1
|
Liu J, Gang H, Qin D, Wang H, Wang X, Shao K, Fu C, Hong J, Huo J. Carbon quantum dots from fallen leaves of Lonicera caerulea L.: An innovative plant growth promoter and fruit quality enhancer. ENVIRONMENTAL RESEARCH 2025; 274:121350. [PMID: 40064348 DOI: 10.1016/j.envres.2025.121350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/27/2025] [Accepted: 03/07/2025] [Indexed: 03/14/2025]
Abstract
With increasing environmental pollution and resource wastage, utilizing waste for high-value applications has become crucial. This study explores the preparation of carbon dots (CDs) from blue honeysuckle leaves and their potential in enhancing plant photosynthesis. CDs derived from these leaves have a particle size of ∼2.6 nm and emit blue fluorescence under 365 nm UV light, making them suitable for foliar spraying. When applied, CDs enter leaf cells and impact chloroplasts, significantly improving photosystem II (PSII) performance and Rubisco enzyme activity. At an optimal concentration of 1000 mg/L, PSII electron transfer efficiency and Rubisco activity increased by 29.84% and 208.12%, respectively, boosting net photosynthetic rate by 60.4%. This treatment also enhanced blue honeysuckle yield and fruit quality, with higher levels of soluble solids, ascorbic acid, flavonoids, anthocyanins, and total phenolics. These improvements were linked to increased sucrose synthesis (up 25.99%) and leaf assimilative capacity (up 25%). Additionally, CDs enhanced post-harvest soil enzyme activity and microbial abundance, promoting nutrient cycling and soil utilization. This study demonstrates that preparing CDs from waste blue honeysuckle leaves not only mitigates environmental pollution but also offers a sustainable, high value use for plant resources. The findings highlight the potential of nanomaterials in improving agricultural productivity and provide a novel pathway for waste reuse.
Collapse
Affiliation(s)
- Jiale Liu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China; National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, Northeast Agricultural University, Harbin, 150030, China
| | - Huixin Gang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China; National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, Northeast Agricultural University, Harbin, 150030, China.
| | - Dong Qin
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China; National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, Northeast Agricultural University, Harbin, 150030, China
| | - Haoyu Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China; National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, Northeast Agricultural University, Harbin, 150030, China
| | - Xueting Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China; National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, Northeast Agricultural University, Harbin, 150030, China
| | - Kailin Shao
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China; National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, Northeast Agricultural University, Harbin, 150030, China
| | - Chunlin Fu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China; National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, Northeast Agricultural University, Harbin, 150030, China
| | - Jingjing Hong
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China; National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, Northeast Agricultural University, Harbin, 150030, China
| | - Junwei Huo
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China; National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
2
|
Zhang Y, Liu B, Yang M, Li S, Qu Y, Ma Y, Ye L, Mei J. 16S rRNA sequencing in chronic dacryocystitis. Clin Exp Optom 2025; 108:456-465. [PMID: 38811366 DOI: 10.1080/08164622.2024.2358246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 03/07/2024] [Accepted: 04/28/2024] [Indexed: 05/31/2024] Open
Abstract
CLINICAL RELEVANCE The pathogenesis of chronic dacryocystitis (CDC) is associated with a variety of bacteria. Investigating microflora has the potential to provide a theoretical basis for preventing and treating CDC. BACKGROUND 16S rRNA sequencing is a sequence-based bacterial analysis. The application of 16S rRNA sequencing in CDC is rarely reported. METHODS A case-control study of infected and healthy eyes diagnosed as CDC patients was conducted. Seventy-eight patients were divided into A (conjunctival sac secretions from healthy eyes), B (conjunctival sac secretions from affected eyes), and C (lacrimal sac secretions from affected eyes) groups. The flora of samples was analysed with 16S rRNA sequencing, and the data was analysed using QIIME, R, LefSE and other software. The potential functions were analysed by PICRUSt. RESULTS A total of 1440 operational taxonomic units (OTUs) were obtained, 139 specific to group A, 220 specific to group B, and 239 specific to group C. There was no significant difference in α index between the three groups. The beta diversity and grouping analysis data indicated that the three groups of flora were similar in species richness and diversity, but there were some differences in composition. In group A, the abundance of Pseudomonadaceae, Chlorobacteria, Moraceae, Staphylococcaceae, Bacillariophyceae, Immunobacterium spp. and Bacillus spp. was higher; in group B, the abundance of Burkholderiaceae, Sphingomonas, Rhizobia, Stalked Bacteria, Sphingomonadaceae, Enterobacteriaceae, Shortwaveomonas spp. was higher; in group C, the abundance of Streptococcus digestiveis, Propionibacterium, Enterobacteriaceae, Anaerobacteriaceae, Propionibacteriaceae, Bacillus spp. Neisseria spp. and Shortactomonas spp. was higher. Six pathways were identified to assess the potential microbial functions. CONCLUSION Alterations in the microbiota of the conjunctiva and lacrimal sac are associated with the pathogenesis of CDC, which may provide certain guidance for antibiotic treatment of CDC.
Collapse
Affiliation(s)
- Yongxin Zhang
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen, Guangdong, China
| | - Beian Liu
- The Second Clinical Medical College, Jinan University, Shenzhen, Guangdong, China
| | - Meina Yang
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen, Guangdong, China
| | - Shixu Li
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen, Guangdong, China
| | - Yunhao Qu
- The Second Clinical Medical College, Jinan University, Shenzhen, Guangdong, China
| | - Yingge Ma
- The Second Clinical Medical College, Jinan University, Shenzhen, Guangdong, China
| | - Lin Ye
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen, Guangdong, China
| | - Jun Mei
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen, Guangdong, China
| |
Collapse
|
3
|
Duran C, Dupuy C, Agogué H, Duran R, Cravo-Laureau C. Towards a comprehensive view of wetland benthic communities. CURRENT RESEARCH IN MICROBIAL SCIENCES 2025; 8:100391. [PMID: 40321238 PMCID: PMC12048814 DOI: 10.1016/j.crmicr.2025.100391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2025] Open
Abstract
Benthic prokaryotic communities, utmost important for wetlands and marine environments functioning, are influenced by physical-chemical parameters and interactions with other communities, especially micro-eukaryotes and meiofauna. Thus, a holistic view of the benthic community is necessary to fully understand their organization and functioning. This study assesses the implementation of a comprehensive view, using mock communities and environmental samples. A DNA extraction strategy combining two procedures is proposed: one to obtain DNA from micro-organisms, using 0.25 g of sediment, and the other from meiofauna, using 0.25 g of sieving refluxes from 5 g of sediment. Three conditions were considered to create mock communities: (i) varying eukaryotes' abundance, (ii) adding meiofauna from salted or freshwater wetlands, and (iii) including or not a sediment matrix. Most organisms composing the mock communities were detected, except a filamentous cyanobacteria. All mock communities showed similar composition indicating that sediment did not affect the DNA extraction. This result also demonstrated that sieving, necessary to enrich meiofauna from sediment, does not significantly affect any of the communities. For the environmental samples investigated, most of the taxa usually described in the literature were retrieved in the salted, brackish and freshwater marshes sediment. The proposed approach was successful in analysing organisms from the three domains of life in a unique environmental sample, providing a holistic view of the benthic community. Furthermore, the significant differences observed between samples from the three different marshes, indicated that our approach can be used for conducting successful ecological studies, especially useful for understanding benthic communities' interactions.
Collapse
Affiliation(s)
- Clélia Duran
- Universite de Pau et des Pays de l'Adour, UPPA, CNRS, IPREM, Pau, France
- UMR 7266 LIENSs (Littoral Environnement et Sociétés), CNRS - La Rochelle Université, La Rochelle, France
| | - Christine Dupuy
- UMR 7266 LIENSs (Littoral Environnement et Sociétés), CNRS - La Rochelle Université, La Rochelle, France
| | - Hélène Agogué
- UMR 7266 LIENSs (Littoral Environnement et Sociétés), CNRS - La Rochelle Université, La Rochelle, France
| | - Robert Duran
- Universite de Pau et des Pays de l'Adour, UPPA, CNRS, IPREM, Pau, France
| | | |
Collapse
|
4
|
Wang X, Ding Y, Zhang X, Feng Y, Li C, Ge Y, Yang Y, Su J, Chu X. The effects of degraded polysaccharides from Acanthopanax senticosus on growth, antioxidant and immune effects in broiler chicks based on intestinal flora. Poult Sci 2025; 104:104933. [PMID: 40010047 PMCID: PMC11910097 DOI: 10.1016/j.psj.2025.104933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/15/2025] [Accepted: 02/19/2025] [Indexed: 02/28/2025] Open
Abstract
The aim of this study was to evaluate the effect of degraded polysaccharide of Acanthopanax senticosus (ASPS-1) on the immunological effects and appropriate dosage of broiler chicks with a view to developing a new feed additive. For the experimental design, 180 broiler chicks were randomly divided into six groups, ASPS-1 low, medium and high dose groups, undegraded Acanthopanax senticosus polysaccharide (ASPS) low and medium dose groups and blank control group. The drug was administered for 21 consecutive days, and the growth and data of immune organ index and immune factors were recorded on the 7th, 14th and 21st d. Finally, the effect of ASPS-1 on the intestinal flora of broiler chicks was investigated by high-throughput sequencing of the 16S rRNA gene and the correlation between the main flora and intestinal indexes was analyzed, and the function of microbial community was predicted by using PICRUSt2. The results showed that the addition of high dose of ASPS-1 could promote the body weight growth of broiler chicks, had no significant effect on immune organs, significantly promoted the increase of intestinal villi and crypt ratio, and effectively regulated the levels of serum antioxidant factors and immune indexes. Analysis of the intestinal flora showed that ASPS-1H promoted the proliferation of Lactobacillus, Faecalibacterium, Negativibacillus, and Eubacterium and inhibited the colonization of Desulfovibrio and Turicibacter, and that proliferation of Faecalibacterium, Negativibacillus and Eubacterium was associated with the development of intestinal villi. Predictive analysis of PICRUSt2 function indicates that proliferation of Lactobacillus, Faecalibacterium, Negativibacillus and Eubacterium functions through amino acid metabolism, global and overview maps, replication and repair pathways function. In summary, the addition of high doses of ASPS-1 can improve the immunity of broilers and has the potential to be used as a feed additive.
Collapse
Affiliation(s)
- Xueyan Wang
- College of Agriculture and Biology, Liaocheng University, Liaocheng 252000, China
| | - Yi Ding
- College of Agriculture and Biology, Liaocheng University, Liaocheng 252000, China
| | - Xueping Zhang
- College of Agriculture and Biology, Liaocheng University, Liaocheng 252000, China
| | - Yichao Feng
- College of Agriculture and Biology, Liaocheng University, Liaocheng 252000, China
| | - Chenglin Li
- College of Agriculture and Biology, Liaocheng University, Liaocheng 252000, China
| | - Yichen Ge
- College of Agriculture and Biology, Liaocheng University, Liaocheng 252000, China
| | - Yaosen Yang
- College of Agriculture and Biology, Liaocheng University, Liaocheng 252000, China
| | - Jianqing Su
- College of Agriculture and Biology, Liaocheng University, Liaocheng 252000, China
| | - Xiuling Chu
- College of Agriculture and Biology, Liaocheng University, Liaocheng 252000, China.
| |
Collapse
|
5
|
Xu J, Li X, Fan Q, Zhao S, Jiao T. Effects of Yeast Culture on Lamb Growth Performance, Rumen Microbiota, and Metabolites. Animals (Basel) 2025; 15:738. [PMID: 40076021 PMCID: PMC11899153 DOI: 10.3390/ani15050738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 02/24/2025] [Accepted: 02/28/2025] [Indexed: 03/14/2025] Open
Abstract
The effects of incorporating yeast culture (YC) into pelleted feeds on sheep production and the potential impact on rumen microbial populations, microbial metabolism, and fermentation have not been extensively studied. This study aimed to evaluate the effect of YC on growth performance, rumen tissue development, rumen fermentation, and rumen microflora in sheep and to explore the potential microbial mechanisms involved. Fifty healthy 3-month-old male lambs of small-tailed Han sheep, with an average weight of 28.44 ± 0.63 kg, were randomly divided into five groups: control (0% YC), 3% YC, 6% YC, 9% YC, and 12% YC. The pre-feeding period lasted for 15 days, followed by an official feeding period of 60 days. On the last day of the formal feeding period, six lambs that exhibited the best growth performance were randomly selected from the control group and the 9% YC group. These sheep were slaughtered, then the rumen epithelial tissue and rumen contents were collected for the measurement of rumen fermentation, microbial populations, and metabolites. Compared to the control group, the YC-treated groups showed higher daily and final body weight gains, as well as increased levels of propionic acid, butyric acid, and total volatile fatty acids (p < 0.05). YC supplementation also enhanced rumen papilla length and width (p < 0.05). Additionally, YC increased the relative abundance of certain microbial species (p < 0.05). These results suggest that supplementing 9% YC in pelleted diets for small-tailed Han sheep may enhance growth performance and improve the rumen environment.
Collapse
Affiliation(s)
- Jinlong Xu
- College of Pratacultural Science, Gansu Agricultural University, Lanzhou 730070, China; (J.X.); (Q.F.)
- Key Laboratory for Grassland Ecosystem of Ministry of Education, Gansu Agricultural University, Lanzhou 730070, China
- Provincial R&D Institute of Ruminants in Gansu, Lanzhou 730070, China;
| | - Xiongxiong Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China;
| | - Qingshan Fan
- College of Pratacultural Science, Gansu Agricultural University, Lanzhou 730070, China; (J.X.); (Q.F.)
- Key Laboratory for Grassland Ecosystem of Ministry of Education, Gansu Agricultural University, Lanzhou 730070, China
| | - Shengguo Zhao
- Provincial R&D Institute of Ruminants in Gansu, Lanzhou 730070, China;
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China;
| | - Ting Jiao
- College of Pratacultural Science, Gansu Agricultural University, Lanzhou 730070, China; (J.X.); (Q.F.)
- Key Laboratory for Grassland Ecosystem of Ministry of Education, Gansu Agricultural University, Lanzhou 730070, China
- Provincial R&D Institute of Ruminants in Gansu, Lanzhou 730070, China;
| |
Collapse
|
6
|
Abbas H, Best N, Zerna G, Beddoe T. Development of LAMP assay for early detection of Yersinia ruckeri in aquaculture. PeerJ 2025; 13:e19015. [PMID: 40028206 PMCID: PMC11869897 DOI: 10.7717/peerj.19015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 01/28/2025] [Indexed: 03/05/2025] Open
Abstract
Yersinia ruckeri is the causative agent of yersiniosis or enteric red mouth disease (ERM) that causes significant economic losses in the salmonid aquaculture industry. Due to an increasing number of outbreaks, lack of effective vaccines and the bacteria's ability to survive in the environment for long periods, there is a necessity for novel measures to control ERM. New techniques capable of rapidly detecting Y. ruckeri are critical to aid effective control programs. Molecular methods, like real-time polymerase chain reaction, can detect Y. ruckeri; however, that methodology is not field-deployable and cannot support local decision-making during an outbreak. We present a field-deployable molecular assay using loop mediated isothermal amplification (LAMP) and water filtering method for the detection of Y. ruckeri eDNA from water samples to improve current surveillance methods. The assay was optimised to amplify the glutamine synthetase gene (glnA) of Y. ruckeri in under 20 min. The assay demonstrated high specificity and sensitivity, as it did not amplify any non-target bacteria typically present in water sources. It achieved a limit of detection (LOD) of 0.5 × 10-7 ng/µl, significantly surpassing the LOD of 0.5 × 10-4 ng/µl obtained through conventional polymerase chain reaction (cPCR). When applied to environmental water samples spiked with transformed Escherichia coli containing the G-block of the Yersinia ruckeri (glnA) target gene, the Yr-LAMP method exhibited an analytical sensitivity of 0.08 cells/µl from the initial filtered water sample. Notably, the cumulative time for sample preparation and amplification was under 1 h. The simplicity of the developed field-deployable Yr-LAMP assay makes it suitable as a routine procedure to monitor fish for ERM infection. This will enable informed decision-making on mitigating pathogen prevalence in aquaculture farms.
Collapse
Affiliation(s)
- Hoda Abbas
- Department of Animal, Plant and Soil Science, La Trobe University, Bundoora, Victoria, Australia
| | - Nickala Best
- Department of Animal, Plant and Soil Science, La Trobe University, Bundoora, Victoria, Australia
| | - Gemma Zerna
- Department of Animal, Plant and Soil Science, La Trobe University, Bundoora, Victoria, Australia
| | - Travis Beddoe
- Department of Animal, Plant and Soil Science, La Trobe University, Bundoora, Victoria, Australia
| |
Collapse
|
7
|
Lalitha N, Katneni VK, Jangam AK, Suganya PN, Sukumaran S, Muralidhar M. Insight into the bacterial communities in the sediment-water interface across different salinities of Pacific White shrimp, Penaeus vannamei, by metabarcoding. Lett Appl Microbiol 2025; 78:ovaf020. [PMID: 39929187 DOI: 10.1093/lambio/ovaf020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/01/2025] [Accepted: 02/09/2025] [Indexed: 02/26/2025]
Abstract
Microbes play an important role in the food chain by metabolizing organic matter, cycling nutrients, and maintaining a dynamic equilibrium among organisms in water and sediment. The objective is to study the fluctuating taxonomic microbial diversity profile in the sediment-water interface at different days of culture (DOC) of Penaeus vannamei in varying salinities using the Illumina MiSeq platform. Sediment samples were collected in Tamil Nadu, India, from low-saline, brackish water, and high-saline ponds at 30, 60, and 90 DOC. Bacterial richness and diversity in species were high in low-saline ponds. Beta-diversity variation indicated more differences in bacterial composition in high- and low-saline ponds. The predominant phyla observed were Proteobacteria, Actinobacteria, Chloroflexi, Bacteroidetes, Firmicutes, and Cyanobacteria. High-saline ponds accounted for more nitrification bacterial communities, sulfur-reducing bacterial communities, sulfur-oxidizing bacterial communities, and high redox potential, whereas denitrification bacterial communities were high in brackish water ponds.
Collapse
Affiliation(s)
- Natarajan Lalitha
- ICAR-Central Institute of Brackishwater Aquaculture, Chennai 600 028, India
| | | | - Ashok Kumar Jangam
- ICAR-Central Institute of Brackishwater Aquaculture, Chennai 600 028, India
| | | | - Suvana Sukumaran
- ICAR-Central Research Institute for Dryland Agriculture, Hyderabad 500 059, India
| | - Moturi Muralidhar
- ICAR-Central Institute of Brackishwater Aquaculture, Chennai 600 028, India
| |
Collapse
|
8
|
Li SX, Liu Y, Zhang YM, Chen JQ, Shao ZQ. Convergent reduction of immune receptor repertoires during plant adaptation to diverse special lifestyles and habitats. NATURE PLANTS 2025; 11:248-262. [PMID: 39821112 DOI: 10.1038/s41477-024-01901-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 12/17/2024] [Indexed: 01/19/2025]
Abstract
Plants deploy cell-surface pattern recognition receptors (PRRs) and intracellular nucleotide-binding site-leucine-rich repeat receptors (NLRs) to recognize pathogens. However, how plant immune receptor repertoires evolve in responding to changed pathogen burdens remains elusive. Here we reveal the convergent reduction of NLR repertoires in plants with diverse special lifestyles/habitats (SLHs) encountering low pathogen burdens. Furthermore, a parallel but milder reduction of PRR genes in SLH species was observed. The reduction of PRR and NLR genes was attributed to both increased gene loss and decreased gene duplication. Notably, pronounced loss of immune receptors was associated with the complete absence of signalling components from the enhanced disease susceptibility 1 (EDS1) and the resistance to powdery mildew 8 (RPW8)-NLR (RNL) families. In addition, evolutionary pattern analysis suggested that the conserved toll/interleukin-1 receptor (TIR)-only proteins might function tightly with EDS1/RNL. Taken together, these results reveal the hierarchically adaptive evolution of the two-tiered immune receptor repertoires during plant adaptation to diverse SLHs.
Collapse
Affiliation(s)
- Sai-Xi Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yang Liu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yan-Mei Zhang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing, China
| | - Jian-Qun Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China.
| | - Zhu-Qing Shao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China.
| |
Collapse
|
9
|
Ge H, Li C, Huang C, Zhao L, Cong B, Liu S. Bacterial community composition and metabolic characteristics of three representative marine areas in northern China. MARINE ENVIRONMENTAL RESEARCH 2025; 204:106892. [PMID: 39647426 DOI: 10.1016/j.marenvres.2024.106892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/23/2024] [Accepted: 12/02/2024] [Indexed: 12/10/2024]
Abstract
Bacteria are essential components of ecosystems, participating in nutrient cycling and biogeochemical processes, and playing a crucial role in maintaining the stability of marine ecosystems. However, the biogeographic distribution patterns of bacterial diversity and metabolic functions in the estuarine and coastal areas of northern China remain unclear. Here, we used metagenomic sequencing to investigate the bacterial community composition and metabolic functions in sediments from the adjacent waters of the Yellow River Estuary, the Yellow Sea Cold Water Mass, and the adjacent waters of the Yangtze River Estuary. Among the 9164 species that were found, the most dominant microbial communities are Pseudomonadota, Actinomycetota, Bacteroidota, and Bacillota, but there are significant differences in the species composition in these three typical habitats. Amino acid metabolism and carbohydrate metabolic pathways were highly enriched. Glycoside hydrolases (GHs) predominate in carbon metabolism across all samples. In nitrogen metabolic pathway, genes related to organic degradation and synthesis are more abundant in the Yellow River Estuary than the other two habitats. In sulfur metabolic pathway, genes involved in assimilatory sulfate reduction are significantly enriched. Assimilatory sulfate reduction might be crucial for sulfur metabolism in coastal regions, with a full assimilatory nitrate reduction pathway found in Desulfobacterota. This research offers insights into the compositional diversity, metabolic functions, and biogeographic distribution patterns of bacterial communities in sediments from typical marine areas of northern China.
Collapse
Affiliation(s)
- Huameng Ge
- Observation and Research Station of Bohai Strait Eco-Corridor, First Institute of Oceanography, Ministry of Natural Resources, 266061, Qingdao, China
| | - Chengcheng Li
- Observation and Research Station of Bohai Strait Eco-Corridor, First Institute of Oceanography, Ministry of Natural Resources, 266061, Qingdao, China
| | - Conghui Huang
- Observation and Research Station of Bohai Strait Eco-Corridor, First Institute of Oceanography, Ministry of Natural Resources, 266061, Qingdao, China
| | - Linlin Zhao
- Observation and Research Station of Bohai Strait Eco-Corridor, First Institute of Oceanography, Ministry of Natural Resources, 266061, Qingdao, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, 266200, Qingdao, China
| | - Bailin Cong
- Observation and Research Station of Bohai Strait Eco-Corridor, First Institute of Oceanography, Ministry of Natural Resources, 266061, Qingdao, China
| | - Shenghao Liu
- Observation and Research Station of Bohai Strait Eco-Corridor, First Institute of Oceanography, Ministry of Natural Resources, 266061, Qingdao, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, 266200, Qingdao, China.
| |
Collapse
|
10
|
Yang P, Liang G, Ni Y, Chu X, Zhang X, Wang Z, Khan A, Jin F, Shen H, Li M, Xu Z. Investigating the role of intratumoral Streptococcus mitis in gastric cancer progression: insights into tumor microenvironment. J Transl Med 2025; 23:126. [PMID: 39875915 PMCID: PMC11773703 DOI: 10.1186/s12967-025-06142-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 12/18/2024] [Indexed: 01/30/2025] Open
Abstract
Growing evidence implicates that intratumoral microbiota are closely linked to cancer progression; however, research on the role of these microbiota in the development of gastric cancer remains limited. Here, using 16 S rRNA sequencing, tumor tissue proteomics and serum cytokines analysis, we identified enrichment of specific microbial communities within tumors of gastric cancer patients, possibly affecting the tumor microenvironment by immune modulation, metabolic processes, and inflammatory responses. Based on the results of in vivo experiments and intratumoral microbiota analysis, we found that Streptococcus mitis can inhibit gastric cancer progression via suppressing M2 macrophage polarization and infiltration, as well as altering the intratumoral microbial community. In summary, our findings suggest that the intratumoral microbiota, exemplified by Streptococcus mites, may be involved in regulating the progression of gastric cancer, thereby emerging as potential therapeutic targets for this disease.
Collapse
Affiliation(s)
- Ping Yang
- Department of Clinical Laboratory, Nanjing Drum Tower Hospital Clinical College of Xuzhou Medical University, Nanjing, 210008, China
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Physiology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, School of Life Sciences, NJU Advanced Institute of Life Sciences (NAILS), Nanjing University, Nanjing, 210008, Jiangsu, P. R. China
| | - Gaoli Liang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Physiology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, School of Life Sciences, NJU Advanced Institute of Life Sciences (NAILS), Nanjing University, Nanjing, 210008, Jiangsu, P. R. China
| | - Yangyue Ni
- Department of Pathogen Biology, Key Laboratory for Pathogen Infection and Control of Jiangsu Province, Nanjing Medical University, Nanjing, 211166, Jiangsu, P.R. China
| | - Xiaojie Chu
- Department of Clinical Laboratory, Nanjing Drum Tower Hospital Clinical College of Xuzhou Medical University, Nanjing, 210008, China
| | - Xiaoshan Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Physiology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, School of Life Sciences, NJU Advanced Institute of Life Sciences (NAILS), Nanjing University, Nanjing, 210008, Jiangsu, P. R. China
| | - Zhongyu Wang
- Department of Clinical Laboratory, Nanjing Drum Tower Hospital Clinical College of Xuzhou Medical University, Nanjing, 210008, China
| | - Adeel Khan
- Department of Biotechnology, University of Science and Technology Bannu, Bannu, 28100, KP, Pakistan
| | - Fangfang Jin
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, P. R. China.
| | - Han Shen
- Department of Clinical Laboratory, Nanjing Drum Tower Hospital Clinical College of Xuzhou Medical University, Nanjing, 210008, China.
| | - Miao Li
- Department of Clinical Laboratory, Nanjing Drum Tower Hospital Clinical College of Xuzhou Medical University, Nanjing, 210008, China.
| | - Zhipeng Xu
- Department of Pathogen Biology, Key Laboratory for Pathogen Infection and Control of Jiangsu Province, Nanjing Medical University, Nanjing, 211166, Jiangsu, P.R. China.
| |
Collapse
|
11
|
Zhou X, Dong X, Huang J, Zhu S, Chen W, Shen Y. Environmental DNA Insights into the Spatial Status of Fish Diversity in the Mainstem of the Jialing River. Animals (Basel) 2025; 15:105. [PMID: 39795047 PMCID: PMC11718828 DOI: 10.3390/ani15010105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/25/2024] [Accepted: 01/03/2025] [Indexed: 01/13/2025] Open
Abstract
Preserving healthy river habitats is essential for maintaining fish diversity. Over time, anthropogenic activities have severely damaged river habitats, leading to notable changes in fish diversity patterns. Conducting thorough and reliable investigations into fish diversity is crucial for assessing anthropogenic impacts on diversity. In August 2023, a water ecology survey was conducted across 20 terraced river sections in the mainstem of the Jialing River, resulting in the collection of 60 environmental DNA water samples. The survey identified 99 fish species, representing 74 genera across 7 orders and 20 families, with the Cyprinidae exhibiting the highest number of species. The fish communities are predominantly composed of species inhabiting slow flowing water, demersal fish, omnivores, and fish spawning adhesive eggs. Overall, small-bodied fish dominate the mainstem of the Jialing River, and the species preferring flowing habitats are relatively scarce. In addition, geographic division analyses revealed minimal variations in fish species composition and diversity among the terraced reservoirs and across the upper, middle, and lower reaches. Notably, the fish compositions in the middle and lower reaches were found to be similar, indicating a certain degree of convergence in these sections of the Jialing River. In conclusion, this study unveils the current status and distribution pattern of fish diversity in the Jialing River and highlights the extent of anthropogenic activities' impact on fish diversity.
Collapse
Affiliation(s)
- Xinxin Zhou
- Laboratory of Water Ecological Health and Environmental Safety, School of Life Sciences, Chongqing Normal University, Chongqing 401331, China; (X.Z.); (X.D.); (J.H.)
- Chongqing Key Laboratory of Conservation and Utilization of Freshwater Fishes, School of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Xiaohan Dong
- Laboratory of Water Ecological Health and Environmental Safety, School of Life Sciences, Chongqing Normal University, Chongqing 401331, China; (X.Z.); (X.D.); (J.H.)
- Chongqing Key Laboratory of Conservation and Utilization of Freshwater Fishes, School of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Jiaxin Huang
- Laboratory of Water Ecological Health and Environmental Safety, School of Life Sciences, Chongqing Normal University, Chongqing 401331, China; (X.Z.); (X.D.); (J.H.)
- Chongqing Key Laboratory of Conservation and Utilization of Freshwater Fishes, School of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Shuli Zhu
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China;
| | - Weitao Chen
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China;
| | - Yanjun Shen
- Laboratory of Water Ecological Health and Environmental Safety, School of Life Sciences, Chongqing Normal University, Chongqing 401331, China; (X.Z.); (X.D.); (J.H.)
- Chongqing Key Laboratory of Conservation and Utilization of Freshwater Fishes, School of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| |
Collapse
|
12
|
Li Y, Zhou J, Guo T, Zhang H, Cao C, Cai Y, Zhang J, Li T, Zhang J. Effects of adding a kind of compound bio-enzyme to the diet on the production performance, serum immunity, and intestinal health of Pekin ducks. Poult Sci 2025; 104:104506. [PMID: 39700598 PMCID: PMC11720614 DOI: 10.1016/j.psj.2024.104506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/25/2024] [Accepted: 11/02/2024] [Indexed: 12/21/2024] Open
Abstract
The use of bio-enzyme as feed additives holds significant potential. This study aimed to evaluate the impact of a kind of compound bio-enzyme supplementation (the main functional components are probiotics and astragalus polysaccharides) on the production performance, serum immunity, and intestinal health of Pekin ducks. A total of 126 male Pekin ducks were randomly assigned to three groups: a control group (CG, no additive), a low-dose group (LG, 0.1 % bio-enzyme), and a high-dose group (HG, 0.2 % bio-enzyme), with 6 replicates per group. Ducks were raised until 35 days of age, with weekly measurements of growth performance. At day 35, serum immunoglobulins were measured, carcass traits were recorded, and cecal contents were analyzed using 16S rRNA sequencing and metabolomics. Results indicated a significant increase in ADG (P = 0.049) and a decrease in feed-to-gain ratio (F:G) (P = 0.020) in LG and HG compared to CG during rearing. The HG showed a notable improvement in half eviscerated yield (HEY) (P = 0.023) and full eviscerated yield (FEY) (P = 0.008). No substantial changes were observed in immunological parameters (P > 0.05). The jejunal villus height to crypt depth ratio (VH/CD) significantly increased (P < 0.001) in LG, with notable improvements in duodenal (P = 0.001) and jejunal (P < 0.001) VH/CD in HG. The Shannon index (P = 0.042) and Pielou index (P = 0.038) of cecal microbiota were markedly lower in HG. Notable changes in the relative abundance of Firmicutes and Bacteroidota were observed in LG and HG. Differential bacteria and metabolites among the treatments were identified, and their correlations were analyzed. KEGG enrichment pathways of the metabolites were also identified. In conclusion, this bio-enzyme can improve production performance, intestinal wall structure, and microbiota in Pekin ducks. A 0.1 % concentration of this bio-enzyme is optimal for Pekin duck production.
Collapse
Affiliation(s)
- Yuxiao Li
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China
| | - Jie Zhou
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China
| | - Tong Guo
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China
| | - Huiya Zhang
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China
| | - Chang Cao
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China
| | - Yingjie Cai
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China
| | - Jiqiao Zhang
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China
| | - Tao Li
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China
| | - Jianqin Zhang
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China.
| |
Collapse
|
13
|
Singh AB, Paul T, Shukla SP, Kumar S, Kumar S, Kumar G, Kumar K. Gut microbiome as biomarker for triclosan toxicity in Labeo rohita: bioconcentration, immunotoxicity and metagenomic profiling. ECOTOXICOLOGY (LONDON, ENGLAND) 2025; 34:102-111. [PMID: 39427267 DOI: 10.1007/s10646-024-02817-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/12/2024] [Indexed: 10/22/2024]
Abstract
Triclosan (TCS) is a lipophilic, broad spectrum antimicrobial agent commonly used in personal care products with a projected continuous escalation in aquatic environments in the post COVID 19 era. There is rich documentation in the literature on the alteration of physiological responses in fish due to TCS exposure; however, studies on gut associated bacteria of fish are still scarce. This is the first attempt to determine changes in bacterial community structure due to exposure of TCS on Labeo rohita, a commercially essential freshwater species, using 16S V3-V4 region ribosomal RNA (rRNA) next-generation sequencing (NGS). Chronic exposure of TCS at environmentally realistic concentrations viz. 1/5th (T1: 0.129 mg/L) and 1/10th (T2: 0.065 mg/L) of LC50 for 28 days resulted in the dose dependent bioconcentration of TCS in the fish gut. Prolonged exposure to TCS leads to disruption of gut bacteria evidenced by down regulation of the host immune system. Additionally, high-throughput sequencing analysis showed alternation in the abundance and diversity of microbial communities in the gut, signifying Proteobacteria and Verrucomicrobia as dominant phyla. Significant changes were also observed in the relative abundance of Chloroflexi and Gammatimonadetes phyla in TCS exposed groups. The study revealed that gut microbiome can be used as a biomarker in assessing the degree of TCS toxicity in commercially important fish species.
Collapse
Affiliation(s)
| | - Tapas Paul
- College of Fisheries, Bihar Animal Sciences University, Kishanganj, Bihar, 855107, India
| | - S P Shukla
- ICAR-Central Institute of Fisheries Education, Mumbai, Maharashtra, 400061, India
| | - Saurav Kumar
- ICAR-Central Institute of Fisheries Education, Mumbai, Maharashtra, 400061, India
| | - Sanath Kumar
- ICAR-Central Institute of Fisheries Education, Mumbai, Maharashtra, 400061, India
| | - Ganesh Kumar
- Rani Lakshmi Bai Central Agricultural University, Jhansi, Uttar Pradesh, 284003, India
| | - Kundan Kumar
- ICAR-Central Institute of Fisheries Education, Mumbai, Maharashtra, 400061, India.
| |
Collapse
|
14
|
Ruff SE, de Angelis IH, Mullis M, Payet JP, Magnabosco C, Lloyd KG, Sheik CS, Steen AD, Shipunova A, Morozov A, Reese BK, Bradley JA, Lemonnier C, Schrenk MO, Joye SB, Huber JA, Probst AJ, Morrison HG, Sogin ML, Ladau J, Colwell F. A global comparison of surface and subsurface microbiomes reveals large-scale biodiversity gradients, and a marine-terrestrial divide. SCIENCE ADVANCES 2024; 10:eadq0645. [PMID: 39693444 DOI: 10.1126/sciadv.adq0645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 11/13/2024] [Indexed: 12/20/2024]
Abstract
Subsurface environments are among Earth's largest habitats for microbial life. Yet, until recently, we lacked adequate data to accurately differentiate between globally distributed marine and terrestrial surface and subsurface microbiomes. Here, we analyzed 478 archaeal and 964 bacterial metabarcoding datasets and 147 metagenomes from diverse and widely distributed environments. Microbial diversity is similar in marine and terrestrial microbiomes at local to global scales. However, community composition greatly differs between sea and land, corroborating a phylogenetic divide that mirrors patterns in plant and animal diversity. In contrast, community composition overlaps between surface to subsurface environments supporting a diversity continuum rather than a discrete subsurface biosphere. Differences in microbial life thus seem greater between land and sea than between surface and subsurface. Diversity of terrestrial microbiomes decreases with depth, while marine subsurface diversity and phylogenetic distance to cultured isolates rivals or exceeds that of surface environments. We identify distinct microbial community compositions but similar microbial diversity for Earth's subsurface and surface environments.
Collapse
Affiliation(s)
- S Emil Ruff
- Marine Biological Laboratory, Woods Hole, MA, USA
| | | | | | - Jérôme P Payet
- College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR, USA
| | | | | | - Cody S Sheik
- Large Lakes Observatory and Department of Biology, University of Minnesota Duluth, Duluth, MN, USA
| | | | | | | | - Brandi Kiel Reese
- University of South Alabama, Mobile, AL, USA
- Dauphin Island Sea Laboratory, Dauphin Island, AL, USA
| | - James A Bradley
- Aix Marseille University, University of Toulon, CNRS, IRD, MIO, Marseille, France
- Queen Mary University of London, London, UK
| | - Clarisse Lemonnier
- UMR CARRTEL, INRAE, Université Savoie Mont-Blanc, Thonon-les-Bains, France
| | - Matthew O Schrenk
- Department of Earth and Environmental Sciences, Michigan State University, East Lansing, MI. USA
| | - Samantha B Joye
- Department of Marine Sciences, University of Georgia, Athens, GA, USA
| | - Julie A Huber
- Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Alexander J Probst
- Environmental Metagenomics, Research Center One Health Ruhr of the University Alliance Ruhr, Faculty of Chemistry and Centre of Water and Environmental Research (ZWU), University of Duisburg-Essen, Essen, Germany
| | | | | | - Joshua Ladau
- Department of Computational Precision Health, University of California, San Francisco, CA, USA
- Arva Intelligence, Houston, TX, USA
| | - Frederick Colwell
- College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
15
|
Read T, Chaléat C, Laycock B, Pratt S, Lant P, Chan CM. Lifetimes and mechanisms of biodegradation of polyhydroxyalkanoate (PHA) in estuarine and marine field environments. MARINE POLLUTION BULLETIN 2024; 209:117114. [PMID: 39418875 DOI: 10.1016/j.marpolbul.2024.117114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/04/2024] [Accepted: 10/05/2024] [Indexed: 10/19/2024]
Abstract
Coastal cities face significant challenges from plastic pollution, with most plastics being resistant to biodegradation. Biodegradable plastics are increasingly used to address this issue, particularly for items prone to entering, and then accumulating, in waterways, through littering or leakage. Among biodegradable plastics, polyhydroxyalkanoates (PHAs) are notable as bioderived, bacterially synthesised aliphatic polyesters that are readily biodegradable in varied environments. This study focuses on the lifetimes and biodegradation behaviour of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) sheets submerged in five different aquatic environments (under both surface and benthic conditions) within a single coastal zone over 51 weeks. The biodegradation was characterised through mass and thickness loss, and changes in surface morphology, thermal and mechanical properties, and molecular weight. The findings revealed that the lifetimes of PHBV sheets varied between benthic and surface sites, with all benthic sites exhibiting faster biodegradation rates (0.068 ± 0.019 mg.d-1.cm-2 to 0.163 ± 0.048 mg.d-1.cm-2) compared to the surface (0.032 ± 0.015 mg.d-1.cm-2). Lag times to initiation of biodegradation in the Marina benthic and River benthic sites were similar (9-25 days) with the two other benthic sites (Sea and Mesocosm) comparable with the Marina surface ranging from 41 to 110 days), indicating that the local environment has a stronger influence on lag time as opposed to the specific rate of mass loss following biodegradation onset. UV exposure did not impact the crystallinity of the surface sheets, which remained stable throughout the exposure period. Overall, if thin- walled, (∼150 μm) products made from PHA do leak into the aquatic environment and remain buoyant, then their lifetimes are forecast to be within 1-2 years; if they settle in benthic environments, their lifetimes are likely to be between 4 and 9 months.
Collapse
Affiliation(s)
- Tracey Read
- School of Chemical Engineering, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Céline Chaléat
- School of Chemical Engineering, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Bronwyn Laycock
- School of Chemical Engineering, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Steven Pratt
- School of Chemical Engineering, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia.
| | - Paul Lant
- School of Chemical Engineering, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Clement Matthew Chan
- School of Chemical Engineering, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| |
Collapse
|
16
|
Vettorazzo S, Boscaini A, Cerasino L, Salmaso N. From small water bodies to lakes: Exploring the diversity of freshwater bacteria in an Alpine Biosphere Reserve. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176495. [PMID: 39341249 DOI: 10.1016/j.scitotenv.2024.176495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 09/19/2024] [Accepted: 09/22/2024] [Indexed: 09/30/2024]
Abstract
Small water bodies, although supporting high biodiversity, are often understudied in the Alpine region. In this work, we characterized the planktic and benthic bacterial communities, as well as the water chemistry, of a wide physiographic range of 19 freshwater bodies within an Alpine Biosphere Reserve, including ponds, pasture ponds, peat bogs, shallow lakes, and lakes. We collected both water and surface sediment samples, followed by metabarcoding analysis based on the V3-V4 regions of the 16S rRNA gene. We investigated the changes in biodiversity and the distribution of unique and shared amplicon sequence variants (ASVs) between water (11,829 ASVs) and surface sediment (19,145 ASVs) habitats, as well as across different freshwater typologies. The majority of ASVs (78 %) were unique to a single sample, highlighting the variability and uniqueness of bacterial communities in such freshwater bodies. Most freshwater environments showed higher α-diversity in sediment samples (median, 1469 ASVs) compared to water (468 ASVs). We found that water and sediment habitats harboured unique bacterial communities with significant differences in their taxonomic compositions. Benthic bacteria were associated with several biogeochemical and degradative processes occurring in the sediments, with no notable differences among freshwater typologies and with phylogenetically and ecologically similar species. Conversely, planktic communities showed greater heterogeneity: small water bodies and peat bogs were characterized by higher relative abundances of Patescibacteria (up to 33 %), while lakes and shallow lakes were dominated by Actinobacteriota (up to 36 %). Cyanobacteria (426 ASVs) were generally distributed at low abundances in both water and sediment habitats. Overall, our results provided essential insights into the bacterial ecology of understudied environments such as ponds and pasture ponds and highlighted the importance of further exploring their rich pelagic and benthic bacterial biodiversity.
Collapse
Affiliation(s)
- Sara Vettorazzo
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38098 San Michele all'Adige, Italy; NBFC, National Biodiversity Future Center, Palermo 90133, Italy.
| | - Adriano Boscaini
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38098 San Michele all'Adige, Italy
| | - Leonardo Cerasino
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38098 San Michele all'Adige, Italy
| | - Nico Salmaso
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38098 San Michele all'Adige, Italy; NBFC, National Biodiversity Future Center, Palermo 90133, Italy
| |
Collapse
|
17
|
Mustafa G, Hussain S, Liu Y, Ali I, Liu J, Bano H. Microbiology of wetlands and the carbon cycle in coastal wetland mediated by microorganisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:175734. [PMID: 39244048 DOI: 10.1016/j.scitotenv.2024.175734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 08/13/2024] [Accepted: 08/21/2024] [Indexed: 09/09/2024]
Abstract
Wetlands are highly diverse and productive and are among the three most important natural ecosystems worldwide, among which coastal wetlands are particularly valuable because they have been shown to provide important functions for human populations. They provide a wide variety of ecological services and values that are critical to humans. Their value may increase with increased use or scarcity owing to human progress, such as agriculture and urbanization. The potential assessment for one coastal wetland habitat to be substituted by another landscape depends on analyzing complex microbial communities including fungi, bacteria, viruses, and protozoa common in different wetlands. Moreover, the number and quality of resources in coastal wetlands, including nutrients and energy sources, are also closely related to the size and variety of the microbial communities. In this review, we discussed types of wetlands, how human activities had altered the carbon cycle, how climate change affected wetland services and functions, and identified some ways to promote their conservation and restoration that provide a range of benefits, including carbon sequestration. Current data also indicated that the coastal ocean acted as a net sink for atmospheric carbon dioxide in a post-industrial age and continuous human pressure would make a major impact on the evolution the coastal ocean carbon budget in the future. Coastal wetland ecosystems contain diverse microbial communities, and their composition of microbial communities will tend to change rapidly in response to environmental changes, as can serve as significant markers for identifying these changes in the future.
Collapse
Affiliation(s)
- Ghulam Mustafa
- Key Laboratory of integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Sarfraz Hussain
- Key Laboratory of integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yuhong Liu
- Key Laboratory of integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China.
| | - Imran Ali
- Key Laboratory of integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Jiayuan Liu
- Key Laboratory of integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Hamida Bano
- Key Laboratory of integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; Department of Zoology, University of Education, Lahore, Pakistan
| |
Collapse
|
18
|
Huang K, Li L, Wu W, Pu K, Qi W, Qi J, Li M. Enhancing Morchella Mushroom Yield and Quality Through the Amendment of Soil Physicochemical Properties and Microbial Community with Wood Ash. Microorganisms 2024; 12:2406. [PMID: 39770609 PMCID: PMC11676116 DOI: 10.3390/microorganisms12122406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 11/11/2024] [Accepted: 11/21/2024] [Indexed: 01/11/2025] Open
Abstract
Morchella mushroom is a nutritionally rich and rare edible fungus. The traditional cultivation model, which relies on expanding the cultivation area to meet market demand, is no longer sufficient to address the rapidly growing market demand. Enhancing the yield and quality of Morchella without increasing the cultivation area is an intractable challenge in the development of the Morchella mushroom industry. Against this backdrop, this study investigates the effects of different amounts of wood ash (WA) application on the yield and quality of Morchella, and conducts an in-depth analysis in conjunction with soil physicochemical properties and microbial communities. The results indicate that the application of WA improves both the yield and quality of Morchella, with the highest yield increase observed in the WA2 treatment (4000 kg/hm2), which showed a 118.36% increase compared to the control group (CK). The application of WA also modified the physicochemical properties of the soil, significantly improving the integrated fertility index of the soil (IFI, p < 0.05). The soil microbial community structure was altered by the addition of WA. Redundancy analysis (RDA) revealed that pH and total potassium (TK) were the main environmental factors influencing the bacterial community, while pH, TK, and total nitrogen (TN) were the main factors influencing the fungal community structure. In addition, bacterial community diversity tended to increase with higher WA application rates, whereas fungal community diversity generally showed a decreasing trend. Furthermore, the relative abundance of beneficial microbial communities, such as Acidobacteriota, which promote the growth of Morchella, increased with higher WA application, while the relative abundance of detrimental microbial communities, such as Xanthomonadaceae, decreased. Partial least squares path model (PLS-PM) analysis of external factors affecting Morchella yield and quality indicated that WA application can alter soil physicochemical properties and soil microbial communities, thereby improving Morchella yield and quality. Among these factors, soil fertility was identified as the most important determinant of Morchella yield and quality.
Collapse
Affiliation(s)
- Kai Huang
- Center of Edible Fungi, Northwest A&F University, Yangling 712100, China
- School of Soil and Water Conservation Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Ling Li
- Center of Edible Fungi, Northwest A&F University, Yangling 712100, China
- School of Soil and Water Conservation Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Weijun Wu
- Center of Edible Fungi, Northwest A&F University, Yangling 712100, China
| | - Kunlun Pu
- Center of Edible Fungi, Northwest A&F University, Yangling 712100, China
- School of Soil and Water Conservation Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Wei Qi
- Center of Edible Fungi, Northwest A&F University, Yangling 712100, China
| | - Jianzhao Qi
- Center of Edible Fungi, Northwest A&F University, Yangling 712100, China
- School of Soil and Water Conservation Science and Engineering, Northwest A&F University, Yangling 712100, China
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China
| | - Minglei Li
- Center of Edible Fungi, Northwest A&F University, Yangling 712100, China
- School of Soil and Water Conservation Science and Engineering, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
19
|
Neu AT, Torchin ME, Allen EE, Roy K. Microbiome divergence of marine gastropod species separated by the Isthmus of Panama. Appl Environ Microbiol 2024; 90:e0100324. [PMID: 39480095 PMCID: PMC11614449 DOI: 10.1128/aem.01003-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/22/2024] [Indexed: 11/02/2024] Open
Abstract
The rise of the Isthmus of Panama separated the populations of many marine organisms, which then diverged into new geminate sister species currently living in the Eastern Pacific Ocean and the Caribbean Sea. However, we know very little about how such evolutionary divergences of host species have shaped the compositions of their microbiomes. Here, we compared the microbiomes of whole-body and shell-surface samples of geminate species of marine gastropods in the genera Cerithium and Cerithideopsis to those of congeneric outgroups. Our results suggest that the effects of ~3 million years of separation and isolation on microbiome composition varied among host genera and between sample types within the same hosts. In the whole-body samples, microbiome compositions of geminate species pairs tended to be similar, likely due to host filtering, although the strength of this relationship varied among the two groups and across similarity metrics. Shell-surface microbiomes show contrasting patterns, with co-divergence between the host taxa and a small number of microbial clades evident in Cerithideopsis but not Cerithium. These results suggest that (i) isolation of host populations after the rise of the Isthmus of Panama affected microbiomes of geminate hosts in a complex and host-specific manner, and (ii) host-associated microbial taxa respond differently to vicariance events than the hosts themselves.IMPORTANCEWhile considerable work has been done on evolutionary divergences of marine species in response to the rise of the Isthmus of Panama, which separated two previously connected oceans, how this event shaped the microbiomes of these marine hosts remains poorly known. Using whole-body and shell-surface microbiomes of closely related gastropod species from opposite sides of the Isthmus, we show that divergences of microbial taxa after the formation of the Isthmus are often not concordant with those of their gastropod hosts. Our results show that evolutionary responses of marine gastropod-associated microbiomes to major environmental perturbations are complex and are shaped more by local environments than host evolutionary history.
Collapse
Affiliation(s)
- Alexander T. Neu
- Department of Ecology,
Behavior and Evolution, School of Biological Sciences, University of
California San Diego, La
Jolla, California, USA
- Smithsonian Tropical
Research Institute, Ancon,
Balboa, Panama
| | - Mark E. Torchin
- Smithsonian Tropical
Research Institute, Ancon,
Balboa, Panama
| | - Eric E. Allen
- Department of
Molecular Biology, School of Biological Sciences, University of
California San Diego, La
Jolla, California, USA
- Marine Biology
Research Division, Scripps Institution of Oceanography, University of
California San Diego, La
Jolla, California, USA
| | - Kaustuv Roy
- Department of Ecology,
Behavior and Evolution, School of Biological Sciences, University of
California San Diego, La
Jolla, California, USA
| |
Collapse
|
20
|
Liu B, Yang J, Lu W, Wang H, Song X, Yu S, Liu Q, Sun Y, Jiang X. Altitudinal variation in rhizosphere microbial communities of the endangered plant Lilium tsingtauense and the environmental factors driving this variation. Microbiol Spectr 2024; 12:e0096624. [PMID: 39382299 PMCID: PMC11536999 DOI: 10.1128/spectrum.00966-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/28/2024] [Indexed: 10/10/2024] Open
Abstract
The rhizosphere soil properties and microbial communities of Lilium tsingtauense, an endangered wild plant, have not been examined in previous studies. Here, we characterized spatial variation in soil properties and microbial communities in the rhizosphere of L. tsingtauense. We measured the abundance of L. tsingtauense at different altitudes and collected rhizosphere and bulk soils at three representative altitudes. The results showed that L. tsingtauense was more abundant, and the rhizosphere soil was richer in nitrogen, phosphorus, potassium, water content, and organic matter and more acidic at high altitudes than at lower altitudes. The diversity and richness of rhizosphere bacteria and fungi increased with altitude and were higher in rhizosphere soil than in bulk soil. In addition, ectomycorrhizal fungi, endophytic fungi, and nitrogen-fixing bacteria were more abundant, and plant-pathogenic fungi were less abundant at high altitudes. Co-occurrence network analysis identified four key phyla (Bacteroidota, Proteobacteria, Ascomycota, and Basidiomycota) in the microbial communities. We identified a series of microbial taxa (Acidobacteriales, Xanthobacteraceae, and Chaetomiaceae) and rhizosphere soil metabolites (phosphatidylcholine and phosphatidylserine) that are crucial for the survival of L. tsingtauense. Correlation analysis and random forest analysis showed that some environmental factors were closely related to the rhizosphere soil microbial community and played an important role in predicting the distribution and growth status of L. tsingtauense. In sum, the results of this study revealed altitudinal variation in the rhizosphere microbial communities of L. tsingtauense and the factors driving this variation. Our findings also have implications for habitat restoration and the conservation of this species. IMPORTANCE Our study highlighted the importance of the rhizosphere microbial community of the endangered plant L. tsingtauense. We found that soil pH plays an important role in the survival of L. tsingtauense. Our results demonstrated that a series of microbial taxa (Acidobacteriales, Xanthobacteraceae, Aspergillaceae, and Chaetomiaceae) and soil metabolites (phosphatidylcholine and phosphatidylserine) could be essential indicators for L. tsingtauense habitat. We also found that some environmental factors play an important role in shaping rhizosphere microbial community structure. Collectively, these results provided new insights into the altitudinal distribution of L. tsingtauense and highlight the importance of microbial communities in their growth.
Collapse
Affiliation(s)
- Boda Liu
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Jinming Yang
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Wanpei Lu
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Hai Wang
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Xuebin Song
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Shaobo Yu
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Qingchao Liu
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Yingkun Sun
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Xinqiang Jiang
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, Shandong, China
| |
Collapse
|
21
|
Jin L, Li K, Li Z, Huang X, Wang L, Wang X, Di S, Cui S, Xu Y. Investigation into Critical Gut Microbes Influencing Intramuscular Fat Deposition in Min Pigs. Animals (Basel) 2024; 14:3123. [PMID: 39518846 PMCID: PMC11545367 DOI: 10.3390/ani14213123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/19/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
To determine the pivotal microorganisms affecting intramuscular fat (IMF) accumulation in Min pigs and to discern the extent of the influence exerted by various intestinal segments on IMF-related traits, we sequenced 16S rRNA from the contents of six intestinal segments from a high IMF group (Group H) and a low IMF group (Group L) of Min pigs weighing 90 ± 1 kg. We then compared their diversity and disparities in bacterial genera. Group H exhibited considerably higher α diversity in the jejunum and colon than Group L (p < 0.05). When 95% confidence levels were considered, the main β diversity components for the ileum, caecum, and colon within Groups H and L exhibited absolute segregation. Accordingly, 31 differentially abundant genera across Group H were pinpointed via LEfSe and the Wilcoxon test (p < 0.05) and subsequently scrutinised based on their distribution and abundance across distinct intestinal segments and their correlation with IMF phenotypes. The abundances of Terrisporobacter, Acetitomaculum, Bacteroides, Fibrobacter, Treponema, Akkermansia, Blautia, Clostridium sensu stricto 1, Turicibacter, Subdoligranulum, the [Eubacterium] siraeum group, and dgA 11 gut groups were positively correlated with IMF content (p < 0.05), whereas those of Bacillus, the Lachnospiraceae NK4A136 group, Streptococcus, Roseburia, Solobacterium, Veillonella, Lactobacillus, the Rikenellaceae RC9 gut group, Anaerovibrio, and the Lachnospiraceae AC2044 group were negatively associated with IMF content (p < 0.05). Employing PICRUSt2 for predicting intergenic metabolic pathways that differ among intestinal microbial communities revealed that within the 95% confidence interval the colonic microbiome was enriched with the most metabolic pathways, including those related to lipid metabolism. The diversity results, bacterial genus distributions, and metabolic pathway disparities revealed the colonic segment as an influential region for IMF deposition.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Shiquan Cui
- College of Animal Science and Technology, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin 150030, China; (L.J.); (K.L.); (Z.L.); (X.H.); (L.W.); (X.W.); (S.D.)
| | - Yuan Xu
- College of Animal Science and Technology, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin 150030, China; (L.J.); (K.L.); (Z.L.); (X.H.); (L.W.); (X.W.); (S.D.)
| |
Collapse
|
22
|
Xie D, Feng C, Hu J, Lin H, Luo H, Zhang Q, He H. Impact of tidal fluctuations on bacterial community structure in Wuyuan Bay: A comparative analysis of waters inside and outside the tidal barrage. PLoS One 2024; 19:e0312283. [PMID: 39453927 PMCID: PMC11508120 DOI: 10.1371/journal.pone.0312283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 10/03/2024] [Indexed: 10/27/2024] Open
Abstract
The tidal barrage at Wuyuan Bay effectively mitigated the odor from the tidal flat during ebb tide, however, its effect on bacterial community structure in waters are still unclear. In this study, high-throughput sequencing was used to analyze the structure of the microbial community in waters inside and outside the tidal barrage during flood and ebb tides. Results showed bacterial diversity was higher in water outside the barrage during flood tide. The dominated species at phylum and genus levels were various in waters inside and outside the tidal barrage during flood and ebb tides. The water inside during ebb tide (E1) were dominated by two cyanobacterial genera, Cyanobium_PCC-6307 (42.90%) and Synechococcus_CC9902 (12.56%). The microbial function, such as porphyrin and chlorophyll metabolism and photosynthesis, were increased in E1. Norank_f__Nitriliruptoraceae was identified as differential microorganism in waters inside the barrage. Inorganic nitrogen and nonionic ammonia were significantly high in E1, and were negatively correlated with norank_f__Nitriliruptoraceae. These results suggest tidal barrage blocks water exchange, resulting in the accumulation of nutrients in Wuyuan Bay. Consequently, the environment became favorable for the growth of cyanobacteria, leading to the dominance of algae in the water inside the barrage and posing the risk of cyanobacterial bloom. Higher Nitriliruptoraceae inside the barrage might be a cue for the change of water quality.
Collapse
Affiliation(s)
- Dandan Xie
- Collaborative Innovation Center for Intelligent Fishery, Higher Vocational College of Fujian Province, Xiamen Ocean Vocational College, Xiamen, China
| | - Chen Feng
- Collaborative Innovation Center for Intelligent Fishery, Higher Vocational College of Fujian Province, Xiamen Ocean Vocational College, Xiamen, China
| | - Jiehua Hu
- Collaborative Innovation Center for Intelligent Fishery, Higher Vocational College of Fujian Province, Xiamen Ocean Vocational College, Xiamen, China
| | - Huina Lin
- Collaborative Innovation Center for Intelligent Fishery, Higher Vocational College of Fujian Province, Xiamen Ocean Vocational College, Xiamen, China
| | - Hong Luo
- Xiamen Cloud Whale Ecological Environment Co., LTD, Xiamen, China
| | - Qi Zhang
- College of Tea and Food, Wuyi University, Wuyishan, China
| | - Haibin He
- Collaborative Innovation Center for Intelligent Fishery, Higher Vocational College of Fujian Province, Xiamen Ocean Vocational College, Xiamen, China
- Key Laboratory of Agroecological Processing and Safety Monitoring of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
23
|
Ghabban H, Albalawi DA, Al-otaibi AS, Alshehri D, Alenzi AM, Alatawy M, Alatawi HA, Alnagar DK, Bahieldin A. Investigating the bacterial community of gray mangroves ( Avicennia marina) in coastal areas of Tabuk region. PeerJ 2024; 12:e18282. [PMID: 39434799 PMCID: PMC11493069 DOI: 10.7717/peerj.18282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 09/19/2024] [Indexed: 10/23/2024] Open
Abstract
Mangrove vegetation, a threatened and unique inter-tidal ecosystem, harbours a complex and largely unexplored bacterial community crucial for nutrient cycling and the degradation of toxic pollutants in coastal areas. Despite its importance, the bacterial community composition of the gray mangrove (Avicennia marina) in the Red Sea coastal regions remains under-studied. This study aims to elucidate the structural and functional diversity of the microbiome in the bulk and rhizospheric soils associated with A. marina in the coastal areas of Ras Alshabaan-Umluj (Umluj) and Almunibrah-Al-Wajh (Al-Wajh) within the Tabuk region of Saudi Arabia. Amplicon sequencing targeting the 16S rRNA was performed using the metagenomic DNAs from the bulk and rhizospheric soil samples from Umluj and Al-Wajh. A total of 6,876 OTUs were recovered from all samples, of which 1,857 OTUs were common to all locations while the total number of OTUs unique to Al-wajh was higher (3,011 OTUs) than the total number of OTUs observed (1,324 OTUs) at Umluj site. Based on diversity indices, overall bacterial diversity was comparatively higher in rhizospheric soil samples of both sites. Comparing the diversity indices for the rhizosphere samples from the two sites revealed that the diversity was much higher in the rhizosphere samples from Al-Wajh as compared to those from Umluj. The most dominant genera in rhizosphere sample of Al-Wajh were Geminicoccus and Thermodesulfovibrio while the same habitat of the Umluj site was dominated by Propionibacterium, Corynebacterium and Staphylococcus. Bacterial functional potential prediction analyses showed that bacteria from two locations have almost similar patterns of functional genes including amino acids and carbohydrates metabolisms, sulfate reduction and C-1 compound metabolism and xenobiotics biodegradation. However, the rhizosphere samples of both sites harbour more genes involved in the utilization and assimilation of C-1 compounds. Our results reveal that bacterial communities inhabiting the rhizosphere of A. marina differed significantly from those in the bulk soil, suggesting a possible role of A. marina roots in shaping these bacterial communities. Additionally, not only vegetation but also geographical location appears to influence the overall bacterial composition at the two sites.
Collapse
Affiliation(s)
- Hanaa Ghabban
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
- Biodiversity Genomics Unit, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Doha A. Albalawi
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
- Biodiversity Genomics Unit, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Amenah S. Al-otaibi
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
- Biodiversity Genomics Unit, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Dikhnah Alshehri
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
- Biodiversity Genomics Unit, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Asma Massad Alenzi
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
- Biodiversity Genomics Unit, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Marfat Alatawy
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
- Biodiversity Genomics Unit, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Hanan Ali Alatawi
- Department of Biological Sciences, University Collage of Haqel, University of Tabuk, Tabuk, Saudi Arabia
| | - Dalia Kamal Alnagar
- Department of Statistics, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Ahmad Bahieldin
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Genetics, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| |
Collapse
|
24
|
Li H, Man H, Han J, Jia X, Wang L, Yang H, Shi G. Soil Microorganism Interactions under Biological Fumigations Compared with Chemical Fumigation. Microorganisms 2024; 12:2044. [PMID: 39458353 PMCID: PMC11509853 DOI: 10.3390/microorganisms12102044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/29/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Biological fumigation, a potential alternative to chemical fumigation, shows a wide range of prospective applications. In this study, we carried out biological fumigation experiments to evaluate its effect on alleviating consecutive cropping problems (CRPs) when compared with chemical fumigation. METHODS We designed five treatments, namely, CR (no treatment), LN (chemical fumigation with lime nitrogen), Ta (fumigation with marigold), Ra (fumigation with radish), and Br (fumigation with mustard), for soils for replanting eggplant and measured the crop's growth status, soil bacterial and fungal communities, and soil physicochemical properties. RESULTS The results showed that the Br and Ra treatments formed similar microbial communities, while the Ta treatment formed unique microbial communities. The genera Olpidiomycota and Rozellomycota could be used as indicator species for the transformation process of soil microbial communities after the Br and Ta treatments, respectively. When compared with the CR and LN treatments, the soil's physicochemical properties were optimized under the Br treatment, and the soil organic matter content increased by 64.26% and 79.22%, respectively. Moreover, under the Br treatment, the soil's biological properties enhanced the bacterial and fungal alpha diversity, and the saprotrophic fungi increased with the depletion of pathotrophic fungi, while some specific probiotic microorganisms (such as Olpidiomycota, Microascales, Bacillus, etc.) were significantly enriched. In contrast, under the Ta treatment, soil nutrient levels decreased and the soil's biological indices deteriorated, whereas the bacterial diversity decreased and the pathogenic fungi increased. CONCLUSIONS Among these three biological fumigation methods, the Br pre-treatment was the best way to alleviate the crop's CRPs and may be a good substitute for chemical fumigation in some situations. However, the Ta treatment also had some risks, such as the loss of land quality and reduced productivity.
Collapse
Affiliation(s)
- Hui Li
- College of Horticulture, Gansu Agricultural University, Silver Beach Road Street, Lanzhou 730070, China; (H.L.); (H.M.); (J.H.); (L.W.); (H.Y.)
| | - Huali Man
- College of Horticulture, Gansu Agricultural University, Silver Beach Road Street, Lanzhou 730070, China; (H.L.); (H.M.); (J.H.); (L.W.); (H.Y.)
| | - Jia Han
- College of Horticulture, Gansu Agricultural University, Silver Beach Road Street, Lanzhou 730070, China; (H.L.); (H.M.); (J.H.); (L.W.); (H.Y.)
| | - Xixia Jia
- Lanzhou New District Modern Agricultural Development Research Institute Co., Lanzhou 730070, China;
| | - Li Wang
- College of Horticulture, Gansu Agricultural University, Silver Beach Road Street, Lanzhou 730070, China; (H.L.); (H.M.); (J.H.); (L.W.); (H.Y.)
| | - Hongyu Yang
- College of Horticulture, Gansu Agricultural University, Silver Beach Road Street, Lanzhou 730070, China; (H.L.); (H.M.); (J.H.); (L.W.); (H.Y.)
| | - Guiying Shi
- College of Horticulture, Gansu Agricultural University, Silver Beach Road Street, Lanzhou 730070, China; (H.L.); (H.M.); (J.H.); (L.W.); (H.Y.)
| |
Collapse
|
25
|
Dao VQ, Johnson CN, Platt WJ. Prescribed fire regimes influence responses of fungal and bacterial communities on new litter substrates in a brackish tidal marsh. PLoS One 2024; 19:e0311230. [PMID: 39352897 PMCID: PMC11444421 DOI: 10.1371/journal.pone.0311230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 09/16/2024] [Indexed: 10/04/2024] Open
Abstract
Processes modifying newly deposited litter substrates should affect fine fuels in fire-managed tidal marsh ecosystems. Differences in chemical composition and dynamics of litter should arise from fire histories that generate pyrodiverse plant communities, tropical cyclones that deposit wrack as litter, tidal inundation that introduces and alters sediments and microbes, and interactions among these different processes. The resulting diversity and dynamics of available litter compounds should affect microbial (fungal and bacterial) communities and their roles in litter substrate dynamics and ecosystem responses over time. We experimentally examined effects of differences in litter types produced by different fire regimes and litter loads (simulating wrack deposition) on microbial community composition and changes over time. We established replicated plots at similar elevations within frequent tidal-inundation zones of a coastal brackish Louisiana marsh. Plots were located within blocks with different prescribed fire regimes. We deployed different measured loads of new sterilized litter collected from zones in which plots were established, then re-measured litter masses at subsequent collection times. We used DNA sequencing to characterize microbial communities, indicator families, and inferred ecosystem functions in litter subsamples. Differences in fire regimes had large, similar effects on fungal and bacterial indicator families and community compositions and were associated with alternate trajectories of community development over time. Both microbial and plant community compositional patterns were associated with fire regimes, but in dissimilar ways. Differences in litter loads introduced differences in sediment accumulation associated with tidal inundation that may have affected microbial communities. Our study further suggests that fire regimes and tropical cyclones, in the context of frequent tidal inundation, may interactively generate substrate heterogeneities and alter microbial community composition, potentially modifying fine fuels and hence subsequent fires. Understanding microbial community compositional and functional responses to fire regimes and tropical cyclones should be useful in management of coastal marsh ecosystems.
Collapse
Affiliation(s)
- Viet Q Dao
- Department of Environmental Sciences, Louisiana State University, Baton Rouge, LA, United States of America
| | - Crystal N Johnson
- Department of Environmental Sciences, Louisiana State University, Baton Rouge, LA, United States of America
| | - William J Platt
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, United States of America
| |
Collapse
|
26
|
de Santana CO, Spealman P, Oliveira E, Gresham D, de Jesus T, Chinalia F. Prokaryote communities along a source-to-estuary river continuum in the Brazilian Atlantic Forest. PeerJ 2024; 12:e17900. [PMID: 39157765 PMCID: PMC11328836 DOI: 10.7717/peerj.17900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 07/20/2024] [Indexed: 08/20/2024] Open
Abstract
The activities of microbiomes in river sediments play an important role in sustaining ecosystem functions by driving many biogeochemical cycles. However, river ecosystems are frequently affected by anthropogenic activities, which may lead to microbial biodiversity loss and/or changes in ecosystem functions and related services. While parts of the Atlantic Forest biome stretching along much of the eastern coast of South America are protected by governmental conservation efforts, an estimated 89% of these areas in Brazil are under threat. This adds urgency to the characterization of prokaryotic communities in this vast and highly diverse biome. Here, we present prokaryotic sediment communities in the tropical Juliana River system at three sites, an upstream site near the river source in the mountains (Source) to a site in the middle reaches (Valley) and an estuarine site near the urban center of Ituberá (Mangrove). The diversity and composition of the communities were compared at these sites, along with environmental conditions, the former by using qualitative and quantitative analyses of 16S rRNA gene amplicons. While the communities included distinct populations at each site, a suite of core taxa accounted for the majority of the populations at all sites. Prokaryote diversity was highest in the sediments of the Mangrove site and lowest at the Valley site. The highest number of genera exclusive to a given site was found at the Source site, followed by the Mangrove site, which contained some archaeal genera not present at the freshwater sites. Copper (Cu) concentrations were related to differences in communities among sites, but none of the other environmental factors we determined was found to have a significant influence. This may be partly due to an urban imprint on the Mangrove site by providing organic carbon and nutrients via domestic effluents.
Collapse
Affiliation(s)
- Carolina O. de Santana
- Department of Exact Sciences (DEXA), Universidade Estadual de Feira de Santana, Feira de Santana, Bahia, Brazil
| | - Pieter Spealman
- Department of Biology, New York University, New York City, NY, United States
| | - Eddy Oliveira
- Department of Biology (DCBIO), Universidade Estadual de Feira de Santana, Feira de Santana, BA, Brazil
| | - David Gresham
- Department of Biology, New York University, New York City, NY, United States
| | - Taise de Jesus
- Department of Exact Sciences (DEXA), Universidade Estadual de Feira de Santana, Feira de Santana, Bahia, Brazil
| | - Fabio Chinalia
- Institute of Health Sciences, Laboratory of Biotechnology and Ecology of Micro-Organisms, Institute of Health Sciences, Salvador, BA, Brazil
| |
Collapse
|
27
|
Wang X, Fang J, Li L, Li X, Liu P, Song B, Adams J, Xiao Y, Fang Z. Gongronella sp. w5 hydrolyzes plant sucrose and releases fructose to recruit phosphate-solubilizing bacteria to provide plants with phosphorus. Appl Environ Microbiol 2024; 90:e0053424. [PMID: 38904410 PMCID: PMC11267922 DOI: 10.1128/aem.00534-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/22/2024] [Indexed: 06/22/2024] Open
Abstract
The mechanisms of how plant-beneficial rhizospheric fungi interact with the soil microbial community to promote plant growth by facilitating their phosphorus acquisition are poorly understood. This work supported that a Mucoromycotina fungus, Gongronella sp. w5 (w5), could promote phosphorus uptake of Medicago truncatula by increasing the available phosphorus (P) in the soil. The abundance of phosphate-solubilizing bacteria (PSB) and the activity of alkaline phosphatase (ALP) in alfalfa rhizosphere soil increased after w5 inoculation. Further analysis showed that w5 donated a portion of ALP activity and also stimulated the PSB to secrete ALP during plant-w5-PSB interaction to help release more available P in the rhizosphere of M. truncatula. Unlike most plant-beneficial rhizospheric fungi that mainly acquire hexoses from plants, w5 gained sucrose directly from the host plant and then recruited PSB to aid P acquisition by hydrolyzing sucrose and releasing mainly fructose to induce PSB to secrete ALP. IMPORTANCE This work supported that after absorbing plant sucrose, Gongronella sp. w5 mainly releases sucrose hydrolysis product fructose into the environment. Fructose was used as a carbon source and signaling molecules to induce PSB to co-produce higher alkaline phosphatase activity, releasing soil-available phosphorus and promoting M. truncatula growth. This is the first report that plant-beneficial fungi could directly metabolize sucrose from plants and then recruit PSB to aid P acquisition by providing fructose. Our findings revealed the diversity in pathways of plant-fungi-PSB interactions on soil P acquisition and deepened our understanding of the cooperation of growth-promoting microorganisms in plant rhizosphere.
Collapse
Affiliation(s)
- Xiaojie Wang
- School of Life Sciences, Anhui University, Hefei, Anhui, China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, Anhui, China
| | - Junnan Fang
- School of Life Sciences, Anhui University, Hefei, Anhui, China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, Anhui, China
| | - Li Li
- School of Life Sciences, Anhui University, Hefei, Anhui, China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, Anhui, China
| | - Xing Li
- School of Life Sciences, Anhui University, Hefei, Anhui, China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, Anhui, China
| | - Pu Liu
- College of Horticulture, Anhui Agricultural University, Hefei, Anhui, China
| | - Bin Song
- School of Geography and Ocean Sciences, Nanjing University, Nanjing, China
| | - Jonathan Adams
- School of Geography and Ocean Sciences, Nanjing University, Nanjing, China
| | - Yazhong Xiao
- School of Life Sciences, Anhui University, Hefei, Anhui, China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, Anhui, China
| | - Zemin Fang
- School of Life Sciences, Anhui University, Hefei, Anhui, China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, Anhui, China
| |
Collapse
|
28
|
Xu X, Fan S, Wu H, Li H, Shan X, Wang M, Zhang Y, Xu Q, Chen G. A 16S RNA Analysis of Yangzhou Geese with Varying Body Weights: Gut Microbial Difference and Its Correlation with Body Weight Parameters. Animals (Basel) 2024; 14:2042. [PMID: 39061504 PMCID: PMC11273403 DOI: 10.3390/ani14142042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
China is a major goose-raising country, and the geese industry plays a significant role in animal husbandry. Therefore, goose growth performance (body weight) is a critical topic. Goose gut microbiota influences weight gain by regulating its energy metabolism and digestion. Additionally, the impact of cecal microbial community structure on goose growth and development, energy metabolism, and immunity has been examined. However, most studies have used different additives or feeds as variables. Improving the understanding of the dynamic changes in gut microbial communities in geese of different body weights during their growth and development and their correlation with the host's body weight is necessary. In this study, the cecal microbiota of healthy Yangzhou geese with large (L) and small (S) body weights, all at the same age (70 days old) and under the same feeding conditions, were sequenced using 16S rRNA. The sequencing results were annotated using QIIME2 (classify-sklearn algorithm) software, and the linkET package was used to explore the correlation between intestinal microorganisms and the body weight of the Yangzhou goose (Spearman). At the phylum level, the Firmicutes/Bacteroidetes ratio in the large body weight group was approximately 20% higher than that in the small body weight group, with Bacteroidetes and Firmicutes exhibiting a highly significant negative correlation. At the genus level, Bacteroides constituted the most abundant microbial group in both groups, although the Prevotellaceae_Ga6A1_group exhibited a higher abundance in the large than the small weight group. Spearman correlation analysis and the linkET package were used to analyze the correlation between cecal microflora and production performance indicators that showed significant differences between the two groups and showed that birth weight was significantly positively correlated with Deferribacterota at the phylum level. At the genus level, leg and chest muscle weights exhibited significant positive correlations with Prevotellace-ae_Ga6A1_group, suggesting its critical role in promoting the growth and development of goose leg and chest muscles. A significant negative correlation was observed between [Ruminococ-cus]_torque and Prevotellaceae_Ga6A1_group. These findings offer a crucial theoretical foundation for the study of gastrointestinal microorganisms and provide insights into the development and formulation of poultry probiotics.
Collapse
Affiliation(s)
- Xinlei Xu
- Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China; (X.X.); (S.F.); (H.W.); (H.L.); (X.S.); (M.W.); (Q.X.); (G.C.)
| | - Suyu Fan
- Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China; (X.X.); (S.F.); (H.W.); (H.L.); (X.S.); (M.W.); (Q.X.); (G.C.)
| | - Hao Wu
- Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China; (X.X.); (S.F.); (H.W.); (H.L.); (X.S.); (M.W.); (Q.X.); (G.C.)
| | - Haoyu Li
- Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China; (X.X.); (S.F.); (H.W.); (H.L.); (X.S.); (M.W.); (Q.X.); (G.C.)
| | - Xiaoyu Shan
- Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China; (X.X.); (S.F.); (H.W.); (H.L.); (X.S.); (M.W.); (Q.X.); (G.C.)
| | - Mingfeng Wang
- Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China; (X.X.); (S.F.); (H.W.); (H.L.); (X.S.); (M.W.); (Q.X.); (G.C.)
| | - Yang Zhang
- Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China; (X.X.); (S.F.); (H.W.); (H.L.); (X.S.); (M.W.); (Q.X.); (G.C.)
| | - Qi Xu
- Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China; (X.X.); (S.F.); (H.W.); (H.L.); (X.S.); (M.W.); (Q.X.); (G.C.)
| | - Guohong Chen
- Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China; (X.X.); (S.F.); (H.W.); (H.L.); (X.S.); (M.W.); (Q.X.); (G.C.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
29
|
Guo Q, Peng J, Zhao J, Lei J, Huang Y, Shao B. Effects of Salinity on Physicochemical Properties, Flavor Compounds, and Bacterial Communities in Broad Bean Paste-Meju Fermentation. Foods 2024; 13:2108. [PMID: 38998614 PMCID: PMC11241834 DOI: 10.3390/foods13132108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 06/20/2024] [Accepted: 06/27/2024] [Indexed: 07/14/2024] Open
Abstract
Broad bean paste (BBP) is a traditional fermented soy food, and its high salt content not only prolongs the fermentation time but also threatens human health. In this study, three BBP-meju with different salt concentrations were prepared, and the effects of varying salinity on fermentation were comprehensively compared. The results showed that salt-reduced fermentation contributed to the accumulation of amino acid nitrogen, reducing sugars, free amino acids, and organic acids. Alcohols, esters, aldehydes, and acids were the main volatile flavor compounds in BBP-meju, and the highest total volatile flavor compounds were found in medium-salt meju. Bacillus, Staphylococcus, Aspergillus, and Mortierella were the dominant microbial communities during fermentation, and there were also three opportunistic pathogens, Enterobacter, Pantoea, and Brevundimonas, respectively. According to Spearman correlation analysis, Wickerhamomyces, Bacillus, Staphylococcus, and Mortierella all showed highly significant positive correlations with ≥3 key flavor compounds, which may be the core functional flora. Furthermore, the dominant microbial genera worked synergistically to promote the formation of high-quality flavor compounds and inhibit the production of off-flavors during salt-reduced fermentation. This study provides a theoretical reference for the quality and safety control of low-salt fermented soy foods.
Collapse
Affiliation(s)
- Qingyan Guo
- Food Microbiology Key Laboratory of Sichuan Province, School of Food and Bioengineering, Xihua University, Chengdu 610039, China; (J.P.); (J.Z.); (J.L.); (Y.H.); (B.S.)
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chengdu 610039, China
| | - Jiabao Peng
- Food Microbiology Key Laboratory of Sichuan Province, School of Food and Bioengineering, Xihua University, Chengdu 610039, China; (J.P.); (J.Z.); (J.L.); (Y.H.); (B.S.)
| | - Jingjing Zhao
- Food Microbiology Key Laboratory of Sichuan Province, School of Food and Bioengineering, Xihua University, Chengdu 610039, China; (J.P.); (J.Z.); (J.L.); (Y.H.); (B.S.)
| | - Jie Lei
- Food Microbiology Key Laboratory of Sichuan Province, School of Food and Bioengineering, Xihua University, Chengdu 610039, China; (J.P.); (J.Z.); (J.L.); (Y.H.); (B.S.)
| | - Yukun Huang
- Food Microbiology Key Laboratory of Sichuan Province, School of Food and Bioengineering, Xihua University, Chengdu 610039, China; (J.P.); (J.Z.); (J.L.); (Y.H.); (B.S.)
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chengdu 610039, China
| | - Bing Shao
- Food Microbiology Key Laboratory of Sichuan Province, School of Food and Bioengineering, Xihua University, Chengdu 610039, China; (J.P.); (J.Z.); (J.L.); (Y.H.); (B.S.)
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China
| |
Collapse
|
30
|
Wang X, Xue J, Zhang R, Li Y, Li X, Ding Y, Feng Y, Zhang X, Yang Y, Su J, Chu X. Prebiotic characteristics of degraded polysaccharides from Acanthopanax senticosus polysaccharide on broilers gut microbiota based on in vitro digestion and fecal fermentation. Poult Sci 2024; 103:103807. [PMID: 38713991 PMCID: PMC11091693 DOI: 10.1016/j.psj.2024.103807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/17/2024] [Accepted: 04/23/2024] [Indexed: 05/09/2024] Open
Abstract
This study aimed to evaluate the effect of low molecular weight Acanthopanax polysaccharides on simulated digestion, probiotics, and intestinal flora of broilers in vitro. The experiments were carried out by H2O2-Vc degradation of Acanthopanax polysaccharides, in vitro simulated digestion to evaluate the digestive performance of polysaccharides with different molecular weights, in vitro probiotic evaluation of the probiotic effect of polysaccharides on lactobacilli and bifidobacteria, in vitro anaerobic fermentation and high-throughput sequencing of 16S rRNA genes to study the impact of Acanthopanax polysaccharides on the intestinal flora of broilers, and the effect of Acanthopanax polysaccharides on the short-chain fatty acids of intestines were determined by GC-MS method. The results showed that the molecular weight of Acanthopanax polysaccharide (ASPS) was 9,543 Da, and the molecular weights of polysaccharides ASPS-1 and ASPS-2 were reduced to 4,288 Da and 3,822 Da after degradation, and the particle sizes, PDIs, and viscosities were also significantly decreased. ASPS-1 has anti-digestive properties and better in vitro probiotic properties. The addition of ASPS-1 regulates the structure of intestinal microorganisms by regulating fecalibacterium to produce short-chain fatty acids, promoting the colonization of beneficial bacteria such as fecalibacterium, paraprevotella and diminishing the prevalence of detrimental bacteria such as Fusobacteria. Interestingly the ASPS-1 group found higher levels of Paraprevotella, which degraded trypsin in the gut, reducing inflammation, acted as a gut protector, and was influential in increasing the levels of acetic acid, propionic acid, butyric acid, isobutyric acid, valeric acid, and total SCFAs in the fermented feces. Therefore, the degraded ASPS-1 can better regulate the structure of intestinal flora and promote the production of SCFAs, creating possibilities for its use as a potential prebiotic, which is conducive to the intestinal health of poultry.
Collapse
Affiliation(s)
- Xueyan Wang
- College of Agronomy and Agricultural Engineering, Liaocheng University, Liaocheng 252000, China
| | - Jiaojiao Xue
- College of Agronomy and Agricultural Engineering, Liaocheng University, Liaocheng 252000, China
| | - Rui Zhang
- College of Agronomy and Agricultural Engineering, Liaocheng University, Liaocheng 252000, China
| | - Ying Li
- College of Agronomy and Agricultural Engineering, Liaocheng University, Liaocheng 252000, China
| | - Xiaoli Li
- College of Agronomy and Agricultural Engineering, Liaocheng University, Liaocheng 252000, China
| | - Yi Ding
- College of Agronomy and Agricultural Engineering, Liaocheng University, Liaocheng 252000, China
| | - Yichao Feng
- College of Agronomy and Agricultural Engineering, Liaocheng University, Liaocheng 252000, China
| | - Xueping Zhang
- College of Agronomy and Agricultural Engineering, Liaocheng University, Liaocheng 252000, China
| | - Yaosen Yang
- College of Agronomy and Agricultural Engineering, Liaocheng University, Liaocheng 252000, China
| | - Jianqing Su
- College of Agronomy and Agricultural Engineering, Liaocheng University, Liaocheng 252000, China
| | - Xiuling Chu
- College of Agronomy and Agricultural Engineering, Liaocheng University, Liaocheng 252000, China.
| |
Collapse
|
31
|
Wang YL, Ikuma K, Brown AMV, Deonarine A. Global survey of hgcA-carrying genomes in marine and freshwater sediments: Insights into mercury methylation processes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 352:124117. [PMID: 38714231 DOI: 10.1016/j.envpol.2024.124117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/11/2024] [Accepted: 05/05/2024] [Indexed: 05/09/2024]
Abstract
Mercury (Hg) methylation is a microbially mediated process that produces methylmercury (MeHg), a bioaccumulative neurotoxin. A highly conserved gene pair, hgcAB, is required for Hg methylation, which provides a basis for identifying Hg methylators and evaluating their genomic composition. In this study, we conducted a large-scale omics analysis in which 281 metagenomic freshwater and marine sediment samples from 46 geographic locations across the globe were queried. Specific objectives were to examine the prevalence of Hg methylators, to identify horizontal gene transfer (HGT) events involving hgcAB within Hg methylator communities, and to identify associations between hgcAB and microbial biochemical functions/genes. Hg methylators from the phyla Desulfobacterota and Bacteroidota were dominant in both freshwater and marine sediments while Firmicutes and methanogens belonging to Euryarchaeota were identified only in freshwater sediments. Novel Hg methylators were found in the Phycisphaerae and Planctomycetia classes within the phylum Planctomycetota, including potential hgcA-carrying anammox metagenome-assembled genomes (MAGs) from Candidatus Brocadiia. HGT of hgcA and hgcB were identified in both freshwater and marine methylator communities. Spearman's correlation analysis of methylator genomes suggested that in addition to sulfide, thiosulfate, sulfite, and ammonia may be important parameters for Hg methylation processes in sediments. Overall, our results indicated that the biochemical drivers of Hg methylation vary between marine and freshwater sites, lending insight into the influence of environmental perturbances, such as a changing climate, on Hg methylation processes.
Collapse
Affiliation(s)
- Yong-Li Wang
- Department of Civil, Environmental & Construction Engineering, Texas Tech University, Lubbock, TX, United States
| | - Kaoru Ikuma
- Department of Civil, Construction and Environmental Engineering, Iowa State University, Ames, IA, United States
| | - Amanda M V Brown
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States
| | - Amrika Deonarine
- Department of Civil, Environmental & Construction Engineering, Texas Tech University, Lubbock, TX, United States.
| |
Collapse
|
32
|
Zvi-Kedem T, Lalzar M, Sun J, Li J, Tchernov D, Meron D. Exploring the Microbial Mosaic: Insights into Composition, Diversity, and Environmental Drivers in the Pearl River Estuary Sediments. Microorganisms 2024; 12:1273. [PMID: 39065043 PMCID: PMC11279356 DOI: 10.3390/microorganisms12071273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/04/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
River estuaries are dynamic and complex ecosystems influenced by various natural processes, including climatic fluctuations and anthropogenic activities. The Pearl River Estuary (PRE), one of the largest in China, receives significant land-based pollutants due to its proximity to densely populated areas and urban development. This study aimed to characterize the composition, diversity, and distribution patterns of sediment microbial communities (bacteria, archaea, and eukaryotes) and investigated the connection with environmental parameters within the PRE and adjacent shelf. Physicochemical conditions, such as oxygen levels, nitrogen compounds, and carbon content, were analyzed. The study found that the microbial community structure was mainly influenced by site location and core depth, which explained approximately 67% of the variation in each kingdom. Sites and core depths varied in sediment properties such as organic matter content and redox conditions, leading to distinct microbial groups associated with specific chemical properties of the sediment, notably C/N ratio and NH4+ concentration. Despite these differences, certain dominant taxonomic groups were consistently present across all sites: Gammaproteobacteria in bacteria; Bathyarchaeia, Nitrososphaeria, and Thermoplasmata in archaea; and SAR in Eukaryota. The community diversity index was the highest in the bacteria kingdom, while the lowest values were observed at site P03 across the three kingdoms and were significantly different from all other sites. Overall, this study highlights the effect of depth, core depth, and chemical properties on sediment microbiota composition. The sensitivity and dynamism of the microbiota, along with the possibility of identifying specific markers for changes in environmental conditions, is valuable for managing and preserving the health of estuaries and coastal ecosystems.
Collapse
Affiliation(s)
- Tal Zvi-Kedem
- Morris Kahn Marine Research Station, Faculty of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa 3498838, Israel; (T.Z.-K.); (D.T.)
| | - Maya Lalzar
- Bioinformatics Services Unit, University of Haifa, Haifa 3498838, Israel;
| | - Jing Sun
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China; (J.S.); (J.L.)
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Zhuhai 519080, China
| | - Jiying Li
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China; (J.S.); (J.L.)
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Zhuhai 519080, China
| | - Dan Tchernov
- Morris Kahn Marine Research Station, Faculty of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa 3498838, Israel; (T.Z.-K.); (D.T.)
| | - Dalit Meron
- Morris Kahn Marine Research Station, Faculty of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa 3498838, Israel; (T.Z.-K.); (D.T.)
| |
Collapse
|
33
|
Zhou X, Liu H, Fan X, Wang X, Bi X, Cheng L, Huang S, Zhao F, Yang T. Comparative Analysis of Bacterial Information of Biofilms and Activated Sludge in Full-Scale MBBR-IFAS Systems. Microorganisms 2024; 12:1121. [PMID: 38930504 PMCID: PMC11206091 DOI: 10.3390/microorganisms12061121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/15/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
This study extensively analyzed the bacterial information of biofilms and activated sludge in oxic reactors of full-scale moving bed biofilm reactor-integrated fixed-film activated sludge (MBBR-IFAS) systems. The bacterial communities of biofilms and activated sludge differed statistically (R = 0.624, p < 0.01). The denitrifying genera Ignavibacterium, Phaeodactylibacter, Terrimonas, and Arcobacter were more abundant in activated sludge (p < 0.05), while comammox Nitrospira was more abundant in biofilms (p < 0.05), with an average relative abundance of 8.13%. Nitrospira and Nitrosomonas had weak co-occurrence relationships with other genera in the MBBR-IFAS systems. Potential function analysis revealed no differences in pathways at levels 1 and 2 based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) between biofilms and activated sludge. However, in terms of pathways at level 3, biofilms had more potential in 26 pathways, including various organic biodegradation and membrane and signal transportation pathways. In comparison, activated sludge had more potential in only five pathways, including glycan biosynthesis and metabolism. With respect to nitrogen metabolism, biofilms had greater potential for nitrification (ammonia oxidation) (M00528), and complete nitrification (comammox) (M00804) concretely accounted for methane/ammonia monooxygenase (K10944, K10945, and K10946) and hydroxylamine dehydrogenase (K10535). This study provides a theoretical basis for MBBR-IFAS systems from the perspective of microorganisms.
Collapse
Affiliation(s)
| | | | - Xing Fan
- State and Local Joint Engineering Research Centre of Urban Wastewater Treatment and Reclamation, Qingdao University of Technology, Qingdao 266520, China (F.Z.); (T.Y.)
| | | | - Xuejun Bi
- State and Local Joint Engineering Research Centre of Urban Wastewater Treatment and Reclamation, Qingdao University of Technology, Qingdao 266520, China (F.Z.); (T.Y.)
| | | | | | | | | |
Collapse
|
34
|
Bagagnan S, Guérin-Rechdaoui S, Rocher V, Alphonse V, Moilleron R, Jusselme MD. Spatial and temporal characteristics of microbial communities in the Seine river in the greater Paris area under anthropogenic perturbation. Heliyon 2024; 10:e30614. [PMID: 38726162 PMCID: PMC11079399 DOI: 10.1016/j.heliyon.2024.e30614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/12/2024] Open
Abstract
Microorganisms play an important role in maintaining the proper functioning of river ecosystems and are promising candidates for environmental indicators. They are also highly sensitive to environmental changes. It is necessary to have basic knowledge about them in order to know the ecological status of river ecosystem. To our knowglege, there is very little information on the status of microorganisms in surface water of the Seine River, although the Seine River is one of the rivers that suffers the greatest impact from humain activities in the world due to a weak dilution effect. It is therefore necessary to carry out a microbial analysis to assess the ecological status of the Seine River and to use it as a reference to compare with the future state when, for instance, new disinfection technologies of wastewater are implemented. To this end, the microbial communities of the Seine surface water were analyzed, taking into account the spatial effect, including the tributaries, and from upstream to downstream of the Paris conurbation and the temporal aspect, with a monitoring over 4 seasons. The results showed that the microbiome of the water is highly diverse and involved a variety of functions. The main phyla making up the surface water microbiome were Proteobacteria, Actinobacteriota, Firmicutes, Bacteroidota, while other minor phyla were Deinococcota, Patescibacteria, Gemmatimonadota, Cyanobacteria, Bdellovibrionota, Acidobacteriota, Campilobacterota, Myxococcota, and Desulfobacterota. Overall, the microbial community did not change spatially (with the exception of some minor differences between upstream and downstream), but did vary seasonally. The main factors influencing this microbiome were temperature, nitrate and orthophosphate concentrations. The main predicted functions were related to cell metabolism, in particular carbohydrates, amino acids, lipids, energy, vitamins and cofactors, and cell mobility. The microbial compositions showed a strong balance between microbial groups and were involved in the degradation of recalcitrant compounds.
Collapse
Affiliation(s)
| | | | - Vincent Rocher
- SIAAP, Direction de l’Innovation, F-92700, Colombes, France
| | | | | | | |
Collapse
|
35
|
Botti A, Musmeci E, Matturro B, Vanzetto G, Bosticco C, Negroni A, Rossetti S, Fava F, Biagi E, Zanaroli G. Chemical-physical parameters and microbial community changes induced by electrodes polarization inhibit PCB dechlorination in a marine sediment. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133878. [PMID: 38447365 DOI: 10.1016/j.jhazmat.2024.133878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/30/2024] [Accepted: 02/22/2024] [Indexed: 03/08/2024]
Abstract
Microbial reductive dechlorination of organohalogenated pollutants is often limited by the scarcity of electron donors, that can be overcome with microbial electrochemical technologies (METs). In this study, polarized electrodes buried in marine sediment microcosms were investigated to stimulate PCB reductive dechlorination under potentiostatic (-0.7 V vs Ag/AgCl) and galvanostatic conditions (0.025 mA·cm-2-0.05 mA·cm-2), using graphite rod as cathode and iron plate as sacrificial anode. A single circuit and a novel two antiparallel circuits configuration (2AP) were investigated. Single circuit polarization impacted the sediment pH and redox potential (ORP) proportionally to the intensity of the electrical input and inhibited PCB reductive dechlorination. The effects on the sediment's pH and ORP, along with the inhibition of PCB reductive dechlorination, were mitigated in the 2AP system. Electrodes polarization stimulated sulfate-reduction and promoted the enrichment of bacterial clades potentially involved in sulfate-reduction as well as in sulfur oxidation. This suggested the electrons provided were consumed by competitors of organohalide respiring bacteria and specifically sequestered by sulfur cycling, which may represent the main factor limiting the applicability of METs for stimulating PCB reductive dechlorination in marine sediments.
Collapse
Affiliation(s)
- Alberto Botti
- Dept. of Civil, Chemical, Environmental and Materials Engineering (DICAM), Alma Mater Studiorum University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Eliana Musmeci
- Dept. of Civil, Chemical, Environmental and Materials Engineering (DICAM), Alma Mater Studiorum University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Bruna Matturro
- Water Research Institute (IRSA), National Research Council (CNR), 00010 Montelibretti, Italy; National Biodiversity Future Center, 90133 Palermo, Italy
| | - Giampietro Vanzetto
- Dept. of Civil, Chemical, Environmental and Materials Engineering (DICAM), Alma Mater Studiorum University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Caterina Bosticco
- Dept. of Civil, Chemical, Environmental and Materials Engineering (DICAM), Alma Mater Studiorum University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Andrea Negroni
- Dept. of Civil, Chemical, Environmental and Materials Engineering (DICAM), Alma Mater Studiorum University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Simona Rossetti
- Water Research Institute (IRSA), National Research Council (CNR), 00010 Montelibretti, Italy
| | - Fabio Fava
- Dept. of Civil, Chemical, Environmental and Materials Engineering (DICAM), Alma Mater Studiorum University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Elena Biagi
- Dept. of Civil, Chemical, Environmental and Materials Engineering (DICAM), Alma Mater Studiorum University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Giulio Zanaroli
- Dept. of Civil, Chemical, Environmental and Materials Engineering (DICAM), Alma Mater Studiorum University of Bologna, Via Terracini 28, 40131 Bologna, Italy.
| |
Collapse
|
36
|
Lin YZ, Chen QQ, Qiu YF, Xie RR, Zhang H, Zhang Y, Li JB, Han YH. Spartina alterniflora invasion altered phosphorus retention and microbial phosphate solubilization of the Minjiang estuary wetland in southeastern China. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 358:120817. [PMID: 38593740 DOI: 10.1016/j.jenvman.2024.120817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/27/2024] [Accepted: 04/01/2024] [Indexed: 04/11/2024]
Abstract
Spartina alterniflora invasion is considered a critical event affecting sediment phosphorus (P) availability and stock. However, P retention and microbial phosphate solubilization in the sediments invaded with or without S. alterniflora have not been fully investigated. In this study, a sequential fractionation method and high-throughput sequencing were used to analyze P transformation and the underlying microbial mechanisms in the sediments of no plant (NP) zone, transition (T) zone, and plant (P) zone. Results showed that except for organic phosphate (OP), total phosphate (TP), inorganic phosphate (IP), and available phosphate (AP) all followed a significant decrease trend from the NP site to the T site, and to the P site. The vertical decrease of TP, IP, and AP was also observed with an increase in soil depth. Among the six IP fractions, Fe-P, Oc-P, and Ca10-P were the predominant forms, while the presence of S. alterniflora resulted in an obvious P depletion except for Ca8-P and Al-P. Although S. alterniflora invasion did not significantly alter the alpha diversity of phosphate-solubilizing bacteria (PSB) harboring phoD gene, several PSB belonging to p_Proteobacteria, p_Planctomycetes, and p_Cyanobacteriota showed close correlations with P speciation and IP fractions. Further correlation analysis revealed that the reduced soil pH, soil TN and soil EC, and the increased soil TOC mediated by the invasion of S. alterniflora also significantly correlated to these PSB. Overall, this study elucidates the linkage between PSB and P speciation and provides new insights into understanding P retention and microbial P transformation in the coastal sediment invaded by S. alterniflora.
Collapse
Affiliation(s)
- Yan-Zhen Lin
- College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou, 350117, Fujian, China
| | - Qi-Qi Chen
- College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou, 350117, Fujian, China
| | - Yi-Fan Qiu
- College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou, 350117, Fujian, China; College of Carbon Neutral Modem Industry, Fujian Normal University, Fuzhou, 350117, Fujian, China
| | - Rong-Rong Xie
- College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou, 350117, Fujian, China
| | - Hong Zhang
- College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou, 350117, Fujian, China
| | - Yong Zhang
- College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou, 350117, Fujian, China
| | - Jia-Bing Li
- College of Carbon Neutral Modem Industry, Fujian Normal University, Fuzhou, 350117, Fujian, China; Fujian Key Laboratory of Pollution Control and Resource Reuse, Fuzhou, 350117, Fujian, China.
| | - Yong-He Han
- College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou, 350117, Fujian, China.
| |
Collapse
|
37
|
Li D, Liu Z, Duan X, Wang C, Chen Z, Zhang M, Li X, Ma Y. Rumen Development of Tianhua Mutton Sheep Was Better than That of Gansu Alpine Fine Wool Sheep under Grazing Conditions. Animals (Basel) 2024; 14:1259. [PMID: 38731263 PMCID: PMC11083190 DOI: 10.3390/ani14091259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/18/2024] [Accepted: 04/20/2024] [Indexed: 05/13/2024] Open
Abstract
The purpose of this experiment was to investigate the differences in rumen tissue morphology, volatile fatty acid content, and rumen microflora between Tianhua mutton sheep and Gansu alpine fine wool sheep under the same grazing conditions. Twelve 30-day-old lambs were randomly selected from two different flocks in Duolong Village and grazed together for a period of 150 days. The rumen tissue was fixed with 4% paraformaldehyde and brought back to the laboratory for H&E staining, the volatile fatty acid content of the rumen contents was detected by gas chromatography, and the rumen flora structure was sequenced by full-length sequencing of the bacterial 16S rRNA gene using the PacBio sequencing platform. The acetic acid and total acid contents of the rumen contents of Tianhua mutton sheep were significantly higher than those of Gansu alpine fine wool sheep (p < 0.05). The rumen papillae height of Tianhua mutton sheep was significantly higher than that of Gansu alpine fine wool sheep (p < 0.05). The diversity and richness of the rumen flora of Tianhua mutton sheep were higher than those of Gansu alpine fine wool sheep, and Beta analysis showed that the microflora structure of the two fine wool sheep was significantly different. At the phylum level, Firmicutes and Bacteroidetes dominated the rumen flora of Tianhua mutton sheep and Gansu alpine fine wool sheep. At the genus level, the dominant strains were Christensenellaceae_R_7_group and Rikenellaceae_RC9_gut_group. LEfSe analysis showed that Prevotella was a highly abundant differential species in Tianhua mutton sheep and lachnospiraccac was a highly abundant differential species in Gansu alpine fine wool sheep. Finally, both the KEGG and COG databases showed that the enrichment of biometabolic pathways, such as replication and repair and translation, were significantly higher in Tianhua mutton sheep than in Gansu alpine fine wool sheep (p < 0.05). In general, there were some similarities between Tianhua mutton sheep and Gansu alpine fine wool sheep in the rumen tissue morphology, rumen fermentation ability, and rumen flora structure. However, Tianhua mutton sheep had a better performance in the rumen acetic acid content, rumen papillae height, and beneficial bacteria content. These differences may be one of the reasons why Tianhua mutton sheep are more suitable for growing in alpine pastoral areas than Gansu alpine fine wool sheep.
Collapse
Affiliation(s)
- Dengpan Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (D.L.); (Z.L.); (C.W.); (Z.C.); (M.Z.); (X.L.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Zhanjing Liu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (D.L.); (Z.L.); (C.W.); (Z.C.); (M.Z.); (X.L.)
- Tianzhu County Animal Disease Prevention and Control Center, Wuwei 733200, China
| | - Xinming Duan
- NongfaYuan Zhejiang Agricultural Development Co., Ltd., Huzhou 313000, China;
| | - Chunhui Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (D.L.); (Z.L.); (C.W.); (Z.C.); (M.Z.); (X.L.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Zengping Chen
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (D.L.); (Z.L.); (C.W.); (Z.C.); (M.Z.); (X.L.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Muyang Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (D.L.); (Z.L.); (C.W.); (Z.C.); (M.Z.); (X.L.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Xujie Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (D.L.); (Z.L.); (C.W.); (Z.C.); (M.Z.); (X.L.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Youji Ma
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (D.L.); (Z.L.); (C.W.); (Z.C.); (M.Z.); (X.L.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| |
Collapse
|
38
|
Chen M, Feng S, Lv H, Wang Z, Zeng Y, Shao C, Lin W, Zhang Z. OsCIPK2 mediated rice root microorganisms and metabolites to improve plant nitrogen uptake. BMC PLANT BIOLOGY 2024; 24:285. [PMID: 38627617 PMCID: PMC11020999 DOI: 10.1186/s12870-024-04982-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/03/2024] [Indexed: 04/19/2024]
Abstract
Crop roots are colonized by large numbers of microorganisms, collectively known as the root-microbiome, which modulate plant growth, development and contribute to elemental nutrient uptake. In conditions of nitrogen limitation, the over-expressed Calcineurin B-like interacting protein kinase 2 (OsCIPK2) gene with root-specific promoter (RC) has been shown to enhance growth and nitrogen uptake in rice. Analysis of root-associated bacteria through high-throughput sequencing revealed that OsCIPK2 has a significant impact on the diversity of the root microbial community under low nitrogen stress. The quantification of nifH gene expression demonstrated a significant enhancement in nitrogen-fixing capabilities in the roots of RC transgenetic rice. Synthetic microbial communities (SynCom) consisting of six nitrogen-fixing bacterial strains were observed to be enriched in the roots of RC, leading to a substantial improvement in rice growth and nitrogen uptake in nitrogen-deficient soils. Forty and twenty-three metabolites exhibiting differential abundance were identified in the roots and rhizosphere soils of RC transgenic rice compared to wild-type (WT) rice. These findings suggest that OSCIPK2 plays a role in restructuring the microbial community in the roots through the regulation of metabolite synthesis and secretion. Further experiments involving the exogenous addition of citric acid revealed that an optimal concentration of this compound facilitated the growth of nitrogen-fixing bacteria and substantially augmented their population in the soil, highlighting the importance of citric acid in promoting nitrogen fixation under conditions of low nitrogen availability. These findings suggest that OsCIPK2 plays a role in enhancing nitrogen uptake by rice plants from the soil by influencing the assembly of root microbial communities, thereby offering valuable insights for enhancing nitrogen utilization in rice cultivation.
Collapse
Affiliation(s)
- Mengying Chen
- College of JunCao Science and Ecology, Fujian Agricultural and Forestry University, Fuzhou, Fujian, 350002, China
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Shizhong Feng
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - He Lv
- College of JunCao Science and Ecology, Fujian Agricultural and Forestry University, Fuzhou, Fujian, 350002, China
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Zewen Wang
- College of JunCao Science and Ecology, Fujian Agricultural and Forestry University, Fuzhou, Fujian, 350002, China
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Yuhang Zeng
- College of JunCao Science and Ecology, Fujian Agricultural and Forestry University, Fuzhou, Fujian, 350002, China
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Caihong Shao
- Soil and Fertilizer & Resources and Environment Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China
| | - Wenxiong Lin
- College of JunCao Science and Ecology, Fujian Agricultural and Forestry University, Fuzhou, Fujian, 350002, China
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhixing Zhang
- College of JunCao Science and Ecology, Fujian Agricultural and Forestry University, Fuzhou, Fujian, 350002, China.
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China.
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
39
|
Xu S, Shao S, Feng X, Li S, Zhang L, Wu W, Liu M, Tracy ME, Zhong C, Guo Z, Wu CI, Shi S, He Z. Adaptation in Unstable Environments and Global Gene Losses: Small but Stable Gene Networks by the May-Wigner Theory. Mol Biol Evol 2024; 41:msae059. [PMID: 38507653 PMCID: PMC10991078 DOI: 10.1093/molbev/msae059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/07/2024] [Accepted: 03/15/2024] [Indexed: 03/22/2024] Open
Abstract
Although gene loss is common in evolution, it remains unclear whether it is an adaptive process. In a survey of seven major mangrove clades that are woody plants in the intertidal zones of daily environmental perturbations, we noticed that they generally evolved reduced gene numbers. We then focused on the largest clade of Rhizophoreae and observed the continual gene set reduction in each of the eight species. A great majority of gene losses are concentrated on environmental interaction processes, presumably to cope with the constant fluctuations in the tidal environments. Genes of the general processes for woody plants are largely retained. In particular, fewer gene losses are found in physiological traits such as viviparous seeds, high salinity, and high tannin content. Given the broad and continual genome reductions, we propose the May-Wigner theory (MWT) of system stability as a possible mechanism. In MWT, the most effective solution for buffering continual perturbations is to reduce the size of the system (or to weaken the total genic interactions). Mangroves are unique as immovable inhabitants of the compound environments in the land-sea interface, where environmental gradients (such as salinity) fluctuate constantly, often drastically. Extending MWT to gene regulatory network (GRN), computer simulations and transcriptome analyses support the stabilizing effects of smaller gene sets in mangroves vis-à-vis inland plants. In summary, we show the adaptive significance of gene losses in mangrove plants, including the specific role of promoting phenotype innovation and a general role in stabilizing GRN in unstable environments as predicted by MWT.
Collapse
Affiliation(s)
- Shaohua Xu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
- School of Ecology, Sun Yat-sen University, Shenzhen, China
| | - Shao Shao
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Xiao Feng
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Sen Li
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Lingjie Zhang
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Weihong Wu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Min Liu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Miles E Tracy
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Cairong Zhong
- Institute of Wetland Research, Hainan Academy of Forestry (Hainan Academy of Mangrove), Haikou, China
| | - Zixiao Guo
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Chung-I Wu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Suhua Shi
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Ziwen He
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
40
|
Zhang Q, Wang Y, Ran C, Zhou Y, Zhao Z, Xu T, Hou H, Lu Y. Characterization of distinct microbiota associated with androgenetic alopecia patients treated and untreated with platelet-rich plasma (PRP). Animal Model Exp Med 2024; 7:106-113. [PMID: 38720238 PMCID: PMC11079158 DOI: 10.1002/ame2.12414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/10/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Androgenic alopecia (AGA) is the most common type of hair loss in men, and there are many studies on the treatment of hair loss by platelet-rich plasma (PRP). The human scalp contains a huge microbiome, but its role in the process of hair loss remains unclear, and the relationship between PRP and the microbiome needs further study. Therefore, the purpose of this study was to investigate the effect of PRP treatment on scalp microbiota composition. METHODS We performed PRP treatment on 14 patients with AGA, observed their clinical efficacy, and collected scalp swab samples before and after treatment. The scalp microflora of AGA patients before and after treatment was characterized by amplifying the V3-V4 region of the 16 s RNA gene and sequencing for bacterial identification. RESULTS The results showed that PRP was effective in the treatment of AGA patients, and the hair growth increased significantly. The results of relative abundance analysis of microbiota showed that after treatment, g_Cutibacterium increased and g_Staphylococcus decreased, which played a stable role in scalp microbiota. In addition, g_Lawsonella decreased, indicating that the scalp oil production decreased after treatment. CONCLUSIONS The findings suggest that PRP may play a role in treating AGA through scalp microbiome rebalancing.
Collapse
Affiliation(s)
- Qian Zhang
- Beijing Life Science AcademyBeijingChina
| | - Yanan Wang
- Department of PathologyAffiliated Hospital of Hebei UniversityBaodingChina
| | - Cheng Ran
- Department of OtolaryngologyAffiliated Hospital of Hebei UniversityBaodingChina
| | - Yingmei Zhou
- Department of DermatologyHuazhong University of Science and Technology Union Shenzhen HospitalShenzhenChina
| | - Zigang Zhao
- Department of DermatologyHainan Hospital of PLA General HospitalSanyaChina
| | - Tianhua Xu
- Department of OtolaryngologyAffiliated Hospital of Hebei UniversityBaodingChina
| | - Hongwei Hou
- Beijing Life Science AcademyBeijingChina
- Department of Chemical EngineeringTsinghua UniversityBeijingChina
| | - Yuan Lu
- Department of DermatologyHuazhong University of Science and Technology Union Shenzhen HospitalShenzhenChina
| |
Collapse
|
41
|
Ho CT, Tatsuya U, Nguyen SG, Nguyen TH, Dinh ST, Le ST, Pham TMH. Seasonal Change of Sediment Microbial Communities and Methane Emission in Young and Old Mangrove Forests in Xuan Thuy National Park. J Microbiol Biotechnol 2024; 34:580-588. [PMID: 38321644 PMCID: PMC11016791 DOI: 10.4014/jmb.2311.11050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/15/2023] [Accepted: 12/21/2023] [Indexed: 02/08/2024]
Abstract
Microbial communities in mangrove forests have recently been intensively investigated to explain the ecosystem function of mangroves. In this study, the soil microbial communities under young (<11 years-old) and old (>17 years-old) mangroves have been studied during dry and wet seasons. In addition, biogeochemical properties of sediments and methane emission from the two different mangrove ages were measured. The results showed that young and old mangrove soil microbial communities were significantly different on both seasons. Seasons seem to affect microbial communities more than the mangrove age does. Proteobacteria and Chloroflexi were two top abundant phyla showing >15%. Physio-chemical properties of sediment samples showed no significant difference between mangrove ages, seasons, nor depth levels, except for TOC showing significant difference between the two seasons. The methane emission rates from the mangroves varied depending on seasons and ages of the mangrove. However, this did not show significant correlation with the microbial community shifts, suggesting that abundance of methanogens was not the driving factor for mangrove soil microbial communities.
Collapse
Affiliation(s)
- Cuong Tu Ho
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi 10072, Vietnam
| | - Unno Tatsuya
- Department of Microbiology, Chungbuk National University, Cheongju, Republic of Korea
| | - Son Giang Nguyen
- Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology, Ha Noi 10072, Vietnam
| | - Thi-Hanh Nguyen
- Institute of Chemistry, Vietnam Academy of Science and Technology, Ha Noi, 10072, Vietnam
| | | | - Son Tho Le
- College of Forestry Biotechnology, Vietnam National University of Forestry, Ha Noi, Vietnam
| | - Thi-Minh-Hanh Pham
- Institute of Mechanics, Vietnam Academy of Science and Technology, Ha Noi, Vietnam
| |
Collapse
|
42
|
Auclert LZ, Chhanda MS, Derome N. Interwoven processes in fish development: microbial community succession and immune maturation. PeerJ 2024; 12:e17051. [PMID: 38560465 PMCID: PMC10981415 DOI: 10.7717/peerj.17051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 02/13/2024] [Indexed: 04/04/2024] Open
Abstract
Fishes are hosts for many microorganisms that provide them with beneficial effects on growth, immune system development, nutrition and protection against pathogens. In order to avoid spreading of infectious diseases in aquaculture, prevention includes vaccinations and routine disinfection of eggs and equipment, while curative treatments consist in the administration of antibiotics. Vaccination processes can stress the fish and require substantial farmer's investment. Additionally, disinfection and antibiotics are not specific, and while they may be effective in the short term, they have major drawbacks in the long term. Indeed, they eliminate beneficial bacteria which are useful for the host and promote the raising of antibiotic resistance in beneficial, commensal but also in pathogenic bacterial strains. Numerous publications highlight the importance that plays the diversified microbial community colonizing fish (i.e., microbiota) in the development, health and ultimately survival of their host. This review targets the current knowledge on the bidirectional communication between the microbiota and the fish immune system during fish development. It explores the extent of this mutualistic relationship: on one hand, the effect that microbes exert on the immune system ontogeny of fishes, and on the other hand, the impact of critical steps in immune system development on the microbial recruitment and succession throughout their life. We will first describe the immune system and its ontogeny and gene expression steps in the immune system development of fishes. Secondly, the plurality of the microbiotas (depending on host organism, organ, and development stage) will be reviewed. Then, a description of the constant interactions between microbiota and immune system throughout the fish's life stages will be discussed. Healthy microbiotas allow immune system maturation and modulation of inflammation, both of which contribute to immune homeostasis. Thus, immune equilibrium is closely linked to microbiota stability and to the stages of microbial community succession during the host development. We will provide examples from several fish species and describe more extensively the mechanisms occurring in zebrafish model because immune system ontogeny is much more finely described for this species, thanks to the many existing zebrafish mutants which allow more precise investigations. We will conclude on how the conceptual framework associated to the research on the immune system will benefit from considering the relations between microbiota and immune system maturation. More precisely, the development of active tolerance of the microbiota from the earliest stages of life enables the sustainable establishment of a complex healthy microbial community in the adult host. Establishing a balanced host-microbiota interaction avoids triggering deleterious inflammation, and maintains immunological and microbiological homeostasis.
Collapse
Affiliation(s)
- Lisa Zoé Auclert
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Canada
| | - Mousumi Sarker Chhanda
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Canada
- Department of Aquaculture, Faculty of Fisheries, Hajee Mohammad Danesh Science and Technology University, Basherhat, Bangladesh
| | - Nicolas Derome
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Canada
| |
Collapse
|
43
|
Wang TG, Tian L, Zhang XL, Zhang L, Zhao XL, Kong DS. Gradient inflammation in the pancreatic stump after pancreaticoduodenectomy: Two case reports and review of literature. World J Clin Cases 2024; 12:1649-1659. [PMID: 38576729 PMCID: PMC10989426 DOI: 10.12998/wjcc.v12.i9.1649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/26/2023] [Accepted: 03/07/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND Postoperative pancreatic fistula (POPF) contributes significantly to morbidity and mortality after pancreaticoduodenectomy (PD). However, the underlying mechanisms remain unclear. This study explored this pathology in the pancreatic stumps and elucidated the mechanisms of POPF following PD. CASE SUMMARY Pathological analysis and 16S rRNA gene sequencing were performed on specimens obtained from two patients who underwent complete pancreatectomy for grade C POPF after PD. Gradient inflammation is present in the pancreatic stump. The apoptosis was lower than that in the normal pancreas. Moreover, neutrophil-dominated inflammatory cells are concentrated in the ductal system. Notably, neutrophils migrated through the ductal wall in acinar duct metaplasia-formed ducts. Additionally, evidence indicates that gut microbes migrate from the digestive tract. Gradient inflammation occurs in pancreatic stumps after PD. CONCLUSION The mechanisms underlying POPF include high biochemical activity in the pancreas, mechanical injury, and digestive reflux. To prevent POPF and address pancreatic inflammation and reflux, breaking the link with anastomotic dehiscence is practical.
Collapse
Affiliation(s)
- Tie-Gong Wang
- Department of Surgery, Cangzhou Central Hospital, Cangzhou 061000, Hebei Province, China
| | - Liang Tian
- Department of Pathology, Cangzhou Central Hospital, Cangzhou 061000, Hebei Province, China
| | - Xiao-Ling Zhang
- Department of Pathology, Cangzhou Central Hospital, Cangzhou 061000, Hebei Province, China
| | - Lei Zhang
- Department of Surgery, Cangzhou Central Hospital, Cangzhou 061000, Hebei Province, China
| | - Xiu-Lei Zhao
- Department of Surgery, Cangzhou Central Hospital, Cangzhou 061000, Hebei Province, China
| | - De-Shuai Kong
- Department of Surgery, Cangzhou Central Hospital, Cangzhou 061000, Hebei Province, China
| |
Collapse
|
44
|
Guo Z, Wang J, Chen T, Zhang H, Hou X, Li J. Effects of γ-polyglutamic acid supplementation on alfalfa growth and rhizosphere soil microorganisms in sandy soil. Sci Rep 2024; 14:6440. [PMID: 38499631 PMCID: PMC10948886 DOI: 10.1038/s41598-024-57197-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/15/2024] [Indexed: 03/20/2024] Open
Abstract
This study aimed at exploring the effects of γ-polyglutamic acid on the growth of desert alfalfa and the soil microorganisms in the rhizosphere. The study examined the effects of varying concentrations of γ-polyglutamic acid (0%-CK, 2%-G1, 4%-G2, 6%-G3) on sandy soil, the research investigated its impact on the growth characteristics of alfalfa, nutrient content in the rhizosphere soil, and the composition of bacterial communities. The results indicated that there were no significant differences in soil organic matter, total nitrogen, total phosphorus, total potassium, and available phosphorus content among the G1, G2, and G3 treatments. Compared to CK, the soil nutrient content in the G2 treatment increased by 14.81-186.67%, showing the highest enhancement. In terms of alfalfa growth, the G2 treatment demonstrated the best performance, significantly increasing plant height, chlorophyll content, above-ground biomass, and underground biomass by 54.91-154.84%. Compared to the CK treatment, the number of OTUs (operational taxonomic units) in the G1, G2, and G3 treatments increased by 14.54%, 8.27%, and 6.84%, respectively. The application of γ-polyglutamic acid altered the composition and structure of the bacterial community, with Actinobacteriota, Proteobacteria, Chloroflexi, Acidobacteriota, and Gemmatimonadota accounting for 84.14-87.89% of the total bacterial community. The G2 treatment significantly enhanced the diversity and evenness of soil bacteria in the rhizosphere. Redundancy analysis revealed that organic matter, total nitrogen, total potassium, moisture content, and pH were the primary factors influencing the structure of bacterial phyla. At the genus level, moisture content emerged as the most influential factor on the bacterial community. Notably, moisture content exhibited a strong positive correlation with Acidobacteriota, which in turn was positively associated with indicators of alfalfa growth. In summary, the application of γ-polyglutamic acid at a 4% ratio has the potential for improving sandy soil quality, promoting plant growth, and regulating the rhizosphere microbial community.
Collapse
Affiliation(s)
- Zhen Guo
- Institute of Land Engineering and Technology, Shaanxi Provincial Land Engineering Construction Group Co., Ltd., Xi'an, 710021, China
- Shaanxi Provincial Land Engineering Construction Group Co., Ltd., Xi'an, 710075, China
- Key Laboratory of Degraded and Unused Land Consolidation Engineering, Ministry of Natural Resources, Xi'an, 710021, China
| | - Jian Wang
- Institute of Land Engineering and Technology, Shaanxi Provincial Land Engineering Construction Group Co., Ltd., Xi'an, 710021, China
- Shaanxi Provincial Land Engineering Construction Group Co., Ltd., Xi'an, 710075, China
- Key Laboratory of Degraded and Unused Land Consolidation Engineering, Ministry of Natural Resources, Xi'an, 710021, China
| | - Tianqing Chen
- Institute of Land Engineering and Technology, Shaanxi Provincial Land Engineering Construction Group Co., Ltd., Xi'an, 710021, China
- Shaanxi Provincial Land Engineering Construction Group Co., Ltd., Xi'an, 710075, China
- Key Laboratory of Degraded and Unused Land Consolidation Engineering, Ministry of Natural Resources, Xi'an, 710021, China
| | - Haiou Zhang
- Institute of Land Engineering and Technology, Shaanxi Provincial Land Engineering Construction Group Co., Ltd., Xi'an, 710021, China
- Shaanxi Provincial Land Engineering Construction Group Co., Ltd., Xi'an, 710075, China
- Key Laboratory of Degraded and Unused Land Consolidation Engineering, Ministry of Natural Resources, Xi'an, 710021, China
| | - Xiandong Hou
- Shaanxi Provincial Land Engineering Construction Group Co., Ltd., Xi'an, 710075, China
| | - Juan Li
- Institute of Land Engineering and Technology, Shaanxi Provincial Land Engineering Construction Group Co., Ltd., Xi'an, 710021, China.
- Shaanxi Provincial Land Engineering Construction Group Co., Ltd., Xi'an, 710075, China.
- Key Laboratory of Degraded and Unused Land Consolidation Engineering, Ministry of Natural Resources, Xi'an, 710021, China.
| |
Collapse
|
45
|
Zheng S, Liu M, Han Q, Pang L, Cao H. Seasonal variation and human impacts of the river biofilm bacterial communities in the Shiting River in southeastern China. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:341. [PMID: 38436747 DOI: 10.1007/s10661-024-12490-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 02/19/2024] [Indexed: 03/05/2024]
Abstract
Bacterial communities in epilithic biofilm plays an important role in biogeochemistry processes in freshwater ecosystems. Nevertheless, our understanding of the geographical and seasonal variations of the composition of bacterial communities in the biofilm of gravels on river bed is still limited. Various anthropogenic activities also influence the biofilm bacteria in gravel rivers. By taking the Shiting River in the upper Yangtze River basin in Sichuan Province as an example, we studied the geographical and seasonal variations of epilithic bacteria and the impacts of weirs and other human activities (e.g., sewage pollution). The river has experienced severe degradation since the Ms 8.0 Wenchuan Earthquake, and weirs were constructed to prevent bed erosion. We collected epilithic biofilms samples at 17 sites along ~ 30 km river reach of the Shiting River in the autumn of 2021 and the summer of 2022, respectively. We applied 16S rRNA gene high-throughput sequencing technology and Functional Annotation of Prokaryotic Taxa (FAPROTAX) to analyze the seasonal and biogeographic patterns and potential functions of the biofilm bacterial communities. The results showed that epilithic bacteria from the two surveys exhibited variation in community composition, bacterial diversity and potential functions. The bacteria samples collected in the autumn have much higher alpha diversity and richness than those collected in the summer. Bacterial richness and diversity were lower downstream of the weirs than upstream. Low diversity was observed at a sampling site influenced by sewage inflow, which contains high level of nitrogen-related chemicals.
Collapse
Affiliation(s)
- Shan Zheng
- Key Laboratory of Earthquake Engineering Simulation and Seismic Resilience of China, Earthquake Administration (Tianjin University), Tianjin, 300350, China.
- School of Civil Engineering, Tianjin University, Tianjin, 300350, China.
- State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan, 430072, China.
| | - Min Liu
- State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan, 430072, China
| | - Qinghua Han
- Key Laboratory of Earthquake Engineering Simulation and Seismic Resilience of China, Earthquake Administration (Tianjin University), Tianjin, 300350, China
- School of Civil Engineering, Tianjin University, Tianjin, 300350, China
| | - Lina Pang
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Huiqun Cao
- Changjiang River Scientific Research Institute, Wuhan, 430010, China
| |
Collapse
|
46
|
Huang X, Zhang T, Yu Y, Ding P, Zhao Z, Wang H, Ding J, Zhao C. Dietary tryptophan decreases the impacts of seawater temperature changes on behavior and gut health of the sea cucumber Apostichopus japonicus. MARINE ENVIRONMENTAL RESEARCH 2024; 195:106369. [PMID: 38262135 DOI: 10.1016/j.marenvres.2024.106369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 01/25/2024]
Abstract
Seawater temperature change is an important concern for seed production and pond culture of sea cucumbers. The present study found that tentacle activity frequency was significantly lower in sea cucumbers exposed to continuous and rapid temperature increases than that of those at ambient temperature. Feeding behavior directly determines food intake, and further affects physiology and growth efficiency of sea cucumbers. This means that the decline in feeding caused by continuous and rapid temperature increases needs to be addressed in sea cucumber aquaculture. However, a sudden temperature change of 5 °C had no significant effect on behaviors of sea cucumbers. This indicates that continuous temperature increases, rather than a sudden increase, result in behavioral impacts on sea cucumbers. Therefore, we recommend aqua-farmers reduce the feeding amount for sea cucumbers during continuous and rapid temperature increases. In the present study, feeding behavior was significantly higher in sea cucumbers fed with 3% dietary tryptophan than that of those fed with 0% and 5% dietary tryptophan. This indicates that 3% dietary tryptophan increases the food intake of sea cucumbers, and mitigates the feeding decline caused by continuous and rapid temperature increase. This indicates that tryptophan has the potential to promote the feeding of sea cucumbers in seed production and pond culture. Adhesion capacity of sea cucumbers fed with 5% dietary tryptophan was significantly higher than that of individuals fed with 0% and 3% dietary tryptophan. This suggests that dietary tryptophan increases the feeding of sea cucumbers exposed to continuous and rapid temperature increases in pond culture and seed production. In addition, this study found that sea cucumbers fed with 3% dietary tryptophan had higher intestinal colony richness under the continuously rapid temperature change. The present study provides an effective method to improve adhesion behavior and to alleviate the impacts on feeding behavior for seed production and pond culture of sea cucumbers exposed to continuous and rapid temperature increases.
Collapse
Affiliation(s)
- Xiyuan Huang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, 116023, China
| | - Tongdan Zhang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, 116023, China
| | - Yushi Yu
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, 116023, China
| | - Peng Ding
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, 116023, China
| | - Zihe Zhao
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, 116023, China
| | - Huiyan Wang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, 116023, China
| | - Jun Ding
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, 116023, China
| | - Chong Zhao
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
47
|
Cardona GI, Escobar MC, Acosta-González A, Díaz-Ruíz N, Niño-García JP, Vasquez Y, Marrugo-Negrete J, Marqués S. Microbial diversity and abundance of Hg related genes from water, sediment and soil the Colombian amazon ecosystems impacted by artisanal and small-scale gold mining. CHEMOSPHERE 2024; 352:141348. [PMID: 38340998 DOI: 10.1016/j.chemosphere.2024.141348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024]
Abstract
The Amazon region abounds in precious mineral resources including gold, copper, iron, and coltan. Artisanal and small-scale gold mining (ASGM) poses a severe risk in this area due to considerable mercury release into the surrounding ecosystems. Nonetheless, the impact of mercury on both the overall microbiota and the microbial populations involved in mercury transformation is not well understood. In this study we evaluated microbial diversity in samples of soil, sediment and water potentially associated with mercury contamination in two localities (Taraira and Tarapacá) in the Colombian Amazon Forest. To this end, we characterized the bacterial community structure and mercury-related functions in samples from sites with a chronic history of mercury contamination which today have different levels of total mercury content. We also determined mercury bioavailability and mobility in the samples with the highest THg and MeHg levels (up to 43.34 and 0.049 mg kg-1, respectively, in Taraira). Our analysis of mercury speciation showed that the immobile form of mercury predominated in soils and sediments, probably rendering it unavailable to microorganisms. Despite its long-term presence, mercury did not appear to alter the microbial community structure or composition, which was primarily shaped by environmental and physicochemical factors. However, an increase in the relative abundance of merA genes was detected in polluted sediments from Taraira. Several Hg-responsive taxa in soil and sediments were detected in sites with high levels of THg, including members of the Proteobacteria, Acidobacteria, Actinobacteria, Firmicutes and Chloroflexi phyla. The results suggest that mercury contamination at the two locations sampled may select mercury-adapted bacteria carrying the merA gene that could be used in bioremediation processes for the region.
Collapse
Affiliation(s)
- Gladys Inés Cardona
- Instituto Amazónico de Investigaciones Científicas SINCHI. Laboratorio de Biotecnología y Recursos Genéticos, Bogotá, Colombia.
| | - Maria Camila Escobar
- Instituto Amazónico de Investigaciones Científicas SINCHI. Laboratorio de Biotecnología y Recursos Genéticos, Bogotá, Colombia; Escuela de Microbiología. Universidad de Antioquia, Medellín, Colombia
| | | | - Natalie Díaz-Ruíz
- Escuela de Microbiología. Universidad de Antioquia, Medellín, Colombia
| | | | - Yaneth Vasquez
- Chemistry Department, Universidad de Córdoba, Montería, Colombia
| | - José Marrugo-Negrete
- Convergence Science and Technology Cluster, Universidad Central, Bogotá, Colombia
| | - Silvia Marqués
- Department of Biotechnology and Environmental Protection. Estación Experimental Del Zaidín. Consejo Superior de Investigaciones Científicas, Granada, Spain
| |
Collapse
|
48
|
Sha Y, Liu X, He Y, Zhao S, Hu J, Wang J, Li W, Shao P, Wang F, Chen X, Yang W, Xie Z. Multi-omics revealed rumen microbiota metabolism and host immune regulation in Tibetan sheep of different ages. Front Microbiol 2024; 15:1339889. [PMID: 38414776 PMCID: PMC10896911 DOI: 10.3389/fmicb.2024.1339889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/17/2024] [Indexed: 02/29/2024] Open
Abstract
The rumen microbiota and metabolites play an important role in energy metabolism and immune regulation of the host. However, the regulatory mechanism of rumen microbiota and metabolite interactions with host on Tibetan sheep's plateau adaptability is still unclear. We analyzed the ruminal microbiome and metabolome, host transcriptome and serum metabolome characteristics of Tibetan sheep at different ages. Biomarkers Butyrivibrio, Lachnospiraceae_XPB1014_group, Prevotella, and Rikenellaceae_RC9_gut_group were found in 4 months, 1.5 years, 3.5 years, and 6 years Tibetan sheep, respectively. The rumen microbial metabolites were mainly enriched in galactose metabolism, unsaturated fatty acid biosynthesis and fatty acid degradation pathways, and had significant correlation with microbiota. These metabolites further interact with mRNA, and are co-enriched in arginine and proline metabolism, metabolism of xenobiotics by cytochrome P450, propanoate metabolism, starch and sucrose metabolism, gap junction pathway. Meanwhile, serum metabolites also have a similar function, such as chemical carcinogenesis - reactive oxygen species, limonene and pinene degradation, and cutin, suberine and wax biosynthesis, thus participating in the regulation of the body's immune and energy-related metabolic processes. This study systematically revealed that rumen microbiota, metabolites, mRNA and serum metabolites of Tibetan sheep were involved in the regulation of fermentation metabolic function and immune level of Tibetan sheep at different ages, which provided a new perspective for plateau adaptability research of Tibetan sheep at different ages.
Collapse
Affiliation(s)
- Yuzhu Sha
- College of Animal Science and Technology/Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou, China
| | - Xiu Liu
- College of Animal Science and Technology/Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou, China
| | - Yanyu He
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Shengguo Zhao
- College of Animal Science and Technology/Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou, China
| | - Jiang Hu
- College of Animal Science and Technology/Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou, China
| | - Jiqing Wang
- College of Animal Science and Technology/Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou, China
| | - Wenhao Li
- Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, China
| | - Pengyang Shao
- College of Animal Science and Technology/Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou, China
| | - Fanxiong Wang
- College of Animal Science and Technology/Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou, China
| | - Xiaowei Chen
- College of Animal Science and Technology/Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou, China
| | - Wenxin Yang
- College of Animal Science and Technology/Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou, China
| | - Zhuanhui Xie
- College of Animal Science and Technology/Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
49
|
Zhan M, Yang X, Zhao C, Han Y, Xie P, Mo Z, Xiao J, Cao Y, Xiao H, Song M. Dietary nobiletin regulated cefuroxime- and levofloxacin-associated "gut microbiota-metabolism" imbalance and intestinal barrier dysfunction in mice. Food Funct 2024; 15:1265-1278. [PMID: 38196314 DOI: 10.1039/d3fo04378a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Nobiletin (NOB) exhibits significant biological activities and may be a potential dietary treatment for antibiotic-associated gut dysbiosis. In this study, mice were gavaged with 0.2 mL day-1 of 12.5 g L-1 cefuroxime (LFX) and 10 g L-1 levofloxacin (LVX) for a duration of 10 days, accompanied by 0.05% NOB to investigate the regulatory effect and potential mechanisms of NOB on antibiotic-induced intestinal microbiota disorder and intestinal barrier dysfunction. Our results indicated that dietary NOB improved the pathology of intestinal epithelial cells and the intestinal permeability by upregulating the expression of intestinal tight junction proteins (TJs) and the number of goblet cells. Furthermore, dietary NOB reduced the levels of serum lipopolysaccharide (LPS) and pro-inflammatory factors (TNF-α and IL-1β), thereby facilitating the restoration of the intestinal mucosal barrier. Additionally, dietary NOB increased the abundance of beneficial bacteria f_Lachnospiraceae and regulated the metabolic disorders of short-chain fatty acids (SCFAs) and bile acids (BAs). Notably, NOB supplementation resulted in elevated levels of butyric acid and lithocholic acid (LCA), which contributed to the repair of the intestinal mucosal barrier function and the maintenance of intestinal homeostasis. Collectively, our results propose a healthy dietary strategy for the prevention or mitigation of antibiotic-associated gut dysbiosis by dietary NOB.
Collapse
Affiliation(s)
- Minmin Zhan
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, China.
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Xiaoshuang Yang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, China.
| | - Chenxi Zhao
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Yanhui Han
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shanxi 710062, P.R. China
| | - Peichun Xie
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, China.
| | - Zheqi Mo
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, China.
| | - Jie Xiao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, China.
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, China.
| | - Hang Xiao
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - Mingyue Song
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
50
|
Kong F, Wang F, Zhang Y, Wang S, Wang W, Li S. Repeated inoculation with rumen fluid accelerates the rumen bacterial transition with no benefit on production performance in postpartum Holstein dairy cows. J Anim Sci Biotechnol 2024; 15:17. [PMID: 38310317 PMCID: PMC10838461 DOI: 10.1186/s40104-023-00963-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 12/01/2023] [Indexed: 02/05/2024] Open
Abstract
BACKGROUND The dairy cow's postpartum period is characterized by dramatic physiological changes, therefore imposing severe challenges on the animal for maintaining health and milk output. The dynamics of the ruminal microbiota are also tremendous and may play a crucial role in lactation launch. We aim to investigate the potential benefits of early microbial intervention by fresh rumen microbiota transplantation (RMT) and sterile RMT in postpartum dairy cows. Twelve fistulated peak-lactation dairy cows were selected to be the donors for rumen fluid collection. Thirty postpartum cows were divided into 3 groups as the transplantation receptors respectively receiving 10 L fresh rumen fluid (FR), 10 L sterile rumen fluid (SR), or 10 L saline (CON) during 3 d after calving. RESULTS Production performance, plasma indices, plasma lipidome, ruminal microbiome, and liver transcriptome were recorded. After fresh and sterile RMT, we found that the molar proportion of propionic acid was increased on d 7 in the FR and SR groups and the bacterial composition was also significantly changed when compared with the CON group. A similarity analysis showed that the similarities between the CON group and FR or SR group on d 7 were 48.40% or 47.85%, whereas the similarities between microbiota on d 7 and 21 in the FR and SR groups were 68.34% or 66.85%. Dry matter intake and feed efficiency were not affected by treatments. Plasma β-hydroxybutyrate concentration in the FR group was decreased and significantly different lipids mainly included phosphatidylcholine and lysophosphatidylcholine containing polyunsaturated fatty acids. Hepatic transcriptomics analysis indicated acute-phase response pathways were upregulated in the SR group. CONCLUSIONS Our study suggests that RMT can shorten the transition process of the ruminal microbiota of postpartum dairy cows with no benefit on dry matter intake or feed efficiency. Inoculation with rumen fluid may not be a useful approach to promote the recovery of postpartum dairy cows.
Collapse
Affiliation(s)
- Fanlin Kong
- Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, PR China
| | - Feiran Wang
- Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, PR China
| | - Yijia Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China
| | - Shuo Wang
- Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, PR China
| | - Wei Wang
- Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, PR China.
| | - Shengli Li
- Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, PR China.
| |
Collapse
|