1
|
Kong L, Hu X, Xia D, Wu J, Zhao Y, Guo H, Zhang S, Qin C, Wang Y, Li L, Su Z, Zhu C, Xu S. Janus PEGylated CuS-engineered Lactobacillus casei combats biofilm infections via metabolic interference and innate immunomodulation. Biomaterials 2025; 317:123060. [PMID: 39736219 DOI: 10.1016/j.biomaterials.2024.123060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/25/2024] [Accepted: 12/25/2024] [Indexed: 01/01/2025]
Abstract
Bacterial implant-associated infections predominantly contribute to the failure of prosthesis implantation. The local biofilm microenvironment (BME), characterized by its hyperacidic condition and high hydrogen peroxide (H2O2) level, inhibits the host's immune response, thereby facilitating recurrent infections. Here, a Janus PEGylated CuS nanoparticle (CuPen) armed engineered Lactobacillus casei (L. casei) denoted as LC@CuPen, is proposed to interfere with bacterial metabolism and arouse macrophage antibiofilm function. Once LC@CuPen reached the BME, NIR irradiation-activated mild heat damages L. casei and biofilm structure. Meanwhile, the BME-responsive LC@CuPen can catalyze local H2O2 to produce toxic •OH, whereas in normal tissues, the effect of •OH production is greatly reduced due to the higher pH and lower H2O2 concentration. The released bacteriocin from damaged L. casei can destroy the bacterial membrane to enhance the penetration of •OH into damaged biofilm. Excessive •OH interferes with normal bacterial metabolism, resulting in reduced resistance of bacteria to heat stress. Finally, under the action of mild heat treatment, the bacterial biofilm lysed and died. Furthermore, the pathogen-associated molecular patterns (PAMPs) in LC@CuPen can induce M1 polarization of macrophages through NF-κB pathway and promote the release of inflammatory factors. Inflammatory factors enhance the migration of macrophages to the site of infection and phagocytose bacteria, thereby inhibiting the recurrence of infection. Generally, this engineered L. casei program presents a novel perspective for the treatment of bacterial implant-associated infections and serves as a valuable reference for future clinical applications of engineered probiotics.
Collapse
Affiliation(s)
- Lingtong Kong
- Department of Orthopedics, The First Affiliated Hospital of Naval Medical University: Changhai Hospital, Shanghai, 200433, China
| | - Xianli Hu
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Demeng Xia
- Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Jianghong Wu
- Department of Microbiology, College of Basic Medical Science, Department of Emergency, The Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China.
| | - Yangpeng Zhao
- Department of Orthopedics, The First Affiliated Hospital of Naval Medical University: Changhai Hospital, Shanghai, 200433, China
| | - Hua Guo
- Department of Orthopedics, The First Affiliated Hospital of Naval Medical University: Changhai Hospital, Shanghai, 200433, China
| | - Song Zhang
- Department of Orthopedics, The First Affiliated Hospital of Naval Medical University: Changhai Hospital, Shanghai, 200433, China
| | - Chun Qin
- Department of Orthopedics, The First Affiliated Hospital of Naval Medical University: Changhai Hospital, Shanghai, 200433, China
| | - Yanjun Wang
- Department of Orthopedics, The First Affiliated Hospital of Naval Medical University: Changhai Hospital, Shanghai, 200433, China
| | - Lei Li
- Department of Orthopedics, The First Affiliated Hospital of Naval Medical University: Changhai Hospital, Shanghai, 200433, China
| | - Zheng Su
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China.
| | - Chen Zhu
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Shuogui Xu
- Department of Orthopedics, The First Affiliated Hospital of Naval Medical University: Changhai Hospital, Shanghai, 200433, China.
| |
Collapse
|
2
|
Mahendrarajan V, Easwaran N. Isolation, probiotic characterization and genomic analysis of Enterococcus durans VIT3 from edible curd. Microb Pathog 2025; 205:107649. [PMID: 40334721 DOI: 10.1016/j.micpath.2025.107649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 04/25/2025] [Accepted: 04/28/2025] [Indexed: 05/09/2025]
Abstract
Enterococcus species are recognized as probiotics with well-documented beneficial effects on human health. We aimed to isolate Enterococcus species from edible curd, a commonly consumed food product. The isolated bacterium is identified to be Enterococcus durans VIT3 by Oxford nanopore sequencing. The isolate is susceptible to commonly used antibiotics with no hemolysis activity. The isolate exhibited probiotic characteristics, like resistance to acid and bile, significant adhesion capability, auto-aggregation, and antimicrobial activity against pathogenic bacteria such as C. violaceum, S. mutans, S. enterica and S. aureus. E. durans VIT3 can efficiently scavenge the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical, shows a potential anti-oxidant activity. Whole genome analysis revealed a total length of 3.2 Mb with 37.9 average GC content, which included genes associated with probiotic functions.
Collapse
Affiliation(s)
- Venkatramanan Mahendrarajan
- Department of Integrative Biology, School of Biosciences and Technology, Vellore Institute of Technology, Tiruvalam Road, Katpadi, Tamil Nadu, India
| | - Nalini Easwaran
- Department of Integrative Biology, School of Biosciences and Technology, Vellore Institute of Technology, Tiruvalam Road, Katpadi, Tamil Nadu, India.
| |
Collapse
|
3
|
Lentsch V, Woller A, Rocker A, Aslani S, Moresi C, Ruoho N, Larsson L, Fattinger SA, Wenner N, Barazzone EC, Hardt WD, Loverdo C, Diard M, Slack E. Vaccine-enhanced competition permits rational bacterial strain replacement in the gut. Science 2025; 388:74-81. [PMID: 40179176 DOI: 10.1126/science.adp5011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 02/06/2025] [Indexed: 04/05/2025]
Abstract
Colonization of the intestinal lumen precedes invasive infection for a wide range of enteropathogenic and opportunistic pathogenic bacteria. We show that combining oral vaccination with engineered or selected niche-competitor strains permits pathogen exclusion and strain replacement in the mouse gut lumen. This approach can be applied either prophylactically to prevent invasion of nontyphoidal Salmonella strains, or therapeutically to displace an established Escherichia coli. Both intact adaptive immunity and metabolic niche competition are necessary for efficient vaccine-enhanced competition. Our findings imply that mucosal antibodies have evolved to work in the context of gut microbial ecology by influencing the outcome of competition. This has broad implications for the elimination of pathogenic and antibiotic-resistant bacterial reservoirs and for rational microbiota engineering.
Collapse
Affiliation(s)
- Verena Lentsch
- Institute for Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
- Medical Research Council (MRC) Translational Immunology Discovery Unit, MRC Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Aurore Woller
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire Jean Perrin (LJP), Paris, France
- Unité de Chronobiologie théorique, Faculté des Sciences, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | | | - Selma Aslani
- Institute for Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Claudia Moresi
- Institute for Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Niina Ruoho
- Institute for Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Louise Larsson
- Institute for Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Stefan A Fattinger
- Institute for Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | | | | | - Wolf-Dietrich Hardt
- Institute for Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Claude Loverdo
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire Jean Perrin (LJP), Paris, France
| | - Médéric Diard
- Biozentrum, University of Basel, Basel, Switzerland
- Basel Research Centre for Child Health, Basel, Switzerland
| | - Emma Slack
- Institute for Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
- Basel Research Centre for Child Health, Basel, Switzerland
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| |
Collapse
|
4
|
Zeng X, Sun L, Xie H, Gong S, Lu C, Xu Z, Guan H, Han B, Wang W, Zhang Z, Zhou J, Wang S, Chen Y, Xiao W. Lactobacillus johnsonii Generates Cyclo(pro-trp) and Promotes Intestinal Ca 2+ Absorption to Alleviate CKD-SHPT. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2414678. [PMID: 39887665 PMCID: PMC12021065 DOI: 10.1002/advs.202414678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 01/07/2025] [Indexed: 02/01/2025]
Abstract
Patients with chronic kidney disease (CKD) are at a high risk of developing secondary hyperparathyroidism (SHPT), which may cause organ dysfunction and increase patient mortality. The main clinical interventions for CKD-SHPT involve calcium supplements to boost absorption, but ineffective for some patients, and the reasons remain unclear. Here, CKD mice are divided into high and low groups based on intact parathyroid hormone (iPTH) levels. The high group exhibits significant changes in gut microbes, including a decrease in Lactobacillus, an increase in parathyroid hyperplasia, and a decrease in intestinal calcium. Fecal microbiota transplantation and L. johnsonii colonization indicate a link between gut microbes and CKD-SHPT. Clinically, higher L. johnsonii levels are correlated with milder hyperparathyroidism CKD-SHPT. The receiver operating characteristic (ROC) curve for L. johnsonii abundance and surgical risk is 0.81, with the calibration curve confirming predictive accuracy, and decision curve analysis revealing good clinical applicability. In vivo and in vitro experiments show that cyclo(pro-trp) enhance calcium inflow and lower iPTH levels in intestinal epithelial cells via a calcium-sensing receptor and transient receptor potential vanilloid 4 pathways. This study identified the crucial role of L. johnsonii in CKD-SHPT, unveiling a new mechanism for calcium imbalance and offering novel strategies for SHPT treatment and drug development.
Collapse
Affiliation(s)
- Xiong Zeng
- Department of General SurgeryXinqiao HospitalArmy Medical University (Third Military Medical University)Chongqing400037China
| | - Lihua Sun
- Department of General SurgeryXinqiao HospitalArmy Medical University (Third Military Medical University)Chongqing400037China
| | - Huichao Xie
- Department of General SurgeryXinqiao HospitalArmy Medical University (Third Military Medical University)Chongqing400037China
| | - Shenhai Gong
- School of Traditional Chinese MedicineSouthern Medical UniversityGuangzhou510515China
| | - Caibao Lu
- Department of NephrologyXinqiao HospitalArmy Medical UniversityChongqing400037China
| | - Zhongwei Xu
- Department of General SurgeryXinqiao HospitalArmy Medical University (Third Military Medical University)Chongqing400037China
| | - Haidi Guan
- Department of General SurgeryXinqiao HospitalArmy Medical University (Third Military Medical University)Chongqing400037China
| | - Ben Han
- Department of NutritionXinqiao HospitalArmy Medical University (Third Military Medical University)Chongqing400037China
| | - Wei Wang
- Department of NutritionXinqiao HospitalArmy Medical University (Third Military Medical University)Chongqing400037China
| | - Zhengmin Zhang
- Department of General SurgeryXinqiao HospitalArmy Medical University (Third Military Medical University)Chongqing400037China
| | - Jieying Zhou
- Department of General SurgeryXinqiao HospitalArmy Medical University (Third Military Medical University)Chongqing400037China
| | - Shuai Wang
- Department of General SurgeryXinqiao HospitalArmy Medical University (Third Military Medical University)Chongqing400037China
| | - Yihui Chen
- Department of General SurgeryXinqiao HospitalArmy Medical University (Third Military Medical University)Chongqing400037China
| | - Weidong Xiao
- Department of General SurgeryXinqiao HospitalArmy Medical University (Third Military Medical University)Chongqing400037China
| |
Collapse
|
5
|
Rivera-Rodriguez DE, Busby C, Cervantes-Barragan L, Weiss DS. Widespread heteroresistance to antibiotics in Lactobacillus species. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.24.644958. [PMID: 40196655 PMCID: PMC11974758 DOI: 10.1101/2025.03.24.644958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Lactobacilli are prevalent members of the intestinal and reproductive tract microbiota of humans and other species. They are commonly used in probiotics and various food products due to their beneficial effects on human health. For example, these beneficial microbes are used to treat diarrhea caused by antibiotic therapy and are commonly given during antibiotic treatment. Despite the many studies conducted to understand the beneficial effects of Lactobacilli, less is known about their resistance and heteroresistance to antibiotics. In this study, we evaluated the resistance heterogeneity in eight Lactobacillus species. Our results demonstrate that several Lactobacilli species, including Lactobacillus rhamnosus, are heteroresistant to antibiotics, a recently discovered phenotype commonly seen in multidrug-resistant organisms that cause clinical failures but understudied in commensals and probiotics.
Collapse
Affiliation(s)
- Dormarie E. Rivera-Rodriguez
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA
| | - Chayse Busby
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA
| | | | - David S. Weiss
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA
| |
Collapse
|
6
|
D’Alessandro M, Gottardi D, Arboleya S, Alvarado-Jasso GM, Parolin C, Vitali B, Lanciotti R, Gueimonde M, Patrignani F. Impact of Fermented Soy Beverages Containing Selected Vaginal Probiotics on the In Vitro Fecal Microbiota of Post-Menopausal Women. Foods 2025; 14:1022. [PMID: 40232047 PMCID: PMC11942071 DOI: 10.3390/foods14061022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 03/11/2025] [Accepted: 03/14/2025] [Indexed: 04/16/2025] Open
Abstract
The gut microbiome of women can change after menopause, and during this phase women can also be more susceptible to vaginal dysbiosis. Recent studies have explored the probiotic potential of Lactobacillus crispatus BC4 and Lactobacillus gasseri BC9 against various pathogens and their use as co-starters in foods. However, their effects on the gut microbiota of post-menopausal women, who are more prone to dysbiosis, have not been examined. This study investigated the effects of predigested soy beverages (INFOGEST) containing BC4 and BC9 (encapsulated or not) on the composition and metabolic activity of the gut microbiota in post-menopausal women, using a fecal batch culture model. Parameters such as pH, gas, SCFAs, and microbiota composition (targeted qPCR and 16S rRNA gene sequencing) were assessed. The study, while highlighting a strong variability among donors, showed differences in gut microbiota response to the tested products. For instance, donor 2 showed a significant increase in bifidobacteria with BC4 + BC9 and E-BC9, while BC4 increased Ruminococcaceae in donors 1 and 3, and E-BC4 and E-BC9 enhanced Akkermansia in donor 1. BC4, E-BC4, E-BC9, and E-BC4 + BC9 significantly impacted metabolic activity, as measured by SCFAs, compared to other samples. However, no significant differences in gas production were observed.
Collapse
Affiliation(s)
- Margherita D’Alessandro
- Interdepartmental Center for Industrial Agri-Food Research, University of Bologna, Via Quinto Bucci 336, 47521 Cesena, Italy; (R.L.); (F.P.)
| | - Davide Gottardi
- Interdepartmental Center for Industrial Agri-Food Research, University of Bologna, Via Quinto Bucci 336, 47521 Cesena, Italy; (R.L.); (F.P.)
- Department of Agricultural and Food Sciences, University of Bologna, Piazza Gabriele Goidanich 60, 47521 Cesena, Italy
| | - Silvia Arboleya
- Department of Microbiology and Biochemistry of Dairy Products, Dairy Research Institute IPLA-CSIC, C/Francisco Pintado Fe 26, 33011 Oviedo, Spain; (S.A.); (G.M.A.-J.); (M.G.)
| | - Guadalupe Monserrat Alvarado-Jasso
- Department of Microbiology and Biochemistry of Dairy Products, Dairy Research Institute IPLA-CSIC, C/Francisco Pintado Fe 26, 33011 Oviedo, Spain; (S.A.); (G.M.A.-J.); (M.G.)
| | - Carola Parolin
- Department of Pharmacy and Biotechnology, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy; (C.P.); (B.V.)
| | - Beatrice Vitali
- Department of Pharmacy and Biotechnology, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy; (C.P.); (B.V.)
| | - Rosalba Lanciotti
- Interdepartmental Center for Industrial Agri-Food Research, University of Bologna, Via Quinto Bucci 336, 47521 Cesena, Italy; (R.L.); (F.P.)
- Department of Agricultural and Food Sciences, University of Bologna, Piazza Gabriele Goidanich 60, 47521 Cesena, Italy
| | - Miguel Gueimonde
- Department of Microbiology and Biochemistry of Dairy Products, Dairy Research Institute IPLA-CSIC, C/Francisco Pintado Fe 26, 33011 Oviedo, Spain; (S.A.); (G.M.A.-J.); (M.G.)
| | - Francesca Patrignani
- Interdepartmental Center for Industrial Agri-Food Research, University of Bologna, Via Quinto Bucci 336, 47521 Cesena, Italy; (R.L.); (F.P.)
- Department of Agricultural and Food Sciences, University of Bologna, Piazza Gabriele Goidanich 60, 47521 Cesena, Italy
| |
Collapse
|
7
|
Loupy KM, Dawud LM, Zambrano CA, Lee T, Heinze JD, Elsayed AI, Hassell JE, D'Angelo HM, Frank MG, Maier SF, Brenner LA, Lowry CA. Effects of Oral Administration of the Probiotic Lactobacillus rhamnosus GG on the Proteomic Profiles of Cerebrospinal Fluid and Immunoregulatory Signaling in the Hippocampus of Adult Male Rats. Neuroimmunomodulation 2025; 32:94-109. [PMID: 40031897 DOI: 10.1159/000544842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 02/08/2025] [Indexed: 03/05/2025] Open
Abstract
INTRODUCTION The microbiome-gut-brain axis, by modulating bidirectional immune, metabolic, and neural signaling pathways in the host, has emerged as a target for the prevention and treatment of psychiatric and neurological disorders. Oral administration of the probiotic bacterium Lactobacillus rhamnosus GG (LGG; ATCC 53103) exhibits anti-inflammatory effects, although the precise mechanisms by which LGG benefits host physiology and behavior are not known. The goal of this study was to explore the general effects of LGG on the cerebrospinal fluid (CSF) proteome and a biological signature of anti-inflammatory signaling in the central nervous system (CNS) of undisturbed, adult male rats. METHODS Liquid chromatography-tandem mass spectrometry-based proteomics were conducted using CSF samples collected after 21 days of oral treatment with live LGG (3.34 × 107 colony-forming units (CFU)/mL in the drinking water (resulting in an estimated delivery of ∼1.17 × 109 CFU/day/rat) or water vehicle. Gene enrichment analysis (using DAVID, v. 6.8) and protein-protein interactions (using STRING, v. 11) were used to explore physiological network changes in CSF. Real-time reverse transcription polymerase chain reaction (real-time RT-PCR) was performed to assess gene expression changes of anti-inflammatory cytokines in the hippocampus. Genes associated with anti-inflammatory signaling that were analyzed included Il10, Tgfb1, Il4, and IL-4-responsive genes, Cd200, Cd200r1, and Mrc1 (Cd206). RESULTS Oral LGG administration altered the abundance of CSF proteins, increasing the abundance of five proteins (cochlin, NPTXR, reelin, Sez6l, and VPS13C) and decreasing the abundance of two proteins (CPQ, IGFBP-7) in the CSF. Simultaneously, LGG increased the expression of Il10 mRNA, encoding the anti-inflammatory cytokine interleukin 10, in the hippocampus. CONCLUSION Oral LGG altered the abundance of CSF proteins associated with extracellular scaffolding, synaptic plasticity, and glutamatergic signaling. These data are consistent with the hypothesis that oral administration of LGG improves memory and cognition, and promotes a physiological resilience to neurodegenerative disease, by increasing glutamatergic signaling and promoting an anti-inflammatory environment in the brain.
Collapse
Affiliation(s)
- Kelsey M Loupy
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Lamya'a M Dawud
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Cristian A Zambrano
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Thomas Lee
- Central Analytical Laboratory and Mass Spectrometry Facility, Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado, USA
| | - Jared D Heinze
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Ahmed I Elsayed
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, USA
| | - James E Hassell
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Heather M D'Angelo
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado, USA
| | - Matthew G Frank
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado, USA
- Center for Neuroscience, University of Colorado Boulder, Boulder, Colorado, USA
| | - Steven F Maier
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado, USA
- Center for Neuroscience, University of Colorado Boulder, Boulder, Colorado, USA
| | - Lisa A Brenner
- Rocky Mountain Regional VA Medical Center (RMRVAMC), Aurora, Colorado, USA
- Department of Physical Medicine and Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, Colorado, USA
| | - Christopher A Lowry
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, USA
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado, USA
- Center for Neuroscience, University of Colorado Boulder, Boulder, Colorado, USA
- Rocky Mountain Regional VA Medical Center (RMRVAMC), Aurora, Colorado, USA
- Department of Physical Medicine and Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, Colorado, USA
- Center for Microbial Exploration, University of Colorado Boulder, Boulder, Colorado, USA
| |
Collapse
|
8
|
Mahendrarajan V, Nalini E. In silico analysis of bacteriocins from Lactobacillus acidophilus membrane vesicles against Streptococcus mutans GtfB protein. J Biomol Struct Dyn 2025:1-11. [PMID: 39898622 DOI: 10.1080/07391102.2025.2460743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 10/24/2024] [Indexed: 02/04/2025]
Abstract
Oral pathogens pose a significant global health concern, affecting 80% of the world's population across all age groups. Among these pathogens, Streptococcus mutans stands out as a prominent threat. The rise in antibiotic resistance has limited the effectiveness of conventional antibiotics. In contrast, probiotics produce antibacterial peptides known as bacteriocins, which exhibit inhibitory effects against closely related and even unrelated bacterial species. Specifically, Lactobacillus acidophilus bacteriocins are encapsulated within membrane vesicles (MVs), allowing for long-distance transport and targeted delivery. However, no prior studies have investigated L. acidophilus membrane MV-encapsulated bacteriocins against S. mutans. In this study, we employed in-silico methods to target bacteriocins from MVs of L. acidophilus, against the GtfB virulence protein of S. mutans. Our findings indicate that Lactacin B exhibits non-toxic, non-antigenic, and non-hemolytic properties, making it a promising bioactive peptide candidate. Notably, Lactacin B forms strong interactions with GtfB in the active site, with a binding energy of -15.1 kcal/mol and four hydrogen bonds. MD simulations for 100 ns and MMPBSA assays of the complex further support the efficient binding. The fluctuation of RMSD and RMSF is minimal and corresponds to greater stability of the complex. Lactacin B interaction with gtfB mightreduce GtfB's virulence potential, and hinder S. mutans adhesion to oral surfaces, subsequently mitigating biofilm formation and preventing dental caries. However, additional in vitro studies are necessary to validate these findings.
Collapse
Affiliation(s)
| | - Easwaran Nalini
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| |
Collapse
|
9
|
Danova S, Dobreva L, Mancheva K, Atanasov G, Simeonova L, Vilhelmova-Ilieva N. Lactobacilli-Derived Postmetabolites Are Broad-Spectrum Inhibitors of Herpes Viruses In Vitro. Int J Mol Sci 2024; 26:74. [PMID: 39795933 PMCID: PMC11719564 DOI: 10.3390/ijms26010074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/19/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
Herpes viruses are highly contagious agents affecting all classes of vertebrates, thus causing serious health, social, and economic losses. Within the One Health concept, novel therapeutics are extensively studied for both veterinary and human control and management of the infection, but the optimal strategy has not been invented yet. Lactic acid bacteria are key components of the microbiome that are known to play a protective role against pathogens as one of the proposed mechanisms involves compounds released from their metabolic activity. Previously, we reported the anti-herpes effect of postmetabolites isolated from Lactobacilli, and here, we confirm the inhibitory properties of another nine products against the phylogenetically distant human Herpes simplex virus-1 (HSV-1) and fish Koi Herpes virus (KHV) in cell cultures. Cytotoxicity, cytopathic effect inhibition, virucidal effect, the influence on the adsorption stage of the virus to the cells, as well as the protective effect of the postmetabolites on healthy cells were evaluated. The inhibitory effect was more pronounced against HSV-1 than against KHV at all studied viral cycle stages. Regarding the intracellular replicative steps, samples S7, S8, and S9 (Mix group) isolated from Ligilactobacillus salivarius (vaginal strain) demonstrated the most distinct effect with calculated selective indices (SIs) in the range between 69.4 and 77.8 against HSV-1, and from 62.2 to 68.4 against KHV. Bioactive metabolites from various LAB species significantly inhibit extracellular HSV-1 and, to a lesser extent, KHV virions. The blockage of viral adsorption to the host cells was remarkable, as recorded by a decrease in the viral titer with Δlg ≥ 5 in the Mix group for both herpes viruses. The remaining postmetabolites also significantly inhibited viral adsorption to varying degrees with Δlg ≥ 3. Most metabolites also exerted a protective effect on healthy MDBK and CCB cells to subsequent experimental viral infection. Our results reveal new horizons for the application of LAB and their postbiotic products in the prevention and treatment of herpes diseases.
Collapse
Affiliation(s)
- Svetla Danova
- Department of General Microbiology, Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26, Georgi Bonchev Str., 1113 Sofia, Bulgaria; (S.D.); (L.D.)
| | - Lili Dobreva
- Department of General Microbiology, Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26, Georgi Bonchev Str., 1113 Sofia, Bulgaria; (S.D.); (L.D.)
| | - Kapka Mancheva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 23, Georgi Bonchev Str., 1113 Sofia, Bulgaria;
| | - Georgi Atanasov
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 25, Georgi Bonchev Str., 1113 Sofia, Bulgaria;
| | - Lora Simeonova
- Department of Virology, Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26, Georgi Bonchev Str., 1113 Sofia, Bulgaria
| | - Neli Vilhelmova-Ilieva
- Department of Virology, Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26, Georgi Bonchev Str., 1113 Sofia, Bulgaria
| |
Collapse
|
10
|
Chin KW, Khoo SC, Paul RPM, Luang-In V, Lam SD, Ma NL. Potential of Synbiotics and Probiotics as Chemopreventive Agent. Probiotics Antimicrob Proteins 2024; 16:2085-2101. [PMID: 38896220 DOI: 10.1007/s12602-024-10299-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2024] [Indexed: 06/21/2024]
Abstract
Cancer remains a global problem, with millions of new cases diagnosed yearly and countless lives lost. The financial burden of cancer therapy, along with worries about the long-term safety of existing medicines, necessitates the investigation of alternative approaches to cancer prevention. Probiotics generate chemopreventive compounds such as bacteriocins, short-chain fatty acids (SCFA), and extracellular polymeric substances (EPS), which have demonstrated the ability to impede cancer cell proliferation, induce apoptosis, and bolster the expression of pro-apoptotic genes. On the other hand, prebiotics, classified as non-digestible food ingredients, promote the proliferation of probiotics within the colon, thereby ensuring sustained functionality of the gut microbiota. Consequently, the synergistic effect of combining prebiotics with probiotics, known as the synbiotic effect, in dietary interventions holds promise for potentially mitigating cancer risk and augmenting preventive measures. The utilization of gut microbiota in cancer treatment has shown promise in alleviating adverse health effects. This review explored the potential and the role of probiotics and synbiotics in enhancing health and contributing to cancer prevention efforts. In this review, the applications of functional probiotics and synbiotics, the mechanisms of action of probiotics in cancer, and the relationship of probiotics with various drugs were discussed, shedding light on the potential of probiotics and synbiotics to alleviate the burdens of cancer treatment.
Collapse
Affiliation(s)
- Kah Wei Chin
- Bioses Research Interest Group (BIOSES), Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus, 21030, Terengganu, Malaysia
| | - Shing Ching Khoo
- Bioses Research Interest Group (BIOSES), Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus, 21030, Terengganu, Malaysia
| | - Richard Paul Merisha Paul
- Bioses Research Interest Group (BIOSES), Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus, 21030, Terengganu, Malaysia
| | - Vijitra Luang-In
- Natural Antioxidant Innovation Research Unit, Department of Biotechnology, Faculty of Technology, Mahasarakham University, Khamriang, 44150, Kantarawichai, Maha Sarakham, Thailand
| | - Su Datt Lam
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, 43600, Selangor, Malaysia
| | - Nyuk Ling Ma
- Bioses Research Interest Group (BIOSES), Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus, 21030, Terengganu, Malaysia.
- Department of Sustainable Engineering, Institute of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India.
| |
Collapse
|
11
|
Domínguez‐Maqueda M, Pérez‐Gómez O, García‐Márquez J, Espinosa‐Ruíz C, Cuesta A, Esteban MÁ, Alarcón‐López FJ, Cárdenas C, Tapia‐Paniagua ST, Balebona MC, Moriñigo MÁ. Microalgae and cyanobacteria as microbial substrate and their influence on the potential postbiotic capability of a bacterial probiotic. Microb Biotechnol 2024; 17:e70046. [PMID: 39573896 PMCID: PMC11582085 DOI: 10.1111/1751-7915.70046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 10/21/2024] [Indexed: 11/25/2024] Open
Abstract
Postbiotics are metabolic by-products from microorganisms that provide health benefits to the host. Their secretion can be influenced by various conditions affecting bacterial metabolism. This study presents a novel approach for producing potential postbiotics, specifically extracellular products (ECPs), from the probiotic strain Shewanella putrefaciens SpPdp11, grown under different culture conditions. These conditions include aquafeed media, with partial or total microalgae/cyanobacteria replacement as the microbial substrate, as well as variations in temperature and growth phase. The use of microalgae/cyanobacteria as substrates may represent a valuable strategy for generating novel postbiotics with unique properties. The ECPs assessed were evaluated for their in vitro cytotoxic, hydrolytic and antimicrobial activities. Three conditions (ECPs derived from aquafeed media with partial (FM2324 and FM1548) or total (M2324) microalgae/cyanobacteria replacement) were non-cytotoxic to various fish cell lines and hydrolysed key nutritional compounds (casein, lipids, amylase and gelatin). Proteomic analysis of these ECP conditions revealed common structural and regulatory DNA-associated proteins, while differentially expressed proteins were associated with amino acid metabolism and antioxidant system (FM2324 and FM1548) and chemotaxis system (M2324). The results highlight the potential of the selected postbiotics as feed additives for future in vivo studies, aligning with sustainable development for aquaculture.
Collapse
Affiliation(s)
- Marta Domínguez‐Maqueda
- Departamento de Microbiología, Facultad de Ciencias, Instituto Andaluz de Biotecnología y Desarrollo Azul (IBYDA), Universidad de MálagaCeimar‐Universidad de MálagaMálagaSpain
| | - Olivia Pérez‐Gómez
- Departamento de Microbiología, Facultad de Ciencias, Instituto Andaluz de Biotecnología y Desarrollo Azul (IBYDA), Universidad de MálagaCeimar‐Universidad de MálagaMálagaSpain
| | - Jorge García‐Márquez
- Departamento de Microbiología, Facultad de Ciencias, Instituto Andaluz de Biotecnología y Desarrollo Azul (IBYDA), Universidad de MálagaCeimar‐Universidad de MálagaMálagaSpain
| | - Cristóbal Espinosa‐Ruíz
- Departamento de Biología Celular e Histología, Facultad de BiologíaUniversidad de MurciaMurciaSpain
| | - Alberto Cuesta
- Departamento de Biología Celular e Histología, Facultad de BiologíaUniversidad de MurciaMurciaSpain
| | - Mª. Ángeles Esteban
- Departamento de Biología Celular e Histología, Facultad de BiologíaUniversidad de MurciaMurciaSpain
| | | | - Casimiro Cárdenas
- Servicio Central de Apoyo a la Investigación (SCAI)Universidad de MálagaMálagaSpain
| | - Silvana T. Tapia‐Paniagua
- Departamento de Microbiología, Facultad de Ciencias, Instituto Andaluz de Biotecnología y Desarrollo Azul (IBYDA), Universidad de MálagaCeimar‐Universidad de MálagaMálagaSpain
| | - Mª. Carmen Balebona
- Departamento de Microbiología, Facultad de Ciencias, Instituto Andaluz de Biotecnología y Desarrollo Azul (IBYDA), Universidad de MálagaCeimar‐Universidad de MálagaMálagaSpain
| | - Miguel Ángel Moriñigo
- Departamento de Microbiología, Facultad de Ciencias, Instituto Andaluz de Biotecnología y Desarrollo Azul (IBYDA), Universidad de MálagaCeimar‐Universidad de MálagaMálagaSpain
| |
Collapse
|
12
|
Liu Q, Yang Y, Pan M, Shi K, Mo D, Li Y, Wang M, Guo L, Qian Z. Camptothecin multifunctional nanoparticles effectively achieve a balance between the efficacy of breast cancer treatment and the preservation of intestinal homeostasis. Bioact Mater 2024; 41:413-426. [PMID: 39184827 PMCID: PMC11342206 DOI: 10.1016/j.bioactmat.2024.07.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/27/2024] [Accepted: 07/27/2024] [Indexed: 08/27/2024] Open
Abstract
Camptothecin (CPT) exhibits potent antitumor activity; however, its clinical application is limited by significant gastrointestinal adverse effects (GAEs). Although the severity of GAEs associated with CPT derivatives has decreased, the incidence rate of these adverse effects has remained high. CPT multifunctional nanoparticles (PCRHNs) have the potential to increase the efficacy of CPT while reducing side effects in major target organs; however, the impact of PCRHNs on the GAEs from CPT remains uncertain. Here, we investigated the therapeutic effects of PCRHNs and different doses of CPT and examined their impacts on the intestinal barrier and the intestinal microbiota. We found that the therapeutic efficacy of PCRHNs + Laser treatment was superior to that of high-dose CPT, and PCRHNs + Laser treatment also provided greater benefits by helping maintain intestinal barrier integrity, intestinal microbiota diversity, and intestinal microbiota abundance. In summary, compared to high-dose CPT treatment, PCRHNs + Laser treatment can effectively balance therapeutic effects and GAEs. A high dose of CPT promotes the enrichment of the pathogenic bacteria Escherichia-Shigella, which may be attributed to diarrhea caused by CPT, thus leading to a reduction in microbial burden; additionally, Escherichia-Shigella rapidly grows and occupies niches previously occupied by other bacteria that are lost due to diarrhea. PCRHNs + Laser treatment increased the abundance of Lactobacillus (probiotics), possibly due to the photothermal effect of the PCRHNs. This effect increased catalase activity, thus facilitating the conversion of hydrogen peroxide into oxygen within tumors and increasing oxygen levels in the body, which is conducive to the growth of facultative anaerobic bacteria.
Collapse
Affiliation(s)
- Qingya Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yun Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Meng Pan
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Kun Shi
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Dong Mo
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yicong Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Meng Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Linfeng Guo
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhiyong Qian
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
13
|
Xu Y, Wang Y, Song T, Li X, Zhou H, Chaibou OZ, Wang B, Li H. Immune-enhancing effect of Weizmannia coagulans BCG44 and its supernatant on cyclophosphamide-induced immunosuppressed mice and RAW264.7 cells via the modulation of the gut microbiota. Food Funct 2024; 15:10679-10697. [PMID: 39373874 DOI: 10.1039/d4fo02452d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
We established a model of cyclophosphamide (CTX)-induced immunosuppressed mice and RAW264.7 cells to assess the effectiveness of W. coagulans BCG44 and its supernatant in enhancing immune function and modulating the gut microbiota. W. coagulans BCG44 and its supernatant restored Th17/Treg balance and alleviated gut inflammation by elevating the expression of interleukin-10 (IL-10) and decreasing IL-6 and toll-like receptor 4 (TLR4). Meanwhile, W. coagulans BCG44 and its supernatant downregulated the levels of lipopolysaccharide and D-lactic acid while increasing the expression of tight junction proteins (ZO-1 and occludin) and goblet cells/crypts to ameliorate mucosal damage. W. coagulans BCG44 and its supernatant may restore the gut microbiota in the immunosuppressed mice by regulating keystone species (Lactobacillus and Lachnospiraceae). PICRUSt2 function prediction and BugBase analysis showed that W. coagulans BCG44 and its supernatant significantly down-regulated American trypanosomiasis and potentially_pathogenic. In addition, under normal versus inflamed culture conditions, stimulation of RAW246.7 cells with W. coagulans BCG44 supernatant activated immune response with increasing proliferation ability and the gene expression of IL-10 while decreasing TLR4. Metabolites in the W. coagulans BCG44 supernatant included arginine, tyrosine, solamargine, tryptophan, D-mannose, phenyllactic acid, and arachidonic acid. Collectively, these findings suggested that W. coagulans BCG44 and its supernatant possess potential immunomodulatory activity and modulate gut microbiota dysbiosis in the CTX-induced immunosuppressed mice.
Collapse
Affiliation(s)
- Yafang Xu
- Department of Pathogen Biology and Microecology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China.
| | - Yi Wang
- Department of Immunology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Tao Song
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Xiaxia Li
- Department of Pathogen Biology and Microecology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China.
| | - Haolin Zhou
- Department of Pathogen Biology and Microecology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China.
| | - Oumarou Zafir Chaibou
- Department of Pathogen Biology and Microecology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China.
| | - Bing Wang
- Department of Immunology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Huajun Li
- Department of Pathogen Biology and Microecology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China.
| |
Collapse
|
14
|
Dargenio VN, Cristofori F, Brindicci VF, Schettini F, Dargenio C, Castellaneta SP, Iannone A, Francavilla R. Impact of Bifidobacterium longum Subspecies infantis on Pediatric Gut Health and Nutrition: Current Evidence and Future Directions. Nutrients 2024; 16:3510. [PMID: 39458503 PMCID: PMC11510697 DOI: 10.3390/nu16203510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Background: the intestinal microbiota, a complex community vital to human health, is shaped by microbial competition and host-driven selective pressures. Among these microbes, Bifidobacterium plays a crucial role in early gut colonization during neonatal stages, where Bifidobacterium longum subspecies infantis (B. infantis) predominates and is particularly prevalent in healthy breastfed infants. Objectives: as we embark on a new era in nutrition of the pediatric population, this study seeks to examine the existing understanding regarding B. infantis, encompassing both preclinical insights and clinical evidence. Methods: through a narrative disceptation of the current literature, we focus on its genetic capacity to break down various substances that support its survival and dominance in the intestine. Results: using "omics" technologies, researchers have identified beneficial mechanisms of B. infantis, including the production of short-chain fatty acids, serine protease inhibitors, and polysaccharides. While B. infantis declines with age and in various diseases, it remains a widely used probiotic with documented benefits for infant and child health in numerous studies. Conclusions: the current scientific evidence underscores the importance for ongoing research and clinical trials for a deeper understanding of B. infantis's role in promoting long-term health.
Collapse
Affiliation(s)
- Vanessa Nadia Dargenio
- Interdisciplinary Department of Medicine, Pediatric Section, Children’s Hospital ‘Giovanni XXIII’, University of Bari “Aldo Moro”, 70126 Bari, Italy; (V.N.D.); (F.C.); (V.F.B.); (C.D.); (S.P.C.)
| | - Fernanda Cristofori
- Interdisciplinary Department of Medicine, Pediatric Section, Children’s Hospital ‘Giovanni XXIII’, University of Bari “Aldo Moro”, 70126 Bari, Italy; (V.N.D.); (F.C.); (V.F.B.); (C.D.); (S.P.C.)
| | - Viviana Fara Brindicci
- Interdisciplinary Department of Medicine, Pediatric Section, Children’s Hospital ‘Giovanni XXIII’, University of Bari “Aldo Moro”, 70126 Bari, Italy; (V.N.D.); (F.C.); (V.F.B.); (C.D.); (S.P.C.)
| | - Federico Schettini
- Neonatology and Neonatal Intensive Care, Santissima Annunziata Hospital, 74123 Taranto, Italy;
| | - Costantino Dargenio
- Interdisciplinary Department of Medicine, Pediatric Section, Children’s Hospital ‘Giovanni XXIII’, University of Bari “Aldo Moro”, 70126 Bari, Italy; (V.N.D.); (F.C.); (V.F.B.); (C.D.); (S.P.C.)
| | - Stefania Paola Castellaneta
- Interdisciplinary Department of Medicine, Pediatric Section, Children’s Hospital ‘Giovanni XXIII’, University of Bari “Aldo Moro”, 70126 Bari, Italy; (V.N.D.); (F.C.); (V.F.B.); (C.D.); (S.P.C.)
| | - Andrea Iannone
- Gastroenterology Unit, Department of Emergency and Organ Transplantation, University of Bari “Aldo Moro”, 70126 Bari, Italy;
| | - Ruggiero Francavilla
- Interdisciplinary Department of Medicine, Pediatric Section, Children’s Hospital ‘Giovanni XXIII’, University of Bari “Aldo Moro”, 70126 Bari, Italy; (V.N.D.); (F.C.); (V.F.B.); (C.D.); (S.P.C.)
| |
Collapse
|
15
|
Algburi AR, Jassim SM, Popov IV, Weeks R, Chikindas ML. Lactobacillus acidophilus VB1 co-aggregates and inhibits biofilm formation of chronic otitis media-associated pathogens. Braz J Microbiol 2024; 55:2581-2592. [PMID: 38789905 PMCID: PMC11405553 DOI: 10.1007/s42770-024-01363-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/30/2024] [Indexed: 05/26/2024] Open
Abstract
This study aims to evaluate the antibacterial activity of Lactobacillus acidophilus, alone and in combination with ciprofloxacin, against otitis media-associated bacteria. L. acidophilus cells were isolated from Vitalactic B (VB), a commercially available probiotic product containing two lactobacilli species, L. acidophilus and Lactiplantibacillus (formerly Lactobacillus) plantarum. The pathogenic bacterial samples were provided by Al-Shams Medical Laboratory (Baqubah, Iraq). Bacterial identification and antibiotic susceptibility testing for 16 antibiotics were performed using the VITEK2 system. The minimum inhibitory concentration of ciprofloxacin was also determined. The antimicrobial activity of L. acidophilus VB1 cell-free supernatant (La-CFS) was evaluated alone and in combination with ciprofloxacin using a checkerboard assay. Our data showed significant differences in the synergistic activity when La-CFS was combined with ciprofloxacin, in comparison to the use of each compound alone, against Pseudomonas aeruginosa SM17 and Proteus mirabilis SM42. However, an antagonistic effect was observed for the combination against Staphylococcus aureus SM23 and Klebsiella pneumoniae SM9. L. acidophilus VB1 was shown to significantly co-aggregate with the pathogenic bacteria, and the highest co-aggregation percentage was observed after 24 h of incubation. The anti-biofilm activities of CFS and biosurfactant (BS) of L. acidophilus VB1 were evaluated, and we found that the minimum biofilm inhibitory concentration that inhibits 50% of bacterial biofilm (MBIC50) of La-CFS was significantly lower than MBIC50 of La-BS against the tested pathogenic bacterial species. Lactobacillus acidophilus, isolated from Vitane Vitalactic B capsules, demonstrated promising antibacterial and anti-biofilm activities against otitis media pathogens, highlighting its potential as an effective complementary/alternative therapeutic strategy to control bacterial ear infections.
Collapse
Affiliation(s)
- Ammar R Algburi
- Department of Microbiology, Veterinary Medicine College, University of Diyala, Baqubah, Iraq
| | - Shireen M Jassim
- Alkhalis Section for Primary Care/Thoracic and Respiratory Diseases Unit, Alkhalis, Iraq
| | - Igor V Popov
- Centre for Healthy Eating and Food Innovation, Maastricht University-Campus Venlo, Venlo, The Netherlands.
- Agrobiotechnology Center and Faculty "Bioengineering and Veterinary Medicine", Don State Technical University, Rostov-On-Don, Russia.
- Division of Immunobiology and Biomedicine, Center of Genetics and Life Sciences, Federal Territory Sirius, Sirius University of Science and Technology, Sochi, Russian Federation.
| | - Richard Weeks
- Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, Rutgers State University, New Brunswick, NJ, USA
| | - Michael L Chikindas
- Agrobiotechnology Center and Faculty "Bioengineering and Veterinary Medicine", Don State Technical University, Rostov-On-Don, Russia
- Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, Rutgers State University, New Brunswick, NJ, USA
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
16
|
Spigaglia P. Clostridioides difficile and Gut Microbiota: From Colonization to Infection and Treatment. Pathogens 2024; 13:646. [PMID: 39204246 PMCID: PMC11357127 DOI: 10.3390/pathogens13080646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/23/2024] [Accepted: 07/29/2024] [Indexed: 09/03/2024] Open
Abstract
Clostridioides difficile is the main causative agent of antibiotic-associated diarrhea (AAD) in hospitals in the developed world. Both infected patients and asymptomatic colonized individuals represent important transmission sources of C. difficile. C. difficile infection (CDI) shows a large range of symptoms, from mild diarrhea to severe manifestations such as pseudomembranous colitis. Epidemiological changes in CDIs have been observed in the last two decades, with the emergence of highly virulent types and more numerous and severe CDI cases in the community. C. difficile interacts with the gut microbiota throughout its entire life cycle, and the C. difficile's role as colonizer or invader largely depends on alterations in the gut microbiota, which C. difficile itself can promote and maintain. The restoration of the gut microbiota to a healthy state is considered potentially effective for the prevention and treatment of CDI. Besides a fecal microbiota transplantation (FMT), many other approaches to re-establishing intestinal eubiosis are currently under investigation. This review aims to explore current data on C. difficile and gut microbiota changes in colonized individuals and infected patients with a consideration of the recent emergence of highly virulent C. difficile types, with an overview of the microbial interventions used to restore the human gut microbiota.
Collapse
Affiliation(s)
- Patrizia Spigaglia
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Roma, Italy
| |
Collapse
|
17
|
Xu C, Aqib AI, Fatima M, Muneer S, Zaheer T, Peng S, Ibrahim EH, Li K. Deciphering the Potential of Probiotics in Vaccines. Vaccines (Basel) 2024; 12:711. [PMID: 39066349 PMCID: PMC11281421 DOI: 10.3390/vaccines12070711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/13/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
The demand for vaccines, particularly those prepared from non-conventional sources, is rising due to the emergence of drug resistance around the globe. Probiotic-based vaccines are a wise example of such vaccines which represent new horizons in the field of vaccinology in providing an enhanced and diversified immune response. The justification for incorporating probiotics into vaccines lies in the fact that that they hold the capacity to regulate immune function directly or indirectly by influencing the gastrointestinal microbiota and related pathways. Several animal-model-based studies have also highlighted the efficacy of these vaccines. The aim of this review is to collect and summarize the trends in the recent scientific literature regarding the role of probiotics in vaccines and vaccinology, along with their impact on target populations.
Collapse
Affiliation(s)
- Chang Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Amjad Islam Aqib
- Department of Medicine, Cholistan University of Veterinary and Animal Sciences, Bahawalpur 63100, Pakistan
| | - Mahreen Fatima
- Faculty of Biosciences, Cholistan University of Veterinary and Animal Sciences, Bahawalpur 63100, Pakistan;
| | - Sadia Muneer
- Institute of Microbiology, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Tean Zaheer
- Department of Parasitology, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan;
| | - Song Peng
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China;
| | - Essam H. Ibrahim
- Biology Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Kun Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
18
|
Li J, Liu H, Fu H, Yang Y, Wu Z. An Isofibrous Diet with Fiber Konjac Glucomannan Ameliorates Salmonella typhimurium-Induced Colonic Injury by Regulating TLR2-NF-κB Signaling and Intestinal Microbiota in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:13415-13430. [PMID: 38824655 DOI: 10.1021/acs.jafc.4c03019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
This study aimed to investigate the hypothesis that dietary konjac glucomannan (KGM) could alleviate Salmonella typhimurium-induced colitis by modulating intestinal microbiota. Mice were fed an isocaloric and isofibrous diet supplemented with either 7% KGM or cellulose and were treated with 5 × 108 CFU of S. typhimurium. The results showed that KGM had an average molecular weight of 936 kDa and predominantly consisted of mannose and glucose at a molar ratio of 1:1.22. In vivo studies demonstrated that dietary KGM effectively mitigated colonic lesions, oxidative stress, disruption of tight junction protein 2 and occludin, and the inflammatory response induced by S. typhimurium. Moreover, KGM administration alleviated the dramatic upregulation of toll-like receptor 2 (TLR2) and phosphonuclear factor κB (NF-κB) protein abundance, induced by Salmonella treatment. Notably, dietary KGM restored the reduced Muribaculaceae and Lactobacillus abundance and increased the abundance of Blautia and Salmonella in S. typhimurium-infected mice. Spearman correlation analysis revealed that the gut microbiota improved by KGM contribute to inhibit inflammation and oxidative stress. These results demonstrated the protective effects of dietary KGM against colitis by modulating the gut microbiota and the TLR2-NF-κB signaling pathway in response to Salmonella infection.
Collapse
Affiliation(s)
- Jun Li
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, China Agricultural University, Beijing 100193, P. R. China
| | - Haozhen Liu
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, China Agricultural University, Beijing 100193, P. R. China
| | - Huiyang Fu
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, China Agricultural University, Beijing 100193, P. R. China
| | - Ying Yang
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, China Agricultural University, Beijing 100193, P. R. China
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, China Agricultural University, Beijing 100193, P. R. China
| |
Collapse
|
19
|
Santana GB, Quelemes PV, da Silva Neta ER, de Lima SG, Vale GC. Chemical Characterization and Effect of a Lactobacilli-Postbiotic on Streptococcus mutans Biofilm In Vitro. Microorganisms 2024; 12:843. [PMID: 38792672 PMCID: PMC11124186 DOI: 10.3390/microorganisms12050843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/10/2024] [Accepted: 04/16/2024] [Indexed: 05/26/2024] Open
Abstract
Postbiotic is the term used to define the soluble factors, metabolic products, or byproducts released by live probiotic bacteria or after its lysis. The objective of this study was to carry out the chemical characterization of the postbiotic of Lacticaseibacillus rhamnosus LR-32 and to evaluate its in vitro effect on the development of the Streptococcus mutans biofilm. After the cultivation of the probiotic strain, the postbiotic was extracted by centrifuging the culture and filtering the supernatant. This postbiotic was characterized by using gas chromatography coupled with mass spectrometry (GC-MS), and then it was used to determine the growth inhibition of S. mutans in its planktonic form; additionally, its effects on the following parameters in 48 h biofilm were evaluated: viable bacteria, dry weight, and gene expression of glucosyltransferases and VicR gene. The control group consisted of the biofilm without any treatment. A paired t-test was performed for statistical analysis, with the p-value set at 5%. Seventeen compounds of various chemical classes were identified in the postbiotic, including sugars, amino acids, vitamins, and acids. The treatment with the postbiotic led to an inhibition of the growth of S. mutans in its planktonic form, as well as a decrease in the number of viable bacteria, reduction in dry weight, and a negative regulation of the gene expression of gtfB, gtfC, gtfD, and vicR in its biofilm state, compared with the nontreated group (p < 0.05). The postbiotic of L. rhamnosus impaired the development of S. mutans biofilm.
Collapse
Affiliation(s)
- Guilherme Bandeira Santana
- Postgraduate Program in Dentistry, Federal University of Piauí, Teresina 64049-550, Brazil; (G.B.S.); (P.V.Q.)
| | - Patrick Veras Quelemes
- Postgraduate Program in Dentistry, Federal University of Piauí, Teresina 64049-550, Brazil; (G.B.S.); (P.V.Q.)
| | - Enedina Rodrigues da Silva Neta
- Organic Geochemistry Laboratory, Postgraduate Program in Chemistry, Federal University of Piauí, Teresina 64049-550, Brazil; (E.R.d.S.N.); (S.G.d.L.)
| | - Sidney Gonçalo de Lima
- Organic Geochemistry Laboratory, Postgraduate Program in Chemistry, Federal University of Piauí, Teresina 64049-550, Brazil; (E.R.d.S.N.); (S.G.d.L.)
| | - Gláuber Campos Vale
- Postgraduate Program in Dentistry, Federal University of Piauí, Teresina 64049-550, Brazil; (G.B.S.); (P.V.Q.)
| |
Collapse
|
20
|
Derebasi BN, Davran Bulut S, Aksoy Erden B, Sadeghian N, Taslimi P, Celebioglu HU. Effects of p-coumaric acid on probiotic properties of Lactobacillus acidophilus LA-5 and lacticaseibacillus rhamnosus GG. Arch Microbiol 2024; 206:223. [PMID: 38642150 DOI: 10.1007/s00203-024-03957-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/09/2024] [Indexed: 04/22/2024]
Abstract
Probiotics are defined as "live microorganisms that provide health benefits to the host when administered in adequate amounts." Probiotics have beneficial effects on human health, including antibacterial activity against intestinal pathogens, regulation of blood cholesterol levels, reduction of colitis and inflammation incidence, regulation of the immune system, and prevention of colon cancer. In addition to probiotic bacteria, some phenolic compounds found in foods we consume (both food and beverages) have positive effects on human health. p-coumaric acid (p-CA) is one of the most abundant phenolic compounds in nature and human diet. The interactions between these two different food components (phenolics and probiotics), resulting in more beneficial combinations called synbiotics, are not well understood in terms of how they will affect the gut microbiota by promoting the probiotic properties and growth of probiotic bacteria. Thus, this study aimed to investigate synbiotic relationship between p-CA and Lactobacillus acidophilus LA-5 (LA-5), Lacticaseibacillus rhamnosus GG (LGG). Probiotic bacteria were grown in the presence of p-CA at different concentrations, and the effects of p-CA on probiotic properties, as well as its in vitro effects on AChE and BChE activities, were investigated. Additionally, Surface analysis was conducted using FTIR. The results showed that treatment with p-CA at different concentrations did not exhibit any inhibitory effect on the growth kinetics of LA-5 and LGG probiotic bacteria. Additionally, both probiotic bacteria demonstrated high levels of antibacterial properties. It showed that it increased the auto-aggregation of both probiotics. While p-CA increased co-aggregation of LA-5 and LGG against Escherichia coli, it decreased co-aggregation against Staphylococcus aureus. Probiotics grown with p-CA were more resistant to pepsin. While p-CA increased the resistance of LA-5 to bile salt, it decreased the resistance of LGG. The combinations of bacteria and p-CA efficiently suppressed AChE and BChE with inhibition (%) 11.04-68.43 and 13.20-65.72, respectively. Furthermore, surface analysis was conducted using FTIR to investigate the interaction of p-coumaric acid with LA-5 and LGG, and changes in cell components on the bacterial surface were analyzed. The results, recorded in range of 4000 -600 cm-1 with resolution of 4 cm-1, demonstrated that p-CA significantly affected only the phosphate/CH ratio for both bacteria. These results indicate the addition of p-CA to the probiotic growth may enhance the probiotic properties of bacteria.
Collapse
Affiliation(s)
- Buse Nur Derebasi
- Department of Biotechnology, Faculty of Science, Bartin University, Bartin, Turkey
| | - Sena Davran Bulut
- Department of Biotechnology, Faculty of Science, Bartin University, Bartin, Turkey
| | - Busra Aksoy Erden
- Central Research Laboratory Application and Research Center, Bartin University, Bartin, Turkey
| | - Nastaran Sadeghian
- Department of Biotechnology, Faculty of Science, Bartin University, Bartin, Turkey
| | - Parham Taslimi
- Department of Biotechnology, Faculty of Science, Bartin University, Bartin, Turkey
| | | |
Collapse
|
21
|
Dela Torre GLT, Villanueva SYAM. Initial culture media pH influences the antibacterial activity and metabolic footprint of Lactobacillus acidophilus BIOTECH 1900. Prep Biochem Biotechnol 2024; 54:535-544. [PMID: 37671992 DOI: 10.1080/10826068.2023.2253461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
This study investigated the impact of initial culture media pH on the antibacterial properties and metabolic profile of cell-free supernatants (CFSs) from Lactobacillus acidophilus BIOTECH 1900 (LAB1900). The CFSs harvested from LAB1900 grown in de Man, Rogosa, Sharpe broth with initial pH of 5.5 (CFS5.5) and 6.6 (CFS6.6) were tested. The two CFSs elicited varying degrees of activity against three gram-negative bacteria. In the agar-well diffusion against Pseudomonas aeruginosa, CFS5.5 and CFS6.6 recorded 14.36 ± 1.34 and 13.06 ± 1.29 mm inhibition, respectively. Interestingly, against Klebsiella pneumoniae, CFS5.5 showed 14.36 ± 1.56 mm inhibition which was significantly higher than the 12.22 ± 1.31 mm inhibition of CFS6.6 (p = 0.0464). While against Acinetobacter baumannii, significantly higher inhibition of 10.66 ± 0.51 mm was observed in CFS6.6 compared to the 7.58 ± 1.93 mm inhibition of CFS5.5 (p = 0.0087). Nonetheless, both CFSs were bactericidal, with a minimum inhibitory and bactericidal concentration range of 3.90625-7.8125 mg/mL. The varied antibacterial activities may be attributed to the metabolite compositions of CFSs. A total of 152 metabolites driving the separation between CFSs were noted, with the majority upregulated in CFS5.5. Furthermore, 15 were putatively identified belonging to acylcarnities, vitamins, gibberellins, glycerophospholipids, and peptides. In summary, initial culture media pH affects the production of microbial metabolites with antibacterial properties.
Collapse
Affiliation(s)
- Gerwin Louis T Dela Torre
- Department of Medical Microbiology, College of Public Health, University of the Philippines Manila, Manila, Philippines
- Institute of Pharmaceutical Sciences, National Institutes of Health, University of the Philippines Manila, Manila, Philippines
| | | |
Collapse
|
22
|
Jia Y, Shi Y, Qiao H. Bacterial community and diversity in the rumen of 11 Mongolian cattle as revealed by 16S rRNA amplicon sequencing. Sci Rep 2024; 14:1546. [PMID: 38233488 PMCID: PMC10794206 DOI: 10.1038/s41598-024-51828-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 01/09/2024] [Indexed: 01/19/2024] Open
Abstract
Through microorganism in the rumen of ruminant, plant fiber can be converted to edible food such as meat and milk. Ruminants had a rich and complex microbial community within the rumen, and the bacteria comprised the dominant proportion of the ruminal microbes. High-throughput sequencing offered a viable solution for the study of rumen microbes. In this study, rumen fluid samples were taken from 11 cattle from Inner Mongolian, the DNA of 11 rumen fluid samples were extracted and bacterial amplicons of the V4 regions of 16S rRNA were subjected to Illumina sequencing. More than 90,000 raw reads and 60,000 effect Tags per sample were obtained. 28,122 operational taxonomic units (OTUs) were observed from 11 samples, in average 2557 ± 361 OTUs for each sample. Bacteroidetes (44.41 ± 7.31%), Firmicutes (29.07 ± 3.78%), and Proteobacteria (7.18 ± 5.63%) were the dominant phyla among the bacteria of rumen, accounting for 82%. At the genus level, the highest relative abundance was Prevotella. Their functions were predicted using the Kyoto Encyclopedia of Genes and Genomes (KEGG). The results showed that they included metabolism, genetic information processing, environmental information processing and cellular processes. It explored the bacterial community diversity and composition of the rumen of Mongolian cattle. On the whole, our research showed that there was a high diversity as well as rich bacterial flora function of rumen bacteria in Mongolian cattle. Meanwhile, these findings provided information for further studies on the relationship between the community, diversity, functions of rumen bacteria and the nutritional physiological functions of the host.
Collapse
Affiliation(s)
- Yijiu Jia
- College of Chemical Engineering, Inner Mongolia University of Technology, No. 49 Aimin Street, Xincheng District, Hohhot, 010051, China
| | - Yali Shi
- College of Chemical Engineering, Inner Mongolia University of Technology, No. 49 Aimin Street, Xincheng District, Hohhot, 010051, China.
| | - Huiyan Qiao
- College of Chemical Engineering, Inner Mongolia University of Technology, No. 49 Aimin Street, Xincheng District, Hohhot, 010051, China
| |
Collapse
|
23
|
Gao T, Zhang H, Li Q, Zhao F, Wang N, He W, Zhang J, Wang R. Fuzi decoction treats chronic heart failure by regulating the gut microbiota, increasing the short-chain fatty acid levels and improving metabolic disorders. J Pharm Biomed Anal 2023; 236:115693. [PMID: 37696191 DOI: 10.1016/j.jpba.2023.115693] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 08/31/2023] [Accepted: 08/31/2023] [Indexed: 09/13/2023]
Abstract
Fuzi decoction (FZD) is clinically used to treat chronic heart failure (CHF) in China, but the mechanism underlying FZD treatment in CHF remains unclear. Here, we investigated the potential mechanism underlying FZD treatment of CHF in rats. First, the compounds in FZD-containing serum of rats were identified, and 16 S rRNA sequencing and GC-MS-based untargeted metabolomics analysis were then performed. The levels of fecal short-chain fatty acids (SCFAs) were determined and compared, and fecal microbiota transplantation (FMT) was used to verify the role of the gut microbiota. Our results identified 27 in FD-containing serum. FZD increased the Firmicutes-to-Bacteroidetes ratio and the Lactobacillus abundance and affected the β diversity of the gut microbiota in rats with CHF. Differential species analysis showed that Lactobacillus and Prevotella were biomarkers of FZD treatment of CHF. Untargeted metabolomics analysis revealed that FZD affected valine, leucine and isoleucine biosynthesis; galactose metabolism; and aminoacyl-tRNA biosynthesis in rats with CHF. Furthermore, FZD significantly increased the acetic acid, propionic acid, butyric acid and isopentanoic acid levels in the feces of rats with CHF. Correlation analysis showed that the butyric acid and Lactobacillus levels had the strongest correlation in the control, sham and high-dose FZD (HFZD) groups, and many microbiota components were closely related to differentially abundant metabolites. FMT revealed that the fecal microbiota obtained from the HFZD group changed the heart rate; the brain natriuretic peptide (BNP), acetic acid, propionic acid, butyric acid, and metabolite levels; and the gut microbiota in rats with CHF. In summary, our study revealed that the mechanism of action of FZD in CHF treatment may be related to improvements in the gut microbiota, elevations in the SCFA content and the regulation of valine, leucine, and isoleucine biosynthesis; galactose metabolism; and other metabolic pathways.
Collapse
Affiliation(s)
- Taixiang Gao
- College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong 030619, China
| | - Hongxiong Zhang
- College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong 030619, China
| | - Qinqing Li
- College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong 030619, China; Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Shanxi University of Chinese Medicine, Jinzhong 030619, China
| | - Feng Zhao
- College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong 030619, China
| | - Nan Wang
- College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong 030619, China
| | - Wenbin He
- National International Joint Research Center for Molecular Chinese Medicine, Shanxi University of Chinese Medicine, Jinzhong 030619, China; Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Shanxi University of Chinese Medicine, Jinzhong 030619, China
| | - Junlong Zhang
- National International Joint Research Center for Molecular Chinese Medicine, Shanxi University of Chinese Medicine, Jinzhong 030619, China; Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Shanxi University of Chinese Medicine, Jinzhong 030619, China.
| | - Rui Wang
- College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong 030619, China.
| |
Collapse
|
24
|
Zhang Z, Zhao L, Wu J, Pan Y, Zhao G, Li Z, Zhang L. The Effects of Lactobacillus johnsonii on Diseases and Its Potential Applications. Microorganisms 2023; 11:2580. [PMID: 37894238 PMCID: PMC10609197 DOI: 10.3390/microorganisms11102580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/29/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Lactobacillus johnsonii has been used as a probiotic for decades to treat a wide range of illnesses, and has been found to have specific advantages in the treatment of a number of ailments. We reviewed the potential therapeutic effects and mechanisms of L. johnsonii in various diseases based on PubMed and the Web of Science databases. We obtained the information of 149 L. johnsonii from NCBI (as of 14 February 2023), and reviewed their comprehensive metadata, including information about the plasmids they contain. This review provides a basic characterization of different L. johnsonii and some of their potential therapeutic properties for various ailments. Although the mechanisms are not fully understood yet, it is hoped that they may provide some evidence for future studies. Furthermore, the antibiotic resistance of the various strains of L. johnsonii is not clear, and more complete and in-depth studies are needed. In summary, L. johnsonii presents significant research potential for the treatment or prevention of disease; however, more proof is required to justify its therapeutic application. An additional study on the antibiotic resistance genes it contains is also needed to reduce the antimicrobial resistance dissemination.
Collapse
Affiliation(s)
- Ziyi Zhang
- Microbiome-X, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250000, China; (Z.Z.); (L.Z.); (J.W.); (Y.P.); (G.Z.)
| | - Lanlan Zhao
- Microbiome-X, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250000, China; (Z.Z.); (L.Z.); (J.W.); (Y.P.); (G.Z.)
| | - Jiacheng Wu
- Microbiome-X, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250000, China; (Z.Z.); (L.Z.); (J.W.); (Y.P.); (G.Z.)
| | - Yingmiao Pan
- Microbiome-X, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250000, China; (Z.Z.); (L.Z.); (J.W.); (Y.P.); (G.Z.)
| | - Guoping Zhao
- Microbiome-X, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250000, China; (Z.Z.); (L.Z.); (J.W.); (Y.P.); (G.Z.)
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266000, China
- CAS Key Laboratory of Computational Biology, Bio-Med Big Data Center, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200000, China
| | - Ziyun Li
- Microbiome-X, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250000, China; (Z.Z.); (L.Z.); (J.W.); (Y.P.); (G.Z.)
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266000, China
| | - Lei Zhang
- Microbiome-X, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250000, China; (Z.Z.); (L.Z.); (J.W.); (Y.P.); (G.Z.)
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266000, China
| |
Collapse
|
25
|
Xu F, Chen R, Zhang C, Wang H, Ding Z, Yu L, Tian F, Chen W, Zhou Y, Zhai Q. Cholecystectomy Significantly Alters Gut Microbiota Homeostasis and Metabolic Profiles: A Cross-Sectional Study. Nutrients 2023; 15:4399. [PMID: 37892474 PMCID: PMC10609985 DOI: 10.3390/nu15204399] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/05/2023] [Accepted: 10/15/2023] [Indexed: 10/29/2023] Open
Abstract
Cholecystectomy (CCE) is a standard clinical treatment for conditions like gallstones and cholecystitis. However, its link to post-CCE syndrome, colorectal cancer, and nonalcoholic fatty liver disease has raised concerns. Additionally, studies have demonstrated the disruptive effects of CCE on gut microbiota homeostasis and bile acid (BA) metabolism. Considering the role of gut microbiota in regulating host metabolic and immune pathways, the use of dietary and probiotic intervention strategies to maintain a stable gut ecosystem after CCE could potentially reduce associated disease risks. Inter-study variations have made it challenging to identify consistent gut microbiota patterns after CCE, a prerequisite for targeted interventions. In this study, we first meta-analyzed 218 raw 16S rRNA gene sequencing datasets to determine consistent patterns of structural and functional changes in the gut microbiota after CCE. Our results revealed significant alterations in the gut microbiota's structure and function due to CCE. Furthermore, we identified characteristic gut microbiota changes associated with CCE by constructing a random model classifier. In the validation cohort, this classifier achieved an area under the receiver operating characteristic curve (AUC) of 0.713 and 0.683 when distinguishing between the microbiota of the CCE and healthy groups at the family and genus levels, respectively. Further, fecal metabolomics analysis demonstrated that CCE also substantially modified the metabolic profile, including decreased fecal short-chain fatty acid levels and disrupted BA metabolism. Importantly, dietary patterns, particularly excessive fat and total energy intake, influenced gut microbiota and metabolic profile changes post-CCE. These dietary habits were associated with further enrichment of the microbiota related to BA metabolism and increased levels of intestinal inflammation after CCE. In conclusion, our study identified specific alterations in gut microbiota homeostasis and metabolic profiles associated with CCE. It also revealed a potential link between dietary patterns and gut microbiota changes following CCE. Our study provides a theoretical basis for modulating gut microbiota homeostasis after CCE using long-term dietary strategies and probiotic interventions.
Collapse
Affiliation(s)
- Fusheng Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (F.X.); (R.C.); (C.Z.); (L.Y.); (F.T.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Ruimin Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (F.X.); (R.C.); (C.Z.); (L.Y.); (F.T.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Chengcheng Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (F.X.); (R.C.); (C.Z.); (L.Y.); (F.T.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hao Wang
- Department of Hepatobiliary, Wuxi No. 2 People’s Hospital, Jiangnan University Medical Center, Wuxi 214002, China; (H.W.); (Z.D.)
| | - Zhijie Ding
- Department of Hepatobiliary, Wuxi No. 2 People’s Hospital, Jiangnan University Medical Center, Wuxi 214002, China; (H.W.); (Z.D.)
| | - Leilei Yu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (F.X.); (R.C.); (C.Z.); (L.Y.); (F.T.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (F.X.); (R.C.); (C.Z.); (L.Y.); (F.T.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (F.X.); (R.C.); (C.Z.); (L.Y.); (F.T.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Yongping Zhou
- Department of Hepatobiliary, Wuxi No. 2 People’s Hospital, Jiangnan University Medical Center, Wuxi 214002, China; (H.W.); (Z.D.)
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (F.X.); (R.C.); (C.Z.); (L.Y.); (F.T.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
26
|
Wang X, Sun X, Chu J, Sun W, Yan S, Wang Y. Gut microbiota and microbiota-derived metabolites in colorectal cancer: enemy or friend. World J Microbiol Biotechnol 2023; 39:291. [PMID: 37653349 DOI: 10.1007/s11274-023-03742-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 08/27/2023] [Indexed: 09/02/2023]
Abstract
Colorectal cancer (CRC) is a highly prevalent gastrointestinal cancer worldwide. Recent research has shown that the gut microbiota plays a significant role in the development of CRC. There is mounting evidence supporting the crucial contributions of bacteria-derived toxins and metabolites to cancer-related inflammation, immune imbalances, and the response to therapy. Besides, some gut microbiota and microbiota-derived metabolites have protective effects against CRC. This review aims to summarize the current studies on the effects and mechanisms of gut microbiota and microbiota-produced metabolites in the initiation, progression, and drug sensitivity/resistance of CRC. Additionally, we explore the clinical implications and future prospects of utilizing gut microbiota as innovative approaches for preventing and treating CRC.
Collapse
Affiliation(s)
- Xinyi Wang
- School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Xicai Sun
- Department of Hospital Office, Weifang People's Hospital, Weifang, China
| | - Jinjin Chu
- Central Laboratory of the First Affiliated Hospital, Weifang Medical University, Weifang, China
| | - Wenchang Sun
- Central Laboratory of the First Affiliated Hospital, Weifang Medical University, Weifang, China
| | - Shushan Yan
- Department of Gastrointestinal and Anal Diseases Surgery of the Affiliated Hospital, Weifang Medical University, Weifang, 261053, China.
| | - Yaowen Wang
- Department of Clinical Laboratory, Weifang People's Hospital, Weifang, 261041, China.
| |
Collapse
|
27
|
Fakharian F, Sadeghi A, Pouresmaeili F, Soleimani N, Yadegar A. Immunomodulatory effects of live and pasteurized Lactobacillus crispatus strain RIGLD-1 on Helicobacter pylori-triggered inflammation in gastric epithelial cells in vitro. Mol Biol Rep 2023; 50:6795-6805. [PMID: 37392285 DOI: 10.1007/s11033-023-08596-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 06/15/2023] [Indexed: 07/03/2023]
Abstract
BACKGROUND Helicobacter pylori infection is considered as the major risk factor for gastric adenocarcinoma. Today, the increasing emergence of antibiotic-resistant strains has drastically decreased the eradication rate of H. pylori infection. This study was aimed to investigate the inhibitory and modulatory effects of live and pasteurized Lactobacillus crispatus strain RIGLD-1 on H. pylori adhesion, invasion, and inflammatory response in AGS cell line. METHODS AND RESULTS The probiotic potential and properties of L. crispatus were evaluated using several functional and safety tests. Cell viability of AGS cells exposed to varying concentrations of live and pasteurized L. crispatus was assessed by MTT assay. The adhesion and invasion abilities of H. pylori exposed to either live or pasteurized L. crispatus were examined by gentamycin protection assay. The mRNA expression of IL-1β, IL-6, IL-8, TNF-α, IL-10, and TGF-ß genes was determined by RT-qPCR from coinfected AGS cells. ELISA was used for the detection of IL-8 secretion from treated cells. Both live and pasteurized L. crispatus significantly decreased H. pylori adhesion/invasion to AGS cells. In addition, both live and pasteurized L. crispatus modulated H. pylori-induced inflammation by downregulating the mRNA expression of IL-1β, IL-6, IL-8, and TNF-α and upregulating the expression of IL-10, and TGF-ß cytokines in AGS cells. Furthermore, H. pylori-induced IL-8 production was dramatically decreased after treatment with live and pasteurized L. crispatus. CONCLUSIONS In conclusion, our findings demonstrated that live and pasteurized L. crispatus strain RIGLD-1 are safe, and could be suggested as a potential probiotic candidate against H. pylori colonization and inflammation.
Collapse
Affiliation(s)
- Farzaneh Fakharian
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Amir Sadeghi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farkhondeh Pouresmaeili
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Neda Soleimani
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
28
|
Xu J, Chen C, Gan S, Liao Y, Fu R, Hou C, Yang S, Zheng Z, Chen W. The Potential Value of Probiotics after Dental Implant Placement. Microorganisms 2023; 11:1845. [PMID: 37513016 PMCID: PMC10383117 DOI: 10.3390/microorganisms11071845] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/15/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Dental implantation is currently the optimal solution for tooth loss. However, the health and stability of dental implants have emerged as global public health concerns. Dental implant placement, healing of the surgical site, osseointegration, stability of bone tissues, and prevention of peri-implant diseases are challenges faced in achieving the long-term health and stability of implants. These have been ongoing concerns in the field of oral implantation. Probiotics, as beneficial microorganisms, play a significant role in the body by inhibiting pathogens, promoting bone tissue homeostasis, and facilitating tissue regeneration, modulating immune-inflammatory levels. This review explores the potential of probiotics in addressing post-implantation challenges. We summarize the existing research regarding the importance of probiotics in managing dental implant health and advocate for further research into their potential applications.
Collapse
Affiliation(s)
- Jia Xu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Chenfeng Chen
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of General Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Shuaiqi Gan
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yihan Liao
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Ruijie Fu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Chuping Hou
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Shuhan Yang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Zheng Zheng
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Wenchuan Chen
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Jinjiang Out-Patient Section, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
29
|
Li Y, Zheng J, Wang Y, Yang H, Cao L, Gan S, Ma J, Liu H. Immuno-stimulatory activity of Astragalus polysaccharides in cyclophosphamide-induced immunosuppressed mice by regulating gut microbiota. Int J Biol Macromol 2023; 242:124789. [PMID: 37164141 DOI: 10.1016/j.ijbiomac.2023.124789] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/16/2023] [Accepted: 05/05/2023] [Indexed: 05/12/2023]
Abstract
Evidence has indicated the immune-stimulatory effect of Astragalus polysaccharides (APS), yet it remains unknown whether the potential mechanism is associated with gut microbiota. In this study, we aimed to investigate the role of gut microbiota in APS-initiated immune-enhancing activity in mice. BALB/c mice were injected with cyclophosphamide to establish a mouse immunosuppression model. We found that APS significantly ameliorated the immunosuppression in mice, indicative of the increased immune organ indices, the promoted proliferation of immune cells, and the up-regulated intestinal inflammation. Western blot analysis demonstrated that APS treatment significantly activated Toll-like receptor 4 (TLR4) and mitogen-activated protein kinase (MAPK) pathways in the intestine. By 16S rDNA sequencing, APS treatment reversed the gut microbiota dysbiosis in immunocompromised mice. At the genus level, APS increased the abundance of bacteria (like Lactobacillus, Bifidobacteria, Roseburia, and Desulfovibrio) and decreased the content of several bacteria (like Oscillibacter, Tyzzerella, and Lachnoclostridium). However, APS had no immune-enhancing effect on immunocompromised mice with gut microbiota depletion. In conclusion, APS can enhance immune responses in immunocompromised mice by modulating gut microbiota dysbiosis.
Collapse
Affiliation(s)
- Yanan Li
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, PR China; College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan 430065, PR China
| | - Junping Zheng
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, PR China
| | - Yao Wang
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, PR China; College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan 430065, PR China
| | - Huabing Yang
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, PR China
| | - Lu Cao
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, PR China
| | - Shuiyong Gan
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan 430065, PR China.
| | - Jun Ma
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan 430065, PR China.
| | - Hongtao Liu
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, PR China.
| |
Collapse
|
30
|
El Far MS, Zakaria AS, Kassem MA, Wedn A, Guimei M, Edward EA. Promising biotherapeutic prospects of different probiotics and their derived postbiotic metabolites: in-vitro and histopathological investigation. BMC Microbiol 2023; 23:122. [PMID: 37138240 PMCID: PMC10155454 DOI: 10.1186/s12866-023-02866-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/19/2023] [Indexed: 05/05/2023] Open
Abstract
BACKGROUND Probiotics and their derived postbiotics, as cell-free supernatants (CFS), are gaining a solid reputation owing to their prodigious health-promoting effects. Probiotics play a valuable role in the alleviation of various diseases among which are infectious diseases and inflammatory disorders. In this study, three probiotic strains, Lactiplantibacillus plantarum, Lacticaseibacillus rhamnosus, and Pediococcus acidilactici, were isolated from marketed dietary supplements. The antimicrobial activity of the isolated probiotic strains as well as their CFS was investigated. The neutralized CFS of the isolated probiotics were tested for their antibiofilm potential. The anti-inflammatory activity of the isolated Lactobacillus spp., together with their CFS, was studied in the carrageenan-induced rat paw edema model in male Wistar rats. To the best of our knowledge, such a model was not previously experimented to evaluate the anti-inflammatory activity of the CFS of probiotics. The histopathological investigation was implemented to assess the anti-inflammatory prospect of the isolated L. plantarum and L. rhamnosus strains as well as their CFS. RESULTS The whole viable probiotics and their CFS showed variable growth inhibition of the tested indicator strains using the agar overlay method and the microtiter plate assay, respectively. When tested for virulence factors, the probiotic strains were non-hemolytic lacking both deoxyribonuclease and gelatinase enzymes. However, five antibiotic resistance genes, blaZ, ermB, aac(6')- aph(2"), aph(3'')-III, and vanX, were detected in all isolates. The neutralized CFS of the isolated probiotics exhibited an antibiofilm effect as assessed by the crystal violet assay. This effect was manifested by hindering the biofilm formation of the tested Staphylococcus aureus and Pseudomonas aeruginosa clinical isolates in addition to P. aeruginosa PAO1 strain. Generally, the cell cultures of the two tested probiotics moderately suppressed the acute inflammation induced by carrageenan compared to indomethacin. Additionally, the studied CFS relatively reduced the inflammatory changes compared to the inflammation control group but less than that observed in the case of the probiotic cultures treated groups. CONCLUSIONS The tested probiotics, along with their CFS, showed promising antimicrobial and anti-inflammatory activities. Thus, their safety and their potential use as biotherapeutics for bacterial infections and inflammatory conditions are worthy of further investigation.
Collapse
Affiliation(s)
- Mona S El Far
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Azza S Zakaria
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Mervat A Kassem
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Abdalla Wedn
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Maha Guimei
- Department of Pathology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Eva A Edward
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.
| |
Collapse
|
31
|
Xu Y, Wu Y, Hu Y, Xu M, Liu Y, Ding Y, Chen J, Huang X, Wen L, Li J, Zhu C. Bacteria-based multiplex system eradicates recurrent infections with drug-resistant bacteria via photothermal killing and protective immunity elicitation. Biomater Res 2023; 27:27. [PMID: 37024953 PMCID: PMC10080897 DOI: 10.1186/s40824-023-00363-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/15/2023] [Indexed: 04/08/2023] Open
Abstract
BACKGROUND The high mortality associated with drug-resistant bacterial infections is an intractable clinical problem resulting from the low susceptibility of these bacteria to antibiotics and the high incidence of recurrent infections. METHODS Herein, a photosynthetic bacteria-based multiplex system (Rp@Al) composed of natural Rhodopseudomonas palustris (Rp) and Food and Drug Administration-approved aluminum (Al) adjuvant, was developed to combat drug-resistant bacterial infections and prevent their recurrence. We examined its photothermal performance and in vitro and in vivo antibacterial ability; revealed its protective immunomodulatory effect; verified its preventative effect on recurrent infections; and demonstrated the system's safety. RESULTS Rp@Al exhibits excellent photothermal properties with an effective elimination of methicillin-resistant Staphylococcus aureus (MRSA). In addition, Rp@Al enhances dendritic cell activation and further triggers a T helper 1 (TH1)/TH2 immune response, resulting in pathogen-specific immunological memory against recurrent MRSA infection. Upon second infection, Rp@Al-treated mice show significantly lower bacterial burden, faster abscess recovery, and higher survival under near-lethal infection doses than control mice. CONCLUSIONS This innovative multiplex system, with superior photothermal and immunomodulatory effects, presents great potential for the treatment and prevention of drug-resistant bacterial infections.
Collapse
Affiliation(s)
- Youcui Xu
- Medical Research Center, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, Guangdong, China
| | - Yi Wu
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Yi Hu
- Center for Biomedical Imaging, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Mengran Xu
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Yanyan Liu
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Yuting Ding
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Jing Chen
- School of Life Sciences, Hefei Normal University, Hefei, 230601, Anhui, China
| | - Xiaowan Huang
- Medical Research Center, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, Guangdong, China
| | - Longping Wen
- Medical Research Center, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, Guangdong, China.
| | - Jiabin Li
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China.
| | - Chen Zhu
- Department of Orthopaedics, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, Anhui, China.
| |
Collapse
|
32
|
Barone GD, Cernava T, Ullmann J, Liu J, Lio E, Germann AT, Nakielski A, Russo DA, Chavkin T, Knufmann K, Tripodi F, Coccetti P, Secundo F, Fu P, Pfleger B, Axmann IM, Lindblad P. Recent developments in the production and utilization of photosynthetic microorganisms for food applications. Heliyon 2023; 9:e14708. [PMID: 37151658 PMCID: PMC10161259 DOI: 10.1016/j.heliyon.2023.e14708] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 03/08/2023] [Accepted: 03/15/2023] [Indexed: 05/09/2023] Open
Abstract
The growing use of photosynthetic microorganisms for food and food-related applications is driving related biotechnology research forward. Increasing consumer acceptance, high sustainability, demand of eco-friendly sources for food, and considerable global economic concern are among the main factors to enhance the focus on the novel foods. In the cases of not toxic strains, photosynthetic microorganisms not only provide a source of sustainable nutrients but are also potentially healthy. Several published studies showed that microalgae are sources of accessible protein and fatty acids. More than 400 manuscripts were published per year in the last 4 years. Furthermore, industrial approaches utilizing these microorganisms are resulting in new jobs and services. This is in line with the global strategy for bioeconomy that aims to support sustainable development of bio-based sectors. Despite the recognized potential of the microalgal biomass value chain, significant knowledge gaps still exist especially regarding their optimized production and utilization. This review highlights the potential of microalgae and cyanobacteria for food and food-related applications as well as their market size. The chosen topics also include advanced production as mixed microbial communities, production of high-value biomolecules, photoproduction of terpenoid flavoring compounds, their utilization for sustainable agriculture, application as source of nutrients in space, and a comparison with heterotrophic microorganisms like yeast to better evaluate their advantages over existing nutrient sources. This comprehensive assessment should stimulate further interest in this highly relevant research topic.
Collapse
Affiliation(s)
- Giovanni D. Barone
- Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, 8010, Graz, Austria
- Corresponding author.
| | - Tomislav Cernava
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12/I, 8010, Graz, Austria
| | - Jörg Ullmann
- Roquette Klötze GmbH & Co. KG, Lockstedter Chaussee 1, D-38486, Klötze, Germany
| | - Jing Liu
- State Key Laboratory of Marine Resource Utilization in South China Sea Hainan University, 58 Renmin Avenue, Meilan District, Haikou, Hainan Province, 570228, PR China
| | - Elia Lio
- Institute of Chemical Sciences and Technologies (SCITEC) “Giulio Natta” Italian National Research Council (CNR), via Mario Bianco 9, 20131, Milan, Italy
| | - Anna T. Germann
- Synthetic Microbiology, Department of Biology, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Andreas Nakielski
- Synthetic Microbiology, Department of Biology, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - David A. Russo
- Friedrich Schiller University Jena, Institute for Inorganic and Analytical Chemistry, Bioorganic Analytics, Lessingstr. 8, D-07743, Jena, Germany
| | - Ted Chavkin
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Farida Tripodi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126, Milano, Italy
| | - Paola Coccetti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126, Milano, Italy
| | - Francesco Secundo
- Institute of Chemical Sciences and Technologies (SCITEC) “Giulio Natta” Italian National Research Council (CNR), via Mario Bianco 9, 20131, Milan, Italy
| | - Pengcheng Fu
- State Key Laboratory of Marine Resource Utilization in South China Sea Hainan University, 58 Renmin Avenue, Meilan District, Haikou, Hainan Province, 570228, PR China
| | - Brian Pfleger
- Knufmann GmbH, Bergstraße 23, D-38486, Klötze, Germany
| | - Ilka M. Axmann
- Synthetic Microbiology, Department of Biology, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University Düsseldorf, D-40001, Düsseldorf, Germany
- Corresponding author. Synthetic Microbiology, Department of Biology, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany.
| | - Peter Lindblad
- Microbial Chemistry, Department of Chemistry–Ångström, Uppsala University, Box 523, SE-75120, Uppsala, Sweden
| |
Collapse
|
33
|
Bnfaga AA, Lee KW, Than LTL, Amin-Nordin S. Antimicrobial and immunoregulatory effects of Lactobacillus delbrueckii 45E against genitourinary pathogens. J Biomed Sci 2023; 30:19. [PMID: 36959635 PMCID: PMC10037868 DOI: 10.1186/s12929-023-00913-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 03/14/2023] [Indexed: 03/25/2023] Open
Abstract
BACKGROUND Lactobacilli are essential microbiota that maintain a healthy, balanced vaginal environment. Vaginitis is a common infection in women during their reproductive years. Many factors are associated with vaginitis; one of them is the imbalance of microbiota in the vaginal environment. This study aimed to evaluate the antimicrobial properties of Lactobacillus delbrueckii 45E (Ld45E) against several species of bacteria, namely, Group B Streptococcus (GBS), Escherichia coli, Klebsiella spp., and Candida parapsilosis, as well as to determine the concentration of interleukin-17 (IL-17) in the presence of Ld45E. METHODS The probiotic characteristics of Ld45E were evaluated by examining its morphology, pH tolerance, adhesive ability onto HeLa cells, hemolytic activity, antibiotic susceptibility, and autoaggregation ability. Then, the antimicrobial activity of Ld45E was determined using Ld45E culture, cell-free supernatant, and crude bacteriocin solution. Co-aggregation and competition ability assays against various pathogens were conducted. The immunoregulatory effects of Ld45E were analyzed by measuring the proinflammatory cytokine IL-17. A p-value less than 0.05 was considered statistical significance. RESULTS Ld45E is 3-5 mm in diameter and round with a flat-shaped colony. pH 4 and 4.5 were the most favorable range for Ld45E growth within 12 h of incubation. Ld45E showed a strong adhesion ability onto HeLa cells (86%) and negative hemolytic activities. Ld45E was also sensitive to ceftriaxone, cefuroxime, ciprofloxacin, and doxycycline. We found that it had a good autoaggregation ability of 80%. Regarding antagonistic properties, Ld45E culture showed strong antimicrobial activity against GBS, E. coli, and Klebsiella spp. but only a moderate effect on C. parapsilosis. Cell-free supernatant of Ld45E exerted the most potent inhibitory effects at 40 °C against all genital pathogens, whereas bacteriocin showed a robust inhibition at 37 °C and 40 °C. The highest co-aggregation affinity was observed with GBS (81%) and E. coli (40%). Competition ability against the adhesion of GBS (80%), E. coli (76%), Klebsiella (72%), and C. parapsilosis (58%) was found. Ld45E was able to reduce the induction of the proinflammatory protein IL-17. CONCLUSIONS Ld45E possessed antimicrobial and immunoregulatory properties, with better cell-on-cell activity than supernatant activity. Thus, Ld45E is a potential probiotic candidate for adjunct therapy to address vaginal infections.
Collapse
Affiliation(s)
- Ameda Abdullah Bnfaga
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
- Department of Para-Clinic, Faculty of Medicine, Aden University, Aden, Yemen
| | - Kai Wei Lee
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Leslie Thian Lung Than
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Syafinaz Amin-Nordin
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
- Hospital Sultan Abdul Aziz Shah, Universiti Putra Malaysia, Persiaran MARDI-UPM, 43400, Serdang, Malaysia.
| |
Collapse
|
34
|
Wang Y, Song X, Wang Z, Li Z, Geng Y. Effects of Pine Pollen Polysaccharides and Sulfated Polysaccharides on Ulcerative Colitis and Gut Flora in Mice. Polymers (Basel) 2023; 15:polym15061414. [PMID: 36987195 PMCID: PMC10058757 DOI: 10.3390/polym15061414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/05/2023] [Accepted: 03/06/2023] [Indexed: 03/16/2023] Open
Abstract
Polysaccharides are important biological macromolecules in all organisms, and have recently been studied as therapeutic agents for ulcerative colitis (UC). However, the effects of Pinus yunnanensis pollen polysaccharides on ulcerative colitis remains unknown. In this study, dextran sodium sulfate (DSS) was used to induce the UC model to investigate the effects of Pinus yunnanensis pollen polysaccharides (PPM60) and sulfated polysaccharides (SPPM60) on UC. We evaluated the improvement of polysaccharides on UC by analyzing the levels of intestinal cytokines, serum metabolites and metabolic pathways, intestinal flora species diversity, and beneficial and harmful bacteria. The results show that purified PPM60 and its sulfated form SPPM60 effectively alleviated the disease progression of weight loss, colon shortening and intestinal injury in UC mice. On the intestinal immunity level, PPM60 and SPPM60 increased the levels of anti-inflammatory cytokines (IL-2, IL-10, and IL-13) and decreased the levels of proinflammatory cytokines (IL-1β, IL-6, and TNF-α). On the serum metabolism level, PPM60 and SPPM60 mainly regulated the abnormal serum metabolism of UC mice by regulating the energy-related and lipid-related metabolism pathways, respectively. On the intestinal flora level, PPM60 and SPPM60 reduced the abundance of harmful bacteria (such as Akkermansia and Aerococcus) and induced the abundance of beneficial bacteria (such as lactobacillus). In summary, this study is the first to evaluate the effects of PPM60 and SPPM60 on UC from the joint perspectives of intestinal immunity, serum metabolomics, and intestinal flora, which may provide an experimental basis for plant polysaccharides as an adjuvant clinical treatment of UC.
Collapse
Affiliation(s)
| | | | | | | | - Yue Geng
- Correspondence: ; Tel.: +86-18853119492
| |
Collapse
|
35
|
Nutritional supplements for the control of avian coccidiosis. ANNALS OF ANIMAL SCIENCE 2023. [DOI: 10.2478/aoas-2023-0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Abstract
Coccidiosis is acclaimed as the most prevalent enteric parasitic ailment of poultry. It is caused by an apicomplexan protozoon of the genus Eimeria, which resides in chicken intestinal epithelium leading to intestinal damage. As a result, bloody droppings are there, feed efficiency is reduced, the growth rate is impaired, and egg production is temporarily decreased. Treatment and prevention of coccidiosis are primarily accomplished by inoculating live vaccines and administering anticoccidial drugs. Due to anticoccidials’ continuous and excessive use, the mounting issue is drug resistant Eimeria strains. The poultry industry has managed resistance-related issues by suggesting shuttle and rotation schemes. Furthermore, new drugs have also been developed and introduced, but it takes a long time and causes cost inflation in the poultry industry. Moreover, government disallows growth promoters and drugs at sub-therapeutic doses in poultry due to increased concerns about the drug residues in poultry products. These constraints have motivated scientists to work on alternative ways to control coccidiosis effectively, safely, and sustainably. Using nutritional supplements is a novel way to solve the constraints mentioned above. The intriguing aspects of using dietary supplements against coccidiosis are that they reduce the risk of drug-resistant pathogen strains, ensure healthy, nutritious poultry products, have less reliance on synthetic drugs, and are typically considered environmentally safe. Furthermore, they improve productivity, enhance nonspecific immunity, preventing oxidation of fats (acting as antioxidants) and inflammation (acting as an anti-inflammatory). The present manuscript focuses on the efficacy, possible mechanism of action, applications, and different facets of nutrition supplements (such as organic acids, minerals, vitamins, probiotics, essential oils, amino acids, dietary nucleotides, feed enzymes, and yeast derivatives) as feed additive for treating poultry coccidiosis.
Collapse
|
36
|
Anti-rotavirus Properties and Mechanisms of Selected Gram-Positive and Gram-Negative Probiotics on Polarized Human Colonic (HT-29) Cells. Probiotics Antimicrob Proteins 2023; 15:107-128. [PMID: 35034323 DOI: 10.1007/s12602-021-09884-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2021] [Indexed: 01/18/2023]
Abstract
Probiotics have been investigated to improve the universal rotavirus (RV) vaccination as well as to ameliorate the RV infection. However, underlying mechanisms how probiotics mediate beneficial effects needs more investigation. Thus, in the present study, we used polarized HT-29 cells to assess the anti-RV properties of Gram-positive, (Lactobacillus acidophilus, Lacticaseibacillus rhamnosus GG, and Bifidobacterium subsp. Lactis Bb12) and Gram negative, (Escherichia coli Nissle 1917) probiotics and study their underlying mechanisms. Our results showed that pre-treatment of HT-29 cells for 4 h with probiotics, significantly reduced (p < 0.05) human RV replication and this effect was most pronounced for E. coli Nissle followed by L. acidophilus and L. rhamnosus GG. Strikingly, only pre-treatment with live bacteria or their supernatants demonstrated anti-RV properties. Except Gram negative E. coli Nissle, the Gram-positive probiotics tested did not bind to RV. Ingenuity pathway analysis of tight junction (TJ)- and innate immune-associated genes indicated that E. coli Nissle or E. coli Nissle + RV treatments improved cell-cell adhesion and cell contact, while L. acidophilus or L. acidophilus + RV treatments also activated cell-cell contact but inhibited cell movement functions. RV alone inhibited migration of cells event. Additionally, E. coli Nissle activated pathways such as the innate immune and inflammatory responses via production of TNF, while RV infection activated NK cells and inflammatory responses. In conclusion, E. coli Nissle's ability to bind RV, modulate expression of TJ events, innate immune and inflammatory responses, via specific upstream regulators may explain superior anti-RV properties of E. coli Nissle. Therefore, prophylactic use of E. coli Nissle might help to reduce the RV disease burden in infants in endemic areas.
Collapse
|
37
|
Evaluation of Antimicrobial, Antiadhesive and Co-Aggregation Activity of a Multi-Strain Probiotic Composition against Different Urogenital Pathogens. Int J Mol Sci 2023; 24:ijms24021323. [PMID: 36674840 PMCID: PMC9867133 DOI: 10.3390/ijms24021323] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
The urogenital microbiota is dominated by Lactobacillus that, together with Bifidobacterium, creates a physiological barrier counteracting pathogen infections. The aim of this study was to evaluate the efficacy of a multi-strain probiotic formulation (Lactiplantibacillus plantarum PBS067, Lacticaseibacillus rhamnosus LRH020, and Bifidobacterium animalis subsp. lactis BL050) to inhibit adhesion and growth of urogenital pathogens. The antimicrobial and antiadhesive properties of the probiotic strains and their mixture were evaluated on human vaginal epithelium infected with Candida glabrata, Neisseria gonorrheae, Trichomonas vaginalis, and Escherichia coli-infected human bladder epithelium. The epithelial tissue permeability and integrity were assessed by transepithelial/transendothelial electrical resistance (TEER). Co-aggregation between probiotics and vaginal pathogens was also investigated to elucidate a possible mechanism of action. The multi-strain formulation showed a full inhibition of T. vaginalis, and a reduction in C. glabrata and N. gonorrheae growth. A relevant antimicrobial activity was observed for each single strain against E. coli. TEER results demonstrated that none of the strains have negatively impaired the integrity of the 3D tissues. All the probiotics and their mixture were able to form aggregates with the tested pathogens. The study demonstrated that the three strains and their mixture are effective to prevent urogenital infections.
Collapse
|
38
|
Liu Q, Jian W, Wang L, Yang S, Niu Y, Xie S, Hayer K, Chen K, Zhang Y, Guo Y, Tu Z. Alleviation of DSS-induced colitis in mice by a new-isolated Lactobacillus acidophilus C4. Front Microbiol 2023; 14:1137701. [PMID: 37152759 PMCID: PMC10157218 DOI: 10.3389/fmicb.2023.1137701] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 04/03/2023] [Indexed: 05/09/2023] Open
Abstract
Introduction Probiotic is adjuvant therapy for traditional drug treatment of ulcerative colitis (UC). In the present study, Lactobacillus acidophilus C4 with high acid and bile salt resistance has been isolated and screened, and the beneficial effect of L. acidophilus C4 on Dextran Sulfate Sodium (DSS)-induced colitis in mice has been evaluated. Our data showed that oral administration of L. acidophilus C4 remarkably alleviated colitis symptoms in mice and minimized colon tissue damage. Methods To elucidate the underlying mechanism, we have investigated the levels of inflammatory cytokines and intestinal tight junction (TJ) related proteins (occludin and ZO-1) in colon tissue, as well as the intestinal microbiota and short-chain fatty acids (SCFAs) in feces. Results Compared to the DSS group, the inflammatory cytokines IL-1β, IL-6, and TNF-α in L. acidophilus C4 group were reduced, while the antioxidant enzymes superoxide dismutase (SOD), glutathione (GSH), and catalase (CAT) were found to be elevated. In addition, proteins linked to TJ were elevated after L. acidophilus C4 intervention. Further study revealed that L. acidophilus C4 reversed the decrease in intestinal microbiota diversity caused by colitis and promoted the levels of SCFAs. Discussion This study demonstrate that L. acidophilus C4 effectively alleviated DSS-induced colitis in mice by repairing the mucosal barrier and maintaining the intestinal microecological balance. L. acidophilus C4 could be of great potential for colitis therapy.
Collapse
Affiliation(s)
- Qianqian Liu
- Department of Pathogen Biology, College of Basic Medical Science, Chongqing Medical University, Chongqing, China
| | - Wenwen Jian
- Department of Pathogen Biology, College of Basic Medical Science, Chongqing Medical University, Chongqing, China
| | - Lu Wang
- Department of Pathogen Biology, College of Basic Medical Science, Chongqing Medical University, Chongqing, China
| | - Shenglin Yang
- Department of Pathogen Biology, College of Basic Medical Science, Chongqing Medical University, Chongqing, China
| | - Yutian Niu
- International Medical College, Chongqing Medical University, Chongqing, China
| | - ShuaiJing Xie
- Department of Pathogen Biology, College of Basic Medical Science, Chongqing Medical University, Chongqing, China
| | - Kim Hayer
- Leicester Medical School, University of Leicester, Leicester, United Kingdom
| | - Kun Chen
- College of Foreign Languages, Chongqing Medical University, Chongqing, China
| | - Yi Zhang
- International Medical College, Chongqing Medical University, Chongqing, China
| | - Yanan Guo
- International Medical College, Chongqing Medical University, Chongqing, China
| | - Zeng Tu
- Department of Pathogen Biology, College of Basic Medical Science, Chongqing Medical University, Chongqing, China
- *Correspondence: Zeng Tu,
| |
Collapse
|
39
|
Olasehinde O, Aderemi F. Effect of sprouted whole pearl millet on growth performance, intestinal development, bacterial count, and blood indices of broiler chickens. Transl Anim Sci 2023; 7:txad045. [PMID: 37216186 PMCID: PMC10199787 DOI: 10.1093/tas/txad045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 05/07/2023] [Indexed: 05/24/2023] Open
Abstract
This study investigated the effects of varying levels of sprouted whole grain pearl millet (SPM) on growth performance, intestinal morphology, microbial count, and blood indices of broiler chickens. A maize-soybean meal basal diet was formulated and fed to broiler chickens as starter (0 to 21 d) and finisher (22 to 42 d) diets. The diets comprised of 0%, 25%, 50%, 75%, and 100% of SPM incorporated as whole grain. On 0 d, 180 unsexed broiler chickens were allocated to experimental diets in a completely randomized design. Each treatment was replicated three times; each replicate had 12 chicks. All diets were isonitrogenous and isocaloric to meet the nutrient requirements of broiler chickens. Diets and water were provided ad libitum for 42 d. Results showed that the body weight gain (BWG) of broiler chickens on SPM compared favorably with those on the control diet. BWG showed trends in increment (P < 0.10) while FCR showed decreased trends (P < 0.10) with partial inclusion of SPM at 42 d and 0 to 42 d. The drumstick weight showed quadratic effect (P = 0.044) while the wing weight showed linear effect (P = 0.047) to treatment diets at 21 d. The liver weights of broiler chickens showed linear response (P = 0.018) at 21 d and (P = 0.004) at 42 d to SPM inclusion in diets. Sprouted whole PM consistently increased low-density lipoprotein concentration and mean corpuscular hemoglobin concentration (P < 0.05). Length and weight of small intestine and ceca showed decreasing trends on SPM levels in the treatment diets. Digesta pH assessment revealed that pH in the crop was lower (P < 0.05) on partial SPM while pH in proventriculus was reduced (P < 0.05) with inclusion of SPM in treatment diets. Lactobacilli count decreased linearly (P = 0.010) with SPM inclusion. This study suggests that SPM could be used as an alternative source of energy in production of broiler chickens. Therefore, partial replacement of maize with SPM in broiler diet had no negative effect on performance, physiological status, and overall health of broiler chickens.
Collapse
Affiliation(s)
| | - Foluke Aderemi
- Department of Animal Science, College of Agriculture, Engineering and Science, Bowen University, Iwo, Nigeria
| |
Collapse
|
40
|
The Antimicrobial Effect of Various Single-Strain and Multi-Strain Probiotics, Dietary Supplements or Other Beneficial Microbes against Common Clinical Wound Pathogens. Microorganisms 2022; 10:microorganisms10122518. [PMID: 36557771 PMCID: PMC9781324 DOI: 10.3390/microorganisms10122518] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
The skin is the largest organ in the human body and is colonized by a diverse microbiota that works in harmony to protect the skin. However, when skin damage occurs, the skin microbiota is also disrupted, and pathogens can invade the wound and cause infection. Probiotics or other beneficial microbes and their metabolites are one possible alternative treatment for combating skin pathogens via their antimicrobial effectiveness. The objective of our study was to evaluate the antimicrobial effect of seven multi-strain dietary supplements and eleven single-strain microbes that contain probiotics against 15 clinical wound pathogens using the agar spot assay, co-culturing assay, and agar well diffusion assay. We also conducted genera-specific and species-specific molecular methods to detect the DNA in the dietary supplements and single-strain beneficial microbes. We found that the multi-strain dietary supplements exhibited a statistically significant higher antagonistic effect against the challenge wound pathogens than the single-strain microbes and that lactobacilli-containing dietary supplements and single-strain microbes were significantly more efficient than the selected propionibacteria and bacilli. Differences in results between methods were also observed, possibly due to different mechanisms of action. Individual pathogens were susceptible to different dietary supplements or single-strain microbes. Perhaps an individual approach such as a 'probiogram' could be a possibility in the future as a method to find the most efficient targeted probiotic strains, cell-free supernatants, or neutralized cell-free supernatants that have the highest antagonistic effect against individual clinical wound pathogens.
Collapse
|
41
|
Liang X, Wang R, Luo H, Liao Y, Chen X, Xiao X, Li L. The interplay between the gut microbiota and metabolism during the third trimester of pregnancy. Front Microbiol 2022; 13:1059227. [PMID: 36569048 PMCID: PMC9768424 DOI: 10.3389/fmicb.2022.1059227] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 11/18/2022] [Indexed: 12/12/2022] Open
Abstract
The gut microbiota undergoes dynamic changes during pregnancy. The gut microbial and metabolic networks observed in pregnant women have not been systematically analyzed. The primary purpose of this study was to explore the alterations in the gut microbiota and metabolism during late pregnancy and investigate the associations between the gut microbiota and metabolism. A total of thirty healthy pregnant women were followed from 30 to 32 weeks of gestation to full term. Fecal samples were collected for microbiome analysis and untargeted metabolomic analysis. The characteristics of the gut microbiota were evaluated by 16S ribosomal RNA gene sequencing of the V3-V4 regions. The plasma samples were used for untargeted metabolomic analysis with liquid chromatography-tandem mass spectrometry. The interplay between the gut microbiota and metabolism was analyzed further by bioinformatics approaches. We found that the relative abundances of Sellimonas and Megamonas were higher at full term, whereas that of Proteobacteria was lower. The correlation network of the gut microbiota tended to exhibit weaker connections from 32 weeks of gestation to the antepartum timepoint. Changes in the gut microbiota during late pregnancy were correlated with the absorbance and metabolism of microbiota-associated metabolites, such as fatty acids and free amino acids, thereby generating a unique metabolic system for the growth of the fetus. Decreasing the concentration of specific metabolites in plasma and increasing the levels of palmitic acid and 20-hydroxyarachidonic acid may enhance the transformation of a proinflammatory immune state as pregnancy progresses.
Collapse
Affiliation(s)
- Xinyuan Liang
- Department of Obstetrics, The Second Clinical Medical College, Jinan University (Shenzhen People’s Hospital), Shenzhen, China,The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Rongning Wang
- Department of Obstetrics, The Second Clinical Medical College, Jinan University (Shenzhen People’s Hospital), Shenzhen, China
| | - Huijuan Luo
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Yihong Liao
- Department of Obstetrics, The Second Clinical Medical College, Jinan University (Shenzhen People’s Hospital), Shenzhen, China
| | - Xiaowen Chen
- Department of Obstetrics, The Second Clinical Medical College, Jinan University (Shenzhen People’s Hospital), Shenzhen, China
| | - Xiaomin Xiao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Jinan University, Guangzhou, China,*Correspondence: Xiaomin Xiao,
| | - Liping Li
- Department of Obstetrics, The Second Clinical Medical College, Jinan University (Shenzhen People’s Hospital), Shenzhen, China,Liping Li,
| |
Collapse
|
42
|
Zuo F, Somiah T, Gebremariam HG, Jonsson AB. Lactobacilli Downregulate Transcription Factors in Helicobacter pylori That Affect Motility, Acid Tolerance and Antimicrobial Peptide Survival. Int J Mol Sci 2022; 23:ijms232415451. [PMID: 36555092 PMCID: PMC9779568 DOI: 10.3390/ijms232415451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 12/13/2022] Open
Abstract
Helicobacter pylori infection triggers inflammation that may lead to gastritis, stomach ulcers and cancer. Probiotic bacteria, such as Lactobacillus, have been of interest as treatment options, however, little is known about the molecular mechanisms of Lactobacillus-mediated inhibition of H. pylori pathogenesis. In this work, we investigated the effect of Lactobacillus culture supernatants, so-called conditioned medium (CM), from two gastric isolates, L. gasseri and L. oris, on the expression of transcriptional regulators in H. pylori. Among the four known two-component systems (TCSs), i.e., ArsRS, FlgRS, CheAY and CrdRS, the flagellar regulator gene flgR and the acid resistance associated arsS gene were down-regulated by L. gasseri CM, whereas expression of the other TCS-genes remained unaffected. L. gasseri CM also reduced the motility of H. pylori, which is in line with reduced flgR expression. Furthermore, among six transcription factors of H. pylori only the ferric uptake regulator gene fur was regulated by L. gasseri CM. Deletion of fur further led to dramatically increased sensitivity to the antimicrobial peptide LL-37. Taken together, the results highlight that released/secreted factors of some lactobacilli, but not all, downregulate transcriptional regulators involved in motility, acid tolerance and LL-37 sensitivity of H. pylori.
Collapse
|
43
|
Fu J, Xiao J, Tu S, Sheng Q, Yi G, Wang J, Sheng O. Plantain flour: A potential anti-obesity ingredient for intestinal flora regulation and improved hormone secretion. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.1027762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
IntroductionDevelopment of functional food ingredients with anti-obesity is a growing interest in the global food industry. Plantain (Musa spp. AAB), a special type of cooking/starchy banana, is widely growing in African and Latin American countries. The flour made from unripe plantain pulp, which is considered as a natural source of indigestible carbohydrates such as resistant starch (RS), could be used in the formulation of diverse functional foods due to its anti-obesity properties. However, the mechanisms underlying the anti-obesity properties of plantain flour are not explored.MethodsIn this study, we investigated the changes in serum hormone levels, liver transcriptome profiles, and the modulation of gut microbiota in high-fat-fed Sprague-Dawley (SD) rats. The male SD rats were divided into six groups, viz. two control groups [non-obese (NC) or obese (OC)] which were not given the supplementation, one positive control (PC) group which received orlistat supplementation (60 mg/kg body weight/day), and three groups of obese rats which were supplemented with unripe plantain flour (UPF) at a dosage (body weight/day) of 1.25 g/kg (low-dose, LD), 2.50 g/kg (intermediate-dose, MD) or 5.0 g/kg (high-dose, HD).Results and discussionIt was found that UPF supplementation could lower the insulin levels of the obese rats. Moreover, UPF supplementation had a positive impact on gut microbiota, decreasing the relative abundances of Blautia, Parasutterella and Fusicatenibacter which were closely related to obesity, and increasing the relative abundances of probiotics (Allobaculum, Romboutsia, Staphylococcus, and Bacteroides). The spearman correlation analysis revealed that UPF supplementation reduced the relative abundance of Parasutterella and possibly decreased the blood sugar levels, leading to a decrease in the relative abundances of Blautia and Fusicatenibacter and a subsequent decrease in insulin levels. Furthermore, transcriptomic analysis of the liver tissues displayed that the peroxisome proliferator activated receptor-1α (PPAR) and AMP-activated protein kinase (AMPK) signaling pathway genes (Pparaa, Cpt1a, Prkaa1, Prkab1, Prkaa2, and Ppargc1a) were upregulated in those groups supplemented with UPF. These results indicated that UPF could mediate the glucolipid metabolism in the obese rats. Taken together, our findings suggested that the anti-obesity properties of UPF could be achieved by decreasing the insulin levels, positive-regulating of the gut microbiota composition as well as altering gene expression related to glucolipid metabolism.
Collapse
|
44
|
Gandhar JS, De UK, Kala A, Malik YS, Yadav S, Paul BR, Dixit SK, Sircar S, Chaudhary P, Patra MK, Gaur GK. Efficacy of Microencapsulated Probiotic as Adjunct Therapy on Resolution of Diarrhea, Copper-Zinc Homeostasis, Immunoglobulins, and Inflammatory Markers in Serum of Spontaneous Rotavirus-Infected Diarrhoetic Calves. Probiotics Antimicrob Proteins 2022; 14:1054-1066. [PMID: 34676503 DOI: 10.1007/s12602-021-09862-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2021] [Indexed: 12/25/2022]
Abstract
The objective of this study was to assess the efficacy of a microencapsulated probiotic as an adjunct therapy in rotavirus-positive diarrhea of neonatal calves that received supportive treatment or supportive along with microencapsulated probiotic treatment, for 5 days. We examined whether microencapsulated Lactobacillus acidophilus NCDC15 probiotic treatment in rotavirus-infected diarrhoetic calves led to faster resolution of diarrhea, amelioration of zinc-copper imbalance, improved the immunoglobulin A and immunoglobulin G, and decreased the inflammatory markers in serum. Calves with rotavirus-positive diarrhea < 4-week age and fecal scores ≥ 2 were randomly assigned into two groups. The supportive along with microencapsulated probiotic treatment significantly (p < 0.05) increased zinc and immunoglobulin A concentrations and decreased copper, tumor necrosis factor-α, and nitric oxide level in serum on days 3 and 5 from pretreatment values; the immunoglobulin G concentration was elevated (p < 0.05) on day 5. The mean resolution time of abnormal fecal score was 5.3 and 3.3 days in supportive treatment and supportive along with microencapsulated probiotic groups, respectively, in log-rank Mantel-Cox test. The calves in the supportive along with microencapsulated probiotic treatment group had faster resolution of diarrhea than supportive treatment group in Dunn's multiple comparisons test. This study demonstrates that supportive treatment along with microencapsulated probiotic administered to naturally rotavirus-infected diarrhoetic calves at onset of diarrhea led to faster resolution of diarrhea, improved zinc and immunoglobulin levels, and decreased the inflammatory parameters in serum of rotavirus-infected diarrhoetic calves.
Collapse
Affiliation(s)
- Jitendra Singh Gandhar
- Division of Medicine, ICAR-Indian Veterinary Research Institute, Izatnagar, 243122 (UP), India
| | - Ujjwal Kumar De
- Division of Medicine, ICAR-Indian Veterinary Research Institute, Izatnagar, 243122 (UP), India.
| | - Anju Kala
- Division of Animal Nutrition, ICAR-Indian Veterinary Research Institute, Izatnagar, 243122 (UP), India
| | - Yashpal Singh Malik
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Izatnagar, 243122 (UP), India
| | - Supriya Yadav
- Division of Medicine, ICAR-Indian Veterinary Research Institute, Izatnagar, 243122 (UP), India
| | - Babul Rudra Paul
- Division of Medicine, ICAR-Indian Veterinary Research Institute, Izatnagar, 243122 (UP), India
| | - Shivendra Kumar Dixit
- Division of Medicine, ICAR-Indian Veterinary Research Institute, Izatnagar, 243122 (UP), India
| | - Shubhankar Sircar
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Izatnagar, 243122 (UP), India
| | - Pallab Chaudhary
- Division of Bacteriology and Mycology, ICAR-Indian Veterinary Research Institute, Izatnagar, 243122 (UP), India
| | - Manas Kumar Patra
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Izatnagar, 243122 (UP), India
| | - Gyanendra Kumar Gaur
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Izatnagar, 243122 (UP), India
| |
Collapse
|
45
|
In Vitro and In Vivo Evaluation of Lacticaseibacillus rhamnosus GG and Bifidobacterium lactis Bb12 Against Avian Pathogenic Escherichia coli and Identification of Novel Probiotic-Derived Bioactive Peptides. Probiotics Antimicrob Proteins 2022; 14:1012-1028. [PMID: 34458959 DOI: 10.1007/s12602-021-09840-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2021] [Indexed: 12/24/2022]
Abstract
Avian pathogenic E. coli (APEC), an extra-intestinal pathogenic E. coli (ExPEC), causes colibacillosis in poultry and is also a potential foodborne zoonotic pathogen. Currently, APEC infections in poultry are controlled by antibiotic medication; however, the emergence of multi-drug-resistant APEC strains and increased restrictions on the use of antibiotics in food-producing animals necessitate the development of new antibiotic alternative therapies. Here, we tested the anti-APEC activity of multiple commensal and probiotic bacteria in an agar-well diffusion assay and identified Lacticaseibacillus rhamnosus GG and Bifidobacterium lactis Bb12 producing strong zone of inhibition against APEC. In co-culture assay, L. rhamnosus GG and B. lactis Bb12 completely inhibited the APEC growth by 24 h. Further investigation revealed that antibacterial product(s) in the culture supernatants of L. rhamnosus GG and B. lactis Bb12 were responsible for the anti-APEC activity. The analysis of culture supernatants using LC-MS/MS identified multiple novel bioactive peptides (VQAAQAGDTKPIEV, AFDNTDTSLDSTFKSA, VTDTSGKAGTTKISNV, and AESSDTNLVNAKAA) in addition to the production of lactic acid. The oral administration (108 CFU/chicken) of L. rhamnosus GG significantly (P < 0.001) reduced the colonization (~ 1.6 logs) of APEC in the cecum of chickens. Cecal microbiota analysis revealed that L. rhamnosus GG moderated the APEC-induced alterations of the microbial community in the cecum of chickens. Further, L. rhamnosus GG decreased (P < 0.05) the abundance of phylum Proteobacteria, particularly those belonging to Enterobacteriaceae (Escherichia-Shigella) family. These studies indicate that L. rhamnosus GG is a promising probiotic to control APEC infections in chickens. Further studies are needed to optimize the delivery of L. rhamnosus GG in feed or water and in conditions simulating the field to facilitate its development for commercial applications.
Collapse
|
46
|
Detection of Colistin Sulfate on Piglet Gastrointestinal Tract Microbiome Alterations. Vet Sci 2022; 9:vetsci9120666. [PMID: 36548827 PMCID: PMC9787881 DOI: 10.3390/vetsci9120666] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022] Open
Abstract
The gut microbiome exerts important functions on host health maintenance, whereas excessive antibiotic use may cause gut flora dysfunction resulting in serious disease and dysbiosis. Colistin is a broad-spectrum antibiotic with serious resistance phenomena. However, it is unclear whether colistin alters the gastrointestinal tract microbiome in piglets. In this study, 16s rDNA-based metagenome analyses were used to assess the effects of colistin on the modification of the piglet microbiome in the stomach, duodenum, jejunum, cecum, and feces. Both α- and β-diversity indices showed that colistin modified microbiome composition in these gastrointestinal areas. In addition, colistin influenced microbiome composition at the phylum and genus levels. At the species level, colistin upregulated Mycoplasma hyorhinis, Chlamydia trachomatis, Lactobacillus agilis, Weissella paramesenteroides, and Lactobacillus salivarius abundance, but downregulated Actinobacillus indolicus, Campylobacter fetus, Glaesserella parasuis, Moraxella pluranimalium, Veillonella caviae, Neisseria dentiae, and Prevotella disiens abundance in stomachs. Colistin-fed piglets showed an increased abundance of Lactobacillus mucosae, Megasphaera elsdenii DSM 20460, Fibrobacter intestinalis, and Unidentified rumen bacterium 12-7, but Megamonas funiformis, Uncultured Enterobacteriaceae bacterium, Actinobacillus porcinus, Uncultured Bacteroidales bacterium, and Uncultured Clostridiaceae bacterium abundance was decreased in the cecum. In feces, colistin promoted Mucispirillum schaedleri, Treponema berlinense, Veillonella magna, Veillonella caviae, and Actinobacillus porcinus abundance when compared with controls. Taken together, colistin modified the microbiome composition of gastrointestinal areas in piglets. This study provides new clinical rationalization strategies for colistin on the maintenance of animal gut balance and human public health.
Collapse
|
47
|
Potential Prebiotic Effect of Cava Lees: Changes in Gut Microbiota. FERMENTATION 2022. [DOI: 10.3390/fermentation8110657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Lees are a winery by-product with a fiber-rich composition that could have a potential prebiotic effect on gut microbiota. Prebiotics cannot be digested by humans but can be used by bacteria found in the large intestine. To evaluate the potential prebiotic effect of lees, they were administered to Wistar rats for 14 days. Feces were collected daily, and DNA was extracted and analyzed by shot gun sequencing. The supplementation with lees did not affect weight, food intake, or water consumption of the studied rats. It was found that lees promoted the increase of relative abundance of probiotic bacteria belonging to the Lactobacillaceae family, as well as other potentially probiotic species such as Blautia hansenii, Roseburia intestinalis, and Ruminococcus obeum. Moreover, lees supplementation also reduced the abundance of certain pathogenic bacteria. In conclusion, lees can improve the presence of beneficial bacteria in the gastrointestinal tract and can be re-valorized as a new ingredient in food formulation.
Collapse
|
48
|
Lactobacilli, a Weapon to Counteract Pathogens through the Inhibition of Their Virulence Factors. J Bacteriol 2022; 204:e0027222. [PMID: 36286515 PMCID: PMC9664955 DOI: 10.1128/jb.00272-22] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To date, several studies have reported an alarming increase in pathogen resistance to current antibiotic therapies and treatments. Therefore, the search for effective alternatives to counter their spread and the onset of infections is becoming increasingly important.
Collapse
|
49
|
Xerri NL, Payne SM. Bacteroides thetaiotaomicron Outer Membrane Vesicles Modulate Virulence of Shigella flexneri. mBio 2022; 13:e0236022. [PMID: 36102517 PMCID: PMC9600379 DOI: 10.1128/mbio.02360-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/20/2022] Open
Abstract
The role of the gut microbiota in the pathogenesis of Shigella flexneri remains largely unknown. To understand the impact of the gut microbiota on S. flexneri virulence, we examined the effect of interspecies interactions with Bacteroides thetaiotaomicron, a prominent member of the gut microbiota, on S. flexneri invasion. When grown in B. thetaiotaomicron-conditioned medium, S. flexneri showed reduced invasion of human epithelial cells. This decrease in invasiveness of S. flexneri resulted from a reduction in the level of the S. flexneri master virulence regulator VirF. Reduction of VirF corresponded with a decrease in expression of a secondary virulence regulator, virB, as well as expression of S. flexneri virulence genes required for invasion, intracellular motility, and spread. Repression of S. flexneri virulence factors by B. thetaiotaomicron-conditioned medium was not caused by either a secreted metabolite or secreted protein but rather was due to the presence of B. thetaiotaomicron outer membrane vesicles (OMVs) in the conditioned medium. The addition of purified B. thetaiotaomicron OMVs to S. flexneri growth medium recapitulated the inhibitory effects of B. thetaiotaomicron-conditioned medium on invasion, virulence gene expression, and virulence protein levels. Total lipids extracted from either B. thetaiotaomicron cells or B. thetaiotaomicron OMVs also recapitulated the effects of B. thetaiotaomicron-conditioned medium on expression of the S. flexneri virulence factor IpaC, indicating that B. thetaiotaomicron OMV lipids, rather than a cargo contained in the vesicles, are the active factor responsible for the inhibition of S. flexneri virulence. IMPORTANCE Shigella flexneri is the causative agent of bacillary dysentery in humans. Shigella spp. are one of the leading causes of diarrheal morbidity and mortality, especially among children in low- and middle-income countries. The rise of antimicrobial resistance combined with the lack of an effective vaccine for Shigella heightens the importance of studies aimed at better understanding previously uncharacterized aspects of Shigella pathogenesis. Here, we show that conditioned growth medium from the commensal bacterium Bacteroides thetaiotaomicron represses the invasion of S. flexneri. This repression is due to the presence of B. thetaiotaomicron outer membrane vesicles. These findings establish a role for interspecies interactions with a prominent member of the gut microbiota in modulating the virulence of S. flexneri and identify a novel function of outer membrane vesicles in interbacterial signaling between members of the gut microbiota and an enteric pathogen.
Collapse
Affiliation(s)
- Nicholas L. Xerri
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
| | - Shelley M. Payne
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
50
|
Abbas M, Hayirli Z, Drakesmith H, Andrews SC, Lewis MC. Effects of iron deficiency and iron supplementation at the host-microbiota interface: Could a piglet model unravel complexities of the underlying mechanisms? Front Nutr 2022; 9:927754. [PMID: 36267902 PMCID: PMC9577221 DOI: 10.3389/fnut.2022.927754] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 08/05/2022] [Indexed: 01/14/2023] Open
Abstract
Iron deficiency is the most prevalent human micronutrient deficiency, disrupting the physiological development of millions of infants and children. Oral iron supplementation is used to address iron-deficiency anemia and reduce associated stunting but can promote infection risk since restriction of iron availability serves as an innate immune mechanism against invading pathogens. Raised iron availability is associated with an increase in enteric pathogens, especially Enterobacteriaceae species, accompanied by reductions in beneficial bacteria such as Bifidobacteria and lactobacilli and may skew the pattern of gut microbiota development. Since the gut microbiota is the primary driver of immune development, deviations from normal patterns of bacterial succession in early life can have long-term implications for immune functionality. There is a paucity of knowledge regarding how both iron deficiency and luminal iron availability affect gut microbiota development, or the subsequent impact on immunity, which are likely to be contributors to the increased risk of infection. Piglets are naturally iron deficient. This is largely due to their low iron endowments at birth (primarily due to large litter sizes), and their rapid growth combined with the low iron levels in sow milk. Thus, piglets consistently become iron deficient within days of birth which rapidly progresses to anemia in the absence of iron supplementation. Moreover, like humans, pigs are omnivorous and share many characteristics of human gut physiology, microbiota and immunity. In addition, their precocial nature permits early maternal separation, individual housing, and tight control of nutritional intake. Here, we highlight the advantages of piglets as valuable and highly relevant models for human infants in promoting understanding of how early iron status impacts physiological development. We also indicate how piglets offer potential to unravel the complexities of microbiota-immune responses during iron deficiency and in response to iron supplementation, and the link between these and increased risk of infectious disease.
Collapse
Affiliation(s)
- Munawar Abbas
- Food and Nutritional Sciences, University of Reading, Reading, United Kingdom
| | - Zeynep Hayirli
- Food and Nutritional Sciences, University of Reading, Reading, United Kingdom
| | - Hal Drakesmith
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Simon C. Andrews
- School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - Marie C. Lewis
- Food and Nutritional Sciences, University of Reading, Reading, United Kingdom
| |
Collapse
|