1
|
Wei JY, Ma LX, Liu WT, Dong LH, Hou X, Bao XY, Hou W. Mechanisms and protective measures for radiation-induced brachial plexus nerve injury. Brain Res Bull 2024; 210:110924. [PMID: 38460911 DOI: 10.1016/j.brainresbull.2024.110924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 02/06/2024] [Accepted: 03/06/2024] [Indexed: 03/11/2024]
Abstract
Radiation therapy is a common treatment modality for patients with malignant tumors of the head and neck, chest and axilla. However, radiotherapy inevitably causes damage to normal tissues at the irradiated site, among which damage to the brachial plexus nerve(BP) is a serious adverse effect in patients receiving radiation therapy in the scapular or axillary regions, with clinical manifestations including abnormal sensation, neuropathic pain, and dyskinesia, etc. These adverse effects seriously reduce the living quality of patients and pose obstacles to their prognosis. Therefore, it is important to elucidate the mechanism of radiation induced brachial plexus injury (RIBP) which remains unclear. Current studies have shown that the pathways of radiation-induced BP injury can be divided into two categories: direct injury and indirect injury, and the indirect injury is closely related to the inflammatory response, microvascular damage, cytokine production and other factors causing radiation-induced fibrosis. In this review, we summarize the underlying mechanisms of RIBP occurrence and possible effective methods to prevent and treat RIBP.
Collapse
Affiliation(s)
- Jia Ying Wei
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China
| | - Li Xin Ma
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China
| | - Wen Tong Liu
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China
| | - Li Hua Dong
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China
| | - Xue Hou
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China
| | - Xue Ying Bao
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China
| | - Wei Hou
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China.
| |
Collapse
|
2
|
Bergerud KMB, Berkseth M, Pardoll DM, Ganguly S, Kleinberg LR, Lawrence J, Odde DJ, Largaespada DA, Terezakis SA, Sloan L. Radiation Therapy and Myeloid-Derived Suppressor Cells: Breaking Down Their Cancerous Partnership. Int J Radiat Oncol Biol Phys 2024; 119:42-55. [PMID: 38042450 PMCID: PMC11082936 DOI: 10.1016/j.ijrobp.2023.11.050] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 11/18/2023] [Accepted: 11/22/2023] [Indexed: 12/04/2023]
Abstract
Radiation therapy (RT) has been a primary treatment modality in cancer for decades. Increasing evidence suggests that RT can induce an immunosuppressive shift via upregulation of cells such as tumor-associated macrophages (TAMs) and myeloid-derived suppressor cells (MDSCs). MDSCs inhibit antitumor immunity through potent immunosuppressive mechanisms and have the potential to be crucial tools for cancer prognosis and treatment. MDSCs interact with many different pathways, desensitizing tumor tissue and interacting with tumor cells to promote therapeutic resistance. Vascular damage induced by RT triggers an inflammatory signaling cascade and potentiates hypoxia in the tumor microenvironment (TME). RT can also drastically modify cytokine and chemokine signaling in the TME to promote the accumulation of MDSCs. RT activation of the cGAS-STING cytosolic DNA sensing pathway recruits MDSCs through a CCR2-mediated mechanism, inhibiting the production of type 1 interferons and hampering antitumor activity and immune surveillance in the TME. The upregulation of hypoxia-inducible factor-1 and vascular endothelial growth factor mobilizes MDSCs to the TME. After recruitment, MDSCs promote immunosuppression by releasing reactive oxygen species and upregulating nitric oxide production through inducible nitric oxide synthase expression to inhibit cytotoxic activity. Overexpression of arginase-1 on subsets of MDSCs degrades L-arginine and downregulates CD3ζ, inhibiting T-cell receptor reactivity. This review explains how radiation promotes tumor resistance through activation of immunosuppressive MDSCs in the TME and discusses current research targeting MDSCs, which could serve as a promising clinical treatment strategy in the future.
Collapse
Affiliation(s)
| | - Matthew Berkseth
- Department of Radiation Oncology, University of Minnesota, Minneapolis, Minnesota
| | - Drew M Pardoll
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Sudipto Ganguly
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Lawrence R Kleinberg
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jessica Lawrence
- Department of Veterinary Clinical Sciences, University of Minnesota, St. Paul, Minnesota
| | - David J Odde
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota
| | - David A Largaespada
- Departments of Pediatrics and Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota
| | | | - Lindsey Sloan
- Department of Radiation Oncology, University of Minnesota, Minneapolis, Minnesota.
| |
Collapse
|
3
|
Li J, Pang D, Zhou L, Ouyang H, Tian Y, Yu H. miR-26a-5p inhibits the proliferation of psoriasis-like keratinocytes in vitro and in vivo by dual interference with the CDC6/CCNE1 axis. Aging (Albany NY) 2024; 16:4631-4653. [PMID: 38446584 PMCID: PMC10968694 DOI: 10.18632/aging.205618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 02/02/2024] [Indexed: 03/08/2024]
Abstract
Psoriasis is a chronic inflammatory proliferative dermatological ailment that currently lacks a definitive cure. Employing data mining techniques, this study identified a collection of substantially downregulated miRNAs (top 10). Notably, 32 targets were implicated in both the activation of the IL-17 signaling pathway and cell cycle dysregulation. In silico analysis revealed that one of these miRNAs, miR-26a-5p, is a highly conserved cross-species miRNA. Strikingly, the miR-26a-5p sequences in humans and mice are identical, and mmu-miR-26a-5p was found to target the same 7 cell cycle targets as its human counterpart, hsa-miR-26a-5p. Among these targets, CDC6 and CCNE1 were the most effective targets of miR-26a-5p, which was further validated in vitro using a dual luciferase reporter system and qPCR assay. The therapeutic assessment of miR-26a-5p revealed its remarkable efficacy in inhibiting the proliferation and G1/S transition of keratinocytes (HaCaT and HEKs) in vitro. In vivo experiments corroborated these findings, demonstrating that miR-26a-5p effectively suppressed imiquimod (IMQ)-induced psoriasis-like skin lesions in mice over an 8-day treatment period. Histological analysis via H&E staining revealed that miR-26a-5p treatment resulted in reduced keratinocyte thickness and immune cell infiltration into the spleens of IMQ-treated mice. Mechanistic investigations revealed that miR-26a-5p induced a cascade of downregulated genes associated with the IL-23/IL-17A axis, which is known to be critical in psoriasis pathogenesis, while concomitantly suppressing CDC6 and CCNE1 expression. These findings were corroborated by qPCR and Western blot analyses. Collectively, our study provides compelling evidence supporting the therapeutic potential of miR-26a-5p as a safe and reliable endogenous small nucleic acid for the treatment of psoriasis.
Collapse
Affiliation(s)
- Jianing Li
- Key Lab for Zoonoses Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Daxin Pang
- Key Lab for Zoonoses Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
- Chongqing Research Institute, Jilin University, Chongqing 401123, China
- Chongqing Jitang Biotechnology Research Institute Co., Ltd., Chongqing 401123, China
| | - Lin Zhou
- Joint International Research Laboratory of Reproduction and Development, School of Basic Medicine, Chong-qing Medical University, Chongqing 400016, China
| | - Hongsheng Ouyang
- Key Lab for Zoonoses Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
- Chongqing Research Institute, Jilin University, Chongqing 401123, China
- Chongqing Jitang Biotechnology Research Institute Co., Ltd., Chongqing 401123, China
| | - Yaping Tian
- Department of Dermatology and Venerology, First Bethune Hospital of Jilin University, Changchun 130021, China
| | - Hao Yu
- Key Lab for Zoonoses Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
| |
Collapse
|
4
|
Szymański M, Bonowicz K, Antosik P, Jerka D, Głowacka M, Soroka M, Steinbrink K, Kleszczyński K, Gagat M. Role of Cyclins and Cytoskeletal Proteins in Endometriosis: Insights into Pathophysiology. Cancers (Basel) 2024; 16:836. [PMID: 38398227 PMCID: PMC10886501 DOI: 10.3390/cancers16040836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/21/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024] Open
Abstract
Endometriosis is a gynecological condition where endometrium-like tissue grows outside the uterus, posing challenges in understanding and treatment. This article delves into the deep cellular and molecular processes underlying endometriosis, with a focus on the crucial roles played by cyclins and cytoskeletal proteins in its pathogenesis, particularly in the context of Epithelial-Mesenchymal Transition (EMT). The investigation begins by examining the activities of cyclins, elucidating their diverse biological roles such as cell cycle control, proliferation, evasion of apoptosis, and angiogenesis among ectopic endometrial cells. A comprehensive analysis of cytoskeletal proteins follows, emphasizing their fundamental biological roles and their specific significance to endometriotic cell features. This review sheds light on the interconnected pathways through which cyclins and cytoskeletal proteins converge, contributing to the genesis and progression of endometriosis. Understanding these molecular complexities not only provides insight into the underlying causes of the disease but also holds promise for the development of specific therapeutic approaches, ushering in a new era in the management of this devastating disorder.
Collapse
Affiliation(s)
- Marcin Szymański
- Department of Histology and Embryology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland; (M.S.); (K.B.); (D.J.)
| | - Klaudia Bonowicz
- Department of Histology and Embryology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland; (M.S.); (K.B.); (D.J.)
- Faculty of Medicine, Collegium Medicum, Mazovian Academy in Płock, 08-110 Płock, Poland; (M.G.); (M.S.)
| | - Paulina Antosik
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-094 Bydgoszcz, Poland;
| | - Dominika Jerka
- Department of Histology and Embryology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland; (M.S.); (K.B.); (D.J.)
| | - Mariola Głowacka
- Faculty of Medicine, Collegium Medicum, Mazovian Academy in Płock, 08-110 Płock, Poland; (M.G.); (M.S.)
| | - Małgorzata Soroka
- Faculty of Medicine, Collegium Medicum, Mazovian Academy in Płock, 08-110 Płock, Poland; (M.G.); (M.S.)
| | - Kerstin Steinbrink
- Department of Dermatology, University of Münster, Von-Esmarch-Str. 58, 48149 Münster, Germany; (K.S.); (K.K.)
| | - Konrad Kleszczyński
- Department of Dermatology, University of Münster, Von-Esmarch-Str. 58, 48149 Münster, Germany; (K.S.); (K.K.)
| | - Maciej Gagat
- Department of Histology and Embryology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland; (M.S.); (K.B.); (D.J.)
- Faculty of Medicine, Collegium Medicum, Mazovian Academy in Płock, 08-110 Płock, Poland; (M.G.); (M.S.)
| |
Collapse
|
5
|
Martini L, Baek SH, Lo I, Raby BA, Silverman E, Weiss S, Glass K, Halu A. Detecting and dissecting signaling crosstalk via the multilayer network integration of signaling and regulatory interactions. Nucleic Acids Res 2024; 52:e5. [PMID: 37953325 PMCID: PMC10783515 DOI: 10.1093/nar/gkad1035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 06/27/2023] [Accepted: 10/23/2023] [Indexed: 11/14/2023] Open
Abstract
The versatility of cellular response arises from the communication, or crosstalk, of signaling pathways in a complex network of signaling and transcriptional regulatory interactions. Understanding the various mechanisms underlying crosstalk on a global scale requires untargeted computational approaches. We present a network-based statistical approach, MuXTalk, that uses high-dimensional edges called multilinks to model the unique ways in which signaling and regulatory interactions can interface. We demonstrate that the signaling-regulatory interface is located primarily in the intermediary region between signaling pathways where crosstalk occurs, and that multilinks can differentiate between distinct signaling-transcriptional mechanisms. Using statistically over-represented multilinks as proxies of crosstalk, we infer crosstalk among 60 signaling pathways, expanding currently available crosstalk databases by more than five-fold. MuXTalk surpasses existing methods in terms of model performance metrics, identifies additions to manual curation efforts, and pinpoints potential mediators of crosstalk. Moreover, it accommodates the inherent context-dependence of crosstalk, allowing future applications to cell type- and disease-specific crosstalk.
Collapse
Affiliation(s)
- Leonardo Martini
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Computer, Control, and Management Engineering, Sapienza University of Rome, Rome, 00185, Italy
| | - Seung Han Baek
- Division of Pulmonary Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Ian Lo
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Benjamin A Raby
- Division of Pulmonary Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Edwin K Silverman
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Scott T Weiss
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Kimberly Glass
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Arda Halu
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
6
|
The CMG helicase and cancer: a tumor "engine" and weakness with missing mutations. Oncogene 2023; 42:473-490. [PMID: 36522488 PMCID: PMC9948756 DOI: 10.1038/s41388-022-02572-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 12/01/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022]
Abstract
The replicative Cdc45-MCM-GINS (CMG) helicase is a large protein complex that functions in the DNA melting and unwinding steps as a component of replisomes during DNA replication in mammalian cells. Although the CMG performs this important role in cell growth, the CMG is not a simple bystander in cell cycle events. Components of the CMG, specifically the MCM precursors, are also involved in maintaining genomic stability by regulating DNA replication fork speeds, facilitating recovery from replicative stresses, and preventing consequential DNA damage. Given these important functions, MCM/CMG complexes are highly regulated by growth factors such as TGF-ß1 and by signaling factors such as Myc, Cyclin E, and the retinoblastoma protein. Mismanagement of MCM/CMG complexes when these signaling mediators are deregulated, and in the absence of the tumor suppressor protein p53, leads to increased genomic instability and is a contributor to tumorigenic transformation and tumor heterogeneity. The goal of this review is to provide insight into the mechanisms and dynamics by which the CMG is regulated during its assembly and activation in mammalian genomes, and how errors in CMG regulation due to oncogenic changes promote tumorigenesis. Finally, and most importantly, we highlight the emerging understanding of the CMG helicase as an exploitable vulnerability and novel target for therapeutic intervention in cancer.
Collapse
|
7
|
Ishitsuka Y, Hanaoka Y, Tanemura A, Fujimoto M. Cutaneous Squamous Cell Carcinoma in the Age of Immunotherapy. Cancers (Basel) 2021; 13:1148. [PMID: 33800195 PMCID: PMC7962464 DOI: 10.3390/cancers13051148] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 12/11/2022] Open
Abstract
Cutaneous squamous cell carcinoma (cSCC) is the second most prevalent skin cancer globally. Because most cSCC cases are manageable by local excision/radiotherapy and hardly become life-threatening, they are often excluded from cancer registries in most countries. Compared with cutaneous melanoma that originates from the melanin-producing, neural crest-derived epidermal resident, keratinocyte (KC)-derived cancers are influenced by the immune system with regards to their pathogenetic behaviour. Congenital or acquired immunosurveillance impairments compromise tumoricidal activity and raises cSCC incidence rates. Intriguingly, expanded applications of programmed death-1 (PD-1) blockade therapies have revealed cSCC to be one of the most amenable targets, particularly when compared with the mucosal counterparts arisen in the esophagus or the cervix. The clinical observation reminds us that cutaneous tissue has a peculiarly high immunogenicity that can evoke tumoricidal recall responses topically. Here we attempt to redefine cSCC biology and review current knowledge about cSCC from multiple viewpoints that involve epidemiology, clinicopathology, molecular genetics, molecular immunology, and developmental biology. This synthesis not only underscores the primal importance of the immune system, rather than just a mere accumulation of ultraviolet-induced mutations but also reinforces the following hypothesis: PD-1 blockade effectively restores the immunity specially allowed to exist within the fully cornified squamous epithelium, that is, the epidermis.
Collapse
Affiliation(s)
- Yosuke Ishitsuka
- Department of Dermatology Integrated Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; (Y.H.); (A.T.); (M.F.)
| | | | | | | |
Collapse
|
8
|
Yazdani M, Shahdadfar A, Reppe S, Sapkota D, Vallenari EM, Lako M, Connon CJ, Figueiredo FC, Utheim TP. Response of human oral mucosal epithelial cells to different storage temperatures: A structural and transcriptional study. PLoS One 2020; 15:e0243914. [PMID: 33326470 PMCID: PMC7744058 DOI: 10.1371/journal.pone.0243914] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/30/2020] [Indexed: 11/26/2022] Open
Abstract
PURPOSE Seeking to improve the access to regenerative medicine, this study investigated the structural and transcriptional effects of storage temperature on human oral mucosal epithelial cells (OMECs). METHODS Cells were stored at four different temperatures (4°C, 12°C, 24°C and 37°C) for two weeks. Then, the morphology, cell viability and differential gene expression were examined using light and scanning electron microscopy, trypan blue exclusion test and TaqMan gene expression array cards, respectively. RESULTS Cells stored at 4°C had the most similar morphology to non-stored controls with the highest viability rate (58%), whereas the 37°C group was most dissimilar with no living cells. The genes involved in stress-induced growth arrest (GADD45B) and cell proliferation inhibition (TGFB2) were upregulated at 12°C and 24°C. Upregulation was also observed in multifunctional genes responsible for morphology, growth, adhesion and motility such as EFEMP1 (12°C) and EPHA4 (4°C-24°C). Among genes used as differentiation markers, PPARA and TP53 (along with its associated gene CDKN1A) were downregulated in all temperature conditions, whereas KRT1 and KRT10 were either unchanged (4°C) or downregulated (24°C and 12°C; and 24°C, respectively), except for upregulation at 12°C for KRT1. CONCLUSIONS Cells stored at 12°C and 24°C were stressed, although the expression levels of some adhesion-, growth- and apoptosis-related genes were favourable. Collectively, this study suggests that 4°C is the optimal storage temperature for maintenance of structure, viability and function of OMECs after two weeks.
Collapse
Affiliation(s)
- Mazyar Yazdani
- Department of Medical Biochemistry, Oslo University Hospital, Ullevål, Oslo, Norway
- Center for Eye Research, Department of Ophthalmology, Oslo University Hospital, Ullevål, Oslo, Norway
| | - Aboulghassem Shahdadfar
- Center for Eye Research, Department of Ophthalmology, Oslo University Hospital, Ullevål, Oslo, Norway
| | - Sjur Reppe
- Department of Medical Biochemistry, Oslo University Hospital, Ullevål, Oslo, Norway
- Department of Plastic and Reconstructive Surgery, Oslo University Hospital, Oslo, Norway
- Lovisenberg Diaconal Hospital, Unger-Vetlesen Institute, Oslo, Norway
| | - Dipak Sapkota
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Evan M. Vallenari
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Majlinda Lako
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, International Centre for Life, Bioscience West Building, Newcastle upon Tyne, United Kingdom
| | - Che J. Connon
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, International Centre for Life, Bioscience West Building, Newcastle upon Tyne, United Kingdom
| | - Francisco C. Figueiredo
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, International Centre for Life, Bioscience West Building, Newcastle upon Tyne, United Kingdom
- Department of Ophthalmology, Royal Victoria Infirmary & Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Tor Paaske Utheim
- Department of Medical Biochemistry, Oslo University Hospital, Ullevål, Oslo, Norway
- Department of Plastic and Reconstructive Surgery, Oslo University Hospital, Oslo, Norway
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
- Department of Ophthalmology, Stavanger University Hospital, Stavanger, Norway
- Department of Ophthalmology, Sørlandet Hospital Arendal, Arendal, Norway
- Department of Computer Science, Oslo Metropolitan University, Oslo, Norway
| |
Collapse
|
9
|
Derynck R, Turley SJ, Akhurst RJ. TGFβ biology in cancer progression and immunotherapy. Nat Rev Clin Oncol 2020; 18:9-34. [DOI: 10.1038/s41571-020-0403-1] [Citation(s) in RCA: 199] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2020] [Indexed: 02/07/2023]
|
10
|
Gadre P, Chatterjee S, Varshney B, Ray K. Cyclin E and Cdk1 regulate the termination of germline transit-amplification process in Drosophila testis. Cell Cycle 2020; 19:1786-1803. [PMID: 32573329 DOI: 10.1080/15384101.2020.1780381] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
An extension of the G1 is correlated with stem cell differentiation. The role of cell cycle regulation during the subsequent transit amplification (TA) divisions is, however, unclear. Here, we report for the first time that in the Drosophila male germline lineage, the transit amplification divisions accelerate after the second TA division. The cell cycle phases, marked by Cyclin E and Cyclin B, are progressively altered during the TA. Antagonistic functions of the bag-of-marbles and the Transforming-Growth-Factor-β signaling regulate the cell division rates after the second TA division and the extent of the Cyclin E phase during the fourth TA division. Furthermore, loss of Cyclin E during the fourth TA cycle retards the cell division and induces premature meiosis in some cases. A similar reduction of Cdk1 activity during this stage arrests the penultimate division and subsequent differentiation, whereas enhancement of the Cdk1 activity prolongs the TA by one extra round. Altogether, the results suggest that modification of the cell cycle structure and the rates of cell division after the second TA division determine the extent of amplification. Also, the regulation of the Cyclin E and CDK1 functions during the penultimate TA division determines the induction of meiosis and subsequent differentiation.
Collapse
Affiliation(s)
- Purna Gadre
- Department of Biological Sciences, Tata Institute of Fundamental Research , Mumbai, India
| | - Shambhabi Chatterjee
- Department of Biological Sciences, Tata Institute of Fundamental Research , Mumbai, India
| | - Bhavna Varshney
- Department of Biological Sciences, Tata Institute of Fundamental Research , Mumbai, India
| | - Krishanu Ray
- Department of Biological Sciences, Tata Institute of Fundamental Research , Mumbai, India
| |
Collapse
|
11
|
Yumimoto K, Yamauchi Y, Nakayama KI. F-Box Proteins and Cancer. Cancers (Basel) 2020; 12:cancers12051249. [PMID: 32429232 PMCID: PMC7281081 DOI: 10.3390/cancers12051249] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/09/2020] [Accepted: 05/12/2020] [Indexed: 12/20/2022] Open
Abstract
Controlled protein degradation is essential for the operation of a variety of cellular processes including cell division, growth, and differentiation. Identification of the relations between ubiquitin ligases and their substrates is key to understanding the molecular basis of cancer development and to the discovery of novel targets for cancer therapeutics. F-box proteins function as the substrate recognition subunits of S-phase kinase-associated protein 1 (SKP1)−Cullin1 (CUL1)−F-box protein (SCF) ubiquitin ligase complexes. Here, we summarize the roles of specific F-box proteins that have been shown to function as tumor promoters or suppressors. We also highlight proto-oncoproteins that are targeted for ubiquitylation by multiple F-box proteins, and discuss how these F-box proteins are deployed to regulate their cognate substrates in various situations.
Collapse
|
12
|
Razavipour SF, Harikumar KB, Slingerland JM. p27 as a Transcriptional Regulator: New Roles in Development and Cancer. Cancer Res 2020; 80:3451-3458. [PMID: 32341036 DOI: 10.1158/0008-5472.can-19-3663] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/25/2020] [Accepted: 04/21/2020] [Indexed: 11/16/2022]
Abstract
p27 binds and inhibits cyclin-CDK to arrest the cell cycle. p27 also regulates other processes including cell migration and development independent of its cyclin-dependent kinase (CDK) inhibitory action. p27 is an atypical tumor suppressor-deletion or mutational inactivation of the gene encoding p27, CDKN1B, is rare in human cancers. p27 is rarely fully lost in cancers because it can play both tumor suppressive and oncogenic roles. Until recently, the paradigm was that oncogenic deregulation results from either loss of growth restraint due to excess p27 proteolysis or from an oncogenic gain of function through PI3K-mediated C-terminal p27 phosphorylation, which disrupts the cytoskeleton to increase cell motility and metastasis. In cancers, C-terminal phosphorylation alters p27 protein-protein interactions and shifts p27 from CDK inhibitor to oncogene. Recent data indicate p27 regulates transcription and acts as a transcriptional coregulator of cJun. C-terminal p27 phosphorylation increases p27-cJun recruitment to and action on target genes to drive oncogenic pathways and repress differentiation programs. This review focuses on noncanonical, CDK-independent functions of p27 in migration, invasion, development, and gene expression, with emphasis on how transcriptional regulation by p27 illuminates its actions in cancer. A better understanding of how p27-associated transcriptional complexes are regulated might identify new therapeutic targets at the interface between differentiation and growth control.
Collapse
Affiliation(s)
- Seyedeh Fatemeh Razavipour
- Breast Cancer Program, Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, Washington DC
| | - Kuzhuvelil B Harikumar
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala, India
| | - Joyce M Slingerland
- Breast Cancer Program, Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, Washington DC.
| |
Collapse
|
13
|
Urbach A, Witte OW. Divide or Commit - Revisiting the Role of Cell Cycle Regulators in Adult Hippocampal Neurogenesis. Front Cell Dev Biol 2019; 7:55. [PMID: 31069222 PMCID: PMC6491688 DOI: 10.3389/fcell.2019.00055] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 03/28/2019] [Indexed: 12/21/2022] Open
Abstract
The adult dentate gyrus continuously generates new neurons that endow the brain with increased plasticity, helping to cope with changing environmental and cognitive demands. The process leading to the birth of new neurons spans several precursor stages and is the result of a coordinated series of fate decisions, which are tightly controlled by extrinsic signals. Many of these signals act through modulation of cell cycle (CC) components, not only to drive proliferation, but also for linage commitment and differentiation. In this review, we provide a comprehensive overview on key CC components and regulators, with emphasis on G1 phase, and analyze their specific functions in precursor cells of the adult hippocampus. We explore their role for balancing quiescence versus self-renewal, which is essential to maintain a lifelong pool of neural stem cells while producing new neurons “on demand.” Finally, we discuss available evidence and controversies on the impact of CC/G1 length on proliferation versus differentiation decisions.
Collapse
Affiliation(s)
- Anja Urbach
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Otto W Witte
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| |
Collapse
|
14
|
Abstract
PI3K is activated in over 60% of human cancers, mediating C-terminal p27 phosphorylation. This work reveals cooperation between PI3K and cJun pathways: p27 phosphorylation by PI3K-activated kinases stimulates p27/cJun corecruitment to chromatin and activation of transcription programs of cell adhesion, motility, TGFB2, and epithelial–mesenchymal transformation to drive tumor progression. Prior analysis showed that high p27pT157 strongly associates with activated AKTpS273 and p90RSKpT359 in human breast cancers. These cancers also differentially express p27/cJun target genes and identify a poor prognostic group. In cancers, the cell cycle-restraining effects of p27 are lost through increased proteolysis and decreased translation. We reveal a previously unknown oncogenic action of p27, in which p27 acts as a cJun coactivator to drive oncogenic gene expression programs. p27 shifts from CDK inhibitor to oncogene when phosphorylated by PI3K effector kinases. Here, we show that p27 is a cJun coregulator, whose assembly and chromatin association is governed by p27 phosphorylation. In breast and bladder cancer cells with high p27pT157pT198 or expressing a CDK-binding defective p27pT157pT198 phosphomimetic (p27CK−DD), cJun is activated and interacts with p27, and p27/cJun complexes localize to the nucleus. p27/cJun up-regulates TGFB2 to drive metastasis in vivo. Global analysis of p27 and cJun chromatin binding and gene expression shows that cJun recruitment to many target genes is p27 dependent, increased by p27 phosphorylation, and activates programs of epithelial–mesenchymal transformation and metastasis. Finally, human breast cancers with high p27pT157 differentially express p27/cJun-regulated genes of prognostic relevance, supporting the biological significance of the work.
Collapse
|
15
|
Nepon-Sixt BS, Alexandrow MG. TGFβ1 Cell Cycle Arrest Is Mediated by Inhibition of MCM Assembly in Rb-Deficient Conditions. Mol Cancer Res 2018; 17:277-288. [PMID: 30257992 DOI: 10.1158/1541-7786.mcr-18-0558] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 08/01/2018] [Accepted: 09/06/2018] [Indexed: 01/14/2023]
Abstract
Transforming growth factor β1 (TGFβ1) is a potent inhibitor of cell growth that targets gene-regulatory events, but also inhibits the function of CDC45-MCM-GINS helicases (CMG; MCM, Mini-Chromosome Maintenance; GINS, Go-Ichi-Ni-San) through multiple mechanisms to achieve cell-cycle arrest. Early in G1, TGFβ1 blocks MCM subunit expression and suppresses Myc and Cyclin E/Cdk2 activity required for CMG assembly, should MCMs be expressed. Once CMGs are assembled in late-G1, TGFβ1 blocks CMG activation using a direct mechanism involving the retinoblastoma (Rb) tumor suppressor. Here, in cells lacking Rb, TGFβ1 does not suppress Myc, Cyclin E/Cdk2 activity, or MCM expression, yet growth arrest remains intact and Smad2/3/4-dependent. Such arrest occurs due to inhibition of MCM hexamer assembly by TGFβ1, which is not seen when Rb is present and MCM subunit expression is normally blocked by TGFβ1. Loss of Smad expression prevents TGFβ1 suppression of MCM assembly. Mechanistically, TGFβ1 blocks a Cyclin E-Mcm7 molecular interaction required for MCM hexamer assembly upstream of CDC10-dependent transcript-1 (CDT1) function. Accordingly, overexpression of CDT1 with an intact MCM-binding domain abrogates TGFβ1 arrest and rescues MCM assembly. The ability of CDT1 to restore MCM assembly and allow S-phase entry indicates that, in the absence of Rb and other canonical mediators, TGFβ1 relies on inhibition of Cyclin E-MCM7 and MCM assembly to achieve cell cycle arrest. IMPLICATIONS: These results demonstrate that the MCM assembly process is a pivotal target of TGFβ1 in eliciting cell cycle arrest, and provide evidence for a novel oncogenic role for CDT1 in abrogating TGFβ1 inhibition of MCM assembly.
Collapse
Affiliation(s)
- Brook S Nepon-Sixt
- Department of Molecular Oncology, Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Mark G Alexandrow
- Department of Molecular Oncology, Moffitt Cancer Center and Research Institute, Tampa, Florida.
| |
Collapse
|
16
|
Lawson JS, Liu HH, Syme HM, Purcell R, Wheeler-Jones CPD, Elliott J. The cat as a naturally occurring model of renal interstitial fibrosis: Characterisation of primary feline proximal tubular epithelial cells and comparative pro-fibrotic effects of TGF-β1. PLoS One 2018; 13:e0202577. [PMID: 30138414 PMCID: PMC6107233 DOI: 10.1371/journal.pone.0202577] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 08/06/2018] [Indexed: 01/08/2023] Open
Abstract
Chronic kidney disease (CKD) is common in both geriatric cats and aging humans, and is pathologically characterised by chronic tubulointerstitial inflammation and fibrosis in both species. Cats with CKD may represent a spontaneously occurring, non-rodent animal model of human disease, however little is known of feline renal cell biology. In other species, TGF-β1 signalling in the proximal tubular epithelium is thought to play a key role in the initiation and progression of renal fibrosis. In this study, we first aimed to isolate and characterise feline proximal tubular epithelial cells (FPTEC), comparing them to human primary renal epithelial cells (HREC) and the human proximal tubular cell line HK-2. Secondly, we aimed to examine and compare the effect of human recombinant TGF-β1 on cell proliferation, pro-apoptotic signalling and genes associated with epithelial-to-mesenchymal transition (EMT) in feline and human renal epithelial cells. FPTEC were successfully isolated from cadaverous feline renal tissue, and demonstrated a marker protein expression profile identical to that of HREC and HK-2. Exposure to TGF-β1 (0-10 ng/ml) induced a concentration-dependent loss of epithelial morphology and alterations in gene expression consistent with the occurrence of partial EMT in all cell types. This was associated with transcription of downstream pro-fibrotic mediators, growth arrest in FPTEC and HREC (but not HK-2), and increased apoptotic signalling at high concentrations of TGF- β1. These effects were inhibited by the ALK5 (TGF-β1RI) antagonist SB431542 (5 μM), suggesting they are mediated via the ALK5/TGF-β1RII receptor complex. Taken together, these results suggest that TGF-β1 may be involved in epithelial cell dedifferentiation, growth arrest and apoptosis in feline CKD as in human disease, and that cats may be a useful, naturally occurring model of human CKD.
Collapse
Affiliation(s)
- Jack S. Lawson
- Comparative Biomedical Sciences, The Royal Veterinary College, London, United Kingdom
- * E-mail:
| | - Hui-Hsuan Liu
- Comparative Biomedical Sciences, The Royal Veterinary College, London, United Kingdom
| | - Harriet M. Syme
- Clinical Sciences and Services, The Royal Veterinary College, North Mymms, Hatfield, Herts, United Kingdom
| | - Robert Purcell
- Comparative Biomedical Sciences, The Royal Veterinary College, London, United Kingdom
| | | | - Jonathan Elliott
- Comparative Biomedical Sciences, The Royal Veterinary College, London, United Kingdom
| |
Collapse
|
17
|
Shi H, Li H, Yuan R, Guan W, Zhang X, Zhang S, Zhang W, Tong F, Li L, Song Z, Wang C, Yang S, Wang H. PCBP1 depletion promotes tumorigenesis through attenuation of p27 Kip1 mRNA stability and translation. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:187. [PMID: 30086790 PMCID: PMC6081911 DOI: 10.1186/s13046-018-0840-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 07/10/2018] [Indexed: 11/10/2022]
Abstract
Background Poly C Binding Protein 1 (PCBP1) is an RNA-binding protein that binds and regulates translational activity of subsets of cellular mRNAs. Depletion of PCBP1 is implicated in various carcinomas, but the underlying mechanism in tumorigenesis remains elusive. Methods We performed a transcriptome-wide screen to identify novel bounding mRNA of PCBP1. The bind regions between PCBP1 with target mRNA were investigated by using point mutation and luciferase assay. Cell proliferation, cell cycle, tumorigenesis and cell apoptosis were also evaluated in ovary and colon cancer cell lines. The mechanism that PCBP1 affects p27 was analyzed by mRNA stability and ribosome profiling assays. We analyzed PCBP1 and p27 expression in ovary, colon and renal tumor samples and adjacent non-tumor tissues using RT-PCR, Western Blotting and immunohistochemistry. The prognostic significance of PCBP1 and p27 also analyzed using online databases. Results We identified cell cycle inhibitor p27Kip1 (p27) as a novel PCBP1-bound transcript. We then demonstrated that binding of PCBP1 to p27 3’UTR via its KH1 domain mainly stabilizes p27 mRNA, while enhances its translation to fuel p27 expression, prior to p27 protein degradation. The upregulated p27 consequently inhibits cell proliferation, cell cycle progression and tumorigenesis, whereas promotes cell apoptosis under paclitaxel treatment. Conversely, knockdown of PCBP1 in turn compromises p27 mRNA stability, leading to lower p27 level and tumorigenesis in vivo. Moreover, forced depletion of p27 counteracts the tumor suppressive ability of PCBP1 in the same PCBP1 over-expressing cells. Physiologically, we showed that decreases of both p27 mRNA and its protein expressions are well correlated to PCBP1 depletion in ovary, colon and renal tumor samples, independent of the p27 ubiquitin ligase Skp2 level. Correlation of PCBP1 with p27 is also found in the tamoxifen, doxorubincin and lapatinib resistant breast cancer cells of GEO database. Conclusion Our results thereby indicate that loss of PCBP1 expression firstly attenuates p27 expression at post-transcriptional level, and subsequently promotes carcinogenesis. PCBP1 could be used as a diagnostic marker to cancer patients. Electronic supplementary material The online version of this article (10.1186/s13046-018-0840-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hongshun Shi
- Centre for Translational Medicine, the First Affiliated Hospital, SUN Yat-sen University, 58 Second Zhongshan Road, Guangzhou, 510080, China.,Department of Biochemistry, Zhongshan School of Medicine, SUN Yat-sen University, 74 Second Zhongshan Road, Guangzhou, 510080, China
| | - Hui Li
- Department of Biochemistry, Zhongshan School of Medicine, SUN Yat-sen University, 74 Second Zhongshan Road, Guangzhou, 510080, China.,Center for Stem Cell Biology and Tissue Engineering, Key laboratory of ministry of education, Sun Yat-sen University, 74 Second Zhongshan Road, Guangzhou, 510080, China
| | - Ronghua Yuan
- Department of General Surgery, The Second Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, China
| | - Wen Guan
- Department of Biochemistry, Zhongshan School of Medicine, SUN Yat-sen University, 74 Second Zhongshan Road, Guangzhou, 510080, China
| | - Xiaomei Zhang
- Department of Biochemistry, Zhongshan School of Medicine, SUN Yat-sen University, 74 Second Zhongshan Road, Guangzhou, 510080, China
| | - Shaoyang Zhang
- Department of Biochemistry, Zhongshan School of Medicine, SUN Yat-sen University, 74 Second Zhongshan Road, Guangzhou, 510080, China
| | - Wenliang Zhang
- Department of Biochemistry, Zhongshan School of Medicine, SUN Yat-sen University, 74 Second Zhongshan Road, Guangzhou, 510080, China
| | - Fang Tong
- Centre for Translational Medicine, the First Affiliated Hospital, SUN Yat-sen University, 58 Second Zhongshan Road, Guangzhou, 510080, China.,Department of Biochemistry, Zhongshan School of Medicine, SUN Yat-sen University, 74 Second Zhongshan Road, Guangzhou, 510080, China
| | - Li Li
- Centre for Translational Medicine, the First Affiliated Hospital, SUN Yat-sen University, 58 Second Zhongshan Road, Guangzhou, 510080, China.,Department of Biochemistry, Zhongshan School of Medicine, SUN Yat-sen University, 74 Second Zhongshan Road, Guangzhou, 510080, China
| | - Zhihong Song
- Department of Biochemistry, Zhongshan School of Medicine, SUN Yat-sen University, 74 Second Zhongshan Road, Guangzhou, 510080, China
| | - Changwei Wang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Shulan Yang
- Centre for Translational Medicine, the First Affiliated Hospital, SUN Yat-sen University, 58 Second Zhongshan Road, Guangzhou, 510080, China.
| | - Haihe Wang
- Department of Biochemistry, Zhongshan School of Medicine, SUN Yat-sen University, 74 Second Zhongshan Road, Guangzhou, 510080, China. .,Center for Stem Cell Biology and Tissue Engineering, Key laboratory of ministry of education, Sun Yat-sen University, 74 Second Zhongshan Road, Guangzhou, 510080, China.
| |
Collapse
|
18
|
van Rijnberk LM, van der Horst SEM, van den Heuvel S, Ruijtenberg S. A dual transcriptional reporter and CDK-activity sensor marks cell cycle entry and progression in C. elegans. PLoS One 2017; 12:e0171600. [PMID: 28158315 PMCID: PMC5291519 DOI: 10.1371/journal.pone.0171600] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 01/23/2017] [Indexed: 02/07/2023] Open
Abstract
Development, tissue homeostasis and tumor suppression depend critically on the correct regulation of cell division. Central in the cell division process is the decision whether to enter the next cell cycle and commit to going through the S and M phases, or to remain temporarily or permanently arrested. Cell cycle studies in genetic model systems could greatly benefit from visualizing cell cycle commitment in individual cells without the need of fixation. Here, we report the development and characterization of a reporter to monitor cell cycle entry in the nematode C. elegans. This reporter combines the mcm-4 promoter, to reveal Rb/E2F-mediated transcriptional control, and a live-cell sensor for CDK-activity. The CDK sensor was recently developed for use in human cells and consists of a DNA Helicase fragment fused to eGFP. Upon phosphorylation by CDKs, this fusion protein changes in localization from the nucleus to the cytoplasm. The combined regulation of transcription and subcellular localization enabled us to visualize the moment of cell cycle entry in dividing seam cells during C. elegans larval development. This reporter is the first to reflect cell cycle commitment in C. elegans and will help further genetic studies of the mechanisms that underlie cell cycle entry and exit.
Collapse
Affiliation(s)
- Lotte M. van Rijnberk
- Developmental Biology, Department of Biology, Faculty of Science, Utrecht University Padualaan 8, CH Utrecht, The Netherlands
| | - Suzanne E. M. van der Horst
- Developmental Biology, Department of Biology, Faculty of Science, Utrecht University Padualaan 8, CH Utrecht, The Netherlands
| | - Sander van den Heuvel
- Developmental Biology, Department of Biology, Faculty of Science, Utrecht University Padualaan 8, CH Utrecht, The Netherlands
| | - Suzan Ruijtenberg
- Developmental Biology, Department of Biology, Faculty of Science, Utrecht University Padualaan 8, CH Utrecht, The Netherlands
| |
Collapse
|
19
|
Targeting the CDK4/6 Pathway in Breast Cancer. Breast Cancer 2017. [DOI: 10.1007/978-3-319-48848-6_69] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
20
|
Abstract
p27(Kip1) was first discovered as a key regulator of cell proliferation. The canonical function of p27(Kip1) is inhibition of cyclin-dependent kinase (CDK) activity. In addition to its initial identification as a CDK inhibitor, p27(Kip1) has also emerged as an intrinsically unstructured, multifunctional protein with numerous non-canonical, CDK-independent functions that exert influence on key processes such as cell cycle regulation, cytoskeletal dynamics and cellular plasticity, cell migration, and stem-cell proliferation and differentiation. Many of these non-canonical functions, depending on the cell-specific contexts such as oncogenic activation of signaling pathways, have the ability to turn pro-oncogenic in nature and even contribute to tumor-aggressiveness and metastasis. This review discusses the various non-canonical, CDK-independent mechanisms by which p27(Kip1) functions either as a tumor-suppressor or tumor-promoter.
Collapse
Affiliation(s)
- Savitha S Sharma
- a Gibbs Cancer Center & Research Institute , Spartanburg , SC , USA
| | - W Jackson Pledger
- a Gibbs Cancer Center & Research Institute , Spartanburg , SC , USA.,b Edward Via College of Osteopathic Medicine , Department of Molecular Medicine , Spartanburg , SC , USA
| |
Collapse
|
21
|
Fu X, Xu M, Jia C, Xie W, Wang L, Kong D, Wang H. Differential regulation of skin fibroblasts for their TGF-β1-dependent wound healing activities by biomimetic nanofibers. J Mater Chem B 2016; 4:5246-5255. [DOI: 10.1039/c6tb00882h] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nanofibers with different compositions differentially regulate fibroblast phenotypes in a TGF-β1 rich milieu through the integrin-mediated TGF-β1/Smad signaling pathway.
Collapse
Affiliation(s)
- X. Fu
- The School of Materials Science and Engineering
- South China University of Technology
- Guangzhou 510641
- China
- Department of Chemistry
| | - M. Xu
- Department of Chemistry
- Chemical Biology and Biomedical Engineering
- Stevens Institute of Technology
- Hoboken
- USA
| | - C. Jia
- Department of Chemistry
- Chemical Biology and Biomedical Engineering
- Stevens Institute of Technology
- Hoboken
- USA
| | - W. Xie
- The School of Materials Science and Engineering
- South China University of Technology
- Guangzhou 510641
- China
| | - L. Wang
- Institute of Molecular Biology
- School of Life Sciences
- Nankai University
- Tianjin 300071
- China
| | - D. Kong
- Institute of Molecular Biology
- School of Life Sciences
- Nankai University
- Tianjin 300071
- China
| | - H. Wang
- Department of Chemistry
- Chemical Biology and Biomedical Engineering
- Stevens Institute of Technology
- Hoboken
- USA
| |
Collapse
|
22
|
Zhu M, Zhang J, Dong Z, Zhang Y, Wang R, Karaplis A, Goltzman D, Miao D. The p27 Pathway Modulates the Regulation of Skeletal Growth and Osteoblastic Bone Formation by Parathyroid Hormone-Related Peptide. J Bone Miner Res 2015; 30:1969-79. [PMID: 25917430 DOI: 10.1002/jbmr.2544] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 04/15/2015] [Accepted: 04/23/2015] [Indexed: 01/14/2023]
Abstract
Parathyroid hormone-related peptide (PTHrP) 1-84 knock-in mice (Pthrp KI) develop skeletal growth retardation and defective osteoblastic bone formation. To further examine the mechanisms underlying this phenotype, microarray analyses of differential gene expression profiles were performed in long bone extracts from Pthrp KI mice and their wild-type (WT) littermates. We found that the expression levels of p27, p16, and p53 were significantly upregulated in Pthrp KI mice relative to WT littermates. To determine whether p27 was involved in the regulation by PTHrP of skeletal growth and development in vivo, we generated compound mutant mice, which were homozygous for both p27 deletion and the Pthrp KI mutation (p27(-/-) Pthrp KI). We then compared p27(-/-) Pthrp KI mice with p27(-/-), Pthrp KI, and WT littermates. Deletion of p27 in Pthrp KI mice resulted in a longer lifespan, increased body weight, and improvement in skeletal growth. At 2 weeks of age, skeletal parameters, including length of long bones, size of epiphyses, numbers of proliferating cell nuclear antigen (PCNA)-positive chondrocytes, bone mineral density, trabecular bone volume, osteoblast numbers, and alkaline phosphatase (ALP)-, type I collagen-, and osteocalcin-positive bone areas were increased in p27(-/-) mice and reduced in both Pthrp KI and p27(-/-) Pthrp KI mice compared with WT mice; however, these parameters were increased in p27(-/-) Pthrp KI mice compared with Pthrp KI mice. As well, protein expression levels of PTHR, IGF-1, and Bmi-1, and the numbers of total colony-forming unit fibroblastic (CFU-f) and ALP-positive CFU-f were similarly increased in p27(-/-) Pthrp KI mice compared with Pthrp KI mice. Our results demonstrate that deletion of p27 in Pthrp KI mice can partially rescue defects in skeletal growth and osteoblastic bone formation by enhancing endochondral bone formation and osteogenesis. These studies, therefore, indicate that the p27 pathway may function downstream in the action of PTHrP to regulate skeletal growth and development.
Collapse
Affiliation(s)
- Min Zhu
- State Key Laboratory of Reproductive Medicine, The Research Center for Bone and Stem Cells, Department of Anatomy, Histology, and Embryology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Jing Zhang
- Department of Human Anatomy, Basic Medical College of Nanchang University, Nanchang, People's Republic of China
| | - Zhan Dong
- State Key Laboratory of Reproductive Medicine, The Research Center for Bone and Stem Cells, Department of Anatomy, Histology, and Embryology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Ying Zhang
- State Key Laboratory of Reproductive Medicine, The Research Center for Bone and Stem Cells, Department of Anatomy, Histology, and Embryology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Rong Wang
- State Key Laboratory of Reproductive Medicine, The Research Center for Bone and Stem Cells, Department of Anatomy, Histology, and Embryology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Andrew Karaplis
- Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montreal, Canada
| | - David Goltzman
- Calcium Research Laboratory, McGill University Health Centre and Department of Medicine, McGill University, Montreal, Canada
| | - Dengshun Miao
- State Key Laboratory of Reproductive Medicine, The Research Center for Bone and Stem Cells, Department of Anatomy, Histology, and Embryology, Nanjing Medical University, Nanjing, People's Republic of China
| |
Collapse
|
23
|
Zhao D, Besser AH, Wander SA, Sun J, Zhou W, Wang B, Ince T, Durante MA, Guo W, Mills G, Theodorescu D, Slingerland J. Cytoplasmic p27 promotes epithelial-mesenchymal transition and tumor metastasis via STAT3-mediated Twist1 upregulation. Oncogene 2015; 34:5447-59. [PMID: 25684140 PMCID: PMC4537852 DOI: 10.1038/onc.2014.473] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 11/24/2014] [Accepted: 12/19/2014] [Indexed: 12/12/2022]
Abstract
p27 restrains normal cell growth, but PI3K-dependent C-terminal phosphorylation of p27 at threonine 157 (T157) and T198 promotes cancer cell invasion. Here, we describe an oncogenic feedforward loop in which p27pT157pT198 binds Janus kinase 2 (JAK2) promoting STAT3 (signal transducer and activator of transcription 3) recruitment and activation. STAT3 induces TWIST1 to drive a p27-dependent epithelial-mesenchymal transition (EMT) and further activates AKT contributing to acquisition and maintenance of metastatic potential. p27 knockdown in highly metastatic PI3K-activated cells reduces STAT3 binding to the TWIST1 promoter, TWIST1 promoter activity and TWIST1 expression, reverts EMT and impairs metastasis, whereas activated STAT3 rescues p27 knockdown. Cell cycle-defective phosphomimetic p27T157DT198D (p27CK-DD) activates STAT3 to induce a TWIST1-dependent EMT in human mammary epithelial cells and increases breast and bladder cancer invasion and metastasis. Data support a mechanism in which PI3K-deregulated p27 binds JAK2, to drive STAT3 activation and EMT through STAT3-mediated TWIST1 induction. Furthermore, STAT3, once activated, feeds forward to further activate AKT.
Collapse
Affiliation(s)
- D Zhao
- Braman Family Breast Cancer Institute at Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA.,Sheila and David Fuente Graduate Program in Cancer Biology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - A H Besser
- Braman Family Breast Cancer Institute at Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA.,Sheila and David Fuente Graduate Program in Cancer Biology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - S A Wander
- Braman Family Breast Cancer Institute at Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA.,Sheila and David Fuente Graduate Program in Cancer Biology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - J Sun
- Braman Family Breast Cancer Institute at Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - W Zhou
- Braman Family Breast Cancer Institute at Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - B Wang
- Braman Family Breast Cancer Institute at Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - T Ince
- Braman Family Breast Cancer Institute at Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Pathology, Stem Cell Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - M A Durante
- Braman Family Breast Cancer Institute at Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA.,Sheila and David Fuente Graduate Program in Cancer Biology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - W Guo
- Department of Bioinformatics and Computational Biology, and Department of Systems Biology, MD Anderson Cancer Center, Houston, TX, USA
| | - G Mills
- Department of Bioinformatics and Computational Biology, and Department of Systems Biology, MD Anderson Cancer Center, Houston, TX, USA
| | - D Theodorescu
- University of Colorado Cancer Center, University of Colorado, Aurora, CO, USA
| | - J Slingerland
- Braman Family Breast Cancer Institute at Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
24
|
Wang HC, Lee WS. Progesterone induces RhoA Inactivation in male rat aortic smooth muscle cells through up-regulation of p27(kip1.). Endocrinology 2014; 155:4473-82. [PMID: 25137028 DOI: 10.1210/en.2014-1344] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Previously, we showed that progesterone (P4) at physiologic concentrations (5nM-500nM) inhibits proliferation and migration of rat aortic smooth muscle cells (RASMCs). The P4-induced migration inhibition in RASMC was resulted from Rat sacroma homolog gene family, member A (RhoA) inactivation induced by activating the cSrc/AKT/ERK 2/p38 mitogen-activated protein kinase-mediated signaling pathway. We also demonstrated that up-regulation of cyclin-dependent kinase inhibitor 1B (p27(kip1)) is involved in the P4-induced migration inhibition in RASMC. Because P4 can increase formation of the p27(kip1)-RhoA complex in RASMC, this finding led us to hypothesize that the P4-induced inactivation in RhoA might be caused by up-regulation of p27(kip1). Here, we showed that P4 increased phosphorylation of p27(kip1) at Ser10 in the nucleus, which in turn caused p27(kip1) translocation from the nucleus to the cytosol, subsequently increasing formation of the p27(kip1)-RhoA complex. These effects were blocked by knocking-down kinase-interacting stathmin (KIS) using KIS small interfering RNA. Knock-down of p27(kip1) abolished the P4-induced decreases in the level of RhoA protein in RASMC. However, pretreatment of RASMC with the proteasome inhibitor, N-(benzyloxycarbonyl)leucinylleucinylleucinal (MG132), prevented the P4-induced degradation of p27(kip1) and RhoA. Taken together, our investigation of P4-induced migration inhibition in RASMC showed a sequence of associated intracellular events that included 1) increase in formation of the KIS-p27(kip1) complex in the nucleus; 2) phosphorylated nuclear p27(kip1) at Ser10; 3) increased cytosolic translocation of p27(kip1) and formation of the p27(kip1)-RhoA complex in the cytosol; and 4) degradation of p27(kip1) and RhoA through the ubiquitin-proteasome pathway. These findings highlight the molecular mechanisms underlying P4-induced migration inhibition in RASMC.
Collapse
Affiliation(s)
- Hui-Chen Wang
- Graduate Institute of Medical Sciences (H.-C.W., W.-S.L.) and Department of Physiology (W.-S.L.), College of Medicine, Taipei Medical University, Taipei 110, Taiwan; and Cancer Research Center (W.-S.L.), Taipei Medical University Hospital, Taipei 110, Taiwan
| | | |
Collapse
|
25
|
Yao L, Cao J, Sun H, Guo A, Li A, Ben Z, Zhang H, Wang X, Ding Z, Yang X, Huang X, Ji Y, Zhou Z. FBP1 and p27kip1 expression after sciatic nerve injury: implications for Schwann cells proliferation and differentiation. J Cell Biochem 2014; 115:130-40. [PMID: 23939805 DOI: 10.1002/jcb.24640] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2013] [Accepted: 07/30/2013] [Indexed: 11/09/2022]
Abstract
Far Upstream Element (FUSE) Binding Protein 1 (FBP1), first identified as a single-stranded DNA (ssDNA) binding protein that binds to the FUSE, could modulate c-myc mRNA levels and also has been shown to regulate tumor cell proliferation and replication of virus. Typically, FBP1 could active the translation of p27kip1 (p27) and participate in tumor growth. However, the expression and roles of FBP1 in peripheral system lesions and repair are still unknown. In our study, we found that FBP1 protein levels was relatively higher in the normal sciatic nerves, significantly decreased and reached a minimal level at Day 3, and then returned to the normal level at 4 weeks. Spatially, we observed that FBP1 had a major colocation in Schwann cells and FBP1 was connected with Ki-67 and Oct-6. In vitro, we detected the decreased level of FBP1 and p27 in the TNF-α-induced Schwann cells proliferation model, while increased expression in cAMP-induced Schwann cells differentiation system. Specially, FBP1-specific siRNA-transfected SCs did not show fine and longer morphological change after cAMP treatment and had a decreased motility compared with normal. At 3 days after cAMP treatment and SC/neuron co-cultures, p27 was transported to cytoplasm to form CDK4/6-p27 to participate in SCs differentiation. In conclusion, we speculated that FBP1 and p27 were involved in SCs proliferation and the following differentiation in the sciatic nerve after crush by transporting p27 from nucleus to cytoplasm.
Collapse
Affiliation(s)
- Li Yao
- Department of Orthopaedics, Affiliated Jiangyin Hospital of Nantong University, Nantong, Jiangsu 226001, People's Republic of China; Department of Immunology, Medical College, Nantong University, Nantong, Jiangsu 226001, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Calvo KL, Ronco MT, Noguera NI, García F. Benznidazole modulates cell proliferation in acute leukemia cells. Immunopharmacol Immunotoxicol 2014; 35:478-86. [PMID: 23855487 DOI: 10.3109/08923973.2013.811597] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
CONTEXT We have previously reported that benznidazole (BZL), known for its trypanocidal action, has anti-proliferative activity against different cell lines like HeLa and Raw 264.7 among others. At the moment, it has not been reported if the anti-proliferative effect of BZL is similar for non-adherent hematopoietic cells like was reported for adherent cancer cell lines. OBJECTIVE We aimed to investigate the efficacy of BZL on the growth of the leukemic cell lines THP-1 and OCI/AML3. MATERIALS AND METHODS We evaluated cell proliferation by [³H]-thymidine incorporation and MTT reduction as well as cell death by lactate dehydrogenase (LDH) activity. We assessed apoptosis by flow cytometry for detection of annexin V-positive and propidium iodide-negative cells, along with nuclear morphology by diamidino-2-phenolindole (DAPI) staining. Western blot studies were performed to evaluate changes in cell cycle proteins in BZL-treated cells. RESULTS BZL significantly reduced proliferation of both cell lines without inducing cell death. Likewise it produced no significant differences in apoptosis between treated cells and controls. In addition, flow cytometry analysis indicated that BZL caused a larger number of THP-1 cells in G0/G1 phase and a smaller number of cells in S phase than controls. This was accompanied with an increase in the expression of the CDK inhibitor p27 and of cyclin D1, with no significant differences in the protein levels of CDK1, CDK2, CDK4, cyclins E, A and B as compared to controls. CONCLUSION BZL inhibits the proliferation of leukemic non-adherent cells by controlling cell cycle at G0/G1 cell phase through up-regulation of p27.
Collapse
Affiliation(s)
- Karina Lucrecia Calvo
- Instituto de Inmunología, Facultad Ciencias Médicas, Universidad Nacional Rosario, Rosario, Argentina
| | | | | | | |
Collapse
|
27
|
Huang J, Zhou N, Watabe K, Lu Z, Wu F, Xu M, Mo YY. Long non-coding RNA UCA1 promotes breast tumor growth by suppression of p27 (Kip1). Cell Death Dis 2014; 5:e1008. [PMID: 24457952 PMCID: PMC4040676 DOI: 10.1038/cddis.2013.541] [Citation(s) in RCA: 314] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 11/26/2013] [Accepted: 12/04/2013] [Indexed: 01/09/2023]
Abstract
Functional genomics studies have led to the discovery of a large amount of non-coding RNAs from the human genome; among them are long non-coding RNAs (lncRNAs). Emerging evidence indicates that lncRNAs could have a critical role in the regulation of cellular processes such as cell growth and apoptosis as well as cancer progression and metastasis. As master gene regulators, lncRNAs are capable of forming lncRNA–protein (ribonucleoprotein) complexes to regulate a large number of genes. For example, lincRNA-RoR suppresses p53 in response to DNA damage through interaction with heterogeneous nuclear ribonucleoprotein I (hnRNP I). The present study demonstrates that hnRNP I can also form a functional ribonucleoprotein complex with lncRNA urothelial carcinoma-associated 1 (UCA1) and increase the UCA1 stability. Of interest, the phosphorylated form of hnRNP I, predominantly in the cytoplasm, is responsible for the interaction with UCA1. Moreover, although hnRNP I enhances the translation of p27 (Kip1) through interaction with the 5′-untranslated region (5′-UTR) of p27 mRNAs, the interaction of UCA1 with hnRNP I suppresses the p27 protein level by competitive inhibition. In support of this finding, UCA1 has an oncogenic role in breast cancer both in vitro and in vivo. Finally, we show a negative correlation between p27 and UCA in the breast tumor cancer tissue microarray. Together, our results suggest an important role of UCA1 in breast cancer.
Collapse
Affiliation(s)
- J Huang
- 1] Cancer Institute, University of Mississippi Medical Center, Jackson, MS, USA [2] Department of Biochemistry, University of Mississippi Medical Center, Jackson, MS, USA
| | - N Zhou
- 1] Cancer Institute, University of Mississippi Medical Center, Jackson, MS, USA [2] Department of Biochemistry, University of Mississippi Medical Center, Jackson, MS, USA
| | - K Watabe
- 1] Cancer Institute, University of Mississippi Medical Center, Jackson, MS, USA [2] Department of Microbiology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Z Lu
- Department of Endocrinology, PLA General Hospital, Beijing, PR China
| | - F Wu
- System Biosciences, Mountain View, CA, USA
| | - M Xu
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, PR China
| | - Y-Y Mo
- 1] Cancer Institute, University of Mississippi Medical Center, Jackson, MS, USA [2] Department of Pharmacology/Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| |
Collapse
|
28
|
Jameson MJ, Taniguchi LE, VanKoevering KK, Stuart MM, Francom CR, Mendez RE, Beckler AD, Carlson HT, Thomas CY, Khalil AA. Activation of the insulin-like growth factor-1 receptor alters p27 regulation by the epidermal growth factor receptor in oral squamous carcinoma cells. J Oral Pathol Med 2012; 42:332-8. [PMID: 23106397 DOI: 10.1111/jop.12014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2012] [Indexed: 01/18/2023]
Abstract
BACKGROUND Although oral squamous cell carcinomas (OSCCs) commonly overexpress the epidermal growth factor receptor (EGFR), EGFR tyrosine kinase inhibitors (TKIs) exhibit poor efficacy clinically. Activation of the insulin-like growth factor-1 receptor (IGF1R) induces resistance of OSCC cells to EGFR-TKIs in vitro. This study seeks to evaluate the changes in cell cycle status in OSCC cells in response to gefitinib and IGF1R activation. METHODS SCC-25 OSCC cells were used for in vitro analyses. RESULTS Gefitinib caused a 50% reduction in S-phase population, and IGF1R activation caused a 2.8-fold increase; combined treatment yielded a baseline S-phase population. Gefitinib treatment increased the cyclin-dependent kinase inhibitor p27, and this was not abrogated by IGF1R activation. pT157-p27 was noted by immunoblot to be decreased on gefitinib treatment, but this was reversed with IGF1R activation. T157 phosphorylation contributes to cytoplasmic localization of p27 where it can promote cell proliferation and cell motility. Using both subcellular fractionation and immunofluorescence microscopy techniques, IGF1R stimulation was noted to increase the relative cytoplasmic localization of p27; this persisted when combined with gefitinib. CONCLUSIONS IGF1R activation partially reverses the cell cycle arrest caused by gefitinib in OSCC cells. While IGF1R stimulation does not eliminate the gefitinib-induced increase in total p27, its phosphorylation state and subcellular localization are altered. This may contribute to the ability of the IGF1R to rescue OSCC cells from EGFR-TKI treatment and may have important implications for the use of p27 as a biomarker of cell cycle arrest and response to therapy.
Collapse
Affiliation(s)
- Mark J Jameson
- Division of Head and Neck Surgical Oncology, Department of Otolaryngology - Head and Neck Surgery, University of Virginia Health System, Charlottesville, VA 22908-0713, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Wang CC, Jamal L, Janes KA. Normal morphogenesis of epithelial tissues and progression of epithelial tumors. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2012; 4:51-78. [PMID: 21898857 PMCID: PMC3242861 DOI: 10.1002/wsbm.159] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Epithelial cells organize into various tissue architectures that largely maintain their structure throughout the life of an organism. For decades, the morphogenesis of epithelial tissues has fascinated scientists at the interface of cell, developmental, and molecular biology. Systems biology offers ways to combine knowledge from these disciplines by building integrative models that are quantitative and predictive. Can such models be useful for gaining a deeper understanding of epithelial morphogenesis? Here, we take inventory of some recurring themes in epithelial morphogenesis that systems approaches could strive to capture. Predictive understanding of morphogenesis at the systems level would prove especially valuable for diseases such as cancer, where epithelial tissue architecture is profoundly disrupted.
Collapse
Affiliation(s)
- Chun-Chao Wang
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Leen Jamal
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Kevin A. Janes
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
30
|
Loehberg CR, Strissel PL, Dittrich R, Strick R, Dittmer J, Dittmer A, Fabry B, Kalender WA, Koch T, Wachter DL, Groh N, Polier A, Brandt I, Lotz L, Hoffmann I, Koppitz F, Oeser S, Mueller A, Fasching PA, Lux MP, Beckmann MW, Schrauder MG. Akt and p53 are potential mediators of reduced mammary tumor growth by cloroquine and the mTOR inhibitor RAD001. Biochem Pharmacol 2011; 83:480-8. [PMID: 22142888 DOI: 10.1016/j.bcp.2011.11.022] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 11/20/2011] [Accepted: 11/21/2011] [Indexed: 01/02/2023]
Abstract
PI3K/Akt/mTOR and p53 signaling pathways are frequently deregulated in tumors. The anticancer drug RAD001 (everolimus) is a known mTOR-inhibitor, but mTOR-inhibition leads to phosphorylation of Akt inducing resistance against RAD001 treatment. There is growing evidence that conflicting signals transduced by the oncogene Akt and the tumorsuppressor p53 are integrated via negative feedback between the two pathways. We previously showed that the anti-malarial Chloroquine, a 4-alkylamino substituted quinoline, is a p53 activator and reduced the incidence of breast tumors in animal models. Additionally, Chloroquine is an effective chemosensitizer when used in combination with PI3K/Akt inhibitors but the mechanism is unknown. Therefore, our aim was to test, if Chloroquine could inhibit tumor growth and prevent RAD001-induced Akt activation. Chloroquine and RAD001 caused G1 cell cycle arrest in luminal MCF7 but not in mesenchymal MDA-MB-231 breast cancer cells, they significantly reduced MCF7 cell proliferation on a collagen matrix and mammospheroid formation. In a murine MCF7 xenograft model, combined treatment of Chloroquine and RAD001 significantly reduced mammary tumor growth by 4.6-fold (p = 0.0002) compared to controls. Chloroquine and RAD001 inhibited phosphorylation of mTOR and its downstream target, S6K1. Furthermore, Chloroquine was able to block the RAD001-induced phosphorylation of Akt serine 473. The Chloroquine effect of overcoming the RAD001-induced activation of the oncogene Akt, as well as the promising antitumor activity in our mammary tumor animal model present Chloroquine as an interesting combination partner for the mTOR-inhibitor RAD001.
Collapse
Affiliation(s)
- Christian R Loehberg
- Department of Obstetrics and Gynecology, University Hospital Erlangen, Universitaetsstr. 21-23, 91054 Erlangen, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Ji X, Chen J, Sun H, Zhou H, Xiang J, Peng A, Tang Y, Zhao C. The interaction of telomere DNA G-quadruplex with three bis-benzyltetrahydroisoquinoline alkaloids. Nucleic Acid Ther 2011; 21:415-22. [PMID: 22017543 DOI: 10.1089/nat.2011.0311] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Telomeres are important multifunctional nucleoprotein structures located at the ends of eukaryotic chromosomes. Telomerase regulates telomere elongation, and its activity is associated with tumorigenesis. Because the activity of telomerase can be inhibited by G-quadruplex (G4) formation (a four-stranded DNA with stacks of G-quartets formed by four guanines in a planar structure), the role of G4 in cancer therapy has attracted many research interests. We studied the effects of three natural alkaloids-tetrandrine, fangchinoline, and berbamine-on the stability and formation of telomere DNA G4 with circular dichroism melting spectroscopy (melting-CD), variable temperature ultraviolet (melting-UV), proton nuclear magnetic resonance spectroscopy ((1)H NMR), and molecular docking, and examined the relationships among the alkaloid structure and their activities. We further investigated their cytotoxicity with the 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium bromide assay (MTT) and flow cytometry (FCM). The results demonstrated that alkaloids increased G4 stability and induced its formation, which added structure diversity of G4-ligands. The results showed that -OH at R(1), -OCH(3) at R(2), and [Formula: see text] at R(3) had higher stability than other substituent groups for these alkaloids. We also found a transition of antiparallel to parallel G4 as the temperature increased. The result indicated the possible advantage of parallel G4 in adversity. In addition, the alkaloids demonstrated a moderate cytotoxicity and proved to be cell cycle blocker in the G(1) phase. These alkaloids have revealed promising potentials to be the agents for antitumor therapy.
Collapse
Affiliation(s)
- Xiaohui Ji
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Beijing Key Laboratory of Gene Engineering Drugs & Biological Technology College of Life Science, Beijing Normal University, Beijing, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Bhatia B, Malik A, Fernandez-L A, Kenney AM. p27(Kip1), a double-edged sword in Shh-mediated medulloblastoma: Tumor accelerator and suppressor. Cell Cycle 2010; 9:4307-14. [PMID: 21051932 DOI: 10.4161/cc.9.21.13441] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Medulloblastoma, a brain tumor arising in the cerebellum, is the most common solid childhood malignancy. the current standard of care for medulloblastoma leaves survivors with life-long side effects. Gaining insight into mechanisms regulating transformation of medulloblastoma cells-of-origin may lead to development of better treatments for these tumors. Cerebellar granule neuron precursors (CGNps) are proposed cells-of-origin for certain classes of medulloblastoma, specifically those marked by aberrant Sonic hedgehog (Shh) signaling pathway activation. CGNps require signaling by Shh for proliferation during brain development. In mitogen-stimulated cells, nuclear localized cyclin dependent kinase (cdk) inhibitor p27 (Kip1) functions as a checkpoint control at the G1- to S-phase transition by inhibiting cdk2. Recent studies have suggested cytoplasmically localized p27(Kip1) acquires oncogenic functions. Here, we show that p27(Kip1) is cytoplasmically localized in CGNps and mouse Shh-mediated medulloblastomas. transgenic mice bearing an activating mutation in the Shh pathway and lacking one or both p27(Kip1) alleles have accelerated tumor incidence compared to mice bearing both p27(Kip1) alleles. Interestingly, mice heterozygous for p27(Kip1) have decreased survival latency compared to p27(Kip1)-null animals. our data indicate that this may reflect the requirement for at least one copy of p27(Kip1) for recruiting cyclin D/cdk4/6 to promote cell cycle progression yet insufficient expression in the heterozygous or null state to inhibit cyclin E/cdk2. Finally, we find that mis-localized p27(Kip1) may play a positive role in motility in medulloblastoma cells. Together, our data indicate that the dosage of p27(Kip1) plays a role in cell cycle progression and tumor suppression in Shh-mediated medulloblastoma expansion.
Collapse
Affiliation(s)
- Bobby Bhatia
- Department of Cancer Biology and Genetics, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | | | | | | |
Collapse
|
33
|
Wander SA, Zhao D, Slingerland JM. p27: a barometer of signaling deregulation and potential predictor of response to targeted therapies. Clin Cancer Res 2010; 17:12-8. [PMID: 20966355 DOI: 10.1158/1078-0432.ccr-10-0752] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Phosphorylation of the cyclin-dependent kinase inhibitor p27 by upstream mitogenic signaling pathways regulates its stability, localization, and biological function. In human cancers, loss of the antiproliferative action of p27 can arise through reduced protein levels and/or cytoplasmic mislocalization, leading to increased cell proliferation and/or cell migration, respectively. Reduced p27 expression levels and p27 mislocalization have potential prognostic and therapeutic implications in various types of human cancers. This review highlights mechanisms of functional deregulation of p27 by oncogenic signaling that provide an important molecular rationale for pathway targeting in cancer treatment.
Collapse
Affiliation(s)
- Seth A Wander
- Braman Family Breast Cancer Institute, University of Miami Sylvester Comprehensive Cancer Center, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | | | | |
Collapse
|
34
|
Ding Y, Kim JK, Kim SI, Na HJ, Jun SY, Lee SJ, Choi ME. TGF-{beta}1 protects against mesangial cell apoptosis via induction of autophagy. J Biol Chem 2010; 285:37909-19. [PMID: 20876581 DOI: 10.1074/jbc.m109.093724] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Autophagy can lead to cell death in response to stress, but it can also act as a protective mechanism for cell survival. We show that TGF-β1 induces autophagy and protects glomerular mesangial cells from undergoing apoptosis during serum deprivation. Serum withdrawal rapidly induced autophagy within 1 h in mouse mesangial cells (MMC) as determined by increased microtubule-associated protein 1 light chain 3 (LC3) levels and punctate distribution of the autophagic vesicle-associated-form LC3-II. We demonstrate that after 1 h there was a time-dependent decrease in LC3 levels that was accompanied by induction of apoptosis, evidenced by increases in cleaved caspase 3. However, treatment with TGF-β1 resulted in induction of the autophagy protein LC3 while suppressing caspase 3 activation. TGF-β1 failed to rescue MMC from serum deprivation-induced apoptosis upon knockdown of LC3 by siRNA and in MMC from LC3 null (LC3(-/-)) mice. We show that TGF-β1 induced autophagy through TAK1 and Akt activation, and inhibition of PI3K-Akt pathway by LY294002 or dominant-negative Akt suppressed LC3 levels and enhanced caspase 3 activation. TGF-β1 also up-regulated cyclin D1 and E protein levels while down-regulating p27, thus stimulating cell cycle progression. Bafilomycin A1, but not MG132, blocked TGF-β1 down-regulation of p27, suggesting that p27 levels were regulated through autophagy. Taken together, our data indicate that TGF-β1 rescues MMC from serum deprivation-induced apoptosis via induction of autophagy through activation of the Akt pathway. The autophagic process may constitute an adaptive mechanism to glomerular injury by inhibiting apoptosis and promoting mesangial cell survival.
Collapse
Affiliation(s)
- Yan Ding
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Radiotherapy suppresses angiogenesis in mice through TGF-betaRI/ALK5-dependent inhibition of endothelial cell sprouting. PLoS One 2010; 5:e11084. [PMID: 20552031 PMCID: PMC2884035 DOI: 10.1371/journal.pone.0011084] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2010] [Accepted: 05/20/2010] [Indexed: 01/07/2023] Open
Abstract
Background Radiotherapy is widely used to treat cancer. While rapidly dividing cancer cells are naturally considered the main target of radiotherapy, emerging evidence indicates that radiotherapy also affects endothelial cell functions, and possibly also their angiogenic capacity. In spite of its clinical relevance, such putative anti-angiogenic effect of radiotherapy has not been thoroughly characterized. We have investigated the effect of ionizing radiation on angiogenesis using in vivo, ex vivo and in vitro experimental models in combination with genetic and pharmacological interventions. Principal Findings Here we show that high doses ionizing radiation locally suppressed VEGF- and FGF-2-induced Matrigel plug angiogenesis in mice in vivo and prevented endothelial cell sprouting from mouse aortic rings following in vivo or ex vivo irradiation. Quiescent human endothelial cells exposed to ionizing radiation in vitro resisted apoptosis, demonstrated reduced sprouting, migration and proliferation capacities, showed enhanced adhesion to matrix proteins, and underwent premature senescence. Irradiation induced the expression of P53 and P21 proteins in endothelial cells, but p53 or p21 deficiency and P21 silencing did not prevent radiation-induced inhibition of sprouting or proliferation. Radiation induced Smad-2 phosphorylation in skin in vivo and in endothelial cells in vitro. Inhibition of the TGF-β type I receptor ALK5 rescued deficient endothelial cell sprouting and migration but not proliferation in vitro and restored defective Matrigel plug angiogenesis in irradiated mice in vivo. ALK5 inhibition, however, did not rescue deficient proliferation. Notch signaling, known to hinder angiogenesis, was activated by radiation but its inhibition, alone or in combination with ALK5 inhibition, did not rescue suppressed proliferation. Conclusions These results demonstrate that irradiation of quiescent endothelial cells suppresses subsequent angiogenesis and that ALK5 is a critical mediator of this suppression. These results extend our understanding of radiotherapy-induced endothelial dysfunctions, relevant to both therapeutic and unwanted effects of radiotherapy.
Collapse
|
36
|
Nakamura H, Tokumoto M, Mizobuchi M, Ritter CS, Finch JL, Mukai M, Slatopolsky E. Novel markers of left ventricular hypertrophy in uremia. Am J Nephrol 2010; 31:292-302. [PMID: 20130393 DOI: 10.1159/000279768] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Accepted: 12/04/2009] [Indexed: 01/17/2023]
Abstract
AIMS Left ventricular hypertrophy (LVH) is the most frequent cardiac complication in chronic renal disease. Previous studies implicate elevated serum phosphorus as a risk factor for LVH. METHODS We treated 5/6 nephrectomized rats with enalapril or enalapril + sevelamer carbonate for 4 months to determine if sevelamer carbonate had an additional beneficial effect on the development of LVH and uremia-induced left ventricle (LV) remodeling. RESULTS Uremia increased LV weight and cardiomyocyte size. Enalapril and enalapril + sevelamer blunted the increase in left ventricular weight. Only enalapril + sevelamer diminished the increase in cardiomyocyte size. Uremia increased cyclin D2 and PCNA and decreased p27 protein expression in the heart. Enalapril + sevelamer diminished the decrease in p27 expression caused by uremia. Uremia increased Ki67-positive and phosphohistone H(3)-positive interstitial cells. This was not seen in cardiomyocytes. Multivariable regression analysis showed that increased phosphorus was an independent risk factor for both increased LV weight and cardiomyocyte size. CONCLUSIONS These data suggest left ventricular remodeling consists of cardiomyocyte hypertrophy and interstitial cell proliferation, but not cardiomyocyte proliferation. p27 and cyclin D2 may play important roles in the development of LVH. In addition, phosphorus can be an independent risk factor for the development of LVH.
Collapse
|
37
|
Nucleic acid drugs for prevention of cardiac rejection. J Biomed Biotechnol 2009; 2009:916514. [PMID: 20069118 PMCID: PMC2804055 DOI: 10.1155/2009/916514] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Revised: 08/07/2009] [Accepted: 10/11/2009] [Indexed: 12/28/2022] Open
Abstract
Heart transplantation has been broadly performed in humans. However, occurrence of acute and chronic rejection has not yet been resolved. Several inflammatory factors, such as cytokines and adhesion molecules, enhance the rejection. The graft arterial disease (GAD), which is a type of chronic rejection, is characterized by intimal thickening comprised of proliferative smooth muscle cells. Specific treatments that target the attenuation of acute rejection and GAD formation have not been well studied in cardiac transplantation. Recent progress in the nucleic acid drugs, such as antisense oligodeoxynucleotides (ODNs) to regulate the transcription of disease-related genes, has important roles in therapeutic applications. Transfection of cis-element double-stranded DNA, named as “decoy,” has been also reported to be a useful nucleic acid drug. This decoy strategy has been not only a useful method for the experimental studies of gene regulation but also a novel clinical strategy. In this paper, we reviewed the experimental results of NF-κB, E2F, AP-1, and STAT-1 decoy and other ODNs using the experimental heart transplant models.
Collapse
|
38
|
Cell cycle arrest by transforming growth factor beta1 near G1/S is mediated by acute abrogation of prereplication complex activation involving an Rb-MCM interaction. Mol Cell Biol 2009; 30:845-56. [PMID: 19948884 DOI: 10.1128/mcb.01152-09] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Understanding inhibitory mechanisms of transforming growth factor beta1 (TGF-beta1) has provided insight into cell cycle regulation and how TGF-beta1 sensitivity is lost during tumorigenesis. We show here that TGF-beta1 utilizes a previously unknown mechanism targeting the function of prereplication complexes (pre-RCs) to acutely block S-phase entry when added to cells in late G(1), after most G(1) events have occurred. TGF-beta1 treatment in early G(1) suppresses Myc and CycE-Cdk2 and blocks pre-RC assembly. However, TGF-beta1 treatment in late G(1) acutely blocks S-phase entry by inhibiting activation of fully assembled pre-RCs, with arrest occurring prior to the helicase unwinding step at G(1)/S. This acute block by TGF-beta1 requires the function of Rb in late G(1) but does not involve Myc/CycE-Cdk2 suppression or transcriptional control. Instead, Rb mediates TGF-beta1 late-G(1) arrest by targeting the MCM helicase. Rb binds the MCM complex during late G(1) via a direct interaction with Mcm7, and TGF-beta1 blocks their dissociation at G(1)/S. Loss of Rb or overexpression of Mcm7 or its Rb-binding domain alone abrogates late-G(1) arrest by TGF-beta1. These results demonstrate that TGF-beta1 acutely blocks entry into S phase by inhibiting pre-RC activation and suggest a novel role for Rb in mediating this effect of TGF-beta1 through direct interaction with and control of the MCM helicase.
Collapse
|
39
|
Abstract
Acute kidney injury (AKI) activates pathways of cell death and cell proliferation. Although seemingly discrete and unrelated mechanisms, these pathways can now be shown to be connected and even to be controlled by similar pathways. The dependence of the severity of renal-cell injury on cell cycle pathways can be used to control and perhaps to prevent acute kidney injury. This review is written to address the correlation between cellular life and death in kidney tubules, especially in acute kidney injury.
Collapse
|
40
|
Geng H, Lan R, Wang G, Siddiqi AR, Naski MC, Brooks AI, Barnes JL, Saikumar P, Weinberg JM, Venkatachalam MA. Inhibition of autoregulated TGFbeta signaling simultaneously enhances proliferation and differentiation of kidney epithelium and promotes repair following renal ischemia. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 174:1291-308. [PMID: 19342372 DOI: 10.2353/ajpath.2009.080295] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
We studied autocrine transforming growth factor (TGF)beta signaling in kidney epithelium. Cultured proximal tubule cells showed regulated signaling that was high during log-phase growth, low during contact-inhibited differentiation, and rapidly increased during regeneration of wounded epithelium. Autoregulation of signaling correlated with TGFbeta receptor and Smad7 levels, but not with active TGFbeta, which was barely measurable in the growth medium. Confluent differentiated cells with low receptor and high Smad7 levels exhibited blunted responses to saturating concentrations of exogenously provided active TGFbeta, suggesting that TGFbeta signaling homeostasis was achieved by cell density-dependent modulation of signaling intermediates. Antagonism of Alk5 kinase, the TGFbeta type I receptor, dramatically accelerated the induction of differentiation in sparse, proliferating cultures and permitted better retention of differentiated features in regenerating cells of wounded, confluent cultures. Alk5 antagonism accelerated the differentiation of cells in proximal tubule primary cultures while simultaneously increasing their proliferation. Consequently, Alk5-inhibited primary cultures formed confluent, differentiated monolayers faster than untreated cultures. Furthermore, treatment with an Alk5 antagonist promoted kidney repair reflected by increased tubule differentiation and decreased tubulo-interstitial pathology during the recovery phase following ischemic injury in vivo. Our results show that autocrine TGFbeta signaling in proliferating proximal tubule cells exceeds the levels that are necessary for physiological regeneration. To that end, TGFbeta signaling is redundant and maladaptive during tubule repair by epithelial regeneration.
Collapse
Affiliation(s)
- Hui Geng
- Department of Pathology, The University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Baughn LB, Di Liberto M, Niesvizky R, Cho HJ, Jayabalan D, Lane J, Liu F, Chen-Kiang S. CDK2 Phosphorylation of Smad2 Disrupts TGF-β Transcriptional Regulation in Resistant Primary Bone Marrow Myeloma Cells. THE JOURNAL OF IMMUNOLOGY 2009; 182:1810-7. [DOI: 10.4049/jimmunol.0713726] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
42
|
Wu YJ, Yeh HI, Hou CJY, Tsai CH, Newby AC, Bond M. Beyond Oncogenesis: The Role of S-Phase Kinase-Associated Protein-2 (SKP2) In Vascular Restenosis. INT J GERONTOL 2008. [DOI: 10.1016/s1873-9598(09)70004-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
43
|
Phosphorylation of p27Kip1 regulates assembly and activation of cyclin D1-Cdk4. Mol Cell Biol 2008; 28:6462-72. [PMID: 18710949 DOI: 10.1128/mcb.02300-07] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
p27 mediates Cdk2 inhibition and is also found in cyclin D1-Cdk4 complexes. The present data support a role for p27 in the assembly of D-type cyclin-Cdk complexes and indicate that both cyclin D1-Cdk4-p27 assembly and kinase activation are regulated by p27 phosphorylation. Prior work showed that p27 can be phosphorylated by protein kinase B/Akt (PKB/Akt) at T157 and T198. Here we show that PKB activation and the appearance of p27pT157 and p27pT198 precede p27-cyclin D1-Cdk4 assembly in early G(1). PI3K/PKB inhibition rapidly reduced p27pT157 and p27pT198 and dissociated cellular p27-cyclin D1-Cdk4. Mutant p27 allele products lacking phosphorylation at T157 and T198 bound poorly to cellular cyclin D1 and Cdk4. Cellular p27pT157 and p27pT198 coprecipitated with Cdk4 but were not detected in Cdk2 complexes. The addition of p27 to recombinant cyclin D1 and Cdk4 led to cyclin D1-Cdk4-p27 complex formation in vitro. p27 phosphorylation by PKB increased p27-cyclin D1-Cdk4 assembly in vitro but yielded inactive Cdk4. In contrast, Src pretreatment of p27 did not affect p27-cyclin D1-Cdk4 complex formation. However, Src treatment led to tyrosine phosphorylation of p27 and catalytic activation of assembled cyclin D1-Cdk4-p27 complexes. Thus, while PKB-dependent p27 phosphorylation appears to increase cyclin D1-Cdk4-p27 assembly or stabilize these complexes in vitro, cyclin D1-Cdk4-p27 activation requires the tyrosine phosphorylation of p27. Constitutive activation of PKB and Abl or Src family kinases in cancers would drive p27 phosphorylation, increase cyclin D1-Cdk4 assembly and activation, and reduce the cyclin E-Cdk2 inhibitory function of p27. Combined therapy with both Src and PI3K/PKB inhibitors may reverse this process.
Collapse
|
44
|
Abstract
Human cancers arise from an imbalance of cell growth and cell death. Key proteins that govern this balance are those that mediate the cell cycle. Several different molecular effectors have been identified that tightly regulate specific phases of the cell cycle, including cyclins, cyclin-dependent kinases (CDKs) and CDK inhibitors. Notably, loss of expression or function of two G1-checkpoint CDK inhibitors - p21 (CDKN1A) and p27 (CDKN1B) - has been implicated in the genesis or progression of many human malignancies. Additionally, there is a growing body of evidence suggesting that functional loss of p21 or p27 can mediate a drug-resistance phenotype. However, reports in the literature have also suggested p21 and p27 can promote tumours, indicating a paradoxical effect. Here, we review historic and recent studies of these two CDK inhibitors, including their identification, function, importance to carcinogenesis and finally their roles in drug resistance.
Collapse
|
45
|
Richard CAH, Jones JM, DeLoia JA. Comparison of cell cycle regulatory gene mRNA in three different types of human trophoblasts and effect of transforming growth factor. J Obstet Gynaecol Res 2008; 34:152-61. [PMID: 18412775 DOI: 10.1111/j.1447-0756.2008.00753.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIM Identifying the factors responsible for reducing the proliferation, syncytialization, and invasiveness of trophoblast tissues, as seen with preeclampsia, intrauterine growth restriction, and spontaneous miscarriage, is a current challenge in reproductive biology. These factors, transforming growth factor (TGF)-beta as an example, can work by altering trophoblast differentiation or proliferation. We therefore investigated and compared specific markers of trophoblast proliferation and differentiation in three commonly used trophoblast tissue cell models, and also investigated the influence of TGF-beta on these markers. METHODS In this study, we isolated human trophoblasts from first trimester and term placentas, and additionally used human choriocarcinoma cells (JEG-3). Baseline values of human chorionic gonadotropin (hCG) secretion and relative mRNA levels of cell cycle regulators (cyclin E, p21, p27, and p57) were investigated for each cell type. We also investigated the influence of TGF-beta on these parameters. RESULTS Quantitative and longitudinal production of hCG differed between the three cell types. Significantly different amounts of cyclin E, p21, p27, and p57 mRNA were demonstrated within each cell type, as well as between all the cell types, throughout the culture time period. Each trophoblast type demonstrated a reduction of hCG secretion in response to TGF-beta. TGF-beta did not show a consistent effect on the cell cycle mRNA of any of the cell types. CONCLUSION We were able to characterize and compare the differential production of hCG, as well as the differential expression of cell cycle-associated mRNA of early trophoblasts, term trophoblasts, and choriocarcinoma cells. The production of hCG was altered by TGF-beta, although mRNA levels were not markedly altered by TGF-beta.
Collapse
Affiliation(s)
- Craig A H Richard
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee-Women's Research Institute, Pittsburgh, Pennsylvania, USA.
| | | | | |
Collapse
|
46
|
Hauck L, Harms C, An J, Rohne J, Gertz K, Dietz R, Endres M, von Harsdorf R. Protein kinase CK2 links extracellular growth factor signaling with the control of p27(Kip1) stability in the heart. Nat Med 2008; 14:315-24. [PMID: 18311148 DOI: 10.1038/nm1729] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2007] [Accepted: 01/22/2008] [Indexed: 12/26/2022]
Abstract
p27(Kip1) (p27) blocks cell proliferation through the inhibition of cyclin-dependent kinase-2 (Cdk2). Despite its robust expression in the heart, little is known about both the function and regulation of p27 in this and other nonproliferative tissues, in which the expression of its main target, cyclin E-Cdk2, is known to be very low. Here we show that angiotensin II, a major cardiac growth factor, induces the proteasomal degradation of p27 through protein kinase CK2-alpha'-dependent phosphorylation. Conversely, unphosphorylated p27 potently inhibits CK2-alpha'. Thus, the p27-CK2-alpha' interaction is regulated by hypertrophic signaling events and represents a regulatory feedback loop in differentiated cardiomyocytes analogous to, but distinct from, the feedback loop arising from the interaction of p27 with Cdk2 that controls cell proliferation. Our data show that extracellular growth factor signaling regulates p27 stability in postmitotic cells, and that inactivation of p27 by CK2-alpha' is crucial for agonist- and stress-induced cardiac hypertrophic growth.
Collapse
Affiliation(s)
- Ludger Hauck
- Division of Cardiology, University Network Hospitals and Toronto General Research Institute, 200 Elizabeth Street, Toronto M5G 2C4, Canada
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
Progression through the cell cycle is regulated by inductive signals from outside the cell and intracellular signal pathways, while the cycle itself is regulated by cyclin-dependent kinases (CDKs). An understanding of the functions of these molecules is necessary to understand the processes of mitosis, differentiation, senescence, apoptosis, and tumorigenesis. This overview reviews the current state of knowledge for the biology of the cell-cycle, the CDKs, the role of proteolysis, targets of the cell cycle machinery, and a paradigm of cell cycle analysis.
Collapse
Affiliation(s)
- M S Park
- Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | | |
Collapse
|
48
|
Loehberg CR, Thompson T, Kastan MB, Maclean KH, Edwards DG, Kittrell FS, Medina D, Conneely OM, O'Malley BW. Ataxia telangiectasia-mutated and p53 are potential mediators of chloroquine-induced resistance to mammary carcinogenesis. Cancer Res 2008; 67:12026-33. [PMID: 18089834 DOI: 10.1158/0008-5472.can-07-3058] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The use of agents to prevent the onset of and/or the progression to breast cancer has the potential to lower breast cancer risk. We have previously shown that the tumor-suppressor gene p53 is a potential mediator of hormone (estrogen/progesterone)-induced protection against chemical carcinogen-induced mammary carcinogenesis in animal models. Here, we show for the first time a breast cancer-protective effect of chloroquine in an animal model. Chloroquine significantly reduced the incidence of N-methyl-N-nitrosourea-induced mammary tumors in our animal model similar to estrogen/progesterone treatment. No protection was seen in our BALB/c p53-null mammary epithelium model, indicating a p53 dependency for the chloroquine effect. Using a human nontumorigenic mammary gland epithelial cell line, MCF10A, we confirm that in the absence of detectable DNA damage, chloroquine activates the tumor-suppressor p53 and the p53 downstream target gene p21, resulting in G(1) cell cycle arrest. p53 activation occurs at a posttranslational level via chloroquine-dependent phosphorylation of the checkpoint protein kinase, ataxia telangiectasia-mutated (ATM), leading to ATM-dependent phosphorylation of p53. In primary mammary gland epithelial cells isolated from p53-null mice, chloroquine does not induce G(1) cell cycle arrest compared with cells isolated from wild-type mice, also indicating a p53 dependency. Our results indicate that a short prior exposure to chloroquine may have a preventative application for mammary carcinogenesis.
Collapse
Affiliation(s)
- Christian R Loehberg
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
James MK, Ray A, Leznova D, Blain SW. Differential modification of p27Kip1 controls its cyclin D-cdk4 inhibitory activity. Mol Cell Biol 2008; 28:498-510. [PMID: 17908796 PMCID: PMC2223302 DOI: 10.1128/mcb.02171-06] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2006] [Revised: 12/10/2006] [Accepted: 09/18/2007] [Indexed: 02/07/2023] Open
Abstract
Whether p27 is a cyclin D-cdk4/6 inhibitor or not is controversial, and how it might switch between these two modes is unknown. Arguing for a two-state mechanism, we show that p27 bound to cyclin D-cdk4 can be both inhibitory and noninhibitory, due to its differential-growth-state-dependent tyrosine phosphorylation. We found that p27 from proliferating cells was noninhibitory but that p27 from arrested cells was inhibitory, and the transition from a bound noninhibitor to a bound inhibitor was not due to an increase in p27 concentration. Rather, two tyrosine residues (Y88 and Y89) in p27's cdk interaction domain were phosphorylated preferentially in proliferating cells, which converted p27 to a noninhibitor. Concordantly, mutation of these sites rendered p27 resistant to phosphorylation and locked it into the bound-inhibitor mode in vivo and in vitro. Y88 was directly phosphorylated in vitro by the tyrosine kinase Abl, which converted p27 to a cdk4-bound noninhibitor. These data show that the growth-state-dependent tyrosine phosphorylation of p27 modulates its inhibitory activity in vivo.
Collapse
Affiliation(s)
- Melissa K James
- Department of Pediatrics, SUNY Downstate Medical Center, 450 Clarkson Ave., Box 49, Brooklyn, NY 11203, USA.
| | | | | | | |
Collapse
|
50
|
Cheng XJ, Xu W, Zhang QY, Zhou RL. Relationship between LAPTM4B gene polymorphism and susceptibility of colorectal and esophageal cancers. Ann Oncol 2007; 19:527-32. [PMID: 17965115 DOI: 10.1093/annonc/mdm469] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Lysosome-associated protein transmembrane 4 beta (LAPTM4B) is a novel gene of the mammalian LAPTM family and has been shown to be overexpressed in human hepatocellular carcinoma. There are two alleles, LAPTM4B*1 and *2, which share the same sequence except for one segment of 19 bp in the 5' untranslated region of the exon 1. LAPTM4B*1 has one 19 bp segment, while LAPTM4B*2 has two tight tandem segments. The current case-control study was aimed to identify relationship between the gene polymorphism of LAPTM4B and the susceptibility of colorectal and esophageal cancers. PATIENTS AND METHODS Blood samples were collected from patients with colon, rectal or esophageal cancers and control subjects. Genotypes of LAPTM4B were determined by PCR to detect differences between cancer cases (n = 701) and healthy controls (n = 350). Association between the LAPTM4B polymorphism and the risk of cancer was calculated by unconditional logistic regression models. RESULTS We found that there was a significant difference (P = 0.0016) in allelic frequencies of LAPTM4B*2 between colon cancer cases (33.2%) and controls (24.1%). The risk of colon cancer was elevated significantly in cases with *1/2 genotype [odds ratio (OR) = 1.474; 95% confidence interval (CI) = 1.037-2.095] and *2/2 genotype (OR = 2.531; 95% CI = 1.316-4.868) when compared with the *1/1 genotype. No significant difference was observed for LAPTM4B*2 between the rectal or esophageal cancer cases when compared with the controls. The polymorphism in LAPTM4B was associated with increased risk of colon cancer but not of rectal and esophageal cancers. CONCLUSIONS These results indicate that the genetic polymorphism of LAPTM4B is a potential risk factor for the development of colon cancer.
Collapse
Affiliation(s)
- X-J Cheng
- Department of Clinical Laboratory, Peking University School of Oncology, Beijing Cancer Hospital and Institute, Beijing, China
| | | | | | | |
Collapse
|