1
|
Varga MJ, Richardson ME, Chamberlin A. Structural biology in variant interpretation: Perspectives and practices from two studies. Am J Hum Genet 2025; 112:984-992. [PMID: 40233741 DOI: 10.1016/j.ajhg.2025.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 03/12/2025] [Accepted: 03/13/2025] [Indexed: 04/17/2025] Open
Abstract
Structural biology offers a powerful lens through which to assess genetic variants by providing insights into their impact on clinically relevant protein structure and function. Due to the availability of new, user-friendly, web-based tools, structural analyses by wider audiences have become more mainstream. These new tools, including AlphaMissense and AlphaFold, have recently been in the limelight due to their initial success and projected future promise; however, the intricacies and limitations of using these tools still need to be disseminated to the more general audience that is likely to use them in variant analysis. Here, we expound on frameworks applying structural biology to variant interpretation by examining two accompanying articles. To this end, we explore the nuances of choosing the correct protein model, compare and contrast various structural approaches, and highlight both the advantages and limitations of employing structural biology in variant interpretation. Using two articles published in this issue of The American Journal of Human Genetics as a baseline, we focus on case studies in TP53 and BRCA1 to illuminate gene-specific differences in the applications of structural information, which illustrate the complexities inherent in this field. Additionally, we discuss the implications of recent advancements, such as AlphaFold, and provide practical guidance for researchers navigating variant interpretation using structural biology.
Collapse
|
2
|
Osbourne R, Thayer KM. Structural and mechanistic diversity in p53-mediated regulation of organismal longevity across taxonomical orders. PLoS Comput Biol 2025; 21:e1012382. [PMID: 40315252 PMCID: PMC12068700 DOI: 10.1371/journal.pcbi.1012382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 05/12/2025] [Accepted: 04/21/2025] [Indexed: 05/04/2025] Open
Abstract
The link between p53 tumor suppressive functions and organismal lifespan is multifaceted. Its DNA-repair mechanism is longevity-enhancing while its role in cellular senescence pathways induces pro-aging phenotypes. To understand how p53 may regulate organismal lifespan, cross-species genotype-phenotype (GP) studies of the p53 DNA-binding domain (DBD) have been used to assess the correlation of amino acid changes to lifespan. Amino acid changes in non-DNA-binding regions such as the transactivation (TAD), proline-rich (PRD), regulatory (REG), and tetramerization (TET) are largely unexplored. In addition, existing GP correlation tools such as SigniSite do not account for phylogenetic relationships between aligned sequences in correlating genotypic differences to phenotypes such as lifespan. To identify phylogenetically significant, longevity-correlated residues in full-length p53 alignments, we developed a Python- and R-based workflow, Relative Evolutionary Scoring (RES). While RES-predicted longevity-associated residues (RPLARs) are concentrated primarily in the DBD, the PRD, TET, and REG domains also house RPLARs. While yeast functional assay enrichment reveals that RPLARs may be dispensable for p53-mediated transactivation, PEPPI and Rosetta-based protein-protein interaction prediction suggests a role for RPLARs in p53 stability and interaction interfaces of tumor suppressive protein-protein complexes. With experimental validation of the RPLARs' roles in p53 stability, transactivation, and involvement in senescence-regulatory pathways, we can gain crucial insights into mechanisms underlying dysregulated tumor suppression and accelerated aging.
Collapse
Affiliation(s)
- Romani Osbourne
- Department of Molecular Biology & Biochemistry, Wesleyan University, Middletown, Connecticut, United States of America
- College of Integrative Sciences, Wesleyan University, Middletown, Connecticut, United States of America
| | - Kelly M. Thayer
- College of Integrative Sciences, Wesleyan University, Middletown, Connecticut, United States of America
| |
Collapse
|
3
|
Chiu C, Stetson S, Thayer KM. MD Multi-Sector Selector: Recursive Extraction and Refinement of Molecular Dynamics Based Sectors Yields Two Sectors in p53 Tumor Suppressor Protein. J Phys Chem B 2025; 129:3747-3760. [PMID: 40173308 PMCID: PMC12010330 DOI: 10.1021/acs.jpcb.4c08495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 03/10/2025] [Accepted: 03/11/2025] [Indexed: 04/04/2025]
Abstract
Allosteric signaling in proteins allows perturbations at one locale to modulate activity at an orthosteric distant site. This may explain how distal mutations disrupt protein activity and offer pathways for the development of allosteric therapeutics, a novel class of restorative compounds to reactivate native function. Despite the ubiquitous presence of allosteric control in nature and the promises that it holds for treating currently untreatable diseases, quantitative theory of the mechanism of allostery is lacking. Working to fill this critical gap, we have developed a novel method to identify groups of covarying residues which the sector hypothesis suggests are capable of transmitting allosteric signals in proteins. A major problem with sectors computed from covariance measures is the selection relies upon a full covariance matrix rather than on the covariance among the residues posited to be in the sector. We demonstrate a novel method which constructs sectors on the basis of cohesion within the residues in the sector to eliminate the incongruity between the sector idea and the way it is calculated. Furthermore, the refinement can be iteratively applied, enabling the extraction of more than one sector in a well-defined, systematic manner. In this study, we report on the development of MD multi-sector selector and its application to allosteric signaling in the tumor suppressor protein p53. We consider the implications of our findings on our long-term goal of allosterically reactivating mutant p53 as a means of curing cancer, and critically assess the broader applicability of MD multi-sector selector across diverse fields.
Collapse
Affiliation(s)
- Christopher
A. Chiu
- Quantitative
Analysis CenterWesleyan University, Allbritton Center, 222 Church Street, Middletown, Connecticut 06459, United States
| | - Sean Stetson
- Mathematics
and Computer Science, Wesleyan University 54 Lawn Avenue, Hall-Atwater Laboratories,
Chemistry Station, Middletown, Connecticut 06459, United States
| | - Kelly M. Thayer
- Quantitative
Analysis CenterWesleyan University, Allbritton Center, 222 Church Street, Middletown, Connecticut 06459, United States
- Mathematics
and Computer Science, Wesleyan University 54 Lawn Avenue, Hall-Atwater Laboratories,
Chemistry Station, Middletown, Connecticut 06459, United States
- Molecular
Biophysics Program, Wesleyan University, 54 Lawn Avenue, Hall-Atwater Laboratories,
Chemistry Station, Middletown, Connecticut 06459, United States
- College
of Integrative Sciences, Wesleyan University, 54 Lawn Avenue, Hall-Atwater Laboratories,
Chemistry Station, Middletown, Connecticut 06459, United States
| |
Collapse
|
4
|
Kratochvilová L, Dinová A, Valková N, Dobrovolná M, Sánchez-Murcia PA, Brázda V. Chromatin Immunoprecipitation Reveals p53 Binding to G-Quadruplex DNA Sequences in Myeloid Leukemia Cell Lines. ACS BIO & MED CHEM AU 2025; 5:283-298. [PMID: 40255281 PMCID: PMC12006861 DOI: 10.1021/acsbiomedchemau.4c00124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/27/2025] [Accepted: 01/29/2025] [Indexed: 04/22/2025]
Abstract
Clarifying functions of the p53 protein is a crucial aspect of cancer research. We analyzed the binding sites of p53 wild-type (WT) protein and its oncologically significant mutants and evaluated their transactivation properties using a functional yeast assay. Unlike the binding sites as determined in myeloid leukemia cell lines by chromatin immunoprecipitation of p53-R175H, p53-Y220C, p53-M237I, p53-R248Q, and p53-R273H mutants, the target sites of p53-WT and p53-R282W were significantly associated with putative G-quadruplex sequences (PQSs). Guanine-quadruplex (G-quadruplex or G4) formation in these sequences was evaluated by using a set of biophysical methods. G4s can modulate gene expression induced by p53. At low p53 expression level, PQS upstream of the p53-response element (RE) leads to greater gene expression induced by p53-R282W compared to that for the RE without PQS. Meanwhile, p53-WT protein expression is decreased by the PQS presence. At a high p53 expression level, the presence of PQS leads to a decreased expression of the reporter regardless of the distance and localization of the G4 from the RE.
Collapse
Affiliation(s)
- Libuše Kratochvilová
- Institute
of Biophysics of the Czech Academy of Sciences, Královopolská 135, Brno 612 65, Czech Republic
- Department
of Food Chemistry and Biotechnology, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, Brno 612 00, Czech Republic
| | - Alessandra Dinová
- Institute
of Biophysics of the Czech Academy of Sciences, Královopolská 135, Brno 612 65, Czech Republic
| | - Natália Valková
- Institute
of Biophysics of the Czech Academy of Sciences, Královopolská 135, Brno 612 65, Czech Republic
| | - Michaela Dobrovolná
- Institute
of Biophysics of the Czech Academy of Sciences, Královopolská 135, Brno 612 65, Czech Republic
- Department
of Food Chemistry and Biotechnology, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, Brno 612 00, Czech Republic
| | - Pedro A. Sánchez-Murcia
- Laboratory
of Computer-Aided Molecular Design, Division of Medicinal Chemistry, Otto-Loewi Research Center, Neue Stiftingtalstr. 6/III, Graz A-8010, Austria
- BioTechMed-Graz, Mozartgasse 12/II, Graz A-8010, Austria
| | - Václav Brázda
- Institute
of Biophysics of the Czech Academy of Sciences, Královopolská 135, Brno 612 65, Czech Republic
- Department
of Food Chemistry and Biotechnology, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, Brno 612 00, Czech Republic
| |
Collapse
|
5
|
Naeem W, Nawab F, Sarwar MT, Khalil AT, Gaber DA, Ahmad H, Fazeel M, Alorini M, Khan IA, Irfan M, Khan M, Khurram SA, Ali A. Profiling genetic mutations in the DNA damage repair genes of oral squamous cell carcinoma patients from Pakistan. Sci Rep 2025; 15:7896. [PMID: 40050371 PMCID: PMC11885471 DOI: 10.1038/s41598-025-91700-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 02/21/2025] [Indexed: 03/09/2025] Open
Abstract
Herein, we reported mutations in five DNA Damage Repair (DDR) i.e., TP53, ATR, ATM, CHEK1 and CHEK2 involved in OSCC using NG-WES and their analysis using bioinformatics tools. Out of 42 identified mutations, 16.7% are reported for the 1st time. A total of 28 nonsynonymous SNVs are identified. TP53 harbored the highest number of mutations followed by ATM, ATR, CHEK1 and CHEK2. Nine mutations (TP53p.R43H, TP53p.L125Q, TP53p.R116Q, TP53p.C110Y, TP53p.L62F, ATRp.H120Y, ATMp.P1054R, ATMp.D1853V, ATMp.T2934N) were predicted highly pathogenic. SAAFEQ-SEQ predicted destabilizing effects for all mutations, while ISPRED-SEQ identified 09 IS mutations, 07 on TP53, 01 in ATR and 01 in CHEK1 with no IS mutations predicted for ATM and CHEK2. Among the IS mutations, only SNVs were used in MDS simulations. The gyration radius for all IS SNVs was larger for mutant as compared to the wild type indicating perturbed folding behavior of the mutant proteins. Structural deviations across the carbon back bone were noted by RMSD for mutant and wild type. The TP53 IS mutations include TP53p.R116Q, TP53 p.C110Y, TP53p.R43H, TP53p.E214X, TP53p.R210X, TP53 p.C110Afs*5 and TP53 p,S108Ffs*23 whereas ATR and CHEK1 IS mutations consist of ATRp.M1932T and CHEK1p.E76Kfs*21. ConSurf analysis revealed four SNVs with a high conservation score (9) on TP53 and ATM. TP53p.P33R was predominantly associated with moderately differentiated tumors (84.60%), naswar users (86.60%) and positive family history of cancer (91.60%). The TP53p.P33R, ATRp.M211T and CHEK1p.I437V mutations were found recurrently in 21/27 (77.7%), 20/27 (74.04%), and 27/27 (100%) patients, suggesting its potential biomarker applications in local screening.
Collapse
Affiliation(s)
- Wafa Naeem
- Institute of Basic Medical Sciences, Khyber Medical University, Phase V, Peshawar, 25000, Pakistan
| | - Fouzia Nawab
- Institute of Basic Medical Sciences, Khyber Medical University, Phase V, Peshawar, 25000, Pakistan
| | - Muhammad Tahir Sarwar
- Institute of Basic Medical Sciences, Khyber Medical University, Phase V, Peshawar, 25000, Pakistan
| | - Ali Talha Khalil
- Department of Pathology, Lady Reading Hospital Medical Teaching Institution (LRH-MTI), Peshawar, Khyber Pakhtunkhwa, 25000, Pakistan.
| | - Dalia Ali Gaber
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Helwan University, Cairo, Egypt
- College of Medicine, Gulf Medical University, Ajman, UAE
| | - Hilal Ahmad
- Institute of Basic Medical Sciences, Khyber Medical University, Phase V, Peshawar, 25000, Pakistan
| | - Muhammad Fazeel
- Phelma Grenoble INP, Université Grenoble Alpes, Grenoble, France
| | - Mohammed Alorini
- Department of Pathology, College of Medicine, Qassim University, Unaizah, Saudi Arabia
| | - Ishtiaq Ahmad Khan
- Jamil-Ur-Rahman Center for Genome Research, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Muhammad Irfan
- Jamil-Ur-Rahman Center for Genome Research, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Muslim Khan
- Department of Oral and Maxillofacial Surgery, Khyber College of Dentistry, Peshawar, Pakistan
| | - Syed Ali Khurram
- School of Clinical Dentistry, Faulty of Health, University of Sheffield, Sheffield, S10 2TA, UK.
| | - Asif Ali
- Department of Pathology, College of Medicine, Qassim University, Unaizah, Saudi Arabia.
- Institute of Pathology and Diagnostic Medicine, Khyber Medical University, Phase V, Peshawar, 25000, Pakistan.
- School of Cancer Sciences, University of Glasgow, Glasgow, G12 8QQ, UK.
| |
Collapse
|
6
|
Rahmé R, Resnick-Silverman L, Anguiano V, Campbell MJ, Fenaux P, Manfredi JJ. Mutant p53 regulates a distinct gene set by a mode of genome occupancy that is shared with wild type. EMBO Rep 2025; 26:1315-1343. [PMID: 39875582 PMCID: PMC11893899 DOI: 10.1038/s44319-025-00375-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 01/05/2025] [Accepted: 01/14/2025] [Indexed: 01/30/2025] Open
Abstract
To directly examine the interplay between mutant p53 or Mdm2 and wild type p53 in gene occupancy and expression, an integrated RNA-seq and ChIP-seq analysis was performed in vivo using isogenically matched mouse strains. Response to radiation was used as an endpoint to place findings in a biologically relevant context. Unexpectedly, mutant p53 and Mdm2 only inhibit a subset of wild type p53-mediated gene expression. In contrast to a dominant-negative or inhibitory role, the presence of either mutant p53 or Mdm2 actually enhances the occupancy of wild type p53 on many canonical targets. The C-terminal 19 amino acids of wild type p53 suppress the p53 response allowing for survival at sublethal doses of radiation. Further, the p53 mutant 172H is shown to occupy genes and regulate their expression via non-canonical means that are shared with wild type p53. This results in the heterozygous 172H/+ genotype having an expanded transcriptome compared to wild type p53 + /+.
Collapse
Affiliation(s)
- Ramy Rahmé
- Department of Oncological Sciences and Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Institut de Recherche Saint Louis (IRSL), INSERM U1131, Université de Paris, Paris, France
- Ecole Doctorale Hématologie-Oncogenèse-Biothérapies, Université de Paris, Paris, France
| | - Lois Resnick-Silverman
- Department of Oncological Sciences and Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Vincent Anguiano
- Department of Oncological Sciences and Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | | | - Pierre Fenaux
- Institut de Recherche Saint Louis (IRSL), INSERM U1131, Université de Paris, Paris, France
- Service Hématologie Seniors, Hôpital Saint Louis, Assistance Publique-Hôpitaux de Paris (AP-HP), Université de Paris, Paris, France
| | - James J Manfredi
- Department of Oncological Sciences and Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
7
|
Cai BH, Wang YT, Chen CC, Yeh FY, Lin YR, Lin YC, Wu TY, Wu KY, Lien CF, Shih YC, Shaw JF. Chlorophyllides repress gain-of-function p53 mutated HNSCC cell proliferation via activation of p73 and repression of p53 aggregation in vitro and in vivo. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167662. [PMID: 39788216 DOI: 10.1016/j.bbadis.2025.167662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 12/14/2024] [Accepted: 01/03/2025] [Indexed: 01/12/2025]
Abstract
Head and neck squamous cell carcinoma (HNSCC) cells have a high p53 mutation rate, but there were rare reported about the p53 gain of function through the prion-like aggregated form in p53 mutated HNSCC cells. Thioflavin T (ThT) is used to stain prion-like proteins in cells. Previously, we found that ThT and p53 staining were co-localized in HNSCC cells (Detroit 562 cells) with homozygous p53 R175H mutation. NAMPT inhibitor can repress ThT staining in Detroit 562 cells. In our previous study, co-treatment with p73 activator NSC59984 and NAMPT inhibitor FK886 synergistically repressed Detroit 562 cell proliferation. In this study, we found that two heterozygous p53-R280T mutation HNSCC cell lines, TW01 and HONE-1, also have the ThT staining signal. Treatment with chlorophyllides and p73 activator or NAMPT inhibitor did not synergistically repress cell proliferation in either Detroit 562 or HONE-1 cells. Chlorophyllides reduced the ThT aggregation signal in both Detroit 562 and HONE-1 cells. Chlorophyllides also induced p73 and caspase 3/7 expression and repressed NAMPT expression in both Detroit 562 and HONE-1 cells. Chlorophyllides reduced tumor size in vivo in Detroit 562 cells injected into a xenograft nude mice model, but this in vivo tumor repression effect was not found in p73 knockdown Detroit 562 cells. Moreover, NAMPT was repressed by chlorophyllides independent of p73 status in vivo. We thus concluded that chlorophyllides have a dual anticancer function when applied to HNSCC cells with p53 gain-of-function mutation, via activation of p73 and repression of p53 aggregation.
Collapse
Affiliation(s)
- Bi-He Cai
- School of Medicine, I-Shou University, Kaohsiung City 82445, Taiwan.
| | - Yi-Ting Wang
- Department of Medical Science and Biotechnology, I-Shou University, Kaohsiung City 82445, Taiwan
| | - Chia-Chi Chen
- School of Medicine, I-Shou University, Kaohsiung City 82445, Taiwan; Department of Pathology, E-Da Hospital, Kaohsiung City 82445, Taiwan
| | - Fang-Yu Yeh
- School of Medicine, I-Shou University, Kaohsiung City 82445, Taiwan
| | - Yu-Rou Lin
- School of Medicine, I-Shou University, Kaohsiung City 82445, Taiwan
| | - Ying-Chen Lin
- Department of Medical Laboratory Science, I-Shou University, Kaohsiung City 82445, Taiwan
| | - Tze-You Wu
- Department of Biomedical Engineering, I-Shou University, Kaohsiung City 82445, Taiwan
| | - Kuan-Yo Wu
- Department of Medical Science and Biotechnology, I-Shou University, Kaohsiung City 82445, Taiwan
| | - Ching-Feng Lien
- Department of Otolaryngology-Head and Neck Surgery, E-Da Hospital, Kaohsiung City 82445, Taiwan
| | - Yu-Chen Shih
- Department of Otolaryngology-Head and Neck Surgery, E-Da Hospital, Kaohsiung City 82445, Taiwan.
| | - Jei-Fu Shaw
- Department of Medical Science and Biotechnology, I-Shou University, Kaohsiung City 82445, Taiwan.
| |
Collapse
|
8
|
Gunathilaka TL, Kumarasinghe HS, Bandaranayake UE, Athapaththu M, Samarakoon KW, Ranasinghe P, Peiris LDC. Integration of In Vitro and In-Silico Analysis of Gracilaria edulis on Anti-Cancer Potential and Apoptotic Signaling Pathway Activity. Cell Biochem Biophys 2025:10.1007/s12013-025-01685-7. [PMID: 39939528 DOI: 10.1007/s12013-025-01685-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2025] [Indexed: 02/14/2025]
Abstract
Breast cancer, the most common malignancy in females, and rhabdomyosarcoma (RMS), the most prevalent soft tissue sarcoma in children, remain significant clinical challenges. This study evaluated the anticancer potential and apoptotic signaling pathways of Gracilaria edulis extracts and identified their mechanisms of action against RMS and breast adenocarcinoma (MCF-7) cell lines. Cytotoxicity was assessed using MTT assays, while apoptotic potential was evaluated through phase contrast and fluorescence microscopy, caspase 3/7 activity, DNA fragmentation, and gene expression analysis of apoptosis regulatory genes. In silico analysis was also performed to examine the molecular interactions of bioactive compounds present in Gracilaria edulis with cancer-related proteins involved in apoptotic signaling. The methanol extract was fractionated into hexane, chloroform, and ethyl acetate, with the hexane fraction demonstrating the strongest cytotoxicity (IC50RMS: 32.52 ± 2.15 μg/mL; IC50MCF-7:29.84 ± 0.65 μg/mL) in MTT assays. Apoptotic features, including chromatin condensation, membrane blebbing, cellular shrinkage, and DNA fragmentation, were observed, particularly in RMS cells. The hexane fraction significantly activated caspase 3/7 in RMS cells, while lower activation was noted in MCF-7 cells, possibly due to the partial deletion of the CASP-3 gene. Real-time PCR analysis revealed differential gene expression, with p21 showing dominant upregulation in RMS cells and p53 being more prominently expressed in MCF-7 cells. These findings reflect their distinct roles in apoptotic signaling pathways. A significant increase in the Bax/Bcl-2 ratio in RMS cells (8.45) and MCF-7 cells (29.69) indicated a pro-apoptotic shift. GC-MS analysis identified key bioactive compounds, including 9-octadecenoic acid methyl ester, hexadecenoic acid methyl ester, and 1,2-benzenedicarboxylic acid mono(2-ethylhexyl) ester. In silico docking revealed that 1,2-benzenedicarboxylic acid mono(2-ethylhexyl) ester demonstrated the most promising binding interactions, particularly with BCL-2, while 9-octadecenoic acid methyl ester exhibited weaker binding affinities across all targets (p53, p21, and BCL-2), suggesting limited therapeutic relevance without structural optimization. However, the hexane fraction of G. edulis and its bioactive compounds remain promising as potential anticancer agents, warranting further in vitro and in vivo validation and molecular optimization.
Collapse
Affiliation(s)
- Thilina Lakmini Gunathilaka
- Department of Zoology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka.
- Department of Basic Science and Social Science for Nursing, Faculty of Nursing, University of Colombo, Colombo, Sri Lanka.
| | - Hiruni S Kumarasinghe
- Department of Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju-si, South Korea
| | - U E Bandaranayake
- ECU Sri Lanka campus, Sri Jayewardenepura Mawatha, Rajagiriya, Sri Lanka
| | | | - Kalpa W Samarakoon
- Institute for Combinatorial Advanced Research and Education (KDU-CARE), General Sir John Kotelawala Defence University, Ratmalana, 10390, Sri Lanka
| | | | - L Dinithi C Peiris
- Department of Zoology/Genetics & Molecular Biology Unit, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka.
| |
Collapse
|
9
|
Islam SM, Hasan M, Alam J, Dey A, Molineaux D. In Silico Screening, Molecular Dynamics Simulation and Binding Free Energy Identify Single-Point Mutations That Destabilize p53 and Reduce Binding to DNA. Proteins 2025; 93:498-514. [PMID: 39264222 PMCID: PMC11695177 DOI: 10.1002/prot.26747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/09/2024] [Accepted: 08/26/2024] [Indexed: 09/13/2024]
Abstract
Considering p53's pivotal role as a tumor suppressor protein, proactive identification and characterization of potentially harmful p53 mutations are crucial before they appear in the population. To address this, four computational prediction tools-SIFT, Polyphen-2, PhD-SNP, and MutPred2-utilizing sequence-based and machine-learning algorithms, were employed to identify potentially deleterious p53 nsSNPs (nonsynonymous single nucleotide polymorphisms) that may impact p53 structure, dynamics, and binding with DNA. These computational methods identified three variants, namely, C141Y, C238S, and L265P, as detrimental to p53 stability. Furthermore, molecular dynamics (MD) simulations revealed that all three variants exhibited heightened structural flexibility compared to the native protein, especially the C141Y and L265P mutations. Consequently, due to the altered structure of mutant p53, the DNA-binding affinity of all three variants decreased by approximately 1.8 to 9.7 times compared to wild-type p53 binding with DNA (14 μM). Notably, the L265P mutation exhibited an approximately ten-fold greater reduction in binding affinity. Consequently, the presence of the L265P mutation in p53 could pose a substantial risk to humans. Given that p53 regulates abnormal tumor growth, this research carries significant implications for surveillance efforts and the development of anticancer therapies.
Collapse
Affiliation(s)
- Shahidul M. Islam
- Department of Chemistry, Delaware State University, Dover, DE 19901, USA
| | - Mehedi Hasan
- Department of Chemistry, Delaware State University, Dover, DE 19901, USA
| | - Jahidul Alam
- Department of Molecular Biology and Biotechnology, Queen’s University Belfast, Northern Ireland, BT7 1NN, United Kingdom
| | - Anonya Dey
- Department of Genetic Engineering and Biotechnology, University of Chittagong, Chittagong, 4331, Bangladesh
| | - Dylan Molineaux
- Department of Chemistry, Delaware State University, Dover, DE 19901, USA
| |
Collapse
|
10
|
R HC, C GPD. Investigation of the impact of R273H and R273C mutations on the DNA binding domain of P53 protein through molecular dynamic simulation. J Biomol Struct Dyn 2025; 43:798-812. [PMID: 39737749 DOI: 10.1080/07391102.2023.2283793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/09/2023] [Indexed: 01/01/2025]
Abstract
The P53 protein, a cancer-associated transcriptional factor and tumor suppressor, houses a Zn2+ ion in its DNA-binding domain (DBD), essential for sequence-specific DNA binding. However, common mutations at position 273, specifically from Arginine to Histidine and Cysteine, lead to a loss of function as a tumor suppressor, also called DNA contact mutations. The mutant (MT) P53 structure cannot stabilize DNA due to inadequate interaction. To investigate the conformational changes, we performed a comparative molecular dynamic simulation (MDS) to study the effect of the P53-Wildtype (P53-WT) and the DNA contact mutations (R273H and R273C) on the DBD. Our research indicated that the DNA binding bases lose Hydrogen bonds (H bonds) when mutated to P53-R273H and P53-R273C during the simulation. We employed tools, such as PDIviz to highlight the contacts with DNA bases and backbone, major and minor grooves, and various pharmacophore forms of atoms. The contact maps for R273H and R273C were generated using the COZOID tool, which displayed changes in the frequency of the amino acids and DNA bases interaction in the DNA binding domain. These residues have diminished interactions, and the zinc-binding domain shows significant movements by Zn2+ ion binding to the phosphate group of the DNA, moving away from its binding sites. In conclusion, our research suggests that R273H and R273C each have unique stability and self-assembly properties. This understanding might assist researchers in better comprehending the function of the p53 protein and its importance in cancer.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Hephzibah Cathryn R
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, India
| | - George Priya Doss C
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, India
| |
Collapse
|
11
|
Joerger AC, Stiewe T, Soussi T. TP53: the unluckiest of genes? Cell Death Differ 2025; 32:219-224. [PMID: 39443700 PMCID: PMC11803090 DOI: 10.1038/s41418-024-01391-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/22/2024] [Accepted: 09/27/2024] [Indexed: 10/25/2024] Open
Abstract
The transcription factor p53 plays a key role in the cellular defense against cancer development. It is inactivated in virtually every tumor, and in every second tumor this inactivation is due to a mutation in the TP53 gene. In this perspective, we show that this diverse mutational spectrum is unique among all other cancer-associated proteins and discuss what drives the selection of TP53 mutations in cancer. We highlight that several factors conspire to make the p53 protein particularly vulnerable to inactivation by the mutations that constantly plague our genome. It appears that the TP53 gene has emerged as a victim of its own evolutionary past that shaped its structure and function towards a pluripotent tumor suppressor, but came with an increased structural fragility of its DNA-binding domain. TP53 loss of function - with associated dominant-negative effects - is the main mechanism that will impair TP53 tumor suppressive function, regardless of whether a neomorphic phenotype is associated with some of these variants.
Collapse
Affiliation(s)
- Andreas C Joerger
- Institute of Pharmaceutical Chemistry, Goethe University, Frankfurt am Main, Germany.
- Structural Genomics Consortium (SGC), Buchmann Institute for Molecular Life Sciences, Frankfurt am Main, Germany.
| | - Thorsten Stiewe
- Institute of Molecular Oncology, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Philipps University, Marburg, Germany.
- Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany.
| | - Thierry Soussi
- Equipe « Hematopoietic and Leukemic Development », Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, SIRIC CURAMUS, Paris, France.
- Dept. of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Clinical Genetics, Uppsala University Hospital, Uppsala, Sweden.
| |
Collapse
|
12
|
Peris-Díaz MD, Krężel A, Barran P. Deciphering the safeguarding role of cysteine residues in p53 against H 2O 2-induced oxidation using high-resolution native mass spectrometry. Commun Chem 2025; 8:13. [PMID: 39814824 PMCID: PMC11736120 DOI: 10.1038/s42004-024-01395-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 12/12/2024] [Indexed: 01/18/2025] Open
Abstract
The transcription factor p53 is exquisitely sensitive and selective to a broad variety of cellular environments. Several studies have reported that oxidative stress weakens the p53-DNA binding affinity for certain promoters depending on the oxidation mechanism. Despite this body of work, the precise mechanisms by which the physiologically relevant DNA-p53 tetramer complex senses cellular stresses caused by H2O2 are still unknown. Here, we employed native mass spectrometry (MS) and ion mobility (IM)-MS coupled to chemical labelling and H2O2-induced oxidation to examine the mechanism of redox regulation of the p53-p21 complex. Our approach has found that two reactive cysteines in p53 protect against H2O2-induced oxidation by forming reversible sulfenates.
Collapse
Affiliation(s)
- Manuel David Peris-Díaz
- Michael Barber Centre for Collaborative Mass Spectrometry, Manchester Institute of Biotechnology, Manchester, UK.
- Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, F. Joliot-Curie 14a, Wrocław, Poland.
| | - Artur Krężel
- Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, F. Joliot-Curie 14a, Wrocław, Poland
| | - Perdita Barran
- Michael Barber Centre for Collaborative Mass Spectrometry, Manchester Institute of Biotechnology, Manchester, UK.
| |
Collapse
|
13
|
Zhou H, Yan S. Mechanisms of p53 core tetramer stability mediated by multi-interface interactions: A molecular dynamics study. Arch Biochem Biophys 2025; 763:110210. [PMID: 39603375 DOI: 10.1016/j.abb.2024.110210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/31/2024] [Accepted: 11/02/2024] [Indexed: 11/29/2024]
Abstract
p53 is a tumor suppressor protein for impeding cancer development and maintaining genetic integrity. The formation of the p53 core tetramer is regulated by multiple cooperative interaction interfaces. To investigate the internal mechanisms of tetramer stability, we performed all-atom molecular dynamics simulations. Our findings indicate that the symmetric interface maintains highly conserved interactions, while the dimer-dimer interface displays notable flexibility. Additionally, we identified a novel salt bridge at the dimer-dimer interface that significantly contributes to the interaction energy. Moreover, the affinity of p53 for DNA is more than twice that of protein-protein interactions, driven primarily by five key residues that form multiple hydrogen bonds. Through independent simulations of the two dimeric models, we provide a theoretical explanation for why only the symmetric dimeric structure has been observed experimentally. The study identifies key regions and residues that contribute to stability at the inter-molecular interaction interfaces within the p53 tetramer, and highlight the important roles of each contact surface in the formation and stability of the tetramer.
Collapse
Affiliation(s)
- Han Zhou
- School of Physics and Astronomy, Beijing Normal University, Beijing 100875, China
| | - Shiwei Yan
- School of Physics and Astronomy, Beijing Normal University, Beijing 100875, China; Faculty of Arts and Sciences, Beijing Normal University at Zhuhai, Zhuhai 519087, China.
| |
Collapse
|
14
|
Klett T, Stahlecker J, Jaag S, Masberg B, Knappe C, Lämmerhofer M, Coles M, Stehle T, Boeckler FM. Covalent Fragments Acting as Tyrosine Mimics for Mutant p53-Y220C Rescue by Nucleophilic Aromatic Substitution. ACS Pharmacol Transl Sci 2024; 7:3984-3999. [PMID: 39698266 PMCID: PMC11651176 DOI: 10.1021/acsptsci.4c00414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/30/2024] [Accepted: 11/01/2024] [Indexed: 12/20/2024]
Abstract
The tumor suppressor p53 is frequently mutated in human cancers. The Y220C mutant is the ninth most common p53 cancer mutant and is classified as a structural mutant, as it leads to strong thermal destabilization and degradation by creating a solvent-accessible hydrophobic cleft. To identify small molecules that thermally stabilize p53, we employed DSF to screen SNAr-type electrophiles from our covalent fragment library (CovLib) for binding to different structural (Y220C, R282W) and DNA contact (R273H) mutants of p53. The reactive fragments SN001, SN006, and SN007 were detected to specifically stabilize Y220C, indicating the arylation of Cys220 in the mutational cleft, as confirmed by X-ray crystallography. The fragments occupy the central cavity and mimic the ring system of the WT tyrosine lost by the mutation. Surpassing previously reported noncovalent ligands, SN001 stabilized T-p53C-Y220C concentration-dependently up to 4.45 °C and, due to its small size, represents a promising starting point for optimization.
Collapse
Affiliation(s)
- Theresa Klett
- Lab
for Molecular Design & Pharm. Biophysics, Institute of Pharmaceutical
Sciences, Eberhard Karls Universität
Tübingen, 72076 Tübingen, Germany
| | - Jason Stahlecker
- Lab
for Molecular Design & Pharm. Biophysics, Institute of Pharmaceutical
Sciences, Eberhard Karls Universität
Tübingen, 72076 Tübingen, Germany
| | - Simon Jaag
- Pharmaceutical
(Bio-)Analysis, Institute of Pharmaceutical Sciences, Eberhard Karls Universität Tübingen, 72076 Tübingen, Germany
| | - Benedikt Masberg
- Pharmaceutical
(Bio-)Analysis, Institute of Pharmaceutical Sciences, Eberhard Karls Universität Tübingen, 72076 Tübingen, Germany
| | - Cornelius Knappe
- Pharmaceutical
(Bio-)Analysis, Institute of Pharmaceutical Sciences, Eberhard Karls Universität Tübingen, 72076 Tübingen, Germany
| | - Michael Lämmerhofer
- Pharmaceutical
(Bio-)Analysis, Institute of Pharmaceutical Sciences, Eberhard Karls Universität Tübingen, 72076 Tübingen, Germany
| | - Murray Coles
- Department
of Protein Evolution, Max-Planck-Institute
for Biology, 72076 Tübingen, Germany
| | - Thilo Stehle
- Interfaculty
Institute of Biochemistry, Eberhard Karls
Universität Tübingen, 72076 Tübingen, Germany
| | - Frank M. Boeckler
- Lab
for Molecular Design & Pharm. Biophysics, Institute of Pharmaceutical
Sciences, Eberhard Karls Universität
Tübingen, 72076 Tübingen, Germany
- Interfaculty
Institute for Biomedical Informatics (IBMI), Eberhard Karls Universität Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
15
|
Pervushin NV, Nilov DK, Pushkarev SV, Shipunova VO, Badlaeva AS, Yapryntseva MA, Kopytova DV, Zhivotovsky B, Kopeina GS. BH3-mimetics or DNA-damaging agents in combination with RG7388 overcome p53 mutation-induced resistance to MDM2 inhibition. Apoptosis 2024; 29:2197-2213. [PMID: 39222276 PMCID: PMC11550243 DOI: 10.1007/s10495-024-02014-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
The development of drug resistance reduces the efficacy of cancer therapy. Tumor cells can acquire resistance to MDM2 inhibitors, which are currently under clinical evaluation. We generated RG7388-resistant neuroblastoma cells, which became more proliferative and metabolically active and were less sensitive to DNA-damaging agents in vitro and in vivo, compared with wild-type cells. The resistance was associated with a mutation of the p53 protein (His193Arg). This mutation abated its transcriptional activity via destabilization of the tetrameric p53-DNA complex and was observed in many cancer types. Finally, we found that Cisplatin and various BH3-mimetics could enhance RG7388-mediated apoptosis in RG7388-resistant neuroblastoma cells, thereby partially overcoming resistance to MDM2 inhibition.
Collapse
Affiliation(s)
- N V Pervushin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
- Faculty of Medicine, MV Lomonosov Moscow State University, Moscow, 119991, Russia
| | - D K Nilov
- Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - S V Pushkarev
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - V O Shipunova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
- Moscow Center for Advanced Studies, Moscow, 123592, Russia
| | - A S Badlaeva
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Russian Ministry of Health, Moscow, 117513, Russia
| | - M A Yapryntseva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
- Faculty of Medicine, MV Lomonosov Moscow State University, Moscow, 119991, Russia
| | - D V Kopytova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - B Zhivotovsky
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
- Faculty of Medicine, MV Lomonosov Moscow State University, Moscow, 119991, Russia.
- Division of Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Box 210, 17177, Stockholm, Sweden.
| | - G S Kopeina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
- Faculty of Medicine, MV Lomonosov Moscow State University, Moscow, 119991, Russia.
| |
Collapse
|
16
|
Zhang H, Xu J, Long Y, Maimaitijiang A, Su Z, Li W, Li J. Unraveling the Guardian: p53's Multifaceted Role in the DNA Damage Response and Tumor Treatment Strategies. Int J Mol Sci 2024; 25:12928. [PMID: 39684639 DOI: 10.3390/ijms252312928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/21/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
DNA damage can lead to mutations that can alter the function of oncogenes or tumor suppressor genes, thus promoting the development of cancer. p53 plays a multifaceted and complex role in the DNA damage response and cancer progression and is known as the 'guardian of the gene'. When DNA damage occurs, p53 is activated through a series of post-translational modifications, which stabilize the protein and enhance its function as a transcription factor. It regulates processes including cell cycle checkpoints, DNA repair and apoptosis, thereby preventing the spread of damaged DNA and maintaining genome integrity. On the one hand, p53 can initiate cell cycle arrest and induce cells to enter the G1/S and G2/M checkpoints, preventing cells with damaged DNA from continuing to proliferate and gaining time for DNA repair. At the same time, p53 can promote the activation of DNA repair pathways, including base excision repair, nucleotide excision repair and other repair pathways, to ensure the integrity of genetic material. If the damage is too severe to repair, p53 will trigger the apoptosis process to eliminate potential cancer risks in time. p53 also plays a pivotal role in cancer progression. Mutations in the p53 gene are frequently found in many cancers, and the mutated p53 not only loses its normal tumor suppressor function but may even acquire pro-cancer activity. Therefore, we also discuss therapeutic strategies targeting the p53 pathway, such as the use of small-molecule drugs to restore the function of wild-type p53, the inhibition of negative regulatory factors and synthetic lethality approaches for p53-deficient tumors. This review therefore highlights the important role of p53 in maintaining genomic stability and its potential in therapeutic strategies for cancer.
Collapse
Affiliation(s)
- Han Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| | - Jianxiong Xu
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| | - Yuxuan Long
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| | - Ayitila Maimaitijiang
- School of Pharmaceutical Science, Institute of Materia Medica, Xinjiang University, Urumqi 830017, China
| | - Zhengding Su
- School of Pharmaceutical Science, Institute of Materia Medica, Xinjiang University, Urumqi 830017, China
| | - Wenfang Li
- School of Pharmaceutical Science, Institute of Materia Medica, Xinjiang University, Urumqi 830017, China
| | - Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| |
Collapse
|
17
|
Hwang SH, Baek SH, Lee MJ, Kook Y, Bae SJ, Ahn SG, Jeong J. Clinical Relevance of TP53 Mutation and Its Characteristics in Breast Cancer with Long-Term Follow-Up Date. Cancers (Basel) 2024; 16:3899. [PMID: 39682089 DOI: 10.3390/cancers16233899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/30/2024] [Accepted: 10/30/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND The TP53 mutation is one of the most frequently identified mutations in human cancers and is typically associated with a poor prognosis. However, there are conflicting findings regarding its impact. We aimed to clarify the clinical relevance of TP53 mutations across all breast cancer subtypes and treatments utilizing long-term follow-up data. METHODS We retrospectively identified the data of breast cancer patients who underwent TP53 mutation testing. Stratified log-rank tests and Cox regression analysis were performed to compare oncologic outcomes based on TP53 mutation status and the characteristics of these mutations, including types and locations. Mutations in exons 5-9 were identified using polymerase chain reaction-denaturing high-performance liquid chromatography (PCR-DHPLC) and direct sequencing. RESULTS Between January 2007 and December 2015, 650 breast cancer patients underwent TP53 mutation testing in Gangnam Severance Hospital. The TP53 mutations were identified in 172 patients (26.5%), with 34 (19.8%) exhibiting missense hotspot mutations. Patients with TP53 mutations (TP53-mutated group) had worse prognosis, demonstrated by a 10-year recurrence-free survival (RFS) rate of 83.5% compared to 86.6% in patients without mutations (HR, 1.67; p = 0.026) and a 10-year overall survival (OS) rate of 88.1% versus 91.0% (HR, 3.02; p = 0.003). However, subgroup analyses within the TP53-mutated group did not reveal significant differences in oncologic outcomes based on mutation types and locations. CONCLUSIONS Our findings establish that TP53 mutations are linked to poorer oncologic outcomes in breast cancer across all subtypes. Yet, within the TP53-mutated group, the specific characteristics of TP53 mutations do not influence oncologic outcomes.
Collapse
Affiliation(s)
- Seung Hyun Hwang
- Institute for Breast Cancer Precision Medicine, Yonsei University College of Medicine, Seoul 06273, Republic of Korea
- Department of Breast and Thyroid Surgery, Sam Hospital, Anyang 14030, Republic of Korea
| | - Seung Ho Baek
- Institute for Breast Cancer Precision Medicine, Yonsei University College of Medicine, Seoul 06273, Republic of Korea
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Republic of Korea
| | - Min Ji Lee
- Institute for Breast Cancer Precision Medicine, Yonsei University College of Medicine, Seoul 06273, Republic of Korea
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Republic of Korea
| | - Yoonwon Kook
- Institute for Breast Cancer Precision Medicine, Yonsei University College of Medicine, Seoul 06273, Republic of Korea
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Republic of Korea
| | - Soong June Bae
- Institute for Breast Cancer Precision Medicine, Yonsei University College of Medicine, Seoul 06273, Republic of Korea
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Republic of Korea
| | - Sung Gwe Ahn
- Institute for Breast Cancer Precision Medicine, Yonsei University College of Medicine, Seoul 06273, Republic of Korea
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Republic of Korea
| | - Joon Jeong
- Institute for Breast Cancer Precision Medicine, Yonsei University College of Medicine, Seoul 06273, Republic of Korea
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Republic of Korea
| |
Collapse
|
18
|
Brown K, Robello M, Perciaccante AJ, Dinan JC, Maity TK, Lyons GC, Kumar JP, Durell SR, Tagad HD, Schilling D, Nikolayevskiy H, O’Connor R, Appella E, Appella DH, Jenkins LM. Covalent Modification of p53 by ( E)-1-(4-Methylpiperazin-1-yl)-3-(5-nitrofuran-2-yl)prop-2-en-1-one. ACS Pharmacol Transl Sci 2024; 7:3559-3572. [PMID: 39539265 PMCID: PMC11555513 DOI: 10.1021/acsptsci.4c00447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 11/16/2024]
Abstract
TP53 is commonly mutated in cancer, giving rise to loss of wild-type tumor suppressor function and increases in gain-of-function oncogenic roles. Thus, inhibition of mutant p53 and reactivation of wild-type function represents a potential means to target diverse tumor types. (E)-1-(4-Methylpiperazin-1-yl)-3-(5-nitrofuran-2-yl)prop-2-en-1-one (NSC59984), first identified from a high-throughput screen, induces wild-type p53 signaling and antiproliferative effects while inhibiting mutant p53 gain-of-function activities. Here, we investigate the specific mechanism of action of NSC59984 against p53. We found that NSC59984 reacts with thiols via an unusual Michael addition at the α-carbon. Covalent modification of p53 Cys124 and Cys229 was observed both following in vitro reaction and upon treatment of cells. Finally, we used a biotinylated form of NSC59984 and, separately, thermal proteome profiling to examine off-target effects, identifying several metabolic proteins involved in cellular metabolism as potential targets. These results demonstrate that covalent modification of p53 by NSC59984 leads to increased wild-type activity and suggest that potential reaction with metabolic enzymes may contribute to antiproliferative function.
Collapse
Affiliation(s)
- Kate Brown
- Laboratory
of Cell Biology, National Cancer Institute,
National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Marco Robello
- Laboratory
of Bioorganic Chemistry, National Institute
of Diabetes and Digestive and Kidney Diseases, National Institutes
of Health, Bethesda, Maryland 20814, United States
| | - Andrew J. Perciaccante
- Laboratory
of Cell Biology, National Cancer Institute,
National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Jerry C. Dinan
- Laboratory
of Cell Biology, National Cancer Institute,
National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Tapan K. Maity
- Laboratory
of Cell Biology, National Cancer Institute,
National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Gaelyn C. Lyons
- Laboratory
of Cell Biology, National Cancer Institute,
National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Jay P. Kumar
- Laboratory
of Cell Biology, National Cancer Institute,
National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Stewart R. Durell
- Laboratory
of Cell Biology, National Cancer Institute,
National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Harichandra D. Tagad
- Laboratory
of Cell Biology, National Cancer Institute,
National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Daniel Schilling
- Laboratory
of Cell Biology, National Cancer Institute,
National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Herman Nikolayevskiy
- Laboratory
of Bioorganic Chemistry, National Institute
of Diabetes and Digestive and Kidney Diseases, National Institutes
of Health, Bethesda, Maryland 20814, United States
| | - Robert O’Connor
- Laboratory
of Bioorganic Chemistry, National Institute
of Diabetes and Digestive and Kidney Diseases, National Institutes
of Health, Bethesda, Maryland 20814, United States
| | - Ettore Appella
- Laboratory
of Cell Biology, National Cancer Institute,
National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Daniel H. Appella
- Laboratory
of Bioorganic Chemistry, National Institute
of Diabetes and Digestive and Kidney Diseases, National Institutes
of Health, Bethesda, Maryland 20814, United States
| | - Lisa M. Jenkins
- Laboratory
of Cell Biology, National Cancer Institute,
National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
19
|
Thangavelu L, Altamimi ASA, Ghaboura N, Babu MA, Roopashree R, Sharma P, Pal P, Choudhary C, Prasad GVS, Sinha A, Balaraman AK, Rawat S. Targeting the p53-p21 axis in liver cancer: Linking cellular senescence to tumor suppression and progression. Pathol Res Pract 2024; 263:155652. [PMID: 39437639 DOI: 10.1016/j.prp.2024.155652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024]
Abstract
Liver cancer is a major health epidemic worldwide, mainly due to its high mortality rates and limited treatment options. The association of cellular senescence to tumorigenesis and the cancer hallmarks remains a subject of interest in cancer biology. The p53-p21 signalling axis is an important regulator in restoring the cell's balance by supporting tumor suppression and tumorigenesis in liver cancer. We review the novel molecular mechanisms that p53 and its downstream effector, p21, employ to induce cellular senescence, making it last longer, and halt the proliferation of damaged hepatocytes to become tumorous cells. We also examine how dysregulation of this pathway contributes to HCC pathogenesis, proliferation, survival, acquired resistance to apoptosis, and increased invasiveness. Furthermore, we comprehensively describe the molecular cross-talk between the p53-p21 signalling axis and major cell cycle signalling pathways, including Wnt/β-catenin, PI3K/Akt, and TGF-β in liver cancer and provide an overview of promising candidates for chemoprevention and future therapeutic strategies. This review article explores the roles of the p53-p21 pathway in liver cancer, examining its function in promoting cellular senescence under normal conditions and its potential role in cancer progression. It also highlights novel therapeutic drugs and drug targets within the pathway and discusses the implications for treatment strategies and prognosis in liver cancer.
Collapse
Affiliation(s)
- Lakshmi Thangavelu
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Abdulmalik S A Altamimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Nehmat Ghaboura
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - M Arockia Babu
- Institute of Pharmaceutical Research, GLA UNIVERSITY, Mathura, UP 281406, India.
| | - R Roopashree
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Pawan Sharma
- Department of Sciences, Vivekananda Global University, Jaipur, Rajasthan 303012, India
| | - Pusparghya Pal
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - Chhavi Choudhary
- Chandigarh Pharmacy College, Chandigarh Group of College, Jhanjeri, Mohali, Punjab 140307, India
| | - G V Siva Prasad
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh 531162, India
| | - Aashna Sinha
- School of Applied and Life Sciences, Division of Research and Innovation, Uttaranchal University, Dehradun, India
| | - Ashok Kumar Balaraman
- Research and Enterprise, University of Cyberjaya, Persiaran Bestari, Cyber 11, Cyberjaya, Selangor 63000, Malaysia
| | - Sushama Rawat
- Department of Biotechnology, Graphic Era (Deemed to be University), Clement Town, Dehradun 248002, India
| |
Collapse
|
20
|
Vélez Gómez S, Martínez Garro JM, Ortiz Gómez LD, Salazar Flórez JE, Monroy FP, Peláez Sánchez RG. Bioinformatic Characterization of the Functional and Structural Effect of Single Nucleotide Mutations in Patients with High-Grade Glioma. Biomedicines 2024; 12:2287. [PMID: 39457600 PMCID: PMC11505048 DOI: 10.3390/biomedicines12102287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Gliomas are neoplasms of the central nervous system that originate in glial cells. The genetic characteristics of this type of neoplasm are the loss of function of tumor suppressor genes such as TP53 and somatic mutations in genes such as IDH1/2. Additionally, in clinical cases, de novo single nucleotide polymorphisms (SNP) are reported, of which their pathogenicity and their effects on the function and stability of the protein are known. Methodology: Non-synonymous SNPs were analyzed for their structural and functional effect on proteins using a set of bioinformatics tools such as SIFT, PolyPhen-2, PhD-SNP, I-Mutant 3.0, MUpro, and mutation3D. A structural comparison between normal and mutated residues for disease-associated coding SNPs was performed using TM-aling and the SWISS MODEL. Results: A total of 13 SNPs were obtained for the TP53 gene, 1 SNP for IDH1, and 1 for IDH2, which would be functionally detrimental and associated with disease. Additionally, these changes compromise the structure and function of the protein; the A161S SNP for TP53 that has not been reported in any databases was classified as detrimental. Conclusions: All non-synonymous SNPs reported for TP53 were in the region of the deoxyribonucleic acid (DNA) binding domain and had a great impact on the function and stability of the protein. In addition, the two polymorphisms detected in IDH1 and IDH2 genes compromise the structure and activity of the protein. Both genes are related to the development of high-grade gliomas. All the data obtained in this study must be validated through experimental approaches.
Collapse
Affiliation(s)
- Sara Vélez Gómez
- Faculty of Sciences and Biotechnology, CES University, Medellín 050021, Colombia;
| | | | | | - Jorge Emilio Salazar Flórez
- GEINCRO Research Group, Medicine Program, School of Health Sciences, San Martín University Foundation, Sabaneta 055457, Colombia;
| | - Fernando P. Monroy
- Department of Biological Sciences, Northerm Arizona University, Flagstaff, AZ 85721, USA;
| | | |
Collapse
|
21
|
Zhou H, Yan S. Deciphering Internal Regulatory Patterns within the p53 Core Tetramer: Insights from Community Network Analysis. J Phys Chem Lett 2024; 15:9652-9658. [PMID: 39283177 DOI: 10.1021/acs.jpclett.4c02382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Gene therapy is one of the most effective strategies for cancer treatment. The p53 protein, commonly known as the "guardian of the genome", plays a critical role in gene activation and tumor suppression. Tetramerization of the p53 core domain is an essential allosteric process that supports its suppression functions. This letter presents a framework to analyze the structure, function, and dynamic connectivity of the p53 tetramer, using community network analysis based on all-atom molecular dynamics simulations. The communities within the p53 monomer exhibit distinct functional roles, while interactions between molecules establish a symmetrical network structure. We identified direct evidence of single, double, and multiple pathway regulations within the p53 tetramer and crucial residue pairs involved in these connections. Our study provides a comprehensive framework to understand the community network of the p53 tetramer, offering new insights into the stable formation of the p53 core tetramer.
Collapse
Affiliation(s)
- Han Zhou
- School of Physics and Astronomy, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Shiwei Yan
- School of Physics and Astronomy, Beijing Normal University, Beijing 100875, People's Republic of China
- Faculty of Arts and Sciences, Beijing Normal University at Zhuhai, Zhuhai, Guangdong 519087, People's Republic of China
| |
Collapse
|
22
|
Xhafa S, Di Nicola C, Tombesi A, Pettinari R, Pettinari C, Scarpelli F, Crispini A, La Deda M, Candreva A, Garufi A, D'Orazi G, Galindo A, Marchetti F. Pyrazolone-Based Zn(II) Complexes Display Antitumor Effects in Mutant p53-Carrying Cancer Cells. J Med Chem 2024; 67:15676-15690. [PMID: 39221914 DOI: 10.1021/acs.jmedchem.4c01298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The synthesis and characterization of nine Schiff bases of pyrazolone ligands HLn (n = 1-9) and the corresponding zinc(II) complexes 1-9 of composition [Zn(Ln)2] (n = 1-9) are reported. The molecular structures of complexes 2, 3, 4, 8, and 9 were determined by single-crystal X-ray diffraction analysis, highlighting in all cases a distorted tetrahedral geometry around the Zn(II) ion. Density functional theory studies are performed on both the HLn ligands and the derived complexes. A mechanism of dissociation and hydrolyzation of the coordinated Schiff base ligands is suggested, confirmed experimentally by powder X-ray diffraction study and photophysical studies. Complexes 1-9 were investigated in vitro as anticancer agents, along with mutant p53 (mutp53) protein levels in human cancer cell lines carrying R175H and R273H mutp53 proteins. Only those complexes with the highest Zn(II) ion release via dissociation have shown a significant cytotoxic activity with reduction of mutp53 protein levels.
Collapse
Affiliation(s)
- Sonila Xhafa
- ChIP Research Center, School of Science and Technology, University of Camerino, via Madonna delle Carceri Camerino, 62032 Macerata, Italy
| | - Corrado Di Nicola
- ChIP Research Center, School of Science and Technology, University of Camerino, via Madonna delle Carceri Camerino, 62032 Macerata, Italy
| | - Alessia Tombesi
- ChIP Research Center, School of Pharmacy, University of Camerino, via Madonna delle Carceri Camerino, 62032 Macerata, Italy
| | - Riccardo Pettinari
- ChIP Research Center, School of Pharmacy, University of Camerino, via Madonna delle Carceri Camerino, 62032 Macerata, Italy
| | - Claudio Pettinari
- ChIP Research Center, School of Pharmacy, University of Camerino, via Madonna delle Carceri Camerino, 62032 Macerata, Italy
| | - Francesca Scarpelli
- MAT-InLAB, Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Arcavacata di Rende, 87036 Cosenza, Italy
| | - Alessandra Crispini
- MAT-InLAB, Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Arcavacata di Rende, 87036 Cosenza, Italy
| | - Massimo La Deda
- MAT-InLAB, Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Arcavacata di Rende, 87036 Cosenza, Italy
| | - Angela Candreva
- MAT-InLAB, Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Arcavacata di Rende, 87036 Cosenza, Italy
| | - Alessia Garufi
- Department of Research and Advanced Technologies, IRCCS Regina Elena, National Cancer Institute, via Elio Chianesi 53, 00144 Rome, Italy
| | - Gabriella D'Orazi
- Department of Research and Advanced Technologies, IRCCS Regina Elena, National Cancer Institute, via Elio Chianesi 53, 00144 Rome, Italy
- Department of Neurosciences, Imaging and Clinical Sciences, University G. D'Annunzio, via dei Vestini 31, 66013 Chieti, Italy
| | - Agustín Galindo
- Departamento de Química Inorgánica, Facultad de Química, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Fabio Marchetti
- ChIP Research Center, School of Science and Technology, University of Camerino, via Madonna delle Carceri Camerino, 62032 Macerata, Italy
| |
Collapse
|
23
|
Mahat DB, Kumra H, Castro SA, Metcalf E, Nguyen K, Morisue R, Ho WW, Chen I, Sullivan B, Yim LK, Singh A, Fu J, Waterton SK, Cheng YC, Roberge S, Moiso E, Chauhan VP, Silva HM, Spranger S, Jain RK, Sharp PA. Mutant p53 Exploits Enhancers to Elevate Immunosuppressive Chemokine Expression and Impair Immune Checkpoint Inhibitors in Pancreatic Cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.28.609802. [PMID: 39257788 PMCID: PMC11383995 DOI: 10.1101/2024.08.28.609802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer without effective treatments. It is characterized by activating KRAS mutations and p53 alterations. However, how these mutations dysregulate cancer-cell-intrinsic gene programs to influence the immune landscape of the tumor microenvironment (TME) remains poorly understood. Here, we show that p53R172H establishes an immunosuppressive TME, diminishes the efficacy of immune checkpoint inhibitors (ICIs), and enhances tumor growth. Our findings reveal that the upregulation of the immunosuppressive chemokine Cxcl1 mediates these pro-tumorigenic functions of p53R172H. Mechanistically, we show that p53R172H associates with the distal enhancers of the Cxcl1 gene, increasing enhancer activity and Cxcl1 expression. p53R172H occupies these enhancers in an NF-κB-pathway-dependent manner, suggesting NF-κB's role in recruiting p53R172H to the Cxcl1 enhancers. Our work uncovers how a common mutation in a tumor-suppressor transcription factor appropriates enhancers, stimulating chemokine expression and establishing an immunosuppressive TME that diminishes ICI efficacy in PDAC.
Collapse
Affiliation(s)
- Dig B Mahat
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Heena Kumra
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Sarah A Castro
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Emily Metcalf
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Kim Nguyen
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Ryo Morisue
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - William W Ho
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Ivy Chen
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Brandon Sullivan
- Ragon Institute of Mass General, MIT, and Harvard, MA, 02139, USA
| | - Leon K Yim
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Arundeep Singh
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Jiayu Fu
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Sean K Waterton
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Yu-Chi Cheng
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Sylvie Roberge
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Enrico Moiso
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Vikash P Chauhan
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Hernandez Moura Silva
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA,02139, USA
- Ragon Institute of Mass General, MIT, and Harvard, MA, 02139, USA
- Howard Hughes Medical Institute, Cambridge, MA, 02139, USA
| | - Stefani Spranger
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA,02139, USA
- Ragon Institute of Mass General, MIT, and Harvard, MA, 02139, USA
| | - Rakesh K Jain
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Phillip A Sharp
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA,02139, USA
| |
Collapse
|
24
|
Thayer KM, Stetson S, Caballero F, Chiu C, Han ISM. Navigating the complexity of p53-DNA binding: implications for cancer therapy. Biophys Rev 2024; 16:479-496. [PMID: 39309126 PMCID: PMC11415564 DOI: 10.1007/s12551-024-01207-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 06/21/2024] [Indexed: 09/25/2024] Open
Abstract
Abstract The tumor suppressor protein p53, a transcription factor playing a key role in cancer prevention, interacts with DNA as its primary means of determining cell fate in the event of DNA damage. When it becomes mutated, it opens damaged cells to the possibility of reproducing unchecked, which can lead to formation of cancerous tumors. Despite its critical role, therapies at the molecular level to restore p53 native function remain elusive, due to its complex nature. Nevertheless, considerable information has been amassed, and new means of investigating the problem have become available. Objectives We consider structural, biophysical, and bioinformatic insights and their implications for the role of direct and indirect readout and how they contribute to binding site recognition, particularly those of low consensus. We then pivot to consider advances in computational approaches to drug discovery. Materials and methods We have conducted a review of recent literature pertinent to the p53 protein. Results Considerable literature corroborates the idea that p53 is a complex allosteric protein that discriminates its binding sites not only via consensus sequence through direct H-bond contacts, but also a complex combination of factors involving the flexibility of the binding site. New computational methods have emerged capable of capturing such information, which can then be utilized as input to machine learning algorithms towards the goal of more intelligent and efficient de novo allosteric drug design. Conclusions Recent improvements in machine learning coupled with graph theory and sector analysis hold promise for advances to more intelligently design allosteric effectors that may be able to restore native p53-DNA binding activity to mutant proteins. Clinical relevance The ideas brought to light by this review constitute a significant advance that can be applied to ongoing biophysical studies of drugs for p53, paving the way for the continued development of new methodologies for allosteric drugs. Our discoveries hold promise to provide molecular therapeutics which restore p53 native activity, thereby offering new insights for cancer therapies. Graphical Abstract Structural representation of the p53 DBD (PDBID 1TUP). DNA consensus sequence is shown in gray, and the protein is shown in blue. Red beads indicate hotspot residue mutations, green beads represent DNA interacting residues, and yellow beads represent both.
Collapse
Affiliation(s)
- Kelly M. Thayer
- College of Integrative Sciences, Wesleyan University, Middletown, CT 06457 USA
- Department of Chemistry, Wesleyan University, Middletown, CT 06457 USA
- Department of Mathematics and Computer Science, Wesleyan University, Middletown, CT 06457 USA
- Molecular Biophysics Program, Wesleyan University, Middletown, CT 06457 USA
| | - Sean Stetson
- Department of Chemistry, Wesleyan University, Middletown, CT 06457 USA
- Department of Mathematics and Computer Science, Wesleyan University, Middletown, CT 06457 USA
| | - Fernando Caballero
- College of Integrative Sciences, Wesleyan University, Middletown, CT 06457 USA
- Department of Mathematics and Computer Science, Wesleyan University, Middletown, CT 06457 USA
| | - Christopher Chiu
- Department of Mathematics and Computer Science, Wesleyan University, Middletown, CT 06457 USA
| | - In Sub Mark Han
- Molecular Biophysics Program, Wesleyan University, Middletown, CT 06457 USA
| |
Collapse
|
25
|
Tam B, Lagniton PNP, Da Luz M, Zhao B, Sinha S, Lei CL, Wang SM. Comprehensive classification of TP53 somatic missense variants based on their impact on p53 structural stability. Brief Bioinform 2024; 25:bbae400. [PMID: 39140857 PMCID: PMC11323084 DOI: 10.1093/bib/bbae400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/08/2024] [Accepted: 07/30/2024] [Indexed: 08/15/2024] Open
Abstract
Somatic variation is a major type of genetic variation contributing to human diseases including cancer. Of the vast quantities of somatic variants identified, the functional impact of many somatic variants, in particular the missense variants, remains unclear. Lack of the functional information prevents the translation of rich variation data into clinical applications. We previously developed a method named Ramachandran Plot-Molecular Dynamics Simulations (RP-MDS), aiming to predict the function of germline missense variants based on their effects on protein structure stability, and successfully applied to predict the deleteriousness of unclassified germline missense variants in multiple cancer genes. We hypothesized that regardless of their different genetic origins, somatic missense variants and germline missense variants could have similar effects on the stability of their affected protein structure. As such, the RP-MDS method designed for germline missense variants should also be applicable to predict the function of somatic missense variants. In the current study, we tested our hypothesis by using the somatic missense variants in TP53 as a model. Of the 397 somatic missense variants analyzed, RP-MDS predicted that 195 (49.1%) variants were deleterious as they significantly disturbed p53 structure. The results were largely validated by using a p53-p21 promoter-green fluorescent protein (GFP) reporter gene assay. Our study demonstrated that deleterious somatic missense variants can be identified by referring to their effects on protein structural stability.
Collapse
Affiliation(s)
- Benjamin Tam
- Faculty of Health Sciences, University of Macau, University Avenue, Taipa, Macau SAR 999078, China
| | | | - Mariano Da Luz
- Faculty of Health Sciences, University of Macau, University Avenue, Taipa, Macau SAR 999078, China
| | - Bojin Zhao
- Faculty of Health Sciences, University of Macau, University Avenue, Taipa, Macau SAR 999078, China
| | - Siddharth Sinha
- Faculty of Health Sciences, University of Macau, University Avenue, Taipa, Macau SAR 999078, China
| | - Chon Lok Lei
- Faculty of Health Sciences, University of Macau, University Avenue, Taipa, Macau SAR 999078, China
| | - San Ming Wang
- Faculty of Health Sciences, University of Macau, University Avenue, Taipa, Macau SAR 999078, China
| |
Collapse
|
26
|
Liu Q, Yu Y, Wei G. Oncogenic R248W mutation induced conformational perturbation of the p53 core domain and the structural protection by proteomimetic amyloid inhibitor ADH-6. Phys Chem Chem Phys 2024; 26:20068-20086. [PMID: 39007865 DOI: 10.1039/d4cp02046d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
The involvement of p53 aggregation in cancer pathogenesis emphasizes the importance of unraveling the mechanisms underlying mutation-induced p53 destabilization. And understanding how small molecule inhibitors prevent the conversion of p53 into aggregation-primed conformations is pivotal for the development of therapeutics targeting p53-aggregation-associated cancers. A recent experimental study highlights the efficacy of the proteomimetic amyloid inhibitor ADH-6 in stabilizing R248W p53 and inhibiting its aggregation in cancer cells by interacting with the p53 core domain (p53C). However, it remains mostly unclear how R248W mutation induces destabilization of p53C and how ADH-6 stabilizes this p53C mutant and inhibits its aggregation. Herein, we conducted all-atom molecular dynamics simulations of R248W p53C in the absence and presence of ADH-6, as well as that of wild-type (WT) p53C. Our simulations reveal that the R248W mutation results in a shift of helix H2 and β-hairpin S2-S2' towards the mutation site, leading to the destruction of their neighboring β-sheet structure. This further facilitates the formation of a cavity in the hydrophobic core, and reduces the stability of the β-sandwich. Importantly, two crucial aggregation-prone regions (APRs) S9 and S10 are disturbed and more exposed to solvent in R248W p53C, which is conducive to p53C aggregation. Intriguingly, ADH-6 dynamically binds to the mutation site and multiple destabilized regions in R248W p53C, partially inhibiting the shift of helix H2 and β-hairpin S2-S2', thus preventing the disruption of the β-sheets and the formation of the cavity. ADH-6 also reduces the solvent exposure of APRs S9 and S10, which disfavors the aggregation of R248W p53C. Moreover, ADH-6 can preserve the WT-like dynamical network of R248W p53C. Our study elucidates the mechanisms underlying the oncogenic R248W mutation induced p53C destabilization and the structural protection of p53C by ADH-6.
Collapse
Affiliation(s)
- Qian Liu
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, People's Republic of China.
| | - Yawei Yu
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, People's Republic of China.
| | - Guanghong Wei
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, People's Republic of China.
| |
Collapse
|
27
|
Kong L, Meng F, Zhou P, Ge R, Geng X, Yang Z, Li G, Zhang L, Wang J, Ma J, Dong C, Zhou J, Wu S, Zhong D, Xie S. An engineered DNA aptamer-based PROTAC for precise therapy of p53-R175H hotspot mutant-driven cancer. Sci Bull (Beijing) 2024; 69:2122-2135. [PMID: 38811338 DOI: 10.1016/j.scib.2024.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/02/2024] [Accepted: 03/07/2024] [Indexed: 05/31/2024]
Abstract
Targeting oncogenic mutant p53 represents an attractive strategy for cancer treatment due to the high frequency of gain-of-function mutations and ectopic expression in various cancer types. Despite extensive efforts, the absence of a druggable active site for small molecules has rendered these mutants therapeutically non-actionable. Here we develop a selective and effective proteolysis-targeting chimera (PROTAC) for p53-R175H, a common hotspot mutant with dominant-negative and oncogenic activity. Using a novel iterative molecular docking-guided post-SELEX (systematic evolution of ligands by exponential enrichment) approach, we rationally engineer a high-performance DNA aptamer with improved affinity and specificity for p53-R175H. Leveraging this resulting aptamer as a binder for PROTACs, we successfully developed a selective p53-R175H degrader, named dp53m. dp53m induces the ubiquitin-proteasome-dependent degradation of p53-R175H while sparing wildtype p53. Importantly, dp53m demonstrates significant antitumor efficacy in p53-R175H-driven cancer cells both in vitro and in vivo, without toxicity. Moreover, dp53m significantly and synergistically improves the sensitivity of these cells to cisplatin, a commonly used chemotherapy drug. These findings provide evidence of the potential therapeutic value of dp53m in p53-R175H-driven cancers.
Collapse
Affiliation(s)
- Lingping Kong
- Department of Medical Oncology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Fanlu Meng
- Department of Medical Oncology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Ping Zhou
- Center for Cell Structure and Function, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Ruixin Ge
- Center for Cell Structure and Function, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Xiaoshan Geng
- Center for Cell Structure and Function, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Zhihao Yang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Guo Li
- Department of Medical Oncology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Linlin Zhang
- Department of Medical Oncology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Jing Wang
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Jinfeng Ma
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Cheng Dong
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Jun Zhou
- Center for Cell Structure and Function, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China; Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Sijin Wu
- Wisdom Lake Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou 215028, China.
| | - Diansheng Zhong
- Department of Medical Oncology, Tianjin Medical University General Hospital, Tianjin 300052, China.
| | - Songbo Xie
- Department of Ophthalmology, Tianjin Medical University General Hospital, Laboratory of Molecular Ophthalmology, Tianjin Key Laboratory of Ocular Trauma, Tianjin Medical University, Tianjin 300052, China.
| |
Collapse
|
28
|
Wen W, Zhang WL, Tan R, Zhong TT, Zhang MR, Fang XS. Progress in deciphering the role of p53 in diffuse large B-cell lymphoma: mechanisms and therapeutic targets. Am J Cancer Res 2024; 14:3280-3293. [PMID: 39113862 PMCID: PMC11301306 DOI: 10.62347/lhio8294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/30/2024] [Indexed: 08/10/2024] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common lymphoma subtype, accounting for 30%-40% of non-Hodgkin lymphoma in adults. The mechanisms underlying DLBCL occurrence are extremely complex, and involve the B-cell receptor (BCR) and Toll-like receptor (TLR) signaling pathways, as well as genetic abnormalities and other factors. With the development of high-throughput sequencing, an increasing number of abnormal genes have been identified in DLBCL. Among them, the tumor protein p53 (TP53/p53) gene is important in DLBCL occurrence. Patients with DLBCL carrying TP53 gene abnormalities generally have poor prognosis and studies of p53 have potential to provide a better basis for their treatment. Normally, p53 is maintained at low levels through its interaction with murine double minute 2 (MDM2), and prevents tumorigenesis by mediating cell cycle arrest, apoptosis, and repair of damaged cells, among other processes. Therefore, the prognosis of patients with DLBCL harboring TP53 gene abnormalities (mutations, deletions, etc.) is poor, and targeting p53 for tumor therapy has become a research hotspot, following developments in molecular biology technologies. Current treatments targeting p53 mainly act by restoring the function or promoting degradation of mutant p53, and enhancing wild-type p53 protein stability and activity. Based on the current status of p53 research, exploration of existing therapeutic methods to improve the prognosis of patients with DLBCL with TP53 abnormalities is warranted.
Collapse
Affiliation(s)
- Wen Wen
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinan 250021, Shandong, China
- Shandong First Medical UniversityJinan 250024, Shandong, China
| | - Wen-Lu Zhang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinan 250021, Shandong, China
- Shandong First Medical UniversityJinan 250024, Shandong, China
| | - Ran Tan
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinan 250021, Shandong, China
- Shandong First Medical UniversityJinan 250024, Shandong, China
| | - Tan-Tan Zhong
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinan 250021, Shandong, China
- Shandong First Medical UniversityJinan 250024, Shandong, China
| | - Mei-Rui Zhang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinan 250021, Shandong, China
- Shandong First Medical UniversityJinan 250024, Shandong, China
| | - Xiao-Sheng Fang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinan 250021, Shandong, China
- Shandong First Medical UniversityJinan 250024, Shandong, China
| |
Collapse
|
29
|
Wakasa T, Nonaka K, Harada A, Ohkawa Y, Kikutake C, Suyama M, Kobunai T, Tsunekuni K, Matsuoka K, Kataoka Y, Ochiiwa H, Miyadera K, Sagara T, Oki E, Ohdo S, Maehara Y, Iimori M, Kitao H. The anti-tumor effect of trifluridine via induction of aberrant mitosis is unaffected by mutations modulating p53 activity. Cell Death Discov 2024; 10:307. [PMID: 38956056 PMCID: PMC11219725 DOI: 10.1038/s41420-024-02083-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/18/2024] [Accepted: 06/21/2024] [Indexed: 07/04/2024] Open
Abstract
The fluorinated thymidine analog trifluridine (FTD) is a chemotherapeutic drug commonly used to treat cancer; however, the mechanism by which FTD induces cytotoxicity is not fully understood. In addition, the effect of gain-of-function (GOF) missense mutations of the TP53 gene (encoding p53), which promote cancer progression and chemotherapeutic drug resistance, on the chemotherapeutic efficacy of FTD is unclear. Here, we revealed the mechanisms by which FTD-induced aberrant mitosis and contributed to cytotoxicity in both p53-null and p53-GOF missense mutant cells. In p53-null mutant cells, FTD-induced DNA double-stranded breaks, single-stranded DNA accumulation, and the associated DNA damage responses during the G2 phase. Nevertheless, FTD-induced DNA damage and the related responses were not sufficient to trigger strict G2/M checkpoint arrest. Thus, these features were carried over into mitosis, resulting in chromosome breaks and bridges, and subsequent cytokinesis failure. Improper mitotic exit eventually led to cell apoptosis, caused by the accumulation of extensive DNA damage and the presence of micronuclei encapsulated in the disrupted nuclear envelope. Upon FTD treatment, the behavior of the p53-GOF-missense mutant, isogenic cell lines, generated by CRISPR/Cas9 genome editing, was similar to that of p53-null mutant cells. Thus, our data suggest that FTD treatment overrode the effect on gene expression induced by p53-GOF mutants and exerted its anti-tumor activity in a manner that was independent of the p53 function.
Collapse
Affiliation(s)
- Takeshi Wakasa
- Department of Molecular Cancer Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
- Taiho Pharmaceutical Co. Ltd., Tokyo, Japan
- Department of Pharmaceutics, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Kentaro Nonaka
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Kyushu Central Hospital of the Mutual Aid Association of Public School Teachers, Fukuoka, Japan
| | - Akihito Harada
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Yasuyuki Ohkawa
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Chie Kikutake
- Division of Bioinformatics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Mikita Suyama
- Division of Bioinformatics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | | | | - Eiji Oki
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shigehiro Ohdo
- Department of Pharmaceutics, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshihiko Maehara
- Kyushu Central Hospital of the Mutual Aid Association of Public School Teachers, Fukuoka, Japan
| | - Makoto Iimori
- Department of Molecular Cancer Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan.
- Oral Medicine Research Center, Fukuoka Dental College, Fukuoka, Japan.
| | - Hiroyuki Kitao
- Department of Molecular Cancer Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan.
- Oral Medicine Research Center, Fukuoka Dental College, Fukuoka, Japan.
| |
Collapse
|
30
|
Guo Y, Wu H, Wiesmüller L, Chen M. Canonical and non-canonical functions of p53 isoforms: potentiating the complexity of tumor development and therapy resistance. Cell Death Dis 2024; 15:412. [PMID: 38866752 PMCID: PMC11169513 DOI: 10.1038/s41419-024-06783-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 05/26/2024] [Accepted: 05/28/2024] [Indexed: 06/14/2024]
Abstract
Full-length p53 (p53α) plays a pivotal role in maintaining genomic integrity and preventing tumor development. Over the years, p53 was found to exist in various isoforms, which are generated through alternative splicing, alternative initiation of translation, and internal ribosome entry site. p53 isoforms, either C-terminally altered or N-terminally truncated, exhibit distinct biological roles compared to p53α, and have significant implications for tumor development and therapy resistance. Due to a lack of part and/or complete C- or N-terminal domains, ectopic expression of some p53 isoforms failed to induce expression of canonical transcriptional targets of p53α like CDKN1A or MDM2, even though they may bind their promoters. Yet, p53 isoforms like Δ40p53α still activate subsets of targets including MDM2 and BAX. Furthermore, certain p53 isoforms transactivate even novel targets compared to p53α. More recently, non-canonical functions of p53α in DNA repair and of different isoforms in DNA replication unrelated to transcriptional activities were discovered, amplifying the potential of p53 as a master regulator of physiological and tumor suppressor functions in human cells. Both regarding canonical and non-canonical functions, alternative p53 isoforms frequently exert dominant negative effects on p53α and its partners, which is modified by the relative isoform levels. Underlying mechanisms include hetero-oligomerization, changes in subcellular localization, and aggregation. These processes ultimately influence the net activities of p53α and give rise to diverse cellular outcomes. Biological roles of p53 isoforms have implications for tumor development and cancer therapy resistance. Dysregulated expression of isoforms has been observed in various cancer types and is associated with different clinical outcomes. In conclusion, p53 isoforms have expanded our understanding of the complex regulatory network involving p53 in tumors. Unraveling the mechanisms underlying the biological roles of p53 isoforms provides new avenues for studies aiming at a better understanding of tumor development and developing therapeutic interventions to overcome resistance.
Collapse
Affiliation(s)
- Yitian Guo
- Department of Urology, Zhongda Hospital Southeast University, Nanjing, China.
| | - Hang Wu
- Department of Rehabilitation Medicine, Zhongda Hospital Southeast University, Nanjing, China
| | - Lisa Wiesmüller
- Department of Obstetrics and Gynecology, Ulm University, Ulm, Germany
| | - Ming Chen
- Department of Urology, Zhongda Hospital Southeast University, Nanjing, China.
| |
Collapse
|
31
|
Balourdas DI, Markl AM, Krämer A, Settanni G, Joerger AC. Structural basis of p53 inactivation by cavity-creating cancer mutations and its implications for the development of mutant p53 reactivators. Cell Death Dis 2024; 15:408. [PMID: 38862470 PMCID: PMC11166945 DOI: 10.1038/s41419-024-06739-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/05/2024] [Accepted: 05/10/2024] [Indexed: 06/13/2024]
Abstract
The cavity-creating p53 cancer mutation Y220C is an ideal paradigm for developing small-molecule drugs based on protein stabilization. Here, we have systematically analyzed the structural and stability effects of all oncogenic Tyr-to-Cys mutations (Y126C, Y163C, Y205C, Y220C, Y234C, and Y236C) in the p53 DNA-binding domain (DBD). They were all highly destabilizing, drastically lowering the melting temperature of the protein by 8-17 °C. In contrast, two non-cancerous mutations, Y103C and Y107C, had only a moderate effect on protein stability. Differential stabilization of the mutants upon treatment with the anticancer agent arsenic trioxide and stibogluconate revealed an interesting proximity effect. Crystallographic studies complemented by MD simulations showed that two of the mutations, Y234C and Y236C, create internal cavities of different size and shape, whereas the others induce unique surface lesions. The mutation-induced pockets in the Y126C and Y205C mutant were, however, relatively small compared with that of the already druggable Y220C mutant. Intriguingly, our structural studies suggest a pronounced plasticity of the mutation-induced pocket in the frequently occurring Y163C mutant, which may be exploited for the development of small-molecule stabilizers. We point out general principles for reactivating thermolabile cancer mutants and highlight special cases where mutant-specific drugs are needed for the pharmacological rescue of p53 function in tumors.
Collapse
Affiliation(s)
- Dimitrios-Ilias Balourdas
- Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Str. 9, 60438, Frankfurt am Main, Germany
- Structural Genomics Consortium (SGC), Buchmann Institute for Molecular Life Sciences, Max-von-Laue-Str. 15, 60438, Frankfurt am Main, Germany
| | - Anja M Markl
- Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Str. 9, 60438, Frankfurt am Main, Germany
| | - Andreas Krämer
- Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Str. 9, 60438, Frankfurt am Main, Germany
- Structural Genomics Consortium (SGC), Buchmann Institute for Molecular Life Sciences, Max-von-Laue-Str. 15, 60438, Frankfurt am Main, Germany
| | - Giovanni Settanni
- Faculty of Physics and Astronomy, Ruhr University Bochum, Universitätsstr. 150, 44801, Bochum, Germany
- Physics Department, University of Mainz, Staudingerweg 7, 55099, Mainz, Germany
| | - Andreas C Joerger
- Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Str. 9, 60438, Frankfurt am Main, Germany.
- Structural Genomics Consortium (SGC), Buchmann Institute for Molecular Life Sciences, Max-von-Laue-Str. 15, 60438, Frankfurt am Main, Germany.
| |
Collapse
|
32
|
Fu S, Zhang Q, Zhang C. Research update for ferroptosis and cholangiocarcinoma. Crit Rev Oncol Hematol 2024; 198:104356. [PMID: 38641134 DOI: 10.1016/j.critrevonc.2024.104356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 01/17/2024] [Accepted: 04/10/2024] [Indexed: 04/21/2024] Open
Abstract
Cholangiocarcinoma (CCA) is the second most common hepatobiliary malignancy after hepatocellular carcinoma. Due to the poor treatment effect and high mortality rate of CCA, it is of great significance to explore new therapeutic targets. Ferroptosis is a type of cell death caused by iron-dependent cell oxidative injury, which is closely related to the occurrence and development of numerous diseases. Novel ideas for the prevention and treatment of related diseases have been provided by ferroptosis, which has become a focus of research in recent years. This review introduces the underlying mechanisms related to ferroptosis, as well as a research update for ferroptosis in the occurrence and development of CCA. The clinical value of ferroptosis-related regulatory mechanisms in CCA will be elucidated.
Collapse
Affiliation(s)
- Shengfeng Fu
- Department of General Surgery, Taizhou people's Hospital, Nanjing Medical University, Taizhou, China; Postgraduate School, Dalian Medical University, Dalian, China
| | - Qinyang Zhang
- Department of Orthopedics, Taizhou people's Hospital, Nanjing Medical University, Taizhou, Taizhou, China; Postgraduate School, Dalian Medical University, Dalian, China.
| | - Changhe Zhang
- Department of General Surgery, Taizhou people's Hospital, Nanjing Medical University, Taizhou, China.
| |
Collapse
|
33
|
Chasov V, Davletshin D, Gilyazova E, Mirgayazova R, Kudriaeva A, Khadiullina R, Yuan Y, Bulatov E. Anticancer therapeutic strategies for targeting mutant p53-Y220C. J Biomed Res 2024; 38:222-232. [PMID: 38738269 PMCID: PMC11144932 DOI: 10.7555/jbr.37.20230093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 09/25/2023] [Accepted: 10/07/2023] [Indexed: 05/14/2024] Open
Abstract
The tumor suppressor p53 is a transcription factor with a powerful antitumor activity that is controlled by its negative regulator murine double minute 2 (MDM2, also termed HDM2 in humans) through a feedback mechanism. At the same time, TP53 is the most frequently mutated gene in human cancers. Mutant p53 proteins lose wild-type p53 tumor suppression functions but acquire new oncogenic properties, among which are deregulating cell proliferation, increasing chemoresistance, disrupting tissue architecture, and promoting migration, invasion and metastasis as well as several other pro-oncogenic activities. The oncogenic p53 mutation Y220C creates an extended surface crevice in the DNA-binding domain destabilizing p53 and causing its denaturation and aggregation. This cavity accommodates stabilizing small molecules that have therapeutic values. The development of suitable small-molecule stabilizers is one of the therapeutic strategies for reactivating the Y220C mutant protein. In this review, we summarize approaches that target p53-Y220C, including reactivating this mutation with small molecules that bind Y220C to the hydrophobic pocket and developing immunotherapies as the goal for the near future, which target tumor cells that express the p53-Y220C neoantigen.
Collapse
Affiliation(s)
- Vitaly Chasov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | - Damir Davletshin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | - Elvina Gilyazova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | - Regina Mirgayazova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | - Anna Kudriaeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Raniya Khadiullina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | - Youyong Yuan
- Institute of Life Sciences, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Emil Bulatov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| |
Collapse
|
34
|
Han ISM, Thayer KM. Reconnaissance of Allostery via the Restoration of Native p53 DNA-Binding Domain Dynamics in Y220C Mutant p53 Tumor Suppressor Protein. ACS OMEGA 2024; 9:19837-19847. [PMID: 38737036 PMCID: PMC11079909 DOI: 10.1021/acsomega.3c08509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 03/30/2024] [Accepted: 04/03/2024] [Indexed: 05/14/2024]
Abstract
Allosteric regulation of protein dynamics infers a long-range deliberate propagation of information via micro- and macroscale interactions. The Y220C structural mutant is one of the most frequent cancerous p53 mutants. The mutation is distally located from the DNA-binding site of the p53 DNA-binding domain yet causes changes in DNA recognition. This system presents a unique opportunity to examine the allosteric control of mutated proteins under a drug design paradigm. We focus on the key case study of p53 Y220C mutation restoration by a series of new compounds suggested to have Y220C reactivation properties in comparison to our previous findings on the restorative potential of PK11000, a compound studied extensively for reactivation in vitro and in vivo. Previously, we implemented all-atom molecular dynamics (MD) simulations and our lab's techniques of MD-Sectors and MD-Markov state models on the wild type, the Y220C mutant, and Y220C with PK11000 to characterize the effector's restorative properties in terms of conformational dynamics and hydrogen bonding. In this study, we turn to probing the effects made by docking the battery of a new but less well-tested set of aminobenzothiazole derivative compounds reported by Baud et al., which show promise of Y220C rescue. We find that while complete and precise reconstitution of p53 WT molecular dynamics may not be observed as was the case with PK11000, dispersed local reconstitution of loop dynamics provides evidence of rescuing effects by aminobenzothiazole derivative N,2-dihydroxy-3,5-diiodo-4-(1H-pyrrol-1-yl)benzamide, Effector 22, like what we observed for PK11000. Generalizable insights into the mutation and allosteric reactivation of p53 by various effectors by reconstitution of WT dynamics observed in statistical conformational ensemble analysis and network inference are discussed, considering the development of allosteric drug design rooted in first principles.
Collapse
Affiliation(s)
- In Sub M. Han
- College of Integrated Sciences, Wesleyan University, Hall-Atwater Laboratories, Middletown, Connecticut 06459-0180, United States
| | - Kelly M. Thayer
- College of Integrated Sciences, Wesleyan University, Hall-Atwater Laboratories, Middletown, Connecticut 06459-0180, United States
| |
Collapse
|
35
|
Buchberg J, de Stricker K, Pfeiffer P, Mortensen MB, Detlefsen S. Mutational profiling of 103 unresectable pancreatic ductal adenocarcinomas using EUS-guided fine-needle biopsy. Endosc Ultrasound 2024; 13:154-164. [PMID: 39318643 PMCID: PMC11419524 DOI: 10.1097/eus.0000000000000072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 05/27/2024] [Indexed: 09/26/2024] Open
Abstract
Background and Objective Pancreatic ductal adenocarcinoma (PDAC) is among the most lethal cancers, with a 5-year survival rate of around 9%. Only 20% are candidates for surgery. Most unresectable patients undergo EUS-guided fine-needle biopsy (EUS-FNB) for diagnosis. Identification of targetable mutations using next-generation sequencing (NGS) is increasingly requested. Data on feasibility of EUS-FNB for NGS and knowledge regarding mutational profile of unresectable PDAC are scarce. We evaluated the "technical yield" of EUS-FNB for NGS in unresectable PDAC: relative fraction of diagnostic EUS-FNBs meeting technical criteria. We also investigated the "molecular yield": relative fraction of EUS-FNBs included in NGS containing sufficient DNA for detection of at least one mutation. Furthermore, we determined the relative frequency of cancer-associated mutations in unresectable PDAC. Patients and Methods Formalin-fixed and paraffin-embedded EUS-FNBs diagnostic of unresectable PDAC and fulfilling these criteria were included (n = 105): minimum 3-mm2 tissue, minimum of 2-mm2 tumor area, and minimum 20% relative tumor area. NGS was performed using Ion GeneStudio S5 Prime System and Oncomine™ Comprehensive Assay v.3 including 161 cancer-related genes. Results Technical yield was 48% (105/219) and molecular yield was 98% (103/105). Most frequently mutated genes were KRAS (89.3%) and TP53 (69.9%), followed by CDKN2A (24.3%), ARID1A (9.7%), SMAD4 (7.8%), TSC2 (7.8%), and CCND3 (6.8%). Conclusion EUS-FNB for NGS of unresectable PDAC is feasible. Our technical criteria for NGS, using leftovers in formalin-fixed and paraffin-embedded blocks after routine pathology diagnosis, were met by around half of EUS-FNBs. Almost all EUS-FNBs fulfilling the technical criteria yielded a successful NGS analysis.
Collapse
Affiliation(s)
- Julie Buchberg
- Department of Pathology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Karin de Stricker
- Department of Pathology, Odense University Hospital, Odense, Denmark
| | - Per Pfeiffer
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
- Department of Oncology, Odense University Hospital, Odense, Denmark
- Odense Pancreas Center (OPAC), Odense University Hospital, Odense, Denmark
| | - Michael Bau Mortensen
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
- Odense Pancreas Center (OPAC), Odense University Hospital, Odense, Denmark
- Department of Surgery, Upper GI and HPB Section, Odense University Hospital, Odense, Denmark
| | - Sönke Detlefsen
- Department of Pathology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
- Odense Pancreas Center (OPAC), Odense University Hospital, Odense, Denmark
| |
Collapse
|
36
|
Meher RK, Mir SA, Anisetti SS. In silico and in vitro investigation of dual targeting Prima-1 MET as precision therapeutic against lungs cancer. J Biomol Struct Dyn 2024; 42:4169-4184. [PMID: 37272907 DOI: 10.1080/07391102.2023.2219323] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 05/23/2023] [Indexed: 06/06/2023]
Abstract
This study emphasizes the explorations of binding of Prima-1MET with two targets, p53 a tumor suppressor protein, and tyrosine kinase of epidermal growth factor receptor. In silico investigations reveal that Prima-1MET showed robust binding with both targets. Molecular docking simulations demonstrated the binding affinity of Prima-1MET with p53 and tyrosine kinase was found to be -38.601 kJ/mol and -38.976 kJ/mol. In addition, the stability of Prima-1MET was explored by molecular dynamics simulation. Prima-1MET attains stability in the binding site of the respective protein till the simulation period is over. Moreover, the free binding energy ΔGbind was calculated by the molecular mechanics Poisson Boltzmann surface area method. The ΔGbind of Prima-1MET with tyrosine kinase was found to be -58.585 ± 0.327 kJ/mol and with p53 it was -35.910 ± 0.335 kJ/mol. Next, cytotoxicity of the Prima-1MET was evaluated using multiple cancer cell lines and the IC50 value were ranging between 4.5 and 30 μM. The cell death was identified by apoptosis assay. Further, the p53 and tyrosine kinase expression was monitored using immunofluorescence techniques, it was found Prima-1MET induces the expression of p53 protein and mimics the level of tyrosine kinase oncogenic target. Also, reactive oxygen species (ROS) and membrane potential activity of Prima-1MET was evaluated by using a lung cancer cell line. A significant decrease in intracellular ROS was observed and resulted in disruption of mitochondrial transmembrane potential. This study uncovers the underlying mechanism of Prima-1MET and could be helpful to design further leads against lung cancers.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Rajesh Kumar Meher
- Advance Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Mumbai, India
- Department of Biotechnology and Bioinformatics, Sambalpur University, Burla, Odisha, India
| | | | | |
Collapse
|
37
|
Qi YB, Xu Z, Shen S, Wang Z, Wang Z. MYRF: A unique transmembrane transcription factor- from proteolytic self-processing to its multifaceted roles in animal development. Bioessays 2024; 46:e2300209. [PMID: 38488284 DOI: 10.1002/bies.202300209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 03/28/2024]
Abstract
The Myelin Regulator Factor (MYRF) is a master regulator governing myelin formation and maintenance in the central nervous system. The conservation of MYRF across metazoans and its broad tissue expression suggest it has functions extending beyond the well-established role in myelination. Loss of MYRF results in developmental lethality in both invertebrates and vertebrates, and MYRF haploinsufficiency in humans causes MYRF-related Cardiac Urogenital Syndrome, underscoring its importance in animal development; however, these mechanisms are largely unexplored. MYRF, an unconventional transcription factor, begins embedded in the membrane and undergoes intramolecular chaperone mediated trimerization, which triggers self-cleavage, allowing its N-terminal segment with an Ig-fold DNA-binding domain to enter the nucleus for transcriptional regulation. Recent research suggests developmental regulation of cleavage, yet the mechanisms remain enigmatic. While some parts of MYRF's structure have been elucidated, others remain obscure, leaving questions about how these motifs are linked to its intricate processing and function.
Collapse
Affiliation(s)
- Yingchuan B Qi
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Zhimin Xu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Shiqian Shen
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Zhao Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Zhizhi Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| |
Collapse
|
38
|
Zawacka JE. p53 biology and reactivation for improved therapy in MDS and AML. Biomark Res 2024; 12:34. [PMID: 38481290 PMCID: PMC10936007 DOI: 10.1186/s40364-024-00579-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 03/01/2024] [Indexed: 11/02/2024] Open
Abstract
Myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML) originate from preleukemic hematopoietic conditions, such as clonal hematopoiesis of indeterminate potential (CHIP) or clonal cytopenia of undetermined significance (CCUS) and have variable outcomes despite the successful implementation of targeted therapies. The prognosis differs depending on the molecular subgroup. In patients with TP53 mutations, the most inferior outcomes across independent studies were observed. Myeloid malignancies with TP53 mutations have complex cytogenetics and extensive structural variants. These factors contribute to worse responses to induction therapy, demethylating agents, or venetoclax-based treatments. Survival of patients with biallelic TP53 gene mutations is often less than one year but this depends on the type of treatment applied. It is still controversial whether the allelic state of mutant TP53 impacts the outcomes in patients with AML and high-risk MDS. Further studies are needed to justify estimating TP53 LOH status for better risk assessment. Yet, TP53-mutated MDS, MDS/AML and AML are now classified separately in the International Consensus Classification (ICC). In the clinical setting, the wild-type p53 protein is reactivated pharmacologically by targeting p53/MDM2/MDM4 interactions and mutant p53 reactivation is achieved by refolding the DNA binding domain to wild-type-like conformation or via targeted degradation of the mutated protein. This review discusses our current understanding of p53 biology in MDS and AML and the promises and failures of wild-type and mutant p53 reactivation in the clinical trial setting.
Collapse
Affiliation(s)
- Joanna E Zawacka
- Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden.
- Department of Biochemistry, Laboratory of Biophysics and p53 Protein Biology, Medical University of Warsaw, Warsaw, Poland.
| |
Collapse
|
39
|
Mateoiu C, Palicelli A, Maloberti T, De Biase D, De Leo A, Lindh M, Bohlin KS, Stolnicu S. Primary vulvar adenocarcinoma of intestinal type: Report of two cases showing molecular similarity with colorectal adenocarcinoma. Pathol Res Pract 2024; 255:155181. [PMID: 38340583 DOI: 10.1016/j.prp.2024.155181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/30/2023] [Accepted: 01/27/2024] [Indexed: 02/12/2024]
Abstract
Primary vulvar adenocarcinoma is a particularly rare tumor with poorly understood histogenesis and unclear clinical characteristics and prognosis. Vulvar adenocarcinoma of intestinal type (VAIt) is a very uncommon subtype of primary vulvar adenocarcinoma and only 27 cases have been described in the literature in the past. Of these cases, two have been described as human papillomavirus (HPV)-associated VAIt. The current report presents two additional cases of primary VAIt showing variants in the KRAS, TP53, and DPYD genes and no evidence of HPV DNA by real-time polymerase chain reaction (RT-PCR). Next-generation sequencing (NGS) revealed TP53 pathogenic variants in both cases, but only one case had aberrant p53 protein immunohistochemical characteristics. KRAS and DPYD mutations were identified separately in the two cases. Due to their capacity to imitate the spread of more prevalent gastrointestinal carcinomas, these tumors may present diagnostic issues. Additional cases can contribute to a better understanding of the pathophysiology and prognosis of VAIt.
Collapse
Affiliation(s)
- Claudia Mateoiu
- Department of Clinical Pathology, Sahlgrenska University Hospital, Gothenburg, Sweden.
| | - Andrea Palicelli
- S.C. di Anat Patol Azienda USL-IRCCS, Ospedale S. Maria Nuova, di Reggio Emilia, Italy
| | - Thais Maloberti
- Solid Tumor Molecular Pathology Laboratory, IRCCS Azienda Ospedaliero-Universitaria di Bologna, University of Bologna, Italy; Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Italy
| | - Dario De Biase
- Solid Tumor Molecular Pathology Laboratory, IRCCS Azienda Ospedaliero-Universitaria di Bologna, University of Bologna, Italy; Department of Pharmacy and Biotechnology, University of Bologna, Italy
| | - Antonio De Leo
- Solid Tumor Molecular Pathology Laboratory, IRCCS Azienda Ospedaliero-Universitaria di Bologna, University of Bologna, Italy; Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Italy
| | - Magnus Lindh
- Department of Infectious Diseases, Institute of Biomedicine at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Katja Stenström Bohlin
- Department of Obstetrics and Gynecology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Simona Stolnicu
- Department of Pathology, University of Medicine, Pharmacy, Sciences and Technology "George E Palade" of Targu Mures, Targu Mures, Romania
| |
Collapse
|
40
|
Song B, Yang P, Zhang S. Cell fate regulation governed by p53: Friends or reversible foes in cancer therapy. Cancer Commun (Lond) 2024; 44:297-360. [PMID: 38311377 PMCID: PMC10958678 DOI: 10.1002/cac2.12520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 01/03/2024] [Accepted: 01/11/2024] [Indexed: 02/10/2024] Open
Abstract
Cancer is a leading cause of death worldwide. Targeted therapies aimed at key oncogenic driver mutations in combination with chemotherapy and radiotherapy as well as immunotherapy have benefited cancer patients considerably. Tumor protein p53 (TP53), a crucial tumor suppressor gene encoding p53, regulates numerous downstream genes and cellular phenotypes in response to various stressors. The affected genes are involved in diverse processes, including cell cycle arrest, DNA repair, cellular senescence, metabolic homeostasis, apoptosis, and autophagy. However, accumulating recent studies have continued to reveal novel and unexpected functions of p53 in governing the fate of tumors, for example, functions in ferroptosis, immunity, the tumor microenvironment and microbiome metabolism. Among the possibilities, the evolutionary plasticity of p53 is the most controversial, partially due to the dizzying array of biological functions that have been attributed to different regulatory mechanisms of p53 signaling. Nearly 40 years after its discovery, this key tumor suppressor remains somewhat enigmatic. The intricate and diverse functions of p53 in regulating cell fate during cancer treatment are only the tip of the iceberg with respect to its equally complicated structural biology, which has been painstakingly revealed. Additionally, TP53 mutation is one of the most significant genetic alterations in cancer, contributing to rapid cancer cell growth and tumor progression. Here, we summarized recent advances that implicate altered p53 in modulating the response to various cancer therapies, including chemotherapy, radiotherapy, and immunotherapy. Furthermore, we also discussed potential strategies for targeting p53 as a therapeutic option for cancer.
Collapse
Affiliation(s)
- Bin Song
- Laboratory of Radiation MedicineWest China Second University HospitalSichuan UniversityChengduSichuanP. R. China
| | - Ping Yang
- Laboratory of Radiation MedicineWest China Second University HospitalSichuan UniversityChengduSichuanP. R. China
| | - Shuyu Zhang
- Laboratory of Radiation MedicineWest China Second University HospitalSichuan UniversityChengduSichuanP. R. China
- The Second Affiliated Hospital of Chengdu Medical CollegeChina National Nuclear Corporation 416 HospitalChengduSichuanP. R. China
- Laboratory of Radiation MedicineNHC Key Laboratory of Nuclear Technology Medical TransformationWest China School of Basic Medical Sciences & Forensic MedicineSichuan UniversityChengduSichuanP. R. China
| |
Collapse
|
41
|
Adams AC, Macy AM, Borden ES, Herrmann LM, Brambley CA, Ma T, Li X, Hughes A, Roe DJ, Mangold AR, Buetow KH, Wilson MA, Baker BM, Hastings KT. Distinct sets of molecular characteristics define tumor-rejecting neoantigens. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.13.579546. [PMID: 38405868 PMCID: PMC10888839 DOI: 10.1101/2024.02.13.579546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Challenges in identifying tumor-rejecting neoantigens limit the efficacy of neoantigen vaccines to treat cancers, including cutaneous squamous cell carcinoma (cSCC). A minority of human cSCC tumors shared neoantigens, supporting the need for personalized vaccines. Using a UV-induced mouse cSCC model which recapitulated the mutational signature and driver mutations found in human disease, we found that CD8 T cells constrain cSCC. Two MHC class I neoantigens were identified that constrained cSCC growth. Compared to the wild-type peptides, one tumor-rejecting neoantigen exhibited improved MHC binding and the other had increased solvent accessibility of the mutated residue. Across known neoantigens that do not impact MHC binding, structural modeling of the peptide/MHC complexes indicated that increased solvent accessibility, which will facilitate TCR recognition of the neoantigen, distinguished tumor-rejecting from non-immunogenic neoantigens. This work reveals characteristics of tumor-rejecting neoantigens that may be of considerable importance in identifying optimal vaccine candidates in cSCC and other cancers.
Collapse
|
42
|
Bourmoum M, Radulovich N, Sharma A, Tkach JM, Tsao MS, Pelletier L. β-catenin mediates growth defects induced by centrosome loss in a subset of APC mutant colorectal cancer independently of p53. PLoS One 2024; 19:e0295030. [PMID: 38324534 PMCID: PMC10849215 DOI: 10.1371/journal.pone.0295030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 11/13/2023] [Indexed: 02/09/2024] Open
Abstract
Colorectal cancer is the third most common cancer and the second leading cause of cancer-related deaths worldwide. The centrosome is the main microtubule-organizing center in animal cells and centrosome amplification is a hallmark of cancer cells. To investigate the importance of centrosomes in colorectal cancer, we induced centrosome loss in normal and cancer human-derived colorectal organoids using centrinone B, a Polo-like kinase 4 (Plk4) inhibitor. We show that centrosome loss represses human normal colorectal organoid growth in a p53-dependent manner in accordance with previous studies in cell models. However, cancer colorectal organoid lines exhibited different sensitivities to centrosome loss independently of p53. Centrinone-induced cancer organoid growth defect/death positively correlated with a loss of function mutation in the APC gene, suggesting a causal role of the hyperactive WNT pathway. Consistent with this notion, β-catenin inhibition using XAV939 or ICG-001 partially prevented centrinone-induced death and rescued the growth two APC-mutant organoid lines tested. Our study reveals a novel role for canonical WNT signaling in regulating centrosome loss-induced growth defect/death in a subset of APC-mutant colorectal cancer independently of the classical p53 pathway.
Collapse
Affiliation(s)
- Mohamed Bourmoum
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Nikolina Radulovich
- University Health Network, Ontario Cancer Institute/Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Amit Sharma
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Johnny M. Tkach
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Ming-Sound Tsao
- University Health Network, Ontario Cancer Institute/Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Laurence Pelletier
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
43
|
Huang Y, Jiao Z, Fu Y, Hou Y, Sun J, Hu F, Yu S, Gong K, Liu Y, Zhao G. An overview of the functions of p53 and drugs acting either on wild- or mutant-type p53. Eur J Med Chem 2024; 265:116121. [PMID: 38194777 DOI: 10.1016/j.ejmech.2024.116121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/22/2023] [Accepted: 01/01/2024] [Indexed: 01/11/2024]
Abstract
TP53, also known as the "guardian of the genome," is an important tumor suppressor gene. It is encoded by the human genome and is associated with the development of diverse cancers. The p53 protein, encoded by TP53, functions in the cell to monitor DNA damage and prompts the cell to respond appropriately. When DNA is damaged, p53 halts the cell cycle, allowing cells to enter the repair state. If the repair is ineffective, p53 induces cell death via apoptosis. This prevents DNA damage transmission during cell division and reduces cancer risk. However, the p53 gene mutation compromises its function. This leads to the inability of cells to respond properly to DNA damage, which may result in cancer development. Mutations in p53 are widespread in diverse cancers, especially highly prevalent cancers, including breast, colon, and lung cancers. Despite the association between p53 mutations and cancer, researchers have discovered drugs and treatments that may reactivate mutated p53 function. Therefore, p53 remains an important area of research in cancer treatment and holds promise as a new direction for cancer therapy. In summary, TP53 is a vital tumor suppressor gene responsible for monitoring DNA damage and prompting cells to respond appropriately. This article summarizes drugs related to p53 and diverse strategies for discovering drugs that act on either wide or mutant p53. Herein, p53 is categorized into two types: wild and mutant type. Drugs are also classified according to diverse treatment strategies, enabling readers to differentiate between the two types of p53 and aiding in selecting the appropriate research direction. Additionally, this review offers a valuable reference for drug design.
Collapse
Affiliation(s)
- Yongmi Huang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, PR China.
| | - Zhihao Jiao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, PR China.
| | - Yuqing Fu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, PR China
| | - Yue Hou
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, PR China
| | - Jinxiao Sun
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, PR China
| | - Feiran Hu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, PR China
| | - Shangzhe Yu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, PR China
| | - Kexin Gong
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, PR China
| | - Yiru Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, PR China
| | - Guisen Zhao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, PR China.
| |
Collapse
|
44
|
Okus F, Yuzbasioglu D, Unal F. Molecular docking study of frequently used food additives for selected targets depending on the chromosomal abnormalities they cause. Toxicology 2024; 502:153716. [PMID: 38159899 DOI: 10.1016/j.tox.2023.153716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/26/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
Food additives (FAs) (flavor enhancers, sweeteners, etc.) protect foods during storage and transportation, making them attractive to consumers. Today, while the desire to access natural foods is increasing, the chemicals added to foods have started to be questioned. In this respect, genotoxicity tests have gained importance. Studies show that some food additives may have genotoxic risks. Previous studies carried out in our laboratory also revealed genotoxic effects of Monopotassium glutamate (MPG), Monosodium glutamate (MSG), Magnesium diglutamate (MDG) as flavor enhancers; Potassium benzoate (PB), Potassium sorbate (PS), Sodium benzoate (SB), Sodium sorbate (SS) as preservatives; Acesulfame potassium (ACE-K), Xylitol (XYL) as sweeteners. In this study, we determined the interactions of these food additives with ATM and p53 proteins, which are activated in the cell due to genotoxic effects, and with DNA by employing the molecular docking method for the first time. Among the food additives, SB (-4.307) for ATM, XYL (-4.629) for p53, and XYL (-4.927) for DNA showed the highest affinity. Therefore, flexible docking (IFD) scores were determined for SB, XYL, and MDG from flavor enhancers. The potential binding modes of the food additives to target molecules' possible inhibition mechanisms were determined by molecular docking. Thus, new information was obtained to show how these additives cause chromosomal abnormalities.
Collapse
Affiliation(s)
- Fatma Okus
- Graduate School of Natural and Applied Sciences, Gazi University, Teknikokullar, Ankara, Türkiye
| | - Deniz Yuzbasioglu
- Genetic Toxicology Laboratory, Department of Biology, Science Faculty, Gazi University, Teknikokullar, Ankara, Türkiye.
| | - Fatma Unal
- Genetic Toxicology Laboratory, Department of Biology, Science Faculty, Gazi University, Teknikokullar, Ankara, Türkiye
| |
Collapse
|
45
|
Ferrell LD, Kakar S, Terracciano LM, Wee A. Tumours and Tumour-Like Lesions. MACSWEEN'S PATHOLOGY OF THE LIVER 2024:842-946. [DOI: 10.1016/b978-0-7020-8228-3.00013-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
46
|
Pandey M, Shah SK, Gromiha MM. Computational approaches for identifying disease-causing mutations in proteins. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 139:141-171. [PMID: 38448134 DOI: 10.1016/bs.apcsb.2023.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Advancements in genome sequencing have expanded the scope of investigating mutations in proteins across different diseases. Amino acid mutations in a protein alter its structure, stability and function and some of them lead to diseases. Identification of disease-causing mutations is a challenging task and it will be helpful for designing therapeutic strategies. Hence, mutation data available in the literature have been curated and stored in several databases, which have been effectively utilized for developing computational methods to identify deleterious mutations (drivers), using sequence and structure-based properties of proteins. In this chapter, we describe the contents of specific databases that have information on disease-causing and neutral mutations followed by sequence and structure-based properties. Further, characteristic features of disease-causing mutations will be discussed along with computational methods for identifying cancer hotspot residues and disease-causing mutations in proteins.
Collapse
Affiliation(s)
- Medha Pandey
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - Suraj Kumar Shah
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - M Michael Gromiha
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India; International Research Frontiers Initiative, School of Computing, Tokyo Institute of Technology, Yokohama, Japan.
| |
Collapse
|
47
|
Viscuse PV, Slack-Tidwell RS, Zhang M, Rohra P, Zhu K, San Lucas FA, Konnick E, Pilie PG, Siddiqui B, Logothetis CJ, Corn P, Subudhi SK, Pritchard CC, Soundararajan R, Aparicio A. Evaluation of the Aggressive-Variant Prostate Cancer Molecular Signature in Clinical Laboratory Improvement Amendments (CLIA) Environments. Cancers (Basel) 2023; 15:5843. [PMID: 38136389 PMCID: PMC10741546 DOI: 10.3390/cancers15245843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
Aggressive-variant prostate cancers (AVPCs) are a subset of metastatic castrate-resistant prostate cancers (mCRPCs) characterized by defects in ≥ two of three of TP53, RB1, and PTEN (AVPCm), a profile linked to lineage plasticity, androgen indifference, and platinum sensitivity. Men with mCRPC undergoing biopsies for progression were assessed for AVPCm using immunohistochemistry (IHC), next-generation sequencing (NGS) of solid tumor DNA (stDNA), and NGS of circulating tumor DNA (ctDNA) assays in CLIA-certified labs. Biopsy characteristics, turnaround times, inter-reader concordance, and inter-assay concordance were assessed. AVPCm was detected in 13 (27%) patients via IHC, two (6%) based on stDNA, and seven (39%) based on ctDNA. The concordance of the IHC reads between pathologists was variable. IHC had a higher detection rate of AVPCm+ tumors with the shortest turnaround times. stDNA had challenges with copy number loss detection, limiting its detection rate. ctDNA detected the greatest proportion of AVPCm+ tumors but had a low tumor content in two thirds of patients. These data show the operational characteristics of AVPCm detection using various assays, and inform trial design using AVPCm as a criterion for patient selection or stratification.
Collapse
Affiliation(s)
- Paul V. Viscuse
- Department of Medicine, University of Virginia, Charlottesville, VA 22903, USA;
| | - Rebecca S. Slack-Tidwell
- Department of Biostatistics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Miao Zhang
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA (K.Z.)
| | - Prih Rohra
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA (K.Z.)
| | - Keyi Zhu
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA (K.Z.)
| | - F. Anthony San Lucas
- Department of Hematopathology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Eric Konnick
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA; (E.K.)
| | - Patrick G. Pilie
- Department of Genitourinary Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Bilal Siddiqui
- Department of Genitourinary Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Christopher J. Logothetis
- Department of Genitourinary Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Paul Corn
- Department of Genitourinary Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sumit K. Subudhi
- Department of Genitourinary Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Colin C. Pritchard
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA; (E.K.)
| | - Rama Soundararajan
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Ana Aparicio
- Department of Genitourinary Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
48
|
Novack R, Chapman E, Gao J, Horst B, Hoang LN, Ng TL, Ko YCK. Utilization of p53 and p16 Immunohistochemistry in the Classification of Human Papillomavirus-Associated, p53 Wild-Type, and p53 Abnormal Oral Epithelial Dysplasia. Mod Pathol 2023; 36:100348. [PMID: 37820765 DOI: 10.1016/j.modpat.2023.100348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/12/2023] [Accepted: 09/26/2023] [Indexed: 10/13/2023]
Abstract
p53 immunohistochemistry (IHC) has recently been shown to be a clinically useful marker for predicting risk of progression to invasive squamous cell carcinoma in oral epithelial dysplasia (OED). The literature supports the use of p53 IHC as a marker to identify TP53 mutation in in situ and invasive vulvar lesions and as a surrogate marker for high-risk human papillomavirus (HPV) infection, but there is little documentation for similar use in OED. The purpose of this study was to determine whether p53 IHC is a reliable surrogate marker for detecting both TP53 mutation and high-risk HPV infection in OED. We studied 57 cases of OED (11 mild, 18 moderate, and 28 severe), and all were stained for p16 and p53 IHC. High-risk HPV RNA in situ hybridization (ISH) was performed in selected cases (all p16-positive cases and all OED showing abundant apoptotic cells and karyorrhectic cells; N = 27). Targeted next-generation sequencing (NGS) was performed in 33 p16-negative cases and all high-risk HPV RNA ISH-negative cases (N = 36). We identified 21 cases with p53 basal sparing patterns (mid-epithelial and markedly reduced [null-like]), 14 cases with p53 wild-type patterns (scattered basal and patchy basal/parabasal), and 22 cases with p53 abnormal patterns (18 overexpression, 3 null, and 1 novel cytoplasmic pattern). Among cases with p53 basal sparing patterns, 20 were positive for p16 (20/21, 95%), and all were positive for high-risk HPV RNA ISH (21/21, 100%). The 36 sequenced cases had IHC patterns concordant with TP53 mutation status in 92% (33/36) of lesions. This study demonstrates that p53 IHC expression patterns are sensitive and specific for detection of both high-risk HPV infection and TP53 mutation. Coupled with selective p16 IHC testing, this IHC panel can accurately subclassify OED into HPV-associated, p53 wild-type (conventional), and p53 abnormal OED.
Collapse
Affiliation(s)
- Rachel Novack
- Department of Anatomical Pathology, Vancouver General Hospital, Vancouver, British Columbia, Canada
| | - Erin Chapman
- Department of Laboratory Medicine & Pathology, Faculty of Medicine & Dentistry, University of Alberta, Alberta, Canada
| | - Jiangyuan Gao
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Basil Horst
- Department of Anatomical Pathology, Vancouver General Hospital, Vancouver, British Columbia, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Lynn N Hoang
- Department of Anatomical Pathology, Vancouver General Hospital, Vancouver, British Columbia, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Tony L Ng
- Department of Anatomical Pathology, Vancouver General Hospital, Vancouver, British Columbia, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Yen Chen Kevin Ko
- Department of Anatomical Pathology, Vancouver General Hospital, Vancouver, British Columbia, Canada; Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, British Columbia, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Department of Laboratory Medicine and Pathology, BC Oral Biopsy Service, Vancouver General Hospital, Vancouver, British Columbia, Canada.
| |
Collapse
|
49
|
Islam S, Shahzad SA, Hassan Bin Asad MH, Mannan A. Novel amodiaquine analogues to treat cervical cancer and microbial infection in the future. Future Med Chem 2023; 15:2165-2179. [PMID: 37982232 DOI: 10.4155/fmc-2023-0245] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 09/26/2023] [Indexed: 11/21/2023] Open
Abstract
Aim: To synthesize and explore the therapeutic potential of amodiaquine analogues. Methodology: New promising analogues were synthesized by nucleophilic substitution at the 4-amino position and were characterized using 1H NMR, 13C NMR and FT-IR spectroscopic techniques. Results: Antibacterial and cytotoxic screening revealed the high potency of these compounds; analogue AS1 had an 34.3 ± 0.18 mm zone of inhibition against Pseudomonas aeruginosa. Excellent activity against fungal strains, that is, Candida albicans (39.6 ± 0.23 mm) was shown by analogue AS2. Analogue AS1 had an IC50 = 4.2 μg/ml against the HeLa cell line (cervical cancer) and binding energy against 5GWK (-8.32688 kcal/mol), 1PFK (-6.4780 kcal/mol) and 1TUP (-6.5279 kcal/mol) in the docking study. Conclusion: The obtained results reveal that these analogues exhibit potent antimicrobial and cytotoxic potential.
Collapse
Affiliation(s)
- Shamsul Islam
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, 22060, Pakistan
| | - Sohail Anjum Shahzad
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, 22060, Pakistan
| | | | - Abdul Mannan
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, 22060, Pakistan
| |
Collapse
|
50
|
Pan Q, Portelli S, Nguyen TB, Ascher DB. Characterization on the oncogenic effect of the missense mutations of p53 via machine learning. Brief Bioinform 2023; 25:bbad428. [PMID: 38018912 PMCID: PMC10685404 DOI: 10.1093/bib/bbad428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/13/2023] [Accepted: 11/05/2023] [Indexed: 11/30/2023] Open
Abstract
Dysfunctions caused by missense mutations in the tumour suppressor p53 have been extensively shown to be a leading driver of many cancers. Unfortunately, it is time-consuming and labour-intensive to experimentally elucidate the effects of all possible missense variants. Recent works presented a comprehensive dataset and machine learning model to predict the functional outcome of mutations in p53. Despite the well-established dataset and precise predictions, this tool was trained on a complicated model with limited predictions on p53 mutations. In this work, we first used computational biophysical tools to investigate the functional consequences of missense mutations in p53, informing a bias of deleterious mutations with destabilizing effects. Combining these insights with experimental assays, we present two interpretable machine learning models leveraging both experimental assays and in silico biophysical measurements to accurately predict the functional consequences on p53 and validate their robustness on clinical data. Our final model based on nine features obtained comparable predictive performance with the state-of-the-art p53 specific method and outperformed other generalized, widely used predictors. Interpreting our models revealed that information on residue p53 activity, polar atom distances and changes in p53 stability were instrumental in the decisions, consistent with a bias of the properties of deleterious mutations. Our predictions have been computed for all possible missense mutations in p53, offering clinical diagnostic utility, which is crucial for patient monitoring and the development of personalized cancer treatment.
Collapse
Affiliation(s)
- Qisheng Pan
- School of Chemistry and Molecular Bioscience, University of Queensland, Brisbane Queensland 4072, Australia
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne Victoria 3004, Australia
| | - Stephanie Portelli
- School of Chemistry and Molecular Bioscience, University of Queensland, Brisbane Queensland 4072, Australia
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne Victoria 3004, Australia
| | - Thanh Binh Nguyen
- School of Chemistry and Molecular Bioscience, University of Queensland, Brisbane Queensland 4072, Australia
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne Victoria 3004, Australia
| | - David B Ascher
- School of Chemistry and Molecular Bioscience, University of Queensland, Brisbane Queensland 4072, Australia
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne Victoria 3004, Australia
| |
Collapse
|