1
|
Saxton S, Dickinson G, Wang D, Zhou B, Um SY, Lin Y, Rojas L, Sampson BA, Graham JK, Tang Y. Molecular Genetic Characterization of Sudden Deaths Due to Thoracic Aortic Dissection or Rupture. Cardiovasc Pathol 2023; 65:107540. [PMID: 37116669 DOI: 10.1016/j.carpath.2023.107540] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/07/2023] [Accepted: 04/23/2023] [Indexed: 04/30/2023] Open
Abstract
BACKGROUND Sudden deaths due to thoracic aortic dissection or ruptures (TADR) are often investigated by forensic pathologists in the United States. Up to a quarter of reported TADR result from a highly penetrant autosomal dominant single gene variant. Testing genes associated with familial TADR provides an underlying etiology for the cause of death and informs effective sudden death prevention for at-risk family members. At the New York City Office of Chief Medical Examiner (NYC-OCME), TADR cases are routinely tested by the in-house, CAP-accredited Molecular Genetics Laboratory. In this retrospective study, TADR and cardiovascular cases were reviewed to understand the burden of TADR in sudden deaths, value of molecular diagnostic testing in TADR, and genotype-phenotype correlations in a demographically diverse TADR cohort. METHODS Between July 2019 and June 2022, cases with in-house cardiovascular genetic testing at NYC-OCME were retrospectively reviewed. Twenty genes associated with familial TADR were analyzed using high throughput massive parallel sequencing on postmortem tissues or bloodspot cards. Variant interpretation was conducted according to ACMG/AMP guidelines. RESULTS A total of 1078 cases were tested for cardiovascular genetic conditions, of which 34 (3%) had TADR. Eight of those TADR cases had a pathogenic or likely pathogenic variant (P/LPV), 4 had a variant of uncertain significance (VUS), and 22 cases were negative for variants in TADR genes. The molecular diagnostic yield using the TADR subpanel was 23.5%. The genes with the greatest prevalence of P/LPV were FBN1 (6), followed by TGFBR2 (2), TGFBR1 (1), and MYLK (1). Highly penetrant P/LPV in TGFBR2, FBN1, and TGFBR1 were found in TADR individuals who died younger than 34 years old. Two P/LPV in FBN1 were secondary findings unrelated to cause of death. P/LPV in FBN1 included five truncating variants located in the N-terminal domains and one missense variant involved in the disulfide bonds of the EGF-like domain. All P/LPV in TGFBR1 and TGFBR2 were missense or in-frame deletion variants located in the protein kinase catalytic domain. Three variants were first reported in this study. CONCLUSIONS Molecular testing of familial TADR-associated genes is a highly effective tool to identify the genetic cause of TADR sudden deaths and benefits surviving at-risk families.
Collapse
Affiliation(s)
| | - Gregory Dickinson
- Department of Forensic Pathology, New York City Office of Chief Medical Examiner
| | | | - Bo Zhou
- Molecular Genetics Laboratory
| | | | | | | | - Barbara A Sampson
- Department of Forensic Pathology, New York City Office of Chief Medical Examiner
| | - Jason K Graham
- Department of Forensic Pathology, New York City Office of Chief Medical Examiner
| | | |
Collapse
|
2
|
Kantaputra P, Daroontum T, Chuamanochan M, Chaowattanapanit S, Intachai W, Olsen B, Sastraruji T, Tongsima S, Ngamphiw C, Kampuansai J, Cox TC, Kiratikanon S. Loss of Function TGFBR2 Variant as a Contributing Factor in Generalized Pustular Psoriasis and Adult-Onset Immunodeficiency. Genes (Basel) 2022; 14:genes14010103. [PMID: 36672844 PMCID: PMC9859322 DOI: 10.3390/genes14010103] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/22/2022] [Accepted: 12/24/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Generalized pustular psoriasis (GPP; MIM 614204) is a rare multisystemic autoinflammatory disease, characterized by episodes of acute generalized erythema and scaling developed with the spread of numerous sterile pustules. Adult-onset immunodeficiency syndrome (AOID) with anti-interferon-γ autoantibodies is an immunodeficiency disorder associated with disruptive IFN-γ signaling. METHODS Clinical examination and whole exome sequencing (WES) were performed on 32 patients with pustular psoriasis phenotypes and 21 patients with AOID with pustular skin reaction. Histopathological and immunohistochemical studies were performed. RESULTS WES identified four Thai patients presenting with similar pustular phenotypes-two with a diagnosis of GPP and the other two with AOID-who were found to carry the same rare TGFBR2 frameshift mutation c.458del; p.Lys153SerfsTer35, which is predicted to result in a marked loss of functional TGFBR2 protein. The immunohistochemical studied showed overexpression of IL1B, IL6, IL17, IL23, IFNG, and KRT17, a hallmark of psoriatic skin lesions. Abnormal TGFB1 expression was observed in the pustular skin lesion of an AOID patient, suggesting disruption to TGFβ signaling is associated with the hyperproliferation of the psoriatic epidermis. CONCLUSIONS This study implicates disruptive TGFBR2-mediated signaling, via a shared truncating variant, c.458del; p.Lys153SerfsTer35, as a "predisposing risk factor" for GPP and AOID.
Collapse
Affiliation(s)
- Piranit Kantaputra
- Center of Excellence in Medical Genetics Research, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand
- Division of Pediatric Dentistry, Department of Orthodontics and Pediatric Dentistry, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence:
| | - Teerada Daroontum
- Department of Pathology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Mati Chuamanochan
- Division of Dermatology, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Suteeraporn Chaowattanapanit
- Division of Dermatology, Department of Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen 40000, Thailand
| | - Worrachet Intachai
- Center of Excellence in Medical Genetics Research, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Bjorn Olsen
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Thanapat Sastraruji
- Dental Research Center, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sissades Tongsima
- National Biobank of Thailand, National Science and Technology Development Agency (NSTDA), Thailand Science Park, Pathum Thani 12120, Thailand
| | - Chumpol Ngamphiw
- National Biobank of Thailand, National Science and Technology Development Agency (NSTDA), Thailand Science Park, Pathum Thani 12120, Thailand
| | - Jatupol Kampuansai
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Timothy C. Cox
- Departments of Oral & Craniofacial Sciences and Pediatrics, School of Dentistry and School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Salin Kiratikanon
- Division of Dermatology, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
3
|
Silk JD, Abbott RJM, Adams KJ, Bennett AD, Brett S, Cornforth TV, Crossland KL, Figueroa DJ, Jing J, O'Connor C, Pachnio A, Patasic L, Peredo CE, Quattrini A, Quinn LL, Rust AG, Saini M, Sanderson JP, Steiner D, Tavano B, Viswanathan P, Wiedermann GE, Wong R, Jakobsen BK, Britten CM, Gerry AB, Brewer JE. Engineering Cancer Antigen-Specific T Cells to Overcome the Immunosuppressive Effects of TGF-β. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:169-180. [PMID: 34853077 DOI: 10.4049/jimmunol.2001357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 10/20/2021] [Indexed: 02/07/2023]
Abstract
Adoptive T cell therapy with T cells expressing affinity-enhanced TCRs has shown promising results in phase 1/2 clinical trials for solid and hematological tumors. However, depth and durability of responses to adoptive T cell therapy can suffer from an inhibitory tumor microenvironment. A common immune-suppressive agent is TGF-β, which is secreted by tumor cells and cells recruited to the tumor. We investigated whether human T cells could be engineered to be resistant to inhibition by TGF-β. Truncating the intracellular signaling domain from TGF-β receptor (TGFβR) II produces a dominant-negative receptor (dnTGFβRII) that dimerizes with endogenous TGFβRI to form a receptor that can bind TGF-β but cannot signal. We previously generated specific peptide enhanced affinity receptor TCRs recognizing the HLA-A*02-restricted peptides New York esophageal squamous cell carcinoma 1 (NY-ESO-1)157-165/l-Ag family member-1A (TCR: GSK3377794, formerly NY-ESO-1c259) and melanoma Ag gene A10254-262 (TCR: ADP-A2M10, formerly melanoma Ag gene A10c796). In this article, we show that exogenous TGF-β inhibited in vitro proliferation and effector functions of human T cells expressing these first-generation high-affinity TCRs, whereas inhibition was reduced or abolished in the case of second-generation TCRs coexpressed with dnTGFβRII (e.g., GSK3845097). TGF-β isoforms and a panel of TGF-β-associated genes are overexpressed in a range of cancer indications in which NY-ESO-1 is commonly expressed, particularly in synovial sarcoma. As an example, immunohistochemistry/RNAscope identified TGF-β-positive cells close to T cells in tumor nests and stroma, which had low frequencies of cells expressing IFN-γ in a non-small cell lung cancer setting. Coexpression of dnTGFβRII may therefore improve the efficacy of TCR-transduced T cells.
Collapse
Affiliation(s)
| | | | | | | | - Sara Brett
- Oncology Research and Development, GlaxoSmithKline, Stevenage Herts, United Kingdom; and
| | | | | | - David J Figueroa
- Oncology Research and Development, GlaxoSmithKline, Stevenage Herts, United Kingdom; and
| | - Junping Jing
- Oncology Research and Development, GlaxoSmithKline, Stevenage Herts, United Kingdom; and
| | | | | | - Lea Patasic
- Oncology Research and Development, GlaxoSmithKline, Stevenage Herts, United Kingdom; and
| | - Carlos E Peredo
- Cell and Gene Therapy Product Development and Supply, Analytical Development, GlaxoSmithKline, Collegeville, PA
| | | | - Laura L Quinn
- Adaptimmune Ltd., Milton Park, Abingdon, United Kingdom
| | - Alistair G Rust
- Oncology Research and Development, GlaxoSmithKline, Stevenage Herts, United Kingdom; and
| | - Manoj Saini
- Adaptimmune Ltd., Milton Park, Abingdon, United Kingdom
| | | | - Dylan Steiner
- Oncology Research and Development, GlaxoSmithKline, Stevenage Herts, United Kingdom; and
| | | | | | | | - Ryan Wong
- Adaptimmune Ltd., Milton Park, Abingdon, United Kingdom
| | | | - Cedrik M Britten
- Oncology Research and Development, GlaxoSmithKline, Stevenage Herts, United Kingdom; and
| | | | | |
Collapse
|
4
|
Grelet S, Fréreux C, Obellianne C, Noguchi K, Howley BV, Dalton AC, Howe PH. TGFβ-induced expression of long noncoding lincRNA Platr18 controls breast cancer axonogenesis. Life Sci Alliance 2021; 5:5/2/e202101261. [PMID: 34810279 PMCID: PMC8645334 DOI: 10.26508/lsa.202101261] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 12/20/2022] Open
Abstract
Tumor axonogenesis is an emerging hallmark of cancer and TGF-beta is a well-known cytokine involved in the control of cancer progression. In this study we identify a novel function for the TGF-beta signaling in cancer aggressivity by promoting cancer axonogenesis. Metastasis is the leading driver of cancer-related death. Tumor cell plasticity associated with the epithelial–mesenchymal transition (EMT), an embryonic program also observed in carcinomas, has been proposed to explain the colonization of distant organs by the primary tumor cells. Many studies have established correlations between EMT marker expression in the primary tumor and metastasis in vivo. However, the longstanding model of EMT-transitioned cells disseminating to secondary sites is still actively debated and hybrid states are presently considered as more relevant during tumor progression and metastasis. Here, we describe an unexplored role of EMT on the tumor microenvironment by controlling tumor innervation. Using in vitro and in vivo breast tumor progression models, we demonstrate that TGFβ-mediated tumor cell EMT triggers the expression of the embryonic LincRNA Platr18 those elevated expression controls the expression of the axon guidance protein semaphorin-4F and other neuron-related molecules such as IGSF11/VSIG-3. Platr18/Sema4F axis silencing abrogates axonogenesis and attenuates metastasis. Our observations suggest that EMT-transitioned cells are also locally required in the primary tumor to support distant dissemination by promoting axonogenesis, a biological process known for its role in metastatic progression of breast cancer.
Collapse
Affiliation(s)
- Simon Grelet
- Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL, USA .,Mitchell Cancer Institute, The University of South Alabama, Mobile, AL, USA.,Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA.,Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Cécile Fréreux
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Clémence Obellianne
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, USA
| | - Ken Noguchi
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA.,Center for Family Medicine, Sioux Falls, SD, USA
| | - Breege V Howley
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Annamarie C Dalton
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Philip H Howe
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA .,Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
5
|
McKay TB, Hutcheon AEK, Zieske JD, Ciolino JB. Extracellular Vesicles Secreted by Corneal Epithelial Cells Promote Myofibroblast Differentiation. Cells 2020; 9:cells9051080. [PMID: 32357574 PMCID: PMC7290736 DOI: 10.3390/cells9051080] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 04/20/2020] [Accepted: 04/24/2020] [Indexed: 12/13/2022] Open
Abstract
The corneal epithelium mediates the initial response to injury of the ocular surface and secretes a number of profibrotic factors that promote corneal scar development within the stroma. Previous studies have shown that corneal epithelial cells also secrete small extracellular vesicles (EVs) in response to corneal wounding. In this paper, we hypothesized that EVs released from corneal epithelial cells in vitro contain protein cargo that promotes myofibroblast differentiation, the key cell responsible for scar development. We focused on the interplay between corneal epithelial-derived EVs and the stroma to determine if the corneal fibroblast phenotype, contraction, proliferation, or migration were promoted following vesicle uptake by corneal fibroblasts. Our results showed an increase in myofibroblast differentiation based on α-smooth muscle actin expression and elevated contractility following EV treatment compared to controls. Furthermore, we characterized the contents of epithelial cell-derived EVs using proteomic analysis and identified the presence of provisional matrix proteins, fibronectin and thrombospondin-1, as the dominant encapsulated protein cargo secreted by corneal epithelial cells in vitro. Proteins associated with the regulation of protein translation were also abundant in EVs. This paper reveals a novel role and function of EVs secreted by the corneal epithelium that may contribute to corneal scarring.
Collapse
|
6
|
Divya T, Velavan B, Sudhandiran G. Regulation of Transforming Growth Factor-β/Smad-mediated Epithelial-Mesenchymal Transition by Celastrol Provides Protection against Bleomycin-induced Pulmonary Fibrosis. Basic Clin Pharmacol Toxicol 2018; 123:122-129. [PMID: 29394529 DOI: 10.1111/bcpt.12975] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 01/24/2018] [Indexed: 12/21/2022]
Abstract
The respiratory disease pulmonary fibrosis (PF), which is characterized by scar formation throughout the lung, imposes a serious health burden. No effective drug without side effects has been proven to prevent this fatal lung disease. In this context, this study was undertaken to elucidate the protective effect of celastrol, a quinine methide pentacyclic triterpenoid from a Chinese medicinal plant 'thunder god vine' against bleomycin (BLM)-induced PF. We also attempted to study how the cytokine transforming growth factor-β (TGF-β) stimulates fibrosis through the induction of epithelial-mesenchymal transition (EMT) and the role of celastrol in regulating EMT. TGF-β (5 ng/ml) was administered to human alveolar epithelial adenocarcinoma A549 cells to induce fibrotic response in cells. Induction of EMT was analysed in cells through morphological analysis and expression of epithelial and mesenchymal markers by Western blotting. Bleomycin at a concentration of 3 U/Kg b.w was used to induce fibrosis in adult male rat lungs. Celastrol (5 mg/kg b.w) was given to rats twice a week after BLM administration for a period of 28 days. Western blot and immunofluorescence analyses were performed with lung tissue sample to find out the potential of celastrol in regulating EMT during the progression of fibrosis. TGF-β induces EMT in A549 cells as demonstrated by changes in epithelial cell morphology and expression of epithelial and mesenchymal marker proteins. The expressions of epithelial marker proteins E-cadherin and claudin were found to be reduced in the BLM-induced group of rats. Expression of mesenchymal markers, such as N-cadherin, snail, slug, vimentin and β-catenin, was enhanced in BLM-induced rat lungs. Celastrol reverts these cellular changes in rat lungs, and it was found that celastrol regulates EMT through the inhibition of heat shock protein 90 (HSP 90). Together, the results indicate that EMT is a crucial phenomenon for the progression of fibrosis, and celastrol provides protection against PF through the regulation of EMT.
Collapse
Affiliation(s)
- Thomas Divya
- Cell Biology Laboratory, Department of Biochemistry, University of Madras, Chennai, India
| | | | - Ganapasam Sudhandiran
- Cell Biology Laboratory, Department of Biochemistry, University of Madras, Chennai, India
| |
Collapse
|
7
|
Role of TGF-β in Alcohol-Induced Liver Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1032:93-104. [PMID: 30362093 DOI: 10.1007/978-3-319-98788-0_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Over 90% of hepatocellular carcinoma (HCC) occurs against a background of chronic liver disease or cirrhosis induced from viral hepatitis to alcohol injury. One third of patients with cirrhosis will develop HCC during their lifetime, with a 3-5% annual incidence. However, little is known about the key mechanisms by which toxins mediate DNA damage in the liver. Recent studies support a central role for TGF-β signaling in conferring genomic stability yet the precise mechanism of action and the specific stages of tumor suppression remain unclear (Bornstein S, White R, Malkoski S, Oka M, Han G, Cleaver T, Reh D, Andersen P, Gross N, Olson S, Deng C, Lu SL, Wang XJ. J Clin Invest 119:3408-3419 (2009); Korc M. J Clin Invest 119:3208-3211 (2009); Glick A, Popescu N, Alexander V, Ueno H, Bottinger E, Yuspa SH. Proc Natl Acad Sci U S A 96:14949-14954 (1999)). Furthermore, it has recently been shown that β2SP+/- and β2SP+/-/Smad3+/- mice phenocopy a hereditary human cancer syndrome, the Beckwith-Wiedemann syndrome (BWS), which has an 800 fold risk of cancers including HCC, hepatoblastoma, and a range of liver disorders. Identifying key biological pathways and mechanisms for suppressing alcohol-induced stem cell injury and HCC will be critical for enhancing patient care and the employment of new therapeutic approaches.
Collapse
|
8
|
Prime SS, Davies M, Pring M, Paterson IC. The Role of TGF-β in Epithelial Malignancy and its Relevance to the Pathogenesis of Oral Cancer (Part II). ACTA ACUST UNITED AC 2016; 15:337-47. [PMID: 15574678 DOI: 10.1177/154411130401500603] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The role of transforming growth factor-β (TGF-β) in epithelial malignancy is complex, but it is becoming clear that, in the early stages of carcinogenesis, the protein acts as a potent tumor suppressor, while later, TGF-β can function to advance tumor progression. We review the evidence to show that the pro-oncogenic functions of TGF-β are associated with (1) a partial loss of response to the ligand, (2) defects of components of the TGF-β signal transduction pathway, (3) over-expression and/or activation of the latent complex, (4) epithelial-mesenchymal transition, and (5) recruitment of signaling pathways which act in concert with TGF-β to facilitate the metastatic phenotype. These changes are viewed in the context of what is known about the pathogenesis of oral cancer and whether this knowledge can be translated into the development of new therapeutic modalities.
Collapse
Affiliation(s)
- S S Prime
- Department of Oral and Dental Science, Division of Oral Medicine, Pathology and Microbiology, Bristol Dental Hospital and School, University of Bristol, Lower Maudlin Street, Bristol BS1 2LY, United Kingdom.
| | | | | | | |
Collapse
|
9
|
Basu M, Bhattacharya R, Ray U, Mukhopadhyay S, Chatterjee U, Roy SS. Invasion of ovarian cancer cells is induced byPITX2-mediated activation of TGF-β and Activin-A. Mol Cancer 2015; 14:162. [PMID: 26298390 PMCID: PMC4546816 DOI: 10.1186/s12943-015-0433-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 08/12/2015] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Most ovarian cancers are highly invasive in nature and the high burden of metastatic disease make them a leading cause of mortality among all gynaecological malignancies. The homeodomain transcription factor, PITX2 is associated with cancer in different tissues. Our previous studies demonstrated increased PITX2 expression in human ovarian tumours. Growing evidence linking activation of TGF-β pathway by homeodomain proteins prompted us to look for the possible involvement of this signalling pathway in PITX2-mediated progression of ovarian cancer. METHODS The status of TGF-β signalling in human ovarian tissues was assessed by immunohistochemistry. The expression level of TGFB/INHBA and other invasion-associated genes was measured by quantitative-PCR (Q-PCR) and Western Blot after transfection/treatments with clones/reagents in normal/cancer cells. The physiological effect of PITX2 on invasion/motility was checked by matrigel invasion and wound healing assay. The PITX2- and activin-induced epithelial-mesenchymal transition (EMT) was evaluated by Q-PCR of respective markers and confocal/phase-contrast imaging of cells. RESULTS Human ovarian tumours showed enhanced TGF-β signalling. Our study uncovers the PITX2-induced expression of TGFB1/2/3 as well as INHBA genes (p < 0.01) followed by SMAD2/3-dependent TGF-β signalling pathway. PITX2-induced TGF-β pathway regulated the expression of invasion-associated genes, SNAI1, CDH1 and MMP9 (p < 0.01) that accounted for enhanced motility/invasion of ovarian cancers. Snail and MMP9 acted as important mediators of PITX2-induced invasiveness of ovarian cancer cells. PITX2 over-expression resulted in loss of epithelial markers (p < 0.01) and gain of mesenchymal markers (p < 0.01) that contributed significantly to ovarian oncogenesis. PITX2-induced INHBA expression (p < 0.01) contributed to EMT in both normal and ovarian cancer cells. CONCLUSIONS Overall, our findings suggest a significant contributory role of PITX2 in promoting invasive behaviour of ovarian cancer cells through up-regulation of TGFB/INHBA. We have also identified the previously unknown involvement of activin-A in promoting EMT. Our work provides novel mechanistic insights into the invasive behavior of ovarian cancer cells. The extension of this study have the potential for therapeutic applications in future.
Collapse
Affiliation(s)
- Moitri Basu
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, 4 Raja S. C. Mullick Road, Kolkata, 700032, India.
| | - Rahul Bhattacharya
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, 4 Raja S. C. Mullick Road, Kolkata, 700032, India.
| | - Upasana Ray
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, 4 Raja S. C. Mullick Road, Kolkata, 700032, India.
| | - Satinath Mukhopadhyay
- Department of Endocrinology and Metabolism, IPGMER and SSKM Hospital, 244 AJC Bose Road, Kolkata, India.
| | - Uttara Chatterjee
- Department of Pathology, IPGMER and SSKM Hospital, 244 AJC Bose Road, Kolkata, India.
| | - Sib Sankar Roy
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, 4 Raja S. C. Mullick Road, Kolkata, 700032, India.
| |
Collapse
|
10
|
The Chromatin Remodeling Protein Bptf Promotes Posterior Neuroectodermal Fate by Enhancing Smad2-Activated wnt8a Expression. J Neurosci 2015; 35:8493-506. [PMID: 26041917 DOI: 10.1523/jneurosci.0377-15.2015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
During vertebrate embryogenesis, the neuroectoderm is induced from dorsal ectoderm and then partitioned into anterior and posterior neuroectodermal domains by posteriorizing signals, such as Wnt and fibroblast growth factor. However, little is known about epigenetic regulation of posteriorizing gene expression. Here, we report a requirement of the chromatin remodeling protein Bptf for neuroectodermal posteriorization in zebrafish embryos. Knockdown of bptf leads to an expansion of the anterior neuroectoderm at the expense of the posterior ectoderm. Bptf functionally and physically interacts with p-Smad2, which is activated by non-Nodal TGF-β signaling, to promote the expression of wnt8a, a critical gene for neural posteriorization. Bptf and Smad2 directly bind to and activate the wnt8a promoter through recruiting NURF remodeling complex. When bptf function or TGF-β signal transduction is inhibited, the nucleosome density on the wnt8a promoter is increased. We propose that Bptf and TGF-β/Smad2 mediate nucleosome remodeling to regulate wnt8a expression and hence neural posteriorization.
Collapse
|
11
|
Khalkhali-Ellis Z, Kirschmann DA, Seftor EA, Gilgur A, Bodenstine TM, Hinck AP, Hendrix MJC. Divergence(s) in nodal signaling between aggressive melanoma and embryonic stem cells. Int J Cancer 2014; 136:E242-51. [PMID: 25204799 DOI: 10.1002/ijc.29198] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 08/04/2014] [Accepted: 08/12/2014] [Indexed: 12/21/2022]
Abstract
The significant role of the embryonic morphogen Nodal in maintaining the pluripotency of embryonic stem cells is well documented. Interestingly, the recent discovery of Nodal's re-expression in several aggressive and metastatic cancers has highlighted its critical role in self renewal and maintenance of the stem cell-like characteristics of tumor cells, such as melanoma. However, the key TGFβ/Nodal signaling component(s) governing Nodal's effects in metastatic melanoma remain mostly unknown. By employing receptor profiling at the mRNA and protein level(s), we made the novel discovery that embryonic stem cells and metastatic melanoma cells share a similar repertoire of Type I serine/threonine kinase receptors, but diverge in their Type II receptor expression. Ligand:receptor crosslinking and native gel binding assays indicate that metastatic melanoma cells employ the heterodimeric TGFβ receptor I/TGFβ receptor II (TGFβRI/TGFβRII) for signal transduction, whereas embryonic stem cells use the Activin receptors I and II (ACTRI/ACTRII). This unexpected receptor usage by tumor cells was tested by: neutralizing antibody to block its function; and transfecting the dominant negative receptor to compete with the endogenous receptor for ligand binding. Furthermore, a direct biological role for TGFβRII was found to underlie vasculogenic mimicry (VM), an endothelial phenotype contributing to vascular perfusion and associated with the functional plasticity of aggressive melanoma. Collectively, these findings reveal the divergence in Nodal signaling between embryonic stem cells and metastatic melanoma that can impact new therapeutic strategies targeting the re-emergence of embryonic pathways.
Collapse
Affiliation(s)
- Zhila Khalkhali-Ellis
- Cancer Biology and Epigenomics Program, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL; Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL
| | | | | | | | | | | | | |
Collapse
|
12
|
Papel del factor de crecimiento transformador-beta (TGF-β) en la fisiopatología de la artritis reumatoide. ACTA ACUST UNITED AC 2014; 10:174-9. [DOI: 10.1016/j.reuma.2014.01.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 01/11/2014] [Accepted: 01/21/2014] [Indexed: 11/24/2022]
|
13
|
Gonzalo-Gil E, Galindo-Izquierdo M. Role of Transforming Growth Factor-Beta (TGF) Beta in the Physiopathology of Rheumatoid Arthritis. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.reumae.2014.01.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
14
|
Santhekadur PK, Akiel M, Emdad L, Gredler R, Srivastava J, Rajasekaran D, Robertson CL, Mukhopadhyay ND, Fisher PB, Sarkar D. Staphylococcal nuclease domain containing-1 (SND1) promotes migration and invasion via angiotensin II type 1 receptor (AT1R) and TGFβ signaling. FEBS Open Bio 2014; 4:353-61. [PMID: 24918049 PMCID: PMC4050181 DOI: 10.1016/j.fob.2014.03.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 03/13/2014] [Accepted: 03/27/2014] [Indexed: 12/29/2022] Open
Abstract
Staphylococcal nuclease domain containing-1 (SND1) is overexpressed in human hepatocellular carcinoma (HCC) patients and promotes tumorigenesis by human HCC cells. We now document that SND1 increases angiotensin II type 1 receptor (AT1R) levels by increasing AT1R mRNA stability. This results in activation of ERK, Smad2 and subsequently the TGFβ signaling pathway, promoting epithelial-mesenchymal transition (EMT) and migration and invasion by human HCC cells. A positive correlation was observed between SND1 and AT1R expression levels in human HCC patients. Small molecule inhibitors of SND1, alone or in combination with AT1R blockers, might be an effective therapeutic strategy for late-stage aggressive HCC.
Collapse
Key Words
- ACE, angiotensin-I converting enzyme
- ACE-I, ACE inhibitors
- AT1R
- AT1R, angiotensin II type 1 receptor
- EMT, epithelial–mesenchymal transition
- FDR, false discovery rate
- HCC, human hepatocellular carcinoma
- Invasion
- LP, losartan potassium
- MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
- NASH, non-alcoholic steatohepatitis
- PAI-1
- PAI-1, plasminogen activator inhibitor-1
- RISC, RNA-induced silencing complex
- SND1
- SND1, Staphylococcal nuclease domain containing-1
- TGFβ
Collapse
Affiliation(s)
- Prasanna K. Santhekadur
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298, United States
| | - Maaged Akiel
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298, United States
| | - Luni Emdad
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298, United States
| | - Rachel Gredler
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298, United States
| | - Jyoti Srivastava
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298, United States
| | - Devaraja Rajasekaran
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298, United States
| | - Chadia L. Robertson
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298, United States
| | - Nitai D. Mukhopadhyay
- Department of Biostatistics, Virginia Commonwealth University, Richmond, VA 23298, United States
| | - Paul B. Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298, United States
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, United States
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, Richmond, VA 23298, United States
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298, United States
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, United States
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, Richmond, VA 23298, United States
- Corresponding author at: Department of Human and Molecular Genetics, Virginia Commonwealth University, 1220 East Broad St, PO Box 980035, Richmond, VA 23298, United States. Tel.: +1 (804) 827 2339; fax: +1 (804) 628 1176.
| |
Collapse
|
15
|
Korrodi-Gregório L, Silva JV, Santos-Sousa L, Freitas MJ, Felgueiras J, Fardilha M. TGF-β cascade regulation by PPP1 and its interactors -impact on prostate cancer development and therapy. J Cell Mol Med 2014; 18:555-67. [PMID: 24629090 PMCID: PMC4000109 DOI: 10.1111/jcmm.12266] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 01/08/2014] [Indexed: 12/20/2022] Open
Abstract
Protein phosphorylation is a key mechanism by which normal and cancer cells regulate their main transduction pathways. Protein kinases and phosphatases are precisely orchestrated to achieve the (de)phosphorylation of candidate proteins. Indeed, cellular health is dependent on the fine-tune of phosphorylation systems, which when deregulated lead to cancer. Transforming growth factor beta (TGF-β) pathway involvement in the genesis of prostate cancer has long been established. Many of its members were shown to be hypo- or hyperphosphorylated during the process of malignancy. A major phosphatase that is responsible for the vast majority of the serine/threonine dephosphorylation is the phosphoprotein phosphatase 1 (PPP1). PPP1 has been associated with the dephosphorylation of several proteins involved in the TGF-β cascade. This review will discuss the role of PPP1 in the regulation of several TGF-β signalling members and how the subversion of this pathway is related to prostate cancer development. Furthermore, current challenges on the protein phosphatases field as new targets to cancer therapy will be addressed.
Collapse
Affiliation(s)
- Luís Korrodi-Gregório
- Signal Transduction Laboratory, Centre for Cell Biology, Biology Department, Health Sciences Department, University of Aveiro, Aveiro, Portugal
| | | | | | | | | | | |
Collapse
|
16
|
Roy LO, Poirier MB, Fortin D. Transforming growth factor-beta and its implication in the malignancy of gliomas. Target Oncol 2014; 10:1-14. [PMID: 24590691 DOI: 10.1007/s11523-014-0308-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 02/18/2014] [Indexed: 12/13/2022]
Abstract
Malignant gliomas are the most common type of primary malignant brain tumors. They are characterized by enhanced growing capabilities, neoangiogenic proliferation, and extensive infiltration of the brain parenchyma, which make their complete surgical resection impossible. Together with transient and refractory responses to standard therapy, these aggressive neoplasms are incurable and present a median survival of 12 to 14 months. Transforming growth factor-beta (TGF-β) is a pleiotropic cytokine of which two of the three isoforms expressed in humans have been shown to be overexpressed proportionally to the histologic grade of glioma malignancy. The increase of chromosomal aberrations and genetic mutations observed in glioma cells turns TGF-β into an oncogene. For that reason, it plays critical roles in glioma progression through induction of several genes implicated in many carcinogenic processes such as proliferation, angiogenesis, and invasion. Consequently, investigators have begun developing innovative therapeutics targeting this growth factor or its signaling pathway in an attempt to hinder TGF-β's appalling effects in order to refine the treatment of malignant gliomas and improve their prognosis. In this paper, we extensively review the TGF-β-induced oncogenic pathways and discuss the diverse new molecules targeting this growth factor.
Collapse
Affiliation(s)
- Laurent-Olivier Roy
- Department of Pharmacology, Université de Sherbrooke, 3001, 12th Avenue North, Sherbrooke, Quebec, J1H 5N4, Canada
| | | | | |
Collapse
|
17
|
Esposito D, Munafo JP, Lucibello T, Baldeon M, Komarnytsky S, Gianfagna TJ. Steroidal glycosides from the bulbs of Easter lily (Lilium longiflorum Thunb.) promote dermal fibroblast migration in vitro. JOURNAL OF ETHNOPHARMACOLOGY 2013; 148:433-40. [PMID: 23644411 DOI: 10.1016/j.jep.2013.04.032] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 04/10/2013] [Accepted: 04/18/2013] [Indexed: 05/25/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Preparations derived from bulbs of various Lilium species have been used to promote the healing of skin abrasions, sores and burns and to aid in healing wounds in Traditional Chinese and Greco-Roman Medicine. AIM OF THE STUDY To evaluate fractionated Easter lily bulb extracts and their steroidal glycosides (1-5) for the promotion of dermal fibroblast migration in vitro, a model for the early events in wound healing. MATERIALS AND METHODS An activity-guided screening approach was used by coupling sequential solvent extraction, gel permeation chromatography (GPC), and semi-preparative reverse-phase high performance liquid chromatography (RP-HPLC) with an in vitro dermal fibroblast migration assay. Cytotoxicity was evaluated with methyl thiazole tetrazolium (MTT). To gain insight into the mode of action of the steroidal glycosides, nitric oxide (NO) production, and expression of genes for transforming growth factor beta-1 (TGF-β) and its receptors were evaluated. RESULTS Fractionated bulb extracts and the two isolated steroidal glycoalkaloids (1) and (2) induced NO production and TGF-β receptor I mRNA expression in fibroblast cell culture. In a cytotoxicity assay, steroidal glycosides (1) and (3) had IC50 values of 8.2 and 8.7 µM, but the natural acetylation of the C-6″' hydroxy of the terminal glucose unit in (2) resulted in a 3-fold decrease in cell cytotoxicity when compared with (1). Results from the dermal fibroblast migration assay revealed that the steroidal glycoalkaloids (1) and (2), and the furostanol saponin (3) promoted fibroblast migration from the range of 23.7±5.7 to 37.7±5.1%, as compared with the control. CONCLUSION Collectively, our data demonstrate that the steroidal glycosides present in Easter lily bulbs induce, at least in part, the observed dermal fibroblast migration activity of the bulb extracts. This is the first evidence that steroidal glycosides from Lilium longiflorum may potentially play a role in the wound healing process and may provide a scientific basis for the historical use of lily bulbs for this purpose.
Collapse
Affiliation(s)
- Debora Esposito
- Department of Plant Biology and Pathology, Rutgers-The State University of New Jersey, 59 Dudley Road, New Brunswick, New Jersey 08901, USA
| | | | | | | | | | | |
Collapse
|
18
|
Li CY, Wood DK, Huang JH, Bhatia SN. Flow-based pipeline for systematic modulation and analysis of 3D tumor microenvironments. LAB ON A CHIP 2013; 13:1969-78. [PMID: 23563587 PMCID: PMC3812960 DOI: 10.1039/c3lc41300d] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2012] [Accepted: 03/07/2013] [Indexed: 05/05/2023]
Abstract
The cancer microenvironment, which incorporates interactions with stromal cells, extracellular matrix (ECM), and other tumor cells in a 3-dimensional (3D) context, has been implicated in every stage of cancer development, including growth of the primary tumor, metastatic spread, and response to treatment. Our understanding of the tumor microenvironment and our ability to develop new therapies would greatly benefit from tools that allow us to systematically probe microenvironmental cues within a 3D context. Here, we leveraged recent advances in microfluidic technology to develop a platform for high-throughput fabrication of tunable cellular microniches ("microtissues") that allow us to probe tumor cell response to a range of microenvironmental cues, including ECM, soluble factors, and stromal cells, all in 3D. We further combine this tunable microniche platform with rapid, flow-based population level analysis (n > 500), which permits analysis and sorting of microtissue populations both pre- and post-culture by a range of parameters, including proliferation and homotypic or heterotypic cell density. We used this platform to demonstrate differential responses of lung adenocarcinoma cells to a selection of ECM molecules and soluble factors. The cells exhibited enhanced or reduced proliferation when encapsulated in fibronectin- or collagen-1-containing microtissues, respectively, and they showed reduced proliferation in the presence of TGF-β, an effect that we did not observe in monolayer culture. We also measured tumor cell response to a panel of drug targets and found, in contrast to monolayer culture, specific sensitivity of tumor cells to TGFβR2 inhibitors, implying that TGF-β has an anti-proliferative affect that is unique to the 3D context and that this effect is mediated by TGFβR2. These findings highlight the importance of the microenvironmental context in therapeutic development and that the platform we present here allows the high-throughput study of tumor response to drugs as well as basic tumor biology in well-defined microenvironmental niches.
Collapse
Affiliation(s)
- Cheri Y. Li
- Chemical Engineering , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - David K. Wood
- Harvard-MIT Division of Health Sciences and Technology , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States .
| | - Joanne H. Huang
- Biology , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Sangeeta N. Bhatia
- Harvard-MIT Division of Health Sciences and Technology , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States .
- Broad Institute , Cambridge , Massachusetts 02142 , United States
- Department of Medicine , Brigham and Women's Hospital , Boston , Massachusetts 02115 , United States
- Electrical Engineering and Computer Science , David H. Koch Institute for Integrative Cancer Research , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
- Howard Hughes Medical Institute , Chevy Chase , Maryland 20815 , United States
| |
Collapse
|
19
|
Abstract
Hepatocellular carcinoma (HCC) is the most common primary hepatic malignancy. Its incidence and prevalence is globally heterogeneous with the highest rates in Southeast Asia and Sub-Saharan Africa. In Western Industry nations, its incidence has significantly increased throughout the previous three decades. Its global heterogeneity is in part a reflection of the global distribution of its risk factors. Its prognosis is dismal with a 5-year survival of 11 %. The only potentially curative treatment is surgical with either resection or orthotopic liver transplantation. However, the majority of HCC patients are diagnosed at an advanced stage at which surgical therapies are not feasible. HCC is considered chemotherapy-resistant-a characteristic thought to be mediated in part through stem-like tumor initiating cells (STICs). Recent studies have provided significant insights in the hepatocarcinogenesis and the molecular signaling pathways of this malignancy resulting in the development of novel, molecular targeted therapies with modest therapeutic benefit. Our growing understanding of the biology of this malignancy will help in the development of novel, molecular-targeted therapies.
Collapse
Affiliation(s)
- Boris Blechacz
- Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | | |
Collapse
|
20
|
Tüzün S, Yücel AF, Pergel A, Kemik AS, Kemik O. Lipid Peroxidation and Transforming Growth Factor-β1 Levels in Gastric Cancer at Pathologic Stages. Balkan Med J 2012; 29:273-6. [PMID: 25207013 DOI: 10.5152/balkanmedj.2012.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 03/19/2012] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE High levels of TGF-β1 and enhanced TGF-β1 receptor signaling are related to the pathology of gastric cancer. This effect is caused by oxidative stress and lipid peroxidation products. The aim of this study was to investigate the levels of TGF-β1 and lipid peroxidation products in gastric cancer patients and their correlation with pathologic stage. MATERIAL AND METHODS Lipid peroxidation products and TGF-β1 levels were studied in the serum samples of 50 gastric cancer patients and 18 control subjects. RESULTS HNE-protein adducts and TGF-β1 levels were significantly higher in T2, T3 and T4 gastric cancers than in either the T1 stage or controls (p<0.001). Pathologic stage was correlated with TGF-β1 levels (r=0.702, p<0.05). CONCLUSION These markers production may contribute to tumor angiogenesis and aid in the prognosis of the gastric cancer.
Collapse
Affiliation(s)
- Sefa Tüzün
- Clinic of 2 Surgery Clinic, Haseki Training and Research Hospital, İstanbul, Turkey
| | - Ahmet Fikret Yücel
- Department of Surgery, Faculty of Medicine, Recep Tayyip Erdoğan University, Rize, Turkey
| | - Ahmet Pergel
- Department of Surgery, Faculty of Medicine, Recep Tayyip Erdoğan University, Rize, Turkey
| | - Ahu Sarbay Kemik
- Department of Biochemistry, Cerrahpaşa Faculty of Medicine, İstanbul University, İstanbul, Turkey
| | - Ozgür Kemik
- Department of Surgery, Faculty of Medicine, Yüzüncü Yıl University, Van, Turkey
| |
Collapse
|
21
|
Majumdar A, Curley SA, Wu X, Brown P, Hwang JP, Shetty K, Yao ZX, He AR, Li S, Katz L, Farci P, Mishra L. Hepatic stem cells and transforming growth factor β in hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol 2012; 9:530-8. [PMID: 22710573 PMCID: PMC3745216 DOI: 10.1038/nrgastro.2012.114] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common and lethal cancers worldwide. It arises from modulation of multiple genes by mutations, epigenetic regulation, noncoding RNAs and translational modifications of encoded proteins. Although >40% of HCCs are clonal and thought to arise from cancer stem cells (CSCs), the precise identification and mechanisms of CSC formation remain poorly understood. A functional role of transforming growth factor (TGF)-β signalling in liver and intestinal stem cell niches has been demonstrated through mouse genetics. These studies demonstrate that loss of TGF-β signalling yields a phenotype similar to a human CSC disorder, Beckwith-Wiedemann syndrome. Insights into this powerful pathway will be vital for developing new therapeutics in cancer. Current clinical approaches are aimed at establishing novel cancer drugs that target activated pathways when the TGF-β tumour suppressor pathway is lost, and TGF-β itself could potentially be targeted in metastases. Studies delineating key functional pathways in HCC and CSC formation could be important in preventing this disease and could lead to simple treatment strategies; for example, use of vitamin D might be effective when the TGF-β pathway is lost or when wnt signalling is activated.
Collapse
|
22
|
Haubold M, Weise A, Stephan H, Dünker N. Bone morphogenetic protein 4 (BMP4) signaling in retinoblastoma cells. Int J Biol Sci 2010; 6:700-15. [PMID: 21152263 PMCID: PMC2999847 DOI: 10.7150/ijbs.6.700] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Accepted: 11/22/2010] [Indexed: 01/01/2023] Open
Abstract
Bone morphogenetic proteins (BMPs) - expressed in the developing retina - are known to be involved in the regulation of cell proliferation and apoptosis in several tumor entities. The objective of this study was to determine the role of the BMP4 pathway in retinoblastoma cells, which are absent in a functional retinoblastoma (RB1) gene. BMP receptors were detected in all retinoblastoma cell lines investigated. A correct transmission of BMP signaling via the Smad1/5/8 pathway could be demonstrated in WERI-Rb1 retinoblastoma cells and application of recombinant human BMP4 resulted in an increase in apoptosis, which to a large extend is caspase independent. Cell proliferation was not affected by BMP4 signaling, although the pRb-related proteins p107 and p130, contributing to the regulation of the same genes, are still expressed. WERI-Rb1 cells exhibit elevated endogenous levels of p21(CIP1) and p53, but we did not detect any increase in p53, p21(CIP1)or p27(KIP1) expression levels. Id proteins became, however, strongly up-regulated upon exogenous BMP4 treatment. Thus, RB1 loss in WERI-Rb1 cells is obviously not compensated for by pRb-independent (e.g. p53-dependent) cell cycle control mechanisms, preventing an anti-proliferative response to BMP4, which normally induces cell cycle arrest.
Collapse
Affiliation(s)
- Maike Haubold
- 1. Institute for Anatomy, Department of Neuroanatomy, University of Duisburg-Essen, Medical Faculty, 45122 Essen, Germany
| | - Andreas Weise
- 1. Institute for Anatomy, Department of Neuroanatomy, University of Duisburg-Essen, Medical Faculty, 45122 Essen, Germany
| | - Harald Stephan
- 2. Division of Haematology and Oncology, Children's Hospital, University of Duisburg-Essen, 45122 Essen, Germany
| | - Nicole Dünker
- 1. Institute for Anatomy, Department of Neuroanatomy, University of Duisburg-Essen, Medical Faculty, 45122 Essen, Germany
| |
Collapse
|
23
|
Abstract
With >10,000,000 cancer survivors in the U.S. alone, the late effects of cancer treatment are a significant public health issue. Over the past 15 years, much work has been done that has led to an improvement in our understanding of the molecular mechanisms underlying the development of normal tissue injury after cancer therapy. In many cases, these injuries are characterized at the histologic level by loss of parenchymal cells, excessive fibrosis, and tissue atrophy. Among the many cytokines involved in this process, transforming growth factor (TGF)-beta1 is thought to play a pivotal role. TGF-beta1 has a multitude of functions, including both promoting the formation and inhibiting the breakdown of connective tissue. It also inhibits epithelial cell proliferation. TGF-beta1 is overexpressed at sites of injury after radiation and chemotherapy. Thus, TGF-beta1 represents a logical target for molecular therapies designed to prevent or reduce normal tissue injury after cancer therapy. Herein, the evidence supporting the critical role of TGF-beta1 in the development of normal tissue injury after cancer therapy is reviewed and the results of recent research aimed at preventing normal tissue injury by targeting the TGF-beta1 pathway are presented.
Collapse
Affiliation(s)
- Mitchell S Anscher
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia, USA.
| |
Collapse
|
24
|
Petrausch U, Jensen SM, Twitty C, Poehlein CH, Haley DP, Walker EB, Fox BA. Disruption of TGF-beta signaling prevents the generation of tumor-sensitized regulatory T cells and facilitates therapeutic antitumor immunity. THE JOURNAL OF IMMUNOLOGY 2009; 183:3682-9. [PMID: 19692636 DOI: 10.4049/jimmunol.0900560] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Regulatory T (Treg) cells represent a major roadblock to the induction of antitumor immunity through vaccine approaches. TGF-beta is a cytokine implicated in the generation and maintenance of Treg cells, as well as in their suppressive function. These experiments examined whether the generation of tumor-sensitized Treg cells was TGF-beta dependent and evaluated whether TGF-beta produced by Treg cells blocked the priming of tumor-specific T cells in vaccinated reconstituted lymphopenic mice. We show that tumor-sensitized Treg cells (CD25(+)/FoxP3(+)) obtained from tumor-bearing mice block the generation of tumor-specific T cells in reconstituted lymphopenic mice. Strikingly, this suppression is absent if tumor-sensitized Treg cells are acquired from tumor-bearing mice expressing the dominant-negative TGFbetaRII in T cells. This loss of suppression was a result of the crucial role of TGF-beta in generating tumor-sensitized Treg cells, and not due to the insensitivity of naive or tumor-primed effector T cells to the direct suppressive influence of TGF-beta. We conclude that blocking TGF-beta in a tumor-bearing host can inhibit the induction of highly suppressive tumor-sensitized Treg cells. These data suggest that an integrative strategy combining "up-front" Treg cell ablation followed by vaccination and TGF-beta blockade may limit generation of new tumor-sensitized Treg cells and improve the generation of therapeutic immune responses in patients with cancer.
Collapse
Affiliation(s)
- Ulf Petrausch
- Laboratory of Molecular and Tumor Immunology, Robert W Franz Cancer Research Center, Earle A Chiles Research Institute, Providence Cancer Center and Providence Portland Medical Center, Portland, OR 97213, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Quantitative modeling and analysis of the transforming growth factor beta signaling pathway. Biophys J 2009; 96:1733-50. [PMID: 19254534 DOI: 10.1016/j.bpj.2008.11.050] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2008] [Accepted: 11/12/2008] [Indexed: 11/20/2022] Open
Abstract
Transforming growth factor beta (TGF-beta) signaling, which regulates multiple cellular processes including proliferation, apoptosis, and differentiation, plays an important but incompletely understood role in normal and cancerous tissues. For instance, although TGF-beta functions as a tumor suppressor in the premalignant stages of tumorigenesis, paradoxically, it also seems to act as a tumor promoter in advanced cancer leading to metastasis. The mechanisms by which TGF-beta elicits such diverse responses during cancer progression are still not entirely clear. As a first step toward understanding TGF-beta signaling quantitatively, we have developed a comprehensive, dynamic model of the canonical TGF-beta pathway via Smad transcription factors. By describing how an extracellular signal of the TGF-beta ligand is sensed by receptors and transmitted into the nucleus through intracellular Smad proteins, the model provides quantitative insight into how TGF-beta-induced responses are modulated and regulated. Subsequent model analysis shows that mechanisms associated with Smad activation by ligand-activated receptor, nuclear complex formation among Smad proteins, and inactivation of ligand-activated Smad (e.g., degradation, dephosphorylation) may be critical for regulating TGF-beta-targeted functional responses. The model was also used to predict dynamic characteristics of the Smad-mediated pathway in abnormal cells, from which we generated four testable hypotheses regarding potential mechanisms by which TGF-beta's tumor-suppressive roles may appear to morph into tumor-promotion during cancer progression.
Collapse
|
26
|
Basu S, Kumar M, Chansuria J, Singh TB, Bhatnagar R, Shukla VK. Effect of Cytomodulin-10 (TGF-ß1 analogue) on wound healing by primary intention in a murine model. Int J Surg 2009; 7:460-5. [DOI: 10.1016/j.ijsu.2009.07.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Revised: 06/22/2009] [Accepted: 07/12/2009] [Indexed: 10/20/2022]
|
27
|
Vaccination with transforming growth factor-beta insensitive dendritic cells suppresses pulmonary metastases of renal carcinoma in mice. Cancer Lett 2008; 271:333-41. [DOI: 10.1016/j.canlet.2008.06.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Revised: 04/16/2008] [Accepted: 06/23/2008] [Indexed: 11/18/2022]
|
28
|
Effect of heparin on production of transforming growth factor (TGF)-beta1 and TGF-beta1 mRNA expression by human normal skin and hyperplastic scar fibroblasts. Ann Plast Surg 2008; 60:299-305. [PMID: 18443513 DOI: 10.1097/sap.0b013e318061d310] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Heparin affects both dermal fibroblast proliferation and collagen and may mediate these effects by altering the levels of transforming growth factor-beta1 (TGF-beta1) production and TGF-beta1 mRNA expression as a wound healing modulator. The purpose of this study is to probe the effect of heparin on TGF-beta1 and TGF-beta1 mRNA production by human normal skin and hyperplastic scar fibroblasts. This research investigates the effect of heparin on TGF-beta1 and TGF-beta1 mRNA production by human normal skin and hyperplastic scar fibroblasts with exposure to 0 microg/mL, 100 microg/mL, 300 microg/mL, or 600 microg/mL heparin for 24, 48, 72, or 96 hours in a serum-free in vitro model. Levels of TGF-beta1 in the supernatants and TGF-beta1 mRNA expression of fibroblasts were determined by enzyme-linked immunosorbent assay (ELISA) and real time RT-PCR, respectively. Heparin (300 microg/mL and 600 microg/mL) stimulated TGF-beta1 production by normal skin (26% to 83%) and hyperplastic scar fibroblasts (63% to 85%), with statistical significance (P < 0.05) at various time points. Heparin (300 microg/mL and 600 microg/mL) also stimulated TGF-beta1 mRNA expression by normal skin (12% to 53%) and hyperplastic scar fibroblasts (33% to 52%), with statistical significance (P < 0.05) at various time points. These effects of heparin on normal skin and hyperplastic scar fibroblasts may have implications for hyperplastic scar formation and wound healing in vivo.
Collapse
|
29
|
Bharathy S, Xie W, Yingling JM, Reiss M. Cancer-associated transforming growth factor beta type II receptor gene mutant causes activation of bone morphogenic protein-Smads and invasive phenotype. Cancer Res 2008; 68:1656-66. [PMID: 18339844 DOI: 10.1158/0008-5472.can-07-5089] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Transforming growth factor beta (TGFbeta) plays a key role in maintaining tissue homeostasis by inducing cell cycle arrest, differentiation and apoptosis, and ensuring genomic integrity. Furthermore, TGFbeta orchestrates the response to tissue injury and mediates repair by inducing epithelial to mesenchymal transition and by stimulating cell motility and invasiveness. Although loss of the homeostatic activity of TGFbeta occurs early on in tumor development, many advanced cancers have coopted the tissue repair function to enhance their metastatic phenotype. How these two functions of TGFbeta become uncoupled during cancer development remains poorly understood. Here, we show that, in human keratinocytes, TGFbeta induces phosphorylation of Smad2 and Smad3 as well as Smad1 and Smad5 and that both pathways are dependent on the kinase activities of the type I and II TGFbeta receptors (T beta R). Moreover, cancer-associated missense mutations of the T beta RII gene (TGFBR2) are associated with at least two different phenotypes. One type of mutant (TGFBR2(E526Q)) is associated with loss of kinase activity and all signaling functions. In contrast, a second mutant (TGFBR2(R537P)) is associated with high intrinsic kinase activity, loss of Smad2/3 activation, and constitutive activation of Smad1/5. Furthermore, this TGFBR2 mutant endows the carcinoma cells with a highly motile and invasive fibroblastoid phenotype. This activated phenotype is T beta RI (Alk-5) independent and can be reversed by the action of a dual T beta RI and T beta RII kinase inhibitor. Thus, identification of such activated T beta RII receptor mutations in tumors may have direct implications for appropriately targeting these cancers with selective therapeutic agents.
Collapse
MESH Headings
- Bone Morphogenetic Proteins/metabolism
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/pathology
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Head and Neck Neoplasms/genetics
- Head and Neck Neoplasms/metabolism
- Head and Neck Neoplasms/pathology
- Humans
- Keratinocytes/enzymology
- Mutation, Missense
- Phosphorylation
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- Receptor, Transforming Growth Factor-beta Type II
- Receptors, Transforming Growth Factor beta/genetics
- Receptors, Transforming Growth Factor beta/metabolism
- Recombinant Proteins/pharmacology
- Smad Proteins/metabolism
- Transfection
- Transforming Growth Factor beta/pharmacology
Collapse
Affiliation(s)
- Savita Bharathy
- Department of Internal Medicine, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, The Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA
| | | | | | | |
Collapse
|
30
|
Abstract
Transforming growth factor-beta (TGF-beta) represents a large family of growth and differentiation factors that mobilize complex signaling networks to regulate cellular differentiation, proliferation, motility, adhesion, and apoptosis. TGF-beta signaling is tightly regulated by multiple complex mechanisms, and its deregulation plays a key role in the progression of many forms of cancer. Upon ligand binding, TGF-beta signals are transduced by Smad proteins, which in turn are tightly dependent on modulation by adaptor proteins such as embryonic liver fodrin, Smad anchor for receptor activation, filamin, and crkl. A further layer of regulation is imposed by ubiquitin-mediated targeting and proteasomal degradation of specific components of the TGF-beta signaling pathway. This review focuses on the ubiquitinators that regulate TGF-beta signaling and the association of these ubiquitin ligases with various forms of cancer. Delineating the role of ubiquitinators in the TGF-beta signaling pathway could yield powerful novel therapeutic targets for designing new cancer treatments.
Collapse
Affiliation(s)
- Eric Glasgow
- Laboratory of Cancer Genetics, Digestive Diseases, and GI Developmental Biology, Department of Surgery, Medicine and Lombardi Cancer Center, Georgetown University Medical Center, Washington, DC 20007, USA.
| | | |
Collapse
|
31
|
Kelber JA, Shani G, Booker EC, Vale WW, Gray PC. Cripto is a noncompetitive activin antagonist that forms analogous signaling complexes with activin and nodal. J Biol Chem 2007; 283:4490-500. [PMID: 18089557 DOI: 10.1074/jbc.m704960200] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cripto plays critical roles during embryogenesis and has been implicated in promoting the growth and spread of tumors. Cripto is required for signaling by certain transforming growth factor-beta superfamily members, such as Nodal, but also antagonizes others, such as activin. The opposing effects of Cripto on Nodal and activin signaling seem contradictory, however, because these closely related ligands utilize the same type I (ALK4) and type II (ActRII/IIB) receptors. Here, we have addressed this apparent paradox by demonstrating that Cripto forms analogous receptor complexes with Nodal and activin and functions as a noncompetitive activin antagonist. Our results show that activin-A and Nodal elicit similar maximal signaling responses in the presence of Cripto that are substantially lower than that of activin-A in the absence of Cripto. In addition, we provide biochemical evidence for complexes containing activin-A, Cripto, and both receptor types and show that the assembly of such complexes is competitively inhibited by Nodal. We further demonstrate that Nodal and activin-A share the same binding site on ActRII and that ALK4 has distinct and separable binding sites for activin-A and Cripto. Finally, we show that ALK4 mutants with disrupted activin-A binding retain Cripto binding and prevent the effects of Cripto on both activin-A and Nodal signaling. Together, our data indicate that Cripto facilitates Nodal signaling and inhibits activin signaling by forming receptor complexes with these ligands that are structurally and functionally similar.
Collapse
Affiliation(s)
- Jonathan A Kelber
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|
32
|
Wang FL, Qin WJ, Wen WH, Tian F, Song B, Zhang Q, Lee C, Zhong WD, Guo YL, Wang H. TGF-beta insensitive dendritic cells: an efficient vaccine for murine prostate cancer. Cancer Immunol Immunother 2007; 56:1785-93. [PMID: 17473921 PMCID: PMC11030160 DOI: 10.1007/s00262-007-0322-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2006] [Accepted: 03/23/2007] [Indexed: 01/05/2023]
Abstract
Dendritic cells (DCs) are highly potent initiators of the immune response, but DC effector functions are often inhibited by immunosuppressants such as transforming growth factor beta (TGF-beta). The present study was conducted to develop a treatment strategy for prostate cancer using a TGF-beta-insensitive DC vaccine. Tumor lysate-pulsed DCs were rendered TGF-beta insensitive by dominant-negative TGF-beta type II receptor (TbetaRIIDN), leading to the blockade of TGF-beta signals to members of the Smad family, which are the principal cytoplasmic intermediates involved in the transduction of signals from TGF-beta receptors to the nucleus. Expression of TbetaRIIDN did not affect the phenotype of transduced DCs. Phosphorylated Smad-2 was undetectable and expression of surface co-stimulatory molecules (CD80/CD86) were upregulated in TbetaRIIDN DCs after antigen and TGF-beta1 stimulation. Vaccination of C57BL/6 tumor-bearing mice with the TbetaRIIDN DC vaccine induced potent tumor-specific cytotoxic T lymphocyte responses against TRAMP-C2 tumors, increased serum IFN-gamma and IL-12 level, inhibited tumor growth and increased mouse survival. Furthermore, complete tumor regression occurred in two vaccinated mice. These results demonstrate that blocking TGF-beta signals in DC enhances the efficacy of DC-based vaccines.
Collapse
Affiliation(s)
- Fu-Li Wang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, 15 Chang Le West Road, Xi’an, Shaanxi 710032 China
| | - Wei-Jun Qin
- Department of Urology, Peking University First Hospital, Institute of Urology, Peking University, Beijing, 100043 China
| | - Wei-Hong Wen
- Department of Immunology, Fourth Military Medical University, 17 Chang Le West Road, Xi’an, 710032 China
| | - Feng Tian
- Department of Urology, Xijing Hospital, Fourth Military Medical University, 15 Chang Le West Road, Xi’an, Shaanxi 710032 China
| | - Bin Song
- Department of Urology, Xijing Hospital, Fourth Military Medical University, 15 Chang Le West Road, Xi’an, Shaanxi 710032 China
| | - Qiang Zhang
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Chung Lee
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Wei-de Zhong
- Department of Urology, the First People’s Hospital of Guangzhou, Guangzhou, 510180 China
| | - Ying-Lu Guo
- Department of Urology, Peking University First Hospital, Institute of Urology, Peking University, Beijing, 100043 China
| | - He Wang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, 15 Chang Le West Road, Xi’an, Shaanxi 710032 China
| |
Collapse
|
33
|
Stefanidou V, Liakopoulos V, Eleftheriadis T, Anifandis G, Mertens PR, Kanelaki E, Stefanidis I. Expression of transforming growth factor-beta receptor II mRNA in cyclosporine-induced gingival overgrowth. Transplant Proc 2007; 38:2905-8. [PMID: 17112860 DOI: 10.1016/j.transproceed.2006.08.151] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2006] [Indexed: 10/23/2022]
Abstract
Gingival overgrowth (GO), characterized by increased cellular and extracellular matrix components in gingival tissue, is a frequent side effect of cyclosporine (CsA). In previous studies, elevated levels of transforming growth factor-beta (TGF-beta) have been detected in GO tissue, which led to the conclusion that TGF-beta plays a major part in the pathogenesis. TGF-beta activity is mediated by three receptors; TGF-beta receptor II (TGF-beta RII), the most important, has been immunohistochemically detected in GO and normal gingival tissue. The aim of this study was to clarify whether TGF-beta RII is overexpressed in CsA-induced GO. The expression of TGF-beta RII mRNA in GO tissue of patients on CsA (n = 10, 5 women, aged 42.5 +/- 14.9 years) with renal transplantation (transplant duration 3.6 +/- 0.96 years) was compared with that in healthy gingiva of control subjects (n = 10, 5 women, aged 42.5 +/- 7.6 years). Semiquantitative reverse transcribed-polymerase chain reactions (RT-PCR) were applied with glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as an internal standard. TGF-beta RII mRNA was readily detected in the GO tissue of patients on CsA. The level of TGF-beta RII mRNA relative to GAPDH in GO cases was not significantly higher than the relative TGF-beta mRNA level in normal gingiva (0.60 +/- 0.16 vs 0.52 +/- 0.19; P = .575). The precise mechanism of CsA-induced GO remains uncertain. According to our results, TGF-beta RII was not upregulated in CsA-induced GO, and may have no important role in this disorder. However, the involvement of TGF-beta in the molecular pathology of GO may be mediated via TGF-beta RI or RIII.
Collapse
Affiliation(s)
- V Stefanidou
- Department of Periodontology, Eastman Dental Institute, University College London, London, UK
| | | | | | | | | | | | | |
Collapse
|
34
|
Shiou SR, Datta PK, Dhawan P, Law BK, Yingling JM, Dixon DA, Beauchamp RD. Smad4-dependent Regulation of Urokinase Plasminogen Activator Secretion and RNA Stability Associated with Invasiveness by Autocrine and Paracrine Transforming Growth Factor-β. J Biol Chem 2006; 281:33971-81. [PMID: 16959768 DOI: 10.1074/jbc.m607010200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Metastasis is a primary cause of mortality due to cancer. Early metastatic growth involves both a remodeling of the extracellular matrix surrounding tumors and invasion of tumors across the basement membrane. Up-regulation of extracellular matrix degrading proteases such as urokinase plasminogen activator (uPA) and matrix metalloproteinases has been reported to facilitate tumor cell invasion. Autocrine transforming growth factor-beta (TGF-beta) signaling may play an important role in cancer cell invasion and metastasis; however, the underlying mechanisms remain unclear. In the present study, we report that autocrine TGF-beta supports cancer cell invasion by maintaining uPA levels through protein secretion. Interestingly, treatment of paracrine/exogenous TGF-beta at higher concentrations than autocrine TGF-beta further enhanced uPA expression and cell invasion. The enhanced uPA expression by exogenous TGF-beta is a result of increased uPA mRNA expression due to RNA stabilization. We observed that both autocrine and paracrine TGF-beta-mediated regulation of uPA levels was lost upon depletion of Smad4 protein by RNA interference. Thus, through the Smad pathway, autocrine TGF-beta maintains uPA expression through facilitated protein secretion, thereby supporting tumor cell invasiveness, whereas exogenous TGF-beta further enhances uPA expression through mRNA stabilization leading to even greater invasiveness of the cancer cells.
Collapse
Affiliation(s)
- Sheng-Ru Shiou
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-2730, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Ammundsen B, Wortham E, Jones DJ, Rozière J. Intercalation Reactions of Layered Manganese(III, IV) Oxides. ACTA ACUST UNITED AC 2006. [DOI: 10.1080/10587259808042406] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Brett Ammundsen
- a Laboratoire des Agrégats Moléculaires et Matériaux Inorganiques ESA CNRS 5072, Université Montpellier 2 , Place Eugene Bataillon, 34095 , Montpellier Cédex 5 , France
| | - Etienne Wortham
- a Laboratoire des Agrégats Moléculaires et Matériaux Inorganiques ESA CNRS 5072, Université Montpellier 2 , Place Eugene Bataillon, 34095 , Montpellier Cédex 5 , France
| | - Deborah J. Jones
- a Laboratoire des Agrégats Moléculaires et Matériaux Inorganiques ESA CNRS 5072, Université Montpellier 2 , Place Eugene Bataillon, 34095 , Montpellier Cédex 5 , France
| | - Jacques Rozière
- a Laboratoire des Agrégats Moléculaires et Matériaux Inorganiques ESA CNRS 5072, Université Montpellier 2 , Place Eugene Bataillon, 34095 , Montpellier Cédex 5 , France
| |
Collapse
|
36
|
Law C, Bunyan D, Castle B, Day L, Simpson I, Westwood G, Keeton B. Clinical features in a family with an R460H mutation in transforming growth factor beta receptor 2 gene. J Med Genet 2006; 43:908-16. [PMID: 16885183 PMCID: PMC2563201 DOI: 10.1136/jmg.2006.042176] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
OBJECTIVES To describe the clinical findings and natural history in 22 carriers of an R460H mutation in the transforming growth factor beta receptor 2 gene (TGFbetaR2) from a five-generation kindred ascertained by familial aortic dissection. METHODS 13 of the confirmed carriers were interviewed and examined, and information about the remaining carrier was obtained from medical records. Clinical information about deceased individuals was obtained, when possible, from postmortem reports, death certificates and medical records. RESULTS There have been eight sudden deaths; the cause of death was aortic dissection in all six cases in which a postmortem examination was performed. Three individuals had undergone aortic replacement surgery. Dissection had occurred throughout the aorta, and in one case in the absence of aortic root dilatation. Subarachnoid haemorrhage, due to a ruptured berry aneurysm, had occurred in two individuals. Four gene carriers and one deceased family member who were investigated had tortuous cerebral blood vessels. One had tortuous vertebral arteries, two had tortuous carotid arteries and one a tortuous abdominal aorta. Two individuals were found to have a brachiocephalic artery aneurysm and a subclavian artery aneurysm, respectively. CONCLUSIONS Despite the predisposition to aortic dilatation and dissection, individuals did not frequently manifest the skeletal features of Marfan syndrome, with the exception of joint hypermobility. No one individual had ocular lens dislocation. Striae and herniae were common. There was some overlap with Ehlers-Danlos syndrome type 4, OMIM 130050, with soft translucent skin, which is easily bruised. Other features were arthralgia, migraine and a tendency to fatigue easily, varicose veins and prominent skin striae. This family provides further evidence that mutations in TGFbetaR2 cause a distinct syndrome that needs to be distinguished from Marfan syndrome to direct investigation and management of patients and shows the natural history, spectrum of clinical features and variable penetrance of this newly recognised condition.
Collapse
Affiliation(s)
- C Law
- Wessex Clinical Genetics Service, Princess Anne Hospital, Coxford Road, Southampton SO16 5YA, UK.
| | | | | | | | | | | | | |
Collapse
|
37
|
Skottman H, Strömberg AM, Matilainen E, Inzunza J, Hovatta O, Lahesmaa R. Unique Gene Expression Signature by Human Embryonic Stem Cells Cultured Under Serum-Free Conditions Correlates with Their Enhanced and Prolonged Growth in an Undifferentiated Stage. Stem Cells 2006; 24:151-67. [PMID: 16100004 DOI: 10.1634/stemcells.2004-0189] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Understanding the interaction between human embryonic stem cells (hESCs) and their microenvironment is crucial for the propagation and the differentiation of hESCs for therapeutic applications. hESCs maintain their characteristics both in serum-containing and serum-replacement (SR) media. In this study, the effects of the serum-containing and SR culture media on the gene expression profiles of hESCs were examined. Although the expression of many known embryonic stem cell markers was similar in cells cultured in either media, surprisingly, 1,417 genes were found to be differentially expressed when hESCs cultured in serum-containing medium were compared with those cultured in SR medium. Several genes upregulated in cells cultured in SR medium suggested increased metabolism and proliferation rates in this medium, providing a possible explanation for the increased growth rate of nondifferentiated cells observed in SR culture conditions compared with that in serum medium. Several genes characteristic for cells with differentiated phenotype were expressed in cells cultured in serum-containing medium. Our data clearly indicate that the manipulation of hESC culture conditions causes phenotypic changes of the cells that were reflected also at the level of gene expression. Such changes may have fundamental importance for hESCs, and gene expression changes should be monitored as a part of cell culture optimization aiming at a clinical use of hESCs for cell transplantation.
Collapse
Affiliation(s)
- Heli Skottman
- Turku Centre for Biotechnology, University of Turku, and REGEA Institute for Regenerative Medicine, Tampere University Hospital, 33520 Tampere, Finland.
| | | | | | | | | | | |
Collapse
|
38
|
Katuri V, Tang Y, Marshall B, Rashid A, Jogunoori W, Volpe EA, Sidawy AN, Evans S, Blay J, Gallicano GI, Premkumar Reddy E, Mishra L, Mishra B. Inactivation of ELF/TGF-beta signaling in human gastrointestinal cancer. Oncogene 2005; 24:8012-24. [PMID: 16158060 DOI: 10.1038/sj.onc.1208946] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
TGF-beta/Smads regulate a wide variety of biological responses through transcriptional regulation of target genes. ELF, a beta-spectrin, plays a key role in the transmission of TGF-beta-mediated transcriptional response through Smads. ELF was originally identified as a key protein involved in endodermal stem/progenitor cells committed to foregut lineage. Also, as a major dynamic adaptor and scaffolding protein, ELF is important for the generation of functionally distinct membranes, protein sorting and the development of polarized differentiated epithelial cells. Disruption of elf results in the loss of Smad3/Smad4 activation and, therefore, a disruption of the TGF-beta pathway. These observations led us to pursue the function of ELF in gastrointestinal (GI) epithelial cell-cell adhesion and tumor suppression. Here, we show a significant loss of ELF and reduced Smad4 expression in human gastric cancer tissue samples. Also, of the six human gastric cancer cell lines examined, three show deficient ELF expression. Furthermore, we demonstrate the rescue of E-cadherin-dependent homophilic cell-cell adhesion by ectopic expression of full-length elf. Our results suggest that ELF has an essential role in tumor suppression in GI cancers.
Collapse
Affiliation(s)
- Varalakshmi Katuri
- Laboratory of Developmental Molecular Biology, Department of Surgical Sciences, Medicine, Lombardi Cancer Center, Georgetown University, Washington, DC 20007, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Zúñiga JE, Groppe JC, Cui Y, Hinck CS, Contreras-Shannon V, Pakhomova ON, Yang J, Tang Y, Mendoza V, López-Casillas F, Sun L, Hinck AP. Assembly of TbetaRI:TbetaRII:TGFbeta ternary complex in vitro with receptor extracellular domains is cooperative and isoform-dependent. J Mol Biol 2005; 354:1052-68. [PMID: 16289576 DOI: 10.1016/j.jmb.2005.10.014] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2005] [Revised: 10/01/2005] [Accepted: 10/05/2005] [Indexed: 12/31/2022]
Abstract
Transforming growth factor-beta (TGFbeta) isoforms initiate signaling by assembling a heterotetrameric complex of paired type I (TbetaRI) and type II (TbetaRII) receptors on the cell surface. Because two of the ligand isoforms (TGFbetas 1, 3) must first bind TbetaRII to recruit TbetaRI into the complex, and a third (TGFbeta2) requires a co-receptor, assembly is known to be sequential, cooperative and isoform-dependent. However the source of the cooperativity leading to recruitment of TbetaRI and the universality of the assembly mechanism with respect to isoforms remain unclear. Here, we show that the extracellular domain of TbetaRI (TbetaRI-ED) binds in vitro with high affinity to complexes of the extracellular domain of TbetaRII (TbetaRII-ED) and TGFbetas 1 or 3, but not to either ligand or receptor alone. Thus, recruitment of TbetaRI requires combined interactions with TbetaRII-ED and ligand, but not membrane attachment of the receptors. Cell-based assays show that TbetaRI-ED, like TbetaRII-ED, acts as an antagonist of TGFbeta signaling, indicating that receptor-receptor interaction is sufficient to compete against endogenous, membrane-localized receptors. On the other hand, neither TbetaRII-ED, nor TbetaRII-ED and TbetaRI-ED combined, form a complex with TGFbeta2, showing that receptor-receptor interaction is insufficient to compensate for weak ligand-receptor interaction. However, TbetaRII-ED does bind with high affinity to TGFbeta2-TM, a TGFbeta2 variant substituted at three positions to mimic TGFbetas 1 and 3 at the TbetaRII binding interface. This proves both necessary and sufficient for recruitment of TbetaRI-ED, suggesting that the three different TGFbeta isoforms induce assembly of the heterotetrameric receptor complex in the same general manner.
Collapse
MESH Headings
- Activin Receptors, Type I/chemistry
- Activin Receptors, Type I/isolation & purification
- Activin Receptors, Type I/metabolism
- Amino Acid Sequence
- Animals
- Cattle
- Cell Division/drug effects
- Endothelium, Vascular/cytology
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/physiology
- Escherichia coli/genetics
- Female
- Genes, Reporter
- Genetic Variation
- Humans
- In Vitro Techniques
- Ligands
- Luciferases/metabolism
- Mice
- Models, Biological
- Models, Molecular
- Molecular Sequence Data
- Molecular Weight
- Nuclear Magnetic Resonance, Biomolecular
- Phosphorylation
- Protein Isoforms/chemistry
- Protein Isoforms/genetics
- Protein Isoforms/metabolism
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- Protein Structure, Tertiary
- Receptor, Transforming Growth Factor-beta Type I
- Receptor, Transforming Growth Factor-beta Type II
- Receptors, Transforming Growth Factor beta/chemistry
- Receptors, Transforming Growth Factor beta/genetics
- Receptors, Transforming Growth Factor beta/isolation & purification
- Receptors, Transforming Growth Factor beta/metabolism
- Recombinant Proteins/chemistry
- Recombinant Proteins/metabolism
- Sequence Homology, Amino Acid
- Signal Transduction
- Smad2 Protein/analysis
- Smad2 Protein/metabolism
- Transforming Growth Factor beta/genetics
- Transforming Growth Factor beta/metabolism
- Transforming Growth Factor beta/pharmacology
Collapse
Affiliation(s)
- Jorge E Zúñiga
- Department of Biochemistry, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Woodward RN, Finn AV, Dichek DA. Identification of intracellular pathways through which TGF-beta1 upregulates PAI-1 expression in endothelial cells. Atherosclerosis 2005; 186:92-100. [PMID: 16139837 DOI: 10.1016/j.atherosclerosis.2005.07.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2005] [Revised: 06/15/2005] [Accepted: 07/11/2005] [Indexed: 11/30/2022]
Abstract
Upregulation of plasminogen activator inhibitor type 1 (PAI-1) expression is a critical mechanism through which transforming growth factor-beta1 (TGF-beta1) accelerates intimal growth. The aim of this study was to identify signaling pathways through which TGF-beta1 upregulates PAI-1 expression in endothelial cells (EC) and test interventions for blocking these pathways. We transduced cultured bovine EC with an adenoviral vector containing the PAI-1 promoter fused to a beta-galactosidase reporter gene. We used these cells, along with vectors expressing potential modifiers of TGF-beta1 signaling and pharmacologic antagonists of mitogen-activated protein kinase (MAPK) pathways to identify key mediators of basal and TGF-beta1-regulated PAI-1 expression. Basal activity of the PAI-1 promoter was directly correlated with Ras activation and was blocked by a dominant negative (DN) type I TGF-beta receptor. TGF-beta1-stimulated activity of the PAI-1 promoter did not require Ras activation, and was lessened or eliminated by expression of either DN type I or type II TGF-beta receptors and by inhibition of either of two MAPKs: MEK and p38. Our results suggest unanticipated pathways of TGF-beta1 signaling in EC and point to new strategies to limit TGF-beta1-induced vascular disease.
Collapse
Affiliation(s)
- Robert N Woodward
- Gladstone Institute of Cardiovascular Disease, University of California, San Francisco, CA 94158, USA
| | | | | |
Collapse
|
41
|
Abstract
Tendons are able to respond to mechanical forces by altering their structure, composition, and mechanical properties--a process called tissue mechanical adaptation. The fact that mechanical adaptation is effected by cells in tendons is clearly understood; however, how cells sense mechanical forces and convert them into biochemical signals that ultimately lead to tendon adaptive physiological or pathological changes is not well understood. Mechanobiology is an interdisciplinary study that can enhance our understanding of mechanotransduction mechanisms at the tissue, cellular, and molecular levels. The purpose of this article is to provide an overview of tendon mechanobiology. The discussion begins with the mechanical forces acting on tendons in vivo, tendon structure and composition, and its mechanical properties. Then the tendon's response to exercise, disuse, and overuse are presented, followed by a discussion of tendon healing and the role of mechanical loading and fibroblast contraction in tissue healing. Next, mechanobiological responses of tendon fibroblasts to repetitive mechanical loading conditions are presented, and major cellular mechanotransduction mechanisms are briefly reviewed. Finally, future research directions in tendon mechanobiology research are discussed.
Collapse
Affiliation(s)
- James H-C Wang
- MechanoBiology Laboratory, Department of Orthopaedic Surgery, University of Pittsburgh, 210 Lothrop St., BST, E1647, Pittsburgh, PA 15213, USA.
| |
Collapse
|
42
|
Laouar Y, Sutterwala FS, Gorelik L, Flavell RA. Transforming growth factor-beta controls T helper type 1 cell development through regulation of natural killer cell interferon-gamma. Nat Immunol 2005; 6:600-7. [PMID: 15852008 DOI: 10.1038/ni1197] [Citation(s) in RCA: 337] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2004] [Accepted: 03/15/2005] [Indexed: 12/11/2022]
Abstract
Interferon-gamma and interleukin 12 produced by the innate arm of the immune system are important regulators of T helper type 1 (T(H)1) cell development, but signals that negatively regulate their expression remain controversial. Here we show that transforming growth factor-beta (TGF-beta) controlled T(H)1 differentiation through the regulation of interferon-gamma produced by natural killer (NK) cells. Blockade of TGF-beta signaling in NK cells caused the accumulation of a large pool of NK cells secreting copious interferon-gamma, responsible for T(H)1 differentiation and protection from leishmania infection. In contrast, blockade of TGF-beta signaling in dendritic cells did not affect dendritic cell homeostasis or interleukin 12 production, thus indicating a previously undescribed demarcation of the function of TGF-beta in NK cells versus dendritic cells.
Collapse
Affiliation(s)
- Yasmina Laouar
- Section of Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | | | |
Collapse
|
43
|
Okano H, Shinohara H, Miyamoto A, Takaori K, Tanigawa N. Concomitant overexpression of cyclooxygenase-2 in HER-2-positive on Smad4-reduced human gastric carcinomas is associated with a poor patient outcome. Clin Cancer Res 2005; 10:6938-45. [PMID: 15501972 DOI: 10.1158/1078-0432.ccr-0731-03] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The expression of cyclooxygenase-2 (COX-2) is known to be involved in gastric carcinogenesis and tumor progression, but little is known about the mechanisms responsible for the up-regulation of COX-2. We examined the involvement of two growth factor-signaling systems, HER-2 and transforming growth factor (TGF)-beta, in the induction of COX-2 in human gastric cancer tissue. EXPERIMENTAL DESIGN COX-2 expression was detected by immunohistochemistry in surgical specimens obtained from 166 patients with advanced gastric cancer; possible correlations between the expression of COX-2 and the expression of HER-2, TGF-beta1, and Smad4, an intracellular mediator that transmits the TGF-beta signal, were then analyzed. RESULTS COX-2 protein was overexpressed in 91 (54.8%) tumors; COX-2 overexpression was correlated with a differentiated histologic type, deep invasion, and positive lymph node metastasis. COX-2 was frequently overexpressed in HER-2-positive tumors (19 of 22, 86.4%) and in Smad4-reduced tumors (67 of 104, 64.4%) but irrelevant to the TGF-beta1 expression status. The expression levels of COX-2 and HER-2 and the reduction in Smad4 were all associated with a poor patient outcome. A multivariate analysis demonstrated a significantly poor outcome for the concomitant overexpression of COX-2 in patients with Smad4-reduced tumors. CONCLUSIONS These results support the possibility that signal transduction via HER-2 and the TGF-beta/Smad system may be implicated in COX-2 expression and that the reduction of Smad4 may be, in part, of causal significance in the TGF-beta-initiated overexpression of COX-2, which is associated with a poor prognosis for patients with gastric cancer.
Collapse
Affiliation(s)
- Hirokazu Okano
- Department of General and Gastroenterological Surgery, Osaka Medical College, Osaka, Japan
| | | | | | | | | |
Collapse
|
44
|
Ball EMA, Mellor SL, Risbridger GP. Cancer progression: is inhibin alpha from Venus or Mars? Cytokine Growth Factor Rev 2005; 15:291-6. [PMID: 15450247 DOI: 10.1016/j.cytogfr.2004.04.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The inhibin field has been perplexed by the information that inhibin alpha is a tumour suppressor in mice yet is elevated in women with ovarian cancer. Furthermore, we have consistently observed a down-regulation or loss of inhibin alpha in prostate cancer patient samples and cell lines. However, our latest data have prompted us to re-evaluate the role of inhibin alpha in prostate and other cancers. Using the analogy of TGF-beta as a springboard for our hypothesis, we offer a unifying model whereby the previously conflicting observations in mice, men and women can be explained. We propose that initially inhibin alpha is tumour-suppressive and is expressed in benign and early-stage primary cancers. Tumour-suppressive inhibin alpha is then silenced as the tumour progresses but is reactivated as a pro-metastatic factor in advanced, aggressive cancers.
Collapse
Affiliation(s)
- Emma M A Ball
- Centre for Urological Research, Monash Institute of Reproduction and Development, Monash University, 246 Clayton Rd, Clayton, Vic. 3168, Australia
| | | | | |
Collapse
|
45
|
Livne E, Laufer D, Blumenfeld I. Differential response of articular cartilage from young growing and mature old mice to IL-1 and TGF-beta. Arch Gerontol Geriatr 2005; 24:211-21. [PMID: 15374127 DOI: 10.1016/s0167-4943(96)00753-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/1996] [Revised: 07/25/1996] [Accepted: 07/29/1996] [Indexed: 11/29/2022]
Abstract
Osteoarthritic lesions are observed in temporomandibular joint cartilage of ICR mice aged 7 months and older, accompanied by reduced proliferation and matrix synthesis. Transforming growth factor-beta (TGF-beta), is a multifactorial growth factor affecting matrix synthesis and cell proliferation in bone and cartilage, whereas interleukin-1 (IL-1) is involved in cartilage degradation. In order to establish the repair capacity of cartilage in aging, the response of cartilage from young and old animals to TGF-beta and IL-1 was studied. Mandibular condyles from young (1-month-old) and old (18-month-old) mice were cultured for up to 72 h in medium supplemented with TGF-beta1 or IL-1alpha. TGF-beta increased protein (+9.26%) and DNA (+36.0%) contents in young animals and DNA content (+19.49%) in old animals. Incorporations of [(3)H]thymidine and [(35)S]sulfate were enhanced in young (+254% and +116%, respectively) and in old (+22.6% and +6.88%, respectively) and animals and activity of alkaline phosphatase was induced in old animals. Treatment with IL-1 resulted in reduced DNA content in young (-35.76%) and old (-33.33%) animals, but acid phosphatase activity was induced in old animals. It is concluded that TGF-beta can induce anabolic activity even in cartilage from old animals indicating repair response in articular cartilage in aging.
Collapse
Affiliation(s)
- E Livne
- Division of Morphological Sciences, Faculty of Medicine, Technion, PO Box 9649, Haifa 31096, Israel
| | | | | |
Collapse
|
46
|
Chan CP, Lan WH, Chang MC, Chen YJ, Lan WC, Chang HH, Jeng JH. Effects of TGF-beta s on the growth, collagen synthesis and collagen lattice contraction of human dental pulp fibroblasts in vitro. Arch Oral Biol 2004; 50:469-79. [PMID: 15777529 DOI: 10.1016/j.archoralbio.2004.10.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2004] [Accepted: 10/07/2004] [Indexed: 01/12/2023]
Abstract
Transforming growth factor-beta (TGF-beta) is important in regulating the repair and regeneration of damaged dental pulp. For further elucidating the roles of different isoforms of TGF-beta in the healing and inflammatory processes of human dental pulp, we found that TGF-beta1, TGF-beta2 and TGF-beta3 inhibited the growth of two human dental pulp cell strains in vitro by 19-29, 18-25 and 23-26%, respectively, at a concentration of 0.5 ng/ml. TGF-beta also differentially stimulated the collagen synthesis of pulp cells. Collagen synthesis increased by 1 ng/ml of TGF-beta1 and TGF-beta2 by 42 and 51%, respectively. TGF-beta3 (0.1-1 ng/ml) lacked of stimulatory effect on collagen synthesis of pulp cells. Pulp cells have the intrinsic capacity to contract collagen lattice, leading to decreasing of lattice diameter. An 8 h exposure to TGF-beta1 and TGF-beta2 enhanced the pulp cell-populated collagen lattice contraction at concentrations ranging from 0.2 to 3 ng/ml. At similar concentrations, TGF-beta3 lacked of this stimulatory effect. When collagen lattice were detached after 24 h of exposure, TGF-beta1 and TGF-beta2 (0.6-3 ng/ml) induced the pulp cells-populated collagen lattice contraction within 4-8h of gel detachment. These results indicate that TGF-beta-induced collagen lattice contraction is a late cellular event. These in vitro results indicate that effects of TGF-beta isoforms on the growth, collagen synthesis and collagen lattice contraction of pulp cells may play crucial roles in the pathobiological processes of dental pulp.
Collapse
Affiliation(s)
- C P Chan
- Department of Dentistry, Chang-Gung Memorial Hospital, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
PURPOSE OF REVIEW Systemic sclerosis is a complex disease manifesting itself by fibrosis of skin and other internal organs. Fibroblasts isolated from scleroderma lesions and cultured in vitro are characterized by increased synthesis of collagen and other extracellular matrix proteins, consistent with the disease phenotype. Cultured systemic sclerosis fibroblasts therefore serve as a principal experimental model for studying the molecular and cellular mechanisms involved in collagen overproduction in this disease. This review will discuss recent findings related to intracellular signal transduction pathways implicated in deregulated extracellular matrix deposition by systemic sclerosis fibroblasts. RECENT FINDINGS Recent findings suggest that constitutively elevated synthesis of extracellular matrix by cultured systemic sclerosis fibroblasts is, at least in part, due to the aberrant activation of the autocrine transforming growth factor-beta signaling. Enhanced constitutive transforming growth factor-beta signaling may result from the elevated levels of transforming growth factor-beta receptor type I and/or inappropriate activation of Smad3. These alterations of the transforming growth factor-beta signaling in systemic sclerosis fibroblasts may facilitate increased collagen production in vivo even under conditions of low ligand availability. However, there exist many inconsistencies among published reports regarding the detailed mechanisms of this pathway in systemic sclerosis fibroblasts, and additional studies in this area are needed. Other signaling molecules implicated in fibrotic phenotype include several members of the protein kinase C family, mammalian target of rapamycin, mitogen-activated protein kinase, necdin, reactive oxygen species, and sphingolipids. These signaling pathways may work in conjunction with transforming growth factor-beta signaling to regulate the behavior of systemic sclerosis fibroblasts. SUMMARY Alterations in multiple signaling pathways contribute to elevated extracellular matrix synthesis by systemic sclerosis fibroblasts. Improved understanding of the key signaling molecules may provide a novel avenue for therapeutic interventions.
Collapse
Affiliation(s)
- Jaspreet Pannu
- Division of Rheumatology and Immunology, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, SC 29425, USA
| | | |
Collapse
|
48
|
Subramanian G, Schwarz RE, Higgins L, McEnroe G, Chakravarty S, Dugar S, Reiss M. Targeting endogenous transforming growth factor beta receptor signaling in SMAD4-deficient human pancreatic carcinoma cells inhibits their invasive phenotype1. Cancer Res 2004; 64:5200-11. [PMID: 15289325 DOI: 10.1158/0008-5472.can-04-0018] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Transforming growth factor-beta (TGF-beta) suppresses tumor formation by blocking cell cycle progression and maintaining tissue homeostasis. In pancreatic carcinomas, this tumor suppressive activity is often lost by inactivation of the TGF-beta-signaling mediator, Smad4. We found that human pancreatic carcinoma cell lines that have undergone deletion of MADH4 constitutively expressed high endogenous levels of phosphorylated receptor-associated Smad proteins (pR-Smad2 and pR-Smad3), whereas Smad4-positive lines did not. These elevated pR-Smad levels could not be attributed to a decreased dephosphorylation rate nor to increased expression of TGF-beta type I (TbetaR-I) or type II (TbetaR-II) receptors. Although minimal amounts of free bioactive TGF-beta1 and TGF-beta2 were detected in conditioned medium, treatment with a pan-specific (but not a TGF-beta3 specific) TGF-beta-neutralizing antibody and with anti-alpha(V)beta(6) integrin antibody decreased steady-state pSmad2 levels and activation of a TGF-beta-inducible reporter gene in neighboring cells, respectively. Thus, activation of TGF-beta at the cell surface was responsible for the increased autocrine endogenous and paracrine signaling. Blocking TbetaR-I activity using a selective kinase inhibitor (SD-093) strongly decreased the in vitro motility and invasiveness of the pancreatic carcinoma cells without affecting their growth characteristics, morphology, or the subcellular distribution of E-cadherin and F-actin. Moreover, exogenous TGF-beta strongly stimulated in vitro invasiveness of BxPC-3 cells, an effect that could also be blocked by SD-093. Thus, the motile and invasive properties of Smad4-deficient pancreatic cancer cells are at least partly driven by activation of endogenous TGF-beta signaling. Therefore, targeting the TbetaR-I kinase represents a potentially powerful novel therapeutic approach for the treatment of this disease.
Collapse
Affiliation(s)
- Gayathri Subramanian
- Departments of Internal Medicine (Medical Oncology), The Cancer Institute of New Jersey, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, 195 Little Albany Street, New Brunswick, NJ 08903, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Kasper S, Smith JA. Genetically modified mice and their use in developing therapeutic strategies for prostate cancer. J Urol 2004; 172:12-9. [PMID: 15201729 DOI: 10.1097/01.ju.0000132122.93436.aa] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE At the National Cancer Institute a comprehensive program has been developed for accelerating prostate cancer research, especially in the area of mouse models for human cancers. This review focuses on transgenic mouse models for elucidating the molecular and cellular processes that lead to prostate cancer initiation, progression and metastasis, and on their suitability for therapeutic and chemopreventive trials. MATERIALS AND METHODS Published data from MEDLINE, http://emice.nci.nih.gov/, our laboratory and other investigators are reviewed. RESULTS Currently no 1 mouse model displays the entire continuum of human prostate cancer initiation, development and metastasis. The loss or over expression of a single gene results primarily in epithelial hyperplasia, prostatic intraepithelial neoplasia or more aggressive localized adenocarcinoma. To date the only models that develop lung, liver and occasionally bone metastasis are those that express SV40 large T antigen. A number of models have been used to investigate the efficacy of androgen deprivation, lovastatin, vitamin D, the anti-inflammatory drug E-7869, genistein and (-)-epigallocatechin-3-gallate as therapeutic or chemopreventive agents. Noninvasive optical imaging technologies facilitate the detection of metastatic lesions and the effects of therapeutic agents on tumor regression. CONCLUSIONS Integrating mouse studies with human clinical trials would ensure that mechanisms that promote prostate cancer are identified and potential therapeutic targets are validated.
Collapse
Affiliation(s)
- Susan Kasper
- Department of Urologic Surgery, Vanderbilt Medical Center, Nashville, Tennessee 37232-2765, USA
| | | |
Collapse
|
50
|
Huntley SP, Davies M, Matthews JB, Thomas G, Marshall J, Robinson CM, Eveson JW, Paterson IC, Prime SS. Attenuated type II TGF-beta receptor signalling in human malignant oral keratinocytes induces a less differentiated and more aggressive phenotype that is associated with metastatic dissemination. Int J Cancer 2004; 110:170-6. [PMID: 15069677 DOI: 10.1002/ijc.20111] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We examined the effect of stable transfection of dominant negative TbetaR-II (dn TbetaR-II) cDNA in a human oral carcinoma cell line that contained normal Ras and was growth inhibited by TGF-beta1. Two clonal cell lines containing dn TbetaR-II were isolated and compared to the vector-only control and parent cell line. The treatment of cells with exogenous TGF-beta1 resulted in a decrease in ligand-induced growth inhibition and loss of c-myc downregulation in test cells compared to controls; transcriptional activation of certain genes including fra-1 and collagenase was retained. Cells containing dn TbetaR-II grew faster in monolayer culture, expressed less keratin 10 and exhibited increased motility and invasion in vitro compared to control cell lines. Endogenous TGF-beta1 production and the regulation of MMP-2 and MMP-9 by TGF-beta1 remained unchanged. After orthotopic transplantation to the floor of the mouth in athymic mice, cells containing dn TbetaR-II formed comparable numbers of primary tumours at the site of inoculation as controls but the tumours were less differentiated as demonstrated by the absence of keratin 10 immunostaining. Further, metastatic dissemination to the lungs and lymphatics was more evident in grafts of cells containing dn TbetaR-II than controls. Taken together, the results demonstrate that attenuation of TGF-beta signalling through transfection of dn TbetaR-II cDNA leads to an enhanced growth rate, a loss of tumour cell differentiation and an increase in migration and invasion, characteristics that corresponded to the development of the metastatic phenotype.
Collapse
Affiliation(s)
- Suzy P Huntley
- Department of Oral and Dental Science, University of Bristol, Bristol, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|