that need to be overcome in their further development. In humans, infections with the human coronavirus (HCoV) strains HCoV-229E, HCoV-OC43, HCoV-NL63 and HCoV-HKU1 usually result in mild, self-limiting upper respiratory tract infections, such as the common cold. By contrast, the CoVs responsible for severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS), which were discovered in Hong Kong, China, in 2003, and in Saudi Arabia in 2012, respectively, have received global attention over the past 12 years owing to their ability to cause community and health-care-associated outbreaks of severe infections in human populations. These two viruses pose major challenges to clinical management because there are no specific antiviral drugs available. In this Review, we summarize the epidemiology, virology, clinical features and current treatment strategies of SARS and MERS, and discuss the discovery and development of new virus-based and host-based therapeutic options for CoV infections.
Collapse
Affiliation(s)
- Alimuddin Zumla
- Division of Infection and Immunity, University College London, and NIHR Biomedical Research Centre, UCL Hospitals NHS Foundation Trust, 307 Euston Road, London NW1 3AD, UK
| | - Jasper F W Chan
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Research Centre of Infection and Immunology, Department of Microbiology, University Pathology Building, Queen Mary Hospital, The University of Hong Kong, 102 Pokfulam Road, Pokfulam, Hong Kong Special Administrative Region of the People's Republic of China
| | - Esam I Azhar
- Special Infectious Agents Unit, King Fahd Medical Research Centre, and Medical Laboratory Technology Department, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. Box 128442, Jeddah - 21362, Kingdom of Saudi Arabia
| | - David S C Hui
- Division of Respiratory Medicine and Stanley Ho Centre for Emerging Infectious Diseases, The Chinese University of Hong Kong, Prince of Wales Hospital, 30-32 Ngan Shing Street, Shatin, New Territories, Hong Kong Special Administrative Region of the People's Republic of China
| | - Kwok-Yung Yuen
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Research Centre of Infection and Immunology, Department of Microbiology, University Pathology Building, Queen Mary Hospital, The University of Hong Kong, 102 Pokfulam Road, Pokfulam, Hong Kong Special Administrative Region of the People's Republic of China
| |
Collapse
|
34
|
Abstract
Pulmonary infections by viruses may result in serious diseases of public health importance. The problems of the infections are exacerbated by rapid transmission of the pathogenic agents, which occur through inhalation and direct contact with contaminated surfaces. Moreover, cross-species transmission resulting from changes to viral genetic makeup poses a risk for emergence of pathogens with new characteristics, which in some cases may be responsible for causing different diseases. With the advent of efficient sequencing and nucleic acid-based virus-disabling technologies, gene therapy is well placed to advance new treatments to counter respiratory infections. Most studies aimed at using nucleic acids to treat respiratory viral infections have used RNA interference (RNAi) to silence viral gene targets. A few studies have used silencing of host factors required by the viruses as a means of inhibiting viral replication and preventing emergence of escape mutants. By administering antivirals to the airways, studies performed in vivo have taken advantage of the anatomy of the respiratory system to deliver therapeutic nucleic acids. Reported data have shown proof of principle of efficacy of gene therapy in models of respiratory syncytial virus (RSV), severe acute respiratory syndrome coronavirus, influenza virus A, and measles virus, among others. RNAi-based gene therapy has been advanced to clinical trial for treatment of RSV infection. Although the primary endpoint was not met in an intent-to-treat analysis, the investigation has provided useful information for the advancement of gene therapy for current and emergent respiratory infections.
Collapse
|
35
|
Developments in the Search for Small-Molecule Inhibitors for Treatment of Severe Acute Respiratory Syndrome Coronavirus. Antiviral Res 2014. [DOI: 10.1128/9781555815493.ch12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
36
|
Chihrin S, Loutfy MR. Overview of antiviral and anti-inflammatory treatment for severe acute respiratory syndrome. Expert Rev Anti Infect Ther 2014; 3:251-62. [PMID: 15918782 DOI: 10.1586/14787210.3.2.251] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In 2003, an outbreak of a novel respiratory virus exploded from mainland China into an international issue, catching the world by surprise. The ensuing challenges to hospital and public health workers rose to a level never before seen in healthcare, in part due to the unknown nature of the disease, the fear of the human-to-human transmission and the significant media involvement. A new coronavirus was identified as the causative agent and named the severe acute respiratory syndrome-associated virus. A number of antiviral and anti-inflammatory treatment strategies were explored during the epidemic, with varying success. Following the epidemic, in vitro antiviral analyses of numerous compounds have been conducted. This review summarizes treatment agents assessed during and after the 2003 severe acute respiratory syndrome outbreak, with the aim of guiding future decision makers should the virus return.
Collapse
Affiliation(s)
- Stephen Chihrin
- University of Western Ontario , Faculty of Medicine, London, Ontario, Canada
| | | |
Collapse
|
37
|
Bhomia M, Sharma A, Gayen M, Gupta P, Maheshwari RK. Artificial microRNAs can effectively inhibit replication of Venezuelan equine encephalitis virus. Antiviral Res 2013; 100:429-34. [PMID: 23988697 PMCID: PMC7113778 DOI: 10.1016/j.antiviral.2013.08.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 08/13/2013] [Accepted: 08/16/2013] [Indexed: 11/24/2022]
Abstract
Artificial microRNAs designed against VEEV nsp-4 were found non-toxic in cell culture. VEEV replication was effectively inhibited by all the artificial microRNAs in vitro. Combination of multiple microRNAs in a single expression vector does not increase protective efficacy against VEEV infection. Venezuelan equine encephalitis virus is a member of the alphavirus family and genus togaviridae. VEEV is highly infectious in aerosol form and has been weaponized in the past making it a potential biothreat agent. At present, there are no FDA approved antiviral treatments or vaccines for VEEV. Artificial microRNAs are small molecules which are expressed through endogenous microRNA machinery by RNA polymerase II. These artificial microRNAs effectively inhibit gene expression and are non-toxic to the host cell. VEEV RNA dependent RNA polymerase (RdRp) is central to VEEV replication. Therefore, we hypothesize that targeted inhibition of VEEV RdRp using artificial microRNAs may efficiently inhibit VEEV replication. Five artificial microRNAs were tested in vitro in BHK cells. Three of these artificial miRNAs showed significant inhibition of VEEV replication. Further, these microRNAs were cloned into the expression vector in combination to see the synergistic effect on VEEV replication. Combination of more than one miRNA did not result in significant inhibition of virus replication. In conclusion, we have shown that RNAi through artificial microRNAs effectively inhibits VEEV replication and is significantly less toxic in comparison to siRNAs.
Collapse
Affiliation(s)
- Manish Bhomia
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Rajasthan 333031, India
| | | | | | | | | |
Collapse
|
38
|
Zhou F, Liang S, Chen AH, Singh CO, Bhaskar R, Niu YS, Miao YG. A transgenic Marc-145 cell line of piggyBac transposon-derived targeting shRNA interference against porcine reproductive and respiratory syndrome virus. Vet Res Commun 2012; 36:99-105. [PMID: 22297554 DOI: 10.1007/s11259-012-9519-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2012] [Indexed: 10/14/2022]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is now considered to be one of the most important diseases in countries with intensive swine industries. The two major membrane-associated proteins of porcine reproductive and respiratory syndrome virus (PRRSV), GP5 and M (encoded by ORF5 and ORF6 genes, respectively), are associated as disulfide-linked heterodimers (GP5/M) in the virus particle. In this study, we designed 5 of the small hairpin RNAs (shRNAs) targeting the GP5 and M gene of PRRSV respectively, and investigated their inhibition to the production of PRRSV. The highest activity displayed in shRNAs of the ORF6e sequence (nts 261-279), which the inhibition rate reached was 99.09%. The result suggests that RNAi technology might serve as a potential molecular strategy for PRRSV therapy. Furthermore, the transgenic Marc-145 cell line of piggyBac transposon-derived targeting shRNA interference against PRRS virus was established. It presented stable inhibition to the replication and amplification of PRRS. The work implied that shRNAs targeting the GP5 and M gene of PRRSV may be used as potential RNA vaccines in vivo, and supplied the screening methods of transformed pig embryonic fibroblast which are prerequisite for the disease-resistant transgenic pigs to PRRS.
Collapse
Affiliation(s)
- Fang Zhou
- Key Laboratory of Animal Virology of Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, People’s Republic of China
| | | | | | | | | | | | | |
Collapse
|
39
|
López-Fraga M, Martínez T, Jiménez A. RNA interference technologies and therapeutics: from basic research to products. BioDrugs 2009; 23:305-32. [PMID: 19754220 PMCID: PMC7099360 DOI: 10.2165/11318190-000000000-00000] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
RNA interference (RNAi) is a natural cellular process that regulates gene expression by a highly precise mechanism of sequence-directed gene silencing at the stage of translation by degrading specific messenger RNAs or blocking translation. In recent years, the use of RNAi for therapeutic applications has gained considerable momentum. It has been suggested that most of the novel disease-associated targets that have been identified are not ‘druggable’ with conventional approaches. However, any disease-causing gene and any cell type or tissue can potentially be targeted with RNAi. This review focuses on the current knowledge of RNAi mechanisms and the safety issues associated with its potential use in a therapeutic setting. Some of the most important aspects to consider when working towards the application of RNAi-based products in a clinical setting have been related to achieving high efficacies and enhanced stability profiles through a careful design of the nucleic acid sequence and the introduction of chemical modifications, but most of all, to developing improved delivery systems, both viral and non-viral. These new delivery systems allow for these products to reach the desired target cells, tissues or organs in a highly specific manner and after administration of the lowest possible doses. Various routes of application and target locations are currently being addressed in order to develop effective delivery systems for different targets and pathologies, including infectious pathologies, genetic pathologies and diseases associated with dysregulation of endogenous microRNAs. As with any new technology, several challenges and important aspects to be considered have risen on the road to clinical intervention, e.g. correct design of preclinical toxicology studies, regulatory concerns, and intellectual property protection. The main advantages related to the use of RNAi-based products in a clinical setting, and the latest clinical and preclinical studies using these compounds, are reviewed.
Collapse
|
40
|
Dellanno C, Vega Q, Boesenberg D. The antiviral action of common household disinfectants and antiseptics against murine hepatitis virus, a potential surrogate for SARS coronavirus. Am J Infect Control 2009; 37:649-52. [PMID: 19692148 PMCID: PMC7132643 DOI: 10.1016/j.ajic.2009.03.012] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2006] [Revised: 03/30/2009] [Accepted: 03/30/2009] [Indexed: 11/04/2022]
Abstract
Background The 2003 outbreak of severe acute respiratory syndrome (SARS) infected over 8000 people and killed 774. Transmission of SARS occurred through direct and indirect contact and large droplet nuclei. The World Health Organization recommended the use of household disinfectants, which have not been previously tested against SARS coronavirus (SARS-CoV), to disinfect potentially contaminated environmental surfaces. There is a need for a surrogate test system given the limited availability of the SARS-CoV for testing and biosafety requirements necessary to safely handle it. In this study, the antiviral activity of standard household products was assayed against murine hepatitis virus (MHV), as a potential surrogate for SARS-CoV. Methods A surface test method, which involves drying an amount of virus on a surface and then applying the product for a specific contact time, was used to determine the virucidal activity. The virus titers and log reductions were determined by the Reed and Muench tissue culture infective dose (TCID)50 end point method. Results When tested as directed, common household disinfectants or antiseptics, containing either 0.050% of triclosan, 0.12% of PCMX, 0.21% of sodium hypochlorite, 0.23% of pine oil, or 0.10% of a quaternary compound with 79% of ethanol, demonstrated a 3-log reduction or better against MHV without any virus recovered in a 30-second contact time. Conclusion Common household disinfectants and antiseptics were effective at inactivating MHV, a possible surrogate for SARS-CoV, from surfaces when used as directed. In an outbreak caused by novel agents, it is important to know the effectiveness of disinfectants and antiseptics to prevent or reduce the possibility of human-to-human transmission via surfaces.
Collapse
|
41
|
RNA interference-mediated silencing of the respiratory syncytial virus nucleocapsid defines a potent antiviral strategy. Antimicrob Agents Chemother 2009; 53:3952-62. [PMID: 19506055 DOI: 10.1128/aac.00014-09] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
We describe the design and characterization of a potent human respiratory syncytial virus (RSV) nucleocapsid gene-specific small interfering RNA (siRNA), ALN-RSV01. In in vitro RSV plaque assays, ALN-RSV01 showed a 50% inhibitory concentration of 0.7 nM. Sequence analysis of primary isolates of RSV showed that the siRNA target site was absolutely conserved in 89/95 isolates, and ALN-RSV01 demonstrated activity against all isolates, including those with single-mismatch mutations. In vivo, intranasal dosing of ALN-RSV01 in a BALB/c mouse model resulted in potent antiviral efficacy, with 2.5- to 3.0-log-unit reductions in RSV lung concentrations being achieved when ALN-RSV01 was administered prophylactically or therapeutically in both single-dose and multidose regimens. The specificity of ALN-RSV01 was demonstrated in vivo by using mismatch controls; and the absence of an immune stimulatory mechanism was demonstrated by showing that nonspecific siRNAs that induce alpha interferon and tumor necrosis factor alpha lack antiviral efficacy, while a chemically modified form of ALN-RSV01 lacking measurable immunostimulatory capacity retained full activity in vivo. Furthermore, an RNA interference mechanism of action was demonstrated by the capture of the site-specific cleavage product of the RSV mRNA via rapid amplification of cDNA ends both in vitro and in vivo. These studies lay a solid foundation for the further investigation of ALN-RSV01 as a novel therapeutic antiviral agent for clinical use by humans.
Collapse
|
42
|
Abstract
For almost three decades, researchers have studied the possibility to use nucleic acids as antiviral therapeutics. In theory, compounds such as antisense oligonucleotides, ribozymes, DNAzymes, and aptamers can be designed to trigger the sequence-specific inhibition of particular mRNA transcripts, including viral genomes. However, difficulties with their efficiency, off-target effects, toxicity, delivery, and stability halted the development of nucleic acid-based therapeutics that can be used in the clinic. So far, only a single antisense drug, Vitravene for the treatment of CMV-induced retinitis in AIDS patients, has made it to the clinic. Since the discovery of RNA interference (RNAi), there is a renewed interest in the development of nucleic acid-based therapeutics. Antiviral RNAi approaches are highly effective in vitro and in animal models and are currently being tested in clinical trials. Here we give an overview of antiviral nucleic acid-based therapeutics. We focus on antisense and RNAi-based compounds that have been shown to be effective in animal model systems.
Collapse
Affiliation(s)
- Hans-Georg Kräusslich
- Hygiene Institute Department of Virology, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 324, Heidelberg, 69120 Germany
| | - Ralf Bartenschlager
- Hygiene Institute Department of Virology, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 324, Heidelberg, 69120 Germany
| |
Collapse
|
43
|
Baba K, Goto-Koshino Y, Mizukoshi F, Setoguchi-Mukai A, Fujino Y, Ohno K, Tsujimoto H. Inhibition of the replication of feline immunodeficiency virus by lentiviral vector-mediated RNA interference in feline cell lines. J Vet Med Sci 2008; 70:777-83. [PMID: 18772551 DOI: 10.1292/jvms.70.777] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
RNA interference (RNAi) is a sequence-specific RNA degradation process. To inhibit feline immunodeficiency virus (FIV) replication by RNAi, we generated a lentiviral vector expressing a short hairpin RNA (shRNA) that targeted the gag gene of FIV (shGag). shGag transfer significantly inhibited viral replication in cell lines that were chronically infected with FIV, i.e., the 3201/UK8 low, 3201/UK8 high, FL4, and CRFK/FIV cell lines. Moreover, 3201 cells were transduced with the lentiviral vectors and then inoculated with FIV. Although the amount of FIV proviral DNA in shGag-transduced cells was similar to that in the cells transduced with unrelated shRNA or mock-transduced cells, the amount of reverse transcriptase (RT) activity was significantly reduced in the culture supernatant of shGag-expressing cells from 15 to 27 days after inoculation. Thirty days after inoculation, no significant difference was observed in the RT activities but virus with a mutation in the target region of shGag was detected in approximately 21% of the replicated viruses. Therefore, abolishment of the silencing effect of shGag may be due to reasons other than the emergence of escape mutants. These results are useful for developing an RNAi-based gene therapy strategy for controlling FIV infection.
Collapse
Affiliation(s)
- Kenji Baba
- Department of Veterinary Internal Medicine, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
44
|
siRNA silencing of angiotensin-converting enzyme 2 reduced severe acute respiratory syndrome-associated coronavirus replications in Vero E6 cells. Eur J Clin Microbiol Infect Dis 2008; 27:709-15. [PMID: 18449585 PMCID: PMC7088151 DOI: 10.1007/s10096-008-0495-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2007] [Accepted: 02/15/2008] [Indexed: 01/07/2023]
Abstract
The outbreak of severe acute respiratory syndrome (SARS) in 2002–2003 has had a significant impact worldwide. No effective prophylaxis or treatment for SARS is available up to now. Angiotensin-converting enzyme 2 (ACE2) is the cellular receptor for SARS-associated coronavirus (SARS-CoV). By expressing a U6 promoter-driven small interfering RNA containing sequences homologous to part of ACE2 mRNA, we successfully silenced ACE2 expression in Vero E6 cells. By detecting negative strand SARS-CoV RNA and measuring RNA copy numbers of SARS-CoV by real-time reverse transcription polymerase chain reaction (RT-PCR), we demonstrated that SARS-CoV infection was reduced in the ACE2-silenced cell lines. These findings support the involvement of ACE2 in SARS-CoV infections and provide a basis for further studies on potential use of siRNA targeting ACE2 as a preventive or therapeutic strategy for SARS.
Collapse
|
45
|
Abstract
A new era in genetics started 17 years ago, when co-suppression in petunia was discovered. Later, co-suppression was identified as RNA interference (RNAi) in many plant and lower eukaryote animals. Although an ancient antiviral host defense mechanism in plants, the physiologic role of RNAi in mammals is still not completely understood. RNAi is directed by short interfering RNAs (siRNAs), one subtype of short double stranded RNAs. In this review we summarize the history and mechanisms of RNAi. We also aim to highlight the correlation between structure and efficacy of siRNAs. Delivery is the most important obstacle for siRNA based gene therapy. Viral and nonviral deliveries are discussed. In vivo delivery is the next obstacle to clinical trials with siRNAs. Although hydrodynamic treatment is effective in animals, it cannot be used in human therapy. One possibility is organ selective catheterization. The known side effects of synthesized siRNAs are also discussed. Although there are many problems to face in this new field of gene therapy, successful in vitro and in vivo experiments raise hope for treating human disease with siRNA.
Collapse
Affiliation(s)
- Zsuzsanna Rácz
- Semmelweis Egyetem, Altalános Orvostudományi Kar Kórélettani Intézet, Budapest, Hungary
| | | |
Collapse
|
46
|
Zhou F, Zhang L, Wang A, Song B, Gong K, Zhang L, Hu M, Zhang X, Zhao N, Gong Y. The association of GSK3 beta with E2F1 facilitates nerve growth factor-induced neural cell differentiation. J Biol Chem 2008; 283:14506-15. [PMID: 18367454 DOI: 10.1074/jbc.m706136200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
It is widely acknowledged that E2F1 and GSK3beta are both involved in the process of cell differentiation. However, the relationship between E2F1 and GSK3beta in cell differentiation has yet to be discovered. Here, we provide evidence that in the differentiation of PC12 cells induced by nerve growth factor (NGF), GSK3beta was increased at both the mRNA and protein levels, whereas E2F1 at these two levels was decreased. Both wild-type GSK3beta and its kinase-defective mutant GSK3beta KM can inhibit E2F1 by promoting its ubiquitination through physical interaction. In addition, the colocalization of GSK3beta and E2F1 and their subcellular distribution, regulated by NGF, were observed in the process of PC12 differentiation. At the tissue level, GSK3beta colocalized and interacted with E2F1 in mouse hippocampus. Furthermore, GSK3beta facilitated neurite outgrowth by rescuing the promoter activities of Cdk inhibitors p21 and p15 from the inhibition caused by E2F1. To summarize, our findings suggest that GSK3beta can promote the ubiquitination of E2F1 via physical interaction and thus inhibit its transcription activity in a kinase activity independent manner, which plays an important role in the NGF-induced PC12 differentiation.
Collapse
Affiliation(s)
- Fangfang Zhou
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Qi WB, Hua RH, Yan LP, Tong GZ, Zhang GH, Ren T, Wu DL, Liao M. Effective inhibition of Japanese encephalitis virus replication by small interfering RNAs targeting the NS5 gene. Virus Res 2008; 132:145-51. [PMID: 18190994 DOI: 10.1016/j.virusres.2007.11.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2007] [Revised: 11/16/2007] [Accepted: 11/20/2007] [Indexed: 11/18/2022]
Abstract
Japanese encephalitis virus (JEV), a mosquito-borne flavivirus, causes an acute infection of the central nervous system resulting in encephalitis of humans and many kinds of animals. NS5, the largest and most conserved flavivirus protein, is homologous to methyltransferase and RNA-dependent RNA polymerase. RNA interference is an effective anti-viral strategy to inhibit viral replication in vitro. In this study, four short hairpin RNA (shRNA) expression vectors (pS4.1-NS5-201, pS4.1-NS5-455, pS4.1-NS5-699, and pS4.1-NS5-804) targeting the NS5 gene of JEV were employed to target and destroy JEV transcripts. The four shRNAs expression plasmids were individually co-transfected into 293T cells with the plasmid pNS5-EGFP expressing NS5 fused to enhanced green fluorescent protein. The expression level of NS5 was evaluated by fluorescence microscopy, flow cytometry, real time RT-PCR, and Western blot. The four shRNA expression plasmids were also transfected into BHK-21 cells to examine their inhibition of viral replication by indirect immunofluorescence, real time RT-PCR, and Western blot. The results provided strong evidence that shRNAs targeting the NS5 gene could specifically and efficiently inhibit JEV replication. Three out of four plasmids were highly efficient at inhibiting viral replication, including pS4.1-NS5-455, pS4.1-NS5-699, and pS4.1-NS5-804. This was especially true for pS4.1-NS5-699, which reduced the levels of virus RNA and protein the most. Our data suggest that shRNAs could be used as a tool to inhibit JEV replication in vivo.
Collapse
Affiliation(s)
- Wen-Bao Qi
- Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 427 Maduan Street, Harbin 150001, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
Containment of the SARS coronavirus (SCV) outbreak was accompanied by the rapid characterization of this new pathogen's genome sequence in 2003, encouraging the development of anti-SCV therapeutics using short interfering RNA (siRNA) inhibitors. A pair of siRNA duplexes identified as potent SCV inhibitors in vitro was evaluated for in vivo efficacy and safety in a rhesus macaque SARS model using intranasal administration with clinical viable delivery carrier in three dosing regimens. Observations of SCV-induced SARS-like symptoms, measurements of SCV RNA presence in the respiratory tract, microscopic inspections of lung histopathology, and immunohistochemistry sections from 21 tested macaques consistently demonstrated siRNA-mediated anti-SCV activity. The prophylactic and therapeutic efficacies resulted in relief of animals from SCV infection-induced fever, diminished SCV in upper airway and lung alveoli, and milder acute diffuse alveoli damage (DAD). The dosages of siRNA used, 10 to 40 mg/kg, did not show any sign of siRNA-induced toxicity. These results support that a clinical investigation of this anti-SARS siRNA therapeutic agent is warranted. The study also illustrates the capability of siRNA to enable a massive reduction in development time for novel targeted therapeutic agents. We detail a representative example of large-mammal siRNA use.
Collapse
|
49
|
Zhao X, Nicholls JM, Chen YG. Severe acute respiratory syndrome-associated coronavirus nucleocapsid protein interacts with Smad3 and modulates transforming growth factor-beta signaling. J Biol Chem 2007; 283:3272-3280. [PMID: 18055455 PMCID: PMC8740907 DOI: 10.1074/jbc.m708033200] [Citation(s) in RCA: 154] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Severe acute respiratory syndrome (SARS) is an acute infectious disease with significant mortality. A typical clinical feature associated with SARS is pulmonary fibrosis and the associated lung failure. However, the underlying mechanism remains elusive. In this study, we demonstrate that SARS-associated coronavirus (SARS-CoV) nucleocapsid (N) protein potentiates transforming growth factor-β (TGF-β)-induced expression of plasminogen activator inhibitor-1 but attenuates Smad3/Smad4-mediated apoptosis of human peripheral lung epithelial HPL1 cells. The promoting effect of N protein on the transcriptional responses of TGF-β is Smad3-specific. N protein associates with Smad3 and promotes Smad3-p300 complex formation while it interferes with the complex formation between Smad3 and Smad4. These findings provide evidence of a novel mechanism whereby N protein modulates TGF-β signaling to block apoptosis of SARS-CoV-infected host cells and meanwhile promote tissue fibrosis. Our results reveal a novel mode of Smad3 action in a Smad4-independent manner and may lead to successful strategies for SARS treatment by targeting the TGF-β signaling molecules.
Collapse
Affiliation(s)
- Xingang Zhao
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing 100084
| | - John M Nicholls
- Department of Pathology, University of Hong Kong, Hong Kong, China
| | - Ye-Guang Chen
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing 100084.
| |
Collapse
|
50
|
Severe acute respiratory syndrome coronavirus as an agent of emerging and reemerging infection. Clin Microbiol Rev 2007; 20:660-94. [PMID: 17934078 DOI: 10.1128/cmr.00023-07] [Citation(s) in RCA: 680] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Before the emergence of severe acute respiratory syndrome (SARS) coronavirus (SARS-CoV) in 2003, only 12 other animal or human coronaviruses were known. The discovery of this virus was soon followed by the discovery of the civet and bat SARS-CoV and the human coronaviruses NL63 and HKU1. Surveillance of coronaviruses in many animal species has increased the number on the list of coronaviruses to at least 36. The explosive nature of the first SARS epidemic, the high mortality, its transient reemergence a year later, and economic disruptions led to a rush on research of the epidemiological, clinical, pathological, immunological, virological, and other basic scientific aspects of the virus and the disease. This research resulted in over 4,000 publications, only some of the most representative works of which could be reviewed in this article. The marked increase in the understanding of the virus and the disease within such a short time has allowed the development of diagnostic tests, animal models, antivirals, vaccines, and epidemiological and infection control measures, which could prove to be useful in randomized control trials if SARS should return. The findings that horseshoe bats are the natural reservoir for SARS-CoV-like virus and that civets are the amplification host highlight the importance of wildlife and biosecurity in farms and wet markets, which can serve as the source and amplification centers for emerging infections.
Collapse
|