1
|
Bonyek-Silva Í, Bastos R, Nunes S, Tibúrcio R, Lago A, Silva J, Carvalho LP, Khouri R, Arruda SM, Barral A, Boaventura V, Serezani HC, Carvalho EM, Brodskyn CI, Tavares NM. High glucose heightens vulnerability to Leishmania braziliensis infection in human macrophages by hampering the production of reactive oxygen species through TLR2 and TLR4. Emerg Microbes Infect 2025; 14:2475824. [PMID: 40052633 PMCID: PMC11948364 DOI: 10.1080/22221751.2025.2475824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/26/2025] [Accepted: 03/02/2025] [Indexed: 03/27/2025]
Abstract
Diabetes increases susceptibility to infections, including Leishmania braziliensis (Lb). Our group previously demonstrated that diabetic patients with cutaneous leishmaniasis (CL) take longer to heal lesions compared to non-diabetics. Since macrophages play a critical role in CL pathogenesis, we investigated how high glucose levels impact their response during Lb infection. Macrophages cultured in high glucose conditions showed increased parasite load than those in normal glucose conditions. The production of inflammatory mediators was similar between glucose conditions, but basal reactive oxygen species (ROS) production was elevated under high glucose conditions and remained unchanged after Lb infection, indicating glucose-induced oxidative stress does not control the parasite. In contrast, macrophages in normal glucose conditions, exhibited increased ROS production only after infection. Additionally, high glucose reduced TLR2 and TLR4 expression, which was also observed after Lb infection. TLR2/4 inhibition increased Lb infection in normal glucose conditions, mediated by TLR-dependent ROS production. However, this mechanism was absent under high glucose conditions, where elevated basal ROS production appeared TLR-independent. Biopsies from diabetic CL patients corroborated these findings, showing decreased TLR2 and TLR4 expression compared to non-diabetics. These findings suggest that high glucose levels induce oxidative stress and reduces TLR expression, impairing macrophage functions and rendering them less effective at controlling Lb infection.
Collapse
Affiliation(s)
- Ícaro Bonyek-Silva
- Federal Institute of Education, Science and Technology Baiano (IFBA), Xique-Xique, Brazil
- Nursing School, Irecê College, Irecê, Brazil
| | - Rana Bastos
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil
- School of Medicine, Federal University of Bahia (UFBA), Salvador, Brazil
| | - Sara Nunes
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil
| | - Rafael Tibúrcio
- Division of Experimental Medicine, Department of Medicine, School of Medicine, University of California San Francisco, San Francisco, United States
| | - Alexsandro Lago
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil
| | - Juliana Silva
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil
| | - Lucas P. Carvalho
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil
- School of Medicine, Federal University of Bahia (UFBA), Salvador, Brazil
| | - Ricardo Khouri
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil
- School of Medicine, Federal University of Bahia (UFBA), Salvador, Brazil
| | - Sergio M. Arruda
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil
| | - Aldina Barral
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil
- InCor (Heart Institute), University of São Paulo, Institute of Investigation in Immunology (iii), São Paulo, Brazil
| | - Viviane Boaventura
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil
- School of Medicine, Federal University of Bahia (UFBA), Salvador, Brazil
- InCor (Heart Institute), University of São Paulo, Institute of Investigation in Immunology (iii), São Paulo, Brazil
| | - Henrique C. Serezani
- Department of Medicine, Division of Infectious Diseases, Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, USA
| | - Edgar M. Carvalho
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil
- School of Medicine, Federal University of Bahia (UFBA), Salvador, Brazil
| | - Cláudia Ida Brodskyn
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil
- InCor (Heart Institute), University of São Paulo, Institute of Investigation in Immunology (iii), São Paulo, Brazil
| | - Natalia Machado Tavares
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil
- InCor (Heart Institute), University of São Paulo, Institute of Investigation in Immunology (iii), São Paulo, Brazil
| |
Collapse
|
2
|
Xu YQ, Li Y, Han KH, Zhang JX, Li KQ, Jiang J, Sun ZH, Wang YL, Jiang YH, Zou PF. NLRC3 regulates RIP2, STING, TBK1, and TRAF6 mediated type I IFN signaling and inflammatory response in large yellow croaker Larimichthys crocea. FISH & SHELLFISH IMMUNOLOGY 2025; 162:110351. [PMID: 40252745 DOI: 10.1016/j.fsi.2025.110351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 04/13/2025] [Accepted: 04/16/2025] [Indexed: 04/21/2025]
Abstract
As a member of the NLRs family, NLRC3 has been determined to function in the NF-κB, MAPK, and type I IFN signaling, which are crucial for the host innate immunity and inflammatory response. In this study, an NLRC3 ortholog, named as Lc-NLRC3, was cloned and identified in large yellow croaker (Larimichthys crocea). The gene characteristics analysis revealed that Lc-NLRC3 consists of 18 exons and 17 introns, with a full-length open reading frame (ORF) of 3405 bp, encoding a protein of 1134 amino acids (aa), that containing a N-terminal CARD domain, a central NACHT domain, and a C-terminal LRRs domain. It was shown that Lc-NLRC3 is predominantly found in the cytosol, and was widely distributed across various tissues/organs, with the highest expression detected in the intestine, and could be induced by poly I:C, LPS, PGN, and Pseudomonas plecoglossicida stimulation. Importantly, Lc-NLRC3 overexpression significantly activate NF-κB, TNFα, IL-1β, IRF3, IRF7, and IFN1 promoters, whereas when co-expressed with RIP2, STING, or TBK1, it down-regulated those promoter activation compared to their individual overexpression alone, thereby suppressing downstream antiviral and inflammatory gene expression. Interestingly, Lc-NLRC3 associated with TRAF6 in IRF3/IRF7 promoter activation, and enhanced the expression of IRF7, Mx, ISG15, and TNF-α. Co-immunoprecipitation assays also confirmed interactions of Lc-NLRC3 with RIP2, STING, TBK1, and TRAF6. The above results imply that Lc-NLRC3 is an important regulator in RIP2, STING, TBK1, and TRAF6 mediated type I IFN signaling and inflammatory response.
Collapse
Affiliation(s)
- Yu Qing Xu
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, Fujian Province, 361021, China
| | - Ying Li
- Key Laboratory of Estuarine Ecological Security and Environmental Health, Tan Kah Kee College, Xiamen University, Zhangzhou, Fujian Province, 363105, China
| | - Kun Huang Han
- College of Marine Sciences, Ningde Normal University, Ningde, Fujian Province, 352100, China
| | - Jia Xi Zhang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, Fujian Province, 361021, China
| | - Kai Qing Li
- College of the Environment and Ecology, Xiamen University, Xiamen, Fujian Province, 361102, China
| | - Jing Jiang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, Fujian Province, 361021, China
| | - Zhao Han Sun
- Ningde Yiye Marine Industry Development Co., Ltd., Ningde, Fujian Province, 352103, China
| | - Yi Lei Wang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, Fujian Province, 361021, China
| | - Yong Hua Jiang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, Fujian Province, 361021, China
| | - Peng Fei Zou
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, Fujian Province, 361021, China.
| |
Collapse
|
3
|
Aljohani S, Edmonds A, Castelletto V, Seitsonen J, Hamley I, Symonds P, Brentville V, Durrant L, Mitchell N. In Vivo Evaluation of Pam 2Cys-Modified Cancer-Testis Antigens as Potential Self-Adjuvanting Cancer Vaccines. J Pept Sci 2025; 31:e70022. [PMID: 40326329 PMCID: PMC12053792 DOI: 10.1002/psc.70022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 04/03/2025] [Accepted: 04/09/2025] [Indexed: 05/07/2025]
Abstract
Peptide-based vaccines, formulated with an appropriate adjuvant, offer a versatile platform for targeted cancer immunotherapy. While adjuvants are usually coadministered for nucleic acid and protein vaccines, synthetic peptide antigens afford a more effective opportunity to covalently and regioselectively graft immunostimulatory motifs directly onto the antigen scaffold to yield self-adjuvanting vaccines. Herein, we explore the synthesis of two tissue-restricted cancer-testis antigens (CTAs); New York oesophageal cell carcinoma 1 (NY-ESO-1) and B melanoma antigen 4 (BAGE4), both carrying the toll-like receptor (TLR) agonist, Pam2Cys. These constructs were evaluated in vivo along with a lipid nanoparticle (LNP) preparation of the underexplored BAGE4 melanoma antigen.
Collapse
Affiliation(s)
- Salwa Aljohani
- School of Chemistry, University of NottinghamUniversity ParkNottinghamUK
| | - Alex G. Edmonds
- School of Chemistry, University of NottinghamUniversity ParkNottinghamUK
| | - Valeria Castelletto
- School of Chemistry, Pharmacy and Food BiosciencesUniversity of ReadingReadingUK
| | | | - Ian W. Hamley
- School of Chemistry, Pharmacy and Food BiosciencesUniversity of ReadingReadingUK
| | - Peter Symonds
- Scancell, Biodiscovery Institute, University of NottinghamUniversity ParkNottinghamUK
| | | | - Lindy G. Durrant
- Scancell, Biodiscovery Institute, University of NottinghamUniversity ParkNottinghamUK
| | | |
Collapse
|
4
|
Yang C, Wu H, Hao R, Liao Y, Wang Q, Deng Y. Integrated transcriptomic and lipidomic analysis reveals that arachidonic acid mediates the allograft-induced stress response in Pinctada fucata martensii. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2025; 54:101411. [PMID: 39765130 DOI: 10.1016/j.cbd.2024.101411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/28/2024] [Accepted: 12/28/2024] [Indexed: 03/12/2025]
Abstract
This study investigated the protective effect of arachidonic acid (ARA) against the allograft-induced stress response in Pinctada fucata martensii by characterizing pearl production traits and changes in genes and lipids during postoperative care. Survival and pearl production traits were higher in the ARA treatment group (ARAG) than in the control group (CG). There were 1536 differentially expressed genes (DEGs) in CG-1d vs ARAG-1d and 833 DEGs in CG-3d vs ARAG-3d. DEGs in CG-1d vs ARAG-1d were mainly enriched in "NOD-like receiver signaling pathway," "Glycerolipid metabolism," and "Sphingolipid metabolism." DEGs in CG-3d vs ARAG-3d were mainly enriched in "Apoptosis" and "ARA metabolism." Lipidomics analysis revealed 36 types of lipids. The PC, LPE (22:5), and LPE (18:0) content at 3 d after implantation was lower in the ARAG than in the CG. The PS (37,1) content was significantly higher at 3 d after implantation and the content of ceramides was significantly lower at 1 and 3 d after implantation in the ARAG than in the CG. The results indicated that ARA may alter the composition of lipids, modify the unsaturation of lipids, and regulate apoptosis, immunity, and lipid metabolism in pearl oysters, which enhances pearl production traits. These findings provide theoretical and practical basis for further alleviating the inflammatory response of pearl oysters after implantation.
Collapse
Affiliation(s)
- Chuangye Yang
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Hailing Wu
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Ruijuan Hao
- Development and Research Center for Biological Marine Resources, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524006, China
| | - Yongshan Liao
- Guangdong Science and Innovation Center for Pearl Culture, Zhanjiang 524088, China; Pearl Breeding and Processing Engineering Technology Research Center of Guangdong Province, Zhanjiang 524088, China
| | - Qingheng Wang
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Science and Innovation Center for Pearl Culture, Zhanjiang 524088, China; Pearl Breeding and Processing Engineering Technology Research Center of Guangdong Province, Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy culture, Zhanjiang 524088, China
| | - Yuewen Deng
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Science and Innovation Center for Pearl Culture, Zhanjiang 524088, China; Pearl Breeding and Processing Engineering Technology Research Center of Guangdong Province, Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy culture, Zhanjiang 524088, China.
| |
Collapse
|
5
|
Chen KL, Chiu YE, Vleugels RA, Co DO, Kim H, Sabbagh SE, Arkin LM. Recent Advances in Juvenile Dermatomyositis: Moving toward Integration of Myositis-Specific Antibody Clinical Phenotypes, IFN-Driven Pathogenesis, and Targeted Therapies. J Invest Dermatol 2025; 145:1294-1304. [PMID: 39530954 DOI: 10.1016/j.jid.2024.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 08/27/2024] [Accepted: 09/13/2024] [Indexed: 11/16/2024]
Abstract
Juvenile dermatomyositis (JDM), the most common pediatric inflammatory myopathy, is associated with significant morbidity despite therapeutic advances. Distinct clinical phenotypes have emerged, which can correlate with myositis-specific antibodies. Because translational data solidify the role of type I IFNs in JDM disease pathogenesis, integration of clinical and molecular phenotyping may impact the choice of targeted therapy. This paper reviews clinical and molecular phenotyping in JDM and translational insights into immune pathogenesis that have created emerging options for targeted therapy.
Collapse
Affiliation(s)
- Kristen L Chen
- Department of Dermatology, The School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA.
| | - Yvonne E Chiu
- Division of Pediatric Dermatology, Department of Dermatology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA; Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Ruth Ann Vleugels
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA; Division of Allergy, Immunology and Rheumatology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Dominic O Co
- Division of Allergy, Immunology & Rheumatology, Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Hanna Kim
- Juvenile Myositis Pathogenesis and Therapeutics Unit, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Sara E Sabbagh
- Division of Pediatric Rheumatology, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Lisa M Arkin
- Division of Pediatric Dermatology, Department of Dermatology, The School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA; Department of Pediatrics, The School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
6
|
Ohara TE, Hsiao EY. Microbiota-neuroepithelial signalling across the gut-brain axis. Nat Rev Microbiol 2025; 23:371-384. [PMID: 39743581 DOI: 10.1038/s41579-024-01136-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2024] [Indexed: 01/04/2025]
Abstract
Research over the past two decades has established a remarkable ability of the gut microbiota to modulate brain activity and behaviour. Conversely, signals from the brain can influence the composition and function of the gut microbiota. This bidirectional communication across the gut microbiota-brain axis, involving multiple biochemical and cellular mediators, is recognized as a major brain-body network that integrates cues from the environment and the body's internal state. Central to this network is the gut sensory system, formed by intimate connections between chemosensory epithelial cells and sensory nerve fibres, that conveys interoceptive signals to the central nervous system. In this Review, we provide a broad overview of the pathways that connect the gut and the brain, and explore the complex dialogue between microorganisms and neurons at this emerging intestinal neuroepithelial interface. We highlight relevant microbial factors, endocrine cells and neural mechanisms that govern gut microbiota-brain interactions and their implications for gastrointestinal and neuropsychiatric health.
Collapse
Affiliation(s)
- Takahiro E Ohara
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA.
| | - Elaine Y Hsiao
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA.
- UCLA Goodman-Luskin Microbiome Center, Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, UCLA David Geffen School of Medicine, Los Angeles, CA, USA.
| |
Collapse
|
7
|
Navidifar T, Meftah E, Baghsheikhi H, Kazemzadeh K, Karimi H, Rezaei N. Dual role of hepcidin in response to pathogens. Microb Pathog 2025; 203:107496. [PMID: 40118299 DOI: 10.1016/j.micpath.2025.107496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 03/15/2025] [Accepted: 03/19/2025] [Indexed: 03/23/2025]
Abstract
Hepcidin is the primary regulator of vertebrate iron homeostasis. Its production is stimulated by systemic iron levels and inflammatory signals. Although the role of hepcidin in iron homeostasis is well characterized, its response to pathogenic agents is complex and diverse. In this review, we examine studies that investigate the role of hepcidin in response to infectious agents. Interleukin-6 (IL-6) is a key factor responsible for the induction of hepcidin expression. During infection, hepcidin-mediated depletion of extracellular iron serves as a protective mechanism against a variety of pathogens. However, accumulation of iron in macrophages through hepcidin-mediated pathways may increase susceptibility to intracellular pathogens such as Mycobacterium tuberculosis. Prolonged elevation of hepcidin production can lead to anemia due to reduced iron availability for erythropoiesis, a condition referred to as anemia of inflammation. In addition, we highlight the role of hepcidin upregulation in several infectious contexts, including HIV-associated anemia, iron deficiency anemia in Helicobacter pylori infection, and post-malarial anemia in pediatric patients. In addition, we show that certain infectious agents, such as hepatitis C virus (HCV), can suppress hepcidin production during both the acute and chronic phases of infection, while hepatitis B virus (HBV) exhibits similar suppression during the chronic phase.
Collapse
Affiliation(s)
- Tahereh Navidifar
- Department of Basic Sciences, Shoushtar Faculty of Medical Sciences, Shoushtar, Iran; Network of Interdisciplinarity in Neonates and Infants (NINI), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Elahe Meftah
- Network of Interdisciplinarity in Neonates and Infants (NINI), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hediyeh Baghsheikhi
- Network of Interdisciplinarity in Neonates and Infants (NINI), Universal Scientific Education and Research Network (USERN), Tehran, Iran; USERN Office, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kimia Kazemzadeh
- Network of Interdisciplinarity in Neonates and Infants (NINI), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hanie Karimi
- Network of Interdisciplinarity in Neonates and Infants (NINI), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Network of Interdisciplinarity in Neonates and Infants (NINI), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Science, Tehran, Iran.
| |
Collapse
|
8
|
Jomova K, Alomar SY, Valko R, Liska J, Nepovimova E, Kuca K, Valko M. Flavonoids and their role in oxidative stress, inflammation, and human diseases. Chem Biol Interact 2025; 413:111489. [PMID: 40147618 DOI: 10.1016/j.cbi.2025.111489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 02/23/2025] [Accepted: 03/24/2025] [Indexed: 03/29/2025]
Abstract
Oxidative stress and chronic inflammation are important drivers in the pathogenesis and progression of many chronic diseases, such as cancers of the breast, kidney, lung, and others, autoimmune diseases (rheumatoid arthritis), cardiovascular diseases (hypertension, atherosclerosis, arrhythmia), neurodegenerative diseases (Alzheimer's disease, Parkinson's disease, Huntington's disease), mental disorders (depression, schizophrenia, bipolar disorder), gastrointestinal disorders (inflammatory bowel disease, colorectal cancer), and other disorders. With the increasing demand for less toxic and more tolerable therapies, flavonoids have the potential to effectively modulate the responsiveness to conventional therapy and radiotherapy. Flavonoids are polyphenolic compounds found in fruits, vegetables, grains, and plant-derived beverages. Six of the twelve structurally different flavonoid subgroups are of dietary significance and include anthocyanidins (e.g. pelargonidin, cyanidin), flavan-3-ols (e.g. epicatechin, epigallocatechin), flavonols (e.g. quercetin, kaempferol), flavones (e.g. luteolin, baicalein), flavanones (e.g. hesperetin, naringenin), and isoflavones (daidzein, genistein). The health benefits of flavonoids are related to their structural characteristics, such as the number and position of hydroxyl groups and the presence of C2C3 double bonds, which predetermine their ability to chelate metal ions, terminate ROS (e.g. hydroxyl radicals formed by the Fenton reaction), and interact with biological targets to trigger a biological response. Based on these structural characteristics, flavonoids can exert both antioxidant or prooxidant properties, modulate the activity of ROS-scavenging enzymes and the expression and activation of proinflammatory cytokines (e.g., interleukin-1beta (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α)), induce apoptosis and autophagy, and target key signaling pathways, such as the nuclear factor erythroid 2-related factor 2 (Nrf2) and Bcl-2 family of proteins. This review aims to briefly discuss the mutually interconnected aspects of oxidative and inflammatory mechanisms, such as lipid peroxidation, protein oxidation, DNA damage, and the mechanism and resolution of inflammation. The major part of this article discusses the role of flavonoids in alleviating oxidative stress and inflammation, two common components of many human diseases. The results of epidemiological studies on flavonoids are also presented.
Collapse
Affiliation(s)
- Klaudia Jomova
- Department of Chemistry, Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, Nitra, 949 74, Slovakia
| | - Suliman Y Alomar
- Zoology Department, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Richard Valko
- Zoology Department, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Jan Liska
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University, 811 08, Bratislava, Slovakia
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Sciences, University of Hradec Kralove, 50003, Hradec Kralove, Czech Republic; Center of Advanced Innovation Technologies, VSB-Technical University of Ostrava, Ostrava-Poruba, 708 00, Czech Republic
| | - Kamil Kuca
- Center of Advanced Innovation Technologies, VSB-Technical University of Ostrava, Ostrava-Poruba, 708 00, Czech Republic; Biomedical Research Center, University Hospital Hradec Kralove, 5005, Hradec Kralove, Czech Republic
| | - Marian Valko
- Faculty of Chemical and Food Technology, Slovak University of Technology, 812 37, Bratislava, Slovakia.
| |
Collapse
|
9
|
Lahouty M, Fadaee M, Aghaei R, Alizadeh F, Jafari A, Sharifi Y. Gut microbiome and colorectal cancer: From pathogenesis to treatment. Pathol Res Pract 2025; 271:156034. [PMID: 40412026 DOI: 10.1016/j.prp.2025.156034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2025] [Revised: 05/06/2025] [Accepted: 05/21/2025] [Indexed: 05/27/2025]
Abstract
Colorectal cancer (CRC) continues to rank among the most prevalent cancers worldwide. A growing body of research indicates that the microbiome significantly influences the onset, development, and progression of CRC, in addition to affecting the efficacy of various systemic therapies. The composition of the microbiome, shaped by factors such as bacterial strains, geography, ethnicity, gender, and dietary habits, provides essential information for CRC screening, early diagnosis, and the prediction of treatment responses. Modulating the microbiome presents a highly promising medical strategy for improving individual health. This review aims to present a thorough overview of recent research concerning the interplay between host microbiota and CRC, along with its implications for screening and the immune response against tumors in the context of cancer treatment.
Collapse
Affiliation(s)
- Masoud Lahouty
- Pediatric Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Manouchehr Fadaee
- Student Research Committee, Tabriz University of Medical Science, Tabriz, Iran.
| | - Reza Aghaei
- Department of veterinary medicine, Shab.C, Islamic Azad University, Shabestar, Iran
| | - Fatemeh Alizadeh
- Pediatric Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amirmohammad Jafari
- Department of veterinary medicine, Shab.C, Islamic Azad University, Shabestar, Iran
| | - Yaeghob Sharifi
- Department of Microbiology and Virology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
10
|
Tang Y, Tang C, Lu X, Xing X. Assessment of innate immune response modulating impurities (IIRMI) in synthetic peptide drugs (liraglutide). Biochem Biophys Res Commun 2025; 771:151967. [PMID: 40398094 DOI: 10.1016/j.bbrc.2025.151967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 04/25/2025] [Accepted: 05/06/2025] [Indexed: 05/23/2025]
Abstract
Liraglutide for Injection is a GLP-1 analog that stimulates insulin secretion from pancreatic β-cells in a Glucose dependent manner for the treatment of diabetic patients, especially adult patients with type 2 diabetes, to control blood glucose levels. A generic drug of Liraglutide for injection received tentative approval by the FDA on June 21, 2024. Generic Liraglutide (synthesis) was considered to be equivalent to the original brand-name Liraglutide (recombinant), but their manufacturing processes are different. Although synthetic Liraglutide undergo strict impurity control, even trace levels of different innate immune response modulating impurities (IIRMI) may activate innate immunity in peripheral blood mononuclear cells (PBMCs), leading to the expression of cytokines and chemokines, increased antigen uptake, promotion of antigen-presenting cell (APC) processing and presentation, and enhancement of product immunogenicity [1]. Therefore, accurately assessing the IIRMI immunogenic risk of Liraglutide is a key component of immunogenic risk assessment to ensure that its immunogenic risk is similar or lower than branded Liraglutide products. This study utilized PBMC-based assays with fresh PBMC from different volunteers treated with Liraglutide drugs with or without TLR/NOD ligands to evaluate the recent and aged Liraglutide products for their immunogenicity. A method based on PBMC was established to detect IIRMI in synthetic peptide drugs. Using this method, the results showed that despite differences in manufacturing processes between synthetic Liraglutide (generic) and recombinant Liraglutide (branded), there was no statistically significant difference in their immunogenicities. It provides a novel approach for future research on the innate immunogenicity of peptide drug formulations, enabling a broader detection of trace unknown impurities compared to cell line systems.
Collapse
Affiliation(s)
- Yangming Tang
- Centre for Research & Development, Hybio Pharmaceutical Co., Hybio Innovation Industry Building, No. 7, Guansheng 4th RD, Guanlan High-tech Park, Longhua District, Shenzhen, Guangdong 518110, PR China; MOE Key Laboratory of Industrial Biocatalysis, Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, PR China.
| | - Chao Tang
- Centre for Research & Development, Hybio Pharmaceutical Co., Hybio Innovation Industry Building, No. 7, Guansheng 4th RD, Guanlan High-tech Park, Longhua District, Shenzhen, Guangdong 518110, PR China
| | - Xiaojie Lu
- Centre for Research & Development, Hybio Pharmaceutical Co., Hybio Innovation Industry Building, No. 7, Guansheng 4th RD, Guanlan High-tech Park, Longhua District, Shenzhen, Guangdong 518110, PR China
| | - Xinhui Xing
- MOE Key Laboratory of Industrial Biocatalysis, Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, PR China.
| |
Collapse
|
11
|
Pan WY, Weng PW, Wu SH, Hsiao CH, Jheng PR, Nguyen HNT, Tseng CL, Burnouf T, Rethi L, Nguyen HT, Huang WY, Wang TJ, Chuang AEY. Intranasal delivery of epigallocatechin gallate-laden platelet extracellular vesicles for mitigating retinal glaucoma. J Control Release 2025; 381:113596. [PMID: 40043911 DOI: 10.1016/j.jconrel.2025.113596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 01/31/2025] [Accepted: 03/01/2025] [Indexed: 03/23/2025]
Abstract
Glaucoma is a serious cause of permanent blindness worldwide, mainly caused by inflammation and degeneration of the optic nerve. However, current treatments using systemically administered drugs have limited effectiveness due to various biological barriers that prevent their biodistribution in the eye. To overcome these challenges, we developed a new therapy that utilizes intranasal delivery to retinal lesions. In this therapy, we used platelet extracellular vesicles (pEVs) as carriers for epigallocatechin gallate (EGCG), which is known for its neuroprotective, anti-inflammatory, and immunomodulatory properties. We hypothesized that this therapy could overcome ocular barriers, increase drug bioavailability, and mitigate glaucoma progression. We conducted extensive characterization of the biochemical and biophysical properties of the EGCG-pEVs, and the results were promising. In vivo tests using an animal model of dexamethasone-induced glaucoma showed that intranasal administration of EGCG-pEVs was safe and had superior drug delivery and therapeutic efficacy, including anti-inflammatory, immunomodulatory, and intraocular pressure-reducing effects, compared to an intraperitoneal injection or ophthalmic drug administration routes. This unique mode of drug administration shows great potential for clinical applications in ophthalmology.
Collapse
Affiliation(s)
- Wen-Yu Pan
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, New Taipei City 235603, Taiwan; Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, New Taipei City 235603, Taiwan
| | - Pei-Wei Weng
- Department of Orthopaedics, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan; Department of Orthopaedics, School of Medicine, College of Medicine; Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Shen-Han Wu
- Department of Orthopedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City 235603, Taiwan
| | - Chi-Hung Hsiao
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City 235603, Taiwan
| | - Pei-Ru Jheng
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City 235603, Taiwan
| | - Huynh-Ngoc-Truc Nguyen
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City 235603, Taiwan
| | - Ching-Li Tseng
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City 235603, Taiwan
| | - Thierry Burnouf
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City 235603, Taiwan; International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City 235603, Taiwan
| | - Lekshmi Rethi
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City 235603, Taiwan; International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City 235603, Taiwan
| | - Hieu Trung Nguyen
- Department of Orthopedics and Trauma, Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City 700000, Viet Nam
| | - Wei-Yung Huang
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City 235603, Taiwan
| | - Tsung-Jen Wang
- Department of Ophthalmology, Taipei Medical University Hospital, Taipei 11031, Taiwan; Department of Ophthalmology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
| | - Andrew E-Y Chuang
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City 235603, Taiwan; International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City 235603, Taiwan; Cell Physiology and Molecular Image Research Center, Taipei Medical University-Wan Fang Hospital, Taipei, 11696, Taiwan; Precision Medicine and Translational Cancer Research Center, Taipei Medical University Hospital, Taipei 11031, Taiwan.
| |
Collapse
|
12
|
Hsu CY, Jasim SA, Rasool KH, H M, Kaur J, Jabir MS, Alhajlah S, Kumar A, Jawad SF, Husseen B. Divergent functions of TLRs in gastrointestinal (GI) cancer: Overview of their diagnostic, prognostic and therapeutic value. Semin Oncol 2025; 52:152344. [PMID: 40347779 DOI: 10.1016/j.seminoncol.2025.152344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 03/10/2025] [Accepted: 03/15/2025] [Indexed: 05/14/2025]
Abstract
The relationship between the innate immune signal and the start of the adaptive immune response is the central idea of this theory. By controlling the inflammatory and tissue-repair reactions to damage, the Toll-like receptors (TLRs), as a family of PRRs, have attracted increasing attention for its function in protecting the host against infection and preserving tissue homeostasis. Microbial infection, damage, inflammation, and tissue healing have all been linked to the development of malignancies, especially gastrointestinal (GI) cancers. Recently, increased studies on TLR recognition and binding, as well as their ligands, have significantly advanced our knowledge of the various TLR signaling pathways and offered therapy options for GI malignancies. Upon activation by pathogen-associated or damage-associated molecular patterns (DAMPs and PAMPs), TLRs trigger key pathways like NF-κB, MAPK, and IRF. NF-κB activation promotes inflammation, cell survival, and proliferation, often contributing to tumor growth, metastasis, and therapy resistance. MAPK pathways similarly drive uncontrolled cell growth and invasion, while IRF pathways modulate interferon production, yielding both anti-tumor and protumor effects. The resulting chronic inflammatory environment within tumors can foster progression, yet TLR activation can also stimulate beneficial anti-tumor immune responses. However, the functions of TLR expression in GI cancers and their diagnostic and prognostic along with therapeutic value have not yet entirely been elucidated. Understanding how TLR activation contributes to anti-cancer immunity against GI malignancies may hasten immunotherapy developments and increase patient survival.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Thunderbird School of Global Management, Arizona State University Tempe Campus, Phoenix, Arizona, USA
| | - Saade Abdalkareem Jasim
- Medical Laboratory Techniques Department, Al-maarif University College, Anbar, Iraq; Biotechnology Department, College of Applied Science, Fallujah University, Fallujah, Iraq
| | - Khetam Habeeb Rasool
- Department of Biology, College of Science, University of Mustansiriyah, Mustansiriyah, Iraq
| | - Malathi H
- Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Jaswinder Kaur
- Chandigarh Pharmacy College, Chandigarh Group of Colleges, Mohali, Punjab, India
| | - Majid S Jabir
- Department of Applied Sciences, University of Technology, Anbar, Iraq
| | - Sharif Alhajlah
- Department of Medical Laboratories, College of Applied Medical Sciences, Shaqra University, Shaqra, Saudi Arabia.
| | - Abhinav Kumar
- Department of Nuclear and Renewable Energy, Ural Federal University Named after the First President of Russia Boris Yeltsin, Ekaterinburg, Russia; Centre for Research Impact & Outcome, Chitkara University, Rajpura, Punjab, India; Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, India
| | - Sabrean F Jawad
- Department of Pharmacy, Al-Mustaqbal University College, Hillah, Babylon, Iraq
| | - Beneen Husseen
- Medical Laboratory Technique College, the Islamic University, Najaf, Iraq; Medical Laboratory Technique College, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq; Medical Laboratory Technique College, the Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
13
|
Yin L, Zhang H, Shang Y, Wu S, Jin T. NLRP3 inflammasome: From drug target to drug discovery. Drug Discov Today 2025; 30:104375. [PMID: 40345614 DOI: 10.1016/j.drudis.2025.104375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 04/20/2025] [Accepted: 05/02/2025] [Indexed: 05/11/2025]
Abstract
The immune system employs innate and adaptive immunity to combat pathogens and stress stimuli. Innate immunity rapidly detects pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs) via pattern recognition receptors (PRRs), whereas adaptive immunity mediates antigen-specific T/B cell responses. The NLRP3 inflammasome, a key cytoplasmic PRR, consists of leucine-rich repeat, nucleotide-binding, and pyrin domains. Its activation requires priming (signal 1: Toll-like receptors/NOD-like receptors/cytokine receptors) and activation (signal 2: PAMPs/DAMPs/particulates). NLRP3 triggers cytokine storms and neuroinflammation, contributing to inflammatory diseases. Emerging therapies target NLRP3 via nuclear receptors (transcriptional regulation), adeno-associated virus (AAV) vectors (gene delivery), and microRNAs (post-transcriptional modulation). This review highlights NLRP3's signaling cascade, pathological roles, and combinatorial treatments leveraging nuclear receptors, AAVs, and microRNAs for immunomodulation.
Collapse
Affiliation(s)
- Ling Yin
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui 323000, China; College of Medicine, University of Florida, Gainesville, FL 32608, USA; Division of Infectious Diseases and Geographic Medicine, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Laboratory of Structural Immunology, Key Laboratory of Immune Response and Immunotherapy, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027 China; Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, Anhui, China
| | - Hongliang Zhang
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui 323000, China
| | - Yuhua Shang
- Anhui Genebiol Biotech. Ltd., Hefei 230000, China
| | - Songquan Wu
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui 323000, China.
| | - Tengchuan Jin
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui 323000, China; Anhui Genebiol Biotech. Ltd., Hefei 230000, China; Laboratory of Structural Immunology, Key Laboratory of Immune Response and Immunotherapy, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027 China; Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, Anhui, China; Biomedical Sciences and Health Laboratory of Anhui Province, University of Science & Technology of China, Hefei 230027, China; Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei 230001, China.
| |
Collapse
|
14
|
Soliman AM, Soliman M, Shah SSH, Baig HA, Gouda NS, Alenezi BT, Alenezy A, Hegazy AMS, Jan M, Eltom EH. Molecular dynamics of inflammation resolution: therapeutic implications. Front Cell Dev Biol 2025; 13:1600149. [PMID: 40406415 PMCID: PMC12095172 DOI: 10.3389/fcell.2025.1600149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Accepted: 04/23/2025] [Indexed: 05/26/2025] Open
Abstract
Inflammation is a critical part of innate immune response that is essential for exclusion of harmful stimuli and restoration of tissue homeostasis. Nonetheless, failure to resolve inflammation results in chronic inflammatory conditions, including autoimmune diseases. Conventionally, resolution of inflammation was deemed a passive process; however, evidence indicates that it entails active, highly regulated molecular and cellular events involving efferocytosis-driven macrophage reprogramming, post-transcriptional regulatory mechanisms and the production of specialized pro-resolving mediators (SPMs). These processes collectively restore tissue homeostasis and prevent chronic inflammation. Emerging therapeutic approaches targeting these pathways demonstrate promising results in preclinical studies and clinical trials, enhancing resolution and improving overall disease outcome. This resulted in a paradigm shift from conventional anti-inflammatory strategies to resolution-focused treatment. Yet, challenges remain due to the complexity of resolution mechanisms and tissue-specific differences. This review summarizes current advances in inflammation resolution, emphasizing emerging concepts of resolution pharmacology. By employing endogenous mechanisms facilitating resolution, novel therapeutic applications can effectively manage several chronic inflammatory disorders.
Collapse
Affiliation(s)
- Amro M. Soliman
- Department of Biological Sciences, Faculty of Science, Concordia University of Edmonton, Edmonton, AB, Canada
| | - Mohamed Soliman
- Department of Microbiology, Faculty of Medicine, Northern Border University, Arar, Saudi Arabia
| | - Syed Sajid Hussain Shah
- Department of Pathology, Faculty of Medicine, Northern Border University, Arar, Saudi Arabia
| | - Habeeb Ali Baig
- Department of Microbiology, Faculty of Medicine, Northern Border University, Arar, Saudi Arabia
| | - Nawal Salama Gouda
- Department of Microbiology, Faculty of Medicine, Northern Border University, Arar, Saudi Arabia
| | - Bandar Theyab Alenezi
- Department of Pharmacology, Faculty of Medicine, Northern Border University, Arar, Saudi Arabia
| | - Awwad Alenezy
- Department of Family and Community Medicine, Faculty of Medicine, Northern Border University, Arar, Saudi Arabia
| | - Ahmed M. S. Hegazy
- Department of Anatomy, Faculty of Medicine, Northern Border University, Arar, Saudi Arabia
| | - Muhammad Jan
- Department of Pharmacology, Faculty of Medicine, Northern Border University, Arar, Saudi Arabia
| | - Elhassan Hussein Eltom
- Department of Pharmacology, Faculty of Medicine, Northern Border University, Arar, Saudi Arabia
| |
Collapse
|
15
|
Huang X, Yang J, Ho CT, Ke Q, Kou X. Functional flavor agents: enhancing health benefits and consumer preferences. Crit Rev Food Sci Nutr 2025:1-29. [PMID: 40338670 DOI: 10.1080/10408398.2025.2494297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2025]
Abstract
Increasing health consciousness among consumers has significantly driven the demand for functional foods; however, market acceptance largely hinges on flavor profiles. Functional flavor agents, which simultaneously enhance taste and provide health benefits, meet the dual consumer demand for flavor and nutrition. This review classifies functional flavor agents into five categories based on their sensory characteristics. Their health benefits are explored with a focus on their potential roles in disease prevention and treatment, including improved energy metabolism, cardiovascular support, anti-tumor effects, modulation of gut microbiota, and enhancement of immune function. Emerging trends in the food industry are highlighted, underscoring the significant influence of these agents on product innovation. However, the integration of functional flavor agents into food products presents challenges, particularly in optimizing interactions to maximize both sensory appeal and health benefits. Innovative approaches are required to navigate the complex interplay between flavor agents and food components, enhancing flavor stability and sensory quality. Ultimately, the strategic application of functional flavor agents in food production holds promise for fostering a health-oriented market that aligns with consumer expectations for taste and nutrition.
Collapse
Affiliation(s)
- Xin Huang
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
| | - Jiaqi Yang
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, NJ, USA
| | - Qinfei Ke
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
| | - Xingran Kou
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
| |
Collapse
|
16
|
Wang S, Xiao R, Chen Y, Ye Y, He T, Yang Y, Chen X, Chou CK. Anti-tumor necrosis factor therapy in the treatment of systemic autoinflammatory diseases: the responses of innate immune cells. J Leukoc Biol 2025; 117:qiaf026. [PMID: 40084825 DOI: 10.1093/jleuko/qiaf026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/09/2025] [Accepted: 03/01/2025] [Indexed: 03/16/2025] Open
Abstract
Systemic autoinflammatory diseases are rare conditions resulting from dysregulation of the innate immune system, culminating in repetitive bouts of systemic inflammation without the presence of external or self-antigens. Most systemic autoinflammatory diseases are associated with mutations in genes affecting the innate immune response. Tumor necrosis factor is a central player in the pathogenesis of numerous chronic inflammatory disorders, and anti-tumor necrosis factor therapy is widely used in the clinical management of systemic autoinflammatory diseases. Tumor necrosis factor inhibitors block the interaction of tumor necrosis factor with its 2 receptors, tumor necrosis factor receptor 1 and tumor necrosis factor receptor 2. These inhibitors primarily target soluble tumor necrosis factor, which mainly binds to tumor necrosis factor receptor 1, exerting anti-inflammatory effects. Interestingly, tumor necrosis factor inhibitors also affect transmembrane tumor necrosis factor, which engages tumor necrosis factor receptor 2 to initiate reverse signaling. This reverse signaling can activate innate immune cells, prevent apoptosis, or paradoxically inhibit the production of pro-inflammatory cytokines. Tumor necrosis factor inhibitors also promote the release of soluble tumor necrosis factor receptor 2, which neutralizes circulating tumor necrosis factor. Some agents targeting tumor necrosis factor receptor 2 can even act as agonists, triggering reverse signaling by binding to transmembrane tumor necrosis factor. While effective, prolonged use of tumor necrosis factor inhibitors may cause significant side effects due to the widespread expression and pleiotropic functions of tumor necrosis factor receptors. A more thorough understanding of the mechanisms underlying the action of tumor necrosis factor inhibitors is required to develop a more effective and safer treatment for systemic autoinflammatory diseases. This article reviews current studies on the role of the innate immune system in systemic autoinflammatory disease pathogenesis, the impact of anti-tumor necrosis factor therapy on innate immune cells, and perspectives on developing improved agents targeting tumor necrosis factor or its receptors.
Collapse
Affiliation(s)
- Shuyi Wang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau 999078, P. R. China
| | - Rufei Xiao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau 999078, P. R. China
| | - Yibo Chen
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau 999078, P. R. China
| | - Yishan Ye
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, P. R. China
| | - Tianzhen He
- Institute of Special Environmental Medicine, Nantong University, Nantong 226019, P. R. China
| | - Yang Yang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau 999078, P. R. China
| | - Xin Chen
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau 999078, P. R. China
- Department of Pharmaceutical Science, Faculty of Health Sciences, University of Macau, Macau 999078, P. R. China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau 999078, P. R. China
| | - Chon-Kit Chou
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau 999078, P. R. China
| |
Collapse
|
17
|
Acharjee P, Prasad SK, Singh VV, Ray M, Acharjee A. Microbiota dysbiosis impact on the immune system dysregulation in Huntington's disease (HD). INTERNATIONAL REVIEW OF NEUROBIOLOGY 2025; 180:57-94. [PMID: 40414643 DOI: 10.1016/bs.irn.2025.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2025]
Abstract
Huntington's disease (HD) is a neurodegenerative disorder characterized by motor, cognitive, and psychiatric impairments caused by Huntingtin (HTT) gene mutations, resulting in the mutant huntingtin (mHTT) protein. Both innate and adaptive immunities play crucial roles in the pathogenesis of HD. In this chapter, we explore the vital role of the gut microbiota in HD, emphasizing its impact on the immune response and brain health via the gut-brain axis. Dysbiosis influences immune responses and HD pathogenesis through microbial metabolites such as short-chain fatty acids (SCFAs) and pathogen-associated molecular patterns (PAMPs). We discuss advanced mathematical models, telemedicine, and biosensors for tracking HD progression and detecting gut dysbiosis. Nutritional interventions to restore microbiota balance and using artificial intelligence and machine learning to predict disease prognosis and personalized treatments have been highlighted. Based on their unique immune profiles and gut microbiota, personalized medicine has been proposed as a promising strategy for effective HD treatment.
Collapse
Affiliation(s)
- Papia Acharjee
- Biochemistry and Molecular Biology Unit, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Shambhu Kumar Prasad
- Biochemistry and Molecular Biology Unit, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Vishal Vikram Singh
- Biochemistry and Molecular Biology Unit, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Mukulika Ray
- Department of Molecular, Cellular, and Biochemical Sciences, Sidney Frank Hall of Life Sciences, Brown University, Providence, RI, United States
| | - Arup Acharjee
- Molecular Omics Laboratory, Department of Zoology, University of Allahabad, Prayagraj, India.
| |
Collapse
|
18
|
Barik P, Mondal S. Immunomodulatory effects of metal nanoparticles: current trends and future prospects. NANOSCALE 2025; 17:10433-10461. [PMID: 40202489 DOI: 10.1039/d5nr01030f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
The advent of nanotechnology has steered into a new era of medical advancements, with metal nanoparticles (MNPs) emerging as potent agents for precise regulation of the immune system. This review provides a comprehensive overview of the immunomodulatory roles of MNPs, including gold, silver, and metal oxide nanoparticles, in regulating innate and adaptive immunity. Additionally, we discuss the immunological effects of metal ions and metal complexes, offering a comparative analysis with nanoparticulate systems. We analyse cutting-edge strategies utilising MNPs to optimise vaccine efficacy, achieve targeted delivery to immune cells, and orchestrate inflammatory responses. Additionally, we discuss the therapeutic potential of MNPs in combating autoimmune diseases, cancers, and infectious agents, which is evaluated within the framework of precision medicine. Furthermore, we critically assess challenges such as biocompatibility, potential toxicity, and regulatory hurdles. Finally, we propose future directions for integrating MNPs with advanced delivery systems and other nanomaterials to propel the frontiers of immunotherapy. This review aims to provide a foundational understanding of MNP-mediated immunomodulation, inspiring further research and development in this burgeoning field.
Collapse
Affiliation(s)
- Puspendu Barik
- Materials Science and Engineering Program, College of Arts and Sciences, American University of Sharjah, Sharjah, 26666, United Arab Emirates
- Department of Physics, College of Arts and Sciences, American University of Sharjah, Sharjah, 26666, United Arab Emirates
| | - Samiran Mondal
- Department of Chemistry, Rammohan College (University of Calcutta), 102/1-Raja Rammohan Sarani, Kolkata 700009, West Bengal, India.
| |
Collapse
|
19
|
Wang X, Li Y, Xu K, Li Q, Yan S, Ye Y, Qi P, Li H. Unraveling the immunotoxic effects of benzo[a]pyrene on Mytilus coruscus through histopathological, enzymatic, and transcriptomic analyses. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 282:107326. [PMID: 40112584 DOI: 10.1016/j.aquatox.2025.107326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 03/06/2025] [Accepted: 03/15/2025] [Indexed: 03/22/2025]
Abstract
Benzo[a]pyrene (BaP) is a representative polycyclic aromatic hydrocarbon (PAH) known for its significant toxicity and environmental persistence, capable of causing mutations, deformities, and cancer in aquatic organisms. However, systematic studies on the effects of BaP exposure on histological damage, cell apoptosis, enzyme activity changes, and gene expression in Mytilus coruscus (M. coruscus), an important ecological indicator species, remain scarce. In this study, the biological effects of BaP on M. coruscus and the immunotoxic mechanisms following BaP exposure were evaluated using histological analysis, TUNEL assay, enzyme activity assays, and transcriptome sequencing. Our findings revealed notable histopathological changes due to BaP exposure, including hemocyte infiltration, atrophy, and deformation of digestive tubules in the digestive glands, as well as epithelial cell detachment and deformation in gills. Antioxidant enzyme activities (CAT, GSH-Px, SOD, T-AOC) varied significantly across tissues under BaP stress. Additionally, significant DNA fragmentation and increased apoptosis were observed in BaP-exposed groups compared to controls. Transcriptome analysis showed that after BaP exposure, nucleotide excision repair and innate immune response pathways were suppressed, while the metabolism of xenobiotics by cytochrome P450, glutathione biosynthesis, and apoptosis pathways were upregulated. These results elucidate the toxic mechanisms of BaP on M. coruscus and the immunotoxic responses of the mussels. This study enhances our understanding of how BaP and similar pollutants affect marine bivalves, providing valuable insights for environmental monitoring and pollutant management strategies.
Collapse
Affiliation(s)
- Xiaoya Wang
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang, 316004, PR China
| | - Yaru Li
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang, 316004, PR China
| | - Kaida Xu
- Key Laboratory of Sustainable Utilization of Technology Research for Fishery Resource of Zhejiang Province, Marine Fishery Institute of Zhejiang Province, Zhoushan 316021, PR China
| | - Qingyang Li
- Department of Endocrinology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, PR China; Harbin Medical University, 157 Baojian Road, Harbin, 150081, PR China
| | - Shuang Yan
- Department of Endocrinology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, PR China; Harbin Medical University, 157 Baojian Road, Harbin, 150081, PR China
| | - Yingying Ye
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang, 316004, PR China
| | - Pengzhi Qi
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang, 316004, PR China
| | - Hongfei Li
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang, 316004, PR China.
| |
Collapse
|
20
|
de Oliveira IM, Chaves MM. The NLRP3 Inflammasome in inflammatory diseases: Cellular dynamics and role in granuloma formation. Cell Immunol 2025; 411-412:104961. [PMID: 40339528 DOI: 10.1016/j.cellimm.2025.104961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 04/17/2025] [Accepted: 05/02/2025] [Indexed: 05/10/2025]
Abstract
The innate immune system recognizes pathogen-associated molecular patterns (PAMPs) and damage associated molecular patterns (DAMPs) through pattern recognition receptors (PRRs). Inflammasomes, cytoplasmic protein complexes, are activated in response to PAMPs and DAMPs, leading to the release of inflammatory cytokines such as IL-1β and IL-18. NLRP3 inflammasome is one of the best characterized inflammasomes and recently its activation has been associated with granuloma formation, structures that aggregate immune cells in response to infections, such as those caused by bacteria, fungi and parasites, and autoinflammatory diseases, such as sarcoidosis. Activation of NLRP3 inflammasomes in macrophages induces the release of cytokines that recruit immune cells, such as monocytes and lymphocytes, to the site of infection. Neutrophils, monocytes, T and B lymphocytes are important in the formation and maintenance of granulomas. Although NLRP3 plays a key role in the immune response, cell recruitment and granuloma formation, many aspects of its function in different cell types remain to be elucidated. In this review, we aim to outline the NLRP3 inflammasome not only as a protein complex that aids innate immune cells in combating intracellular pathogens but also as a platform with broader implications in orchestrating immune responses. This underexplored aspect of the NLRP3 inflammasome presents a novel perspective on its involvement in immunity. Thus, we review the current understanding of the role of the NLRP3 inflammasome in immune cell infiltration and its significance in the organization and formation of granulomas in inflammatory diseases.
Collapse
Affiliation(s)
- Isadora M de Oliveira
- Department of Cellular and Molecular Biology and Pathogenic Bioagents, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Mariana M Chaves
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil; Bio-Manguinhos, Oswaldo Cruz Foundation, Brazilian Ministry of Health, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
21
|
Rao Y, Qin C, Espinosa B, Wang TY, Feng S, Savas AC, Henley J, Comai L, Zhang C, Feng P. Targeting CTP synthetase 1 to restore interferon induction and impede nucleotide synthesis in SARS-CoV-2 infection. mBio 2025:e0064925. [PMID: 40298378 DOI: 10.1128/mbio.00649-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Accepted: 03/26/2025] [Indexed: 04/30/2025] Open
Abstract
Despite the global impact caused by the most recent SARS-CoV-2 pandemic, our knowledge of the molecular underpinnings of its highly infectious nature remains incomplete. We report here that SARS-CoV-2 exploits cellular CTP synthetase 1 (CTPS1) to promote CTP synthesis and suppress interferon (IFN) induction. In addition to catalyzing CTP synthesis, CTPS1 also deamidates interferon regulatory factor 3 (IRF3) to dampen interferon induction. Screening a SARS-CoV-2 expression library, we identified several viral proteins that interact with CTPS1. Functional analyses demonstrate that ORF8 and Nsp8 activate CTPS1 to deamidate IRF3 and negate IFN induction, whereas ORF7b and ORF8 activate CTPS1 to promote CTP synthesis. These results highlight CTPS1 as a signaling node that integrates cellular metabolism and innate immune response. Indeed, small-molecule inhibitors of CTPS1 deplete CTP and boost IFN induction in SARS-CoV-2-infected cells, thus effectively impeding SARS-CoV-2 replication and pathogenesis in mouse models. Our work uncovers an intricate mechanism by which a viral pathogen couples immune evasion to metabolic activation to fuel viral replication. Inhibition of the cellular CTPS1 offers an attractive means to develop antiviral therapy against highly mutagenic viruses.IMPORTANCEOur understanding of the underpinnings of highly infectious SARS-CoV-2 is rudimentary at best. We report here that SARS-CoV-2 activates CTPS1 to promote CTP synthesis and suppress IFN induction, thus coupling immune evasion to activated nucleotide synthesis. Inhibition of the key metabolic enzyme not only depletes the nucleotide pool but also boosts host antiviral defense, thereby impeding SARS-CoV-2 replication. Targeting cellular enzymes presents a strategy to counter the rapidly evolving SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Youliang Rao
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California, USA
| | - Chao Qin
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California, USA
| | - Bianca Espinosa
- Department of Chemistry, Dornsife College of Arts, Letters and Sciences, University of Southern California, Los Angeles, California, USA
| | - Ting-Yu Wang
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California, USA
| | - Shu Feng
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California, USA
| | - Ali Can Savas
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California, USA
| | - Jill Henley
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Lucio Comai
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Chao Zhang
- Department of Chemistry, Dornsife College of Arts, Letters and Sciences, University of Southern California, Los Angeles, California, USA
| | - Pinghui Feng
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
22
|
Yap JQ, Nikouee A, Lau JE, Walsh G, Zang QS. Mitochondria at the Heart of Sepsis: Mechanisms, Metabolism, and Sex Differences. Int J Mol Sci 2025; 26:4211. [PMID: 40362448 PMCID: PMC12071423 DOI: 10.3390/ijms26094211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/22/2025] [Accepted: 04/25/2025] [Indexed: 05/15/2025] Open
Abstract
Sepsis is a life-threatening condition that occurs when the body is unable to effectively combat infection, leading to systemic inflammation and multi-organ failure. Interestingly, females exhibit lower sepsis incidence and improved clinical outcomes compared to males. However, the mechanisms underlying these sex-specific differences remain poorly understood. While sex hormones have been a primary focus, emerging evidence suggests that non-hormonal factors also play contributory roles. Despite sex differences in sepsis, clinical management is the same for both males and females, with treatment focused on combating infection using antibiotics and hemodynamic support through fluid therapy. However, even with these interventions, mortality remains high, highlighting the need for more effective and targeted therapeutic strategies. Sepsis-induced cardiomyopathy (SIC) is a key contributor to multi-organ failure and is characterized by left ventricular dilation and impaired cardiac contractility. In this review, we explore sex-specific differences in sepsis and SIC, with a particular focus on mitochondrial metabolism. Mitochondria generate the ATP required for cardiac function through fatty acid and glucose oxidation, and recent studies have revealed distinct metabolic profiles between males and females, which can further differ in the context of sepsis and SIC. Targeting these metabolic pathways could provide new avenues for sepsis treatment.
Collapse
Affiliation(s)
- John Q. Yap
- Department of Surgery, Stritch School of Medicine, Loyola University Chicago, 2160 S. 1st Ave, Maywood, IL 60153, USA; (J.Q.Y.); (A.N.); (J.E.L.); (G.W.)
- Burn & Shock Trauma Research Institute, Stritch School of Medicine, Loyola University Chicago, 2160 S. 1st Ave, Maywood, IL 60153, USA
| | - Azadeh Nikouee
- Department of Surgery, Stritch School of Medicine, Loyola University Chicago, 2160 S. 1st Ave, Maywood, IL 60153, USA; (J.Q.Y.); (A.N.); (J.E.L.); (G.W.)
- Burn & Shock Trauma Research Institute, Stritch School of Medicine, Loyola University Chicago, 2160 S. 1st Ave, Maywood, IL 60153, USA
| | - Jessie E. Lau
- Department of Surgery, Stritch School of Medicine, Loyola University Chicago, 2160 S. 1st Ave, Maywood, IL 60153, USA; (J.Q.Y.); (A.N.); (J.E.L.); (G.W.)
- Burn & Shock Trauma Research Institute, Stritch School of Medicine, Loyola University Chicago, 2160 S. 1st Ave, Maywood, IL 60153, USA
| | - Gabriella Walsh
- Department of Surgery, Stritch School of Medicine, Loyola University Chicago, 2160 S. 1st Ave, Maywood, IL 60153, USA; (J.Q.Y.); (A.N.); (J.E.L.); (G.W.)
- Burn & Shock Trauma Research Institute, Stritch School of Medicine, Loyola University Chicago, 2160 S. 1st Ave, Maywood, IL 60153, USA
| | - Qun Sophia Zang
- Department of Surgery, Stritch School of Medicine, Loyola University Chicago, 2160 S. 1st Ave, Maywood, IL 60153, USA; (J.Q.Y.); (A.N.); (J.E.L.); (G.W.)
- Burn & Shock Trauma Research Institute, Stritch School of Medicine, Loyola University Chicago, 2160 S. 1st Ave, Maywood, IL 60153, USA
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, 2160 S. 1st Ave, Maywood, IL 60153, USA
- Cardiovascular Research Institute, Stritch School of Medicine, Loyola University Chicago, 2160 S. 1st Ave, Maywood, IL 60153, USA
| |
Collapse
|
23
|
Li W, Liu T, Chen Y, Sun Y, Li C, Dong Y. Regulation and therapeutic potential of NLRP3 inflammasome in intestinal diseases. J Leukoc Biol 2025; 117:qiaf014. [PMID: 40276926 DOI: 10.1093/jleuko/qiaf014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Indexed: 04/26/2025] Open
Abstract
The NOD-like receptor family, particularly the protein 3 that contains the pyrin domain (NLRP3), is an intracellular sensing protein complex responsible for detecting patterns associated with pathogens and injuries. NLRP3 plays a crucial role in the innate immune response. Currently, a wide range of research has indicated the crucial importance of NLRP3 in various inflammatory conditions. Similarly, the NLRP3 inflammasome plays a significant role in preserving intestinal balance and impacting the advancement of diseases. In addition, several randomized trials have demonstrated the safety and efficacy of targeting NLRP3 in the treatment of colitis, colorectal cancer, and related diseases. This review explores the mechanisms of NLRP3 assembly and activation in the gut. We describe its pathological significance in intestinal diseases. Finally, we summarize current and future therapeutic approaches targeting NLRP3 for intestinal diseases.
Collapse
Affiliation(s)
- Wenxue Li
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China
| | - Tianya Liu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China
| | - Yaoxing Chen
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China
| | - Yan Sun
- Department of Horticulture and Landscape Architecture, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China
| | - Chengzhong Li
- Department of Horticulture and Landscape Architecture, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China
| | - Yulan Dong
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China
| |
Collapse
|
24
|
Barman P, Hazarika S, Roy K, Rawal RK, Konwar R. Phytochemical analysis of leaf extract of Piper nigrum and investigation of its biological activities. Inflammopharmacology 2025:10.1007/s10787-025-01701-5. [PMID: 40251438 DOI: 10.1007/s10787-025-01701-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 01/31/2025] [Indexed: 04/20/2025]
Abstract
BACKGROUND This study investigates the phytoconstituents of the less explored leaf of Piper nigrum, a common ethnomedicinal plant as an alternate source for multiple bioactivities. METHODS Hydro-ethanolic (1:4) extract of Piper nigrum leaves (PNLE) prepared and profiled using liquid chromatography and mass spectrometry for identification of phytomolecules. Anti-oxidant activity, intracellular reactive oxygen species (ROS) expression, phagocytosis activity, and cytokine expression were estimated using cell-free and cell-based assays. Anti-cancer activity was determined with cancer cell viability, migration inhibition and colony-formation assay. Apoptosis and membrane depolarization assay were done using fluorescent microscopic staining methods while network pharmacology, and molecular docking analysis were done using open source and online tools. RESULTS Major phytomolecules identified in PNLE were pentanamide N,N-didecyl, piperettine, curcumin, myristicin, pipernonaline, sesamin, and lupenone. PNLE exhibited anti-bacterial activity with higher activity against Gram-positive bacteria, Staphylococcus aureus. PNLE also showed anti-oxidant and anti-inflammatory activity through neutralization of free radicals; inhibition of intracellular ROS generation; inhibition of phagocytosis and reduction of cytokine (IL-6 and TNF-α) levels. PNLE showed anti-proliferative activity against human breast cancer cells (MDA-MB-231), rat mammary tumor cells (LA7), and mouse melanoma cells (B16-F10) with highest activity against MDA-MB-231 cells. The extract did not inhibit human kidney cells (HEK-293). Further, PNLE treatment significantly inhibited cell migration and colony formation of MDA-MB-231 cells. Fluorescent staining techniques confirmed induction of apoptosis in cancer cells by PNLE. Further, network pharmacology and molecular docking studies revealed that the identified PNLE phytomolecules share 97 targets of out of potential breast cancer and inflammation-related target genes with four best common target proteins among the top hub genes and sesamin showed the highest binding affinity with these important cellular targets. CONCLUSIONS Overall, the phytochemical profile of PNLE showed clear presence of important phytomolecules and their association with critical human cellular mechanistic pathways responsible for exhibited bioactivities. This study further establishes the leaf of P. nigrum as an additional anatomical plant part with potent medicinal properties and as a potential renewable source for bioactive phyomolecules.
Collapse
Affiliation(s)
- Pankaj Barman
- Centre for Preclinical Studies (CPS), Biological Science and Technology Division (BSTD), CSIR-North East Institute of Science and Technology (NEIST), Jorhat, Assam, 785006, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Srija Hazarika
- Natural Product Chemistry Group, Chemical Science and Technology Division (CSTD), CSIR-North East Institute of Science and Technology, Jorhat, 785006, India
| | - Kallol Roy
- Centre for Preclinical Studies (CPS), Biological Science and Technology Division (BSTD), CSIR-North East Institute of Science and Technology (NEIST), Jorhat, Assam, 785006, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ravindra K Rawal
- Natural Product Chemistry Group, Chemical Science and Technology Division (CSTD), CSIR-North East Institute of Science and Technology, Jorhat, 785006, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Rituraj Konwar
- Centre for Preclinical Studies (CPS), Biological Science and Technology Division (BSTD), CSIR-North East Institute of Science and Technology (NEIST), Jorhat, Assam, 785006, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
25
|
Anash M, Maparu K, Singh S. Unraveling cell death mechanisms in traumatic brain injury: dynamic roles of ferroptosis and necroptosis. Mol Biol Rep 2025; 52:381. [PMID: 40208458 DOI: 10.1007/s11033-025-10489-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 04/01/2025] [Indexed: 04/11/2025]
Abstract
Traumatic brain injury (TBI) remains a major cause of mortality and long-term disability worldwide, with ferroptosis and necroptosis emerging as key drivers of secondary neuronal damage. Ferroptosis, characterized by iron-dependent lipid peroxidation and mitochondrial dysfunction, exacerbates oxidative stress and neuronal cell death. In parallel, necroptosis, mediated by receptor-interacting protein kinases (RIPK1 and RIPK3), amplifies inflammation through membrane rupture and the release of cellular components. Mitochondrial dynamics, involving fission and fusion processes, play a dual role in regulating these pathways. While mitochondrial fusion preserves cellular integrity and reduces oxidative stress, excessive mitochondrial fission driven by dynamin-related protein 1 (DRP1) accelerates necroptotic signaling and neuronal injury. This intricate interplay between ferroptosis, necroptosis, and mitochondrial dynamics highlights potential therapeutic targets. Modulating these pathways through tailored interventions could reduce neuronal damage, mitigate neuroinflammation, and improve functional outcomes in TBI patients. Advancing our understanding of these mechanisms is essential for developing precision therapies that address the complex pathology of traumatic brain injury.
Collapse
Affiliation(s)
- Mohd Anash
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Kousik Maparu
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Shamsher Singh
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India.
| |
Collapse
|
26
|
Sarkar L, Liu G, Acharya D, Zhu J, Sayyad Z, Gack MU. MDA5 ISGylation is crucial for immune signaling to control viral replication and pathogenesis. Proc Natl Acad Sci U S A 2025; 122:e2420190122. [PMID: 40184173 PMCID: PMC12002354 DOI: 10.1073/pnas.2420190122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 03/06/2025] [Indexed: 04/05/2025] Open
Abstract
The posttranslational modification (PTM) of innate immune sensor proteins by ubiquitin or ubiquitin-like proteins is crucial for regulating antiviral host responses. The cytoplasmic dsRNA receptor melanoma differentiation-associated protein 5 (MDA5) undergoes several PTMs including ISGylation within its first caspase activation and recruitment domain (CARD), which promotes MDA5 signaling. However, the relevance of MDA5 ISGylation for antiviral immunity in an infected organism has been elusive. Here, we generated knock-in mice (MDA5K23R/K43R) in which the two major ISGylation sites, K23 and K43, in MDA5, were mutated. Primary cells derived from MDA5K23R/K43R mice exhibited abrogated endogenous MDA5 ISGylation and an impaired ability of MDA5 to form oligomeric assemblies, leading to blunted cytokine responses to MDA5 RNA-agonist stimulation or infection with encephalomyocarditis virus (EMCV) or West Nile virus. Phenocopying MDA5-/- mice, the MDA5K23R/K43R mice infected with EMCV displayed increased myocardial injury and mortality, elevated viral titers, and an ablated induction of cytokines and chemokines compared to WT mice. Molecular studies identified human HERC5 (and its functional murine homolog HERC6) as the primary E3 ligases responsible for MDA5 ISGylation and activation. Taken together, these findings establish the importance of CARD ISGylation for MDA5-mediated RNA virus restriction, promoting potential avenues for immunomodulatory drug design for antiviral or anti-inflammatory applications.
Collapse
Affiliation(s)
- Lucky Sarkar
- Florida Research and Innovation Center, Cleveland Clinic, Port St. Lucie, FL34987
| | - GuanQun Liu
- Florida Research and Innovation Center, Cleveland Clinic, Port St. Lucie, FL34987
| | - Dhiraj Acharya
- Florida Research and Innovation Center, Cleveland Clinic, Port St. Lucie, FL34987
| | - Junji Zhu
- Florida Research and Innovation Center, Cleveland Clinic, Port St. Lucie, FL34987
| | - Zuberwasim Sayyad
- Florida Research and Innovation Center, Cleveland Clinic, Port St. Lucie, FL34987
| | - Michaela U. Gack
- Florida Research and Innovation Center, Cleveland Clinic, Port St. Lucie, FL34987
| |
Collapse
|
27
|
Muhammad I, Contes K, Bility MT, Tang Q. Chasing Virus Replication and Infection: PAMP-PRR Interaction Drives Type I Interferon Production, Which in Turn Activates ISG Expression and ISGylation. Viruses 2025; 17:528. [PMID: 40284971 PMCID: PMC12031425 DOI: 10.3390/v17040528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Accepted: 04/02/2025] [Indexed: 04/29/2025] Open
Abstract
The innate immune response, particularly the interferon-mediated pathway, serves as the first line of defense against viral infections. During virus infection, viral pathogen-associated molecular patterns (PAMPs) are recognized by host pattern recognition receptors (PRRs), triggering downstream signaling pathways. This leads to the activation of transcription factors like IRF3, IRF7, and NF-κB, which translocate to the nucleus and induce the production of type I interferons (IFN-α and IFN-β). Once secreted, type I interferons bind to their receptors (IFNARs) on the surfaces of infected and neighboring cells, activating the JAK-STAT pathway. This results in the formation of the ISGF3 complex (composed of STAT1, STAT2, and IRF9), which translocates to the nucleus and drives the expression of interferon-stimulated genes (ISGs). Some ISGs exert antiviral effects by directly or indirectly blocking infection and replication. Among these ISGs, ISG15 plays a crucial role in the ISGylation process, a ubiquitin-like modification that tags viral and host proteins, regulating immune responses and inhibiting viral replication. However, viruses have evolved counteractive strategies to evade ISG15-mediated immunity and ISGylation. This review first outlines the PAMP-PRR-induced pathways leading to the production of cytokines and ISGs, followed by a summary of ISGylation's role in antiviral defense and viral evasion mechanisms targeting ISG15 and ISGYlation.
Collapse
Affiliation(s)
| | | | | | - Qiyi Tang
- Department of Microbiology, Howard University College of Medicine, Washington, DC 20059, USA; (I.M.); (K.C.); (M.T.B.)
| |
Collapse
|
28
|
Adil NA, Omo-Erigbe C, Yadav H, Jain S. The Oral-Gut Microbiome-Brain Axis in Cognition. Microorganisms 2025; 13:814. [PMID: 40284650 PMCID: PMC12029813 DOI: 10.3390/microorganisms13040814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/27/2025] [Accepted: 03/28/2025] [Indexed: 04/29/2025] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by cognitive decline and neuronal loss, affecting millions worldwide. Emerging evidence highlights the oral microbiome-a complex ecosystem of bacteria, fungi, viruses, and protozoa as a significant factor in cognitive health. Dysbiosis of the oral microbiome contributes to systemic inflammation, disrupts the blood-brain barrier, and promotes neuroinflammation, processes increasingly implicated in the pathogenesis of AD. This review examines the mechanisms linking oral microbiome dysbiosis to cognitive decline through the oral-brain and oral-gut-brain axis. These interconnected pathways enable bidirectional communication between the oral cavity, gut, and brain via neural, immune, and endocrine signaling. Oral pathogens, such as Porphyromonas gingivalis, along with virulence factors, including lipopolysaccharides (LPS) and gingipains, contribute to neuroinflammation, while metabolic byproducts, such as short-chain fatty acids (SCFAs) and peptidoglycans, further exacerbate systemic immune activation. Additionally, this review explores the influence of external factors, including diet, pH balance, medication use, smoking, alcohol consumption, and oral hygiene, on oral microbial diversity and stability, highlighting their role in shaping cognitive outcomes. The dynamic interplay between the oral and gut microbiomes reinforces the importance of microbial homeostasis in preserving systemic and neurological health. The interventions, including probiotics, prebiotics, and dietary modifications, offer promising strategies to support cognitive function and reduce the risk of neurodegenerative diseases, such as AD, by maintaining a diverse microbiome. Future longitudinal research is needed to identify the long-term impact of oral microbiome dysbiosis on cognition.
Collapse
Affiliation(s)
- Noorul Ain Adil
- USF Center for Microbiome Research, Microbiomes Institute, Tampa, FL 33612, USA; (N.A.A.); (C.O.-E.); (H.Y.)
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL 33612, USA
| | - Christabel Omo-Erigbe
- USF Center for Microbiome Research, Microbiomes Institute, Tampa, FL 33612, USA; (N.A.A.); (C.O.-E.); (H.Y.)
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL 33612, USA
| | - Hariom Yadav
- USF Center for Microbiome Research, Microbiomes Institute, Tampa, FL 33612, USA; (N.A.A.); (C.O.-E.); (H.Y.)
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL 33612, USA
| | - Shalini Jain
- USF Center for Microbiome Research, Microbiomes Institute, Tampa, FL 33612, USA; (N.A.A.); (C.O.-E.); (H.Y.)
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL 33612, USA
| |
Collapse
|
29
|
Cucu CI, Giurcăneanu C, Mihai MM, Andronic T, Ancuta I, Popa MI, Macovei IS, Popa LG. Unraveling the Skin Microbiome in Hidradenitis Suppurativa: Implications for Treatment and Disease Progression. J Clin Med 2025; 14:2424. [PMID: 40217873 PMCID: PMC11989415 DOI: 10.3390/jcm14072424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/21/2025] [Accepted: 03/30/2025] [Indexed: 04/14/2025] Open
Abstract
Background: Hidradenitis suppurativa (HS) is a chronic, disabling, and disfiguring inflammatory disease with a complex, incompletely elucidated pathogenesis. The role of skin dysbiosis in the development and progression of HS has not yet been clarified. Methods: We performed an observational, prospective culture-based study that included 40 HS patients and analyzed the bacterial load and diversity in HS skin lesions, their correlation with disease severity, and several host and environmental factors. Additionally, we investigated the prevalence of antibiotic resistance and determined the resistance profile of bacterial strains isolated from chronic HS lesions. Results: An impressive number and diversity of bacterial strains were isolated from both superficial and deep HS lesions. 201 aerobic and anaerobic bacterial strains were isolated, polymicrobial growth being detected in the majority of samples. The most frequently isolated bacteria were Staphylococcus epidermidis, Staphylococcus aureus, Staphylococcus lugdunensis, Peptoniphilus spp., and Enterococcus faecalis in superficial lesions and Staphylococcus epidermidis, Staphylococcus aureus, and Corynebacterium tuberculostearicum in deep lesions. A significantly higher bacterial density and diversity was found in male patients, regardless of the affected area and in patients with severe HS. The proportion of bacterial strains resistant to antibiotics was lower in our study (8.95%) compared to the previously reported data. Conclusions: Our findings indicate dysbiosis as a key player in the initiation and maintenance of the inflammatory process in HS. Further large-scale, prospective studies are required to comprehensively characterize the microbiological landscape of HS and shed light on its contribution in the pathogenesis of the disease.
Collapse
Affiliation(s)
- Corina Ioana Cucu
- Department of Dermatology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.I.C.)
| | - Călin Giurcăneanu
- Department of Dermatology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.I.C.)
| | - Mara Madalina Mihai
- Department of Dermatology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.I.C.)
| | - Teodora Andronic
- Department of Dermatology, Colentina Clinical Hospital, 020125 Bucharest, Romania
| | - Ioan Ancuta
- Department of Internal Medicine, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Mircea Ioan Popa
- Department of Microbiology II, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Ioana Sabina Macovei
- Department of Microbiology II, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Liliana Gabriela Popa
- Department of Dermatology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.I.C.)
| |
Collapse
|
30
|
Mohapatra B, Lavudi K, Kokkanti RR, Patnaik S. Regulation of NLRP3/TRIM family signaling in gut inflammation and colorectal cancer. Biochim Biophys Acta Rev Cancer 2025; 1880:189271. [PMID: 39864469 DOI: 10.1016/j.bbcan.2025.189271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/13/2025] [Accepted: 01/16/2025] [Indexed: 01/28/2025]
Abstract
CRC (Colorectal cancer) ranks among the most prevalent tumors in humans and remains a leading cause of cancer-related mortality worldwide. Numerous studies have highlighted the connection between inflammasome over-activation and the initiation and progression of CRC. The activation of the NLRP3 (NOD-like receptor family, pyrin domain containing 3) inflammasome is dependent on the nuclear NF-kβ (Nuclear Factor kappa-light-chain-enhancer of activated B cells) pathway, leading to the maturation and release of inflammatory cytokines such as IL-1ß (Interleukin 1 beta) and IL-18 (Interleukin 18). While inflammation is crucial for defense mechanisms and tissue repair, excessive information can pose significant risks. Mounting evidence suggests that overactivation of the inflammasome contributes to the pathogenesis of inflammatory diseases. Consequently, there is a concerted effort to tightly regulate inflammasome activity and mitigate excessive inflammatory responses, particularly in conditions such as IBD (Inflammatory Bowel Disease), which includes Ulcerative Colitis and Crohn's Disease. The tripartite motif (TRIM) protein family, characterized by a conserved structure and rapid evolutionary diversification, includes members with critical roles in ubiquitination and other regulatory functions. Their importance in modulating inflammatory responses is widely acknowledged. This article aims to investigate the interplay between TRIM proteins and the NLRP3 Inflammasome in CRC and gut inflammation, offering insights for future research endeavors and potential therapeutic strategies.
Collapse
Affiliation(s)
- Bibhashee Mohapatra
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Bhubaneswar, Odisha 751024, India
| | - Kousalya Lavudi
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH 43210, United States; Comprehensive cancer center, The Ohio State University, Columbus, OH, United States
| | - Rekha Rani Kokkanti
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Bhubaneswar, Odisha 751024, India
| | - Srinivas Patnaik
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Bhubaneswar, Odisha 751024, India.
| |
Collapse
|
31
|
Tu L, Xing B, Ma S, Zou Z, Wang S, Feng J, Cheng M, Jin Y. A review on polysaccharide-based tumor targeted drug nanodelivery systems. Int J Biol Macromol 2025; 304:140820. [PMID: 39933669 DOI: 10.1016/j.ijbiomac.2025.140820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 02/04/2025] [Accepted: 02/07/2025] [Indexed: 02/13/2025]
Abstract
The tumor-targeted drug delivery system (TTDNS) uses nanocarriers to transport chemotherapeutic agents to target tumor cells or tissues precisely. This innovative approach considerably increases the effective concentration of these drugs at the tumor site, thereby enhancing their therapeutic efficacy. Many chemotherapeutic agents face challenges, such as low bioavailability, high cytotoxicity, and inadequate drug resistance. To address these obstacles, TTDNS comprising natural polysaccharides have gained increasing popularity in the field of nanotechnology owing to their ability to improve safety, bioavailability, and biocompatibility while reducing toxicity. In addition, it enhances permeability and allows for controlled drug delivery and release. This review focuses on the sources of natural polysaccharides and their direct and indirect mechanisms of anti-tumor activity. We also explored the preparation of various polysaccharide-based nanocarriers, including nanoparticles, nanoemulsions, nanohydrogels, nanoliposomes, nanocapsules, nanomicelles, nanocrystals, and nanofibers. Furthermore, this review delves into the versatile applications of polysaccharide-based nanocarriers, elucidating their capabilities for in vivo targeting, controlled release, and responsiveness to endogenous and exogenous stimuli, such as pH, reactive oxygen species, glutathione, light, ultrasound, and magnetic fields. This sophisticated design substantially enhances the chemotherapeutic efficacy of the encapsulated drugs at tumor sites and provides a basis for preclinical and clinical research. However, the in vivo stability, drug loading, and permeability of these preparations into tumor tissues still need to be improved. Most of the currently developed biomarker-sensitive polysaccharide nanocarriers are still in the laboratory stage, more innovative delivery mechanisms and clinical studies are needed to develop commercial nanocarriers for medical use.
Collapse
Affiliation(s)
- Liangxing Tu
- Jiangxi University of Chinese Medicine, Nanchang 330006, PR China
| | - Banghuai Xing
- Jiangxi University of Chinese Medicine, Nanchang 330006, PR China
| | - Shufei Ma
- Jiangxi University of Chinese Medicine, Nanchang 330006, PR China
| | - Zijian Zou
- Jiangxi University of Chinese Medicine, Nanchang 330006, PR China
| | - Siying Wang
- Jiangxi University of Chinese Medicine, Nanchang 330006, PR China
| | - Jianfang Feng
- Jiangxi University of Chinese Medicine, Nanchang 330006, PR China; Guangxi University of Chinese Medicine, Nanning 530200, PR China.
| | - Meng Cheng
- Jiangxi University of Chinese Medicine, Nanchang 330006, PR China.
| | - Yi Jin
- Jiangxi University of Chinese Medicine, Nanchang 330006, PR China.
| |
Collapse
|
32
|
Wang Z, Modave E, Delfini M, Appeltans I, Boeckxstaens G, Stakenborg N. Large Peritoneal Macrophages Play No Role in the Pathogenesis of Postoperative Ileus Induced by Intestinal Manipulation. Neurogastroenterol Motil 2025; 37:e14997. [PMID: 39777769 DOI: 10.1111/nmo.14997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/16/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025]
Abstract
INTRODUCTION Postoperative ileus (POI) is an iatrogenic disorder marked by temporary impaired gastrointestinal (GI) motility post-abdominal surgery. Surgical handling of the intestine activates resident macrophages (Mfs), leading to inflammatory cytokine release and leukocyte recruitment into the muscularis, which compromises intestinal contractility. The mechanisms behind this activation are unclear. Recent studies suggest peritoneal Mfs, particularly large peritoneal macrophages (LPMs), might play a role in sterile intestinal inflammation by rapidly recruiting to the serosal layer of the gut and aiding in tissue damage resolution. METHODS To identify immune cells involved in the early phase of POI, single-cell RNA sequencing (scRNA-seq) was conducted. The migration of LPMs post-surgery was studied using adoptive transfer techniques. LPMs were depleted via intraperitoneal injection of clodronate liposomes. Subsequently, flow cytometry, quantitative PCR (qPCR), and immunofluorescence were performed to assess the impact of LPM depletion and analyze cell populations and inflammatory effects. RESULTS (1) Intestinal manipulation (IM) leads to the accumulation of monocytes, neutrophils, mature Mfs, CD8+ T cells, and LPMs within 2 h post-surgery. (2) Heparin treatment does not affect gut transit or reduce IL-6, IL-1a, and IL-1b expression in the early phase of POI. (3) Depletion of LPMs via clodronate liposome does not prevent monocyte, neutrophil, and Mfs infiltration in the muscularis externa, nor does it improve gut transit or reduce cytokine expression. (4) LPMs migrate to the serosa after IM but do not enter the muscularis externa. CONCLUSION AND INFERENCES LPMs adhere to the intestinal serosa following intestinal manipulation but do not migrate into the intestinal muscularis or participate in the inflammatory response and delayed transit. Consequently, LPMs are not involved in the pathogenesis of POI.
Collapse
Affiliation(s)
- Zheng Wang
- Center for Intestinal Neuro-Immune Interactions, Translational Research Center for GI Disorders (TARGID), Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| | - Elodie Modave
- Center for Intestinal Neuro-Immune Interactions, Translational Research Center for GI Disorders (TARGID), Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| | - Marcello Delfini
- Center for Intestinal Neuro-Immune Interactions, Translational Research Center for GI Disorders (TARGID), Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| | - Iris Appeltans
- Center for Intestinal Neuro-Immune Interactions, Translational Research Center for GI Disorders (TARGID), Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| | - Guy Boeckxstaens
- Center for Intestinal Neuro-Immune Interactions, Translational Research Center for GI Disorders (TARGID), Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| | - Nathalie Stakenborg
- Center for Intestinal Neuro-Immune Interactions, Translational Research Center for GI Disorders (TARGID), Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| |
Collapse
|
33
|
Gandhi S, Puravankara S, Mondal AK, Chauhan A, Yadav SP, Chattopadhyay K, Mukhopadhaya A. Vibrio cholerae cytolysin induces pro-inflammatory and death signals through novel TLR assembly. PLoS Pathog 2025; 21:e1013033. [PMID: 40184418 PMCID: PMC12002540 DOI: 10.1371/journal.ppat.1013033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 04/16/2025] [Accepted: 03/10/2025] [Indexed: 04/06/2025] Open
Abstract
Vibrio cholerae cytolysin (VCC) is a potent exotoxin secreted by Vibrio cholerae, the etiological agent of the severe diarrheal disease cholera. VCC is a membrane-damaging pore-forming toxin by nature, and is well known for its ability to cause host cell death. Using wild type V. cholerae and VCC-deleted mutant variant of the bacteria, we show that VCC plays an important role in the inflammatory responses during infection in mice. This observation supports that VCC can function as a pathogen-associated molecular pattern (PAMP). Toll-like receptors (TLRs) are the key initiators of inflammation. Upon ligand recognition, TLR1 and TLR6 generally form heterodimers with TLR2 for triggering pro-inflammatory signals. In the present study, we show that VCC engages novel TLR1/4 heterodimer assembly, and elicits pro-inflammatory responses in both dendritic cells (DCs) and macrophages. Along with TLR1/4, VCC-induced pro-inflammatory response in macrophages also involves TLR2. It has been shown earlier that VCC is implicated in the V. cholerae-mediated killing of the immune cells following biofilm formation. Here we show that TLRs play an important role in VCC-mediated killing of DCs and macrophages following V. cholerae infection. Interestingly, we find that TLR1/4 signalling is specifically crucial for the VCC-induced inflammatory and death responses in DCs, as well as in mice. Additionally, we observe that similar to DCs and macrophages, TLR1/4-MyD88 play an important role in VCC-mediated inflammatory responses in another crucial immune cell type, neutrophils. Taken together, our study shows novel TLR heterodimer formation, differential recognition of the same ligand by different TLR combination in cell type-dependent manner, and their implications in the context of V. cholerae and VCC-induced immune cell death and mortality.
Collapse
Affiliation(s)
- Shraddha Gandhi
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, Punjab, India
| | - Sindhoora Puravankara
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, Punjab, India
| | - Anish Kumar Mondal
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, Punjab, India
| | - Aakanksha Chauhan
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, Punjab, India
| | - Shashi Prakash Yadav
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, Punjab, India
| | - Kausik Chattopadhyay
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, Punjab, India
| | - Arunika Mukhopadhaya
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, Punjab, India
| |
Collapse
|
34
|
Saadh MJ, Allela OQB, Kareem RA, Kyada A, Malathi H, Nathiya D, Bhanot D, Sameer HN, Hamad AK, Athab ZH, Adil M. Immune cell dysfunction: A critical player in development of diabetes complications. Curr Res Transl Med 2025; 73:103510. [PMID: 40339429 DOI: 10.1016/j.retram.2025.103510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 03/08/2025] [Accepted: 03/28/2025] [Indexed: 05/10/2025]
Abstract
Diabetes mellitus, a global health challenge, influences millions worldwide by leading to severe complications and premature death. A key factor in its pathogenesis is immune cell dysfunction, which aggravates both type 1 and type 2 diabetes. The important role that immune cell dysregulation plays in the emergence of diabetes complications is investigated in this research. It highlights the manner in which diabetes compromises the immune system's adaptive as well as innate responses. Key defects in innate immunity include impaired pathogen recognition, and dysfunctional behavior of macrophages, neutrophils, and natural killer (NK) cells. Additionally, the complement system is dysregulated, and cytokine production is altered, affecting overall immune signaling. The study investigates the dysfunction of several T and B cell subsets, such as CD4+ T cells, CD8+ T cells, regulatory T cells, and B cells, in relation to adaptive immunity. These dysfunctions collectively contribute to chronic inflammation, reduced pathogen clearance, and increased susceptibility to infections, ultimately exacerbating diabetes complications. Developing targeted therapies to reduce diabetes complications and enhance patient outcomes requires an understanding of these mechanisms.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan
| | | | | | - Ashishkumar Kyada
- Marwadi University Research Center, Department of Pharmacy, Faculty of Health Sciences, Marwadi University, Rajkot 360003, Gujarat, India
| | - H Malathi
- Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Deepak Nathiya
- Department of Pharmacy Practice, Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - Deepak Bhanot
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India
| | - Hayder Naji Sameer
- Collage of Pharmacy, National University of Science and Technology, Dhi Qar, 64001, Iraq
| | | | - Zainab H Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | | |
Collapse
|
35
|
Loying R, Lamyanba L, Borah A, Thokchom R, Cukhamu V, Barman H, Sharmah B, Afzal NU, Kabir ME, Das AM, Kalita J, Mukherjee PK, Sharma N, Manna P. Endotoxin (lipopolysaccharide)-induced inflammation in albino rat and macrophages (RAW 264.7): Piper mullesua leaf extract as promising therapeutic against inflammatory pathophysiology via SOCS1 activation and phospho-NF-κB/JAK1/STAT1 inhibition. Inflammopharmacology 2025:10.1007/s10787-025-01713-1. [PMID: 40146441 DOI: 10.1007/s10787-025-01713-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 02/21/2025] [Indexed: 03/28/2025]
Abstract
The present investigation has been attempted for scientifically validating the traditional uses of Piper mullesua against inflammatory pathophysiology using both in vivo (albino rats) and in vitro (macrophage cells, RAW 264.7) models of inflammation caused by an endotoxin (lipopolysaccharide, LPS). Oral gavaging with PMHAE, hydroalcoholic extract of Piper mullesua leaves, dose-responsively (50, 100, or 200 mg/kg BW, 14 days) restored any alteration in the concentration of serum inflammatory cytokines, IL-6, TNF-α, IL-4, and IL-10 and decreased prostaglandin (PGE2) and nitrite count in rats injected (i.p.) with LPS (10 mg/kg BW). PMHAE supplementation (5, 10, or 20 µg/mL) further attenuated MCP-1, IL-6, and TNF-α, and increased IL-10 and IL-4 secretion and mRNA expression in LPS-treated (50 ng/mL) macrophages. PMHAE also enhanced phagocytic potential while attenuated ROS counts in LPS-treated cells. Additionally, PMHAE supplementation increased SOCS1 protein expression and decreased NF-κB phosphorylation (Serine 536), along with the expression of JAK1/STAT1 proteins in LPS-treated cells. Treatment with PMHAE did not cause any toxicity to animals and cultured cells. Phytochemical analysis (LC-MS/GC-MS) revealed various compounds, including piperine, piperlongumine, pipernonaline, phytol, methyl eugenol, and pinene, contributing to anti-inflammatory potential of PMHAE. These findings suggested Piper mullesua as a safe, effective, and potential anti-inflammatory avenue for therapeutic exploration in inflammatory pathophysiology.
Collapse
Affiliation(s)
- Rikraj Loying
- Centre for Infectious Diseases, CSIR-North East Institute of Science and Technology (NEIST), Jorhat, 785006, Assam, India
- Academy of Scientific and Innovative Research (Acsir), Ghaziabad, 201002, India
| | - Laikangbam Lamyanba
- Animal Bioresource Division, Institute of Bioresources and Sustainable Development (IBSD), Takyelpat, Imphal, 795001, Manipur, India
| | - Anupriya Borah
- Academy of Scientific and Innovative Research (Acsir), Ghaziabad, 201002, India
| | - Reparani Thokchom
- Animal Bioresource Division, Institute of Bioresources and Sustainable Development (IBSD), Takyelpat, Imphal, 795001, Manipur, India
| | - Vekuno Cukhamu
- Chemical Sciences and Technology Division, CSIR-North East Institute of Science and Technology (NEIST), Jorhat, 785006, Assam, India
| | - Hiranmoy Barman
- Centre for Infectious Diseases, CSIR-North East Institute of Science and Technology (NEIST), Jorhat, 785006, Assam, India
- Academy of Scientific and Innovative Research (Acsir), Ghaziabad, 201002, India
| | - Bhaben Sharmah
- Centre for Infectious Diseases, CSIR-North East Institute of Science and Technology (NEIST), Jorhat, 785006, Assam, India
- Academy of Scientific and Innovative Research (Acsir), Ghaziabad, 201002, India
| | - Nazim Uddin Afzal
- Centre for Infectious Diseases, CSIR-North East Institute of Science and Technology (NEIST), Jorhat, 785006, Assam, India
- Academy of Scientific and Innovative Research (Acsir), Ghaziabad, 201002, India
| | - Mir Ekbal Kabir
- Centre for Infectious Diseases, CSIR-North East Institute of Science and Technology (NEIST), Jorhat, 785006, Assam, India
- Academy of Scientific and Innovative Research (Acsir), Ghaziabad, 201002, India
| | - Archana Moni Das
- Centre for Infectious Diseases, CSIR-North East Institute of Science and Technology (NEIST), Jorhat, 785006, Assam, India
- Chemical Sciences and Technology Division, CSIR-North East Institute of Science and Technology (NEIST), Jorhat, 785006, Assam, India
| | - Jatin Kalita
- Centre for Infectious Diseases, CSIR-North East Institute of Science and Technology (NEIST), Jorhat, 785006, Assam, India
- Academy of Scientific and Innovative Research (Acsir), Ghaziabad, 201002, India
| | - Pulok Kumar Mukherjee
- Animal Bioresource Division, Institute of Bioresources and Sustainable Development (IBSD), Takyelpat, Imphal, 795001, Manipur, India
| | - Nanaocha Sharma
- Animal Bioresource Division, Institute of Bioresources and Sustainable Development (IBSD), Takyelpat, Imphal, 795001, Manipur, India.
| | - Prasenjit Manna
- Centre for Infectious Diseases, CSIR-North East Institute of Science and Technology (NEIST), Jorhat, 785006, Assam, India.
- Academy of Scientific and Innovative Research (Acsir), Ghaziabad, 201002, India.
| |
Collapse
|
36
|
Satyanarayanan SK, Yip TF, Han Z, Zhu H, Qin D, Lee SMY. Role of toll-like receptors in post-COVID-19 associated neurodegenerative disorders? Front Med (Lausanne) 2025; 12:1458281. [PMID: 40206484 PMCID: PMC11979212 DOI: 10.3389/fmed.2025.1458281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 03/12/2025] [Indexed: 04/11/2025] Open
Abstract
In the intricate realm of interactions between hosts and pathogens, Toll-like receptors (TLRs), which play a crucial role in the innate immune response, possess the ability to identify specific molecular signatures. This includes components originating from pathogens such as SARS-CoV-2, as well as the resulting damage-associated molecular patterns (DAMPs), the endogenous molecules released after cellular damage. A developing perspective suggests that TLRs play a central role in neuroinflammation, a fundamental factor in neurodegenerative conditions like Alzheimer's and Parkinson's disease (PD). This comprehensive review consolidates current research investigating the potential interplay between TLRs, their signaling mechanisms, and the processes of neurodegeneration following SARS-CoV-2 infection with an aim to elucidate the involvement of TLRs in the long-term neurological complications of COVID-19 and explore the potential of targeting TLRs as a means of implementing intervention strategies for the prevention or treatment of COVID-19-associated long-term brain outcomes.
Collapse
Affiliation(s)
- Senthil Kumaran Satyanarayanan
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong Science Park, Hong Kong, Hong Kong SAR, China
| | - Tsz Fung Yip
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Zixu Han
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong Science Park, Hong Kong, Hong Kong SAR, China
| | - Huachen Zhu
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Dajiang Qin
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong Science Park, Hong Kong, Hong Kong SAR, China
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Suki Man Yan Lee
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong Science Park, Hong Kong, Hong Kong SAR, China
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
37
|
Ning M, Lu D, Liang D, Ren PG. Single-cell RNA sequencing advances in revealing the development and progression of MASH: the identifications and interactions of non-parenchymal cells. Front Mol Biosci 2025; 12:1513993. [PMID: 40201243 PMCID: PMC11976672 DOI: 10.3389/fmolb.2025.1513993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 03/05/2025] [Indexed: 04/10/2025] Open
Abstract
Developing drugs for the treatment of Metabolic Associated Steatohepatitis (MASH) has always been a significant challenge. Researchers have been dedicated to exploring drugs and therapeutic strategies to alleviate disease progression, but treatments remain limited. This is partly due to the complexity of the pathophysiological processes, and inadequate knowledge of the cellular and molecular mechanisms in MASH. Especially, the liver non-parenchymal cells (NPCs) like Kupffer cells, hepatic stellate cells and sinusoidal endothelial cells which play critical roles in live function, immune responses, fibrosis and disease progression. Deciphering how these cells function in MASH, would help understand the pathophysiological processes and find potential drug targets. In recent years, new technologies have been developed for single-cell transcriptomic sequencing, making cell-specific transcriptome profiling a reality in healthy and diseased livers. In this review, we discussed how the use of single-cell transcriptomic sequencing provided us with an in-depth understanding of the heterogeneous, cellular interactions among non-parenchymal cells and tried to highlight recent discoveries in MASH by this technology. It is hoped that the summarized features and markers of various subclusters in this review could provide a technical reference for further experiments and a theoretical basis for clinical applications.
Collapse
Affiliation(s)
- Meng Ning
- Department of Endocrinology, Peking University Shenzhen Hospital, Shenzhen, China
- Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Department of Endocrinology, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Donghui Lu
- Department of Endocrinology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Dong Liang
- Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Pei-Gen Ren
- Center for Cancer Immunology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
38
|
Nguyen DH, Tian J, Shanahan SL, Wang CK, Jacks T, Wang X, Li P. A tissue-scale strategy for sensing threats in barrier organs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.19.644134. [PMID: 40166266 PMCID: PMC11957033 DOI: 10.1101/2025.03.19.644134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Barrier organs rely on a limited set of pattern recognition receptors (PRRs) to detect diverse immunogenic challenges. How organs assess threats and adjust immune responses to balance host protection with collateral tissue damage remains unclear. Here, by analyzing influenza infection in the lung using single-molecule imaging and spatial transcriptomics, we discovered a tiered threat-sensing strategy at the tissue scale, where the probability of detecting and responding to infection is lowest in the outermost epithelia and highest in the inner stroma. This strategy emerges from spatially graded PRR expression that results in cell-type-specific probabilities of threat-sensing across the tissue, a design broadly adopted by barrier organs. Selectively increasing PRR expression in lung epithelia in vivo exacerbated tissue damage upon inflammatory challenge. These results reveal a spatially tiered strategy to tolerate threats restricted within the epithelia, and yet enable progressively potent immune responses as threats invade deeper into the tissue.
Collapse
|
39
|
Chakraborty A, Das NC, Gupta PSS, Panda SK, Rana MK, Bonam SR, Bayry J, Mukherjee S. In silico evidence of monkeypox F14 as a ligand for the human TLR1/2 dimer. Front Immunol 2025; 16:1544443. [PMID: 40165949 PMCID: PMC11955672 DOI: 10.3389/fimmu.2025.1544443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 02/10/2025] [Indexed: 04/02/2025] Open
Abstract
Recent emergence of zoonotic monkeypox virus (Mpox) in human has triggered the virologists to develop plausible preventive measures. Hitherto, our understanding on the mechanism of immunopathogenesis of Mpox infection is elusive. However, available experimental evidences suggest induction of inflammation as the main cause of pathogenesis. Toll-like receptors (TLRs) are critical in initiating and modulating the host immune response to pathogens. Inflammatory responses observed in various poxvirus infections have, in fact, been shown to be mediated through TLR activation. Therefore, by in silico approaches, this study seeks to identify the Mpox antigen(s) (MAg) that are most likely to interact with human cell-surface TLRs. The Mpox proteomics data available in UniProt database contain 174 protein sequences, among which 105 immunoreactive proteins were modeled for 3D structure and examined for comparative protein-protein interactions with the TLRs through molecular docking and molecular dynamics simulation. F14, an 8.28 kDa infective protein of Mpox, was found to exhibit strong binding affinity (ΔG=-12.5 Kcal mol-1) to TLR1/2 dimer to form a compact thermodynamically stable protein complex. Interestingly, a significant level of conformational change was also observed in both F14 and TLR6 while forming F14-TLR1/2 complex. Based on these data we propose F14 as a putative ligand of human TLR1/2 to initiate proinflammatory signaling in the Mpox-infected host.
Collapse
Affiliation(s)
- Ankita Chakraborty
- Integrative Biochemistry and Immunology Laboratory (IBIL), Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Nabarun Chandra Das
- Integrative Biochemistry and Immunology Laboratory (IBIL), Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Parth Sarthi Sen Gupta
- School of Bioscience and Bioengineering, D.Y. Patil International University, Pune, India
| | - Saroj Kumar Panda
- Department of Chemistry, Indian Institute of Science Education and Research, Berhampur, Odisha, India
| | - Malay Kumar Rana
- Department of Chemistry, Indian Institute of Science Education and Research, Berhampur, Odisha, India
| | - Srinivasa Reddy Bonam
- Vaccine Immunology Laboratory, Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Jagadeesh Bayry
- Department of Biological Sciences & Engineering, Indian Institute of Technology Palakkad, Palakkad, Kerala, India
| | - Suprabhat Mukherjee
- Integrative Biochemistry and Immunology Laboratory (IBIL), Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| |
Collapse
|
40
|
Kayesh MEH, Kohara M, Tsukiyama-Kohara K. Toll-like receptor response to Zika virus infection: progress toward infection control. NPJ VIRUSES 2025; 3:20. [PMID: 40295746 PMCID: PMC11906774 DOI: 10.1038/s44298-025-00102-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 02/19/2025] [Indexed: 04/30/2025]
Abstract
Infection with the Zika virus (ZIKV) poses a threat to human health. An improved understanding of the host Toll-like receptor response, disease onset, and viral clearance in vivo and in vitro may lead to the development of therapeutic or prophylactic interventions against viral infections. Currently, no clinically approved ZIKV vaccine is available, highlighting the need for its development. In this study, we discuss the progress in the Zika vaccine, including advances in the use of Toll-like receptor agonists as vaccine adjuvants to enhance vaccine efficacy.
Collapse
Affiliation(s)
- Mohammad Enamul Hoque Kayesh
- Department of Microbiology and Public Health, Faculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology University, Barishal, Bangladesh.
| | - Michinori Kohara
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Kyoko Tsukiyama-Kohara
- Transboundary Animal Diseases Center, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan.
| |
Collapse
|
41
|
Safi C, Camaioni L, Othman M, Lambert D, Buisine M, Lawson AM, Ghinet A, Daïch A, Jawhara S. Cyclic N, O-acetals and corresponding opened N, N-aminals as new scaffolds with promising anti-inflammatory and antifungal activities against Candida albicans. Sci Rep 2025; 15:8364. [PMID: 40069300 PMCID: PMC11897400 DOI: 10.1038/s41598-025-92635-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 03/03/2025] [Indexed: 03/15/2025] Open
Abstract
P2 × 7R is crucial in the pathogenesis of chronic inflammatory diseases, and its activation leads to the release of pro-inflammatory cytokines, exacerbating the inflammatory response. Two new series of scarce cyclic N, O-acetals (ATF 61-74) and corresponding opened N, N-aminals (CS 1-14) have been designed as novel potential P2RX7 antagonists, then synthesized and evaluated for their anti-inflammatory properties through investigating the pro-inflammatory markers and also for their antifungal activity against Candida albicans. Three compounds (ATF 64, CS 8, and CS 9) exhibited dual antifungal and anti-inflammatory properties. ATF 64, CS 8, and CS 9 reduced ROS production and IL-1β expression in macrophages and intestinal cells in a manner correlated with NF-KB expression. These compounds showed excellent antifungal activity against clinical isolates of C. albicans resistant to fluconazole and caspofungin, and reduced C. albicans biofilm formation. Treatment with CS 8 or CS 9 protected the nematode Caenorhabditis elegans against infection with C. albicans and enhanced antimicrobial gene expression. This duality of action offers a promising new pharmacological strategy to counteract inflammatory diseases and propels N, N-aminals as promising candidates for future optimization and investigation.
Collapse
Affiliation(s)
- Christine Safi
- URCOM UR 3221, Université Le Havre Normandie, Normandie Université, Le Havre, 76600, France
- INC3M, FR CNRS 3038, 25 Rue Philippe Lebon, BP 1123, 76063, Le Havre Cedex, France
- JUNIA, Health and Environment, Laboratory of Sustainable Chemistry and Health, 59000, Lille, France
| | - Louis Camaioni
- UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Institut National de la Santé et de la Recherche Médicale U1285, Centre National de la Recherche Scientifique, University of Lille, 59000, Lille, France
- Medicine Faculty, University of Lille, 59000, Lille, France
- Service de Parasitologie Mycologie, Pôle de Biologie Pathologie Génétique, CHU Lille, 59000, Lille, France
| | - Mohamed Othman
- URCOM UR 3221, Université Le Havre Normandie, Normandie Université, Le Havre, 76600, France
- INC3M, FR CNRS 3038, 25 Rue Philippe Lebon, BP 1123, 76063, Le Havre Cedex, France
| | - Dylan Lambert
- UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Institut National de la Santé et de la Recherche Médicale U1285, Centre National de la Recherche Scientifique, University of Lille, 59000, Lille, France
- Medicine Faculty, University of Lille, 59000, Lille, France
- Service de Parasitologie Mycologie, Pôle de Biologie Pathologie Génétique, CHU Lille, 59000, Lille, France
| | - Mathys Buisine
- UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Institut National de la Santé et de la Recherche Médicale U1285, Centre National de la Recherche Scientifique, University of Lille, 59000, Lille, France
- Medicine Faculty, University of Lille, 59000, Lille, France
- Service de Parasitologie Mycologie, Pôle de Biologie Pathologie Génétique, CHU Lille, 59000, Lille, France
| | - Ata Martin Lawson
- URCOM UR 3221, Université Le Havre Normandie, Normandie Université, Le Havre, 76600, France
- INC3M, FR CNRS 3038, 25 Rue Philippe Lebon, BP 1123, 76063, Le Havre Cedex, France
| | - Alina Ghinet
- JUNIA, Health and Environment, Laboratory of Sustainable Chemistry and Health, 59000, Lille, France
- U1167-RID-AGE-Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, Institut National de la Santé et de la Recherche Médicale, CHU Lille, Institut Pasteur de Lille, University of Lille, Lille, 59000, France
- Faculty of Chemistry, 'Alexandru Ioan Cuza' University of Iasi, Bd. Carol I, Nr. 11, 700506, Iasi, Romania
| | - Adam Daïch
- URCOM UR 3221, Université Le Havre Normandie, Normandie Université, Le Havre, 76600, France
- INC3M, FR CNRS 3038, 25 Rue Philippe Lebon, BP 1123, 76063, Le Havre Cedex, France
| | - Samir Jawhara
- UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Institut National de la Santé et de la Recherche Médicale U1285, Centre National de la Recherche Scientifique, University of Lille, 59000, Lille, France.
- Medicine Faculty, University of Lille, 59000, Lille, France.
- Service de Parasitologie Mycologie, Pôle de Biologie Pathologie Génétique, CHU Lille, 59000, Lille, France.
| |
Collapse
|
42
|
Saha S, Roy S, Hazra A, Das D, Kumar V, Singh AK, Singh AV, Mondal R, Bose Dasgupta S. S-nitrosylation-triggered secretion of mycobacterial PknG leads to phosphorylation of SODD to prevent apoptosis of infected macrophages. Proc Natl Acad Sci U S A 2025; 122:e2404106122. [PMID: 40035756 PMCID: PMC11912491 DOI: 10.1073/pnas.2404106122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 01/24/2025] [Indexed: 03/06/2025] Open
Abstract
The tuberculosis-causing agent Mycobacterium tuberculosis (M.tb) establishes its niche inside macrophages by secretion of several virulence factors and engaging many host factors. Mycobacterial infection of macrophages results in a proinflammatory trigger-mediated secretion of TNFα. Protein kinase G (PknG), a Serine/Threonine kinase, is essential for mycobacterial survival within the macrophage. Pathogenic mycobacteria, upon infection, can trigger the secretion of proinflammatory cytokine TNFα, but whether secreted PknG plays any role in TNFα secretion at early stages of infection remains undeciphered. Moreover, at early infection stages, prevention of macrophage apoptosis is vital to successful mycobacterial pathogenesis. Our studies show that mycobacteria-secreted PknG can dampen the expression and concomitant secretion of proinflammatory TNFα. During early infection, M.tb infection-induced generation of reactive nitrogen intermediates (RNI) leads to S-nitrosylation of PknG on Cys109, thereby enabling its secretion into macrophages. Upon M.tb infection, secreted S-nitrosylated PknG phosphorylates macrophage Silencer of Death Domains (SODD) at Thr405, as identified through our phosphoproteomic studies. Thereafter, phosphorylated SODD, through an irreversible binding with the TNFR1 death domain, prevents Caspase8 activation and concomitant extrinsic apoptotic trigger. Moreover, alveolar macrophages from mice infected with PknG-knockout M.tb also exhibited SODD phosphorylation and hindered Caspase8 activation to prevent extrinsic macrophage apoptosis. Therefore, this work exhibits S-nitrosylation-mediated secretion of PknG to induce phosphorylation of macrophage SODD, which, through irreversible interaction with TNFR1, prevented extrinsic macrophage apoptosis at the early stages of infection.
Collapse
Affiliation(s)
- Saradindu Saha
- Molecular Immunology and Cellular Microbiology Laboratory, Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur721302, India
| | - Sadhana Roy
- Molecular Immunology and Cellular Microbiology Laboratory, Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur721302, India
| | - Arnab Hazra
- Molecular Immunology and Cellular Microbiology Laboratory, Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur721302, India
| | - Debayan Das
- Molecular Immunology and Cellular Microbiology Laboratory, Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur721302, India
| | - Vimal Kumar
- Laboratory for Animal Experiments, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Agra282006, India
| | - Amit Kumar Singh
- Laboratory for Animal Experiments, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Agra282006, India
| | - Ajay Vir Singh
- Department of Microbiology and Molecular Biology, Indian Council of Medical Research (ICMR)-National Japanese Leprosy Mission for Asia (JALMA) Institute for Leprosy and Other Mycobacterial Diseases, Agra282006, India
| | - Rajesh Mondal
- Department of Bacteriology, National Institute for Research in Tuberculosis, Chennai, Tamil Nadu600031, India
- ICMR—National Institute for Research in Environmental Health, Bhopal462030, India
| | - Somdeb Bose Dasgupta
- Molecular Immunology and Cellular Microbiology Laboratory, Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur721302, India
| |
Collapse
|
43
|
Dalaka E, Stefos GC, Politis I, Theodorou G. Immunomodulatory Properties of Sweet Whey-Derived Peptides in THP-1 Macrophages. Molecules 2025; 30:1261. [PMID: 40142037 PMCID: PMC11944360 DOI: 10.3390/molecules30061261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/21/2025] [Accepted: 03/10/2025] [Indexed: 03/28/2025] Open
Abstract
Sweet whey (SW), a by-product of cheese production, has potential immunomodulatory properties that could be beneficial in preventing inflammation-related diseases. This study investigated the effects of SW derived from bovine, caprine, ovine, or an ovine/caprine mixture of milk on inflammation-related gene expression in THP-1-derived macrophages, both with and without LPS stimulation. Cells were treated with SW-D-P3 (a fraction smaller than 3 kDa produced by in vitro digestion), and the expression of inflammation-related genes was assessed using quantitative PCR. Results showed that the expression of TLR2 and ICAM1 was attenuated in non-LPS-stimulated macrophages treated with SW-D-P3, regardless of animal origin. Moreover, the expression of TLR4, IL1B, and IL6 was decreased and the expression of an NF-κB subunit RELA and CXCL8 was elevated in a subset of samples treated with SW-D-P3, depending on the milk source. In LPS-challenged cells, the expression of CXCL8 was upregulated and the expression of IRF5 and TNFRSF1A was downregulated in SW-D-P3-treated cells, regardless of animal origin. On the other hand, a number of inflammation-related genes were differentially expressed depending on the animal origin of the samples. Moreover, the higher IL10 expression observed in cells treated with ovine/caprine SW-D-P3 compared to those treated with SW-D-P3 of bovine, caprine, or ovine origin suggests an anti-inflammatory response, in which alternatively activated macrophages (M2 polarization phenotype) may participate. Overall, these findings suggest that incorporating SW into the food industry, either as a standalone ingredient or supplement, may help to prevent inflammation-related diseases.
Collapse
Affiliation(s)
- Eleni Dalaka
- Laboratory of Animal Breeding and Husbandry, Department of Animal Science, Agricultural University of Athens, 11855 Athens, Greece; (G.C.S.); (I.P.)
| | | | | | - Georgios Theodorou
- Laboratory of Animal Breeding and Husbandry, Department of Animal Science, Agricultural University of Athens, 11855 Athens, Greece; (G.C.S.); (I.P.)
| |
Collapse
|
44
|
Kotlyarov S, Oskin D. The Role of Inflammation in the Pathogenesis of Comorbidity of Chronic Obstructive Pulmonary Disease and Pulmonary Tuberculosis. Int J Mol Sci 2025; 26:2378. [PMID: 40141021 PMCID: PMC11942565 DOI: 10.3390/ijms26062378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 02/23/2025] [Accepted: 03/05/2025] [Indexed: 03/28/2025] Open
Abstract
The comorbid course of chronic obstructive pulmonary disease (COPD) and pulmonary tuberculosis is an important medical and social problem. Both diseases, although having different etiologies, have many overlapping relationships that mutually influence their course and prognosis. The aim of the current review is to discuss the role of different immune mechanisms underlying inflammation in COPD and pulmonary tuberculosis. These mechanisms are known to involve both the innate and adaptive immune system, including various cellular and intercellular interactions. There is growing evidence that immune mechanisms involved in the pathogenesis of both COPD and tuberculosis may jointly contribute to the tuberculosis-associated obstructive pulmonary disease (TOPD) phenotype. Several studies have reported prior tuberculosis as a risk factor for COPD. Therefore, the study of the mechanisms that link COPD and tuberculosis is of considerable clinical interest.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
| | - Dmitry Oskin
- Department of Infectious Diseases and Phthisiology, Ryazan State Medical University, 390026 Ryazan, Russia
| |
Collapse
|
45
|
Mahjoubin-Tehran M, Rezaei S, Butler AE, Sahebkar A. Decoy oligonucleotides targeting NF-κB: a promising therapeutic approach for inflammatory diseases. Inflamm Res 2025; 74:47. [PMID: 40047902 DOI: 10.1007/s00011-025-02021-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 02/11/2025] [Accepted: 03/02/2025] [Indexed: 05/13/2025] Open
Abstract
Nuclear factor-kappa B (NF-κB) transcription factor plays a crucial function in controlling several cellular processes, including the production of inflammatory mediators. The aberrant activation of this transcription factor and its signaling pathway is associated with the pathophysiology of many diseases. Therefore, discovering drugs that target NF-κB is crucial for treating various diseases. Decoy oligonucleotides (decoy ONs) are a pharmacological approach that specifically inhibits NF-κB activation and are used to treat several inflammatory diseases. Decoys that target NF-κB have been shown to enhance radiosensitivity and drug sensitivity in vitro and strongly block IL-6 and IL-8 gene expression induced by TNF-α in experimental cell systems. In vivo, NF-κB decoy reduced atherosclerotic plaque, prevented atopic dermatitis and extended cardiac transplant survival. Decoys have the potential to be used in clinical applications, but they face several challenges. To overcome these limitations, researchers have conducted studies on chemical modifications and delivery techniques. Innovative compounds that target NF-κB, such as NF-κB-decoy-based sensor-containing models, phosphorothioate hairpin-modified oligonucleotides, and peptide nucleic acid (PNA)-based transcription factor decoys, are very attractive. This research aims to explore the use of decoys to combat NF-κB in various disorders.
Collapse
Affiliation(s)
| | - Samaneh Rezaei
- Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alexandra E Butler
- Research Department, Royal College of Surgeons in Ireland Bahrain, Adliya, 15503, Bahrain
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Institute of Medical and Technical Sciences, Saveetha Medical College and Hospitals, Saveetha University, Chennai, India.
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
46
|
Engelhart MJ, Brock OD, Till JM, Glowacki RWP, Cantwell JW, Clarke DJ, Wesener DA, Ahern PP. BT1549 coordinates the in vitro IL-10 inducing activity of Bacteroides thetaiotaomicron. Microbiol Spectr 2025; 13:e0166924. [PMID: 39868786 PMCID: PMC11878027 DOI: 10.1128/spectrum.01669-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 11/27/2024] [Indexed: 01/28/2025] Open
Abstract
The intestine is home to a complex immune system that is engaged in mutualistic interactions with the microbiome that maintain intestinal homeostasis. A variety of immune-derived anti-inflammatory mediators have been uncovered and shown to be critical for maintaining these beneficial immune-microbiome relationships. Notably, the gut microbiome actively invokes the induction of anti-inflammatory pathways that limit the development of microbiome-targeted inflammatory immune responses. Despite the importance of this microbiome-driven immunomodulation, detailed knowledge of the microbial factors that promote these responses remains limited. We have previously established that the gut symbiont Bacteroides thetaiotaomicron stimulates the production of the anti-inflammatory cytokine IL-10 via soluble factors in a Toll-like receptor 2 (TLR2)-MyD88-dependent manner. Here, using TLR2 activity reporter cell lines, we show that the capacity of B. thetaiotaomicron to stimulate TLR2 activity was not critically dependent on either of the canonical heterodimeric forms of TLR2, TLR2/TLR1, or TLR2/TLR6, that typically mediate its function. Furthermore, biochemical manipulation of B. thetaiotaomicron-conditioned media suggests that IL-10 induction is mediated by a protease-resistant or non-proteogenic factor. We next uncovered that deletion of gene BT1549, a predicted secreted lipoprotein, significantly impaired the capacity of B. thetaiotaomicron to induce IL-10, while complementation in trans restored IL-10 induction, suggesting a role for BT1549 in the immunomodulatory function of B. thetaiotaomicron. Collectively, these data provide molecular insight into the pathways through which B. thetaiotaomicron operates to promote intestinal immune tolerance and symbiosis. IMPORTANCE Intestinal homeostasis requires the establishment of peaceful interactions between the gut microbiome and the intestinal immune system. Members of the gut microbiome, like the symbiont Bacteroides thetaiotaomicron, actively induce anti-inflammatory immune responses to maintain mutualistic relationships with the host. Despite the importance of such interactions, the specific microbial factors responsible remain largely unknown. Here, we show that B. thetaiotaomicron, which stimulates Toll-like receptor 2 (TLR2) to drive IL-10 production, can stimulate TLR2 independently of TLR1 or TLR6, the two known TLR that can form heterodimers with TLR2 to mediate TLR2-dependent responses. Furthermore, we show that IL-10 induction is likely mediated by a protease-resistant or non-proteogenic factor, and that this requires gene BT1549, a predicted secreted lipoprotein and peptidase. Collectively, our work provides insight into the molecular dialog through which B. thetaiotaomicron coordinates anti-inflammatory immune responses. This knowledge may facilitate future strategies to promote such responses for therapeutic purposes.
Collapse
Affiliation(s)
- Morgan J. Engelhart
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Orion D. Brock
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Jessica M. Till
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Robert W. P. Glowacki
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Jason W. Cantwell
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | - David J. Clarke
- School of Microbiology and APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Darryl A. Wesener
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | - Philip P. Ahern
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
47
|
Sohn MY, Jeong JM, Kang G, Woo WS, Kim KH, Son HJ, Park CI. Identification and characterization of CD83 and CD276 as markers of dendritic cells in olive flounder (Paralichthys olivaceus). FISH & SHELLFISH IMMUNOLOGY 2025; 158:110149. [PMID: 39848419 DOI: 10.1016/j.fsi.2025.110149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/18/2025] [Accepted: 01/18/2025] [Indexed: 01/25/2025]
Abstract
Dendritic cells (DCs) play a pivotal role in activating naïve T-cells and bridging innate and adaptive immunity. This study aimed to identify and characterize CD83 and CD276 as potential markers for DCs in olive flounder (Paralichthys olivaceus). Specific antibodies against these markers were developed and used to analyze their distribution in peripheral blood leukocytes (PBLs) and intestinal tissues. Flow cytometry and immunohistochemistry revealed that CD83 and CD276 are expressed on DCs, with peak expression observed one week after oral administration of an inactivated viral hemorrhagic septicemia virus (VHSV) vaccine. Gene expression analysis further demonstrated significant activation of immune-related genes, including CD3, IgM, and TLRs, indicating that oral vaccine administration effectively activates the intestinal mucosal immune system. These findings provide valuable insights into fish immune responses and establish CD83 and CD276 as promising DC markers, contributing to the development of mucosal vaccine strategies in aquaculture.
Collapse
Affiliation(s)
- Min-Young Sohn
- Department of Marine Biology & Aquaculture, College of Marine Science, Gyeongsang National University, 455, Tongyeong, 650-160, Republic of Korea
| | - Ji-Min Jeong
- Aquatic Disease Control Division, National Fishery Products Quality Management Service (NFQS), 337, Haeyang-ro, Yeongdo-gu, Busan, 49111, Republic of Korea
| | - Gyoungsik Kang
- Department of Aquatic Life Medicine, College of Marine Science, Gyeongsang National University, 455, Tongyeong, 650-160, Republic of Korea
| | - Won-Sik Woo
- Department of Marine Biology & Aquaculture, College of Marine Science, Gyeongsang National University, 455, Tongyeong, 650-160, Republic of Korea
| | - Kyung-Ho Kim
- Department of Marine Biology & Aquaculture, College of Marine Science, Gyeongsang National University, 455, Tongyeong, 650-160, Republic of Korea
| | - Ha-Jeong Son
- Department of Marine Biology & Aquaculture, College of Marine Science, Gyeongsang National University, 455, Tongyeong, 650-160, Republic of Korea
| | - Chan-Il Park
- Department of Marine Biology & Aquaculture, College of Marine Science, Gyeongsang National University, 455, Tongyeong, 650-160, Republic of Korea.
| |
Collapse
|
48
|
Zhou L, Li J, Sun X, Xin Y, Yin S, Ning X. CircArid4b: A novel circular RNA regulating antibacterial response during hypoxic stress via apoptosis in yellow catfish (Pelteobagrus fulvidraco). Comp Biochem Physiol C Toxicol Pharmacol 2025; 289:110121. [PMID: 39788357 DOI: 10.1016/j.cbpc.2025.110121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 01/01/2025] [Accepted: 01/04/2025] [Indexed: 01/12/2025]
Abstract
The intricate interaction among host, pathogen, and environment significantly influences aquatic health, yet the influence of hypoxic stress combined with bacterial infection on host response is understudied. Circular RNAs with stable closed-loop structures have emerged as important regulators in immunity, yet remain ill-defined in fish. In this study, we systematically explored the circRNA response in yellow catfish subjected to combined hypoxia-bacterial infection (HB) stress. Following HB stress, H&E and TUNEL staining identified heightened hepatocyte apoptosis, intracellular vacuolation, and inflammatory tissue damage. RT-qPCR elucidated that differentially expressed genes stimulated by HB synergistically enhanced apoptosis and inflammatory responses. Importantly, we systematically evaluated differentially expressed circRNAs (DEcirs) in yellow catfish under hypoxia with and without Aeromonas veronii infection and identified a novel HB-specific DEcir, designated as circArid4b, whose parental gene Arid4b is highly associated with apoptosis. Experiments confirmed the circular structure of circArid4b and revealed that under HB stimulation, specific knockdown of circArid4b inhibited the expression of Arid4b, while concurrent alterations in multiple apoptosis- and inflammation-related genes synergistically indicated the promotion of apoptotic and inflammatory pathways. Notably, the downregulation of circArid4b expression significantly reduced the susceptibility to bacterial infection in yellow catfish during hypoxia. These results suggest that HB-induced suppression of circArid4b promotes cell apoptosis and inflammation by inhibiting its parental gene and thereby facilitating resistance to bacterial infection during hypoxia. Our study enriches the understanding of fish circRNA mechanisms and offers novel preventive and control strategies for bacterial infections in fish under hypoxic environments.
Collapse
Affiliation(s)
- Linxin Zhou
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Jiangsu Key Laboratory of Ocean-Land Environmental Change and Ecological Construction, School of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, Jiangsu, China
| | - Jiayi Li
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Jiangsu Key Laboratory of Ocean-Land Environmental Change and Ecological Construction, School of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, Jiangsu, China
| | - Xinxin Sun
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Jiangsu Key Laboratory of Ocean-Land Environmental Change and Ecological Construction, School of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, Jiangsu, China
| | - Yingying Xin
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Jiangsu Key Laboratory of Ocean-Land Environmental Change and Ecological Construction, School of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, Jiangsu, China
| | - Shaowu Yin
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Jiangsu Key Laboratory of Ocean-Land Environmental Change and Ecological Construction, School of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, Jiangsu, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang 222005, China
| | - Xianhui Ning
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Jiangsu Key Laboratory of Ocean-Land Environmental Change and Ecological Construction, School of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, Jiangsu, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang 222005, China.
| |
Collapse
|
49
|
Artusa P, White JH. Vitamin D and its analogs in immune system regulation. Pharmacol Rev 2025; 77:100032. [PMID: 40148037 DOI: 10.1016/j.pharmr.2024.100032] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 12/17/2024] [Indexed: 03/29/2025] Open
Abstract
Vitamin D was discovered as the cure for nutritional rickets, a disease of bone growth arising from inadequate intestinal calcium absorption, and for much of the 20th century, it was studied for its critical role in calcium homeostasis. However, we now recognize that the vitamin D receptor and vitamin D metabolic enzymes are expressed in numerous tissues unrelated to calcium homeostasis. Notably, vitamin D signaling can induce cellular differentiation and cell cycle arrest. Moreover, the vitamin D receptor and the enzyme CYP27B1, which produces the hormonal form of vitamin D, 1,25-dihydroxyvitamin D (1,25D), are expressed throughout the immune system. In addition, CYP27B1 expression in immune cells is regulated by physiological inputs independent of those controlling its expression in calcium homeostatic tissues. These observations have driven the development of 1,25D-like secosteroidal analogs and nonsecosteroidal analogs to separate the effects of vitamin D on cell differentiation and function from its calcemic activities. Notably, some of these analogs have had considerable success in the clinic in the treatment of inflammatory and immune-related disorders. In this review, we described in detail the mechanisms of vitamin D signaling and the physiological signals controlling 1,25D synthesis and catabolism, with a focus on the immune system. We also surveyed the effects of 1,25D and its analogs on the regulation of immune system function and their implications for human immune-related disorders. Finally, we described the potential of vitamin D analogs as anticancer therapeutics, in particular, their use as adjuncts to cancer immunotherapy. SIGNIFICANCE STATEMENT: Vitamin D signaling is active in both the innate and adaptive arms of the immune system. Numerous vitamin D analogs, developed primarily to minimize the dose-limiting hypercalcemia of the active form of vitamin D, have been used widely in preclinical and clinical studies of immune system regulation. This review presents a description of the mechanisms of action of vitamin D signaling, an overview of analog development, and an in-depth discussion of the immunoregulatory roles of vitamin D analogs.
Collapse
Affiliation(s)
- Patricio Artusa
- Department of Physiology, McGill University, Montreal, Quebec, Canada
| | - John H White
- Department of Physiology, McGill University, Montreal, Quebec, Canada; Department of Medicine, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
50
|
Rana K, Yadav P, Chakraborty R, Jha SK, Agrawal U, Bajaj A. Engineered Nanomicelles Delivering the Combination of Steroids and Antioxidants Can Mitigate Local and Systemic Inflammation, Including Sepsis. ACS APPLIED MATERIALS & INTERFACES 2025; 17:11595-11610. [PMID: 39946544 DOI: 10.1021/acsami.4c14159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Chronic inflammation is mainly characterized by the release of proinflammatory cytokines (cytokine storm) and reactive oxygen/nitrogen species. Sepsis is a life-threatening condition resulting from the successive chronic inflammatory responses toward infection, leading to multiple organ failure and, ultimately, death. As inflammation and oxidative stress are known to nourish each other and initiate an uncontrolled immune response, inhibiting the cross-talk between the inflammatory response using anti-inflammatory drugs and oxidative stress using antioxidants can be a promising strategy to target sepsis. Here, we present the engineering of chimeric nanomicelles (NMs) using an ester-linked polyethylene glycol-derived lithocholic acid-drug conjugate using dexamethasone (DEX), a potent glucocorticoid possessing anti-inflammatory properties, and vitamin E (VITE), an antioxidant to target oxidative stress. Interestingly, these chimeric DEX-VITE NMs show enhanced accumulation at the inflamed sites driven by enhanced permeation and retention effect and mitigate localized acute inflammation in paw, lung, and liver inflammation models. We further demonstrated the efficacy of these NMs in mitigating LPS-induced endotoxemia and CLP-induced microbial sepsis, conferring survival advantages. DEX-VITE NMs also modulate immune homeostasis by decreasing the infiltration of total immune cells, neutrophils, and overall macrophages. Finally, administration of DEX-VITE NMs also reduces the release of proinflammatory cytokines and prevents vascular damage, two critical factors of sepsis pathogenesis. Therefore, this therapeutic approach of chimeric NMs can effectively deliver steroids and antioxidants to mitigate uncontrolled localized and systemic inflammation.
Collapse
Affiliation(s)
- Kajal Rana
- NCR Biotech Science Cluster, Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, Third Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana 121001, India
| | - Poonam Yadav
- NCR Biotech Science Cluster, Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, Third Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana 121001, India
| | - Ruchira Chakraborty
- NCR Biotech Science Cluster, Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, Third Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana 121001, India
| | - Somesh K Jha
- NCR Biotech Science Cluster, Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, Third Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana 121001, India
| | - Usha Agrawal
- Asian Institute of Public Health University, Haridamada, Jatani, Bhubaneswar, Odisha 752054, India
| | - Avinash Bajaj
- NCR Biotech Science Cluster, Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, Third Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana 121001, India
| |
Collapse
|